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Algebraic Control Theory

The theory of multivariable, linear, time invariant systems
has developed rapidly during the last two decades. The theory
may be divided into analysis of dynamical systems and design
of controllers for dynamical systems. Algebraic concepts are
playing an important role in the theory for both analysis and
design. One advantage of the algebraic approach is that it
often allows a simultaneous treatment of continuous and
discrete time systems. The algebraic approach was introduced
by Kalman in a series of papers leading to part 4 of Kalman,
Falb, Arbib (1969).

In part 4 of Kalman, Falb, Arbib (1969) Kalman presents an
abstract theory for the analysis of linear, multivariable
systems. He regards the state space of the system as a module
over the polynomials and studies problems concerning realiza-
bility, controllability and observability. Another approach
is presented in Rosenbrock (1970). Rosenbrock starts with a
polynomial matrix description of a system. The system is
analysed with algebraic methods and the concepts of control-
lability and observability appear in the form of decoupling
zeros. The connection between the works of Kalman and Rosen-
brock is not immediately clear. It has, however, to some
extent been clarified by Fuhrmann (1976) and (1977). A third
approach to the theory for analysis of linear, time invariant,
multivariable systems was presented in a series of papers by
Wonham and Morse, leading to Wonham (1975). In Wonham (1975)
the system is supposed to be described in state space form

and linear vector space algebra is used for the analysis.

A variety of design methods for multivariable systems has

been developed. The linear quadratic control method,
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originated in Kalman (1960), is one of the most widely
spread. It is described in many boocks, e.g. in Anderson,
Moore (1971). The method leads to a state feedback control
law and has been followed by other design methods that use
state feedback, e.g. pole placement and the method in Wonham
(1975) . Wonham studies the output regulation problem and the
noninteraction problem from a purely algebraic point of view.
The design method is based on the vector space algebra of
Wonham (1975). All the methods that lead to state feedback
use dynamic observers if the state cannot be measured. In
Wolovich (1974) the polynomial matrix analogue of linear

state feedback and observer theory is developed.

The design methods, developed by Rosenbrock (1974) and Mac
Farlane, Belletrutti (1973), are of a completely different
type. Both methods are generalizations of the frequency
domain methods for scalar systems by Nyquist and Bode. The
idea is to use compensators which make the system "almost
diagonal" and use classical theory to design scalar control-

lers in each loop.

In this thesis a purely algebraic approach is taken and
contributions are made to the theory of both analysis and
design. Part I and part II of this thesis can be read inde-

pendently of each other.

Analysis

The two main concepts in the theory for analysis of dynamical
systems are the system description and the equivalence rela-

tion. Examples of system descriptions are state equations and
higher order differential equations. The system description

must be general enough to cover all systems of interest. When
a system description has been chosen a fundamental problem is
to determine 1f two different sets of equations represent two
different systems or if they can be regarded as two represen-

tations of the same dynamical system. In other words, an
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equivalence relation should be defined. When this is done
the equivalence classes can be identified with the dynamical
systems. It is of great interest to determine the invariants
under equivalence because invariants represent properties of
the system and not only properties of its representations.
It is of course desirable to determine a complete set of
invariants, because this set would completely describe the
dynamical system. This seems to be a difficult problem that
is not yet solved for the most commonly used equivalence

relations like e.g. state transformations.

In the so called classical control theory a system was
described by a transfer function. The equivalence relation
was trivial and never mentioned formally. Each equivalence

class consists of only one transfer function.

At the beginning of the sixties state space equations-were
introduced to describe a dynamical system. All state equa-
tions that can be obtained from a given set of state equa-
tions through coordinate changes in the state space are con-
sidered as equivalent. It was found that equivalent state
equations have the same transfer function but the converse
is not true. It was shown by Kalman that the reason is that
there exist uncontrollable and unobservable parts of the
state space. These parts are invariant under equivalence,

but do not affect the transfer function.

Are the state equations a system description that is general
enough to cover all cases of interest? The question was
asked by Rosenbrock and answered with "no". State equations
are equations of first order, but the differential equations
that describe a physical system may be of higher order. In
Rosenbrock (1970) a polynomial system matrix is introduced

as a system description. The polynomial system matrix is

general enough to cover sets of high order linear differential

equations as well as state equations. Rosenbrock defined an

equivalence relation, called strict system equivalence (s.s.e.),

based on the transformations that were usually employed in
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order to bring a system of high order differential equations
to state space form. It was shown that all invariants under
coordinate changes in the state space are also invariants
under s.s.e. This result gives these invariants a much more
general validity. They are not introduced by the transforma-
tions that are employed when the high order equations are

brought to state space form.

Rosenbrock’s polynomial system matrix is general enough to
describe linear, time invariant, finite dimensional, conti-
nuous time systems. Is the polynomial system matrix general
enough to describe discrete time systems? The question is
answered with "no" in part I of this thesis. The differential
operator in the description of continuous time systems is
replaced by the forward shift operator in the description of
discrete time systems. A polynomial system matrix can there-
fore be used only to describe difference equations containing
variables that are shifted forward in time. The difference
equations that describe a physical system do, however, often
contain past values of the variables. Such equations can not

be represented by a polynomial system matrix.

In part I of this thesis a Laurent polynomial system matrix
is introduced. A Laurent polynomial is a finite linear combi-
nation of positive and negative powers of the indeterminate.
The Laurent polynomial system matrix is general enough to
describe difference equations containing both past and

future values of the variables as well as state equations.

An equivalence relation is defined. The definition is based
on the transformations needed to bring a set of difference
equations, containing both past and future values of the
variables, to state space form. The equivalence transforma-
tions include both forward and backward time shifts of the
equations and the variables. Such transformations were intro-
duced and investigated in Sinervo, Blomberg (1971). It is
shown that the invariants under coordinate changes in the
state space are not invariant under the equivalence relation

defined here. This means, for instance, that a part of the
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uncontrollable or unobservable part of the system, as defined
in the state space framework, may have been introduced by

the transformations that were used to bring the equations to
state space form. This is clearly an unsatisfactory situation.
Concepts like for instance the system order, controllability
and observability are therefore redefined so that they become

invariant under the equivalence relation.

Design

Assume that a dynamical system is given. It is then of inte-
rest to construct a theory that shows what can be achieved if
a controller is applied to the system. Two issues are of
fundamental importance in such a theory. The first issue is
to determine a realistic system description. It has to be
determined how the system interacts with its environment. It
should, for instance, be specified which variables that can
be measured and which control variables that are available.
The description should be general enough to cover all cases
of interest. The second issue is to clearly specify the class

of admissible controllers.

When the system description and the class of admissible con-
trollers have been specified a suitable mathematical machinery
has to be chosen. The most important requirement on the mathe-
matical machinery is that it should be matched to the class of
admissible controllers. It should be such that the admissible
controllers are separated from the nonadmissible in a natural

way.

A design theory, of the type outlined here, is presented in
part II of this thesis. The theory covers both continuous
time and discrete time systems. The given dynamical system is
assumed to be described by the input-output relation of the

box § in figure 1.
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e Y.
u S Z

Figure 1. The given dynamical system.

The system is supposed to be linear, time invariant, finite
dimensional and causal. It interacts with its environment in
the following way. The input u is the control input and e is
a nonmeasurable disturbance. The output y consists of the
variables to be controlled and z consists of the measured
variables. The class of admissible controllers consists of
all linear, time invariant, finite dimensional and causal
controllers R that stabilize the system in figure 2. The in-

put uy is a command input.

U e > ___X__’
F. F? u

Figure 2. The control configuration.

A mathematical structure that suits the chosen class of
admissible controllers is the ring of generalized polynomials.
A generalized polynomial can be identified with a stable and
causal rational transfer function. The ring of generalized
polynomials is a principal ideal domain and many useful re-
sults for principal ideal domains are available in the litera-

ture on algebra.

In the design theory of part II of this thesis it is examined
what can be achieved if admissible controllers R are applied
to a given system S as in figure 2. The class H of achievable
transfer functions from u,. toy and the class F of achievable

transfer functions from e to y are determined. It is shown




15

that H and F are independent in the following sense. For any
H€ H and F € F there is an admissible controller R, such
that the transfer function from u,. toy is H and the transfer
function from e to y is F. The servo problem is solved in the
following way. Necessary and sufficient conditions are given
for H to contain certain types of transfer functions, e.g.
diagonal transfer functions. The regulator problem is solved
in an analogous way. Necessary and sufficient conditions are
given for F to contain certain types of transfer functions,
e.g. transfer functions which do not transmit certain speci-
fied disturbances, or transfer functions with poles within a

specified region.
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1. INTRODUCTION

The idea of using polynomial matrices to describe linear,
time invariant, multivariable systems was introduced by
Rosenbrock. In Rosenbrock (1970) the analysis is mainly
done for continuous time systems. Discrete time systems are
only discussed briefly. In part 1 of this thesis discrete
time systems are analysed from a point of view that is

slightly different from Rosenbrock's.

Many authors have considered discrete time systems. Kalman,
in Kalman, Falb, Arbib (1969), introduces a module theoretic
approach and the analysis is made from an input-output point
of view. Fuhrmann (1976) and (1977) generalizes this to
internal system descriptions and gives the connection to
Rosenbrock's work. The algebra, used by Fuhrmann to describe
discrete time systems, is the same as the algebra for con-

tinuous time systems.

There is a connection between the spaces used to describe
the input and output signals and the system algebra. This
was emphasized in Sinervo, Blomberg (1971). It is shown
that it is reasonable to use different algebras for discrete
and continuous time systems. This point of view is adopted

in this thesis.

Consider a linear, time invariant, discrete time system,
described by a set of difference equations. The equations
may contain both future and past values of the variables.

Therefore, the system can be written as
T(q)& = U(g)u (1.1 a)
y = V(@& + W(g)u, (1.1 b)
where ¢ is the forward shift operator, defined through
gx(t) = x(t+l). (1.2)

Furthermore, T(qg), U(g), V(g) and W(g) are matrices, with

entries that are Laurent polynomials. A Laurent polynomial is a
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finite linear combination of positive and negative powers
of g. The formal definition is made in Chapter 2. The matrix

T(q) is assumed to be square and have a nonzero determinant.

The system (1.1) is not included in the polynomial matrix
description in Rosenbrock (1970) since negative powers of g
are allowed. It is natural to allow negative powers of ¢
because they give a causal relationship between the variables.
Observe that if the entries of V(g) are polynomials of non-

zero degree, then y does not depend causally on §&.

For polynomial systems of the form (1.1) Rosenbrock (1970)

defines concepts like the order of the system and decoupling
zeros, i.e. uncontrollable or unobservable modes. A system
matrix is introduced and an equivalence relation, called
strict system equivalence (s.s.e.), is defined. It is desir-
able to make corresponding definitions for the Laurent poly-
nomial description (1.1). This is done in this thesis in the

following way.

Before the system order and the controllability and observ-
ability concepts are defined a state of the system will be
defined. The state of the system is "the least amount of
information that is needed to determine the future behaviour
of the system if the future input is known". It has to be
decided what is meant by "the future behaviour of the system".
This can only be done if the vector spaces for the time
sequences u, &, and y have been specified. Different possible
vector spaces are discussed in Sinervo, Blomberg (1971). In
Chapter 3 of this thesis it is shown that it is reasonable to
use the space of all R¥-valued time sequences, defined on all
positive and negative integers. When this choice has been
made the solutions to the difference equations (1.1) can be

analysed and a state can be defined.

»Based on the definition of the state the definitions of the
system order, decoupling zeros, controllability and observ-

ability indices are made in Chapters 3 and 4. stability and
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causality are also defined from the solutions of (1.1). It
is shown how all these definitions can be expressed in terms
of the matrices T(qg), U(g), V(g) and W(qg).

In Chapter 4 the system matrix is introduced as in Rosenbrock
(1970) and an equivalence relation is defined. The equiva-
lence relation is defined so that there is an isomorfism
between the sets of solutions to equivalent systems. This
implies that the definitions above, which are based on the
solutions to (1.1), are invariant under equivalence. It is
shown that the equivalence relation can be described in the
same way as s.s.e. The only difference is that Laurent poly-
nomials are substituted for the ordinary polynomials. The
analysis of the equivalence relation is very similar to the
analysis of s.s.e. The reason is that the Laurent polynomials
as well as the ordinary polynomials form a principal ideal

domain.

The equivalence relation is more powerful than s.s.e. in the
sense that the equivalence classes are larger. It is shown in
Chapter 4 that each equivalence class contains systems in
polynomial form and in state space form. It also includes
systems where the entries of T(q), U(g), V(g) and W(g) are
polynomials in the backward shift operator g~l. In some cases
it is suitable to use the polynomial form in q_l. An example
is the development of the minimum variance controller in
Astrdm (1970). In other cases the polynomial form in g or the
state space form is more suitable. It is therefore valuable
to have an equivalence relation where each equivalence class

contains all these forms.

It is possible to find certain simple forms of the system
matrix in each equivalence class. In Chapter 4 it is shown
how the system order, the decoupling zeros, the controllabi-
lity and observability indices easily can be computed and how
stability and causability can be checked from these forms of

the system matrix.
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Finally, it should be noted that the theory in part I of
this thesis can be generalized in a straightforward manner.
Generalized polynomials, as defined in part II, can be used
instead of Laurent polynomials to describe the systems. The
equivalence relation, as well as all definitions, should
then be modified analogously. This would give a unified
theory for systems described by system matrices. In parti-
cular the theories for analysis in Rosenbrock (1970) and in
part I of this thesis would be included as special cases.
Furthermore, a theory which disregards stable uncontrollable
or stable unobservable modes would be obtained. Such a theory
might be useful for design purposes. Some ideas in this

direction are used in part ITI of this thesis.
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2. PRELIMINARIES

In section 2.1 we will define Laurent polynomials. It is
shown that they form a ring with essentially the same
properties as the ring of polynomials. The Laurent
polynomials will be used to describe linear dynamical
systems. In section 2.2 two different vector spaces of
time sequences are introduced. The action of the shift

operator on elements in these spaces is analysed.

2.1 Laurent polynomials

Let R denote the field of real numbers, Z the ring of

integers, 2 the positive integers and the non-

+ 20+
negative integers. Furthermore let R[x] denote the ring
of polynomials in the indeterminate x with coefficients

in R, 1i.e.

1l
I™MB
o]
[
>
g}
m
Py
B
m
[NV

R[x] = { p(x)|p(x) i ot |

Def. 2.1.1 The set of Laurent polynomials R(x] is defined

as

m
R(x] = { a(x)]a(x) = = a,x’, a; €R, n,m€ Z, m>n }

Remark. Observe that R(x] is a subset of R(x), rational

functions.

Addition and multiplication in R(x] are defined as in R(x).

It is easy to verify that R(x] is a ring.

Theorem 2.1.1 R(x] 1is an euclidean domain.

Proof. We have to verify that R(x] is an integral domain

and that there is a function v from the nonzero elements

of R(x] into the nonnegative integers such that
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(i) For all pairs a,b from R(x] for which b # 0 there
exist g and r in R(x] such that a = bg+r and

either r =0 or v(r) < v(b).

(ii) For all pairs a,b from R(x] for which a # 0, b # 0,

v(a) < v(ab).

That R(x] is an integral domain is obvious. An element a

in R(x] can be written

with aj € R and a, #Z 0 and a # 0. Define v(a) = m-n,
then (ii) is satisfied. Using the division algorithm for
polynomials it is easy to see that also (i) is satisfied.

[m}

kp (x) ’

Every Laurent polynomial a(x) can be written a(x) =x
where p(x) is a polynomial with p(0) # 0 and k € Z.

Of course p(x) is uniquely determined by a(x).

Def. 2.1.2 The degree of a Laurent polynomial a(x) is

defined as the degree of the polynomial p(x) and denoted
deg a(x), while deg p(x) denotes the degree of the poly-
nomial p(x).

Remark. The degree of a € R(x] is equal to +v(a) in the
proof of theorem 2.1.1.

Def. 2.1.3 The zeros of a Laurent polynomial a(x) are

defined as the zeros of the polynomial p(x).

Remark. Note that a Laurent polynomial has no zeros at

the origin.

Since every euclidean domain is a principal ideal domain

it follows that R(x] 1s a principal ideal domain.




This insures that matrices with entries in R(x] have

properties analogous to those with entries in R[x].

Let Rnxm(x] denote the set of all nxm matrices with
entries in R(x].

nxn(

Def. 2.1.4 A matrix A € R x] is unimodular if there

is a B € Rnxn(x] such that AB = I.

It is well known (e.g. MacDuffee (1946)) that a matrix is

unimodular if and only if its determinant is a unit in the
ring of its entries. The units of R(x] are Laurent poly-
nomials of the form cxk, where ¢ € R~ {0} and k € Z.
Therefore we have:

Theorem 2.1.2 A matrix A € RV
and only if det A = cxk, where ¢ € R~ {0} and k € Z.

x] is unimodular if

Remark. If A is a polynomial matrix, then it is unimodular
if and only if det A = ¢, where ¢ € R~ {0}. It is thus
important to clearly state if a matrix is unimodular as a
polynomial matrix or as a Laurent polynomial matrix. The
matrix diag(x,l) is for instance a unimodular Laurent

polynomial matrix, but not a unimodular polynomial matrix.

Def. 2.1.5 The matrices A,B € RV M (x] are equivalent if
there are unimodular matrices U € RV " (x] and V € RV (4]

such that A = UBV.

Since R(x] is a principal ideal domain the following
result is true (e.g. MacDuffee (1946)).

nxm(

Theorem 2.1.3 Every matrix A € R x] 1is equivalent to

a matrix S of the form
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s = (D 0 ) if m>n
S =D if m=n
D
S = if m<n
0
wh D = di (4 i i 0 0) {1 }k lled
ere = diag(i;, i,,...,1y, y e ooy . lj =1 are calle

invariant factors and have the property ij]i The

j+1°
invariant factors are unique up to units in R{(x].

The matrix S 1is called the Smith form of A. Let us
require that {ij} are polynomials with leading coefficient
1 and ij(x) #0 for x = 0,Y¥j. The Smith form is then
unique.

nxm(x] .

Let A belong to R The following operations on A

are called elementary row operations.
o Multiply a row by a unit in R(x], i.e. by cxk,
where ¢ € R~ {0}, k € Z. (2.1.1)

o Add a multiple by a Laurent polynomial of one row to

another row. (2.1.2)
o Interchange any two rows. (2.1.3)

It is clear that any elementary row operation can be

obtained by multiplying A from the left by a unimodular
matrix. Conversely, since R(x] is a euclidean domain,
multiplication of A from the left by a unimodular matrix
gives a matrix which can be obtained by performing elementary
row operations on A (MacDuffee (1946)). Corresponding
results are true for elementary column operations and

multiplication from the right by a unimodular matrix.

The Laurent polynomial matrices T(x) and U(x) are said
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to be relatively left prime if the only common left

divisors are unimodular Laurent polynomial matrices.

The following theorem is formulated and proven for poly=-

nomial matrices in Rosenbrock (1970).

Theorem 2.1.4 Let T(x) and U(x) be respectively rxr

and rxf Laurent polynomial matrices with det T(x) # 0.

The following conditions are equivalent.

(1) T(x) and U(x) are relatively left prime.

(ii) The rank of (T(x) U(x)) is r for all nonzero

complex x.
(iii) The Smith form of (T(x) U(x)) is (I 0).

(iv) There exist Laurent polynomial matrices V(x) and
W(x), respectively &xr and &x% such that the
matrix

T (x) U (x)

-V (x) W (x)
is unimodular.
(v) There exist relatively right prime Laurent polynomial

matrices X(x) and Y(x), respectively rxr and
2xr, such that

T(x) X(x) + U(x) Y(x) = I

Proof. The theorem is proven as in Rosenbrock (1970), theorem
6.1 with the difference that all concepts related to polyno-
mial matrices should be substituted by the corresponding

concepts for Laurent polynomial matrices.
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2.2 Shift operators and signal spaces

Let R" be the vector space of n-tuples with components

in R.

Def. 2.2.1 Let RE be the set of all functions from %
to RD.

Remark. RE is a vector space over R if all operations

are defined pointwise.

n n .
Def. 2.2.2 Let RZ be a subspace of RZ given by

€7 such that t<t, = u(t) =0 }.

_ n
= { u€R, |3 ¢t 0

0

Def. 2.2.3 The shift operator q is defined as a map from
R to R by

qu(t) = u(t+l) u € R

Positive and negative powers of the shift operator are

defined in the obvious way

qku(t) = u(t+k), k € 7.

A Laurent polynomial in the shift operator is now defined

as

. m
< a; ql> u(t) = = aiu(t+i) n,m € Z.
i=n i=n

The sets of polynomials and Laurent polynomials in the shift

operator are denoted RI[q] and R(g] respectively. Observe

that R(qg l] is equal to R(gl]. If al(g) € R(g] then al(q)

is a linear map from R} to R? and the restriction of

Z
oY A T

a(q) to Rg is a linear map from R? to Rz. It is of

fundamental importance to determine which of these linear

maps that are bijective. In Sinervo, Blomberg (1971) the

following two theorems are proved.
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Theorem 2.2.1 Regard af(g) € R(g] as a map from Rg to

RD. Then al(q) is bijective if and only if it is of the

form afqg) = c qk, c € R~ {0} and k € 7Z.

Remark. The theorem says that a(g) € R(g] is bijective

if and only if it is a unit in R(ql.

—
Theorem 2.2.2 Regard a(g) € R(g] as a map from Rg to

Eg. Then af(g) is bijective if and only if it is nonzero.

Remark. The last result may by a first sight seem strange.
Observe, however, that the equation (g+b)u=0, bER ~ {0},

. (g5
has only the solution u =0 1in RE.

The last two theorems show how important it is to specify
the signal spaces. Let al(q) be a bijective map. Then the

two equations

al(q) a2(q) y = al(q) b(g) u u given

and

have exactly the same solutions. In other words it is
possible to cancel common factors if they represent bijec-
tive maps. Because of theorem 2.2.2 it also makes sense to

represent the solution y to the equation

a(gq) vy = b(g) u u given

as

. . . £n
if we are working with the space Rz'

PN (q] can be regarded as a linear map
)

A matrix A(g) € R
e

from R to R or from R to R
z Z z z

We will now

generalize theorems 2.2.1 and 2.2.2 to matrices A(q)EﬁRnxn(

ql.
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Theorem 2.2.3 Regard A(qg) € Rnxn(q] as a map from RE

to RZ. Then A(q) 4is bijective if and only if it is

unimodular.
Proof. Suppose A(gq) is unimodular. Then by definition
A_l(q) € Rnxn(q]. Therefore A-l(q) is a linear map from
Rg to RQ. A(g) 1is surjective because for any v in Rg
the element A_l(q)v € Rg is mapped by A(g) to v. A(q)
is injective because if A(g)u = 0 then A-l(q)A(q)u =0,
i.e. u = 0.
Conversely suppose that A(g) 1s not unimodular. Then there
is at least one z € C ~ {0} such that det A(z) = 0 and
an u # 0 such that A(z)uO = 0.
We have A(z)uO =0 e A(z)uO =0 e A(z)uO = 0.
Choose u = uozt + EOEt € Rg then A(q)u = A(z)uozt-FA(E)ﬁOEt =
= 0. I.e. A(qg) is not injective.

m]
Theorem 2.2.4 Regard A(g) € Rnxn(q] as a map from IE— to

n
el z
Rz' Then A(g) is bijective if and only if det A(g) # 0.

Proof. Suppose det A(g) # 0. Then A—l(q) can be computed
and A_l(q) € Rnxn(q), matrices whose elements are rational
functions in g, which by theorem 2.2.2 are well defined

linear maps from @; to @;. Therefpre A—l(q) is a well
defined map from ﬁz to EE. That A(g) is bijective

follows as in the proof of theorem 2.2.3.

Conversely suppose that det A(gq) = 0. Suppose A(g) has

rank m, which is less than n. Then there is a nonzero minor
of order m. Without loss of generality we can suppose that
the upper left mxm submatrix has nonzero determinant. Then

A(g) can be partitioned as

All (q) AlZ (q) }

A(q) =
Ayq (@) A, , () J
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where All(q) is an mxm matrix and det All(q) # 0.
Furthermore the last n-m rows are linear combinations of
the first m rows. I.e. there is a rational (n—-m) xm

matrix B(g) such that

B(q) All(q) Alz(q)} = [Azl(q) Azz(q) (2.2.1)

f_n-m

Let u, be an arbitrary nonzero element in RZ By the
first part of the proof there is a unique solution
om .

Uy € RZ to the equation

App(@) vy = A (9) u, (2.2.2)

—m n-

Now, B(g) is a well defined linear map from R? to R; m
Therefore (2.2.2) implies

Bla) A;(q) uy = -B(a) A, (q) u,
or by (2.2.1)

From (2.2.2) and (2.2.3) it now follows that
Binl@) Ay @ 1

Barla)  Ayyla) Uy

Since U, #0 1t follows that A(g) is not injective.
0

nxm(

Theorem 2.2.5 If A(g) € R x] then

—
A(gq) u=0 VY ue€ Rg = A(g) =0

Proof. Choose the i:th component of u equal to 1 at t =0

and equal to 0 for all other +t. Let all other components
of u be equal to 0 for all t € Z. Then A(g) u = 0 implies
that the i:th column of A(g) 1is zero. Repeat the argument

for every i. o




Remark.

—
for R?
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The theorem is true even if Rg is substituted

since

om

R
z

m

< R
z
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3. LINEAR TIME INVARIANT SYSTEMS

The class of systems to be considered is defined in section
3.1. In the following sections the concepts of system
order, stability, causality, controllability and observ-
ability are defined. The definitions are made using only
the time sequences of the system, i.e. the input, the
internal variable and the output. It is then shown how the
definitions can be expressed in terms of the matrices used

to describe the difference equations.

3.1 The system description

The systems tobe considered here are described by the

difference equations

T(g) g = U(q)u (3.1.1a)
y =V(g)g + W(g)u, (3.1.1b)
where T(q) € R"“(q], u(q) €rR"*(ql, V(g erRVT(q],
W{q) ERmxz(q], 116?%, £ ERé, and y‘ERg. Furthermore
det T(gq) # 0. Here u 1is regarded as a given input and &

is a solution to (3.1l.la) and is called the internal variable.
Finally vy, called the output, is uniquely given by & and

U.

The system description (3.1.1) differs from that of Rosenbrock
(1970) in that we allow the matrices T(g), Ul(g), V(g), and
W(g) to be Laurent polynomial matrices while Rosenbrock
demands them to be polynomial matrices. The restriction to
polynomial matrices may cause trouble if we want to write

down the eguations for a given physical system. It may very
well happen that the output depends on old values of the
internal physical variable. This situation cannot be handled
if V(g) 4is restricted to be polynomial. The problem may be

circumvented if we make a time translation of the internal
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variable. This is however not a transformation of strict
system equivalence and not studied by Rosenbrock. It will
be studied in chapter 4 of this work, where an equivalence
transformation, slightly more general than strict system

equivalence, is defined.

The question now arises why & and y are allowed to
belong to R; and Rg. An argument against this is that
in a physical system all signals must start at some finite
time. The consequence is that ¢ and y should belong to
gg and ET. This would by theorem 2.2.4 imply that
equation (3.1.la) has a unique solution, which can be
written as

T-l

g = (q) U(g) u.

Inserting this into (3.1.1b) gives

y = (V)T 1) ulg) + wig)) u.

This means that the internal variable and the output are

uniquely given by the input.

The system (3.1.1) is supposed to be a mathematical descrip-
tion of what we may call a process or a physical system.

If the equations (3.1.1) describe the process exactly then
the motivation above would imply that £ belongs to EE
and therefore vy € E?. In most cases the process is not
exactly described by (3.1.1). Some parameters in (3.1.1) may
have incorrect values, noise may act on the process or some
initial value may be given to the process variable &. We
will show that one way to take such phenomena into account
in the mathematical description (3.1.1) is to allow the
solution & to belong to the larger space Rg. This will
then imply that vy belongs to R". Let us start with a

z
simple example.
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Example 3.1.1 Let the mathematical description of a

system be
(g=2)g=(g-2)u (3.1.2a)
y = ¢ (3.1.2b)

where u € ﬁ;. The solution to (3.1.2a) in ﬁ; is

g(t) = u(v) t € Z, (3.1.3)

while the solution in RZ is
£(t) = u(t) + a-2F t €2, ac€R. (3.1.4)

Suppose that there is some kind of noise acting on the

process, so that it is described by
(g-2)g = (g-2)u + e (3.1.5a)
y = ¢ (3.1.5b)

If for instance e(t) is equal to 1 for t = tO < 0 and

0 for all other t, then the solution for t > 0 is given
by
E(t) = u(t) + b-2°t t >0 (3.1.6)

where b = 2 U, Observe that E(t) = 0 for sufficiently

large negative values of t.

Suppose that we, at time t = 0, want to solve equation
(3.1.2a) to find out what might happen to the internal
variable in the future. If we solve (3.1.2a) in 'ﬁ; then
the solution (3.1.3) gives the answer that ¢ will follow
yr i.e. (3.1.4),

says that there might be a difference between £ and u,
t
2-.

u exactly in the future. The solution in R
which will tend to infinity as Comparing with (3.1.6)
we find that the last answer is correct if there has been

disturbances acting on the system in the past.
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The idea of this example can clearly be generalized to
the system (3.1.1). A disturbance on the process in the
past may drive the internal variable outside the set of
solutions to (3.1.la) in fgz. Since we do not know how
the disturbances influence the internal variable we have
to consider the largest existing solution space, i.e.
R,

Z
For (3.1.1) to describe a physical system there has to be
a causal relationship between u and y. We will later
give necessary and sufficient algebraic conditions for
this. If g 1is describing a set of physical variables
then they have to depend causally on u, and y has to
depend causally on ¢. We will however allow £ to be
mathematical variables with no physical significance. In
this case there does not have to be a causal relationship
between u and ¢ or between & and vy, but still

between u and vy.

3.2 The order of the system

Suppose that a system, described by equations (3.1.1), is
observed at time t = 0. Then knowledge of the future
input sequence wu(t), t > 0 1is not sufficient to
uniquely determine the future sequences of the internal
variable ¢ and the output y. A certain amount of
information about the past behaviour is also needed. The
least "number of parameters" needed together with the
input u(t), t > 0 to uniquely determine the future
behaviour of the system is called the order of the system.
The set of parameters is called the state of the system.
We will later specify what shall be meant by "the future

behavicur of the system".

The following lemma shows that the influence on the

solutions from future inputs can be disregarded.
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) _ [ u(t), £t>0
Lemma 3.2.1 For any u € R~ put uo(t) =10 t <0
and u; T u-ug. Then any solution & € RE to
(3.1.1a) can be written ¢ = EO + gl, where 50 is the

unique solution to

T(q) go = U(q) U-O

, (e . .
in Rg and is some solution to

T(q) &, = Ulq) uy

. r
in R”.
z

Proof. The result follows from theorem 2.2.4 and the

linearity of (3.1.1a).

In this section wu(t), t > 0 is supposed to be known and
we want to examine how the solutions in the future are
influenced by the behaviour of the system for t < 0. It
therefore follows from lemma 3.2.1 that we can put u(t) =
=0, t >0 without loss of generality. Accordingly it
will be supposed throughout this section that u(t) = 0 for

t > 0, unless otherwise is stated.

Def. 3.2.1 R? = {u€Rl|u(t) =0 for t >0 }.

We will need a few more definitions.

Def. 3.2.2 Let Xu and Vu be the set of internal

variables and outputs respectively corresponding to the

fixed input u € EZ: I.e. if
T(g)g = U(g) u (3.2.1a)
y = V(a) € + W(g) u (3.2.1b)
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Remark. Xu and Vu are not linear vector spaces (over R)

for a general input u, but they are for u =0, i.e.
XO and VO‘
Def. 3.2.3 Let v belong to Rg i.e. v: Z » R'. Then

v, is the restriction of v to Z+.

Def. 3.2.4 Let Vz be the set of all v, such that

vy € Y with uw e RY and 1let V+ = U V+.
u A 2 u
u€R
z
Remark. V; is generally not a linear vector space but it
is easily shown that V; and Y are.
Remark. Observe that Xu’ Vu and VZ are defined for
) + L.
any u in Ri, but in the definition of V it is

A
supposed that u € Rz’

Using the previous definitions we can define the order of
the system using only properties of the solutions of the

difference equations and not the equations themselves.

Def. 3.2.5 Denote n; = dim X, and np = dim (¥'/V3).
Then define the order n of the system (3.2.1) to be

n=1’10+1’1D.

Remark. n, and n will be shown to be finite for the

D
systems considered.

Remark. Since V+ is a subspace of V+ then the factor

0]
space V+/V$ is well defined and dim (V+/Vg) = dim V+ -

- dim vg.

Example 3.2.1 We want to determine the order of the system

2 1

2q +d%) £=02+qgYH u

Il
uy
+
Q
1
Q
[«

Yy
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The vectorspace

(2 @ + g2

XO is given by the solutions to

' =0

which has the general solution in Rz'

E'(t) = a (-

Therefore n, =

0

The vectorspace

y'(t) = a (-

and dim Y = 1.

0

1, t
7) a € R
dim XO =1
+ . .
VO is given by
1 t
§) t>1 a € R

The general solutions to the given equations are

I
o

£(t)
y(t) = a

+

Therefore V

y+(t) = a (-

The two parameters a

Y- Therefore

We find that the order of the system is

= N

)t + u

(t-3)
t

) + u (t-1).

is given by

t
%) + u(t-1) t>1, ueR, ac€Rr
and u(0) are needed to determine
dim y¥=2 and np = dim ¥* - dinm vg = 1.

n=1+1= 2,

We will now specify exactly how much of "the future behaviour

of the system" that can be determined with n =

parameters.

Lemma 3.2.2

to
then

T(q)eg = 0.
£ = 0.

matrix with det T(g) # 0
g(t

Ny +np

Let T(g) be an rxr Laurent polynomial
and let £ be a solution in Rg
If ) = 0 when t > ty for some ty € 2,
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Proof. Let Nl(q) be a diagonal polynomial matrix with
det Nl(q) =aqgP, a€ R~{0}, pE Zo . such that

Ql(q) = N;(q)T(g) 1is a polynomial matrix. Qq(q) can be
factored as Q;(q) = 0,(q)Q(q), where Qz(q)k and Q(q)

are polynomial matrices with det Qz(q) =cqg, c € R~{0},
k € Z0+ and det Q{0) # 0. The factorization can be done
using the method of Rosenbrock (1970) p. 61-62. We have

Q(g) = N(q)T(g), where N(q) = Q;l(q)Nl(q) is a unimodular

Laurent polynomial matrix. By theorem 2.2.3, the
equations

T(g) € =0 (3.2.2)
and

0(g) £ =0 (3.2.3)

have exactly the same solutions in RZ‘

Define Q, = Q(0) and 0Q(q) = Q(q) - Qy. Then equation
(3.2.3) can be written

g = —Qalﬁ(q) £. (3.2.4)

At time to—l this gives

- o1l -
E(tg=1) = -0;" O(q) &(ty=1) (3.2.5)
where the right member contains only ¢(t) for t > tO.
Therefore if ¢(t) = 0 for t > tO then £(t) =0 for

t > to—l. Iterating like this it follows that & = 0.

.

Lemma 3.2.3 Any solution to (3.2.1a) (u € RO) can

N

uniquely be decomposed as & = £' +&", where &' is a
solution to T(g)g'=0 and &" is a solution to 3.2.la

with g"(t) = 0 for t > t where t is some integer.

0’ 0
Proof. Let ¢ be a given solution to (3.2.la). Since
u € E@ it is clear that there is a t such that

0
T(g)e(t) =0 for t > ty- Define ¢' as the unique
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solution in RZ to T(q)e' = 0 such that £'(t) = £(t),
t >t
g" = g£-¢', then clearly ¢g"(t) =0, t > ty-

The uniqueness follows by Lemma 3.2.2. Put

Lemma 3.2.4 Let v, € y*. Then y, can be uniquely

decomposed as Yy = y; + yi, where y; € Vg and yi(t) = 0,
t > tO for some t0 € Z+.

Proof. Let ¢ € RZ be a solution to (3.2.l1a) giving vy.

Decompose £ according to lemma 3.2.3 as £ = £' +£" and
define y' = V(g)g' and vy" = V(g)E" + W(g)u. Then

y =y' +y" and Yy = y; + yi is a decomposition of Y.
in the desired form.

Suppose there are two decompositions Yy = yi + yi and

Y, = §i + §1 of the desired type. Then

Define
iy é D T, noo_ n
Y, =Y, Yy =Y, Yo
~ + ~
where v, € VO and y+(t) =0, t > tO for some t, € ZO+'
We will show that §+ = 0. Since v, € VO there is a
E such that
T(g)e =0 (3.2.6a)
v = Vit (3.2.6b)

where vy (t) = y+(t) for t € Z+.

Let X(g) be an rxr Laurent polynomial matrix such .
that

T(q) = Ty(q) X(q) (3.2.7a)

I

Vig) = Vy(a) X(qg) (3.2.7b)




41

and To(q) and Vo(q) are relatively right prime.

By theorem 2.1.4 we have
Qla) Tolq) + P(q) Vylq) = I. (3.2.8)

Multiply (3.2.6b) from the left by P(g) and use (3.2.7),
(3.2.8), and (3.2.6a)

P(@)Y = POV (@) X(DE = [I-0(q)Ty (@) IX(@)E =
~ A
= X(q)g = z
Since ?(t) = 0 for sufficiently large +t, the same is true
for =z(t). But =z is by (3.2.6a) and (3.2.7a) a solution to
Tyla)z = 0

By lemma 3.2.2 it follows that 2z = 0. This gives by (3.2.6b)
and (3.2.7b) that ¥ = 0 and therefore Y, = 0. This means

that the decomposition of Y4 is unique.

]
Def. 3.2.6 Define the subset YT of vy¥ through V¢]=
= {y, e v* |y, (&) =0, t > ty for some t, € Z,.}.

r—Q," +

Remark 1. Notice that u € RZ in the definition of Y

1
Remark 2. It is easily shown that v* is a vector space.

The following corollaries are direct consequences of lemma
3.2.4.

Corollary 1. The vector space V+ can be decomposed as
yt = Vg C>;¢1 where @ denotes the direct sum.

—
Corollary 2. dim Yt = dim v* - dim Vg = dim(V+/V$) = np,.
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Theorem 3.2.1 Let § be an arbitrary solution in Ri

7
to (3.2.1la) with u € Ri and let y be the corresponding

output. To determine Yy and &', defined through lemma

+ n

3.2.3, it is necessary and sufficient with n = N, D

parameters.

Proof. Sufficiency. With n, parameters it is possible to

determine &' since it belongs to the no—dimensional space

XO. y, can be decomposed as vy, = [V(q)a']+-+[V(q)E"-+W(q)u]+,
where §&" 1is given by lemma 3.2.3. The first term is known
when &' 1is known. The second term belongs to V?. Therefore

-
it can be determined by dim yt = n, parameters.

Necessity. By lemma 3.2.4 y, can be dgsgpposed as

Yy = y;—kyi, where y; € Vg 4329 yi € y*. It is sufficient
to show that for any y4} in YT and &' in XO there is a
solution & to (3.2.1) giving this y: and &', By
definition of V¥ there is a £ giving an arbitrary yi

in VIK To this £ can be added an element in X so that

0

the desired &' is obtained. This gives a contribution to
e |
y, in V; but does not affect y! since y*  and Vg are

independent subspaces.

Let &' and yi be defined through lemma 3.2.3 and 3.2.4
respectively. We may define the state of the system at t =1
as the n parameters needed to determine &' and yi. In
that case we have to specify how &' and yi can be
determined from the state. Alternatively we can regard the
pair (&', yi) as the state. We will do the latter thing

here.

Def. 3.2.7 The state at time t = 1 of the system (3.2.1)

is the pair (&', yi), where &' and y: are defined
through lemmas 3.2.3 and 3.2.4 respectively. The state space

of the system is Xox ;in where x denotes the set product.
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Remark 1. If the state at t = 1 and u, are known then
it is possible to determine Y, and £+(t), t > t0 for some
tO € Z0+. In general it is not possible to determine g+.

Remark 2. The state of any other time t € Z 1is defined

analogously.

Example 3.2.2 Consider the same system as in example 3.2.1,

namely

3 1

2 ¢ +qg%) £=(2+qhH u

y=¢t+qt-qu

The general solution is given by

t

g(t) = a(- 3)~ + u(t-3)

t

y(t) = a(= 3) " + u(t-1)

N N

Suppose u E'ﬁ;. Then it is needed four parameters e.g.
(a, u(-2), u(-1), and u(0)) to determine £,r while it
is needed only two parameters (a and u(0)) to determine

Y+’

The order of the system was in example 3.2.2 shown to be

n = 2.

With the two parameters a and u(0) we can uniquely
determine Yy and & (t) for t > 3. It is however not

possible to determine £+.

Define

_ u(0) t
g(t) = { 0 ‘

v
[\

The state at t = 1, as defined in def. 3.2.7, is

t

€',y = (al-9 % g(1)
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We will now show how the order of the system (3.2.1) can be
computed from the matrices T(g), U(g), V(g), and W(q).
Theorem 3.2.2 The number n, = dim X0 in def. 3.2.5 is

= deg det T(gq), where deg det T(q) is the

given by ng

degree of the Laurent polynomial det T(q).

Proof. By theorem 2.2.3 equationi(3.2.la) can be multiplied
from the left by a unimodular Laurent polynomial matrix

without influencing the solutions. Since R(x] 1is a

euclidean domain there is a unimodular N(qg) € Rrxr(q] such
that Tl(q) = N(g)T(g) 1is lower left triangular
ti (@) 0
T, (q) =
t (@, .. (@
and
r
deg det T(q) = deg det Tl(q) = X deqg t,.(q).
T T =1

We want to determine how many independent parameters that are
needed to uniquely determine & in Tl(q)g = 0. The system
of equations can be solved by solving the equations one by
one from the top. The first equation is tll(q)gl = 0. The

equation can be written

k2 k2—l kl
tll El(t+-k2)+-tll El(t-+k2—l)-+..rktll El(t-+kl) = 0,
kl k2
where k2 > kl and tll # 0, tll # 0. By standard theory

for difference equations it is needed kz—kl = deg tll(q)
parameters to uniquely determine gl in Rz’ The second

equation is
f22(@) &5 = "ty (@) &y

Here gl and therefore tZl(q)El is already determined.
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A particular solution to the equation can then be computed.
To completely determine 52 one has to determine the
solution to t22(q)£2 = 0. For this there is needed
deg t22(q) independent parameters. Continuing in this way

we find that the total number of independent parameters

needed to determine gl, 52,...,£r is
r
.Z deg tii(q).
i=1
[m]
-
We will now give a method to compute n, = dim Y'. Define

the transfer function for the system (3.2.1) as

1

c(q) 2 v i U@ + w(g) (3.2.9)

Decompose G(g) as
G(g) = H(g) + D(q) (3.2.10)

where D(g) 1is a strictly proper rational matrix with all
poles of its entries zero and no entries of H(g) have
poles that are zero. This decomposition of G(g) is unique.

oK k
Def. 3.2.8 The subspace RZ of R, is defined as

k' k 1
R>=4<4v € R. |3 t, €2 such that t > t, = v(t) =0
z z 0 0 J

Lemma 3.2.5 Let T(g) be an 1rxr Laurent polynomial

matrix with det T(g) # 0. Then T(g) is a bijective linear

ez
map from RZ to Egi

S —
Proof. That T(g) is a linear map from Rg to R is
clear. It is injective by lemma 3.2.2. Let u be an arbi-
= sy
trary element in RE. We will show that there is a v € Rg

such that

T(g) v = u (3.2.11)
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As in the proof of lemma 3.2.2 there is a unimodular
Laurent polynomial matrix N(gq) such that Q(q) =
= N(qg)T(q) is polynomial with det Q(0) # 0. Therefore
(3.2.11) is equivalent to

Q(g) v = N(g) u (3.2.12)

With QO = Q(0) and 6(q) = Q(q)-—Q0 we have

v(t) = -0 M [G(q) v(t) - N(q) u(t)] tez (3.2.13)
Here Qalﬁ(q) is polynomial with no constant term. Choose
tO such that N(g)u(t) = 0, t > tO and define v(t) = 0

for t > tO‘ ITterate (3.2.13) backwards in time starting at
t = to. This defines v as a solution to (3.2.13) and
therefore also to (3.2.11). Therefore T(gq) 1is subjective.

[m}

Corollary. Any mxf{ rational matrix G(g) 1is a well
. . - Sl

defined linear map from RZ to R, -

Proof. G(g) can be factored as T—l(q)U(q), where T(q)

is an mxm polynomial matrix with det T(gq) # 0 and U(q)

is an mx% polynomial matrix. U(q) is clearly a well

. . N m' -1 .
defined linear map from R, to R, and T “(gq) is by
iU
lemma 3.2.5 a well defined linear map from R? to .ET
o

Lemma 3.2.6 Let D(g) be defined through (3.2.10). Then
y is the range of the mapping f(u) = [D(q)u]+, u € RY,

— - . —m
where D(q) is interpreted as a map from R, to R.

-

Proof. By the proof of lemma 3.2.4 any element yi in VY
- =5
can be written vyl = [V(q)g"-l-W(q)u]+ for some u € Ri,

. -
where ¢&" is a solution to (3.2.la) with &" € RZ. I.e.
y —
T(g)&" = U(q)u, u € Ryr &" € R, (3.2.14)

By lemma 3.2.5 it follows that §&" is uniquely determined
by u and
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e = 1T H@u(gu (3.2.15)
where T “(g)U(g) 1is interpreted as a linear map from Rz

-
to Rg. This gives

1

vy = [V(@T " (@) U(u + Wigul, (3.2.16)

or by (3.2.9) and (3.2.10)

yy = [H(q)ul + [D(g)ul, (3.2.17)

+

It is shown e.g. in Rosenbrock (1970) that any mx% rational

matrix can be written
I
H(g) = A ~(q)B(q) (3.2.18)

where A(gq) and B(g) are mxm and mXx% polynomial
matrices respectively with det A(g) # 0. Furthermore A(qg)
and B(g) are relatively left prime and every zero of

det A(g) is a pole of an entry in H(g) and vice versa.
Since H(g) by definition has no poles that are zero we

have

det A(0) # 0 (3.2.19)
. —m '
To evaluate (3.2.17) we have to find =z € RZ such that
z = H(qQ)u (3.2.20)

This is equivalent to solving the equation

F—E‘ a——

A(q)z = B(q)u, u€R, zE€ R? (3.2.21)
Introduce AO = A(0) and Al(q) = AO-—A(q). Then (3.2.21)
gives

Aoz - Al(q)z = B(g)u (3.2.22)

By (3.2.19) det AO # 0. Therefore

_l —
z = AO Al(q) z + AO

1

L g(q) u (3.2.23)

Here A,

0 Al(q) and ABlB(q) are polynomial matrices and
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-1 . T
AO Al(q) has no constant term. Since u € RZ we have
that AalB(q)u(t) =0, t > 1. Iterating (3.2.23) backwards
in time, starting with =z(t) = 0, t > t0 for some t0 € Z+
gives that =z(t) =0, t > 1. TI.e.
T
(H(g)ul = 0, u € R (3.2.24)
z
It now follows from (3.2.17) that
" 2
yy = [D(q)u]+ u € R (3.2.25)
ey
We have shown that any yi in Y is given by (3.2.25) for

some u € EZi
N ; . .
Conversely any u € RZ will by (3.2.15) give a unique &"

. - . .
and by (3.2.16) a " in YT. But (3.2.16) is equivalent
Yy

to (3.2.25). o

The following lemma is obvious.

Lemma 3.2.7 Let N(g) be a unimodular polynomial matrix.
T A
Then N(g) 1is a bijective linear map from RZ to R

7°

Def. 3.2.9 For any rational matrix G define v (G) as the

sum of the degrees of the denominator polynomials in the
McMillan form of G.

Theorem 3.2.3 Let D(g) be given by (3.2.10). Then ny =
= v (D).

Proof. Let R(f) denote the range space of the linear

mapping £. We have to show that dim R(f) = v (D), where
[aamrsn t

) + . _ =
£ :RZ - Y is given by f(u) = (D(q)u)+, u € Rz'

(1) Let N(g) be a unimodular polynomial matrix. Then it
[ manru]

follows by lemma 3.2.7 that if the mapping £, : R

1
(D(g)N(g)u), then R(£;)

L
Z
= R(f).

is given by fl(u)
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(ii) TLet M(g) be a unimodular polynomial matrix. Define
.yt + =

AN through fz(yl) (M(q)yl)+-

This is clearly well defined. Define f3 : Egje y*t as the

the linear map £

composition map £, = f,of, i.e. £, (u) = [M(q)(D(q)u)+]+ =
= [M(q)D(q)u]+. The last equality is true because M(q)

is a polynomial matrix. It is clear that

dim R(f3) < dim R(£f). (3.2.26)
_ + + - (1
Define £, :Yy" -V through f£,(y;) = (M (q)yl)+ and
f5 :EZ1+ yt  as f5 = f4of3. Then
dim R(fS) < dim R(f3). (3.2.27)
But f; is given by fo(u) = [M_l(q)(M(q)D(q)u)+]+ =
= I H@M(e)D(@)ul, = [D(g)ul,. I.e.
f5 = f (3.2.28)

It follows from (3.2.26)-(3.2.28) that

dim R(f3) = dim R(£) (3.2.29)

(iii) ©Let f : RY o YT  be defined through vy = (M(g)D(g)N(q)u) .,
6 Z +

where M(g) and N(g) are unimodular polynomial matrices.
Then it follows by (i) and (ii) that

dim R(f6) = dim R(f) (3.2.30)

(iv) Choose M(g) and N(g) such that

Dy, (q) = M(q)D(q)N(q) (3.2.31)
is the McMillan form of D(g). Let DM(q) be the strictly
proper part of 5M(q). Since v(D ) = v(BM) = v(D) and

= Ly .
[DM(q)u]+ = [DM(q)u]+,v u € R, it is sufficient to show

the theorem for DM(q).

(v) DM(q) has the form
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€4 (q)
X 0
1
d
D, (@) = e () (3.2.32)
kP
g
0 0
where ¢,(g) are polynomials and ¢,(0) # 0 V i. Let
'——Q,—' 1 + 1
fM :RZ - Y be given by
y = (Dy(a)u), (3.2.33)
-
and let uij € RZ be an input, which is zero except for the
i:th component at time Jj. This component is equal to 1.
iy
L
Clearly {uij}i.e[l,K],j €z, span R . Let Y5 be
defined through Yig = (DM(q)uij)+. Then {yij} span  R(£f,).
Observe that the only nonzero component of yij is the i:th
because DM(q) is diagonal. Now j < —ki gives yij = 0.
Therefore {yij}, j = —ki+-l,...,0 and i =1,...,p span
R(fM). Furthermore these yij are linearly independent
since yij(j4-ki) = ei(O)uij(j), where si(O) # 0, and
yij(j4—k) =0, k > ki' Therefore
‘ p
dim R(fM) = i ki = v(DM) (3.2.34)

We quote the following result from Rosenbrock (1970)
(algorithm 5.1).

Lemma 3.2.8 Let ¢ be the least common denominator of all

minors of all orders of the rational matrix G. Then v (G)

is equal to the degree of the polynomial .

Let D(g) be defined through (3.2.10) and define D*(x) as

1

D*(x) = D(x ). (3.2.35)
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Then D*(x) is a polynomial matrix because D(x) is proper

and its entries have only zero poles.

Theorem 3.2.4 Compute all minors of all orders of D*. The

degree of the minor of highest degree is v (D).

Proof. The degree of a minor of D*(x) is equal to the
degree of the denominator of the corresponding minor of D(x).
Since the minors of D(x) have denominators of the form xk
then the least common denominator is equal to the denominator

of highest degree. -

Corollary. Define G* through G*(x) = G(x_l) and make
the decomposition G*(x) = F*(x) + E*(x), where F*(x) 1is
strictly proper and E*(x) 1is polynomial. Then n of

D
def. 3.2.5 is equal to the degree of the minor of E* that

has highest degree.

Proof. The difference between E*(x) and D*(x) is indepen-
dent of x. Therefore the degree of the minor of highest
degree is the same. The result then follows from theorems
3.2.3 and 3.2.4.

Example 3.2.3 Consider the same system as in example 3.2.1
and 3.2.2
3 -1
2a>+q® £=(2+qhHu

y=t+ (@t -q% u

Theorem 3.2.2 gives n, = deg det (2q3-kq2) = deg (2q3-+q2)==l.

0
The transfer function is

-1
+ — — -
Gla) = 2F4 o 4 gt o g B o gt
297 +q

D(q), defined through (3.2.2), is given by

D(g) =

Q-
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The order o

Example 3.2.4 Determine the ord

f the system is

er of the system

4 2 -—l _2\
g -1 g-l+q “-g El g-1 0 Uy
q° 1+g 1 £, 0 1 u,
Yy 1 0 [ &
- -1
2 -— —
g -1 g-l+q "-g 3 2 =
n, = deg det = deg |—-q +29°-g
0o —= 2 -1
d 1l+q
-1
1 0 q2—l g-l+qg l—q—2 g-1
G(q) = - -
1-g L 1 q2 1+g L 0
g+ 1 —q2 -1
—q3+q2+q+l —q4+q3+q2+q
—q4+q2—l q4+q2—q+l
4 3 2 5 4 3 2
-9 t+qg +tqg +9g g t+tqg +tg +4g
1 g+1 —q2-+l
—q3-+q2-kq-+l —q3—q2+2q+l —q2+3q+2
0 _1
g
+
1 -2g+1
q 2
g
By (2.2.2) D(q) is defined as

+
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Let DM(q) be the McMillan form of D(q)

1
2
Dyla) =
0 1
and ny = v(D) = 2 by theorem 3.2.3. We find that
n = n, + ny = 4 + 2 =6

Alternatively n, can be computed using theorem 3.2.4.

0 -X
D* (x) = 5

-X -2xX +x

The highest degree of the 1x1 minors as deg(—2x+x2

) =2
and the degree of the 2x2 minor is deg(-x2)==2. It
follows that np = 2.

Another possibility is to use the corollary of theorem 3.2.4

to compute n

D
r A
'x3 + x2 —x4 - xz
x3+x2+x—l X3+X2+X—l
G*(X) = =
-X +x2—l X7 -xXx +xXT+X
x3-+x2‘+x-—l X" +x"+x-1
2 3 {
3—x-+l gx -;2x-+l 1 x4 1
X" +x"+x-1 X" +x“+x-1
= +
2 2
SR e — —x+1  x2-2x+2
XT+x"+x-1 X" +x“+x-1
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and

1 -x +1

—x+1 x% = 2x +2

The highest occuring degree of any 1x1 or 2x2 minor

is 2 and therefore nD = 2.

3.3 Stability

We will use Lyapunov's definition of asymptotic stability.
This can for the system

T(g)t = U(q)u (3.3.1a)
y = V(g)g + W(gQ)u (3.3.1Db)

be formulated in the following way.

Def. 3.3.1 The system (3.3.1) is asymptotically stable if
[ —y
all solutions £ to (3.3.1a) with u € R’ satisfy

lim g(t) =0.
t>+co

Remark. 1lim £(t) = 0 = 1im y(t) = 0 since u € R
t++oo t>++co

Theorem 3.3.1 The system (3.3.1) is asymptotically stable

if and only if the zeros of the Laurent polynomial
det T(g) all have a magnitude less than 1.

Proof. The right hand side of (3.3.la) will be zero after
some finite time T. Therefore it is sufficient to study

the equation T(g)g = 0. As in the proof of theorem 3.2.2
there is a unimodular N(g) € Rrxr(q] such that Tl(q) =

= N(g)T(g) is lower left triangular.




55

Eyp (@) 0

Tl(q) =

trp (@) ...t (@)

Furthermore the equations Tl(q)g = 0 and T(g)g = 0 have
the same solutiong. Let Aij’ J o= 1,2,.6.,ni, where n, is

the degree of the Laurent polynomial tii’ be the ze-

ros of tii(q). The solution to the first equation in

t

NORSE

Plj

where Pij(t) is an arbitrary polynomial of degree mijml
and m g is the multiplicity of Aij' Now El(t) - 0 if

and only if ixzjl <1, 3 =1,...,n,. The second equation

is ty,(a)e, = ty (@) gy If ]xljl <1, 3=1,...,ny, then
'&:Zl(q)g:L gives a particular solution that tends to zero.
Therefore g,(t) » 0 if and only if ixzjl <1, 3=1,...,n,.
Analogously it follows that the total solution §&(t) - 0 if
and only if

IAij[ <1, 3= Lyeeeyng, &= 1,000,

3.4 Causality

—
Consider system (3.3.1) and let u € Ri be such that wu(t) =
= 0, t £ 0. The solution ¢ to (3.3.l1la) can as usual be
decomposed into g = g1t £y where £1 solves T(q)gl =0

and = Tml(q)U(q)uo Clearly gl does not depend on u.

€
Now gi depends causally on u if and only if gz(t) = 0,
t £ 0 for any u. If ¢ represents physical variables
then €9 has to depend causally on u. However, to gain
flexibility we will allow ¢ to depend noncausally on u.
We must then regard ¢ as a variable in the mathematical
model, a variable that is related to the physical variables,

but not in a causal way.
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The output vy can be decomposed as y = ¥y + Yor where

¥y = V(q)gl and Yo = V(q)g2 + W(g)u. In analogy with the
previous case we allow a noncausal relationship between ¢
and y. However, u and y are both physical variables,
and we must demand that v depends causally on u. Since
gl is independent on u we have no demand on Y- Introdu-
cing the expression for &y into the expression for Yy, Wwe
get Yy = [V(q)Tml(q)U(q) + W(g)]u = G(g)u. The only causal
relationship we have to demand is that between u and Yoo

Decompose G(g) as
G(q) = Gyla) + Gy (q) (3.4.1)

where Go(q) is strictly proper and Gl(q) is polynomial.
This decomposition is unique. Now it is clear that Yo de-
pends causally on u if and only if Gl(q) is independent

of g. We can therefore make the following definition.

Def. 3.4.1 The system (3.3.1) with transfer function G(qg)
is causal if Gl(q), defined through (3.4.1), does not de-
pend on (.

Example 3.4.1 The system

™
li
o]
o

is causal, while the systemn

g = qu
y = §&

is not causal.
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3.5 Controllability

Consider the system

T(g) g = U(q)u (3.5.1a)
y = V(g)g + W(gu (3.5.1b)

The state at time t = 1 of the system is defined in Def.
3.2.7. Clearly the state is uniquely given by the solution
£ to (3.5.1).

Def. 3.5.1 A state at €t = 1 1is called controllable if it
. . , . Y . 3
is given by a solution & in RO for some u in Rz’ The

system is controllable if all states at t = 1 are controll-
able.

—
Remark. Observe that ¢ must belong to R§ for the defi-

nition to be meaningful. The intuitive meaning of Def., 3.5.1
is the following. Suppose that the system initially is at
rest i.e. E(t) and y(t) are both zero for large negative
t. The controllable states are those that can be obtained

using a finite input sequence.

The set of contrcollable states is a subspace of the state
space called the controllable subspace. We will now give an
algebraic condition for controllability. To do this we need

the following two lemmas.

Lemma 3.5.1 Let a(x) = x & + anmlxnml

0
b(x) = bnalxn 1 + ... + bo be two relatively prime polyno-
mials and consider the system

+ ... + a and

a(gle = b(q)u (3.5.2)




To any &' given by a(g)t' = 0 there is a u € E; such
—

that the unique solution & in ‘Rz to (3.5.2) has the

property £(t) =&"'(t), t > tO for some finite to.

Proof. Explicitely equation (3.5.2) can be written
£ (t+n) + a 18 (ttn=1) + ... + ayE(t) =

= bn_lu(t+nvl) + ... + bgyu(t) (3.5.3)
Suppose u(t) =0 for t < -n and t > 0. The solution ¢
in R, can be found by iterating equation (3.5.3). We find
that g(t) =0 for t < -nt+tl. 1In the interval =-n+2 <

<t < n the solution ¢(t) is given by

( | N \
1 an-1 |20 0 £(n)
|
O. le P21 ) O.
o e ] °
" i 0 *
R i ®
R R u a o
mmmmmm O,,. .m,l.,,,,l 31‘1:1,, RS m,ﬂ.maw ) .,.E,El.), ) _
]
01 a _q a, £(0)
“n L3
§ : . R
s ° oo o
i "'. ° ©
’ o .0 °
‘ 0 1 J L g(-n+2) |
(
bO 0
Bp By O : ;
N a.w u(0)
. .0 i
b ... i
= |_.on-1 2 §0m (3.5.4)
Oa n-1 °° %l .
. o u(ﬂn+l)J
0 b
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For t > n, &(t) is given by
g(t) = = a_ _je(t-1) = ... - aj&(t-n) (3.5.5)

i.e. & 1is equal to a solution &' to .a(g)g' = 0 for
t > n. It has to be shown that it can be made equal to any
solution &' to a(g)g' =0 for t > n by a suitable
choice of u. This is true if the vector (&(n) ... E(l)]T
can be given an arbitrary value by chosing u. Eguation

(3.5.4) can be written

3

| -
a, 0 : bo 0 £(0)
a ag 0 | bl bo 0
| i
. 0 )
| N
=0 : . .0 .
Pnel ottt A Paeycoson s Po | DR
|
Looen I L ! u (0)
e ‘ aO L
o ’ 9' .' R [
.u ‘ Qc .. :
L] ! .. Q. L
e i ° ¢ e
1 i 0 bl’ll‘ \ u (-==n+l) J
n-1"°" 1
1
. [ &£ (n)
= == - - - - - 1. ' (3.5.6)
0 v v o o .0 .
. : L &(1)
0w v v v .0 |
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—=
Rg to (3.5.1la) and to

The square matrix on the left hand side is invertible since
the polynomials a(x) and b(x) are relatively prime (see
e.g. Rosenbrock (1970)), Therefore (u(O) 0o u(=-n+l))T can
be solved for any (£ (n) ... E(l))T.

The following lemma is formulated and proven for polynomial

matrices in Rosenbrock, Hayton (1974).

Lemma 3.5.2 Let T(x) and U(x) be respectively - rxr

and rx% relatively left prime Laurent polynomial mat-
rices with det T(x) # 0. Let Tl(x) and Ul(x) have the

same properties. Suppose that
=1 =1
Tl (x)Ul(x) =T “(x)U(x) (3.5.9)

Then there is a unimodular Laurent pelynomial matrix R(x)
such that

+
}...l

»

il

R(x)T(x) (3.5.10)

c
’_:

>

i

R(x)U(x) (3.5.11)

Proof. The proof is analogous to the one of Theorem 2 in
Rosenbrock, Havton (1974).

Theorem 3.5.1 The system (3.5.1) is controllable if and on-
ly if the Laureéent polynomial matrices T(g) and Ul(g) are

relatively left prime.

Proof. Suppose that there is an rxr Laurent polynomial mat-

rix L(g) with deg det L(g) = n > 0 such that T(g) =

= L(g)T;(g) and U(q) = L(q)Uqy(q). If deg det T(q) = n,

then deg det Tl(q) = ng - nL‘< nge The solutions & in
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Tl(q)g = Ul(q)u (3.5.12)

are identical by Theorem 2.2.4 since det L(g) # 0. Any
solution €& to (3.5.12) with u € RZ is equal to a solu-

tion &' to ‘Tl(q)g' = 0, when t > to for some tO € 7.

The sclutions to Tl(q)g‘ = 0 span an n,.-n dimensional

space by Theorem 3.2.2. Since the solutiogs Eo T(g)e' =0
span an ng, dimensional space there is a solution &' to
T(g)g' = 0 which is not a solution to Tl(q)ﬁi_f 0. This

€' will not be equal to any solution & in RZ to (3.5.12)
and therefore neither to (3.5.la) for large t. Thus, there
exist states (g',yi) that are not controllable and the sys-

tem is not controllable.

To prove the converse suppose that T(g) and U(g) are rela-
tively left prime Laurent polynomial matrices. Let Wml(q)a(q)
be the McMillan form of T—l(q)U(q). Here VY(g) and ¢(q)

are diagonal relatively left prime polynomial matrices. This
means that there are unimodular polynomial matrices N(q),

M(g) such that

(o (@] tu@nia) = ¢ ) e(q) (3.5.13)

Since T(g)N(g) and U(g)M(g) are relatively left prime
Laurent polynomial matrices it follows from Lemma 3.5.2 that

there is a unimodular Laurent polynomial matrix R(g) such
that

R@)T(g)N(g) = v(q) (3.5.14a)
R(a)U(g)M(g) = e(q) (3.5.14Db)
Tt

Define fc;q RZ - XO (Def. 3.2.2) in the following way. To

£ . . . 7
any u € RZ there is a unigue solution ¢ € RZ to

T(g)g = U(g)u (3.5.1a)
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This £ wuniquely determines a &' € XO through £'(t) =
= g(t), t > tq for some t, € Z.

We will show that ‘fc is surjective by showing that

dim R(fc) = dim Xou
Multiplying (3.5.1la) from the left by R(q), defined through
(3.5.14) doesn't change the solutions by Theorem 2.2.3. By
Lemma 3.2.7 u can, in (3.5.la), be substituted by M(qg)u,
where M(q) is defined in (3.5.13), without changing R(fc).
Furthermore ¢ in (3.5.la) can be substituted by N(q)g
without changing dim R(fc) because N(g) 1s by Theorem
2.2.3 abijective map on Rg. As a consequence equation
(3.5.1a) can be substituted by

¥(g)e = e(qlu (3.5.15)

in the definition of fc without changing dim R(fc).

It follows by Lemma 3.5.1 that dim R(fc) = dim XW, where
Xg is the space of solutions in Rg to ¥(g)&' = 0. Theo-

rem 3.2.2 now gives dim Xg = deg det Y(q) = deg det T(q) =

= dim XO and fC is surjective.

The state space is XO X ?¥‘ and we have shown that aqzz

gl € XO can be obtained by a suitable choice of u € R«
This u will, however, also give a component of the state
in ;¥] unless u(t) = 0, t > v, where 1t is some nega-

tive integer.

Take a fix &' € XO. Then qTi' € XO because T(g)E&' = 0 &
= qTT(q)S' = 0 <« T(q)qTE' = 0. Let u € EZ‘ be such that
£, (u) = g't'. This implies that fc(quu) = &' because f,
is time invariant. Clearly g ‘u(t) =0 for t > 1. There~

fore any ¢' € XO can be obtained with the component of the
state in ;¢1 equal to zero. This means that XO is included

in the controllable subspace.
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. . o +1 .
By definition of VY any component of VY can be obtained
from an u € RE. In general this u also gives a component

z
in XO’ but this component can be deleted by another super-

posed u because X belongs to the controllable subspace.

0
-
Therefore also V' belongs to the controllable subspace and

the system is controllable.

Remark. Controllability was defined for states at time t = 1
but this theorem shows that the property of controllability

is dindpendent of t.

Corollary. Suppose that T(g) and U(g) in (3.5.1) have a
common left divisor L(g) so that

T(g) = L(q)Tl(q) (3.5.16a)

a
Q
|

= L(q)Ul(q) (3.5.16Db)
and Tl(q) and Ul(q) are relatively left prime. Let Xéc)
be the space of all ¢' € Rg such that

Ty (@e' =0 (3.5.16¢)

.*_l

Then XéC) x Y is the controllable subspace.

Proof. In the definition of controllable states (Def. 3.5.2)
T —
only solutions ¢ in Rg are regarded. But (3.5.la) and

T (@e =TU;(@u (3.5.17)
N
have the same solutions in R, by Theorem 2.2.4 because
det L(g) # 0. The system (3.5.17), (3.5.1b) is by Theorem

3.5.1 controllable and have a controllable state space
(c) 7 F
X0 x V.
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From the corollary it follows that the zeros of det Tl(q)
in (3.5.16) are those zeros of det T(g) t:that are associa-
ted with the controllable states. The zeros of det L(q)
correspond to solutions in XO that cannot be excited by
the input, they are decoupled from the input. Following

Rosenbrock (1970) we will call them input decoupling zeros.

Let SL(q) be the Smith form of L(g). Then there are uni-
modular Laurent polynomial matrices Ml(q) and Nl(q) such
that L(g) = Ml(q)SL(q)Nl(q) and the zeros of the invariant
factors of SL(q) are the input decoupling zeros. By Theo-

rem 2.1.4 there are unimodular Laurent polynomial matrices

My(q) and W,(q) such that (T (@) Uy (@) =M, () (X 0) N,(q).

Therefore
(T(@) T(@)) = My (@) sy (DN (@My(@) (I 0)N,(q) =

NJ_(q)MZ(q) 0
0 1

N, (q)

My () (s () o){

By the uniqueness of the Smith form it follows that
(SL(q) 0) is the Smith form of (T(g) U(g)). We can thus

formally define the input decoupling zeros in the following
way .

Def. 3.5.2. The input decoupling (i.d.) zeros of a system

are the zeros of the invariant factors of the Smith form of
(T(a) U().

Example 3.5.1. Consider the system

(g=2) (g=1)E = (g=2)u (3.5.18a)

y =& (3.5.18b)

The system is of second order and the state space is spanned
by the two states
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(¢',vy}) = (1,0) (3.5.19)

i
~

(€' ,yy) ,0) (3.5.20)
+! .
For this system VY = 0, by Lemma 3.2.6, since the transfer

function has no poles that are zero.

By the corollary of Theorem 3.5.1 the controllable subspace
is spanned by the state (3.5.19). We will show this directly.

Choose u(0) = a and u(t) =0, t € Z ~ {0}. Equation

(3.5.18a) can be written
g(t) = 3g(t=1) - 2g(t=2) + u(t~-1) = 2u(t=2) (3.5.21)

The solution in 'ﬁ; is found by having ¢£(t) =0, t <t

for some t, € Z_. TIterating (3.5.21) then gives §g(t) = 0

t < 0. Continuing the iteration gives ¢&(t) = a, t > 0.

It follows that the subspace spanned by the state (g',yi) =
= (1,0) is included in the controllable subspace.

Introduce 2z = (g=1l)¢ into (3.5.18a) which gives

(g=2)z = (g-2)u (3.5.22)

This can be written

z(t) = u(t) + 2[z(t-1) - u(t-1)] (3.5.23)
N .
Suppose u € Rz’ i.e. u(t) =0, t < to for some tO‘
The solution to (3.5.23) in ?; is found by iteration this
equation starting with z(t) = 0 for t < tye
We find that z(to) = u(to). Inserting t = to + 1 in

(3.5.23) then gives z(t0+l) = u(to+l) since the quantity

inside the brackets is zero. Continuing like this we find
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z(t) = u(t) Yt € 7 (3.5.24)

The state of t = 1 is found by letting u, = 0. This
gives by (3.5.24) z(t) =0, t > 0 and therefore &(t) =

= constant for t > 0. This means that it is not possible
to reach any states that are not of the form (&',y}) =

= (a,0), where a € R. Therefore the controllable sub-
space is included in the space spanned by the state (E',yi)

= (1,0).

Since the reversed inclusion was shown earlier the controll-
able subspace is equal to the space spanned by the state
(3.5.19),

3.6. Observalibity

The system

T(q)E = U(q)u (3.6.1a)
y = V(glg + W(g)u (3.6.1b)
Ty
has a state space Xg x V according to Def. 3.2.7. Define
the map £q: XO x vy syt g
foletoyl) = [via)e'] + vy (3.6.2)

fo is called the observability map and Yy = fo(g',yi) is
the output from the system (3.6.1) with (g',yi) as state

-

at t = 1 and u, = 0 (see the first part of the proof of
Theorem 3.2.1).

Def. 3.6.1. The system (3.6.1) is observable if fO is in-

jective. If fo is not injective then the nullspace of £

0
is called the unobservable subspace.
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Theorem 3.6.1. The system (3.6.1) is observable if and only

if T(g) and V(g) are relatively right prime.

Proof. The system is observable if and only if the nullspace
of fo is zZero. The nullspace of fo is given by the states
(g',y;) satisfying

[Vie'], + v} =0 (3.6.3)

— —n
Since [V(q)g']+ € Vg, yi € y*' and Vg and ¥© are, by
Corollary 1 of Lemma 3.2.4, linearly independent it follows
that (3.6.3) is equivalent to

[Viggr], =0 (3.6.4)

y! =0 (3.6.5)

Let the r x r Laurent polynomial matrix R(g) be the
greatest common right divisor of T(g) and V(g). R(q)
is unique up to multiplication from the left by unimodular

Laurent polynomial matrices. We have

T(q) = Ty (2)R(q) (3.6.6)

it

Via) = Vi (q@)R(q) (3.6.7)

where Tl(q) and Vl(q) are relatively right prime. Insert
(3.6.7) into (3.6.4)

[Vi(@r@e ], =0 (3.6.8)

We will show that (3.6.8), and therefore (3.6.4), is equiva-
lent to

R(g)g' = 0 | (3.6.9)

If (3.6.9) is true then clearly (3.6.8) is true.
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Since Tl(q) and Vl(q) are relatively right prime there
are by Theorem 2.1.4  Laurent polynomial matrices X(q)
and Y(g), respectively rxr and rxm, such that

X(@) Ty (q) + ¥(g)Vy(q) =TI (3.6.10)
Define y' as

y' = Vi (@)R(q) &’ (3.6.11)

Then we have

Y(q)y' Y(q)Vy (@) R(q) &' =

[T - x(@T (@]R(@ " =
= R(q)g" = X()T(q) g' = R(g) g’ (3.6.12)

where the first equality follows from (3.6.11), the second
from (3.6.10), the third from (3.6.6) and the fourth because
g' € Xg

If (3.6.8) is true then yi = 0. From (3.6.12) it follows
that R(g)g' is zero for +t > ty, some t,. Lemma 3.2.2
then shows that (3.6.9) is true since R(g)g' satisfies the

equation Tl(q)R(q)g' = 0,
We have shown that (3.6.3) is equivalent to

R(q)e' = 0 | (3.6.13)

yr =0 (3.6.14)

i.e. the nullspace of fo is given by the solutions to
(3.6.13) and (3.6.14). By Theorem 2.2.3 ¢' = 0 1is the only
solution to (3.6.13) if and only if R(g) is a unimodular

Laurent polynomial matrix, i.e. if and only if T(q) and
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V(g) are relatively right prime.

Remark. Observability was defined for states at t = 1 but
the theorem shows that the property of observability is in-
dependent of t.

Corollary. Let R(g) be the greatest common right divisor

of T(g) and V(g). Let Xéo) be the space of all solu-
tions &' € Rg to
R(g)e' =0 (3.6.15)

Then Xéo) x 0, where 0 is the zero element in V+, is

the unobservable subspace of the system (3.6.1).

Proof. The corollary follows from the fact that the null-
space of fo is given by the solutions (E',yi) to (3.6.13)
and (3.6.14).

Remark. The greatest common right divisor R(g) is unique

up to multiplication from the left by unimodular Laurent
polynomial matrices. The solutions in Rg to (3.6.15) are
not affected when (3.6.15) is multiplied from the left by a
unimodular Laurent polynomial matrix. This follows from Theo-
rem 2.2.3. Therefore R(g), in (3.6.15), can be substituted
by any greatest common right divisor of T(g) and V().

From the corollary it follows that the zeros of det R(q)
are those zeros of det T(g) that correspond to solutions
in XO that do not influence the output, they are decoupled
from the output. As in Section 3.5 it follows that if SR(q)
is the Smith form of R(q) then (s_'(@ 0)7 is the Smith
form of (TTﬁp V%q)f: Following Rosenbrock (1270) we make
the definition.
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Def. 3.6.2. The output decoupling (o.d.) zeros of a system

are the zeros of the invariant factors of the Smith form of
T T
(r* (@) vi)T.

Let {Bi} be the set of i.d. zeros of the system (3.6.1) and
let {Bi} be the set of zeros to the invariant factors of
(Tl(q) U(q)) where Tl(q) is given by (3.6.6). As in Rosen-
brock (1970) it is shown that {6, = (1. '

Def. 3.6.3. The set {Bi} \\{ei} is called the set of input-
output decoupling (i.o.d.) zeros of the system (3.6.1).

Remark. Rosenbrock (1970) considers systems (3.6.1) with
T(g), U(g), VI(g) and W(g) restricted to polynomial mat-
rices. Computation of the decoupling zeros according to Def,
3.5.2, 3.6.2 and 3.6.3 for such a system will give the same
decoupling zeros as the ones obtained from Rosenbrock's de-
finitions except for the ones that are zero. Our definition

will never give any decoupling zeros that are zero.

Example 3.6.1. Consider the system

(g-1) (g=2)¢ = u (3.6.14a)

y = (g-2)¢ (3.6.14Db)

(Compare with the system in Example 3.5.1) The system is of

second order and the state-space is spanned by

€'y} = (1,0) (3.6.15)

(E',y;) = (27,0) (3.6.16)
By the corollary of Theorem 3.6.1 the unobservable subspace
is spanned by the state (3.6.16). We will show this directly.

The output is, for ¢ > 1 . and u, = 0, given by the state

in the following way
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