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1

Introduction

The use of embedded control systems is growing rapidly. Nowadays
we can find advanced control systems in consumer products such as
washing machines and home stereo equipment. In our everyday life we
more and more depend on computers for assistance. If a word proces-
sor or the email software crashes it is usually not a big problem, one
can just reboot the system and carry on. This is certainly not the case
for more critical computer controlled tasks. For example the maneu-
vering systems in airplanes are more and more relying on computers.
It is unlikely that a pilot can press Ctrl-Alt-Delete if the autopilot
malfunctions.

There are two important aspects of critical control systems; The
control law must be designed to react correctly to all possible input
information and the hardware/software must be designed to tolerate
faults. There are many types of faults that may occur in embedded
systems. There may be control design errors, timing errors, and sys-
tem design errors. Some very complicated faults may occur due to
man-machine interaction . Some notable incidents are the crash of the
Swedish JAS-39 Gripen fighter aircraft and the failure of the Ariane
rocket [Le Lann, 1996].

Control systems in cars are introduced at different levels. There are
low-level tasks such as engine control, anti-locking brake systems, and
adaptive suspension control. At higher levels there are cruise control
systems and climate control. More advanced tasks are discussed in the
automated highway projects, which aim to support the driver in the
actual driving of the car. The goal here is to design a control system
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which will drive the car itself.

The examples above stress the issue of safe and reliable software.
Software that is assigned to handle safety-critical tasks cannot be al-
lowed to fail, it must have ways to handle faults that occur during
execution. Such software is called fault-tolerant.

In the manufacturing industry there are many automated tasks
that are critical. If the computers fail there may be damages to hu-
mans, equipment, or the environment. The software and hardware in
manufacturing cells need to be upgraded periodically. Since the cost for
shutting down a manufacturing cell is high, the upgrade might not be
feasible just for changing control algorithms, even if the new algorithm
would give better performance and reduce costs in the long run. There
is a need for embedded control systems which allow on-line changes,
where software modules can be replaced without shutting down the
whole system. An on-line upgrade can of course be very dangerous.
Old trusted algorithms are replaced by new ones. In order to avoid
potentially dangerous situations a system that allows on-line config-
uration must also provide safety mechanisms so that the controller
never fails. This can be done by introducing redundant structures,
where several controllers run in parallel and the control signal to be
used is determined by a trusted supervision algorithm.

The difficulty to design reusable code modules is a common prob-
lem when general purpose languages are used to implement embedded
controllers. It is not straightforward to reuse code from one applica-
tion to another, even though the implementation structures resemble
each other a lot. Tools such as code generators may be used in order
to speed up development, but usually they have drawbacks, they may
give large and inefficient programs.

Many control systems have a similar internal structure. There are
functions for user interaction, task management, data logging, network
interaction, etc. It would be possible to reuse the code if these functions
were implemented in a flexible, modular fashion with well defined in-
terface. Modules for a number of these basic common activities could
then be arranged in a framework. The user of such a framework only
needs to add the code that is specific for a certain application, i.e., only
the control algorithm. The framework should provide management for
tasks such as network communication and user interaction.

The PALSJO environment is an attempt to provide such a frame-
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Chapter 1. Introduction

work. The project was outlined in 1994 [Gustavsson, 1994] as a part
of the project "Autonomous Control" [Astrom, 1993]. The goal was to
create a flexible and powerful environment for experiments in auto-
matic control. Initially a C++ class library was proposed, but the li-
brary soon became very large and cumbersome to use. Particularly for
a control engineer who is not an experienced programmer. A set of C
pre-processor macros were created in order to support use of the frame-
work. These worked reasonably well, but to further ease the use of the
framework a new language with a compiler was created. The language
is called PAL (PAlsjo Algorithmic Language) [Blomdell, 1997] and was
designed to support implementation of control algorithms. Control al-
gorithms can often be described as a combination of periodic tasks
and finite state machines. PAL supports those types of algorithms, the
finite state machine in form of Grafcet [David and Alla, 1992|. Fur-
thermore, the language supports data types such as polynomials and
matrices, which are extensively used in control theory.

The Péalsjo system consists of two main parts; a compiler and a
framework. The compiler reads algorithms specified in PAL: and gen-
erates C++ code which fits into the framework. The framework has
classes for real-time scheduling, network interface and user interac-
tion. The control algorithm coding is made off-line and the system
configuration is made on-line. The system may also be reconfigured
on-line without stopping the system.

Outline of the Thesis

This thesis presents the PALSJO prototyping environment for embedded
control systems. The PAL language for describing controllers and the
PALSJO run-time system are presented. Some important implementa-
tion issues are discussed in detail. One important goal for the design of
the run-time system has been to create an environment which allows
controller structures that change with time. Hybrid controllers consist-
ing of a set of sub-controllers, which are switched in and out depending
on the working conditions, is an example of such controllers. On-line
updating of control algorithms is another example.

This thesis is intended to serve both as a manual to the PALSJO pro-
gramming environment and as a thesis demonstrating the engineering
principles behind the system. Chapter 2 gives an introduction to em-
bedded controllers and real-time systems. A short discussion on other
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1.1 Contributions

prototyping systems is presented. Chapter 3 gives an overview of the
PALSJO environment. The controller description language PAL is pre-
sented in Chapter 4, and the PCL configuration language is described
in Chapter 5. Chapter 6 presents the internal structure of the system.
Some of the used engineering principles are documented as patterns
in Chapter 7. Chapter 8 presents a number of case studies. Analysis
and design of the control systems are also presented for the inverted
pendulum and double tank cases. Some possible future directions are
presented in Chapter 9.

1.1 Contributions

The contributions of this thesis are:

¢ Design and implementation of the PALSJO software environment
for dynamically configurable embedded control systems.

e Three generic software patterns from the design of PALSJO have
been identified and documented

e A novel nonlinear observer for the inverted pendulum has been
designed and implemented.

e A new hybrid controller for a double tank system has been de-
signed and implemented.

1.2 Published Papers

This thesis is based on the following papers and reports:

e Johan Eker and Karl Johan Astrom (1996): "A Nonlinear Ob-
server for the Inverted Pendulum." In proceedings of the 6th
IEEE Conference on Control Applications, Dearborn, Michigan.

e Johan Eker and Anders Blomdell (1996):"A Structured Interac-
tive Approach to Embedded Control", In preprints to the SIRS
symposium, Lisbon, Portugal.
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Chapter 1. Introduction

e Jorgen Malmborg and Johan Eker (1997): "Hybrid Control of a
Double Tank System", In proceedings of the 7th IEEE Conference
on Control Applications, Hartford, CT.

e Johan Eker and Anders Blomdell (1997): "Patterns in Embedded
Control Systems", Report ISRN LUTFD/2 TFRT- - 7567 - - SE,
Department of Automatic Control, Lund Institute of Technology,
Sweden.

o Johan Eker and Karl Johan Astrom (1995): "A C++ Class for
Polynomial Operation", Report ISRN LUTFD/2 TFRT- - 7541 -
- SE, Department of Automatic Control, Lund Institute of Tech-
nology, Sweden.

The work presented in this thesis has been performed in collabo-
ration with several people. The PALSJO run-time system has been de-
veloped and designed in collaboration with Anders Blomdell. He also
wrote the PAL compiler. The work on the inverted pendulum presented
in Section 8.2 was done together with Professor Karl Johan Astrom.
The second case study which deals with the design and implementa-
tion of a hybrid tank controller was performed in collaboration with
Jorgen Malmborg.
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2

Embedded Controllers

An embedded computer system is a system where a computer is di-
rectly interfaced with its environment. Computer controlled systems
are typical examples. The computer obtains information about the pro-
cess through sensors and influences the process by actuators. The term
embedded comes from the fact that the controller is a part of a larger
system, and usually located close to the process. The computing power
may also be distributed.

An example that have many of the characteristic features of an
embedded system is shown in Figure 2.1, where a computer is used
to control a batch reactor. The reactor is used for mixing and heat-
ing fluids. Typically when a batch is started the valve is opened and
the tank is filled. When the tank level reaches a level L1, the heater
and the mixer is started. The valve stays open until the upper level
L2 is reached. When the tank is filled and the content has reached
the desired temperature, the tank is emptied and a new batch can be
started.

There are three sensors which gives the computer information about
the process. Two sensors measure the tank level and one sensor mea-
sures the temperature of the fluid. There are also three actuators that
the computer uses to control the process: the valve, the heater and the
mixer. The controller calculates the control signals based on the sensor
readings. The computer must also interact with the human operator,
display data and receive commands.

An embedded system can typically be organized as a set of concur-
rent tasks. In the batch example above there are process oriented task
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Chapter 2. Embedded Controllers

Control Signals
I e
Controller A

L2 — /
Sensor -/
_Information /
m 7

T

' Q ! Process

Control Signal

Figure 2.1 A computer controlled batch reactor.

such as heating, mixing and filling. There are also computer oriented
tasks such as calculating control signals, logging data and handling
the man-machine.

A straightforward way of modeling and programming such systems
is by using concurrent languages, in which parallel activities can be
expressed explicitly.

Since the computer controls a real physical process it must react
to inputs from the process at a certain speed. The system is then a
real-time system. In [Burns and Wellings, 1997] a real-time system is
defined as

"Any system in which the time at which the output is
produced is significant. This is usually because the input
corresponds to some movement in the physical world, and
the output has to relate to some movement. The lag from
input time to output time must be sufficiently small for
acceptable timeliness."

The terms embedded systems and real-time systems are often used
interchangeably in the literature.
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System on/off ———
Engine on/off ———
Speed — Cruise | Throttle

Accelerator ——— Control |
Brake —| System
Change speed

Resume

Figure 2.2 The input signals to the cruise controller. This example is taken
from [Shaw, 1994]

Real-time

Real-time systems are defined as computational systems where the cor-
rectness of the result is dependent on when the result is delivered. For
some cases the timing is extremely important, and those systems are
labeled hard real-time systems. In hard real-time systems responses
must occur within the deadline [Burns and Wellings, 1997]. If a dead-
line is missed the system may fail. In a soft real-time system deadlines
may be missed occasionally without causing the system to fail. Timing
issues are crucial in control system. While time delays may be frus-
trating in a ticket booking system, they are mission critical for control.
Most control systems become unstable with increasing communication
delays. Control systems usually consist of tasks with both hard and
soft deadlines.

The Cruise Control Problem

A standard example of an embedded system is the car cruise controller.
This example is taken from [Shaw, 1994]. The goal here is to build a
system for controlling the speed of a car. The controller can measure
the speed of the car and uses the throttle to change it. Cruise con-
trollers do normally have access to the brake. The input signals to the
cruise control system in Figure 2.2 are:

e System on/off — Indicating if the controller should be running or
not.

17



Chapter 2. Embedded Controllers

CONTROLLER

Set Point A. B. Stiate Machine

. for n
Handling | OperatingMode | | |+ |
Desired Speed Vode - ENGINE

1

Calculate ;
Control Signal |

Read
Speed Sensor |

Figure 2.3 The block diagram for the cruise controller.

e Engine on/off — This signal is true if the engine is turned on.

Speed — The velocity of the vehicle.

Accelerator — The current position of the accelerator.

Brake — This signal is true when the brake is pressed

Change Speed — A signal indicating a change in set point speed
e Resume — Resume the last maintained speed. (increase/decrease).

Cruise control is an interesting problem since it involves ordinary con-
trol feedback loops combined with sequential logic. It is a safety crit-
ical application, since a failure could have drastic consequences and
can not be accepted. Figure 2.4 shows the structure of the system. The
controller itself is divided into four different blocks. Block D handles
the actual feedback loop. It calculates a new control signal based on the
set point, the measured speed, and the internal states of the control
algorithm. Block D operates in two modes; on and off. The operating
mode is determined by block B, and depends on commands from the
user and signals from sensors. First of all the engine must be on in
order for the system to be active. Furthermore the user must switch
on the system to activate it. If the system is active it is deactivated
when the brake is pressed, and is should not be reactivated until the
user commands the system to resume. If the accelerator is pressed
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2.1 Programming Embedded Controllers

Inactive
.. fast _~£

H
l
3

)Accel + Set Point

Accel * Set Point%?

‘

¢
Engine On System On |\

Resume
Engine Off | System Off
All States All States
except Off

Figure 2.4 State machine for operating mode.

when the system is active, the system will temporarily become inac-
tive for as long as the actual speed is higher than the desired. The
state machine for block B is shown in Figure 2.4. Block A handles the
set point value. When the controller goes from inactive to active, i.e.
at the event System On, the set point is taken as the current speed.
The driver may change the set point by requesting increase speed or
decrease speed. When the user requests change of speed, the set point
is changed by a constant value.

This small example gives a flavor of the different types of compo-
nents in control systems. Some parts are best described using state
machines while others best described using periodic algorithms.

2.1 Programming Embedded Controllers

Embedded controllers are usually large and complex systems, that con-
sist of several concurrent tasks such as low-level feedback control, su-
pervision logic, data logging and user communication. The systems
must be efficiently implemented. The execution is constrained by dead-
lines that should not be missed. This means that many large and com-
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Chapter 2. Embedded Controllers

plex systems need to be implemented using low-level techniques in
order to get the desired performance. Many control applications today
are implemented in assembler or low-level languages such as Forth
or C. The reason for this is the requirement for fast execution and
small programs. Another choice is to use a language with built-in sup-
port for concurrency, e.g. Modula-2 or Ada. Those languages provide a
higher abstraction level, but will give larger and slower programs. No
matter which approach that is used, the implementation of real-time
controllers becomes time-consuming and error prone. The languages C
and C+-+ are both general purpose languages. They are not designed to
support the implementation of embedded controllers in particular. Usu-
ally there is a trade off between performance and higher abstraction
levels; the more support the language gives for structured program-
ming, the larger and more inefficient the resulting programs usually
become.

General Purpose Languages

The general purpose languages used to implement real-time systems
can be divided into a number of categories, the two major ones are

¢ Concurrent languages, such as ADA or Modula-2

e C/C++ in combination with a real-time kernel or a real-time OS.

Implementing embedded control system with general purpose lan-
guages is an error prone and complicated task. The nondeterministic
nature of concurrent languages makes it hard to test and verify pro-
grams. A program that works in one environment may fail in another.
The reason for this is that the resource allocation for each process is
done dynamically. If the input stream is changed the execution order
of the processes is changed and a new run-time scenario is created.

The implementation of concurrent tasks, and their communication
requires firm programmer discipline. An incorrect implementation of
a real-time task may cause errors that are very difficult to trace.

Code for embedded control systems implemented with general pur-
pose languages are usually difficult to reuse. One reason for this is the
difficulty to separate timing specifications from logical specifications.
When timing and logic must be mixed in the source code it is hard to
write reusable code.
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2.1 Programming Embedded Controllers

Several new languages has been proposed for implementation of
real-time systems. One interesting language is Erlang [Armstrong et al.,
1993], developed by the Swedish telecom industry. Itis a functional lan-
guage with built-in support for concurrency and error recovery. Erlang
is aimed for use in soft real-time systems, and it also has mechanisms
for on-line code replacement.

Another approach is synchronous languages [Halbwachs, 1993] [Ben-
viniste and Berry, 1991] which have quite recently emerged as a paradigm
better suited for designing safety critical real-time systems. At pro-
grammer level the synchronous languages use a task model which is
similar to ADA and Modula-2, but after compilation the program is
completely sequential. This gives programs that are deterministic and
possible to analyze. There are currently a number of synchronous lan-
guages available, among which Esterel [Bounssinot and de Simone,
1991], Lustre [Halbwacs et al, 1991], and Signal [Halbwachs, 1993
are the most well known.

Related Systems

A different way of generating code has emerged in the control com-
munity. Control algorithms usually are simulated and tested before
they are implemented. The controller descriptions in the simulation
tools are often block based. A controller description then consists of a
set of blocks and a signal flow. From this description it is possible to
generate real-time code. There are several advantages of working this
way. The same code is used for both simulation and implementation.
This means that the control algorithm does not have to be rewritten
in another programming language, and hence no new programming
errors are introduced. Furthermore, the control designer creates the
real-time controller without dealing with real-time programming is-
sues. The main drawback with this approach is that the simulation
code seldom describes the full operation of the system. Issues such as
resource allocation and process scheduling are usually not dealt with.
Below a short overview of some of the tools is given.

There are several widely used prototyping systems today. One is
Autocode [Int, 1996a] from Integrated Systems, another is Real-time
Workshop [Mat, 1997] from MathWorks. Both these system are code
generators in combination with a simulation environment. Autocode is
used to generate code from SystemBuild [Int, 1996b], which is another
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Chapter 2. Embedded Controllers

product from Integrated Systems. Here controllers are described with
block diagrams. From SystemBuild it is possible to either simulate
the system or generate C or Ada code for it. Math Works has a simi-
lar approach where controllers are described graphically in Simulink,
where it also is possible to either simulate or generate code. In both
SystemBuild and Simulink the user has a palette of pre-defined blocks
for defining controllers. To create user-defined blocks in SystemBuild
the language BlockScript is used, which is a simple block description
language with support for basic data types such as floats, integers and
booleans. Autocode is then used to generate C or Ada from BlockScript
blocks. Autocode uses a template file for customizing the generate code.
The template description is made in the template programming lan-
guage (tpl). This feature makes it possible to generate code that is
tailor made for a special system.

So called s-functions are in Simulink used to create user-defined
blocks. It is, however, not possible to generate C or Ada code from s-
functions using Real-time Workshop. This constraints the programmer
to use predefined blocks for code generation. Both Real-time Workshop
and Autocode generate static systems, i.e. it is not possible to make any
changes to the system without re-compilation. They both lack support
for varying control structures.

A similar tool, which generates real-time code from a simulation
environment is Sim2DCC [Dahl, 1990], which was developed at the De-
partment of Automatic Control in Lund. Control algorithms are coded
and simulated in the Simnon simulation environment [Elmqvist et al,
1990]. The Simnon code may then be translated to Modula-2 code using
Sim2DCC. Sequential algorithms are implemented using the graphi-
cal GrafEdit interface. Another tool developed at the Department in
1981 is REGULA [Magnusson et al, 1981], which was an interactive
environment for implementation of control systems. Control systems
were configured by combining a set of computational nodes. The algo-
rithm of a node was interpreted and could be replaced on-line. Another
interesting tool for building real-time control applications is Control-
Shell [Rea, 1995] from Real-time Innovations Inc. ControlShell con-
sists of a C++-class library in combination with graphical editors. A
graphical editor is used for creating control applications by connect-
ing blocks. The blocks are implemented in C++, and it is possible for
the user to add new block classes. ControlShell is a flexible and ad-
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2.1 Programming Embedded Controllers

vanced tool which gives the programmer great freedom. It also allows
re-configuration with re-compilation. The ControlShell classes are de-
signed for use with the VxWorks real-time kernel.

A commercial system that has some basic ideas in common with
the PALSJO system is SattLine [Johannesson, 1994], from Alfa-Laval
Automation. It is a system for programming PLC systems. It consists
of a graphical environment for implementing and supervising control
applications. It supports sequential algorithms expressed using Grafcet
notation, or algebraic algorithms expressed with implicit equations.
The SattLine language is based on LICS [Elmqvist, 1985], which also
has inspired the work on PALSJO.

The IEC 1131-3 [Lewis, 1995] programming standard consists of
five different ways of representing control algorithms. The five differ-
ent languages are Structured Text, Function Block Diagram, Ladder
Diagram, Instruction List and Sequential Function Charts. Structured
Text is a language which resembles Pascal a lot, and has a structure
similar to the language used in PALSJO. Function Block Diagram is a
graphical language for specifying data flows through function blocks.
Ladder Diagram is another graphical language and is used for ex-
pressing ladder logic. The fourth language is Instruction List which is
a low-level language similar to assembler. Sequential Function Chart
is a graphical language for implementing sequential algorithms. It re-
sembles Grafcet a lot. The textual representation of Sequential Func-
tion Chart was used as a starting point when implementing support
for sequential algorithms in PALSJO.

A research project which deals with on-line update of controller
code is Simplex [Sha et al, 1995]. Simplex is a proposed architecture
for handling real-time replacement of code modules. The focus here
is on the problem of handling software faults and algorithm errors
that may arise when replacing code. The Simplex architecture suggest
mechanisms for detecting faults and switching out incorrect code.

Implementing Control Algorithms

We believe that in order to implement control algorithms in an easy
and convenient way, some special support is needed from the language
and the software environment. Control laws are usually best described
using polynomials or matrices. Support for these data types is a must.
Further it is common that an algorithm can be described by both pe-
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riodic behavior and sequential logics. A good system should support
both these descriptions. Finally there should be an easy way to reuse
algorithms from one application to another. One of the problems when
reusing real-time code is the fact that code describing the algorithm
usually is mixed with code describing the real-time behavior. We be-
lieve that in order support reuse there must be a separation between
the actual algorithm code and real-time specific information.

2.2 Summary
In this chapter a short introduction to embedded controller and real-
time system has been given. Some definitions and two examples were

presented. Finally a number of other systems for creating embedded
controllers were briefly discussed.
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3

An Introduction to the
Palsjo Environment

3.1 Introduction

In this chapter the PALSJO environment will be introduced. The basic
ideas behind the framework are presented, and a number of different
design goals are discussed. A small example application is also given.

3.2 A Framework for Real-time Control

In this section the PALSJO environment is introduced. The design goals
and specifications are discussed.

Block diagrams

Block diagrams are used to schematically express the functional enti-
ties and their interconnections in a control system. Figure 3.1 shows
a block diagram with a control block, a process block and a negative
feedback loop. A block diagram basically consists of connections and
blocks that produce output values that reflect their internal states and
their input values.
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Controller |—=| Process

-1

Figure 3.1 Controllers are usually described using block diagram. A block is
defined by a set of input and output signals, parameters and states. A block
diagram defines how data flow between a set of blocks.

Motivation

The internal structures for many controller implementations are very
similar. The same kind of building blocks are used and their internal
communication follows certain patterns. A typical embedded controller,
see Figure 3.2, contains modules such as

e OperatorCommunication, which handles the interaction with the
user, i.e. setting and reading parameters.

e Reference Generator, which is used to calculate the set point for
the controller.

e Controller, which implements the control algorithms.

e Logger, which handles data for display or analysis.

The main idea with the PALSJO project is to capture the common
behavior of typical control systems. If those common features can be
encapsulated in a framework, then a large percentage of the total code
that has to be written, can be avoided. Further it is possible to intro-
duce a suitable abstraction level, that will support control algorithms
in particular. The goal is to give such a high degree of support so that
the programmer can focus only on implementing the actual control al-
gorithms, and have the framework take care of user interaction and
network interaction.

Figure 3.3 shows the structure of a PALSJO application.

In the example shown in Figure 3.2, which was written using a
more classical approach, all processes were created by the application
programmer. When an application instead is written for the PALSJO
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Operator
Communication

]
1
| ~
|
1
y
~
Reference \_ _ _ _ _ _ _ _
Generator Controller

Figure 3.2 A typical control application which here consists of four main mod-
ules. Operator Communication handles the interaction with the user, i.e. setting
and reading parameters. Reference Generator is used to calculate the desired po-
sition for the controller. Controller implements the control algorithms and Plot-
ter handles displaying data to the user. The dashed lines mark asynchronous
communication while the solid lines mark synchronous communication

D/A

system only the processes specific to the application must be handled
by the programmer In the PALSJO run-time system there exist prede-
fined processes for network management and operator communication.
In the example in Figure 3.3 there are n processes that represent the
actual control application. These processes are initiated by the user
through the user interface. Each of these processes consists of a set
of algorithmic blocks, which form the algorithms of the processes. In
Figure 3.4, a user defined process is shown. Three algorithmic blocks
are connected together, and form the algorithm of the process, i.e. each
process represents a block-diagram of its own. Each block has a set of
functions which are called by the process in order to execute the block.
Each time a block is called it calculate new output signals based on its
input signal, states, and parameters. Communication between blocks
that reside in the same process is synchronous, while communication
between different processes is asynchronous. In Figure 3.3 and Fig-
ure 3.4 the dashed lines mark asynchronous communication while the
solid lines mark synchronous communication. Communication with the
plant is of course synchronous while the communication with the user
is asynchronous.
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28

Operator
Communication/:

T

Figure 3.3 A view of the different processes in a PALSJO application. The pro-
cesses for network management and operator communication are initiated auto-
matically. The processes marked User Process I-n are user defined process which
contains the actual control algorithms. The dashed lines mark asynchronous
communication while the solid lines mark synchronous communication.

Periodic

Observer

Controller i

Outputs
Parameters
States

CalculateOutput()
UpdateState()

Figure 3.4 The structure of a user defined process in PALSJO. Several algo-
rithmic blocks are connected and form the algorithm of the process. The blocks
are the basic building blocks of PALSJO. They are either predefined or written

by the user.




3.3 A Small Example

Requirements

There are a number of important issues that were taken into account
when designing the framework. The framework should support

e Rapid prototyping
One of the main reasons to use a framework is to decrease de-
velopment time. The framework is not intended to be used in the
creation of end-user products, but instead as a flexible lab tool.

e Code Reuse
In order to support rapid prototyping there must be good support
for reuse of algorithms.

¢ Expandable
The framework must be expandable so that new features easily
can be introduced. For example it should be possible to use data-
types that were not available in the original setup.

e On-line configurable
The system should be configured on-line, and not at compile-
time. Changes in running setups should be allowed without stops.
One way to handle this could be by interpreting the algorithms,
another way would be to use dynamic linking.

e Portable
The framework should be possible to port to a new platform with-
out too many changes to the source code. This means that plat-
form dependent features should be avoided or isolated.

e Efficient
As little run-time overhead as possible should be introduced. An
application built using the framework should not differ from an
application built from scratch in code size or execution speed.

For the framework to become really useful it must be efficient
and allow fast sampling rates. The timing must also be accurate.

3.3 A Small Example

In this section a small example will be given on how a control algorithm
is coded, compiled and executed using the PALSJO framework. A PI-
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Host Target

Workstation . p ; -
Matlab Real-time Unit Process
G2 - Palsjé -

Figure 8.5 The hardware setup, with one host machine running non-real-time
software, and a target machine running the control algorithms.

controller is first coded in PAL. This control algorithm is then compiled
and linked with the framework. When the run-time system is started,
the PI-controller is connected with blocks from standard block libraries,
to form a complete control system. The PALSJO framework is designed
to be used in a host-target setup, see Figure 3.5. All hard-real time
algorithms are executing on the real-time unit, which typically is a
VME-bus or a PC. On the host machine soft deadline algorithms, such
as data display, are executed.

Designing the Controller

A common control algorithm is the Pl-controller. The control law is
described by the following equations, where e(¢) is the error and u()
is the control signal.

u(t) =K [e(t) + —Tl—i/te(s)dsw =P+1 (3.1)

Before it can be implemented, the algorithm must be discretized. The
proportional term P in Equation(3.1) is replaced by

P(tr) = Ke(z) (3.2)

and the integral part is replaced by the following recursive expression
which is extended with a tracking term for handling actuator satura-
tions [Astrom and Hagglund, 1995].

I;?e(tk) + (3.3)

I(tk+1) = I(tk) + T
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Coding the Controller

The execution cycle for the PI-controller can be divided into two parts.
One that reads the input signals and calculates a new output signal
and another one that updates the internal states of the controller. The
pseudo-code for this look like this:

loop
read input signals
calculate output signals
write output signal
update internal state
end loop

When writing this in PAL only the calculate output section and
the update state section need to be included. All writing and reading
of input and output signals is automatically taken care of. In this PI-
controller there are two input signals y and y,, one output signal © and
two states e and I. There are also two parameters K and 7;. Below
is an example of how this PI-controller is coded in PAL. The block is
basically built in three sections; first all signals and parameters are
declared, then the output signal is calculated and finally the state is
updated. For a more in-depth discussion on why the block algorithm
is divided see Section 7.1.

ExamMPLE 3.1

module MyBlocks;
block PI

r,y,u . input real;

v := 0.0 : output real,

I :=0.0,e:=0.0: real,

K :=0.5,T7 := 10000.0, Tr := 10000.0 : parameter real,
h : sampling interval,

bi =K = h/Ti,

br=h/Tr;

calculate
begin
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e =r—y;
vi=K=xe+1;
end calculate;

update

begin
I:=1+bixe+brx*(u—v);

end update;

end PI,;

end Controller.

O

The parameters K and T; and the sampling interval 4 are given values
at run-time. It is possible to give default values to both parameters and
signals, as is done in the example above for the state variable I. The
language PAL will be described in detail in Chapter 4. The PI-controller
is compiled with the following command:

pal -palsjo MyBlocks.pal

The module name and the filename must always be the same. The out-
put from the PAL compiler is the following two files: MyBlocks.palsjo.c
and MyBlocks.palsjo.h. These files are then compiled with C compiler
and linked with the PALSJO run-time system.

An easier way to compiled and link a PALSJO application is to use
the makefile that comes with the system. The following command is
then used:

make PAL=MyBlocks

After compilation the next step is to start the PALSJO run-time en-
vironment, where instances of blocks can be created and connected
together. To configure and manage blocks in Palsjé a language called
PCL is used. PCL stands for Palsjo Command Language and will be
explained in Chapter 5. The run-time system also supports the ex-
port of signals using the network. Signals can be received either in a
dedicated plot utility or in MATLAB.
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Running the controller

The run-time system works like a shell where PAL-blocks can be al-
located, configured and executed. When starting Pélsj6 the following
interface will appear on the screen.

Including module ’built-in’
Including module ’MyBlocks’

pcl>

Copyright

PALSJO

1995 Department of Automatic Control
Lund Institute of Technology
version 1.0

Blocks for analog input-output and reference value are needed.
They are available from the library StandardBlocks, see Appendix A.

EXAMPLE 3.2
pcl> use MyBlocks
pcl> use StandardBlocks

pcl>{
pc1*>
pcl*>
pcl*>
pcl*>
pcl*>
pc1*>
pcl*>
pclx>
pclx>
pc1*>
pc1*>
pc1*>
pclx>
pc1*>

process

process.
process.
.control =
process.

process

process

process

process.
.control.K = 2

process

process.

}

= new Periodic

adin = new Analogln
refgen = new RefGen
new PI

daout = new AnalogQOut

.adin.out -> process.control.y
process.

refgen.out -> process.control.yr

.control.u -> process.daout.in

tsamp = 0.010

control.Ti = 0.5
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—--> Tree checked and seems to be 0OK.

Message from ’process’ : clearing blocklist...

--> New blocks are now ready to run.

--> Swapping. ..

Message from ’process’ : Analyzing block sequence...
--> Waiting for old processes to terminate ...

pcl>

pcl> process ! start

pcl>

O

In the example above, edit mode is started by typing a curly bracket.
An instance of the block type Periodic is created and given the name
process. Periodic is a built-in block which is used to manage the
execution of other blocks. It executes its child blocks in a sequence
determined by the data flow between the blocks. After process is cre-
ated, all the other blocks are created as its children. The block type
AnalogIn has an output signal called out which is connected to the
input signal y of the control block with the connect operator —>. When
all the blocks are connected, parameters are given values. First the
sampling period of process is set to 10 ms. The two parameters in
the Pl-algorithm are assigned values. The operation is then closed by
a curly bracket. The process is then started with the command

process ! start

This means that the message start is sent to the block process. When
the controller is started the operator may want to monitor some of
the variables in the system. This is simply done by giving the show
command, as follows

pcl> show process.control.u
pcl> show process.control.l

The variables u and I of the PI-controller are now logged and avail-
able for export. The next step is to setup up a network connection for
transmitting the values of the variables. On the host machine software
for receiving data must be started. On the target machine a network
connection is created by simply typing

pcl>process ! connect
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3.4 Summary

This command sends the message connect to the block process which
then tries to establish a connection.

3.4 Summary
In this chapter the PALSJO framework and the PAL-language were

introduced. The major issues for the framework design were presented.
Finally a small example was given.
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4

PAL - Palsjo Algorithmic
Language

4.1 Introduction

PAL is a block based imperative language for implementation of em-
bedded controllers. It is designed to support and simplify the coding of
control algorithms. Language constructs for both periodic algorithms
and sequential algorithms are introduced. Furthermore complex data
types such as polynomials and matrixes are fully supported.

In this chapter a brief introduction will be given to the PAL lan-
guage. For a more in depth description see [Blomdell, 1997], which this
text is based upon.

4.2 Blocks and Modules

Algorithms are described as input-output blocks. New values for the
output signals are calculated based on the values of the inputs, the
internals states and the parameters. A PAL block has the following
structure:

ExAMPLE 4.1
module examplel;
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block blockl

in : input real,;

out : output real,
p : parameter real,
;:= 1.0 : real,;

calculate
begin

out ;=i +in;
end calculate;

update
begin
i:=1%p;
end update;
end blockl;

end examplel.
O

The top level concept of PAL is the module. Several blocks may be
grouped together in a module. In the example above the block blockl
is declared within the module examplel. The first section in the block
defines the interface. In this example it consists of one input signal in,
one output signal out, and one parameter p. Furthermore there are
one state variable i. The syntax for defining variables is:

name : [interface modifier] data type;
The possible data types and interface modifiers are described below. Af-

ter the interface section comes the algorithm section. The two sections
calculate and update, define the periodic algorithm of the block.

4.3 Interface Modifiers

The interface modifiers define how the variable interacts with the en-
vironment, i.e. other blocks and the user.
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Input

The input modifier is used in variable declarations and in procedure
heads, indicating that the variable is an input. An input variable may
not be assigned a value.

Output

The output modifier is used in variable declarations and in procedure
heads, indicating that the variable is an output.

Parameter

The parameter modifier is used in variable declarations. A parameter
variable may not be assigned a value. Parameters can only be set by
the user or the run-time system. There are two types of parameters:
direct and indirect. A direct parameter is declared with data type and
interface modifier. An indirect parameter is a function of other param-
eters, and may not be assigned directly in the PAL code. For indirect
parameters the data type is given implicitly from the relation with
other direct parameters. In Example 4.2 the indirect parameter c is
declared as a function of the direct parameters a and b. The data type
of the ¢ parameter will be real. Notice that indirect parameters are
declared using equality.

EXAMPLE 4.2

a : parameter real,;
b : parameter real;
c=ax*b;

State

The state modifier indicates that the variable is a state. A state vari-
able is visible to the user and the run-time system, but can only be
assigned within the block,i.e in a PAL statement. If the interface mod-
ifier is omitted, state is used as default.
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4.4 Data Types

In this section the available data types in PAL are presented with
name and supported operations. Examples are also given.

Scalar types
Real
A real valued variable.
e 1 : real,
e Operators: +, —, *, /.
Integer
A integer valued variable.
e i:integer;
e Operators: +, —, %, div, mod.
String
A text string.
e str = "initial value" : string;

e String concatenation available using +.

Dimension

An integer variable used to specify the dimension for aggregate data
types.

e n : dimension;

e A dimension variable can be used as an integer in expressions
and statements. It gets its value upon block creation, and may not
be assigned within the algorithm section. The value of a dimen-
sion variable can only be set by the runtime system. A dimension
variable may be given a default value.
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Boolean
A boolean valued variable being either true or false.

e bool := true : boolean;
e Predefined constants: true or false.

¢ Three logical operators; and, or and not.

Sampling Interval

The period time for the block given in seconds. The sampling time
is set by the user or the run-time system. The sampling time is real
valued.

Aggregate types

Array

An array is a fixed sequence of elements of some scalar type. The size of
the array is given, as the upper and the lower limits, when defining the
array instance. The array size cannot be changed from within the PAL
code. It may however be parameterized using dimension variables.

¢ n : dimension,;
inl : input array[l..n] of real;

¢ m : dimension,;
in2 : array[0..m] of input real;

e Accessing elements:

inl[l] := 3.14;
tmp := in1[2];
Matrix

A matrix is a fixed size two-dimensional array of real valued elements.
The size of the matrix is given as the upper and the lower limits, when
declaring the matrix instance. Dimension parameters may be used to
parameterize the size of a matrix instance.

e out : input matrix[l..n,1..m] of real,;
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e Accessing elements:
out[2,2] := 3.14;
tmp := out|[3,3];

e Operators: +, —, * : applied to matrix operands.
% : applied to a scalar real and matrix.

¢ The matrix data type maps down on the Newmat [Davis, 1997]
matrix class. The Newmat function library may thus be used for
matrix manipulation.

Polynomial

A polynomial is a fixed one-dimensional array of real valued elements.
The degree of the polynomial is given when declaring the polynomial
instance. The degree of a polynomial may be parameterized using di-
mension parameters. A polynomial with degree n has n+1 coefficients,
starting with index 0. The internal representation of a polynomial is a
vector where the coefficient of the highest power is stored at the first
position, i.e. position zero. A polynomial

A=apz" +aiz" 1+ +a,
will thus be represented in the following way
A =lao, a1, ,an]

e par : parameter polynomial[n| of real;

e Accessing elements:
par[2] := 3.14;
tmp := par|[3];

e Operators: +, —, *,div, mod : applied to polynomial operands.
%, / : applied to a scalar real and a polynomial.

e The polynomial data type maps down on an external polynomial
package [Eker and Astrom, 1995]. Functions from this library,
which is described in Appendix B are available for polynomial
manipulation.
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4.5 Expressions and Statements

An expression yields a value. The value domain of an expression is
determined by the operation and the operands. Statements are used
to describe the execution of an algorithm. A statement may consist
of expressions, declarations, and statements. Below is the expressions
and statements available in PAL.

Unary Expressions

A unary expression is an expression which only involves one operand.
There a three types of unary expressions in PAL:

e Referencing a variable
e Arithmetic negation (e.g. -pi)
e Logical negation (e.g. not bad)

Binary Expressions

A binary expression is an expression which involves two operands.
There a three types of binary expressions in PAL:

e Arithmetic expressions (i.e. +, —,*, /,;mod or div)
¢ Relational expressions (i.e. <, <=, <>, >=, or >)
e Polynomial evaluation, that returns the value of the polynomial

in a specific point.

Other Expressions
In PAL there are two other types of expressions:

o Indexing (e.g. x[i]), that returns a specific part of an array, ma-
trix, or polynomial.

e Function calls. A function reads input parameters and returns a
value.

Statements

Below the available statements in PAL are presented. First the simple
statements, assignment and procedure call, are presented, and after
that more complex statements if and for statements are discussed.
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Assignment

A variable is assigned using the assignment operator :=.
in : input real;
out : output real;
K : parameter real;

out := K * in;

Procedure call

A procedure call consists of a statement that has the name of the
procedure.

P();

The If statement

Conditional execution is in PAL constructed using the if statement.
if a = true then

i:=1+ 1;
elsif b = true

1:=1+ 2;
else

1:=1+ 3;
end if;

The For statement

In PAL it is possible to repeat one or more statements using the for
statement.
fori=1to N do
sum := vec[i];
end for;

4.6 Procedures, Functions and Events

Procedures

A procedure is a subprogram which consists of a sequence of state-
ments. A procedure has a head and a body. The head defines the name
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of the procedure, and the interface used for calling the procedure. The
body of the procedure contains the statements that are executed when
the procedure is called. Parameters to a procedure can either be input
or output. Input parameter are passed by value, while output parame-
ters are passed by reference. Parameters of type array are however al-
ways passed by reference. It is not allowed to assign values to input pa-
rameters inside the function body. In Example 4.3 the implementation
of a function which performs dyadic decomposition is shown. The algo-
rithm is taken from [Astrém and Wittenmark, 1995]. Three functions
RowAsRealArray, RealArrayAsRow, and DyadicReduction are called
in the code, but not defined there. The first two are built-in functions
for converting data from matrices to an array of reals, and back. The
definition of the third function is omitted for simplicity.

EXAMPLE 4.3

procedure LDFilter(
theta : output array [0..n] of real;
d : output array [0..n] of real;
1 : output matrix [0..n, 0..n] of real;
phi : array [0..n] of real;
lambda : input real

);

i,j : integer;

e,w : real;
begin

d[0] := lambda;

e := phi[0];

fori:=1ton do
e := e — theta[t] % phili];
w := phili];
for j =i+ 1ton do
w = w + phi[j]| = [i,]];

end for;

110,1] := 0.0;

I, 0] := w;
end for;

for i ;= n downto 1 do
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RowAsRealArray(l,0,tmpl);
RowAsRealArray(l,i,tmp2);
DyadicReduction(tmpl,tmp2,d[0],d[i],0,i,n);
RealArrayAsRow(tmpl,0,1);
RealArrayAsRow(tmp2,i,1);

end for;

for i :=1ton do
thetali] := theta[i] + 1]0,1] * e;
dli| :=d[i]/lambda;

end for;

end LDFilter;

Functions

A function is a subprogram which consists of a sequence of statements.
A value is returned after finishing execution. A function has a head and
a body. The head defines the name of the function, the interface used
for calling the function, and the type of the return data. Parameters
are passed as inputs or outputs in the same fashion as for procedures

above.

function Limiter(
max : real;
min : real,;
value : real
) : real;
begin
if value < min then
result := min,
elsif value > max then
result := max;
else
result := value;
end if;

end Limiter;
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Events

All procedures in PAL when executed in the PALSJO environment are

registered as events. Let the procedure Reset below be defined in the
block RST.

procedure Reset();

[ : integer;
begin
for i :=0 tom do
Uli] := 0.0;
Y[i] :== 0.0;
Ucli] := 0.0;
end for;
end Reset;

The Reset procedure may then be called from the PCL command
line by the following command

pcl*> process.block = new RST
pcl*> process.block ! Reset

Calculate and Update

There are two predefined block procedures calculate, and update.
They are used to implement periodic algorithms. The calculate cal-
culates an output signal, while update updates the state variables. A
PI controller divided like this is found in Example 3.1. The reason for
dividing the algorithm like this is discussed in detail in Section 7.1.

Local and Global Variables

Variables declared in the block scope, are global at the block level.
They are visible for all procedures and functions in the block. Global
variables are also visible from outside the block, i.e. it is possible to
monitor and log those variables. Local variables are declared before
the begin statement in procedures and functions. They are only visi-
ble inside the scope of the function or the procedure, and may not be
monitored or logged.
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4.7 Grafcet

Grafcet [David and Alla, 1992] is a convenient and powerful way of im-
plementing sequential algorithms. Consider the boiler process in Fig-
ure 2.1. The Grafcet for this process is found in Figure 4.1. There exist
constructs in PAL for expressing Grafcet algorithms. These constructs
are steps, actions, and transitions. Grafcet statements are expressed in
PAL with a textual representation, that is based on Sequential Func-
tion Charts in IEC-1131 [Lewis, 1995].

Steps

Each state in a sequential algorithm is defined as a step in Grafcet.
A state may be active or inactive. Several states may be active at the
same time. A Grafcet must have an initial step. The syntax for defining
a step is illustrated below.

initial step Init;
pulse activate CloseV2;
end Init;

step StartHeating;
activate Heat;
end StartHeating;

step StopHeating;
pulse activate NoHeat;
end StopHeating;

Actions

To each step an action can be attached. The action contains the state-
ments to be executed while the step is active.

action OpenV1;

begin

V1 := true;
end OpenVl;
action CloseV1,;
begin

V1 := false;
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end CloseV1,

An action can be activated in a number of different ways:

activate (Action) — the action is executed as long as the step is
active.

pulse activate (Action) — the action is executed one time only,
when the step gets active.

limit (Expression) activate (Action) : the action is executed
while the step is active, or until the time limit expires.

delay (Expression) activate (Action) — the execution of the ac-
tion is delayed until the specified time has elapsed. The action
must still be active in order for the action to be executed.

store activate (Action) — the action will be executed until stated
otherwise.

reset (Action) — an action that has been stored previously is
reset.

store limit (Expression) activate (Action) — the action will be
executed until stated otherwise, or the time limit expires.

store delay (Expression) activate (Action) — the execution of
the action is delayed with the specified time expression, and will
the continue until reset explicitly.

delay (Expression) store activate (Action) — if the step is still
active after the specified time the action is stored.

Transitions

A transition has a set of input steps, a set of output steps and a con-
dition. All input steps must be active and the condition must be true
for the transition to be fireable. When a transition is fired all output
steps become active.
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Figure 4.1 Grafcet for the controller of the boiler process. This figure is gener-
ated by the PAL compiler using the following command: pal -fig grafcet.pal.

An Example
The PAL code for the Grafcet in Figure 4.1 is the following.
module grafcet;

block boiler

L1, L2, Start : input boolean,
T : input real,;

Tref : parameter real;
V1,V2 Q : output boolean,;
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initial step Init;
pulse activate CloseV2;
end Init;

step StartHeating;
activate Heat;
end StartHeating;

step StopHeating;
pulse activate NoHeat;
end StopHeating;

step StartFilling;
pulse activate OpenV1;
end StartFilling;

step KeepFilling;
end KeepFilling;

step StopFilling;
pulse activate CloseV1;
end StopFilling;

step EmptyTank;
pulse activate OpenV2;
end EmptyTank;

transition from Init to StartFilling when Start;

transition from StartFilling to KeepFilling, StartHeating
when L1;

transition from StartHeating to StopHeating when T >= Tref;
transition from Stop Heating to StartHeating when T < Tref;
transition from KeepFilling to StopFilling when L2;

transition from Stop Filling,StopHeating to EmptyTank
when true;

transition from EmptyTank to Init when not L1,

action OpenV1,
begin
V1 := false;
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end OpenVZ;

action CloseV1;
begin

V1 := false;
end CloseV1;

action OpenVZ;
begin

V2 := false;
end OpenV2;

action CloseV2;
begin

V2 := false;
end CloseV2;

action Heat;
begin

Q = L1,
end Heat;

action NoHeat;
begin

Q := false;
end NoHeat;

end boiler;

end grafcet.

Mixed Controller Structures

A block algorithm may be described using the calculate and the up-
date procedures in combination with one or several Grafcets. This is
useful when one part of the algorithm is periodic, and another is se-
quential. An example is a system where the controller is switching
between different modes but the observer is not. All the controller
modes are using the values from the observer. The observer is imple-
mented in the calculate and the update sections, while the controller
is implemented using Grafcet.
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Execution Semantics

The different functions and procedures of a PAL block are at run-time
executed in a very well defined way. The block is executed periodically,
in two phases. The first phase is used to calculate a new output signal,
while the second one is for updating states. At each sample when the
block is activated the eventhandler is executed. All events that have
arrived since the last activation time are handled. The next thing that
is done is checking if the parameters have changed, and if so start
using the new parameter set. Next the calculate procedure is run, and
finally the actions belonging to active Grafcet steps are executed. Now
the output signal from the blocks is made available to connected blocks.

The first thing that is done in the second phase is to update the
states by running the update procedure. After that the Grafcets are
updated, steps are activated or deactivated. The different steps of the
algorithm are the following:

Phase one:

EventHandler — Execute the events that have been called
by the user, since previous sample.

GetUpdatedSet — If the parameters have changed, then
switch to the new parameter set.

CalculateOutput — Execute the calculate section.

RunGrafcet — Execute all active Grafcet actions.
Phase two:

UpdateState — Execute the update section.

CheckParameterInput — If any of the parameters gets its
value from the output signal of another block, this must be
dealt with in a special way, see Section 6.6 for more details
on output—to—parameter connections.

UpdateGrafcet — Update the Grafcet, by activating and
deactivating steps and actions, when transitions are fired.
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5

PCL~ Palsjo Configuration
Language

5.1 Introduction

User defined blocks for the PALSJO environment are programmed in
PAL and instantiated and connected on-line using PCL, the PALSJO
Configuration Language. PCL is a simple language for administrating
blocks and assigning variables. In this chapter all keywords and op-
erators in PCL will be presented. Examples are given to illustrate the
use of every command.

5.2 Keywords

The predefined keywords in PCL are the following;

new delete with help
reset quit use enduse
dim show hide break
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new

An instance of a specified block type is created using the new statement.
The following syntax is used

pcl> <block name> = new <block type name>

The <block name> must contain the full block name. Blocks in PALSJO
may be organized in a hierarchical fashion, and by the full block name
all the blocks above in the hierarchy is meant. In the example below
the full name for the second block is S. Input.

pcl*>S = new Periodic
pcl*>S.Input = new Analogln

Periodic is a predefined block type. There are three predefined block
types, Periodic, Aperiodic and RemoteIO. All other block types must
be imported from either block libraries supplied by the user at linkage
time or from the Palsjo standard library, see the use statement below.

delete
A block is deleted using the delete command.

pcl> delete <block name>

with
To avoid repeating the block path name, the with command is avail-
able. It works similarly to the with statement in Modula-2 and Pascal.

ExXAMPLE 5.1

pcl> use MyBlocks

pcl>{

pcl*>S = new Periodic
pcl*>with S

pcl (S) *>adin = new Analogln
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pcl (S) *>control = new PI

pcl (8) *>daout = new AnalogQOut
pcl (S) =*>

pcl (8) *>refgen.out -> control.yr
pcl (S) *>adin.out -> control.y
pcl (S) *>control.u -> daout.in
pcl (S) *>endwith

reset

This command is used to remove all blocks from the workspace and
clears all system variables. All processes must be stopped before this
operation is possible.

pcl>reset

quit
Stops the run-time system and exits to the surrounding shell. All pro-
cesses must be stopped before exiting.

pcl> quit

use

User defined PAL modules are not by default visible to the run-time
shell. They must be imported to make the the block types in the mod-
ules visible. To import a module the use command is used. The syntax
is:

pcl> use < module name >
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After this command has been issued , all blocks in the module are visi-
ble to the run-time shell and may be accessed by the user. When there
exists several blocks with the same name, but in different modules,
these modules may not be in use at the same time. A solution to this
problem is to use the module name when instantiating the block as
shown below.

s.control = new MyBlocks.PI

enduse

When a PAL module is no longer needed, it is possible to remove it
from the list of available modules. This is done using the command
enduse, as shown below.

pcl>enduse < module name >

dim

Complex variables such as string, arrays, polynomials and matrices
may in PAL be created with a dynamical sizes. The sizes of block vari-
ables such as arrays etc may be linked to a dimension parameter. Sev-
eral variables in the same block can be linked to the same dimension
parameter. Dimension variables in different blocks can be connected
via global dimension variables in the workspace, which are defined as
follows.

pcl> dim A

In Example 5.2 there are two blocks BlockA and BlockB which both
have a dimension parameter, dimA and dimB, respectively. The dimen-
sion parameter dimA determines the size of the output signal out and
dimB determines the size of the input signal in. The output signal
from BlockA is connected to the input signal from BlockB. A global
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dimension variable DIM is defined, and it is is connected to the dimen-
sion variables in the blocks. Finally a value is given to the dimension
variable

EXAMPLE 5.2

pcl> {

pcl> s = new Periodic

pcl> s.BlockA = new BlockTypeA
pcl> s.BlockB = new BlockTypeB
pcl> s.BlockA.out -> s.BlockB.in
pcl> dim DIM

pcl> s.BlockA.dimA = DIM
pcl> s.BlockB.dimB = DIM
pcl> DIM = b

pcl> }

[

When a dimension variable is changed, all dimension parameters and
all variables that in turn are connected to them, are changed. The
change of variable sizes is synchronized throughout the whole system,
so that problems with incompatible variables are avoided.

show

Palsj6 provides a text interface for entering PCL commands. There
is no built-in facility for presenting data in graphical form. Instead
it is possible to export data to other programs via the network. The
command show is used to make data visible on the net. The syntax is
shown below.

pcl> show < block >.< block >.< signal >

Before the signal of a block can be exported, the Periodic blocks, that
owns the block must be connected over the network to a plot or data-
log utility. This is done by sending the event connect to the Periodic.
Below is an example of how this is done.
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pcl> show process.control.u
pcl> show process.lI

pcl> process ! connect

pcl>

After the event connect is sent to process a socket is opened on the
network, and the data transmission will start as soon as any client
program on the host machine will connect.

hide
The opposite of show is the command hide which removes a signal
from the list of exported signal. hide is used in the same way as show

pcl> hide < block >.< block >.< signal >

break

Several commands may be grouped together using curly brackets, and
such a set of commands is called an atomic operation, i.e. all commands
within the brackets will be interpreted as one complex command. If
the atomic operation is incorrect it will not be accepted by the system.
The command break can be used to leave an incorrect atomic operation
and discard the edits. In the example below the atomic operation is not
correct since all input signals are not connected. When the command
break is used all edits made in the atomic operations are reversed, and
the running system remains unchanged.

pcl>use StandardBlocks
pcl>{

pcl*>s = new Periodic
pcl*>use StandardBlocks
pcl*>s.b = new PI

pc1*>}

Error in ’b’ : input signal ’r’ not connected!
--> Configuration invalid.

pclx>

pcl*x>
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-->Now discarding all edits!
Removing invalid nodes...
Block ’s ’ is deleted.
Block ’b ’ is deleted.
pcl>

5.3 Operators

The predefined PCL operators are the following:

The Assignment Operator =

All parameters in a PAL-block can be set by the user from the command
line. Below is an example of how this is done. The first command sets
the parameter Ti to 20. In this case Ti is a real valued variable, but
the same syntax is valid for integers.

pcl>s.b.Ti = 20

pcl>s.bl.parl = false

pcl>s.bl.par2 = {1.0, 2, 3.14}
pcl>s.bl.par3 = {1, 2.1, 3}
pcl>s.bl.pard = {1, 2, 3.0: 4.1, 5, 6.28}

pari is a boolean parameter and may be assigned the values true or
false, par2 is an array with three elements, par3 is a polynomial of
degreee 2, and par4 is a two by three matrix.

The Event Operator !

It is possible to manually trig the execution of block procedures. An
event requesting the execution is sent to the block. The event simply
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consists of the name of the proceure. Below a block procedure called
on are executed.

pcl> s.b2 | on

Events makes it possible to construct blocks and systems that di-
rectly interacts with the user.

The Information Operator ?

The information operator retrieves information about a system object.
A system object may be a single variable, a block or the whole system.
The syntax is straightforward, simply the desired system object fol-
lowod by a question mark. Below are three examples of the available
information, when using the information operator.

EXAMPLE 5.3

Including module ’built-in’
Including module ’StandardBlocks’

PALSJIO

Copyright 1995-97 Department of Automatic Control
Written by Johan Eker & Anders Blomdell
Lund Institute of Technology
version Beta-Sep 3 1997

bug report: johane@control.lth.se

pcl>use StandardBlocks
pcl>{

pclx>s = new Periodic
pcl*>s.adin = new ADIn
pclx>s.refgen = new RefGen
pclx>s.regul = new PI
pclx>s.daout = new DAOut
pclx>?
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WORKSPACE ___________
Blocks:
workspace of type WorkspaceBlock, id :0
s of type Periodic, id :1

adin of type ADIn, id :2
refgen of type RefGen, id :3
regul of type PI, id :4
daout of type DAOut, id :5

DIMENSIONS:

Block libraries______ 0 ______

built-in* : InSocket, OutSocket, Sporadic, Periodic
StandardBlocks* : ADIn, DAOut, RefGen, PI, SimplePI, PID, Filter

Information about the Periodic block process is available in the same
way. If no object is specified, then information about the run-time sys-
tem is retrived.

BlockType: Periodic, Block Name: s, Block ID: 1
SIGNALS: _ _ _ _
state: running(boolean) = false
PARAMETERS: _____ _ _ _ _
: tsamp (int) = 2000
skip (int) =5
: prio (int) =5
EVENTS: _ _ _ _
connect [asynchronous]
disconnect [asynchronous]
restartplot [asynchronous]
pauseplot [asynchronous]
start [synchronous]
stop [synchronous]
DIMENSIONS: __ _
GRAFCET : _ _
Block list:
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Input Buffers: { }
Output Buffers: { }
Export Buffers: { }
Execution order:

In a similair fashion, information about the block regul can be re-
trieved.

pcl*>s.regul 7
BlockType: PI, Block Name: regul, Block ID: 4
SIGNALS: _ _ _ _
input: r (double) [not connected]
input: y (double) [not connected]
input: u (double) [not connected]
output: v (double) = 0.000000
state: I (double) = 0.000000
state: e (double) = 0.000000
PARAMETERS: _ _ _ __ _ _ __ _
: tsamp (int) = 100
: offset (int) =0
: slave (int) 1
: K (double) = 0.500000
: Ti (double) 10000.00
: Tr (double) 10000.00
: bi (double) = 5.000E-6
: br (double) = 10.00E-6
EVENTS:

pclx>

For more information about the signals and parameters of the blocks,
see Section 6.4.

62




5.3 Operators

The Connect Operators -> and <-

After blocks have been allocated and assigned to Periodic blocks, they
must be connected to form an excutable system. Output signals and
input signals are connected using the connection operators -> and <-.
In the following example, two blocks and a Periodic block are allo-
cated. The output signal out in BlockA is connected to the input signal
in in BlockB. A connection is valid only if the input and the output
signals are of the same data types and have the same sizes.

EXAMPLE 5.4

pcl> {

pcl> s = new Periodic

pcl> s.BlockA = new BlockTypeA
S
]

pcl> s.BlockB = new BlockTypeB
pcl> s.BlockA.out -> s.BlockB.in
[l

If a connection results in an algebraic loop, the system will give a
warning. When this occurs the blocks cannot be sorted according to
data flow. The execution order will then be determined from the order
the blocks were added to the Periodic block.

The Disconnect Operator #

To break up a connection the disconnect operator is applied on the
input signal. To disconnect the blocks in the previous example, the
following command is given:

pcl> #s.BlockB.in

Macro Operator @

It is possible to use macros to simplify system configuration. A macro
file consists of a set of PCL commands. A PCL macro may have argu-
ments. Below a macro with two arguments is shown.

$1 = new Periodic
with $1
$2 = new PI
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endwith

All occurrences of $1 are replaced by the first argument, and all occur-
rences of $2 is replaced by the second argument and so on. A macro is
called using the following syntax:

@<macro name>(parl, par2)
A call to the macro above would thus have the following look:
pcl>@macroname (S, A)

The default file extension for all macro files is ".pcl’.

The Move Operator =>

The move operator is used to move blocks from one location to another.
For example from the workspace to a Periodic block, or from one
Periodic block to another. This is demonstrated by an example. The
resulting systems in Example 5.4 and Example 5.5 are equivalent.

EXAMPLE 5.5
pcl> {
pcl> s = new Periodic
pcl> BlockA = new BlockTypeA
pcl> BlockB = new BlockTypeB
pcl> BlockA => s
pcl> BlockB => s
pcl> s.BlockA.out -> s.BlockB.in

5.4 Summary
In this chapter the configuration language PCL for the PALSJO run-time

system was introduced. Example on how to use both the operators and
the commands were given.
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The Palsjo Framework

In this chapter the internal structure of the PALSIO framework is dis-
cussed. The computational blocks used in PALSJO are defined. Fur-
thermore, the class hierarchy is presented. System blocks for handling
the real-time behavior are presented. The different types of block con-
nections are explained. The management of on-line configurations are
presented. Implementation issues regarding the management of PAL
blocks in real-time are discussed. All figures describing class hierar-
chy or object relations are drawn using object diagram notation, see

Appendix C.

Figure 6.1 The framework handles the user interaction, the network commu-

nication and the block administration.

User Network Block
Interaction Communication Library
Workspace Manager A
‘ User
Block
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6.1 Structure

The inheritance structure of the framework from an end user’s point of
view is shown in Figure 6.1. The framework takes care of the interac-
tion with the user, the network communication and manages the block
instantiation and the execution. A user defined block class is inherited
from a super class in the framework. The control algorithm is coded
by implementing some abstract methods.

6.2 Definition of a Block

Block diagram is a tool, suitable for describing algorithms and data-
flows. It supports modular programming and is well suited as an im-
plementation model. A block is the smallest programming entity in the
PALSJO environment, and is defined as a seven tuple
B={1,0,P,S,E,LA).

e A block can have a set of input signals I. An input signal must be
connected to an output signal. Input signals may not be assigned
values in the PAL code.

e A block can have a set of output signals O. An output signal may
be connected to an input signal.

¢ A block can have a set of parameters P. Parameters can only be
set from outside the block by the user or the system. The value
of a parameter cannot be changed internally in the block.

e A block can have a set of states S, which describe the internal
states of the block. A state can only be assigned internally.

e A block can have a set of events E, which it responds to. An
event can be either synchronous or asynchronous. Synchronous
events are executed at the next sampling instance. Asynchronous
event are executed immediately when they arrive. A synchronous
event could be a request for a mode change in the controller. An
emergency stop event should be asynchronous.

e A block can contain sequential logic L, which is described by one
or several Grafcets.
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e A block can contain a periodic algorithm A, that describes the
periodic behavior of the block. If a block contains periodic algo-
rithms it must be executed periodically.

l System I

BlockType

CalculateOutput(
UpdateState() )
Add()
Remove()
GetChild(int)

A

Algorithms Container [
CalculateOQutput( AddQ
UpdateState() User-Defined Classes g"e’:&‘;ﬁgim)
: /\ ; A
! )
' )
¥ 1
| Filter Observer Controller | ;
: ! Sporadic Periodic
: i
' 1
! 1

CalculateOutput(

UpdateState()

CalculateOutput(
UpdateState()

CalculateOutput(
UpdateState()

CalculateOutput()
UpdateState()

CalculateOutput(
UpdateState()

Figure 6.2 A user defined block is inherited from the pre-defined class
Algorithms. Container is a super class designed to administrate and encap-
sulate a set of blocks. Two subclasses Periodic and Sporadic are available.
They are both used for managing the execution of other blocks.

To support reuse of algorithms a design decision was made to sep-
arate temporal and functional specifications. The basic idea is to view
PAL blocks as input-output blocks, which only need to know at what
frequency they are executed. A PAL block cannot contain any temporal
constraints, and neither can it demand synchronization. All temporal
functionality is taken care of by designated system-blocks, which han-
dle the actual execution of the PAL blocks. Using this approach the
programmer does not have to deal with any real-time programming.
Furthermore it is possible for the systems to optimize the execution
and prevent problems, for example jitter' [Térngren, 1995].

1Jitter refers to non intentional variations in the sampling period.
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Figure 6.3 All available block types are stored in the BlockFactory. Allocation
of a block is made using the BlockFactory. It is possible to add new blocks to
the BlockFactory on-line.

6.3 The Framework and its Classes

The inheritance structure of the class library is shown in Figure 6.2.
The super block to all block classes is BlockType, which contains the
basic functionality that a class needs to be integrated in the PALSJO
environment. The subclasses implement the abstract methods
CalculateOutput and the UpdateState. Two subclasses from BlockType
exist. One is Container which is designed to encapsulate other blocks.
The other is Algorithms, which is the super class for all user defined
PAL blocks. Two subclasses from Container are available, Periodic
and Sporadic. Those are used to manage the execution of algorithm
blocks at run-time. The inheritance structure is know as the Compos-
ite pattern [Gamma et al, 1995]. Using Container blocks the system
supports the requirements for a hierarchical structure that was spec-
ified.

Dynamic Creation of Data types and Block types

It must be possible to extend the framework in a simple way. Blocks
and data types are in PALSJO loosely coupled to the rest of the frame-
work through the use of an Abstract Factory pattern, see [Gamma
et al, 1995]. The Abstract Factory is designed to provide an interface
for creating families of related or dependent object without specifying
their concrete classes. Figure 6.3 show the class diagram for the block
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factory. The run-time system calls the BlockFactory upon initializa-
tion and registers each available block type by giving a name tag and
a constructor function. The BlockFactory keeps a table over all regis-
tered block types. When the client wants to create a new block it calls
the BlockFactory with the name of the block. The BlockFactory tries
to find and run the constructor for the wanted block type, and upon
success it returns a handle to the new block instance. It is possible to
register new block types and delete old during execution. This means
that it is possible to extend the system with new functionality, without
having to shut it down.

A similar factory is used for dealing with data-types. Whenever
a new block is instantiated the first thing it does is to allocate its
variables through the VariableFactory.

The available block and data types can thus be changed on-line,
without having to stop and restart the system.

6.4 The System Blocks

Block Execution

While PAL is used to describe the algorithm of a block, it cannot be
used to specify how the block shall be executed. All information that
defines real-time behavior is entered through PCL. Instances of the
system blocks Period and Sporadic are created to manage the execu-
tion. A block derived from Algorithm must have a Container block as
a parent in order to be executed. The Periodic block executes its child
blocks periodically according to the data flow between the child blocks.
All timing and synchronization between the child blocks is taken care
of by the scheduler in Periodic. Consider the block diagram in Fig-
ure 6.4. It consists of six blocks. An analog input block followed by a
pre-filter, two controllers in parallel, a switch and an analog output
block. The pre-filter is used to reduce the noise from the measurement
signal. To get good control performance the filter is executed at a higher
sampling rate than the control blocks. The measurement signal is thus
down sampled before it reaches the controllers. The desired real-time
behavior are the following:
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Analog

In Filter

Switch

Analog
Out |

Figure 6.4 The block diagram created in Example 6.1 system.

e Execute RST, PID, Switch and Analog Out at a slower sam-
pling rate.

e Execute Analog In and Filter at a higher sampling rate.

To configure the system to get the this behavior, two instances of the
system block Periodic are created, one for each sampling rate. The
PCL-code to achieve this is the following:

ExXAMPLE 6.1

pcl>{

pcl*x> pl = new Periodic

pcl*> p2 = new Periodic

pcl*> pl.adin = new Analogln
pcl*> pl.filter = new Filter
pcl*> p2.rst = new RST

pcl*x> p2.pid = new PID

pcl*> p2.switch = new Switch
pclx> p2.daout = new AnalogQut
pclx>

pcl*> pl.adin.y -> pl.filter.u
pcl*> pl.filter.y -> p2.pid.u
pcl*> pl.filter.y -> p2.rst.u
pcl*> p2.pid.y -> p2.switch.ul
pcl*> p2.rst.y -> p2.switch.u2
pcl*> p2.switch.y -> p2.daout.u
pcl*> pl.tsamp = 0.010
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pcl*> p2.tsamp = 0.050
O

Blocks that reside within the same Periodic is executed synchronously.
This means that no data sharing problems will arise for blocks within
the same Periodic block. The data-flow mechanism is implemented,
so that unnecessary copying is avoided. Input signals in blocks are
implemented as pointers, that simply point at output signals, see Fig-
ure 6.5. This means that there is no copying of data involved, when
passing signals from one block to another within the same Periodic
block. Connected blocks, that belong to different Periodic blocks must
be handled in a special way. Buffers are automatically created to pre-
serve the consistency of data, shared between several Periodic blocks.
Mutual exclusion is thus handled automatically by the system.

By grouping blocks together, the execution gets more efficient and
problems with jitter is avoided. Consider, for example, if instead each
block was running as a separate process. First, there would be a prob-
lem with data latency, since the processes are running without syn-
chronization. If all blocks execute with the same sampling interval, it
would be possible that data is delayed by one sample for each block,
from input to the output. Another disadvantage would be the overhead
introduced due to the context switching, when processes are stopped
and restarted.

Periodic

The Periodic block is a block for scheduling periodic algorithm blocks.
Algorithm blocks are added to the Periodic block on-line. When the
Periodic starts to execute it creates a schedule for the execution of its
child blocks. This schedule is based on the attributes presented below,
which all algorithm blocks have.

e tsamp is the sampling period in milliseconds.

o offset, defines an offset in milliseconds. This is used for blocks
having the same sampling rates, but executing at different time
instances. The offset parameter defines the time skew between
the block and time zero.
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Figure 6.5 A system with one process for down sampling the measurement
signal, and one process for the control algorithms.

¢ slave This is a boolean parameter, which defines whether the
sampling rate shall be determined from the parameters above,
or if it shall be set by the Periodic block.

The Periodic handles the real-time management of its child blocks
by creating an execution schedule. This schedule contains lists over
the child blocks that are to be executed at each sample. The execution
array contains information on how the blocks shall be executed, and
it is created when the Periodic block is started. The creation of the
execution array consists of three parts; First the sampling period for
the Periodic process is calculated, then the length of the execution
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Periodic
A B c D
tsamp =1 tsamp =10 tsamp =5 tsamp =1
offset=0 offset = 10 offset =2 offset = 0

minimum tsamp

0 5 10 15 20 25 ms

Figure 6.6 To create a schedule, the Periodic block uses the parameters tsamp
and offset in each block. The lower figure shows the resulting schedule for the
four blocks A, B, C, and D in the block diagram at the top.

array is determined. Finally the execution order of the blocks with
respect to data-flow is calculated. This last step will be ignored if there
are any algebraic loops in the configuration. The execution order will
then be the order the blocks were added to the Periodic block.

The algorithm for creating the schedule is the following:

e Let list be formed as the sampling times and offsets of all non
slave blocks.

list = {tsamp1, offset1, tsamps, offsets, - - - , offset, } (6.1)

¢ The sampling time for the Periodic block is given as the greatest
common divisor of the elements of list. The greatest common
divisor is found using Euclid’s algorithm [Knuth, 1969], and the
identity

ged(ug,ug, -+ ,uy) = ged(uy, ged(ug, -+ ,uy,)) (6.2)
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Ely

Figure 6.7 The block diagram used in Example 6.2, 6.3, and 6.4.

e The schedule length is found as the least common multiplier, lcm,
which is calculated using the following identity:

u-v=ged(u,v)- lem(u,v) (6.3)

The number of samples necessary to form a schedule cycle can
now be expressed as

lem(list)

arraylength = m

(6.4)

e Find the execution order of the blocks based on the data-flow.

e Allocate the execution schedule and fill it with lists of blocks that
should be executed at each sample.

If a Periodic block has child blocks and some blocks are slaves, and
other are not, the sampling rate for the slave blocks are calculated
based on the values of the non slave blocks. The slave blocks will
execute every time the scheduler is invoked.

Schedule Examples

In this section three scheduling examples are given. Three different
schedules are calculated for the system in Figure 6.7. All four blocks
in Figure 6.7 belong to the same Periodic block. In the examples, the
scheduling parameters for each block are given on the following format:
(tsamp, offset, slave). The tsamp and offset parameters are only used
when slave is equal to false. Unused parameter values are marked by
"_" The scheduling parameters for each block is ordered in the input
vector, according to data flow.
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EXAMPLE 6.2

Let the input vector be

input = (P4 = (20,0, false), P = (20,10, false),
Pc = (10,0, false), Pp = (5,0, false))

The resulting schedule is then

Scheduler
tsamp

A B
D D

: i 3 H -

0 5 10 15 20 t (ms)

Schedule Length

EXAMPLE 6.3

Let the input vector be

input = (P4 = (20,0, false), Pg = (20, 10, false),
Pc = (—,—,true), Pp = (—, —, true))
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The resulting schedule is the following

Scheduler
tsamp
—~—
A B
b D .
0 5 10 15 20 t (ms)
e B
Schedule Length

EXAMPLE 6.4
Let the input vector be

input = (Py = (—, —,true), Pp = (—, —, true),
Pc = (—,—,true), Pp = (—, —, true))

In this example, the slave parameter is true for all blocks. All blocks
will then execute with the same sampling period, and this sampling
period will be the tsamp of the Periodic block. O

Running a Periodic Block

A Periodic is started by the event start. If all the child blocks are
slaves, the sampling time used is determined by the tsamp parameter
in the Periodic block. Besides handling the execution of the child
blocks, the Periodic block also handles the data exporting, i.e. making
data available outside PALSJO. A block variable can be made ready for
export using the PCL command show. Each Container block has its
own network socket. The default name of the socket is palsjo!<block
name>-<block id>. The socket is opened by the event connect and
closed by the event disconnect. How frequently data will be collected
is determined by the skip parameter. A Periodic block will log data
at every skip:th sample.
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Sporadic

The Sporadic block is simpler than the Periodic block. It just executes
its child blocks cyclicly without any timing concerns. This means that
the algorithms that are executed by a Sporadic block must contain at
least one blocking statement or a time delay in order not to starve out
other, low priority processes. An example of a blocking statement is a
function which waits for a signal to arrive, i.e. the function will block
execution until the signal arrives.

The Sporadic block is designed to hold blocks that are communicat-
ing asynchronously with other blocks or the environment. An example
is a block which sends and receives data over the network. The data
export facilities are similar to those of Periodic.

RemotelO

The third type of system blocks are the remote input-output blocks. The
InputSocket is used for reading from the network, and the OutputSocket
is used for writing to the network. Both blocks have a parameter
named server, which specifies the name of the network socket. The
InputSocket has a timeout parameter, which sets the timeout in mil-
liseconds. If the timeout is set to zero, InputSocket is blocking. In
Example 6.5 a data matrix is first read from the network, and then
written back to the network.

EXAMPLE 6.5

pcl>{

pclx> s = new Sporadic
pcl*> s.a = new InSocket
pcl*> s.b = new OutSocket
pcl*> dim cols

pcl*> dim rows

pcl*> s.a.cols = cols
pcl*> s.a.rows = rows
pcl*> s.b.cols = cols
pcl*x> s.b.rows = rows
pcl*> rows = 4

pclx> cols = 4

pcl*x> s.a.data->s.b.data
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pcl*> s.a.server = "inputserver"
pclx> s.b.server "outputserver"
pclx> s ! start

pcl*)}

6.5 Dimensions

Dimension is a special parameter type used for defining the sizes of
compound data types, such as matrices and polynomials. The need of
a special data type for handling sizes of compound data types is moti-
vated by the need for synchronized size changes. In a situation where,
for example an output polynomial is connected to an input polynomial,
and the degrees are changed, it is necessary that this change is done
simultaneously throughout the system. Dimension variables in PAL
blocks may be connected to global dimension variables, created by the
user in PCL. When the user assigns a value to a global dimension
variable, all dimension variables, that are connected to it, are updated
synchronously.

6.6 Connections

There are three types of connections in PALSJO:
1. output signal to input signal
2. output signal to parameter
3. dimension to dimension

There is no restriction in what data types that may be used in con-
nections. For aggregate types such as matrices, arrays and polynomials
the dimensions must match.

The first type of connection is the most common. It is used to simply
transfer data from one block to another during the execution of the
calculate and update procedures.
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The second type of connection is intended for adaptive systems, and
is more expensive regarding computation time.

Periodic

““““

Periodic

-~ >~

Output to parameter

| Calculate indirect parameters
1

1
Request calculation :
!

Parameter \,
Server |

Figure 6.8 To handle connections of the type "output to parameter", special

care must be taken. In PALSJO a special ParameterServer process is used to
handle this.

The reason for this is that it is possible to define parameters as
functions of other parameters. When the output signals of the source
block change, the parameters in the target blocks must be updated.
However, before the new parameters can be used by the target block,
all indirect parameters must be calculated. This may be a time con-
suming operation and cannot be performed by the block itself, since
the extra computation time could lead to time-delays. In PASLJO, when
a parameter receives a new value from an output signal, it sends a re-
quest to the ParameterServer. The ParameterServer process then
takes care the of the calculation of the indirect parameters. Figure 6.8
shows the structure with a ParameterServer. In a sampled system,
for example, the system matrices may be defined as functions of the
sampling interval. If the sampling interval is changed, the system
must be re-sampled. The calculation for this can be quite extensive,
and must be done in such a way that it does not interfere with the
execution of the block. All signals are marked with time-stamps every
time they are assigned. This information is used by the system, which
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only transfers values from output signals to parameters when the out-
put signals have changed. The ParameterServer then handles the
calculation of the indirect parameters. When it is finished, it sends a
message to the target block, that new parameters are available.

In Figure 6.9 there are two Periodic blocks. The Periodic blocks
are marked by dashed lines. The estimator, located in the upper Periodic
block, receives the process value and the control signal from the RST-
controller. The outputs of the design block are connected to the param-
eters of the RST-controller. The estimator recursively calculates a new
process model, and passes this further to the design block. The outputs
of the design block are then connected to the parameters of the RST-
controller. The grey boxes on the edges of the Periodic blocks mark
the buffers, used for exchanging data between Periodic blocks. New
controller parameters are calculated by the design block. When new
values are assigned to the outputs, they get new time-marks. This is
detected by the system, which now calculates the new parameters val-
ues for the RST-controller. When the calculation of the new parameters
is completed, the RST-controller is notified.

The dimensions of the input signal and the output signal must of
course be the same. For example, an output signal of type polynomial
must be of the same degree as the input signal to which it is connected.

The third type of connection is dimension to dimension. The di-
mension parameters of one or several PAL blocks, may be connected
to a global dimension variable. When the global dimension variable
changes, all local dimension variables connected to it are updated. This
update is made synchronously throughout the system.

An example of a system with dimension to dimension connections
are shown in Figure 6.10 The gray dashed line is the dimension con-
nection. This connection ensures that the dimensions of the estimated
system in the estimator, and the dimensions of the polynomials in the
controller, always are correct.

6.7 On-Line Configurations
It is possible to edit the block configuration on the fly, i.e. replace

one or more blocks without having to stop and restart the system.
This could be a very dangerous maneuver. Before the old blocks are
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Estimator

Designer

——u—> Analog Out

RST-
Controller

e e e e e e e e = o = e e ee e e o e e = e e e e e = —

Figure 6.9 An adaptive system with two processes. One which handles the
feedback control loop, and one that handles the slower adaption loop. The out-
put signals from the Designer-block are connected to the parameters of the
RST-block. The RST-parameters are only updated when the outputs from the
Designer-block are changed.

replaced, the new block configuration must be analyzed and checked
for errors. In Palsj6 it is possible to treat a set of primitive operations as
one atomic operation. An atomic operation must always transform the
system from one valid configuration to another. An atomic operation
can either consist of one PCL command or of several PCL commands
grouped together by curly brackets.

When an atomic operation is ended, the run-time system checks
if the new configuration is correct. If everything seems to be OK, the
current configuration is replaced by the new one. If instead an error is
found, the user will get an error message. The user can choose to either
correct the operation or discard it. Internally there exist two copies of
each block, one that is used for executing in real-time, and another
which is used for editing. The set of blocks which is executed is called
the Running configuration, and the other set is called the Shadow
configuration. This setup is shown in Figure 6.11. All commands that
deal with creating blocks, moving blocks, connecting blocks, etc., are
done on the shadow configuration. When the edit session is completed
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Designer

Dimensions

DegA, DegB

|
§

A . ]
] sleme¥enm DGO I
! . |
! RST- !
| Analog In Controller | 2 :: Analog Out i
[ i
| I
! /
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Figure 6.10 An adaptive controller where the degree of the RST-polynomials
and the processes model polynomials are connected via dimension connections.

the shadow configuration becomes the running configuration. What
happens when a block is replaced is shown in Figure 6.12.

In Example 3.2, a controller consisting of an analog-in block, a
reference generator, an analog-out block and a controller was created.
This session is continued in Example 6.6, where the controller block
now is being replaced.

EXAMPLE 6.6

pcl>{

pcl*x> delete s.control

pcl*> s.control2 = new RST

pclx*x>

pcl*> process.adin.out -> process.control2.y
pcl*> process.refgen.out -> process.control2.yr
pcl*> process.control2.u -> process.daout.in
pclx> }

--> Tree checked and seems to be OK.
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/ pel>
pel>

pcl>
pcl>
pel>

Text I/O

Workspace \.
manager

Running
configuration

A

Workspace

Execution \
manager |

Figure 6.11 The internal structure of the run-time system. There are pro-
cesses for network communication, user interaction and for task management.
The system configuration is stored on the workspace. Running configuration is
the system configuration in use, while Shadow configuration is used for editing.

Message from ’process’ : clearing blocklist...

--> New blocks are now ready to run.

--> Swapping...

Message from ’process’ : Analyzing block sequence...
--> Waiting for old processes to terminate

pcl>
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Figure 6.12 The internal structure during an edit session where one block
is replaced by another. All edits are made on the shadow configuration to the
right, which, when the edit session is completed, becomes the active one. The
edit session is shown in four steps. In step two the RST block is removed by the
user. A new block is then created and connected in step three. In step four the
shadow configuration becomes the running configuration. Before the switch is
performed the values of all variables are copied from the running configuration
to the shadow configuration.
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In a valid configuration all input signals in every block must be con-
nected. In Example 6.7, which is an alternate continuation of Exam-
ple 3.2, the input signal yr is not connected and at the end of the
atomic operation an error message is displayed. Since the atomic op-
eration cannot be concluded, the system remains in edit mode. The
command break is then used to leave the faulty atomic operation. All
commands in the atomic operation are then reversed, and the system
configuration is not changed.

EXAMPLE 6.7

pcl>{
pclx> delete s.control
pcl*> s.control2 = new RST

pcl*>

pclx> process.adin.out -> process.control2.y
pcl*>

pclx> process.control2.u -> process.daout.in
pclx> }

ERROR in block ’control’: input signal ’yr’ not connected!
--> Configuration invalid.
pcl*> break
-->Reverse commands
Block ’control’ is restored.
-->Removing invalid nodes...
Block ’control2 ’ is deleted.
pcl>

6.8 Summary
In this chapter the internal structure of the framework has been dis-

cussed. The class hierarchy was presented. The principles for different
kinds of communication between blocks was discussed. System blocks
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for scheduling and network communication have been presented. The
structure for handling on-line configurations was shown together with
a sample session.
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7

Patterns

In this chapter three patterns used in the PALSJO framework are pre-
sented. All figures describing the class hierarchy and object relations
are drawn with the object diagram notation. For a short introduction
to patterns and object diagrams, see Appendix C.

7.1 The Calculate-Update Pattern

Intent

This pattern addresses the problem where several interconnected func-
tion blocks are used to perform calculations. Function blocks consist
of input signals, output signals and internal states. When a function
block is executed new output values are calculated based on the values
of the input signals and the states. The values of the output signals
are used as inputs to the next block in the signal flow path. The prob-
lem is to execute the blocks so that their internal states are updated
correctly. In a control system the output signals from blocks later in
the signal flow path are often needed in order to update the states
correctly. Consider a system with three blocks. The output from the
first block is used as input to the second, and so on. Here in order to
update the states of the first block, the output signal from the third
block must be known.

Another use of this pattern is if the computational result from a
function block can be divided into two parts. Again consider a control
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system. It is important to finish the calculation of the new control
signal as fast as possible, so that the time delay is minimized. The
update of the internal state is on the other hand allowed to be more
time consuming.

The two issues described above are addressed by the Calculate-
Update pattern.

Variations - Also known as

Forward — Backward
Forward sweep — Backward sweep

Motivation

Consider the control system in Figure 7.1. The controller internally
consists of a set of blocks. First the value of the process is sampled
and the signal propagates from the first block to the second one. The
output of the second block is then passed on to the third block and
so on. The input signal is sampled and a new output signal is calcu-
lated periodically at a specified sampling rate. In a control system the
stability of the closed loop system depends on the time it takes for a
process measurement to show up in the actuator signals to the process.
If there are multiple blocks between the input and output, special care
has to be taken to ensure that no unnecessary delays are introduced
due to improper ordering of calculations. Consider the following two
different execution orders for the blocks in the controller in Figure 7.1.

Backward order Forward order
AnalogOut(out3); inl := Analogln();

out3 := in3; outl := inl;
in3 := out2; in2 := outl;
in2 := outl; in3 := out2;
outl := inl; out3 := in3;

inl := AnalogIn(); AnalogOut(out3);

If the calculations are done in backward order, the input values
reach the output after 6 sampling intervals, while in forward order
they reach the output in a fraction of a sampling interval, and this
seems to be the obvious choice since we want to minimize the time
delay.
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Computer

e e e R e e

Controller

Analogln —=|Inl Outl|—#=|In2 Out2—#=|In3 Out3}—#=| AnalogOut

Figure 7.1 A schematic view of a controller which consists of a number of
sub—blocks. The output from the plant is sampled by Analogln, and then the
signal is propagated from the left to the right until it reaches AnalogOut, which
sends the control signal to the actuator. The Calculate-Update pattern addresses
the problem of minimizing the time delay between process measurement and
actuation.

On the other hand, as mentioned earlier, when updating the inter-
nal state of block i, information about the output signal of block 7 + 1
could be needed, and this would motivate backward order.

Structure

The discussion above suggests a division of the calculations made in a
block into two parts as shown below.

Read inputs
Calculate )
Do calculations needed for outputs
(Forward) _
Write outputs
Update )
P Do all other calculations
(Backward)

Again consider the controller in Figure 7.1, and let each of the sub-
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blocks have two functions Calculate() and Update(). The execution of
the blocks would now be the following:

AnalogIn.Calculate()
Block2.Calculate()
Block3.Calculate()
AnalogOut.Calculate()
AnalogOut.Update()
Block3.Update()
Block2.Update()
AnalogIn.Update()

Participants

In the PALSJO Framework the execution of a block diagram is taken
care of by an object inherited from the class ContainerBlock, see Fig-
ure 6.2.

Sample Code

The algorithm for the PI-controller in Example 3.1 is divided into two
parts. One part for calculating the output signal and one part for up-
dating the integral state.

A control system usually consists of a set of sub-blocks. Assume
that all blocks have a calculate procedure and an update procedure.
The execution of the system with five sub-blocks would then be

block Periodic
blocks : array [1..5] of block;
n := 5 : integer;

calculate
! : integer;
begin
for i := 1 to n do
blocksli].calculate();
end for;
end calculate;
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update
[ : integer;
begin
for i := n downto 1 do
blocks|i].update;
end for;
end update;

end Periodic;

Consider the implementation of a cascade PI-controller. Two PI-
blocks are connected in series. The first PI-controller generates the
reference value to the second PI-controller. In order to handle actuator
limitations correctly, the integral states must be updated with care.
The PAL code for the PI-controller in this example is similar to the
code in Example 3.1, but extended with an extra output signal r2.
The r2 signal is calculated in the update procedure and is used to
propagate actuator limitations backwards, against the data flow. The
input signal r is the desired reference signal and r2 is the reference
signal modified with respect to actuator limitations.

block PI

r,y,u . input real,

v, r2 : output real;

I :=0.0,e:=0.0: real,

K :=0.5,Ti :=10000.0, Tr := 10000.0 : parameter real;

h : sampling interval;

bi = K « h/Ti; br = h/Tr;

calculate begin
e :=r—y;

end calculate;

update begin
r2:=y+w-—-1I1)/K;
I.=1+bixe+br*(u—v);

end update;

end PI;
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This execution order of the blocks is illustrated in the figure below.

Calculate {1,2,3,4,5,6,7)

@y
. e u e o o
(1| Reference ; PI rf &y ® @
Lo {7 u r2 .
y PL . MB/m ter #— AnalogOut
| Analogln Analogln —|_>-

—
®

Update (7,6,5.4.3.2,1)

Known Uses

This is a well known pattern in the control community. Use of this is
suggested in many control textbooks. One known industrial application
is SattLine from Alfa Lava Automation [Johannesson, 1994]. Use of
this pattern is also discussed in [Elmqvist, 1985].

7.2 The Parameter-Swap Pattern

Intent

The Parameter-Swap pattern is a real-time pattern which deals with
the problem of updating, a possibly large, set of controller parameters
in a fast and consistent way.

Motivation

Consider the following piece of code showing an algorithm expressed
in PAL. The block has one input signal in, one output signal out, one
state s, and three parameters a,b and c.

block par

in : input real,;

out : output real;

s : state real,

a : parameter real;
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b : parameter real,
¢ =a *b;

calculate
begin

out :=...
end calculate;

update

begin
Si=...

end update;

end par;

Parameters are special variables that can only be assigned from
outside the block. When the parameters ¢ and b are assigned new
values, a new value for ¢ must also be calculated. The parameters a
and b are so called direct parameters while c is an indirect parameter.
Indirect parameters may not be assigned directly by the user.

Assume that the algorithm is executing and using all three param-
eters. At the same time the user wants to change the value of one
or several of the parameters. If the user is allowed to directly assign
the parameters, the risk for a non-consistent parameter set is evident,
since a change in one direct parameter must propagate to all indirect
parameters before the new values safely can be used.

Structure

The solution suggested by this pattern is to have two parameter sets,
one that is used by the block algorithm, and another that is used for
assigning direct parameters and for calculating indirect parameters.
This setup is shown in Figure 7.2. When an assignment operation is
finished and the values of all indirect parameters are calculated, the
block gets access to the new parameter set through a pointer swap.
The involved classes and their relations are shown in Figure 7.3.

Sample Code

The class AbstractBlock constitutes a logical block that can be ac-
cessed from the surrounding framework. It has two public methods,
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Control
Loop

User
Process

SetParameter()

User

Process

Pending
Parameter

Figure 7.2 The block algorithm is executed by the Control Loop process. Here
the algorithm uses the Current Parameter Set. For assigning values to param-
eters the Pending Parameter Set is used. When an assignment operation is
finished and all necessary calculations are made the two sets are swapped.

AbstractBlock

AbstractParameters

Set(...)
GetUpdatedSet()
Run()

Algorithm()

Assign(...)
Calculate()

i

]

Parameters

Block

Algorithm()

Assign(...)
Calculate()

Figure 7.3 The interaction between the user, the framework and the
parameters is encapsulated by the super classes AbstractBlock and

AbstractParameters.

Run for executing the block algorithm, and Set for assigning block
parameters. Usually these two methods are accessed from different
real-time processes, which are not synchronized. The Run method is
executed by a high priority process, while the Set method is called

from low priority processes. It is necessary that the blocking time for

the Run method is minimized.

class AbstractBlock {
public:
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int Set(int nr0fPars, ParID *parID, Value *value);
void GetUpdatedSet();

void Run();

virtual void Algorithm() {}

private:
int parChanged;
Event event;
AbstractParameters *current, *pending;

};

The class Parameters is used to encapsulate the parameters of a
block. AbstractParameters is an abstract class which simply provides
the interface between the block class and its parameters. Each block
has two instances of the AbstractParameters class, current, that is
used by the Run method and pending, that is used by the Set method.
The method Calculate is used for calculating the values of the indirect
parameters, based on the new values of the direct parameters.

class AbstractParameters {
Monitor innerMon, outerMon;

public:
virtual void Assign(int nrOfPars, ParID #*parID, Value *value);
virtual void Calculate() {};

+

The parameters are shared by several processes and must thus be
protected. There are two monitors for this. The monitor outerMon is
used so that only one low priority process at the time can assign new
values. When new values are assigned, the flag parChanged is set, to
signal to the Run method that new parameters are available. The mon-
itor innerMon is used to protect this flag. The high priority process
executing the Run method may be blocked waiting for innerMon to be-
come free, but since innerMon only contains one assignment statement,
the blocking time will be short.

void AbstractBlock: :GetUpdatedSet ()
{

InterruptMask mask;
AbstractParameters *tmp;
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innerMon.Enter () ;

if ( parChanged ) {
tmp = pending;
pending = current;
current = tmp;
parChanged = FALSE;

+

innerMon.Leave();

The algorithm of a block is executed by calling the Run method. Run
first calls GetUpdatedSet to get the latest parameter set, and then it
calls Algorithm.

void AbstractBlock::Run()

{
GetUpdatedSet () ;
Algorithm() ;

b

The class AbstractBlock provides the Set method for the assigning
parameters. The arguments are the number of parameters to be as-
signed, a list of parameter identifiers and a list of values. The monitor
outerMon is needed since there may be several user processes trying to
assign parameters. If the flag parChanged is true when the Set method
is entered, the flag is temporarily set to false. It is thus possible to
make several calls in a row to Set.

int AbstractBlock::Set(int nr0fPars, ParID *parID, Value *value)
{

int result;

outerMon.Enter();

innerMon.Enter();

parChanged := FALSE; // Postpone the use of parameter changes
innerMon.Leave(); // made previously.

pending->Assign(nr0fPars, parID, value);
pending->Calculate();

innerMon.Enter();

parChanged = TRUE;
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outerMon.Leave();

return result;

}

The two super classes AbstractBlock and AbtractParameters han-
dle all the interaction with the environment. An algorithm is added to
AbstractBlock in the sub-class Block. The Algorithm method uses the
data in the Parameters class.

class Block : public AbstractBlock {
public:

virtual void Algorithm();
s

void Block::Algorithm()
{

Parameters *myCurrent = (Parameters *) current;

// Here comes the algorithm code

In the sub-class Parameters the actual parameter variables are
added. Two functions for managing them are implemented. The Assign
method implements the assignment of one or several parameters. The
Calculate method implements the calculation of indirect parameters.

class Parameters : public AbstractParameters {
friend class Block;
public:
virtual void Assign(int nr0fPars, ParID *parID, Value *value);
virtual void Calculate();
private:
// Here the parameters are defined
double paril, par2, par3;
s

void Parameters::Assign(int NrOfPars, ParID *parID, Value *value)

{
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+

void Parameters::Calculate()
{

par3 = parl + par2;
}

Known Uses

The basic ideas behind this is pattern are well known [Arzén, 1996].
The sample code here is based on [Nilsson, 1996].

7.3 The Register Idiom

Intent

The register idiom provides a method to linking new code to an existing
framework without recompiling the main program.

Motivation

When working with a framework such as the PALSJO environment
users need to add new classes. When the new classes are compiled
they need to be integrated with the rest of the code. This could be
done by adding the appropriate code in the main program so that the
new code will be included during linkage. This approach requires that
the user has access to the source code.

When designing PALSJO we wanted to avoid this. Instead the user
should only need to add the names of the new files that should be
linked in. To solve this the Register idiom is used.

Structure

The way the Register idiom works is similar to dynamic linking of code.
The basic idea is that when a new class is added to the framework it
notifies the main program that a new class is available and it also tells
the main program how to create an instance of this new class. The class
is said to register, when it notifies the framework. The registration
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RegisterClasses AbstractBlock
Register(..) o~ - - - - - - BlockFactory->AddBlockType(..) -\

RegisterBlock Block
RegisterBlock()ot -~ ------ :R:egiSter(---)

Figure 7.4 The register idiom is implemented with two super classes
RegisterBlock and AbstractBlock.

can be done either on the startup by using static objects, see below, or
during run-time. When a class has been registered with the framework,
the client may create instances of it through a factory [Gamma et al,
1995].

Sample Code

In the example below the class Block, which is inherited from the super
class AbstractBlock is discussed. The goal is to register the Block class
with the framework in a simple and convenient way. This is solved here
by creating a sub class, called RegisterBlock, from RegisterClasses.
The purpose of this class is to notify the framework of the new sub-class
Block. This is done by defining a static instance of RegisterBlock in
the header file. When RegisterBlock is allocated the constructor will
register the Block class with the BlockFactory. The RegisterClasses
class is defined below

#include "AbstractBlock.h"

class RegisterClasses {

public:

void Register(char *block, AbstractBlockk (xf)());
s

In this example there exists one global instance of BlockFactory.

#include "RegisterClasses.h"
#include "BlockFactory.h"
#include "AbstractBlock.h"
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extern BlockFactory *blockfactory;

void RegisterClasses::Register(char *block, AbstractBlock* (*£) (D)

{
blockfactory->RegisterBlockType(block, f);
+

The user defined sub-classes are presented below. The first class is
the Block class, which should be integrated with the framework. The
second class is RegisterBlock, of which a static instance is defined.

#include "AbstractBlock.h"
#include "RegisterClasses.h"

class Block : public AbstractBlock

{
public:

// Here the block methods and attributes are defined
+;

static class RegisterBlock : public RegisterClass

{
public:

RegisterBlock();
} registerblock_Block;

When registerblock Block is allocated, its constructor is executed
and calls the BlockFactory object. The argument in the call to the
BlockFactory object is a function pointer to Create Block and the
name of the block class. The BlockFactory stores the function pointer
and the name in a list.

#include "Block.h"
// Here the body of the class Block should be implemented
static BaseBlock *Create_Block() {

BaseBlock *result = new Block();
return result;

by
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RegisterBlocks: :RegisterBlocks () {
Register ("Block", Create_Block);
+

Participants

The Factory [Gamma et al., 1995] pattern is used for creating objects
of the new classes.

Related Patterns
The idea behind Singleton [Gamma et al., 1995] is similar to this.
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Case Studies

8.1 Introduction

In this chapter five case studies are presented. Three of these examples
include control design and analysis in combination with PAL code and
PCL commands. The idea is to give the reader a full motivation why
the controller implementation is structured the way it is. The first ex-
ample is an implementation of a controller for the inverted pendulum.
The inverted pendulum is a good test bench, both from a real-time,
and from a control theory point of view. The next example shows how
the PALSJO system is used to control a industrial robot. Case study
number three deals with the implementation of a hybrid controller
for a double tank system. Both control design and analysis are given,
together with PAL code. The examples with the pendulum and the dou-
ble tanks demonstrate how PAL is used for implementing algorithms
that are partially sequential and partially periodic. An adaptive RST-
controller for a mechanical servo system is designed and implemented
in Section 8.5. The use of dimension variables, polynomials, local and
external procedures and functions are the main objectives with this
example. In the last section the implementation of a fault tolerant
controller scheme is discussed. Only the outline for the PAL and PCL
code is given here.
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—

Figure 8.1 The pendulum on a cart.

8.2 Inverted Pendulum

Controlling the inverted pendulum is a classical problem in control
laboratories. The pendulum process provides a suitable test-bench for
control algorithms as well as for real-time control applications. Since
the process is both nonlinear and unstable it gives rise to a number of
interesting problems. Its unstable nature also makes it a good process
for testing real-time controllers, since if the timing fails, the pendulum
is likely to fall down. The goal with the control is to bring the pendu-
lum from the downward position to the upward position and keep it
stabilized.

This section describes the design and implementation of a controller
for the pendulum. For estimating the angular velocity a nonlinear ob-
server is proposed. First the process model and the controller structure
are presented. In the next section the the nonlinear observer for the
angular velocity is introduced. Design, analysis and simulations for
the observer are presented. Finally the PAL code for the controller is
shown. This implementation shows how a periodic algorithm, like the
observer, may be combined with a sequential algorithm, in this case
the controller.

The Process
The inverted pendulum is shown in 8.1. The equation of motion of the
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inverted pendulum is given by

d?0 5 . P 2 05 0
Zp = @osin + u/gwq cos

where wq is the natural frequency for small oscillations around the
stable equilibrium, g is the natural gravity, and u is the acceleration
of the pivot. Introduce the state variables

.’XZ1=9
Lo L1do
2—a)odt

The equation of motion can then be written as

day WoX

—— = WoX2

jx'f (8.1)
—d—:— = o sinxy + u/gwo cos x1

Since the input signal to the process is the acceleration, the equation
for the cart simply becomes an integrator. If the position of the cart is
denoted x3 then

i (8.2)

I
S

The Controller

The controller is designed to first swing up the pendulum and then
stabilize it in the upright position. This is done using a hybrid con-
troller which consists of three sub-controllers: one for the swing-up
phase, one for the catching of the pendulum, and one for stabilizing
the pendulum. The switching logic for this hybrid controller is shown
as a Grafcet in Figure 8.2.

Swinging up the Pendulum

To swing up the pendulum an energy approach is used. The idea is to
pump the right amount of energy into the pendulum, so that it will
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\/
Step1 Off
Start——
Y
Step2 Swing-Up
Stop
—— Close Falling ——
Falling —
Step4 Catch
—— Stop T
—— Upright
Step3 Stabilize
Stop —+ |

Figure 8.2 The Grafcet which describes the switching rules for the hybrid
pendulum controller.

move to the upward position. The algorithm used is found in [Wik-
lund et al, 1993], [Astrom and Furuta, 1996]. The control law is the
following

u = sat,gk(E — Eq)sign(0 cos 6) (8.3)

where E; is the desired energy, and % is a design parameter. Here Ej
corresponds to the pendulum being in the upright position.

Catching the Pendulum

When the pendulum is close to the upright equilibrium the catching
controller is switched in. The task for this controller is to, as smoothly
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as possible, hand over the control from the swing-up mode to the bal-
ance mode. The controller used in the experiments is the following
state-feedback controller

u= —l1x1 - lz.’XIz (84)

This controller stabilizes the pendulum, but takes no concern to the
position of the cart.

Balancing the Pendulum

To balance the pendulum at the upright equilibrium, another state
feedback controller is used. The control law is the following

u= —l1x1 — lz.’)Cz — l3(3€3 — xr) — l4x4 (85)

where x, is the desired position for the cart. The design of the controller
is based on the linearized model for the upright position.

_:)221_ 0 on 0 07 -0
X9 w 0 O Wo/8

— 8.6
i o o o 1|7 o |” (8.6)
E7 | 0 0 O i 1

The controller parameters are calculated using pole-placement design.

Measurement Values

There are only two measurement values available from the physical
plant. These are the position of the cart, x3, and the angle of the pendu-
lum x;. This means that the velocity of the cart, x4 , and the angular
velocity x; must be estimated. Creating a filter for estimating x4 is
trivial, since it is a linear system. Finding the corresponding filter for
estimation of xs is harder due to the nonlinearities. In order to imple-
ment the control laws discussed above, good values for all the states
are necessary. To get a good value of the angular velocity a nonlinear
observer is needed. The design of such an observer is discussed in the
next section.
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Designing an Observer

For the estimation of the angular velocity a nonlinear observer is pro-
posed. The nonlinear observer has the same structure as a linear ob-
server but with the linear model replaced by a nonlinear model. The
need for a nonlinear observer for the inverted pendulum becomes ev-
ident when implementing the swing-up strategy, since it involves es-
timation of the angle and the angular velocity at all positions, and
hence a linear observer cannot be used to accomplish this task. The
pendulum can make a complete revolution which makes the system
highly nonlinear. Conditions for stability of the nonlinear observer are
given and a design based on linearized analysis is presented.

Since mo in Equation 8.1 is a scaling factor which can be removed by
a proper choice of time scale, the case with @y = 1 will be considered.
It is trivial to transform back later when the result is obtained. To
further simplify calculations, the control signal u is given in normalized
acceleration. It is assumed that the angle 8 is measured with noise and
that it is desired to filter the noisy signal and to generate an estimate
of the velocity d6/dt. Let the output be

y=x1+n

where n is measurement noise. A reasonable structure of a nonlinear
observer is

dx . .

———dtl = Xo + k1(x1 — %1+ n)

@ (8.7)
_C_Zt_z = sin&; + ucos X1 + ko(x1 — %1 +n)

Notice that the observer has a very simple structure. It combines a
model for the nonlinear dynamics with a simple feedback from the
measured angle.

Introducing the estimation error ¥ = £ — x gives

dx1

= = —k1X1 + X2+ kin

7 1X1 + X2 1

dxs o : R -

= = sin £1 — sin x; + u(cos &1 — cos x1) — kaX1 + kon
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This can be written as

dx . -
% = —klxl + X9 + kln
& (8.8)
dz = —koX1 +v + kon
a7 2X1 2
where
o By &
v = 2sin 5 (cos (x1 + 5 ) —usin(x; + 5 )) (8.9)
Linearization

To get some insight into the properties of the system, the error equation
(8.8) will be linearized around the operating condition 8,. This gives

dx ..
-ax?l = —k1X1 + %2 + k1n
~ (8.10)
B2 (kg + @)1 + kan
p7 2 1+ R2
where o = — cos 8y. Notice that &« = —1 when the pendulum is stand-

ing up and that @ = 1 when it is hanging down.

Robustness

First the sensitivity to parameter variations is considered. This is done
by investigating how the roots of the characteristic equation of the
filter change over the range of operating conditions. The characteristic
equation of the filter becomes

S?+his+hks+a=0
Assume that the design gives the following the characteristic equation
s2 + 2L0w,s + 02 =0

in the nominal case o = 0. The characteristic equations for the extreme
cases are

s +his+ks+1=0
2+ his+hky—1=0

108



8.2 Inverted Pendulum
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Figure 8.3 Bode diagrams for the transfer functions Gg(s) (left) and Gy (s)
(right) in Equation (8.11), which describe how measurement noise propagates
to the estimates of the angle and the angular velocity. The values of the design
parameters are { = 0.707 and w, = 2. The transfer function |Gy(s)| has a
resonance peak of 1.414 at v = w,.

With a relative damping ¢ in the nominal case, the following equation
is obtained

Wn

T

in the extreme cases. To get a system whose behavior is invariant
over the operating range it is apparently advantageous to choose the
parameter @, as large as possible. Choosing @, = 2, i.e. the filter twice
as fast as the nominal system, implies { = 0.89{ and { = 1.15¢,,
respectively.

Performance

A key issue is how efficient the filter is in reducing the noise from the
angle sensor. To explore the transfer functions from measurement noise
to the errors in the estimates of the angle and the angular velocity, are

calculated.
It follows from Equation (8.10) that the transfer functions are
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_ k1S + ko
Go(s) = 2+ kis+ko+ o
Gv (S) _ sz — 06k1

s2+kis+hky+a

For o = 0 these transfer functions become

G()_ kis + ko _ 2§wn3+a)ﬁ

A T 24 kis+ky  s24+20w,s + @2 (8.11)
) .

G,(s) = - kos _ W58

2+ kis+ky $2+20w,s+ 0?2

It follows from these equations that there is a roll-off for high frequency
measurement noise with a slope of -1 for both transfer functions. The
frequency where the roll-off begins is essentially determined by the
parameter @,. The transfer function Gy has low pass character and
G, has band pass character. The transfer function G, has a resonance
peak at ® = w, which is given by

Wn
2¢

This shows that too high a value of w, gives a high noise level in the
velocity estimate. A comparison with the robustness analysis shows the
traditional trade off, between performance and robustness. To make a
specific design it is highly desirable to determine the spectrum of the
measurement noise.

Bode diagrams of the transfer functions are shown in Figure 8.3.
The figure indicates that the observer gives a good estimate of the
derivative for frequencies up to wo = 1.

The angle is typically measured by a potentiometer or an encoder.
Additional noise is also generated from slip-rings that are often used.
Figure 8.4 shows a realization of the angle measurement from a lab-
oratory process with a potentiometer. The signal is filtered with an
analog anti-aliasing filter and sampled at 200 Hz. A spectrum anal-
ysis shows that the measurement noise is white over a wide range.

|G, (i0,)| =
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Figure 8.4 A sequence of the measurement noise taken from a laboratory
pendulum where the angle is measured with a potentiometer.

Stability

Although the linearized analysis gives insight it does not guarantee
stability of the nonlinear system (8.8). To analyze the stability of the
nonlinear system the theory of input-output stability of nonlinear sys-
tems is applied, see [Desoer and Vidyasagar, 1975] and [Khalil, 1992].

Pure Filtering

First the pure filtering problem, i.e. when there is no control signal, is
discussed. The signals x; and x, can be considered as time functions
and the function v in Equation (8.9) becomes

~

v = 2sin % cos (x1(¢) + %) (8.12)

The system described by Equations (8.8) and (8.9) can be regarded as
an interconnection of a linear system with the transfer function

1
s2 + kis + ko

G(s) =

and the nonlinear time-varying function v (%1, t) given by Equation (8.12).
See Figure 8.5. The following result is now established.
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G(s)

V(X0

Figure 8.5 Block diagram of the observer. The upper block represents the
linear part of the observer and the lower block represents the nonlinear part.

THEOREM 8.1
Assume that the signal space is Ly, and that the control signal is zero,
then the system (8.8) is input-output stable if

R24+EE/4 if Ry < V2,
ko > (8.13)
1 if k1 > V2

O

Proof

The system in Figure 8.5 is a standard configuration where the small
gain theorem can be used, see [Desoer and Vidyasagar, 1975] and
[Khalil, 1992]. For this purpose the gains of the linear and the nonlin-
ear subsystems are calculated.

Since the cosine function is bounded by one it follows from Equa-
tion (8.12) that

v (@, )] < 2|sin3~c——;| < ||

The gain of the nonlinear block is thus at most one. The small gain
theorem, [Khalil, 1992], then implies that the closed loop system is
stable if the gain of the linear system is less than one.
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To calculate the gain of the linear block it is observed that

1
G(iw)

= ky — 0° + k10 (8.14)
Hence

2 = ot 4 (k2 — 2k)0® + B2

|G(ia))
= (0? — kg + k3 /2)? — k%/4 + k2R,
If k2 < 2ky the maximum of |G(i)| is obtained for @ = 4/ks —k7/2,

hence
1

\Riks — ki /4
Requiring that the gain of the linear block is less than one gives

k%kz —ki‘/4 >1

max G(iw) =

or
ko > kT2 4 B2 /4
If k2 > 2k, the maximum is obtained for @ = 0, hence

max G(iw) = 1
ko

and the condition that the gain of the linear block is less than one be-
comes ko > 1, which completes the proof. The values of the observer
gains which give a stable closed loop system are shown in Figure 8.6.
Note that the stability conditions for the linearized case are k; > 0,
ko > 1. This shows that the stability conditions for the nonlinear ob-
server are not very conservative and that there is considerable freedom
for the designer. This verifies the intuitive insight that it is easy to ob-
tain a low gain of the nonlinear system simply by choosing high values
of the observer gains. The linearized analysis in Section 8.2 does how-
ever indicate that there are disadvantages in using too high gains.
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Figure 8.6 The shaded area marks the k-values, for which the resulting
filter will be stable. The area is bounded by the following three curves:
fi(k1) = k72 + k12 /4, fo(k1) = k3/2, and f3 (k1) = 1.

Filtering with Feedback

So far a free observer where the control signal u was zero has been
discussed. When a feedback is introduced the control z becomes a func-
tion of the state. It is straightforward to extend the analysis to this
case. The results will in general depend on the nature of the feedback.
It is highly desirable to obtain conditions that do not depend on the de-
tailed structure of the control law. Such results can be obtained if the
reasonable assumption that the acceleration of the pivot is bounded is
made. This leads to the following theorem

THEOREM 8.2
Assume that the signal space is Lg,, and that lu| < Umax. Let B =
\/1+ 42, then the system (8.8) is input-output stable if

B2k2+ k24 if ki < /20,
ko > (8.15)
ﬂ, if kl Z V 2ﬁ

O
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Figure 8.7 The shaded area marks the k-values, for which the resulting
observer becomes stable. The area is bounded by the following three curves:
fi(ky) = B2/F2 + k12 /4, fo(k1) = k3 /2, and f3(k1) = B. B is equal to two in the
figure.

Proof

When the control signal is different from zero it follows from Equa-
tion (8.9) that the nonlinear block is characterized by

v = 2sin X1 (cos (x1(¢) + zC—l) —usin (x1(£) + ﬂ))
2 2 2
Since
|cos¢ +using| < \/1+uz,, =P

it follows that the gain of the nonlinear block is bounded by S =
\/1+u2_.. The calculation of the gain of the linear block given in
the proof of Theorem 1 now leads to the results and completes the
proof. The observer parameters that give a stable closed loop sys-
tem are illustrated in Figure 8.7. A comparison with Figure 8.6 shows
the additional restrictions on the observer gains that are introduced
because of the feedback.
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Simulation of the Observer

To illustrate the result two simulations of the system are presented.
The normalized system has been used in the simulations. For the nom-
inal case o = 0, { = 0.707 is chosen. To have guaranteed stability with
¢ = 0.707, wo must be larger than 1. To have some margin @y = 2 is
chosen. This means that the observer is about twice as fast as the
natural frequency of the pendulum. The filter gains are k; = 2.818
and ks = 4. Figure 8.8 shows a simulation where the pendulum per-
forms an oscillatory motion starting from an almost upright position.
Measurement noise has been simulated by a sinusoid with frequency
® = Wy, which is the most sensitive case. The amplitude of the mea-
surement noise in the simulation is one degree. A sample of the real
measurement noise is shown in Figure 8.4. The assumption that the
noise is approximately one degree is thus reasonable. Notice that the
estimates of the angle and the angular velocity settle quickly and that
the system is not very sensitive to the noise.

If instead wo = 0.5 is chosen, the condition in Theorem 1 is violated,
and the resulting observer will become much more sensitive to the
nonlinearities. A simulation of this case shows that the estimator does
not converge.

Experiments with Pure Filtering

A number of experiments have been performed on a laboratory process.
The system used is a version of the Furuta pendulum. In this pendulum
the pivot is rotated in the horizontal plane, see [Furuta et al., 1991].
The position of the pendulum was measured with a potentiometer and
the signals were transmitted through slip rings. An anti-aliasing filter
was used before the signals were sampled. The pendulum has a natural
frequency @o = 6.3 rad/s. The observer was implemented by approx-
imating the differential equations by finite differences. The sampling
period used was 5 ms. The Furuta pendulum can be approximated by
Equation (8.1) provided that the rotation of the pivot in the horizontal
plane is not too large.

Figure 8.9 shows estimates of the angular velocity in an experiment
where the pendulum swings freely after it is released from the upper
position. The dashed line shows the output of the nonlinear filter and
the full line shows the estimate obtained by filtering the position sig-
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Figure 8.8 A simulation of the observer with wp = 2. This choice of @y will
as expected give a stable system.

nal with the filter G(s) = s/(1 + s/N). The filter shows clearly the
advantage of using the nonlinear observer. As seen in the figure the
low-pass filtered derivative is more sensitive to noise, has longer delay
and has a gain that is less than one. The attenuation of the filtered
derivative is approximately /1 + (6.3/10)% ~ 1.2.

Experiments with Feedback Control

Finally the results from experiments where the observer is used for
feedback control are shown. Figure 8.10 shows a simulation and Fig-
ure 8.11 shows real data from a swing-up experiment. The pendulum
is started in the downward position. A swing-up controller is used to
move the pendulum to its upward equilibrium, where a linear feedback
controller is used to stabilize the pendulum. In both the simulation and
the real case the observer was initiated to start in the downward po-
sition. In the simulations measurement noise is approximated with
a high frequency sinusoid. Notice the good agreement between ex-
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Filter (N=10) & Observer

Radians/Second

Seconds

Figure 8.9 Two curves taken from the real process; the dashed line is the
angular velocity from the filter described in this section, and the solid line is
the theta measurement fed through the filter G(s) = s/(1+s/N), with N = 10.

periment and simulation and the good performance of the nonlinear
observer.

PAL

The PAL code for the pendulum controller is divided into one sequential
part and one periodic part. The sequential part is described as a Grafcet
with four steps, see Figure 8.2. In the initial step the output signal is
set to zero. In step 2 the swing-up algorithm is switched in, and when
the pendulum comes close to the upright position step 3 becomes active.
Finally when the pendulum has reached the upright position step 4
becomes active.

ExXAMPLE 8.1
module Pendulum;

function cos(r : input real) :real; external "cos";
function sin(r : input real) :real; external "sin";
block PendulumController

x,th : input real;
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Figure 8.10 A simulation of swinging up and stabilizing the pendulum us-
ing the non-linear observer. The simulation starts with the pendulum in the
downward position. The observer is initiated to start in this position.

v:=0.0,u:= 0.0 : output real;

xold := 0.0 : real,

xhat := 0.0,dxhat := 0.0, xhatold := 0.0,dxhatold := 0.0 : real;
x1hat := 0.0, x2hat = 0.0,dx1hat := 0.0,dx2hat := 0.0 : real
thetaHat,dtheta Hat : real;

uold = 0.0, xr, Enorm := —2.0 : real,

on := false : boolean,;

al,a2,a3,a4,bl : parameter real;
k,k1,k2,k3,k4,11,12,13,14 : parameter real;

w0 := 6.3 : parameter real;

minTh, maxTh,n : parameter real,;

h : sampling interval,

calculate

begin
dx1lhat := w0 = x2hat + k1 * (th — x1hat);
dx2hat = wOxsin(x1hat)—w0suold/9.81xcos(x1hat)+k2x(th—xlhat);
x1hat := x1hat + dx1hat  h;
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Figure 8.11 Plots from the swing-up and stabilization of a real pendulum
process. The pendulum starts in the downward position.

x2hat .= x2hat + dx2hat * h;
xhat := al*xhatold + a2 x dxhatold + b1 xuold + k3 x (xold — xhatold);
dxhat := a8 x dxhatold + a4 * uold + k4 x (xold — xhatold);
thetaHat := x1hat,;
dthetaHat := w0 * x2hat;
end calculate;

update
begin
xhatold := xhat;
dxhatold := dxhat;
xold := x;
uold := u,;
end update;
action off;
begin
u := 0.0;
end off;
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action swing;

begin
Enorm := 0.5 « dtheta Hat = dtheta Hat /(w0 = w0) 4 cos(th) — 1.0;
u 1= —sign(dthetaHat  cos(th)) * sat(n + 9.81,k x Enorm);

end swing;

action catch;
begin

xr = X;

u = —11x%th—12«dthetaHat;
end catch;

action stabilize;
begin

u = —I1%th —12 = dthetaHat — 13 * (x — xr) — l4 x dxhat;
end stabilize;

initial step stepl;
activate off;
end stepl;

step step2;
activate swing;
end step2;

step step3;
activate catch;
end step3;

step step4;
activate stabilize;
end step4;

transition from stepl to step2 when on;

transition from step2 to step3 when
th > minTh and th < maxTh or th < —minTh and th > —maxTh;

transition from step3 to step4 when th > —minTh and th < minTh;
transition from step4 to step2 when th < —maxTh or th > maxTh;
transition from step3 to step2 when th < —maxTh or th > maxTh;
transition from step2 to stepl when not on;

transition from step3 to stepl when not on;

transition from step4 to stepl when not on;
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function sat(max : input real; value : input real) : real;
begin
if value > max then
result .= max;
elsif value < —max then
result := max;
elsif value < 0.0 then

result := —value;
else
result := value,
end if;
end sat;

procedure start();
begin

on .= true;
end start;

procedure stop();
begin

on = false,
end stop;

function sign( r : real) : real;
begin
if r < 0.0 then
result .= —1.0;
else
result .= 1.0;
end if;
end sign;
end PendulumController;

end Pendulum.

PCL

The controller is configured by the PCL-script in Example 8.2. Two
modules StandardBlocks and Pendulum are imported. See Appendix A
for an overview of the StandardBlocks library. Then all blocks are allo-
cated and connected in one atomic operation. It is important that this
is done in an atomic operation, because the run-time system expects to
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thetaln

8.2 Inverted Pendulum

Figure 8.12 The system created by the PCL code in Example 8.2. The four
algorithmic blocks thetaln, xIn, regul and daout are executed by the Periodic

block s.

always have valid configurations, and blocks with unconnected input
signals are not valid. This means that if for example the
PendulumController was created outside an atomic operation, the run-
time system would give an error message, saying that the input signals
were not connected. Finally in the PCL-script, three variables are made
available for export using the show command.

EXAMPLE 8.2

use
use

n n n n 0

n n n n

Pendulum
StandardBlocks

= new Periodic
.xIn = new ADIn
.xIn.channel = 0

.thetaln

.thetaln.

I

.regul
.daout
.xIn.out

Il

.thetaln.

= new ADIn
channel = 1

new PendulumController
new DAOut

-> s.regul.xdirect

out -> s.regul.thdirect
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s.regul.v —> s.daout.in
s.tsamp = 0.005
b

s ! start

show s.regul.v

show s.regul.th

show s.regul.dthetaHat
s ! connect

Conclusions

In this section the implementation and design of a controller for the
inverted pendulum was presented. First the process model and the con-
troller design was shown. In order to get good estimates of the angular
velocities a nonlinear observer was proposed. Design and analysis for
this observer was presented together with some simulations. Finally
the implantation was presented with PAL and PCL code.

8.3 A Robot Controller

In this section PALSJO is used for controlling an industrial robot. The
robot swings up and stabilizes an inverted pendulum, similar to the
one described in the previous section. The robot holds the shaft of
the pendulum using a gripper that is attached to the fourth joint, see
Figure 8.14. Joint one is then used for swinging up and balancing the
pendulum. The ABB Irb-2000 industrial robot used in the experiments
is shown in Figure 8.13.

The Controller

The controller is the same as the one described in Section 8.2. In that
case the input signal to the process was the acceleration of the cart.
In the robot setup the input signal to the process is the acceleration of
the pivot point, i.e. the point where the pendulum is attached to the
robot. While the cart moves along a straight line, in the robot case the
pivot point moves along a circular path. This fact is not considered in
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Figure 8.13 The ABB Irb2000 robot used in the pendulum experiment.

Jo

the fourth joint.

ipper on

is held by the gri

Figure 8.14 The pendulum
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the implementation, but as long as the speed of the robot arm is low,
the influence from Corioli forces may be neglected. The output from
the control block is the desired acceleration for the pivot. This signal
may not be sent directly to the robot. Instead it is sent to the PAL
block RobotTrajectory, which converts the acceleration to reference
values for the low level controllers. The low level controllers execute
at a speed of several kHz.

Trajectory Out

Figure 8.15 The PAL blocks used for controlling the robot. The regul is de-
fined in previous section.

In Figure 8.15 the Periodic block used for controlling the robot
is shown. The actual control algorithm is located in the regul block.
For this application three new blocks are written. Two blocks AnalogIn
and AnalogOut are simple reading and writing values to the robot. The
third block RobotTrajectory reads the control signal from the regul
block, and calculates the corresponding reference values for the low
level controllers. How PALSJO is communicating with the other control
units is shown in Figure 8.16.

Summary

This example demonstrates how controller algorithms easily may be
reused. The block diagram paradigm is a suitable way for packing code
for reuse.
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High Level Control |
(VME)

ere! eref eref

Y \ Y

Low Level Control
(VME/DSP) |

The Robot

\

torque

Figure 8.16 The setup where PALSJO is used for controlling the Irb2000 robot.

8.4 A Hybrid Tank Controller

In this section the design and implementation of a hybrid controller
for a double tank system will be presented. In control practice it is
quite common to use several different controllers and to switch between
them with some type of logical device. One example is systems with
selectors which have been used for constraint control for a long time.
Systems with gain scheduling, see [Astrtim and Wittenmark, 1995], is
another example. Both selectors and gain scheduling are commonly
used for control of chemical processes, power stations and in flight
control. Other examples of systems with mode switching are used in
robotics. It is well known that hybrid systems are difficult to analyze.
Nevertheless they are used more and more. The reason for this is that
they give better performance than ordinary systems and that they can
solve problems that cannot be dealt with by conventional control.

In process control it is common practice to use PI control for steady
state regulation and to use manual control for large changes. In this
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case it seems very natural to try to combine the steady state regulation
with a minimum time controller for the set point changes. Such a
controller is designed and implemented in this section.

First the process and the process model are introduced. Then the
hybrid controller will be motivated, and the design for the sub-controllers
is presented

The Process

In this section the design of a hybrid controller consisting of two sim-
ple controllers, one PID controller and one time-optimal controller is
presented. It is shown that the use of this hybrid controller will lead to
better performance. Both good response to set-point changes and good
disturbance rejection are desired.

—

]
-

Pump

e'_l

Sa.

Figure 8.17 The double tank process

The process to be controlled, both in simulation and by the real
time system consists of two water tanks in series, see Figure 8.17. The
goal is to control the level of the lower tank and indirectly the level
of the upper tank. The two tank levels are both measurable. Choosing
the level of tank i as state x; the following state space description is
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derived

—051\/X—1+ﬂu

x=f(x,u) = 1/ — o/ )

(8.16)

where the inflow u is our control variable. The inflow can never be
below zero and the maximum flow is z = 27- 107% m3/s. Furthermore,
in our experimental setting the outflow areas are the same, giving
1 = &o.

The Controller

As mentioned above a supervisory switching scheme with two sub-
controllers will be used. The time-optimal controller is used when the
states are far away from the reference point. Coming closer the PID
controller will automatically be switched in to replace the time optimal
controller. At each different set point the controller is redesigned, keep-
ing the same structure but using reference point dependent parame-
ters. Figure 8.18 describes the algorithm with a Grafcet. The Grafcet
for the tank controller consists of four states. Initially the controller
is off. This is the Init state. Opt is the state where the time optimal
controller is active and PID is the state for the PID controller. The
Ref state is an intermediate state used for calculating new controller
parameters before switching to a new time optimal controller.

The sub-controller designs are based on a linearized version of
Equation (8.16):

£ = [—a 0 }x-l— m u (8.17)

a —a 0

In this linearized equation the parameter b has included the factor
27 - 107% and the new control variable u is in [0, 1]. The parameters
a and b are functions of ¢, f and the linearization level. It is later
shown how the neglected nonlinearities will affect the performance. To
be able to switch in the PID controller a fairly accurate knowledge of
the parameters is needed.
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—— NewRef

Ref —! NewControlIersJ

—— not NewRef

Opt OptController

—— NewRef ‘

—— OnTarget or Off

PID PIDController

—+— NewRef

—— Off

Figure 8.18 A Grafcet describing the control algorithm.

PID controller design
A standard PID controller on the form

1
— —_—
Gpip = K(1 + T +sTy)

is used. The design of the PID controller parameters K, Ty and T7 is
based on the linear second order transfer function,

G(s) = 2

(s+a)(s+a)
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derived from Equation (8.17). The desired closed loop characteristic
equation is

(s + aw)(s? + 2L ws + 0?).

The parameters «, ® and ¢ (1.0, 0.06 and 0.7) are chosen for a rea-
sonable behavior, both in case of set point changes and under load
disturbances. For some systems it is possible to get a smaller over-
shoot by set point weighting. Figure 8.20 shows the set point and load
disturbance responses for the PID controller. When implementing the
real-time version of the PID algorithm a filter is used on the derivative
part.

Time optimal controller design

The time optimal controller will bring the system as fast as possible
from one set point to another. The Pontryagin maximum principle is
used to prove that the time optimal control strategy for the System
(8.16) is of bang-bang nature. The time optimal control is the solution
to the following optimization problem

T
maXJ=/ —1-dt (8.18)
0
under the constraints:
#(0) = [af 281"
#(T) = [«F «F]"
u € [0,1]

The Hamiltonian, H(x,u, 1), for this problem is

H = —1+ A1(—a/x1 + bu) + Ae(ay/x1 — ay/x2),

with the adjoint equations, A = —%I—Z—,
A= [ 2oﬁ 2V ] 2. (8.19)
— 5
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To derive the control signal the complete solution to these equations
is not needed. It is sufficient to note that the solutions to the adjoint
equations are monotonous. This together with the switching function

o = llbu
results in the following possible optimal control sequences

(0,1), (1,0), (0), (1)

The switching times are determined by the new and the old set points.
In practice it is preferable to have a feedback loop instead of precalcu-
lated switching times. Hence an analytical solution for the switching
curves is needed. For the linear case it is possible to derive this solu-
tion:

R
1 axy

x2(x1) = E[(axl —bit)(1+ ln(a;;:—gg)) + biz]

where & takes values in {0, 1}.

The fact that the nonlinear system has the same optimal con-
trol structure as the linearized system makes it possible to simulate
the nonlinear switching curves and to compare them with the linear
switching curves. Note that the linear and the nonlinear switching
curves are quite close for our double tank model, see Figure 8.19. The
diagonal line is the set of equilibrium points, x¥ = xE. Figure 8.19
shows that the linear switching curves are always below the nonlinear
switching curves. This will cause the time optimal controller to switch
either too late or too soon.

It is not necessary to use or know the exact nonlinear switching
curves since the time optimal controller is only used to bring the system
close to the new set point. When sufficiently close the PID controller
will take over.

Stabilizing Switching Schemes

It is well known that switching between stabilizing controllers may
lead to an unstable closed loop system. It is therefore necessary to have
a switching scheme that guarantees stability. Consider the system

x = flx,tu;) (8.20)
u; = ci(x,t) (8.21)

132




8.4 A Hybrid Tank Controller

Level2
0.2

. | | Levell
0 0.05 0.1 0.15 0.2

Figure 8.19 Linear (full) and nonlinear (dashed) switching curves

where the c;(x,¢) represent different controllers. In a hybrid control
system different controllers are switched in for different regions of the
state space or in different operating modes. There exist some switching
schemes that guarantee stability. One of these is the min-switch strat-
egy described in [Malmborg et al.,, 1996]. Here, a number of stabilizing
controllers, c;, are designed for System (8.20). For each controller c; an
operating region Q; is defined and a Lyapunov function V; is derived.
At every moment the supervisor selects the controller with the small-
est value of its Lyapunov function. The controllers can be of different
types and they need not share the same state space.

DEFINITION 8.1 —MIN-SWITCHING STRATEGY

Let f;(x,t) be the right-hand side of Equation (8.20) when control law
c; is used. Use a control signal u* so that,

&= f(x,t,u*) = i a;fi(x,t) (8.22)
i=1
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where «; > 0 satisfies > o; = 1 and where «; = 0 if either x ¢ Q; or
if Vi(x, t) > minj [Vj (x, t)] ]

Notice that the ¢;’s are not unique. The following result is presented
in [Malmborg et al.,, 1996].

THEOREM 8.3—STABILITY OF HYBRID SYSTEMS

Let the system be given by Equation (8.20). Introduce W as
W = min(Vl, Vz, cee s Vn)

The closed loop system is stable with W as a non-smooth Lyapunov
function if the min-switch strategy is used. ]

Lyapunov function modifications

From a control designer’s point of view the design of a hybrid control
scheme using the min-switching strategy can be reduced to separate
designs of n different control laws and their corresponding Lyapunov
functions. To improve performance it is often convenient to change
the location of the switching surfaces. This can, to some degree, be
achieved by different transformations of the Liyapunov functions. One
example is transformations of the form

Vi =gi(V)) (8.23)

where g;(-) are monotonously increasing functions.

In some cases there can be very fast switching, chattering, between
two or more controllers having the same value of their respective Lya-
punov function. One way to avoid this is to add a constant A to the
Lyapunov functions that are switched out and subtract A from the
Lyapunov functions that are switched in. This works as a hysteresis
function.

Simulations

In this section some different switching methods are evaluated. In all
simulations a switching surface for the time optimal controller based
on the linearized equations is used.

All simulations have been done in the Omola/Omsim environment
[Andersson, 1994|, which supports the use of hybrid systems.
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Pure time optimal and pure PID control

This first simulation set, Figure 8.20, shows control of a linearized
system using either a time optimal controller or a PID controller. Note
that PID control gives a large overshoot. The time optimal controller
works fine until the level of the lower tanks reaches its new set point.
Then the control signal starts to chatter between its minimum and
maximum value.

Level2 Level2
0.2 1 = 02 -
0.15 F 0.15 1
I |
0.1 4 L 01
0.05 r 0.05
0 T T T O T T T
0 50 100 150 200 0 50 100 150 200
Control Control
14 - 14
0.8 - 0.8
061 - 0.6 1
0.4 - - 0.4
0.2 B 0.2 1
0 F 0
T T T T T T 1
0 50 100 150 200 0 50 100 150 200

Figui‘e 8.20 Pure PID (left) and pure time optimal control (right)

A natural, simple switching strategy

A natural switching strategy would be to pick the best parts from both
PID control and time optimal control. One way to accomplish this is
to use the time optimal controller when far away from the equilibrium
point and the PID controller when coming closer. As a measure of
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closeness the function V.. is used.

xR — X1 T xR — X1
Vc ose = ! 1 P 0, |: 1 j|
: {:xg — X2 ( }/) xg — X9
P6,y) = cos? 0 + yp8in?26 (1 — ;) sin 6 cos b
V=N (1—72)sinfcos® sin?@ + y3 cos? O

The switching strategy here is to start with the time optimal controller
and then switch to the PID controller when Vs, < p. With the ¥ and 8
parameters the size and shape of the catching region may be changed.
In this simulation switching back to the time optimal controller is
not allowed until there is a new reference value. See Figure 8.18 for
a graphical description of the algorithm. The simulation results, Fig-
ure 8.21, show how the best parts from the sub-controllers are used to
give very good performance.

Lyapunov based switching

In this third simulation set the min switching strategy that guarantees
stability for the linearized system is used. The two Lyapunov functions
are defined as

T
xF —x; xB — 29
\% = E_ P(8,y) | & —
PID = Xy — X2 V) | X9 — X2
xB — x3 xE — xs
Vro = time left to reach new set point

cos? 0 + y2sin?0 (1 —9,)sinfcosd 0O
PO,y) =71 | (1 —y2)sinfcos® sin?0+ ypcos?20 0
0 0 Y3

The state x5 is the integral state in the PID controller. x¥ is its steady
state value. As in the previous simulation set the parameters y and
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Level2 Levell
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Figure 8.21 Simulation of the natural, simple switching strategy. Catching
regions are shown in lower right sub-figure.

6 are used to shape the catching region. The new state x3 is preset
to its value at the new equilibrium point, i.e. x£, any time there is a
set point change. This state is updated after the first switch to PID
control. Using this method a similar two-dimensional catching region

as in the previous simulation set is constructed.

This supervisory scheme may lead to two types of chattering behav-
ior. One is due to the nonlinearities. The nonlinear switching curve lies
above the linear, see Figure 8.19. That causes the trajectory of the non-
linear system to cross the linear switching curve. One way to remove
this problem is to introduce a hysteresis function for going from mini-
mum to maximum control signal in the time optimal controller. There
can also be chattering between the PID and the time optimal controller
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Figure 8.22 Lyapunov based switching

if their Lyapunov functions have the same value. One solution to this
problem is to add and remove the constant A as discussed in the sec-
tion on Lyapunov functions modifications. The simulation results can
be seen in Figure 8.22.

Experiments

The theory and the simulations are verified by experiments. For sim-
plicity only the switching strategy in Sec. 8.4 is implemented. Fig-
ure 8.23 shows the results of that experiment with the double tanks.

The measurements from our lab process have a high noise level as
can be seen in Figure 8.23. A first order low-pass is used filter

1

Gf(s)=s+1
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Figure 8.23 Lab experiment

to eliminate some of it. To further reduce the impact of the noise a filter
is added to the derivative part of the PID controller in a standard way.

The parameters in the simulation model were chosen to match the
parameters of our lab process. It is thus possible to compare the exper-
imental results directly with the simulations. Comparing Figure 8.21
and Figure 8.23 shows the close correspondence between the simula-
tion and experimental results.

During experiments it was found that the difference between the
linear and the nonlinear switching curves were not so important. How-
ever, a good model of the static gains in the system is needed. If there
is a large deviation it cannot be guaranteed that the equilibrium points
are within the catching regions.

PAL Code

In this section the PAL code for the controller used in Figure 8.23 is
presented. The controller is written as a Grafcet with four states, see
Figure 8.18.

module regul;
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function In(r : input real) : real;external "In";

function sqrt(r : input real) : real;external "sqrt";

block Tank

140

y1,y2 : input real,

OnTarget := false, NewRef := false, Off := false : boolean;
h : sampling interval,;

a:=1.0,b6:=1.0,yref := 0.50 : real,

K :=5.0,Ti :=60.0,Tr :=60.0,Td := 10.0 : real;

gammal := 1.0, gamma?2 := 1.0, Vpid := 100.0 : real;

e :=0.0,yo0ld := 0.0,P := 0.0, :=0.0,D := 0.0 : real;
dl:=1.0,d2:=1.0,i11:=1.0,wl := 1.0 : real,

umin = 0.0,umax := 1.0 : real;

x1:=5.0,x2 :=5.0,xref := 5.0,,u := 0.0 : real,;

Ku :=0.000027,Kc := 5.0,region := 0.1 : parameter real;
omega := 0.04,zeta := 0.7,alpha := 1.0, N := 10.0 : parameter real;
¢ = 2.0,aa := 0.00000707,AA := 0.00273 : parameter real;

v := 0.0 : output real,

function Switch(z1 : input real;z3 : input real;ubar : input real : real;
begin .
result := 1.0/a » ((a *2z1 — b« ubar) (1.0 + In((a * 23 — b * ubar)/
(a xz1 — b« ubar))) + b + ubar);
end Switch;

function Sat(min : input real;max : input real;x : input real ) : real;
begin
if x < min then
result := min;
elsif x > max then
result := max;
else
result = x;
end if;
end Sat;

calculate

begin
x1:=(1.0—cxh)xxl4+c*hx*yl
x2:=(1.0—cxh)*xx24+c*h*y2;
xref = yref x Kc;

end calculate;




8.4 A Hybrid Tank Controller

update
begin
Vpid := gammal * ((x1 — xref) = (x1 — xref)+
gamma2 x (x2 — xref) x (x2 — xref));
yold = x2;
end update;

initial step Init;
activate OffController;
end Init;

step Ref;
activate NewControllers;
end Ref;

step Opt;
activate OptController;
end Opt;

step PID;
activate PIDController;
end PID;

transition from Init to Ref when NewRef;
transition from Ref to Opt when not NewRef;
transition from PID to Init when Off;

transition from Opt to PID when OnTarget or Off;
transition from PID to Ref when NewRef;
transition from Opt to Ref when NewRef;

action OffController;

begin
v := 0.0;
Vpid := 100.0;
Off := false;

end OffController;

action NewControllers;

begin
a :=aa/AA xsqrt(9.81/2.0 /xref);
b:= Ku/AA x Kc;

K = (omega * omega % (1.0 + 2.0 x alpha * zeta) —a * a)/b/a;

Ti:=bx K xa/alpha/omega/omega/omega;
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Td:=1.0/a/b/K x (omega * (alpha + 2.0 x zeta) — 2.0 x a);
dl:=Td/(Td + N # h);
d2:= K x N xd1,
il:= hx K/Ti,
wl:=h/Tr,
NewRef := false;
end NewController;

action OptController;
begin
if Vpid < region then
OnTarget := true;
e .= xref —x2;
P =K xe¢;
D :=d1% D+ d2« (yold — x2);
I:=aa/AA +sqrt(2.0+9.81x xref « Kc)/b;
end if;
u:=0.0;
if x1 > xref and x2 < Switch(x1, xref,umin) then
u = umax;
end if;
if x1 < xref and x2 < Switch(x1, xref,umax) then
u = umax,
end if;
vi=uy
end OptController;

action PIDController;
usat : real,

begin
OnTarget := false;
e .= xref —x2;

P =K xe¢;

D :=d1% D + d2 = (yold — x2);
u=P+1+ D,

usat := Sat(umin,umax,u);
V= u

I'=1+ilxe+wlx* (usat —u);
end PIDController;

procedure Ref05();
begin
yref := 0.05;
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NewRef := true;
end Refl0;
procedure Refl5();
begin

yref :=0.11;

NewRef := true;
end Refll;

procedure Stop();
begin
Off := true;
end Stop;
end Tank;

end regul.

Summary

In this case study a hybrid controller for a double tank system has
been designed and implemented. Both simulations and real experi-
ments were presented. Finally the PAL code used in the experiments
were shown.

8.5 An Adaptive Controller

Introduction

In this section the implementation of an adaptive controller for a servo
motor is described. First the process model and the control law are
introduced. The PAL code and the PCL script are also presented.

Preliminaries

The servo motor system is described by the transfer function

Ky

Go(s) = s+ sT)

(8.24)

with Ky, = 93.5s! and T' = 8.3s. The angle of the servo wheel is the
output signal and the voltage to the motor is the input signal.
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Figure 8.24 The servo motor.

The sampled system is described by the pulse transfer function

H(g) = o Zj:‘i;;lfaz (8.25)
The closed loop specification in continuous time is given by
(s2+2wls+0?)(s—a)=0 (8.26)
which in discrete time corresponds to
(@ + am1q + am2)(q +ao0l) = ApA, =0 (8.27)

The desired control law is given through solving the Diophantine equa-
tion below

AR+ BS = A, A, (8.28)
In the adaptive case the process model is estimated on-line, and new R,
S, and T polynomials are calculated in real-time. The block diagram

for this adaptive controller is shown in Figure 8.25.
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RefGen
Analogin

AnalogOut

Designer Analogin

Estimator

Figure 8.25 The block diagram for the adaptive control for the servo motor.

Running Palsjo

The adaptive controller has two feedback loops, one fast loop feeding
back the value of the process to the controller, and one slow loop which
estimates the process model and calculates new controller parameters.
When implementing this, it seems natural to use two processes, i.e. two
Periodic blocks. One process handles the fast loop and the other han-
dles the slow loop. The PCL script below shows how such a system is
created. The PAL-blocks needed are described later. For a discussion on
the stability of sampled adaptive controllers, where the design process
is excuting at a lower frequency than the feedback loop, see [Shimkim
and Feuer, 1988].

use StandardBlocks
use Adaptive

{ s = new Periodic
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s2 = new Periodic
s.tsamp = 0.020;
s2.tsamp = 0.20;

s.1b = new ADIn
s.1ib.channel = 2

.rg = new RefGen

.rst = new RST

.ob = new DAQut
.ob.channel = 1

.ctrl = new ADIn
.ctrl.channel = 3
s.est = new Estimator
s2.dsg = new Designer
s.uFilter = new Filter
s.yFilter = new Filter

n n n n n 0

size degh ; deghA = 2

s.rst.degh = degh; s.est.degh = degh; s2.dsg.degh = degh
size degB ; degB = 1
s.rst.degB = degB; s.est.degB = degB; s2.dsg.degB = degB

size deghAm; deghAm = 2;

s2.dsg.deghm = deghAm; s.rst.degAm = deghAm
size degho; degho = 1;
s2.dsg.degho = degho; s.rst.degho = degho

.ib.out -> s.rst.y
.rg.out -> s.rst.uc
.ib.out -> s.yFilter.u
.yFilter.y -> s.est.yf
.ctrl.out -> s.uFilter.u
.uFilter.y -> s.est.uf
.est.A -> s2.dsg.A
.est.B -> s2.dsg.B
.rst.u —-> s.ob.in

n n n nu n N n n n

s2.dsg.R ->s.rst.R
s2.dsg.S ->s.rst.S
s2.dsg.T ->s.rst.T

When the system is created the next step is to assign values to all
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parameters. This is done with the following PCL-script:

{
s.rg.period = 8; s.rg.amplitud = 0.5
s2.dsg.R2 = {1, -0.6741}
s2.dsg.82 = {9.317, -8.7807}
s2.dsg.T2 = {2.9588, -2.4225}
s.est.lambda = 0.995; s.est.PO = 100
s2.dsg.Am = {1, -1.8321, 0.8454};
s2.dsg.ho = {1, -0.8187}

.rst.R = {1, -0.6741}

.rst.S = {9.317, -8.7807}

.rst.T = {2.9588, -2.4225}

.est ! Reset

I

n n n n

b

s ! start; s2 ! start

Now the system is configured and started. To view data signals
must be exported, and this is done using the show command. The plot
from a test run with the adaptive controller is shown in Figure 8.26.

show s.rg.out
show s.ib.out
show s.rst.u
show s.est.A
show s.est.B

s | connect

The PAL code

In this section the PAL module Adaptive is discussed and each block
will be presented. First the module head is shown. A number of C-
functions are imported so that they can be used in the PAL.

module Adaptive;

procedure RowAsRealArray(
M : input matrix [0..m : integer, 0..n : integer| of real;
row : input integer;
res : output array [0..n] of real

);
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Figure 8.26 Running the adaptive controller on the servo. These are plots
presented in real-time by a Matlab script.

external "RowAsRealArray";

procedure RealArrayAsRow(

A : input array [0..n] of real;

row : input integer;

res : output matrix [0..m : integer, 0..n : integer| of real
)i

external "RealArrayAsRow";

procedure ShiftBackward(
p : output polynomial [degP : integer| of real,;
shift : real

)i

external "ShiftBackward",

function MDPPNZCDesign(
A : polynomial [degA : integer] of real,
B : polynomial [degB : integer| of real;
Am : polynomial [degAm : integer| of real,

148



8.5 An Adaptive Controller

Ao : polynomial [degAo : integer]| of real;
R : output polynomial [degR : integer]| of real;
S : output polynomial [degS : integer]| of real;
T : output polynomial [degT : integer] of real
) : boolean,;
external "MDPPNZCDesign";

RST-Controller

The RST controller has two input signals, the process value y and
the set-point u.. The degree of the polynomials in the controller is
parameterized using dimension parameters.

block RST

degAm,degAo,degA,degB : dimension,;

u : output real;

uc,y : input real;

R : parameter polynomial [degAm + degAo — degA] of real,;
S : parameter polynomial [degA — 1] of real,

T : parameter polynomial [degAo] of real;

U, Uc,Y : polynomial [degAm + degAo —degA] of real;
preU := 0.0 : real,

m =degAm + degAo—degA;

n=degA—1;

0o =degAo;

delayT = m —n;

delayS = m — o;

forward
begin
ShiftBackward(Uc, uc);
ShiftBackward(Y,y);
u := —8[0] » Y[delayS] + T[0] * Uc[delayT| + preU;
ShiftBackward(U, u);
end forward,;

backward
i : integer;
begin
preU = 0.0;
fori:=1tom do
preU :=preU — RJi] « Ui — 1];
end for;
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for i :=1ton do

preU := preU — S[i] * Y[i + delayS — 1];
end for;
for i :=1to o do

preU = preU + Tli] * Ucli + delayT — 1];
end for;

end backward,;

end RST,

The Estimator

The Estimator has two input signals, the filtered process value yr and
the filtered control signal u;. The output from the Estimator is the
pulse transfer function for the process, i.e. the A and the B polynomial.

block Estimator

150

degA,degB : dimension;

uf,yf : input real;

phi : array [0..degA + degB + 1] of real,
theta : array [0..degA + degB + 1] of real,;
D : array [0..degA + deg B + 1] of real;

L : matrix [0.deg A+ degB + 1, 0..degA + deg B + 1] of real;
A : output polynomial [degA] of real,;
B : output polynomial [degB| of real,
lambda, PO : parameter real,

calculate

i : integer;

begin

for i := degA downto 2 do
phili] := phili —1];

end for;
phi[1] := —phi[0];
phi[0] := yf;

for i :== degA + degB + 1 downto degA + 2 do
phi[i] := phi[i — 1];

end for;

phildegA + 1] := uf;

LDFilter(theta, D, L,phi,lambda);

for i := 0 to degA do
Ali] := thetali];

end for;
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A[0] := 1.0
for i := 0 to degB do
B[i] := theta|degA + 1+ i];
end for;
end calculate;

procedure DyadicReduction(
a : output array [0..n : integer]| of real;
b : output array [0..n]| of real;
alpha : output real;
beta : output real,
10 : input integer;
il : input integer;
i2 : input integer
)i
i : integer;
wl,w2,bl, gamma : real,
begin
bl := b[i0];
wl := alpha;
w2 := beta % b1,
alpha := alpha + w2 % b1,
beta := beta xwl/alpha;
gamma := w2/alpha;
for i := i1 to i2 do
bli] .= b[i] — bl xali];
ali] := ali] + gamma = b[i];
end for;
end DyadicReduction;

procedure LDFilter(

An Adaptive Controller

theta : output array [0..n : integer| of real;

d : output array [0..n] of real,
1 : output matrix [0..n, 0..n] of real;
phi : array [0..n] of real;
lambda : input real
);

i,j : integer;

e,w : real;

tmpl,tmp2 : array [0..degA + degB + 1] of real,;
begin

d|0] := lambda;
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e := phi[0];
for i:=1ton do
e := e — theta[i] * phi[i];
w := phili];
for j:=i+1tondo
w = w + phi[j] = I[i,j];

end for;

110,1] := 0.0;

1[z,0] := w;
end for;

for i := n downto 1 do
RowAsRealArray(l,0,tmpl);
RowAsReal Array(l,i,tmp2);
DyadicReduction(tmpl,tmp2,d[0],d[i],0,i,n);
RealArrayAsRow(tmpl,0,1);
RealArrayAsRow(tmp2,i,1);

end for;

fori:=1ton do
thetali] := thetali] + 1[0, i] * e;
dli] := d[i]/lambda;

end for;

end LDFilter;

procedure Reset();
i,j : integer;

begin
for i ;=0 to degA +degB + 1 do
Dli] := PO;
for j ;=0 to degA+degB +1do
Lli,j] := 0.0;
end for;
Lli, 1] := 1.0;
theta[i] := 0.0;
end for;
end Reset;

end Estimator;

The Designer

The Designer receives the transfer function polynomials A and B from
the Estimator. In order to calculate a new RST-controller it calls the
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MDPPNZC -function in the polynomial library, see Appendix B. The
outputs from the Designer block are connected to the R, S, and T
polynomials of the RST block. It is important to notice that the output
signals are only updated when new controller parameters are calcu-
lated, i.e. not at every cycle. As soon as the output signals are assigned
new values the system will propagate their values to the parameters
of the RST block.

block Designer

degAm,degAo,degA,degB : dimension,;

R : output polynomial [degAm + degAo — degA] of real;
_S : output polynomial [degA — 1] of real,

T : output polynomial [degAo] of real;

mode := 0 : integer;

A : input polynomial [degA] of real;

B : input polynomial [degB] of real;

tmpR : polynomial [degAm + degAo —degA] of real;
tmpS : polynomial [degA — 1] of real,

tmpT : polynomial [degAo] of real;

Am : parameter polynomial [degAm] of real;

Ao : parameter polynomial [degAo] of real,

R2 : parameter polynomial [degAm + degAo — degA] of real,
S2 : parameter polynomial [degA — 1] of real;

T2 : parameter polynomial [degAo] of real;

calculate
i : integer;
begin
if mode = 0 then
R .= R2;
S = 82;
T :.=T2;
mode = 1;
elsif mode = 2 then
if MDPPNZC Design(A, B, Am, Ao, tmpR,tmpS, tmpT) then

R :=tmpR;
S :=tmpS,
T :=tmpT,
end if;
end if;

end calculate;
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procedure on();
begin

mode = 2;
end on;

procedure off();
begin

mode := 0;
end off;

end Designer;

8.6 A Variable Structure Controller

In this section the implementation of a fault tolerant controller is de-
scribed. The goal is to create a controller structure that allows new
algorithms to replace old algorithms in a safe way. The idea is to have
a set of controllers which vary in complexity and performance. The
basic assumption is that the more complex the controller, the better
its performance. At the same time the more complex the controller be-
comes, the more likely it is to contain design fault, which will cause
it to fail. The set of controllers vary from simple, very reliable algo-
rithms to more complex algorithms. All controllers execute in parallel
and then a special decision block is used to decide which controller to
use. This architecture is proposed in the Simplex project [Sha et al,
1995], which aims at creating on-line evolvable control systems. In this
section it is shown how the Simplex ideas could be implemented in the
PALSJO environment. This example has not been implemented in PAL-
3JO since the new PALSJO features presented below are not available
in the current version.

The Simplex Architecture

The Simplex architecture has been developed to support safe and reli-
able online upgrades of hardware and software components in spite of
errors in the new modules. Three types of faults are addressed by the
Simplex architecture, see Figure 8.28. The problem with faults due to
resource sharing, where the failure of one process may cause the failure
of other processes, is dealt with using protected memory. Each process
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Complex '\,
Controller /.

Decision
Module /

10 Module
Figure 8.27 The structure of the fault tolerant controller.

has its own address space and is thus less likely to cause other pro-
cesses to fail due to memory management problems. A semantic fault
may be an incorrect algorithm or a software bug. Semantic fault are
approached by having several similar software modules to perform a
task. A special module is then used for selecting which calculations to
use. This concept is called analytic redundancy. The timing problem
is solved by using generalized rate monotonic scheduling. The Sim-
plex architecture consists of three major parts, see Figure 8.27. The
10-module handles all communication with the environment. The De-
cision module decides which controller to use. The cyclic algorithm for
Simplex is the following:

e Start of sampling interval.

e 10-Module

— Write control signal to the process
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Figure 8.28 In Simplex three types of faults are addressed: Timing faults,
resource sharing faults and semantic faults. Timing faults are solved using the
Generalized Rate Monotonic Theory (GRMT), the resource sharing is dealt with
using memory address protection, and semantic faults are approached with an-
alytic redundancy.

—~ Read the process output
~ Broadcast the process output to all controllers

e Controller Wait for process value, calculate control signal, and
send it to the Decision-module.

¢ Decision-module Wait for process value to be broadcasted and
then evaluate the state of the system, i.e. determine if the process
is well controlled. Next, the Decision-module will wait for the
controllers to finish their calculations. Controllers which have
not delivered their control signal before the deadline are ignored.
Finally the Decision-module picks the controller signal to use and
sends it the IO-module.

Palsj6
In this case study the concept with analytic redundancy is imple-

mented using PALSJO. Other Simplex features such as protected mem-
ory are not regarded. In order to mimic the Simplex architecture in
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Figure 8.29 The structure of the PALSJO version of the Simplex architecture.

PALSJO some new features are added. The controller blocks must wait
for the process value to be broadcasted from the 10-module, before
they may start to calculate control signals. In order to synchronize
processes like this, a new language construct is needed, and to solve
this a new data type called event is introduced. The event data type
works similar to a condition variable [Burns and Wellings, 1997]. Two
operations are available for the event type: wait and cause. The 10-
module executes a cause statement when the new process value is
available, and the controllers which then execute wait get notified.

The PAL Code

The outline for PAL code which implements the basic ideas of the
Simplex architecture is presented below. The structure for the PALSIO
version is shown in Figure 8.29. The I0-Block and the Controller use
the event variable to synchronize, so that when a new process value y
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Run-time behavior
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Figure 8.30 The cyclic behavior of the fault tolerant controller.

is available, the I0-Block notifies the controllers by executing a cause
statement. The controllers are executed by Sporadic blocks, while the
I0-Block and the Decision block are executed by a Periodic block.
The controllers will however also execute periodically since they are

synchronized with the I0-Block, via the event variable ev.

Below are the PAL code for implementing the controller structure.
In the PCL script in the next section three different controllers are
created. They all have the same structure as the Controller block.
Note, that the PAL code is not complete, some functions are used but

not defined.

module Simplex;

function ReadFromProcess() : real;
external "ReadFromProcess";

procedure WriteToProcess(
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value : real
);

external "WriteToProcess";
block I0Block

u : input real,
y : output real;
ev : output event;

calculate

begin
WriteToProcess(u);
y := Read FromProcess();
cause(ev);

end calculate;

end IOBlock;

block Decision

: dimension,;

: input real;

: array [1..n] of input real,

: output real;
mode : integer;

N

calculate
begin

u := ChooseController(v, mode);
end calculate;

end Decision;

block Controller

y : input real,
u : output real;
ev : input event;

calculate

wait(ev);

u := ControlLaw(...);
begin
end calculate;

end Controller;
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end Simplex.

The PCL Script

The PCL script that will create the system shown in Figure 8.29 is pre-
sented below. In the Simplex architecture the Decision-module waits
for the controllers to deliver a control signal, and timeouts if not all
the controllers are finished before the deadline. Timeouts are not pos-
sible to implement in PALSJO. Instead this is solved by scheduling the
10-Block and the Decision so that they execute at the same rate but
with an offset that corresponds to the deadline. The execution order
is shown in Figure 8.30. The I0-Block writes the control signal to the
process, reads the process output, and sends it to the controller blocks.
The controller blocks, which are waiting at the wait statement, starts
to execute when a new process value is available. When 30 millisec-
onds have passed since the beginning of the sampling interval, the
Decision block is started. It decides which control signal to use, based
on the system states and the values of the control signals delivered by
the controllers.

use Simplex

{
dim n
n=3
main = Periodic
main.io = new I0Block
main.decision = new Decision
ctrll = new Sporadic
ctrli.controller = new Controllerl
ctrl2 = new Sporadic
ctrl2.controller = new Controller2
ctrl3 = new Sporadic
ctrl3.controller = new Controller3

main.decision.n = n

main.io.y -> main.decision.y

main.io.y -> ctrll.controller.y
main.io.t -> ctrll.controller.t
ctrll.controller.u —> main.decision.ul1]
main.io.y -> ctrl2.controller.y
main.io.t -> ctrl2.controller.t
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ctrl?2.controller.u -> main.decision.ul2]
main.io.y -> ctrl3.controller.y
main.io.t -> ctrl3.controller.t
ctrl3.controller.u —> main.decision.ul[3]

main.io.slave = false
main.io.tsamp = 0.05
main.io.offset = 0O
main.decision.slave = false
main.decision.tsamp = 0.05
main.decision.offset = 0.03

main ! start
ctrll ! start
ctrl2 ! start
ctrl3d ! start

Using the PCL script above the system is now configured so that
three controllers are running in parallel. Assume that a new controller
should be added to the system. This is done with the following PCL
commands:

{
n=4
ctrd = new Sporadic
ctrld.controller = new Controller4d
main.io.y -> ctrl4.controller.y
main.io.t -> ctrld.controller.t
ctrld.controller.u -> main.decision.ul4
ctrld ! start

Summary

In this section it has been shown how the Simplex architecture for
fault tolerant controllers can be implemented in the PALSIJO environ-
ment. Some extra features that are not available in the current version
of PALSJO have been introduced. This example has thus not been im-
plemented.
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Conclusions and Future
Work

The PALSJO environment for development of embedded control sys-
tems has been presented in this thesis. The environment consists of
the PALSJO run-time system and the PAL compiler. Control algorithms
are coded in PAL language, which was described in Chapter 4. A spe-
cial language, PCL, is used for configuring the run-time system. This
was described in Chapter 5. Implementation issues were discussed in
Chapter 6 and 7. Finally, some case studies were presented in Chap-
ter 8.

9.1 Conclusions

A number of design goals were presented in Chapter 3. In the imple-
mentation of PALSJO they were approached as follows:

e Rapid prototyping, is achieved through the controller description
language PAL, which gives modular code that can be reused.

e The system is expandable in the sense that new data types and
new block types may easily be added. This is achieved through
the use of register functions and factory patterns as discussed in
Chapter 7.

¢ The system configuration is done on-line with using the PCL con-
figuration language. Changes to an executing configuration is al-
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lowed without stopping the system.

e The use of the Calculate-Update pattern and Parameter Swap
pattern contributes to make the execution efficient.

Related Tools

A mentioned in Chapter 1 the design of PALSJO has been inspired and
influenced by a number of other similar tools. An attempt to express
the relations to these tools is shown in Figure 9.1.

System descriptions in PALSJO are block oriented, similar to how
systems are described in the simulation environments Simulink and
SystemBuild. Complex controllers are formed by combining a number
of basic building. In Simulink and SystemBuild real-time code may be
generated from these system descriptions, using Real-time Workshop
or Autocode, respectively. SystemBuild allows for the user to define new
blocks for simulation and code generation, while this cannot be done
in Simulink. Both SystemBuild and Simulink support state machine
models.

Two previous research projects at the Department that have influ-
enced this work are LICS [Elmqgvist, 1985] and Sim2DDC [Dahl, 1990].
LICS, Language for Implementation of Control Systems, is a controller
description language, and was the starting point for the commercial
SattLine programming language. Many of the features found in LICS
and SattLine, such as double sweep execution, are also found in PAL.
Sim2DDC uses the Simnon simulation language [Elmqvist et al., 1990]
for code generation, and thus allows the same code to be used for simu-
lation and implementation. GrafEdit is graphical editor that generates
code that is compatible with Sim2DDC.

The ControlShell [Rea, 1995] is a C++-class library with tools for
adding classes and executing algorithms. ControllShell is on-line con-
figurable and real-time processes are organized similar to PALSJO, with
scheduler blocks and algorithmic blocks.

The syntax and the semantics for Grafcet in PAL and PALSJO are
strongly influenced by Sequential Function Charts in the IEC-1131-
3 standard [Lewis, 1995|. In IEC-1131-3 it is also possible combine
Grafcet with periodic control algorithms expressed in a function block
language.

Finally, ideas from the Simplex [Sha et al, 1995]cite project on
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fault tolerant controllers have been useful in the design of support for
variable structure controllers.

Current Status

The PALSJO system has been used and tested at the Department during
1996 and 1997 in research and teaching, and has proven to be useful
for rapid prototyping and experimentation with control systems. The
system has also been used for testing real-time garbage collection al-
gorithms at the Department of Computer Science at Lund Institute of
Technology.

PALSJO is currently available for Motorola 68000 VME and Windows
NT. PALSJO is implemented on top of the STORK real-time kernel [An-
dersson and Blomdell, 1991]. This is a public domain real-time kernel
which is available for Windows NT, Motorola 68000, Motorola Power
PC and Sun Solaris 2.x.

Matlab X-M?th
f

Stateflow — Simulink SystemBuild
| LICS

RTW Autocode _ Controller
descriptions
Block diagrams
Block diagrams Code generation
Code generation Calculate-Update S a ttL i ne

C++ library

ContrOIShe" On-line Configuration - PaOIsié

SFC Fault Historical
tolerant
controller

1131-3
Simplex GrafEdit — Sim2DDC

t

Simnon

Figure 9.1 The relation between PALSIO and some other tools for creating
embedded control systems.

164




9.2 Future Work

9.2 Future Work

In this section some possible future directions for the PALSJO project
are discussed.Extensions to both the PALSJO environment and to PAL
care mentioned.

User Interface

A graphical user interface is an obvious possible extension. Today the
user has a text interface for typing PCL commands, MATLAB for plot-
ting data. An integrated interface for data display and system config-
uration is clearly needed.

Simulation

An interesting ongoing project is the integration of the PALSJO run-
time system with the SIMART simulation environment [M’Saad et al,
1997]. SIMART is a simulation environment for discrete systems. Cur-
rently, new algorithms that are added to the system must be imple-
mented in C. An interface has been implemented so that PAL blocks
may be executed in SIMART.

This has been done by stripping all real-time code from PALSJO,
and only keeping the block administration functionality. The system
is the interfaced to SIMART. PAL blocks may thus be used both for
simulation and implementation. Figure 9.2 shows the interface of the
SIMART simulation environment.

MATLAB and Modelica [Elmquist and Mattsson, 1997] are other in-
teresting simulation environments. Clearly, the possibility to generate
PAL code from Modelica or Matlab-files would be valuable. Generating
Modelica or Matlab code from PAL files is another possibility.

9.3 Extending PAL

Several new data types and operators would be useful to further sup-
port the programmer when implementing control algorithms. A more
compact notation can be obtained by using more powerful data types.
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Figure 9.2 The graphical user interface of the SIMART simulation tool. It is
possible to execute PAL blocks in SIMART.

Data types and operators

Event

A new data type called event was suggested in Section 8.6. Event is a
condition variable, see [Burns and Wellings, 1997|, intended for syn-
chronizing user defined PALSJO processes. Two operations wait and
cause are required to deal with events.

Delay Operator

When implementing digital controllers it is necessary to have access
to previous values of certain variables. This is usually solved by intro-
ducing state variables. A more convenient way of solving this could be
to introduce a backward shift operator. Let x be a state variable of a
PAL block, and assume that x is updated every sampling interval. To
get information of the previous value of x, n steps back in time, the
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following expression is suggested
x(n) = x(t — n * tsamp) (9.1)

The time horizon for a variable should be defined when the variable is
declared. A ring buffer would be suitable for implementation.

Backward Polynomials

In PAL a polynomial is represented as P = aoq” + a1g" 1+ +ay,, le.
a forward shift polynomial. Some algorithms are more conveniently
expressed using backward shift polynomials, P = ao + agt+ -+
a,q~". The introduction of backward shift polynomials in PAL would
give the programmer freedom to chose the representation.

Filters

A filter can be described as a pair of polynomials: a denominator and a
numerator. A filter operates on an input signal and generates an output
signal. The suggested filter data type consists of two polynomials as
shown below

B boqn + blqn—l + te + bm
F = — = s m
(@) A aq"+a1gv i+ +ay <7

Possible operations on a filter data type are

y=Fxu
F3=F1>I<F2

where Fy, Fy and F5 are filters and u is a real.

Block Handles

To create autonomous systems there must be a way for one block to
manipulate other blocks. This could be done in PAL by introducing
block handles. A block handle is simply a reference to a block. A set
of operations for block handles must also be defined. These operation
would include allocation, deallocation, etc.
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Packaging PAL code

In PAL, several block types are grouped together in modules. It is,
however, not possible to package functions and procedures together
in the same manner. It would be important to introduce functional-
ity for handling function and procedure libraries. This includes PAL
constructs for importing and exporting functions and procedures.

Inheritance

Inheritance could be a key ingredient to support code reuse and rapid
prototyping. The basic idea of simple algorithms being extended through
inheritance is very appealing, but introducing inheritance in PAL is
not straightforward. In ordinary object-oriented languages such as
Smalltalk and Simula, sub-classes are allowed to be extended and,
thus, refine the super class by introducing new attributes and adding
new methods or overloading old ones.

In PAL, classes correspond to block types, attributes to block vari-
ables, and methods to block algorithm descriptions.

Introducing the normal inheritance type into PAL could easily cre-
ate problems, since the block algorithm is divided into at least two func-
tions, and a Grafcet. The question is, should it be possible to change
the calculate function without changing the update function? If the
answer i8 yes, it would easily lead to inconsistent block algorithms, and
if the answer is no, there would not be much of an inheritance. To deal
with Grafcets is another problem. Assume that the base class contains
a Grafcet, and a new Grafcet is defined in the sub-class. Should the
Grafcet in the sub-class hide the Grafcet in the super class, or should
the sub-class contain two Grafcets?

An inheritance model that is better suited for PAL is one where
the super class simply defines a set of states and and an interface.
The interface consists of input signal, output signal, and parameters.
All sub-classes will share the same interface defined by the super class.
The sub-classes will not inherit any functionality expressed in calcu-
late, update, or by Grafcets.

Variable Structure Controllers

A variable structure controller consists of several sub-controller blocks,
which are created and used when needed. When a running controller is
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Super |
Block |

Block 1 l ‘ Block2 | | Block3 '

Figure 9.3 The classes Block 1, 2, and 3 are inherited from the super class
Super Block.

replaced by a new algorithm, there is the problem of initiating the new
controller. The information about the process states that are available
in the running controller could be used to initialize the new controller.
One way of handling this is to have an inheritance model where the
base class constitutes an interface and a set of states. Assume that the
inheritance structure is the one shown in Figure 9.3, and that Block 1
is being replaced by Block 2. Furthermore let the Super Block define
an interface and a set of states. These states are used for transferring
information between instances of the sub classes. Each sub class has a
function F; which calculates the internal states based on the common
states defined in the super class. In a similar fashion each sub class
has a function G; which maps the internal states on the super class
states. The following calculation would then initiate the new controller:

superblock.states = Ga(blockl.states)
block2.states = Fy(superblock.states)

Conditional Execution

Hybrid controllers are receiving a lot of attention at the moment. A
hybrid controller consists of a set of sub controllers, of which only one
is active. A set of switching rules is used to decide which controller
that should be active. The switching rules could be expressed using
automata, if the hybrid controller was coded as one PAL block. If each
sub controller is coded as PAL blocks, there must be mechanisms in
PAL for starting and stopping blocks. The switching rules could be
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implemented as a separate block or be taken care of by the run-time
system.

Assume that the inheritance model used allows the base class to
define the block interface. Classes inherited from this super class will
then have exactly the same interface. If this is the case, a set of blocks
that have the same super class could be treated as one logical block
by other blocks. The execution of a setup where four interfaces are
defined is shown in Figure 9.4.

Inferface A Inferface B Interface C Interface D

Figure 9.4 This figure demonstrates how the concept of conditional execution
could work in PALSJO. Four interfaces are connected together. Each interface is
implemented by a set of blocks. Which block is used depends on the working
conditions. The arrows mark the data flow.

Contracts

It may be useful to add information about what a block can accomplish.
To specify under which circumstances the algorithm will perform well.
Each block could contain a set of rules, or preconditions, that must
be fulfilled in order for the block to execute. Such a set of rules could
be viewed as a contract between the run-time system and the block.
Given a set of sub controllers the run-time system then selects the
active controller based on the contracts. The idea with contracts is
discussed in [Helm et al, 1990]. In Eiffel [Meyer, 1992], there is a
similar mechanism with invariants that must me fulfilled for a method
to execute. For a control algorithm, contracts could look something like
this:
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Algorithm A Algorithm B
. : signals:
signals: u : output real,;
u : output real; v+ input real:
: input real; - 1P ’
7>y - Ihpd ’ yold : state real;
k : parameter real;
contract: contract:
Periodic with % : period, Sp<er805d. ic with d : delay;
h <0.5; algorithm:
0<r<10and 0 <y < 10; wi= ko (r—y);
algorithm: e V)
= kx (r —y); exception:
“ ’ =k« (r — yold);

The first sections of the algorithms above define the algorithm in-
terfaces. The next section defines the conditions that must be fulfilled
for the algorithm to execute correctly. In the aperiodic algorithm to
the right there is also an exception definition which handles the case
where the invariant is not true. The contract specifies under which
conditions the algorithms will produce a valid result.

Consider the example with the inverted pendulum in Section 8.2.
The controller consists of three sub-controllers. The sub-controller that
is used is determined by the working condition, here the angle 6 of the
pendulum. The switching rules for the inverted pendulum controller
could easily be expressed as contracts

Evaluation Functions

Another approach for support of conditional execution is to attach an
evaluation function to each algorithm. This evaluation function is de-
fined by the user and gives information about how well suited the
algorithm is for execution at the current working condition.

Extended Automata Primitives

PAL has primitives for expressing automata in order to support se-
quential algorithms. The current version of PAL supports automata
expressed as Grafcets. There are several disadvantages with this no-
tation, and a more expressive automata description is needed. One
possible way is to use the type of automata that is used in the hy-
brid systems community, see [Alur et al, 1993]. An example of such
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an automata is shown in Figure 9.5. Another possibility would be to
implement Statecharts [Harel, 1987] or Grafchart [Arzén, 1994|, which
is an object oriented extension of Grafcet.

loc: s1 do <Actionla>;

when <T1> do <Actionlb> goto S2;
loc: 82 do <ActionZ2a>;

when <T2> do <Action2b> goto S1;

when <T3> do <Action2c¢> goto S3;
loc: 83 do <Action3a>;

when <T5> do <Action3b> goto S4;
loc: s4 do <Action4da>;

when <T4> do <Action4b> goto S3;

when <T6> do <Actiondc> goto S1;

Figure 9.5 The automata consists of a set locations with guarded transition.
There may be actions assisted with both locations and transitions.
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The Standard Block Library

The StandardBlocks module contains blocks for interfacing the envi-
ronment as well as some standard controllers.

A.1 StandardBlocks.pal

module StandardBlocks;

function AnalogIn(channel : integer) : real;
external "Double_ADIn";

procedure AnalogOut(channel : integer; value : real);
external "Double_DAOut";

block ADIn

out := 0.0 : output real,
channel := 0 : parameter integer;

calculate
begin
out := AnalogIn(channel);
out := AnalogIn(channel),
end calculate;

end ADIn;
block DAOut

in : input real;
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channel := 0 : parameter integer;

calculate
begin
AnalogOut(channel,in);

end calculate;

end DAOut;
block RefGen

out := 0.0 : output real;

sign := 1.0 : real;

time := 0.0 : real,

type := 0 : parameter integer;

mean = 0.0,amplitud := 0.5, period := 5.0 : parameter real;
k:=1.0: real;

h : sampling interval,

calculate
begin
time := time + h;
if type = 0 then
if time >= period /2.0 then
time := time — period/2.0;

sign := —sign,
end if;
out := amplitud = sign + mean;

else
if time >= period /2.0 then
time := time — period/2.0;
sign = —sign,;
out := amplitud = sign + mean,;
k .= —sign « 4.0 x amplitud /period,
else
out := out + k *x h;
end if;
end if;

end calculate;

end RefGen;
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block PI

r,y,u . input real,

v := 0.0 : output real;

I:=0.0,e:=0.0: real

K :=0.5,Ti := 10000.0, Tr := 10000.0 : parameter real,
h : sampling interval,

bi = K = h/Ti,

br =h/Tr;

calculate

begin
e.=r—y;
v:i=K=xe+1;

end calculate;

update

begin
I.=I+bixe+br«(u—v);

end update;

end PI;
block SimplePI

vel, pos : input real,

u := 0.0 : output real;

I:=0.0,e:=0.0: real

K :=0.5,Ti :=10000.0 : parameter real;
r := 0.3 : parameter real,;

h : sampling interval,

x0, laps, time : real,

mode : integer;

calculate
begin
if mode = 1 then
= r —vel;
u:=K=xe+1,
laps := (pos — x0)/0.23;
time := time + h;
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end if;
end calculate;

update

begin
I:=1+bixe;

end update;

procedure zero();
begin
I :=0.0;
e = 0.0;
laps := 0.0;
mode := 0;
u = 0.0;
end zero;

procedure on();
begin
mode = 1;
x0 := pos;
time := 0.0;
end on;

end SimplePlI,;
block PID

r,y : input real,

v := 0.0 : output real;
I:=0.0,e:=0.0,D:=0.0: real;

Dold :=0.0,y0!ld := 0.0 : real;

K :=0.5,T7 := 10000.0 : parameter real,
Td := 0.0, N := 0.0 : parameter real,

h : sampling interval,

bi = K = h/Ti;

tsamp : sampling interval;

calculate
begin
D = Td/(Td + N = tsamp) « Dold — K « Td « N/(Td + N =
tsamp) x (y — yOld);
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e:=r—Yy;
v:i=Kxe+ 1+ D;
end calculate;

update
begin
I:=1+bixe;
yOld := y;
Dold := D;
end update;
procedure zero();
begin
I:=0.0;
e :=0.0;
D :=0.0;
Dold :=0.0;
yOld := 0.0;
end zero;
end PID;

block Filter

u : input real,;

y . output real,;

h : sampling interval,

N :=10.0 : parameter real;

calculate
begin
y:=(L0—-N=*h)xy+ N xh=xu;

end calculate;
end Filter;
end StandardBlocks.
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The Polynomial Library

B.1 Introduction

In this appendix the numerical polynomial functions included in the
package are described. The reader is assumed to have knowledge of
polynomial design methods and to be familiar to the notations used in
[Astrom and Wittenmark, 1990] and [Astrém and Wittenmark, 1995].
All algorithms in the functions below originate from those books unless
otherwise stated.

void ShiftForward(Polynomial P, real r);

This function shifts the coefficients of the polynomial to the left
and sets the last coefficient to r. Let A = 2.3¢% + 3.59 + 1.1, then
the following operation

A.ShiftForward(999);

changes A to A = 3.5¢% + 1.1g + 999.

void ShiftBackward(Polynomial P, real r);

This function shifts the coefficients of the polynomial to the right
and sets the highest power coefficient to r.
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void GCD(Polynomial A, Polynomial B, real reps,
Polynomial& G, Polynomial& X, Polynomial& Y,
Polynomial& U, Polynomial& V);

This function calculates the greatest common divisor of polynomi-
als A and B using Euclid’s algorithm. It also solves the two equa-
tions

AX +BY =G (B.1)

AU +BV =0 (B.2)

G is the greatest common divisor of A and B. A more detailed
description of the algorithm is found in [Astrom and Wittenmark,
1995].

void DiophantineMDS(Polynomial A, Polynomial B, Polynomial Ac,
Polynomial& R, Polynomial& S);

DiophantineMDS finds the minimal degree solution to the equation
AR + BS = A.. The equation is solved in two steps. First the two
equations B.1 and B.2 are solved using the GCD function. Then
in the second step the general solution is found through

R=R°+QU
S=8%°4+QV
with
R°=XA.divG
SY=YA,.divG

where G is the greatest common divisor of A and B. The minimal
degree solution is now given by simply choosing

Q = SYdiv V. The greatest common G must divide A, otherwise
the equation has no solution.
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void Sfactorize(Polynomial B, Polynomial& A);
Let
A(2) =2" 4+ 12" + - + ana. (B.3)

The reciprocal polynomial of A, denoted A* is obtained by revers-
ing the order of the coefficients of A.

A*(2) = 1+ a1z + -+ 2™ = 2" Az Y). (B.4)
Sfactorize takes a polynomial B = ee* and returns a stable

polynomial A so that AA* = ee*. This algorithm is described in
[Kucera, 1979].

void DyadicReduction(Polynomial& A, Polynomial& B, real& Alpha,
real& Beta, int i0, int i1, int i2);

Given vectors

a=[1ay -a,]’

b =[1by---b,] (B:5)
and scalars o and S, find vectors
~ T
I e
such that
aaa” + pbbT = gaal + fbbT (B.7)

The vectors @ and b can be found using dyadic decomposition.
DyadicReduction is very useful when doing square root recursive
least square estimations. For a closer look at the algorithm and
its applications see [Astrém and Wittenmark, 1995].
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void RobustIntegralDesign(Polynomial A, Polynomial B,
Polynomial Ac, Polynomial& R,
Polynomial& S, real x0, real x1);

This function calculates an integral controller with zero gain at
the
Nyquist frequency. Two additional closed loop poles are specified
through x0 and x1 which are coefficients in the X-polynomial, see
below.

First the minimal degree solutions R° and S° are calculated.
If R? and S° satisfy

AR°+ BS°=A,
then

R=XR°+YRB

S=XS8°-YA
are solutions to the equation
AR + BS = XA,
This gives a controller with the characteristic polynomial A X,

where X = ¢? + x1q + xo. To get the desired controller first let
Y = y,q — ¥1. Then solve

R(1)=040=-X(1)R°(1)+Y(1)B(1)

S(—1)=0<% 0=X(-1)S°(-1) = Y(-1)A(-1)

By using those equations the coefficients of the Y polynomial can
be calculated.

_YQ)-Y(-1

B 2

Yo
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Y1) +Y(-1)
1= 2

The two following functions use the same method to calculate
a robust controller and an integral controller.

void IntegralDesign(Polynomial A, Polynomial B, Polynomial C,
Polynomial& R, Polynomial& S, real x0);

This function first solves the diophantine equation and then forces
the R polynomial to contain an integrator. This is done by design-
ing the R polynomial so that R(1) = 0. The input parameter x0
specifies the additional closed loop pole. The characteristic poly-
nomial now becomes A.X, where X = g — xo.

void RobustDesign(Polynomial A, Polynomial B, Polynomial C,
Polynomial& R, Polynomial& S, real x0);

RobustDesign works similar to IntegralDesign but the constraint
on the controller design is instead S(—1) = 0. This condition gives
a controller with zero gain at the Nyquist frequency. The input
parameter x0 specifies the additional closed loop pole. The char-
acteristic polynomial now becomes A X, where X = q — xo.

void LQGDesign(Polynomial A, Polynomial B, Polynomial C,
Polynomial& R, Polynomial& S, real rho);

Calculates a LQG-controller for the system A, B, and C with
the loss function coefficient p. The computational procedure is de-
scribed in detail in section 12.5 in [Astrom and Wittenmark, 1990].
This implementation only handles the case where A(0) # 0.

void MDPPNZCDesign(Polynomial A, Polynomial B, Polynomial Am,
Polynomial Ao, Polynomial& R, Polynomial& S,
Polynomial& T);

The abbreviation stands for Minimal Degree Pole Placement with
No Zero Cancelation. The function chooses BT = 1 and B~ = B.
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Furthermore B,, is chosen so that the stationary gain will be unity.

B,(q) = A__mggg(q)

The closed-loop characteristic equation to be solved now becomes
AR + BS = A,A,,

The T polynomial is given by

T(q) = A, (Bl)(?)o (q)

void Roots(Polynomial A, Polynomial& rootRe,
Polynomial& rootIm);

The roots of polynomial A are calculated and are returned in the
two polynomials rootRe and rootIm. The real parts of the roots
are stored in rootRe and the imaginary parts are stored in rootIm.

void LDFilter(double *1, Polynomial& d, Polynomial& phi,
Polynomial& theta, double& lambda) ;

This function is an implementation of an estimator and would
together with any of the design functions above form a complete
adaptive controller. The algorithms behind LDFilter is taken from
[Astrom and Wittenmark, 1995]. Let the system to be estimated
be on the form

y(t) = 0" (2)6

where 6 is a parameter vector and ¢ is a vector of signals. The
following recursive least-square estimation algorithm is used

0(t) =6t —1)+ KO (»(¥) — 9" (1)6(¢ - 1))
K(t) = P(t)p(?)
P(t) = (I - K(t)p" (1))P(t—1)
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The covariance matrix P has a decomposition P = LDLT, where L
is a lower triangular matrix and D is a diagonal matrix. Initially
set L = I, which gives that P(0) = D. The function takes the

following arguments:

e double *1

An array of doubles with the size deg(6) x deg(0).

e double *d

An array of doubles with the size deg(6).

e Polynomial& Phi

This a polynomial that contains old process values and old control
signals. The polynomial is arranged on the following format:

Phi = [y(¢),—y(t—1),...,—y(t —n),u(t —d),...,u(t —d —m)]

where n = deg(A),m =deg(B), and d =n —m.

e Polynomial& theta

This is a polynomial with the degree set to (deg(A)+deg(B)+1)
and with the coefficients to be estimated on the following format:

theta = [ag,a1,...,0n,b0,... 0]

¢ double& 1
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Patterns and Framework

"Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice."

Christopher Alexander

C.1 Introduction

This appendix will give a brief introduction to pattern and the nota-
tion used when describing them. Further there will a short description
of the concept of frameworks. This text is based on [Gamma et al,
1995], [Buschman et al, 1996] and [Hedin, 1997].

C.2 Patterns

The main idea with patterns is to capture the expertise of an expe-
rience programmer and document it in a standard form, a pattern.
Originally patters were introduced by the architecture Christopher
Alexander, as a way of accumulating wisdom. He demonstrated the use
of patterns in the context of architecture of buildings. Using pattern
it is possible to capture qualities which are otherwise difficult to de-
scribe. The idea of recording experience using pattern has successfully
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been adopted by the software community. The pattern approach has
proved a very suitable way for documenting solutions to complex soft-
ware problems. An experienced programmer has standard solutions to
standard problems. Pattern is a good way of recording this experience
and make it available to novices. Further it simplifies communication
by establishing a common terminology.

Design patterns are usually described according to the template
given in [Gamma et al, 1995|. This template has the following items:
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Pattern Name and Description The name of the pattern and
a short description.

Also Known As Other names that the pattern may be known
under.

Intent The problem that the pattern is supposed to solve.
Motivation A scenario that illustrates a situation
Applicability In what situations the patterns are suitable.

Structure Usually a graphical description of the class hierarchy
and the object relations. The class diagram notation is illustrated
in Figure C.1.

Participants The different objects that interact in the pattern.

Consequences A discussion on the advantages and disadvan-
tages of using the pattern.

Implementation Guide lines for implementing the pattern. What

pit-falls, hints, or techniques the programmer should be aware
of.

Sample Code Code that illustrates the how the pattern could
be implemented.

Known Uses Applications where the pattern are used.

Related Patterns Other patterns that are related either in the
structure or in the intent.




C.3 Frameworks

Object Reference one
AbstractClass Aggregation — 1 Conclrete Class

AbstractOperation() Creates / many . o
ConcreteSubclassi ConcreteSubclass2 <z
- prep— _________I______________]“_ Implementation N~
Operation() pseudocode
Instance Variable

Figure C.1 Class Diagram Notation

C.3 Frameworks

While the basic idea with patterns is to reuse design, the basic idea
with frameworks is to reuse both design and code. A framework is an
integrated set of cooperating classes aimed for a family of similar ap-
plications. Frameworks usually consists of a shell application which
handles the tasks that are regarded as general to the whole family
of applications. The application programmer then simply creates sub-
classes from abstract framework classes, in order to create the final
application. The "main event loop" of the application is often a part
of the framework. The use of frameworks promotes faster application
development. In order to create good flexible frameworks the notation
of design patterns is often used. Further the use of patterns is a good
way of documenting frameworks.
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