LUND UNIVERSITY

A Survey of Reservation-Based Scheduling

Lindberg, Mikael

2007

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Lindberg, M. (2007). A Survey of Reservation-Based Scheduling. (Technical Reports TFRT-7618). Department
of Automatic Control, Lund Institute of Technology, Lund University.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/42733f46-6649-4e14-8699-83a4fd8befc9

ISSN 0280-5316
ISRN LUTFD2/TFRT--7618--SE

A Survey of
Reservation-Based Scheduling

Mikael Lindberg

Department of Automatic Control
Lund Institute of Technology
October 2007

1. Introduction

This survey covers the current state of research regarding Reservation
Based Scheduling (RBS). This form of scheduling is used together with a
class of real-time applications whose quality of output depend on sufficient
access to a resource over time. These are difficult to handle in terms of
traditional hard real-time theory. The typical application will be concerned
with some type of continuous media task (playback or encoding), and it was
in fact the need for support for media applications that perhaps ignited in-
terest in the field. This was in the early 90:ies when computers started
to make their way into mainstream media production and consumption.
While this remains the favoured use case even today, other forms of com-
puting can also benefit from RBS. We will see that this includes classes
which traditionally have been considered hard real-time. Before discussing
the different algorithms for RBS we need to examine the specifics of the
problem in a bit more detail.

1.1 Time sensitive applications

Consider a video playback application at work with decoding a movie with
a frame rate of 25 fps (frames-per-second). In order for the viewing to be
pleasant, the frames needs to be computed in time and this could be solved
by treating the application as a traditional periodic hard real time task
with a deadline T of 1/25 s, but we also need to figure out how long it
will take to decode the frame. As can be seen in figure 1.1 and 1.1, the
CPU requirements playing the same movie but at different resolutions and
encodings can differ a lot and vary a bit during playback as well. In the
second movie, the opening sequence has a lot of moving graphics which ac-
counts for the high CPU load during the first 50 seconds. Obviously, using
this period for calculating the WCET! for decoding a frame will yield a un-
reasonably conservative result. The price for guaranteeing timely playback

IWorst Case Execution Time

CPU usage for QuickTime Player
45 T T T

30 b

20 1

CPU percentage

0 20 40 60 80 100 120
time (s)

Figure 1 The CPU usage of the QuickTime Player run on a MacBook Pro, playing
a short movie sequence in medium resolution.

CPU usage for QuickTime Player
150 T T

100 [b

CPU percentage

0 | | | |
0 50 100 150 200 250

time (s)

Figure 2 The CPU usage of the QuickTime Player run on a MacBook Pro, play-
ing a short movie sequence in high resolution using VBR encoding. Note that the
computer has two CPU cores, hence the load over 100%.

is very high and will utilise the resources in a typical PC very inefficiently.
It is perhaps also unnecessary as occasional and slight deadline violations
will typically go unnoticed by a human viewer. How well we can adhere
to the deadlines will determine the quality of playback, in general called
the Quality of Service (QoS). We will call applications which display this
connection between timeliness and QoS for time sensitive applications.

1.2 Temporal Isolation

A highly desirable property of the RBS approach is that a task who has
reserved a specific amount of a resource should have access to this regard-
less of what other tasks are running on the system. This is called temporal
isolation and makes very good sense for the continuous media type of ap-
plications we have used as example so far. Video playback should continue
unaffected if other applications are started (or if the OS spawns tasks in
the background).

1.3 Graceful QoS degradation

While it is entirely possible to create an admission policy which would deny
tasks which would make the scheduler unable to sustain reservations this
might not be desirable from a user perspective. It might be preferable to
have some slight (and predictable) degradation in QoS as opposed to not
being able to start more applications. This becomes even more evident in
embedded systems where resources are scarce. Consider a mobile phone
user engaged in a video conference call when a SMS message comes in.
Most would be content to have some slight degradation in video quality
and still being able to accept the SMS message. If the playback application
in question is designed to be aware of its resource allocation, it can be
designed lower QoS in an as graceful way as possible.

1.4 Consumer grade systems and non-real-time applications

Today regular consumer grade computers are used for media purposes
which means that a strategy for handling their resource requirements
should ideally be implementable on a consumer grade OS and able to han-
dle regular applications as well as time sensitive ones without any special
knowledge requirements on the user. Ordinary applications are rarely de-
finable as either periodic or sporadic. Even if they were, knowing the WCET
is likely not possible since PC configurations vary greatly (and may even
degrade over time). For any solution to the above mentioned problems to be
feasible for a consumer product, it should use a minimal set of assumptions
on software and hardware environment.

2. Reservation Based Scheduling

2.1 Origins

The case for Reservation Based Scheduling (RBS) was perhaps most fa-
mously made by Mercer et al in the 1993 technical report Processor Capac-
ity Reserves for Multimedia Operating Systems [16]. The article discusses
processor reserves as a way to describe computational requirements to han-
dle continuous media type applications and some challenges when this is
implemented on a microkernel architecture.

The model proposed by the articles says that the needs of a periodic task
can be specified using three entities: the processor percentage (or rate) p,
the computation time C and the period 7', related as

p=C/T (1)

In the general case, C is very difficult to compute and the article suggests
that the programmer supplies an initial estimate and that the scheduler
then measure and adjust the estimate (in fact a feedback scheduling tech-
nique). For non-periodic tasks, it is instead proposed to formulate the delay
D of a task executing at the rate p with total computation time S as

D=S/p (2)

It is easy to derive an admission policy that would only accept new reserves
as long as

Z Pi < Ptot (3)

where p;,; represents some upper bound of reservable resources which
would be less or equal to 1. This simple and intuitive analysis is an ar-
gument in favour of RBS.

If the RBS scheme is in turn implemented on top of a regular real-time
scheduler such as a RM? or EDF? scheduler, the admission policy must
then also satify

n
> Ci/Ti <n(2"" —1) = 0.69 (4)
=1
and
> Ci/Ti < proy (5)
Vi

respectively. The choice of underlying scheduling algorithm matters mostly
when the system is being overloaded. For the RM case, high priority tasks
will likely still meet their deadlines while for the EDF case, the results
are unpredictable. This might suggest that RM would be preferable, but
considering the significantly more pessimistic bound on utilisation posed by
RM, EDF could be made feasible by reserving some 5% — 10% for handling
transient overloads and still schedule more load than RM.

Although [16] is one of the more well cited works, many of the aspects
of resource reservations and continuous media had already been discussed
in earlier work.

2Rate-Monotonic
3Earliest-Deadline-First

Ralf Guido Herrtwich presents a number of insights around the prob-
lem in his 1991 article The Role of Performance, Scheduling and Resource
Reservation in Multimedia Systems [11]. Like in [16], the use of conven-
tional scheduler schemes is deemed as inefficient and perhaps not serving
the user needs. Herrtwich also brings up the importance of preventing ill
behaved applications from disturbing others (temporal isolation) and that
the user might prefer occasional but graceful degradation of QoS to being
unable to start new applications when the system comes close to overload.
Unlike Mercer however, Herrtwich states that the actual computing needs
of the specific applications (in Mercer’s terms C) is unlikely to be possible
to calculate.

Herrtwitch article quotes heavily from the even earlier article Support
for Continuous Media in the DASH System [3], by Anderson et al in 1989,
which detailed how media type applications would be served by a resource
reservation scheme (in which resources were generalised to include not only
CPU but also disk, networking and more) based on preemptive deadline
scheduling (it is unclear if they mean EDF). This article is more heavy
on theory but lacks some of the softer insights in Herrtwich’s work. This
article is also referenced by [16].

2.2 Taking a Que from Telecommunication

In what seems like unrelated work, the telecommunications society was
around this time researching queuing algorithms which it would turn out
share some problem formulations with our process scheduling problem.
Demers et al published an article in 1989 on the topic of Analysis and
Simulation of a Fair Queuing Algorithm [7] which deals with the problem
of splitting a shared resource between users in a fair way so that an ill
behaved user wouldn’t be able to steal from the others. Although shares
are not specified explicitly (in the telecommunications world it is common
to assume that the involved parties would want to split all available band-
width between them), the scheduling algorithm is responsible for making
sure all users gets their allocated share.

The article studies a Fair Queuing (FQ) gateway with clients using
either FTP type applications (always ready to transmit and who are inter-
ested in overall throughput) and Telnet type applications where the loads
come irregularly and where average packet delay is the most interesting
quantity (packets are assumed to be so small that transmission speed is
irrelevant). These two types of transmission cases can be likened to the
CPU-bound and I/O-bound scheduling cases respectively. The scheduling
algorithm is described as follows:

Consider a hypothetical Round Robin (RR) scheme where R(¢) denotes
the number of rounds made at time ¢ (partial laps are represented by
fractions). A job of size P units arriving at time ¢y, will be completed P
rounds later, or at time #; where R(¢1) = R(to) + P. The unit of P will
be bits for the queuing case and some computational time quanta for the
scheduling case. For any task o consisting of the job sequence j,j{,...
we let t¥ represent the arrival time of job j* (part of «) and P¥, S¥ and
F? the job size and the values of R(t) when the job started and finished
respectively. The following relations will then be true.

S = max(F{ 1, R(t])) (7)

a
A ljob 1 done ljob 2 done

1 1 ror i r ri

ljob 1 done ljob 2 done

1 m i i r ri [l

job 1 done |job 2 done job 3 done | job 4 done

[[[[

t

N
>

Figure 3 Scheduling diagram over three tasks, where P} = 3, P = 4 and P? = 2.
It’s assumed all three jobs are released simultaneously, i.e. t§ =2 = ¢}

a

A job 1 done job 2 done job 3 done
job 1 done job 2 done
job 1 done job 2 done| job 3 done | job 4 done
t

N
rd

Figure 4 Same tasks as in Figure 2.2 but in "earliest finish first" order

It follows from that R(¢) is a strictly monotonically increasing function that
the sequence F§, F{, ..., F¥ share the same order as the finishing times of
the jobs 0,1,...,i of task . At this point, all entities are explicitly deter-
minable when a job arrive (which is albeit more realistic in the case of a
network packet than a task execution), which means that we can use them
all when we formulate our scheduling principle. Figure 2.2 is a scheduling
diagram displying how three tasks 1, 2 and 3 are interleaved. This scheme
is obviously fair in the sense that no task gets more processing than any
other and that a task can’t misbehave. However, our current scheme where
we interleave all tasks between every unit of processing is likely to be too
wasteful if actual task switching costs are taken into account. One way to
achieve the same order of completion of the tasks is to process them in
order of F*. In case of a tie, we pick at random. The execution would then
look as shown in figure 2.2.

In both cases, the CPU shares for all three tasks with asymptotically
go towards 1/3. A slight variation on the algorithm, called Weighted Fair
Queuing (WFQ), introduces weights so that the shares can be scaled if one
task is more important than the other. By recalculating this weight in case
the set of active tasks changes, a task can be given a constant share of
CPU. FQ scheduling was originally proposed by Nagle in his 1988 article
"On Packet Switches with Infinite Storage" [17] and has since been a very
popular algorithm to study.

The scheme shows a lot of similarities with EDF scheduling. If the above
problem instead was formulated as three periodic tasks with (¢, T',d) equal
to (3,9,9), (4,12,12) and (2, 6,6) we would get the same behaviour. We will
also later see how the FQ scheme can be altered to account for more cases.

Hard RT Best-
(EDF) Effort

Figure 5 Hierarchical structure with schedulers. Note that SFQ is used on more
than one level.

2.3 Hierarchical Scheduling Structures

One important aspect of this problem is that we want to be able to mix
real-time applications with regular applications. Often this leads to a con-
struction with a hierarchy of schedulers, typically with some hard-real time
scheduler on top and soft real-time and regular best-effort schedulers un-
derneath. Pawan Goyal et al suggests one such approach in their paper "A
Hierarchical CPU Scheduler for Multimedia Operating Systems" [10]. They
propose a tree structure where each node is either a scheduler node or a
leaf node. Parents scheduler their children down to leaf level where the reg-
ular tasks live. An example is provided in figure 2.3. They also introduce a
variant of WFQ called Start-time Fair Queuing (SFQ). SFQ schedules on
increasing start tag instead of finish tag and provides better guarantee of
fairness if the amount of available processing power fluctuates over time
(see 2.8 for a more details). It provides two ways to model the fluctuations
and tools for computing throughput and delay guarantees.

The hierarchical approach to scheduling is also proposed by other groups.
The RTAI/Xenomai extensions to Linux runs a RT-scheduler as root and
then the Linux operating system as a thread. The structure is similar to
the one proposed by [10]. The Bandwidth Server class of RBS algorithms
also use a hierarchy of schedulers, typically using an EDF scheduler on
top. Hard real-time tasks are scheduled directly by the EDF algorithm,
while soft real-time tasks have dedicated "servers" who dynamically set
their deadlines to achieve CPU reservations. Ordinary applications can be
scheduled by a separate server. Lipari et al presents a hierarchical Con-
stant Bandwidth Server construct called the H-CBS in [15], but this wasn’t
until in 2001.

Supervisory Schedulers The abilities of the top level schedulers become
the most important in the case of insufficient resources, e.g. when a new
application is started when the system is already on its limits. It might not
be acceptable to just deny the new application (especially if it cannot be
considered less important than any other) so the system needs some way
gracefully handling the situation. The same is true if the computational
needs of an application suddenly changes or if they are unknown.

User Needs ———Ppf .
Supervisor Node

CPU Shares p1, p2, p3

RB Scheduler

v

QoS Task 1

Task 2

Task 3

Figure 6 Structure for a supervisory scheduling scheme.

A feedback approach seems pertinent here as the situation is not unlike
the typical cascading controller set-up. The high level scheduler determines
the shares for each lower level scheduler so that over all system perfor-
mance is maximized. Of course, this becomes much simpler if the leaf level
processes can adapt to changing resource availability (such as adjusting bit
rates, frame rates or calculation precision). See figure 2.3 for a diagram of
the principle.

2.4 Bandwidth Servers

The concept of bandwidth servers was derived from Dynamic Priority Servers
by Buttazzo. Dynamic Priority Servers was a way to handle aperiodic or
sporadic tasks in fixed priority systems, basically by introducing a hierar-
chy of schedulers where the highest level scheduler is a RM scheduler or
similar. The Priority Server is a periodic task with a specified execution
time. Arriving aperiodic tasks are placed in a queue and executed by the
Priority Server when it is scheduled to run. In the original formulation,
unused capacity is just lost.

Buttazzo brought the concept of a server presiding over a predetermined
amount of CPU capacity to the dynamic scheduling algorithms. The Dy-
namic Priority Exchange Server (DPE) and the Total Bandwidth Server
(TBS) were the first formulations using EDF as a root level scheduler
with some predetermined CPU share. The object was still to handle aperi-
odic tasks, so a lot of theory concerned handling of unused bandwidth. In
1998, Buttazzo and Abeni published the article "Integrating Multimedia
Applications in Hard Real-Time Systems" [15] which introduces the Con-
stant Bandwidth Server (CBS). By then, the CM problem had already been
addressed using the Bandwidth Server metaphor by Kaneko et al in the
article "Integrated Scheduling of Multimedia and Hard Real-Time Tasks"
from 1996 [13].

T1(2,3) | |
HARD ! 1 & ‘ ! ! 1 1

- ol=3 €22 g azj <=l @
SOFT 1 | o, | 1

CBS

@n W

6 1314 15 16 17 18 19 20 21 2
1 [

Figure 7 An example of CBS scheduling. The figure is taken from Abeni and
Buttazzo’s article Integrating Multimedia Applications in Hard Real-Time Systems

2.5 Constant Bandwidth Server

We will now introduce the terminology from the article and it will become
evident that it shares structure with the Fair Queuing techniques.

Consider a set of tasks 7; where a task consists of a sequence of jobs
J;j with arrival time r; ;, C; the WCET of any job (AET* for soft real-time
tasks) in the sequence and 7; the minimum arrival interval between jobs
(desired activation period for soft real-time). We will be focusing on the
soft real-time tasks since we consider CM type applications. For any job,
we assign a deadline d; j = r; j. 1.

A CBS for the task 7; can then be defined as:

e A budget ¢; and by a pair (Qs,Ts) where @ is the maximum bud-
get and T is the period. The ratio U; = Q;/T; is called the server
bandwidth. At each instant, a fixed deadline d;, is assigned with the
server with dso = 0.

e The deadline d;; of J;; is set to the current server deadline d;. If
the server deadline is recalculated, then so is the job deadline.

¢ When a job associated with the server executes, c; is decreased by the
same amount.

e When ¢; = 0 the budget is replenished to the value of @; and the
deadline is recalculated as ds ;11 = ds; + Ts. This happens immedi-
ately when the budget is depleated, the budget cannot be said to be
0 for any finite duration.

e Should J; ;1 arrive before ¢/; ; is finished, it will be put in a FIFO
queue.

In figure 2.5 we can see two tasks 7; and 79, where 75 is being scheduled
by a CBS.

CBS"@ One possible drawback with the CBS algorithm when dealing
with things sensitive to deadline overrun is that although the server is com-
pletely replenished when budget c; is exhausted, the new deadline might be
too far into the future. The CBS"? algorithm changes the replenishment
rule to better handle this. If ¢/ ; is the remaining computational need for

4Average Execution Time

10

J;j when the budget is exhausted, we apply the following replenishment
rule:

if(c]; > Qs) (8)
cs = Qs; (9)
dspr1 = dsp + Ts; (10)

else (11)
Cs = C;J; (12)
dspy1 =dsp + Cir,j/Us (13)

This means that is the overrun is less than the budget, the new deadline
will be calculated less pessimistically. This is investigated in the article
Elastic Feedback Control by Buttazzo et al.

The Control Server (CS) Cervin and Eker presented in their 2003 ar-
ticle "The Control Server, A Computational Model for Real-Time Control
Tasks" [5] a modification to the CBS scheme that would make it easier to
handle the timing needs of a control application. Though control tasks are
typically implemented using hard real-time scheduling, the inherent ro-
bustness in feedback control schemes can make hard real-time guarantees
unnecessarily expensive. The CS makes the following change to the CBS
setup:

e Each task 7; is associated with a set of n’ > 1 segments S; 1, S 2, ..., Sin,
Of lengths li,l,li,z, ---,li,ni such that ZZ;O li,k = Ti

e 7; has a set of inputs I;
e 7; has a set of outputs O;

e Each set S;;, is associated with a code function f;;, a subset of the
inputs I;;, € I; and a subset of the outputs O;; € O;

e The server has a segment counter m;
The algorithm is also changed in the following way:
e Server is initiated ¢cc = mg =0
e When ¢; = 0 then
- mg = mod(ms,n;) + 1
- ds:=ds +1; p,, and
- ¢; = Uslim,

The result of this change is that the server budget ¢ is spread out over a
number of smaller segments, reducing the uncertainty as to when a certain
input will be read, a certain output be set or a code function executed. A
trade of will have to be done between jitter and latency. If the segment
lengths /; ;, are set to the WCETS of the code functions f;, the jitter will be
0 but control performance will be affected by greater latency. By forming a
cost function including both jitter and latency, an optima may be calculated.

In figures 2.5 and 2.5 we compare the performance of regular EDF
scheduling and using the CS. The set up consists of two PID controllers in
a cascade configuration and a disturbance task. The execution trace of the
controller and the disturbance task is visible in the lower half of the two
figures. The figures are borrowed from the [5]

11

Position

0 5 10 15 20 25 30 35 40
Time

195 19.6 19.7 198 19.9 0. 20.2 203 204 205
Tlme

Figure 8 PID control implemented on EDF scheduler

The Atropos Scheduler The Xen virtualisation software can use a
scheduler called the Atropos Scheduler to devide the CPU of the host com-
puter between the virtualisation instances. This scheduler is a CBS like
construct with the ability to reclaim slack CPU time, running on top of an
EDF scheduler. See 3.3 for more on the Xen software.

Adaptive Reservations aka Feedback Scheduling One problem when
doing RB scheduling is that the execution time for a periodic task may vary
over time. As we don’t want to base our calculations on the worst case,
we are likely to miss a few deadlines. While the CBS scheme can handle
transient overruns, non transient changes will lead to eventually infinite
deadlines (instability). One way to remedy this would be to dynamically
set the budget for a server based on prior overrun statistics in a feedback
control manner.

In the article Adaptive Bandwidth Reservation for Multimedia Comput-
ing, Abeni and Buttazzo [1] introduces a metric call the scheduling error.
If we have a periodic task 7; whose with period is T}, then the scheduling
error ¢ is defined as

€s = dgs — (I‘iJ +T;) (14)

that is the difference between the server deadline and the task’s soft dead-
line. We can now apply feedback control on the scheduling error, using e.g.
Qs as our control signal and try to drive ¢; towards 0.

In the article Adaptive Reservations in a Linux Environment [6], Lipari
et al investigates a few design techniques for such a controller. For the
purpose of making the analysis simpler, we impose the restriction that
even if there is extra unused bandwidth available, a task 7; scheduled by
a CBS will only receive the bandwidth @; (a so called hard reservation).

12

Position

0 5 10 15 20 25 30 35 40

19.5 196 19.7 19.8 199 .1 202 20.3 204 20.5
Tlme

Figure 9 PID control implemented on CS

Assume that 7; is a periodic task being served with a CBS. This gives
rij+1 =rij+ T;, where T; is the task period. Each job is associated with a
soft deadline d; ; = r;; + T;, that is d; j = r; j+1. It makes sense to choose
the server period T to be some multiple of T;. Let f; ; be the actual finish
time for J;; and v;; be the finish time had 7; been running alone on a
CPU with the fraction b; = Q,/T; of the actual CPU speed. v;; is called
the virtual finish time of J; ;. The article uses a modified definition of the
scheduling error compared to 14

€j = (fij-1—dij-1)/T; (15)

which is the scheduling error experienced for J;;_;. Note that since we
are using hard reservations, having both ¢; > 0 and ¢; < 0 is undesirable
situations since we’d be either missing our deadlines or wasting bandwidth.
The relation

Ui,j—asﬁ,jsvij+5 (16)
where 6 = (1—b;)Ts. This tells us that we can make the CBS approximate
the General Processor Sharing (GPS) algorithm by letting Ts go towards
0, but this is impractical since the context switching overhead starts to
become relevant if T is sufficiently small. Even with normal choices of T
it is reasonable to use 15 and 16 to approximate the scheduling error with

eij = (vijo1—dij-1)/T; (17)

In the article "Analysis of a Reservation-Based Feedback Scheduler" [2]
Abeni et al derrives a difference equation for the evolution of the scheduler
error:

‘e j+1 = max(e;;,0) +¢;;/Qs — Tj; (18)

13

A8 Scheduler
QoS Controller

Figure 10 Structure for stochastic control of server bandwidth. The figure is
taken from [6]

23 ' T T T T T T
N SDB Controller
2r 2 P Static assignment ------- |

Scheduling error

Il Il 1
1720 1740 1760 1780 1800 1820 1840 1860 1880 1900

-0.5

Frame number

Figure 11 Results from using the adaptive CBS scheme on the Xine player. The
feedback controller is in this case a stochastic deadbeat controller. The figure is
borrowed from [6]

where we model the sequence c;; as a discrete-time continuous valued
stochastic process. The article then proposes a predictor based control
structure (see figure 2.5) and three examples of control design using in-
variant based design, stochastic dead bead design and optimal cost design
respectively.

Some experiments run on the algorithm implemented in Linux gives
the results shown in figure 2.5.

Slack Reclaiming (aka Slack Stealing) When scheduling soft real-
time or non real-time tasks together with hard real-time tasks or other
soft real-time tasks using RBS, inevitably there will be some unused band-
width. Hard real-time typically uses WCET values which will rarely be met
and soft real-time tasks can also underuse resources. Ideally, this "extra"
bandwidth should be used to improve performance for other soft real-time
tasks or non real-time tasks. A complication is that dynamic slack can only
be detected in run-time and can therefore also only be allocated in run-time.
Similarly, overrun situations can in general not be predicted beforehand.
The traditional way of handling slack was to schedule all real-time tasks
first and then allow the slack consuming tasks to run on whatever remains.
The CBS algorithm itself has some manner of slack reclaiming in that if the
current job J; ; terminates before c, is spent, J; ;1 can begin immediately
to execute, making use of that budget. However, if the task hasn’t finished
before the remaining ¢; has been spent, it will be given a new deadline
based on the server period T, meaning that it can be forced to execute
over an even longer period of time. Additionally, should the task overrun a
lot, the deadline might be postponed so far that it will not execute anything
for several server periods, possibly leading to starvation.

Numerous methods have been proposed to solve this and other slack
reclaiming problems. The inventors of the CBS algorithm has published
several themselves, including CASH, GRUB and IRIS. Lin and Brandt

14

proposed another handful in the article "Improving Soft Real-Time Per-
formance Through Better Slack Reclaiming" [14]. Most of these algorithms
explore different methods to determine whom to give unused slack to and
how. Their most advanced proposal, the BACKSLASH algorithm uses the
following four principles to determine who will get what from whom:

e Allocate slack as early as possible and with the priority of the do-
nating task. This means that the scheduler shouldn’t wait until the
completion of all real-time tasks before it allocates slack. By execut-
ing the slack at the same priority as the donator, there is no risk
that it would disturb the execution of tasks that wouldn’t have been
disturbed by that same donator.

e Allocate slack to the task with the highest original priority (earliest
original deadline). Basically this means give the slack to the task in
most dire need. See the principle below for a rationale for using the
original priority/deadline.

¢ Allow tasks to borrow against their own future resource reservations
(with the priority of the job from which resources are borrowed) to
complete their current job. This is the standard deadline postponing
from the CBS algorithm.

e Retroactively allocate slack to tasks that have borrowed from their
current budget to complete a previous job.

Figure 2.5 shows the performance of SRAND, SLAD, SLASH and BACK-
SLASH (which cumulatively uses the four principles above) compared to
CBS, CASH and a primitive algorithm "EDF" which allocates slack to the
task with earliest deadline when all other tasks are idle.

2.6 Rate Based Execution (RBE)

Rate Based Execution was originally proposed by Jeffay and Goddard in
their 1999 article "A Theory of Rate-Based Execution" [12]. It is presented
as a generalisation of the sporadic task model by Mok [4] and is essentially
another scheme for setting the deadlines for the jobs J; ; released by a task
7;, aiming in this case to limit the number of jobs the task can schedule
during some interval. If the WCET of the jobs is known, it is also possible
to compute a worst case bound for how much CPU the task will use within
a specified time interval. This is slightly different from the CBS algorithm
which limits the bandwidth directly.
Formally, a RBE task 7; is defined by a four-tuple (y;,x;, Ad;, ¢;).

e y; is a time interval

e x; is the maximum number of jobs expected to be released during an
interval y;

e Ad; is the relative deadline for any job J; ; belonging to 7;
e ¢; is the WCET for any job J; ; belonging to 7;
e r;; is the release time for the J; ;
The pair (x;,y;) is called the "rate specification" of the RBE task. When
J; j is released, it is given an absolute deadline d; ; given by
rii + Ad; 1<j<ux;
dl"] — 1) 14] f— .] f— 15 (19)
max(riyj + Adi,di,j—xi + yi)] > x;

15

3 EDF —e— TEDF —e—
Ca8s CBS ——w—
30 CASH —8— 21 CASH —e—
SRAND ~—aee SAAND e
27 SLAD wAD
S_ASH = 18} SLASH
= 24 BACKS_ASH g PACKSLASH ——
ERES g st
i 2
3 18 “2 12k
I H
8 ¢ osh
,?< 12 8
T g Z sk
sl
03 F
) ——— .
] =l B L L 0 T <)
005 007 003 011 013 015 0497 019 021 023 025 005 007 009 011 013 0435 017 019 021 023 025
SAT3 Loac (fraction of CPU) SRAT3 Load (fraction of CPU)
(a) Deadline Miss Ratio as a function of load (b) Tardiness as a function of load

Figure 5. Load effect on performance (one soft real-time task, p = 300ms)

EDF —e— i i EDF —o—
50 CBS —w— " €8S —w—
CASH —tp CASH —t

SLASH
BF BACKS.ASH =

S_ASH
) W
K

raction of period)

Deagine Miss Ratio (%)

Tardiness [+
-

° (2] 100 140 l:’ﬁJ 2‘2‘3 2‘EO 3‘20 3;0 380 ¢ &0 = 1 C-J. 140 1 ;0 2‘20 2.50 :;JL\ 30 80
SRTE period SRTE periog
(a) Deadline Miss Ratio as a function of period (b) Tardiness as a function of period

Figure 12 Performance for a number of slack reclaiming options. The figure is
taken from [14].

| |
Iz | |
Jis | |
Tis | |
Tis | |
Jis | |
T |
Tisl |
Tis| |
(') 2 4 6 8 1I0 1I2 1I4 1,6 1I8 2IO 22 2I4 2'6>

Figure 13 A bursty release scenario allowed by RBE. Borrowed from [12]. We
can see how the deadlines are spaced out with a minimum distance, even when a
burst of jobs are released simultaneously for a RBE task (x = 1,y =2,d = 6,¢)

Setting the deadlines this way guarantees that between two jobs J/;; and
J;j+r, are separated by at least y;. Note that this doesn’t prevent small
clusters of jobs from being released simultaneously and while the RBE is
active, instead of queuing them, like CBS does. This can be observed in
2.6.

The article then proves that for any interval [0, L] where L > 0, the
least upper bound for processor demand from a RBE task 7; defined by

16

(i, %i, Ad;, c;) is

L — Ad; i
FETEET Y (20)
Yi
where
) la] a>0
fla) = {0 o (21)

Under pre-emptive scheduling, a set of RBE tasks 1..n will then be schedu-
lable if and only if

L2 r B (22)

The article also provides feasability conditions for non pre-emptive schedul-
ing and for pre-emptive scheduling but with shared resources.

2.7 Proportional Share Scheduling (PS)

Perhaps one of the oldest time-sharing algorithms for any type of resource
is the Round-Robin scheme. By adding a weight to the participants in the
ring so that they each round get to spend a time proportional to that weight
with the resource, you get Weighted-Round-Robin (WRR). Such a division
of a resource between participants is called Proportional Share resource
management and is a large class of scheduling algorithms. As mentioned
before, FQ is another way to achieve PS, but the class of algorithms derived
from FQ is so big it has been given its own section.

There are several reasons as to why WRR isn’t as useful for RBS pur-
poses as it might initially seem. While it might work for a general purpose
CPU bound application (which is always ready to run and which never
blocks), periodic tasks where computation time fluctuate will not be served
well by the WRR scheme. There are a few reasons to this:

¢ WRR doesn’t handle overrun, it will preempt a task when its allocated
time slice is spent. This means that you need to use WCET to figure
the size of the reservation, which in turn will lead to a lot of waste.

¢ WRR doesn’t have any scheme for slack reclaiming. Slack can be
consumed by non-RT applications, but other participants in the RR
scheme will not benefit.

e For tasks that block, the WRR scheme will be almost impossible. The
typical I/O-bound task will be blocking most of the time. When it
wakes up, it will have to wait for its turn in the RR scheme and
perhaps not have time to finish its work. It then has to wait another
round before it may complete. These types of tasks are generally very
latency sensitive, something which is difficult to handle in plain WRR.

e WRR can’t handle sporadic real-time tasks without dynamically re-
calculating the weights (in which case it’s a different algorithm).

There are many alterations to WRR to remedy these problems. The
FQ family of algorithms explore one path but there are other well known
examples.

17

Lottery Scheduling and Stride Scheduling A somewhat unorthodox
proposition made by Waldspurger et al in 1994 [21] involved using a ran-
dom lottery scheme to select which process would run next. The scheme
goes quite far in the lottery metaphor, including not only actual tickets
which can be passed around between processes but also ticket currencies
and exchange rates. Simply put, each process is awarded a number of tick-
ets which corresponds to its intended proportional share of the scheduled
resource. The scheduler then draws one ticket each time quanta to decide
who gets to run. Given sufficient many lotteries, the algorithm is prob-
abilistically fair. The probability p that a task z; holding m; tickets in a
lottery with in total M tickets will win the lottery is simply p = m;/M.
After n identical lotteries, the expectation of the number of wins w; is
E[w;] = np, with variance 62 = np(1 — p). The coefficient of variation for
the observed proportion of wins is 0,/ E{w;] = v/(1 — p)/np. Thus, the task
share is proportional to its ticket allocation, with accuracy that improves
with \/n. From this follows that the expecation of the number of lotteries a
task needs to participate in before winning E[n| is 1/p, making the average
response time for a process inversely proportional to its ticket share.

Apart from the above mathematical results, Lottery Scheduling has the
following properties:

¢ Since there is no notion of round or turn, changing the ticket alloca-
tion (the weights) has immediate effect.

e Transferring tickets between tasks (usually temporarily) enables a
task blocking pending some other task completion to help the other
process and indirectly itself in a priority inheritance like way.

¢ A task that only spends the fraction f of its allocated resource can be
granted a compensation ticket that inflates its value by 1/ f until the
task wins the next time. This way, the task’s resource consumption,
equal to fp is adjusted to f1/fp = p which matches its allocated
share. Since we’re trusting the law of big numbers, there is no need
for more complicated accounting.

e By dynamically issuing tickets, a task can get escalated rights without
the need for ticket exchanges. This technique should be used only in
trusted systems as allowing this freely would be like letting people
print their own money.

Implementation wise, Lottery Scheduling is dependant on a good random
number generator and a fast way to find the owner of each ticket (includ-
ing considering ticket transfers). For small systems, using a simple linear
search with O(n) complexity might be good enough while for larger sys-
tems, such as regular desktop OSes with hundreds of tasks, more efficient
data structures must be employed. The article also discusses the used of
controlled ticket inflation to govern the share allocated to a task based on
some measurable output from the task.

Figure 2.7 shows an example from [21] where three MPEG-decoders are
initially given a A:B:C = 3:2:1 ratio of tickets. At the time indicated with
the arrow, the ticket ratios are changed to 3:1:2.

In the follow up article from 1995, the Stride Scheduling algorithm
is introduced [20]. This is in essence a deterministic sibling to the Lot-
tery Scheduling algorithm, motivated by improved accuracy over relative

18

:]
400 A
.""’a“

2 ' B .7
E 200 -
= n) C
O] //

] g T

0
0 100 200 300

Time (sec)

Figure 14 An experiment from [21] with the three tasks A:B:C.

throughput rates and with lower response time variability. In Stride Schedul-
ing, each task is given a share of tickets equal to the desired proportional
share of the scheduled resource. However, instead of using the tickets to
perform a lottery, a stride value s;, calculated as the inverse of the number
of tickets, is used. Stride is meant to represent the interval between times
the task executes, measured in passes. We will call the current pass value
for a task p;. Passes is a virtual time unit, very similar to the R(¢) function
used in FQ, which would make stride comparable to a task’s P;-value. The
algorithm uses a constant stride; which represents the stride for a task
with one ticket. The algorithm then goes as follows:

e Tasks are initited with s; = stride;/m;, p; = s;

e The scheduler selects the task with lowest p; (ties are broken ar-
bitrarily). After executing it, p; is updated to p; + fs;, where f is
the fraction of the allocated time quanta that the task actually used
(allowed to be > 0).

As before, ticket transfers and ticket inflation to dynamically change re-
source allocations, but the cases become more complex now when the stride
value of a task can approach infinity (if for example a task transfers all its
tickets to another process).

Group-Ratio Round Robin A problem when dealing with proportional
share resource management is that algorithms can easily get computa-
tionally intensive. We often have data structures which must be sorted
or searched, leading to work at least O(log(n)) where n is the number
of scheduleable tasks. In recent years, a lot of focus has come on the so

19

called O(1)-algorithms. Unfortunately, in order to make the scheduling de-
cision possible to make in constant time, the algorithms itself tend to get a
bit messy. A showcase for this is the Group Ratio Round-Robin algorithm
(GR3) which is O(1). It was presented by Caprita et al in 2004 and has
seen experimental implementations in Linux where it has been compared
to the standard Linux O(1)-scheduler.

GR3 changes the standard WRR scheme as follows:

e Tasks 7; are put into groups depending on their weight ¢;. A group
G is of order k& > 0 is assigned tasks with ¢ € [2%, 251 —1].

e The group weights ® = Z{imeG} ¢; are calculated for all groups,
which are then put into a list sorted after decreasing ®. Ties are
broken by group order. We let G; denote the j* group in the list and
®; the corresponding group weight.

e Group work W; is defined as the sum of execution time received by
all tasks 7; € Gj.

The scheduling algorithm then works as follows (initiate with j = 1):

e Run a task from G, selected in a Deficit WRR fashion. The task
weights are normalised with respect to the minimal possible weight
for a task in the group (2%).

e Increment W; correspondingly.

. Wj-‘rl CDJ' . . .
if Wt > &, then increment j, else j = 1.

The reasons for this somewhat complicated set-up is that the normalised
weights in the groups reduce the effects of skewed weight ratios which affect
fairness in RR-type algorithms, while still allowing us the O(1)-complexity
scheduling decision (more or less increment j or set j = 0). The analysis
can be found in the article but is not trivial.

2.8 Fair Queuing (FQ)

We introduced the FQ family of algorithms in the beginning of this chapter
and now we wrap things up by taking a closer look at where things went
after Demers et al published their results. Before doing that, we need to
formally define the concept of fairness, which the name of the algorithms
would suggest is central to the theme.

Fairness Fairness was originally introduced by Nagle in [17]. The seman-
tics were initially informal, saying simply that a fair algorithm divides the
resources between peers equally. He also prototyped the FQ algorithm we
explored but with little formalism. The first analysis of the FQ algorithm
was done by Demers in [7], where an algorithm for dividing a resource is
defined as fair if

¢ no used receives more than its request,

¢ no other allocation scheme satisfying the first condition has a higher
minimum allocation and

e the second condition remains recursively true as we remove the min-
imal user and reduce the total resource accordingly

20

For our type of applications, the conditions can be expressed in another way.
Assume that we have a finite resource D and n users of that resource. Each
user "deserves" a fair share equal to D/n of this resource, but is allowed
to ask for less, in which case the difference can be allocated to a user who
would like more. Let d; denote the share a user requests and a; the share
he is given. We now define the maximally fair allocation such that the fair
share dy is computed subject to the following two constraints:

En a; = D (23)
i=1
a; = min(di,df) (24)

From this we can determine the maximally fair allocation {A},A3,...}. To
classify an actual allocation {a1,aq,...} we use a fairness function

(Z;;l xi)2 (25)

nyig xz2

where x; = a;/A;. The fairness will be between 0 and 1, where 1 represents
a maximally fair allocation.

Using this metric, we can discuss how fair an algorithm is, how quickly
it achieves it and how sensitive it is to fluctuating conditions. More no-
tions of fairness does however exist. The formulation above is limited to
calculating the over all fairness, but is difficult to apply to specified time
intervals. For that, we need a more advanced formulation. In the article "A
Self-Clocked Fair Queueing Scheme for Broadband Applications" Golestani
introduces a notion of fairness which is based on the concept of normalised
service. Let r; be the service share allocated to a task 7; and W;(¢) the ag-
gregate amount of service this task has received in the interval [0,¢). The
normalised service is then w;(¢) = %Wi(t). An algorithm is then considered

fair in an interval [t1,%o] if

Fairness =

wi(t2) —wi(t1) = w;(t2) —w;(t1) (26)

for any two tasks 7; and 7; who has enough work to execute during the
entire interval and fair if this is true for any interval. Eqation 26 can be
written more compactly as

Awi(tl,tg) — ij'(tl,tz) =0 (27)

As the semantics allow us to choose ¢ty — ¢ arbitrarily small, this is only
possible to obtain if work is infinitely divisible and all tasks can be ser-
viced simultaneously. This theoretical form of algorithm is modelled in the
article from 1993 by Parekh and called the Generalized Processor Sharing
algorithm. Note that GPS would be completely fair given both definitions.
Golestani also presents a theorem for the upper bound of (un)fairness for
an algorithm based of the FQ family. Given any time period [¢1, 2] and any
two tasks w; and w; who wants to execute in the entire interval, if the
following bound holds

|Awi(t1,t2) — wj(tl,t2)| < D(tl,tg) (28)

21

where D(i,j) does not depend on [t1,t5], then D(i,j) always satisfies the
following

1 WCET, WCET;
I

D@G.j)> =
(l,J)_2(- "

) (29)

Self-Clocked Fair Queuing (SCFQ) One of the drawbacks with the
basic (W)FQ presented earlier is that you need to do simulations of each
task’s future stop tags (a function of the virtual time v(¢) experienced by
a task) in order to decide which job goes next. Given a large number of
tasks, this can get computationally intensive and infeasible for situations
with a lot of context switches. In the example we used in the beginning
of this chapter, all tasks were CPU bound which mean in FQ terms that
they were continuously backlogged, which simplified the calculations. As
mentioned before, Self-Clocked FQ was introduced by Golestani in 1993
[9], where he proposes to approximate v(¢) with the stop tag F* of the job
currently in service. He proves that this leads to a fairness of

1 1
|Awi(t1,t2) — ij(tl,t2)| < 7WCETL + TWCETJ (30)
l J

which is a factor 2 worse than the optimal case.

Start-time Fair Queuing (SFQ) [10] discusses another drawback of the
WFQ scheme in their article on Start-time Fair Queuing. WFQ is sensitive
to fluctuations in available bandwidth and they show that WFQ can be
unfair regardless if the bandwidth increases or decreases. SFQ is proven
to have the same fairness bound as SCFQ and is also proven to handle
fluctuating server capacities by making assumptions on the disturbances.
The article introduces two disturbance models, the Fluctuation Constrained
(FC) server and the Exponentially Bounded Fluctuation Server (EBF).

The FC server has two parameters, C and J(C), which correspond to
the computational capacity of the server (per second) and the worst case
work loss the server can experience during one busy period. More formally,
if W(¢1,t2) denotes the amount of work done in such an interval, then

W(t1,t2) < Clt2 — t1) — 8(C) (31)

The EBF formulation makes a stochastic relaxation of FC and is defined
by C and ¢ as before, but also the parameters B, o and ¥, such that

P(W(t1,ta) < C(tg —t1) —6(C) —y) < Be™®7 (32)
y=>0 (33)

The results are also proven by experimental comparisons between WFQ
and SFQ. SFQ is also proven to have much lower maximum delay than
SCFQ and since it shares the fairness bound, SFQ is said to be strictly
better than SCFQ.

Borrowed Virtual Time scheduling (BVT) Duda et al makes another
change to the WFQ scheme in their article from 1999 on the Borrowed-
Virtual Time algorithm [8]. When using FQ for scheduling computer pro-
cesses, interactivity becomes an issue and the BVT aims to handle just
that.

22

400
350
300 |
250 |
200 - |
150 | e

g
Q
@,
3
o

0 ‘.o" ‘
0 15 30

Figure 15 Graph borrowed from [8]. The lower dotted line shows gec’s AVT if
it hadn’t been adjusted. It would then have starved bigsim for along time before
catching up. Y-axis shows AVT.

BVT distinguishes between virtual time, effective virtual time (EVT)
and actual virtual time (AVT). The AVT A; of a task is increased when
it by its running time divided by the weight r;. It also recognises context
switch costs by introducing a switching allowance C and switches to task

J when

a<a-C (34)

rl
From this it follows that the maximum deviation from fair CPU allowance
equals C + m, where m is the minimal time unit used in the system.

a;<a-C (35)

ri
The system handles sleepers by setting
A; :=max(A;,SVT) (36)

when the thread wakes up, where SVT (the Server Virtual Time) is the
AVT for any non-blocking task. This way, a daemon type task which spends
most of its time sleeping can’t monopolise the CPU forever once it wakes
up. Newly created tasks can be initiated in the same way. See figure 2.8
for an example of this.

Tasks which are interactive can be allowed to "warp" in time. They have
the additional parameters warp, W;, L; and U;, which here denotes if it
is allowed to warp, the amount of time it can warp, the warp time limit

23

and un-warp time requirement respectively. Warping affects a task’s EVT

as follows
A; =0
E; = warp (37)
A, —W,; warp # 0

L; controls how long a task 7; can stay warped (i.e. how long the warp
flag can be set) and U; the minimal amount of time warp must stay of
after having been set. By using warp, an interactive task can appear to
have been waiting to execute longer than it actually has and improve its
response time.

A multi CPU extension is presented where all CPUs have their own
run-queues where all tasks are included. EVT for a task in a specific CPU
run queue is here calculated as
E - {Al +M warp =0 (38)

Ai-W,+M warp # 0

where M is a migration penalty added if 7; ran on another CPU last.

The article goes into great detail in investigating how the parameters of
BVT can be used to tune the algorithm for different scenarios. Reservation
based results can be achieved by scaling m per task so that the desired
share is achieved, which is more or less equal to the dynamic weight ap-
proach for regular FQ algorithms.

The Completely Fair Scheduler (CFS) Recently, a new scheduler for
the Linux kernel was introduced by Ingo Molnar, the creator of the original
O(1)-scheduler used for the Linux 2.6 kernel series. The scheduler is named
"The Completely Fair Scheduler", but the design document recognises that
this is impossible on real hardware. The scheduling principle is simple,
each task is given a wait_runtime value which represents how much time
the task needs to run in order to catch up with its fair share of the CPU.
The scheduler then picks the task with the largest wait_runtime value. On
an imaginary completely fair system, wait_runtime would always be O.

The implementation of this is slightly less simple. Each CPU maintains
a fair_clock which tracks how much time a task would have fairly got
had it been running that time. This is used to timestamp the tasks and
then to sort them, using a red-black binary tree, by the key fair_clock
- wait_runtime. As with BVT, penalties are given for migrating to other
CPUs. Weights are also exists, but as is common in POSIX systems they are
called nice levels and have the reverse meaning (a nice process would have
a low weight). wait_runtime is also capped so that heavy sleepers won’t
get too far behind. As the scheduler isn’t released at the time or writing,
going into more detail is difficult as they are constantly changing.

One thing which is obvious from the general approach is that although
not explicitly stated, this looks a lot like the FQ algorithms, perhaps BVT
most obviously.

Comparison CBS and FQ Having introduced both the bandwidth server
and fair queuing approach to RBS, we can now compare the two methods
and see how they differ. The two schemes are compared in the 1999 arti-
cle by Abeni et al which we will use as basis for the comparison. First we
take a look at the interface they provide for reserving bandwidth. The CBS

24

dedicates an absolute share while FQ uses relative shares. FQ can emu-
late CBS but with the need to dynamically recalculate the weights when
a new task is admitted. FQ algorithms also typically provide bounds on
delay, which can be seen as a bound on what deadline requirements a new
task can pose. Both schemes have been extended with feedback to adjust
weights or bandwidth to achieve some QoS set-point. On the other hand,
FQ can more easily be used with mixed RT and non-RT tasks.

The run-time properties of the algorithms are also different. CBS doesn’t
use quantified time which makes it’s performance more consistent over
varying hardware platforms. FQ is on the other hand simpler to imple-
ment and most consumer OSes. FQ enforces fairness at all times while
CBS only guarantees bandwidth allocations between deadlines, making it
less conservative. The article makes the case that FQ isn’t suitable for CM
applications since it doesn’t have the notion of task period or deadline, but
one can argue that the maximum lag property of a FQ algorithm is a global
deadline guarantee, shared by all tasks currently in the system. It is how-
ever true that the maximum lag often depend on the number of tasks in
the system and the distribution of weights, making the temporal isolation
property of FQ less strong. The article also says that FQ would generate
lots of context switches in order to enforce fairness, something which isn’t
the case in general. Instead this depends on the typical job size. CBS will be
able to handle arbitrarily large job sizes while FQ uses some time quanta
for scheduling. However, as seen with e.g. the BVT algorithm, scheduling
allowances can be worked in to reduce the number of context switches, at
the cost of worse moment-by-moment fairness.

Latency-Rate Servers In the article "Latency-Rate Servers: A General
Model for Analysis of Traffic Scheduling Algorithms" by Stiliadis et al from
1996, a generalisation of different FQ algorithms are proposed. The class
of schedulers called Latency Rate servers (LR-servers) are defined as any
scheduling algorithm who guarantees an average rate of service offered to
a busy task, over every interval starting at time ® from the beginning of
the busy period, is at least equal to its reserved rate. ® is called the latency
of the server. A large set of the FQ algorithms fit into this class, including
WRR, WFQ and SCFQ. Even non-fair algorithms can qualify (one such
example is the Virtual Clock algorithm).

The article goes on to derive a number of results for this rather gen-
eral class of schedulers, including delay guarantees and fairness bounds.
One interesting result is that a net of LR-servers can be analysed using
one equivalent single LR-server. This can be useful when considering a
hierarchy of schedulers.

2.9 Scheduler Control Schemes

The semantics of real-time theory isn’t always easy to apply. As we have
discussed before, many CM type applications would get very conservative
values for WCET or deadlines compared to the average case, making the
case for using some sort of feedback scheme. Both CBS and FQ algorithms
have been modified to dynamically set server quota and weights respec-
tively to achieve robust and efficient RBS, other feedback schemes have
been examined.

25

Real-Rate Scheduling One of the first results in this direction was pub-
lished by Steere et al in 1999. The novel approach they take is that they
use some task output to measure the rate of progress and thereby elimi-
nate the need for the software designer to assign deadlines or CPU share
directly. They use a slightly modified Linux 2.0 series kernel augmented
with a RMS based RBS scheme. In the article, a task with no known period
or CPU share requirements but a measurable progress is called a real-rate
task. The example used in the article is a video pipeline with a producer
and a consumer. They exchange data via a queue, which fill level is the
metric used for progress. The scheduler samples the queue and decides if
either of the two are falling behind getting too far ahead. They use half
filled queue as the set-point and then design a PID controller to decide the
CPU share needed. Period is decided using some heuristics and is based
on the size of the share, lower share meaning longer period.

Controlling Linux in a Nice Way In 2005, Ohlin published his thesis
on using a Pl-controller to dynamically adjust the nice value of a process
in the Linux OS in order to achieve some predetermined bandwidth. At
the time, Linux 2.6 was still using Ingo Molnar’s O(1)-scheduler, which is
examined in detail in thesis. The scheduler has some features that makes
analysis tricky.

e It uses interactivity heuristics to determine which tasks are interac-
tive (I/O-bound) or not. Based on this, a task can receive a priority
bonus or penalty in the interval [—5,5].

e Nice values are inverted compared to priority levels

e Nice values are non-linearly mapped onto time slice sizes (see listing
1)

e Tasks tagged as interactive are handled differently when they have
used up their time slice.

A model for how to calculate the CPU share F; for task 7; from the nice
value n; is proposed as

ti(ni)

F= ———F— (39)

C 2 yti(ng)
where t;(n;) is the time slice for 7; given its nice value. If we have tasks
71,7T2,T3,T4 With corresponding nice values (ni,ng,n3,n4) = (0,0,0,—1),

they would get the time slices (¢1, t2,%3,t4) = (100,100, 100,420) ms. From
that we get that

_ 420
~ 100 + 100 + 100 + 420

Fy ~ 58% (40)

Experiments using a standard Linux desktop shows that this gives a correct
value within +1%. A controller is then implemented as a kernel module
which samples the statistics of a tasks and then sets a new nice value
by means of PI control. The reference value for a task is given through a
/proc interface. The approach works well and is also extended to handle
sleeping tasks. The transient behaviour when controlling several tasks si-
multaneously is however not investigated much. Studying the results when

26

Listing 1 Code for calculation of a task’s time slice, taken from
<kernel/sched.c> and <include/linux/sched.h>.

#define MAX_USER_RT_PRIO 100

#define MAX_RT_PRIO MAX_USER_RT_PRIO

#define MAX_PRIO (MAX_RT_PRIO + 40)

#define USER_PRIO(p) ((p)-MAX_RT_PRIO)

#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))

#define MIN_TIMESLICE max(5 * HZ / 1000, 1)

#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
#define DEF_TIMESLICE (100 * HZ / 1000)

/*

* task_timeslice() scales user-nice values [-20 ... 0 ... 19]
* to time slice values: [800ms ... 100ms ... 5ms]

*

* The higher a thread’s priority, the bigger timeslices

* it gets during one round of execution. But even the lowest
* priority thread gets MIN_TIMESLICE worth of execution time.

#define SCALE_PRIO(x, prio) \
max (x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)

static inline unsigned int task_timeslice(task_t *p)

{
if (p->static_prio < NICE_TO_PRI0O(0))
return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
else
return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
}

controlling two tasks reveals some inference when one of the tasks changes
its share. A possibly way to improve performance here would be to handle
this as a multivariable control problem.

27

3. Implementations of RBS

Presently, a number of free or open source implementations of RBS schemes
exists. Here follows descriptions of a few important initiatives.

3.1 OCERA

OCERA stands for Open Components for Embedded Real-time Applica-
tions, and is an European project, based on Open Source, which provides
an integrated execution environment for embedded real-time applications.
From a RBS point of view, OCERA offers a number of interesting compo-
nents. The OCERA code is based on the RTLinux extension.

The Generic Scheduler patch for Linux kernel 1t is a small patch for
the Linux kernel that provides "hooks" for modules implementing generic
scheduling policies. Our particular interest would be to use it to implement
a resource reservation scheduling module.

Integration Patch This patch makes the Preemptive Kernel Patch work
for RTLinux. The Preemptive Kernel work was done by Robert Love with
the aim of improving latency by making system calls possible to preempt.

Resource Reservation Scheduling module Thisis a dynamically load-
able module for the Linux kernel, that provides a resource reservation
scheduler for soft real-time tasks in user space. It uses a CBS based algo-
rithm, modified to handle some practical issues. It includes optional slack
reclamation functionality using the GRUB algorithm. The module provides
a new scheduling policy, SCHED_CBS.

Quality of Service Manager for Linux A QoS management services
module for the Linux kernel. This is more or less a controller who changes
the bandwidths according to scheduling error. The approach is more or less
that presented in 2.5.

Other work OCERA includes a large body of work which is not directly
related to RBS. Such work include Application-defined Scheduling (ADS),
enhanced memory allocation algorithms and a wide range of improvements
to the RTLinux kernel.

3.2 AQuoSA

AQuoSA stands for Adaptive Quality of Service Architecture and is another
initiative to bring QoS to the Linux kernel. It can be seen as based on
the work provided by OCERA and is partially sponsored by the FRESCO
European project (Framework for Real-time Embedded Systems based on
COntRacts). Structure wise it retains the components used by OCERA.

3.3 Xen

Virtualisation technologies makes it possible to partition a physical com-
puter into several logical instances, each one running a separate operating
system that thinks it is running alone on the hardware. The layer beneath
the OS layer is sometimes called the hypervisor layer as it uses a spe-
cial mode enabled in modern CPUs called the hypervisor mode. Xen is an
open source hypervisor created in 2003 at the University of Cambridge in
a project headed by Ian Pratt.

28

Highest Priority q Lowest Priority
Domain X Root Domain Domain Y

Figure 16 A schematic over the Adeos interrupt pipe. Taken from the paper "Life
With Adeos"

Architecture A Xen system has multiple layers, the lowest and most
privileged of which is Xen itself. Xen can host multiple guest operating
systems, each of which is executed within a virtual instance of the physical
machine, a domain. Domains are scheduled by Xen and each guest OS
manages its own applications. This makes up a hierachy of schedulers with
the Xen scheduler on top.

Xen supports several top level schedulers, including EDF and BVT. Xen
2 also supported the Atropos scheduler, but this has been removed in Xen
3.

3.4 Xenomai

Xenomai is a real-time development framework cooperating with the Linux
kernel, in order to provide a pervasive, interface-agnostic, hard real-time
support to user-space applications, seamlessly integrated into the GNU/Linux
environment. It is an alternative to RTLinux and RTAI and is a possible
platform for developing RBS schemes. It was launched in 2001 and in 2003
merged with the RTAI project. The projects split again in 2005, going after
separate goals.

It achieves superior RT performance compared to regular Linux while
still allowing regular applications. The RT kernel is a small, efficient run-
time which executes the Linux kernel as a low priority task. Real-time
tasks will then be run by the RT kernel, next to the Linux kernel. The
Xenomai kernel also provides an API with extensive support for real-time
primitives that the Linux kernel lack, including support for periodic task
models. Xenomai uses a hypervisor called Adeos, which is a lot like the Xen
hypervisor but focuses on real-time performance. Specifically it is used to
handle interrupts so that even if a Linux process has requested interrupts
to be turned off, the RT-tasks will be able to pick them up. See figure 3.4.

3.5 Class-based Kernel Resource Management (CKRM)

The CKRM project aims to created a framework for providing differentiated
services to resources such as CPU, memory and I/O. This means that
not only can a process reserve a certain CPU bandwidth, they can also

29

reserve I/O bandwith, memory access etc. The class concept is used to
group together tasks with similar goals and similar importance and in
that way govern their right to resources. Each class is associated with
a set of controllers responsible for managing access to the resources. The
project changed named to Resource Groups lately, but have been somewhat
coldly received on the LKML, mainly motivated with it being a very large
patchset. This is something which may be fixed with the Generic Process
Container patchset.

3.6 Generic Process Containers

This is a patchset which has seen a positive reaction on the LKML, aiming
to do similar things as CKRM, but by extending cpusets, a construct already
in the Linux kernel. The patchset extracts the process grouping code from
cpusets into a generic container system, and makes the cpusets code a
client of the container system. The intention is that the various resource
management and virtualization efforts can also become container clients,
with the result that

e the userspace APIs are (somewhat) normalised

e the additional kernel footprint of any of the competing resource man-
agement systems is substantially reduced, since it doesn’t need to pro-
vide process grouping/containment, hence improving their chances of
getting into the kernel

3.7 Resource Kernels and Linux/RK

A more formal approach to what CKRM tries to accomplish has been sug-
gested by Rajkumar et al in their work on Resource Kernels. This was in-
troduced in their article "Resource Kernels: A Resource-Centric Approach
to Real-Time and Multimedia Systems" [19]. The article tries to solve a
number of problems associated with multi-resource reservations, including
the computational complexity of such a system, which has been shown to
be an NP-complete problem.

Design Requirements The ambition of the project becomes evident from
studying the goals set down for the design of the kernel. In short, they are
as follows

¢ G1. Timeliness of resource usage. An application which has made
a reservation must be given access to it promptly when needed. An
application must also be able to up and downgrade its resource usage
(for adaptation and graceful degeneration purposes).

e G2. Efficient resource utilization. By this, we mean that the
OS must be able to satisfy G1 while making as few restrictions as
possible. E.g. it is possible to satisfy G1 by only allowing one process
at a time, regardless of how small reservations it wants to make.

¢ G3. Enforcement and protection. The enforcement of resources
should be such that abuse by one application does not hur other ap-
plications.

e G4. Access to multiple resources. Access to multiple resources by
the same process must be possible.

30

e G5. Portability and automation. Applications should ideally be
able to specify their resource requirements regardless of hardware
(e.g. the CPU clock frequency). In addition, resource demands should
be automatically tunable.

e 6. Upward compatibility with fielded operating systems. The
resource kernel should provide support for regular OS services such
as regular scheduling algorithms, real-time structures with priority
inheritance etc.

Reservation Model The Resource Kernel uses the parameters C, T, D,
S and L with the meanings of a computation time C every T' time-units
within a deadline D from the start time S over an allocation life-time L.
The semantics allow for several types of reservations:

e Hard reservations. A hard reservation will not be replenished on de-
pletion, even if possible.

e Firm reservations. Such a reservation will be replenished if all other
reservations are depleted.

e Sort reservation. Will be replenished if possible, even if other non-
depleted reservations exist.

Portable RK In the article "Portable RK: A Portable Resource Kernel for
Guaranteed and Enforced Timing Behavior" [18], a portable implementaion
of the Resource Kernel concepts is presented and shown how to work on the
Linux kernel. It is considered portable since it doesn’t require any changes
to the OS code itself if given access to

¢ a fixed-priority scheduler
e an interface to change the priority of running tasks
¢ an interface for suspending and resuming jobs

¢ an interface for acquiring events within execution objects, needed for
accounting reserves

The first three are available from most modern OSes, while the last re-
quired some hooks to be inserted in the Linux kernel. The article states
that investigations for how to use the native debugging interface could be
exploited for these purposes and remove the need for modifying the OS.
Arguably, the solution isn’t entirely portable yet.

31

4. References

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

32

Luca Abeni and Giorgio Buttazzo. Adaptive bandwidth reservation for
multimedia computing. rtcsa, 00:70, 1999.

Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and Jonathan Walpole.
Analysis of a reservation-based feedback scheduler. In RTSS °02: Pro-
ceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS’02),
page 71, Washington, DC, USA, 2002. IEEE Computer Society.

David P. Anderson, Shin Tzou, Robert Wahbe, Ramesh Govindan, and
Martin Andrews. Support for continuous media in the dash system.
Technical report, Berkeley, CA, USA, 1989.

Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosie. Preemptively
scheduling hard-real-time sporadic tasks on one processor. In rtss,
volume 00, pages 182-190, Los Alamitos, CA, USA, 1999. IEEE
Computer Society.

Anton Cervin and Johan Eker. The control server: A computational
model for real-time control tasks. ecrts, 00:113, 2003.

T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, and L. Abeni.
Adaptive reservations in a linux environment. rtas, 00:238, 2004.

A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a
fair queueing algorithm. In SIGCOMM °89: Symposium proceedings
on Communications architectures & protocols, pages 1-12, New York,
NY, USA, 1989. ACM Press.

Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time (bvt)
scheduling: supporting latency-sensitive threads in a general-purpose
scheduler. SIGOPS Oper. Syst. Rev., 33(5):261-276, 1999.

S. Jamaloddin Golestani. A self-clocked fair queueing scheme for
broadband applications. In INFOCOM °94. Networking for Global
Commaunications. 13th Proceedings IEEE, pages 636—646 vol.2, 1994,

Pawan Goyal, Xingang Guo, and Harrick M. Vin. A hierarchial cpu
scheduler for multimedia operating systems. In OSDI °’96: Proceedings
of the second USENIX symposium on Operating systems design and
implementation, pages 107-121, New York, NY, USA, 1996. ACM
Press.

Ralf Guido Herrtwich. The role of performance, scheduling and
resource reservation in multimedia systems. In Proceedings of the
International Workshop on Operating Systems of the 90s and Beyond,
pages 279-284, London, UK, 1991. Springer-Verlag.

Kevin Jeffay and Steve Goddard. A theory of rate-based execution.
rtss, 00:304, 1999.

H. Kaneko, J.A. Stankovic, S. Sen, and K. Ramamritham. Integrated
scheduling of multimedia and hard real-time tasks. rtss, 00:206, 1996.

Caixue Lin and Scott A. Brandt. Improving soft real-time performance
through better slack reclaiming. rt¢ss, 0:410-421, 2005.

[15] Giuseppe Lipari and Sanjoy Baruah. A hierarchical extension to the
constant bandwidth server framework. In RTAS °01: Proceedings of the
Seventh Real-Time Technology and Applications Symposium (RTAS
’01), page 26, Washington, DC, USA, 2001. IEEE Computer Society.

[16] Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda. Processor
capacity reserves for multimedia operating systems. Technical report,
Pittsburgh, PA, USA, 1993.

[17] J. B. Nagle. On packet switches with infinite storage. pages 136-139,
1988.

[18] S. Oikawa and R. Rajkumar. Portable rk: A portable resource kernel
for guaranteed and enforced timing behavior. rtas, 00:111, 1999.

[19] Raj Rajkumar, Kanaka Juvva, Anastasio Molano, and Shuichi Oikawa.
Resource kernels: a resource-centric approach to real-time and multi-
media systems. pages 476—490, 2001.

[20] C. A. Waldspurger and E. Weihl. W. Stride scheduling: Determinis-
tic proportional- share resource management. Technical report, Cam-
bridge, MA, USA, 1995.

[21] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexible
proportional-share resource management. 1994.

33

