
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Tire Models for Use in Braking Applications

Svendenius, Jacob

2003

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Svendenius, J. (2003). Tire Models for Use in Braking Applications. [Licentiate Thesis, Department of Automatic
Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/c24c7895-33d0-49bf-95a8-26bb7a7f59bb


Department of Automatic Control

Lund Institute of Technology
Box 118

SE­221 00 Lund Sweden

Document name

LICENTIATE THESIS

Date of issue

November 2003

Document Number

ISRN LUTFD2/TFRT­­3232­­SE
Author(s)

Jacob Svendenius

Supervisor

Björn Wittenmark

Per Hagander

Per­Axel Roth

Sponsoring organisation

Haldex Brake Products AB

Title and subtitle

Tire Models for Use in Braking Applications

Abstract

The tire is a significant part for control of a vehicle. For a well­working brake system the contact properties

between the tire and the ground is the limiting factor for a safe braking. To get optimal performance it

is important that the system can utilize all friction resources.

The brush tire model was a popular method in the 1960’s and 1970’s before the empirical approaches

became dominating. The brush model gives an educational interpretation of the physics behind the tire

behavior and explains that a part of the tire surface in the contact patch to the ground slides on the

road surface. Information about the friction coefficient is revealed in the tire behavior even when low tire

forces are transmitted. If the the brush model is sufficiently good it is possible to estimate the friction

coefficient.

In the thesis the influence of velocity­dependent friction and asymmetric pressure­distribution on the

brush model are examined. The latter is used to introduce a calibration factor to improve the agreement

of the model to real data. Performed vehicle tests show that sufficient accuracy might be obtained.

The coupling between the longitudinal and lateral tire forces is discussed in detail and a new proposal

to derive the combined slip forces from pure slip models is presented. This method relies on the physics

from the brush model and includes a velocity dependency which is derived from the pure slip models.

All information is extracted automaticly from the models, which allows continuous changes of the tire

characteristics. The method shows good agreement to real data.

Key words

Tire model, friction, combined slip, brush model, vehicle

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280–5316

ISBN

Language

English

Number of pages

95

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:

University Library 2, Box 3, SE­221 00 Lund, Sweden

Fax +46 46 222 4422 E­mail ub2@ub2.lu.se





Tire Models for Use in Braking
Applications

Jacob Svendenius

Department of Automatic Control

Lund Institute of Technology

Lund, November 2003



Department of Automatic Control
Lund Institute of Technology
Box 118
S-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--3232--SE

c© 2003 by Jacob Svendenius. All rights reserved.
Printed in Sweden,
Lund University, Lund 2003



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 7

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Background and Motivation . . . . . . . . . . . . . . 8

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Contributions and Related Publications . . . . . . . . 9

2. Pneumatic Tires – Basics . . . . . . . . . . . . . . . . . . 11

2.1 Tire Mechanics . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Tire Dynamics . . . . . . . . . . . . . . . . . . . . . . 18

3. Modeling Tires . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Tire Characteristic Functions . . . . . . . . . . . . . . 21

3.2 Physical Tire Models . . . . . . . . . . . . . . . . . . . 24

3.3 Combined­Slip Semi­Empirical Tire Models . . . . . 46

3.4 A Novel Semi­Empirical Method Based on Brush­Tire

Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 49

4. Details of the Brush Model . . . . . . . . . . . . . . . . . 64

4.1 Vertical Pressure Distribution . . . . . . . . . . . . . 64

4.2 Velocity Dependent Friction . . . . . . . . . . . . . . . 72

4.3 Calibration Parameter . . . . . . . . . . . . . . . . . . 76

4.4 Carcass Flexibility . . . . . . . . . . . . . . . . . . . . 77

4.5 Tire Dependence on Unmodeled Factors . . . . . . . 80

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 82

5. Applications for Brake Control . . . . . . . . . . . . . . 83

5.1 Existing Friction Estimation Methods . . . . . . . . . 84

5



Contents

5.2 Vehicle Test for Validation of the Brush Model . . . . 85

5.3 Friction Estimation Using the Brush Model . . . . . 88

6. Conclusions and Future Work . . . . . . . . . . . . . . . 90

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . 91

7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6



Acknowledgments

Acknowledgments

This thesis would not exist without a decision from the technical man­

ager, Kent Jörgensen and the former personal manager, Lena­Maria

Lundberg at Haldex Brake Products, giving me the funding to perform

this research. I am very grateful for this decision and the opportu­

nity that Haldex has given me. I will also thank my supervisor, Björn

Wittenmark, at the Department of Automatic Control for the admin­

istrative work he did to establish this cooperative work. His advice,

encouraging support and guiding has all the time lead the project in

a rewarding direction. A lot of thanks to my supervisor at Haldex,

Per­Axel Roth, for always listening and giving good parallels to earlier

experiences. My new group of colleagues at Haldex have been a great

asset to me and I really appreciate their support in all matters from

critical reviewing to practical help in getting data and test results. I

am gifted with fantastic coworkers at two different workplaces. The

people at the department are very talented and a great source of in­

spiration. Special thanks to Ph.D. Magnus Gäfvert for the enriching

discussions during our work together, I hope it can proceed. It has ev­

eryday been a pleasure to have lunch at Sparta with "Spartagänget"

and a delight to quarrel with the always benevolent and helpful sec­

retaries and computer staff.

I am really grateful for the encouragement and support from my

mother, father and sister. It is good to know that they always care.

Thanks to all my friends, many of them have somehow helped me to

come to this point.

Finally, I will thank my soon­becoming wife, Malin for her endless

love and patience in lost week­ends due to thesis writing. I love you!

Jacob

7



1

Introduction

1.1 Background and Motivation

Compared to the age of the wheel, the rubber tire is a very recent

invention. It started in 1839 when Charles Goodyear discovered the

rubber vulcanization process [Continental, 2003]. Solid rubber rings
then came to be used around the wheels to reduce the vibration prob­

lem and to improve the traction properties. A couple of years later,

1845, Robert W. Thomson patented the air filled tire, but due to its

lower durability the idea fell into disuse [Thomson, 2003]. In 1888 John
Boyd Dunlope reinvented the pneumatic tire claiming of no knowledge

about the prior patent. The patent was mainly directed for bicycles, but

soon the advantages of using the pneumatic tires even for cars were

discovered and a few years later use of air filled tires was an obligation

for driving on the highways. Today, Michelin, which besides Goodyear

and Bridgestone, is the largest tire manufacture with approximately

20% of the world market, employs 126 000 workers [Michelin, 2003].
The main tasks for the tire development are now focused on better

environment, handling and, water planing properties.

The performance of the tire is of major concern for the vehicle,

since it is in the contact patch between the tire and road the forces

to control the vehicle are generated. At critical braking and steering

maneuvers, exceeding the limits of the tire grip can lead to complete

loss of steerability. Therefore, knowledge about the contact properties
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1.2 Outline

is a valuable information for today and future vehicle control systems.

1.2 Outline

The aim with the thesis is to gather information and gain understand­

ing about the behavior of pneumatic tires. The behavior is expressed in

mathematical terms. As in many other modeling issues a main ques­

tion is how to do the simplifications. The tire has a very complex struc­

ture and we are trying to obtain the describing formulas as simple as

possible. A future goal is to use the results for braking applications

and development of stability control strategies.

The introduction is followed by a section explaining the basic con­

cepts used in the thesis. The mechanic and dynamic properties of a tire

are briefly discussed and the notation, important for futher reading is

introduced. Chapter 3 presents several ways to express the force­slip

relation and two different approaches to explain this behavior physi­

cally are discussed. The last part of the chapter describes methods to

derive the tire characteristics for cases of simultaneous braking and

cornering using tire data from pure slip measurements. A new method

based on physical modeling is presented. Factors that affects the tire

modeling are discussed in Chapter 4. Here also methods to make the

brush tire model more accurate and flexible by use of a calibration

factors are presented. The final chapter discusses the validity of the

brush model and compares it to measurements performed on a real

vehicle.

1.3 Contributions and Related Publications

The thesis is based on research presented in three different papers:

Svendenius, J. (2003): “Brush tire model with increased flexibility.”
European Union Control Association, Cambridge, UK.

Gäfvert, M. and J. Svendenius (2003): “A novel semi­empirical tire
model for combined slip.” Journal paper, submitted to Vehicle

system dynamics.
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Chapter 1. Introduction

Svendenius, J. and M. Gäfvert (2003): “A brush­model based semi­
empirical tiremodel for combined slips.” Conference paper, submit­

ted to the SAE world conference 2004, Detroit.Xb

The research is further explained in the following internal reports:

Gäfvert, M. and J. Svendenius (2003): “Construction of semi em­
pirical tire models for combined slip.” Technical Report ISRN

LUTFD2/TFRT—7606–SE. Department of Automatic Control,
LTH, Sweden.

Svendenius, J. (2003): “Wheel model review and friction estimation.”
Technical Report ISRN LUTFD2/TFRT—7607–SE. Department of
Automatic Control, LTH, Sweden.
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2

Pneumatic Tires – Basics

2.1 Tire Mechanics

Design

The pneumatic tire is a flexible structure that together with the rim

can hold the pressure of compressed air. Its most important features

are to reduce vibrations from unevennesses in the road and to achieve

a high friction coefficient to the road surface. The main structural com­

ponent is the carcass, consisting of layers of stiff cords, which hold the

shape of the tire and the tension from the inflated air. High tensile

steel wires, called beads, connect the carcass to the rim and when a

load is applied on the wheel, the rim primarily hangs on the sidewall

cords and the beads. The entire structure is covered with a wear resis­

tant rubber compound, often styrene­butadiene, to protect the carcass

and to build up high friction to the road. There are mainly two ways to

design the carcass, radial­ply or bias­ply. Radial­ply has the sidewall

cords oriented radially and the wear surface cords laid tangentially.

The bias­ply tires have the layers diagonally positioned over the en­

tire tire surface as illustrated by Figure 2.1. For a bias­ply tire in

operation the deformation of the cords gives rise to a wiping motion

of the rubber tread, which causes higher wear and power dissipation.

Therefore, radial tires are mostly used for cars and trucks, even though

their manufacturing process is more complex and the expense is about

11



Chapter 2. Pneumatic Tires – Basics

Figure 2.1 Schematic illustration of the difference between bias­ply and

radial­ply tire construction. Reprint from [NWT­Consortium, 2002]

50% higher than for a bias­ply tire [Thomson, 2003].

Kinematics

This section describes the relevant tire kinematics and introduces def­

initions which are used in the following. The entities are illustrated

in Figure 2.2. Vectors have two components and are denoted by a bar

as in v̄. The corresponding components and magnitude are denoted by

vx, vy, and v. The wheel­travel velocity v̄ = ( vx, vy ) deviates from the
wheel heading by the slip angle α

tan(α ) = vy
vx

(2.1)

The circumferential velocity of the wheel is

vc = ΩRe (2.2)

where Ω is the wheel angular velocity, and Re the effective rolling­
radius of the tire, defined as the ratio vx/Ω when no longitudinal force
is generated by the tire. The slip velocity, or the relative motion of the

tire in the contact patch to ground, that arises when a horizontal force

is transmitted, is

v̄s = ( vx − vc, vy ) (2.3)

12



2.1 Tire Mechanics

xx

y z

F̄

Mz

−Fx

−Fx

−Fy

v̄

vx

vx

vy

v̄s

vsx

vsy

α

Ω
R

Figure 2.2 Kinematics of an isotropic tire during braking and cornering. Force

vectors are also included. (Left: top view; Right: side view)

The direction of the slip velocity is denoted by β where

tan(β ) = vsy
vsx

(2.4)

The tire slip is defined by normalizing the slip­velocity with a reference

velocity. Three slip definitions are commonly used

σ̄ = v̄s
vc

κ̄ = v̄s
vx

s̄ = v̄s
v

(2.5)

Note that the slips are collinear with the slip velocity v̄s. It is the cus­

tom to describe tire­forces as functions of the slip rather than the slip

velocity. This convention is followed also in this work. Implicitly, this

assumes that the forces do not depend on the magnitude of the slip ve­

locity, vs. In general, at least the sliding friction is velocity dependent.

There are several conventions on how to define the tire slips, e.g. the

ISO and SAE standards [ISO 8855, 1991; SAE Recommended Practice
J670e, 1976] use −100κ x [%] to represent longitudinal slip, and α [deg]
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Chapter 2. Pneumatic Tires – Basics

for lateral slip. In this report the slips are defined such that signs are

consistent for the different slip definitions, and such that a generated

tire force has opposite sign to the slip. This means that braking or

left cornering will result in positive slip and negative force. For con­

venience the slip ratio, λ , will be used to denote longitudinal slip as:
λ = κ x. It is straightforward to translate between the different slip
representations

σ̄ = ( λ , tan(α ) ) /(1− λ) = κ̄

1− κ x
= s̄
√

1− s2y − sx
(2.6a)

κ̄ = ( λ , tan(α ) ) = σ̄

1+ σ x
= s̄
√

1− s2y
(2.6b)

s̄ = ( λ cos(α ), sin(α ) ) = σ̄
√

(1+ σ x)2 + σ 2y

= κ̄
√

1+ κ 2y

(2.6c)

Forces and Torques

The choice of reference system in this work largely follows the SAE

standard [SAE Recommended Practice J670e, 1976], with the longitu­
dinal x­axis aligned with the wheel heading, the lateral y­axis perpen­

dicular to the wheel, and the vertical z­axis pointing downwards, as of

Figure 2.3.

The forces of interest for vehicle handling or friction estimation

purposes are the planar lateral and longitudinal forces, Fx and Fy,

and the self­aligning moment Mz. The longitudinal tire force Fx is

generated when braking or driving1, and the lateral force Fy and the

torque Mz when cornering. The self­aligning moment results from the

fact that the planar forces have a point of action which is not positioned

exactly under the wheel center. The rolling­resistance and overturning

moment are not of primary interest in this context and the latter will

not be regarded in the following. Likewise, it will be assumed that the

camber angle γ is zero. For heavy vehicles this is normally a reasonable
approximation.

1In the following, when the word “braking” is used in the context of longitudinal tire

force generation, this will actually mean “braking or driving” unless stated otherwise.
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2.1 Tire Mechanics

x

y

z

Normal Force Fz

Lateral Force Fy

Tractive Force Fx

Slip Angle α

Direction of Wheel Heading

Direction of Wheel Travel v̄

Camber γ

Aligning Moment Mz

Rolling Resistance Moment My

Overturning Moment Mx

Wheel Torque

Figure 2.3 Forces and moments acting on a tire [SAE Recommended Practice
J670e, 1976].

Relation Between Force and Slip

Pure slip It is a well known fact that there exits a relation between

the horizontal tire force and the slip. The velocity difference between

the carcass and the road is a result from continuous deformation of

the rubber treads and sliding between the tire and the road surfaces.

At low slip the relation is nearly linear and the forces can be described

as Fx = −Cλ λ , longitudinally and Fy = −Cα α , laterally. The braking
stiffness, Cλ and the cornering stiffness, Cα are correspondingly defined

as the linearization of the force­slip relation at λ = 0 and α = 0 [Wong,
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Chapter 2. Pneumatic Tires – Basics

2001]

Cλ = − dFx
dλ

∣

∣

∣

∣

λ=0,α =0
(2.7a)

Cα = − dFy
dα

∣

∣

∣

∣

λ=0,α =0
(2.7b)

For higher slip the relation is strongly nonlinear and other functions

to express the relation are necessary. The normal behavior for a tire on

asphalt is that the force increases for increasing slip up to λ∗ � 0.15
and then diminishes slightly when λ reaches unity.

Combined slip Combined slip signifies simultaneous braking and

cornering. A steering maneuver during braking generally decreases

both the braking stiffness, the longitudinal peak force and its corre­

sponding slip value. Knowledge about the interaction between the slip

in both directions is therefore inevitable for more advanced vehicle

simulation. In Section 3.3 and 3.4 this topic will be discussed in detail.

Tire Deformation

To reduce the vibrations from unevennesses in the road is one of the

main tasks for the tire. Its elastic properties and the ability to deform

is therefore of great importance. The tire has to allow large vertical

shape changes for good damping. This has the price of slower han­

dling and reaction for maneuvers from the driver, since a softer tire

also allows larger horizontal deformation. The deformation of the tire

can schematicly be divided between the carcass and the tread. The

carcass flexibility is the major source for the dynamics and the rolling

resistance and the minor deflection in the rubber treads decides the

force­slip characteristics.2 The stretched string carcass model origi­

nates from the work of von Schlippe in 1941 [Pacejka, 2002] and is
still used for tire modeling, see for instance [Thorvald, 1998]. The car­
cass is then, as the name intends, approximated as a stretched string

attached to the rim by visco­elastic springs. The method is illustrated

in Figure 2.4. Finite element methods are usually used to derive more

2This holds only in the longitudinal direction. In the lateral case the carcass flexibility

will affect the force­slip characteristics, which is discussed in Section 4.4
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2.1 Tire Mechanics

accurate results for the tire deformation [Pauwelussen et al., 1999],
since the shape is complex and the deflections are large and probably

outside the linear region. The reason for using the stretched string

method is that it results in sufficiently accurate and fairly simple ex­

pressions that easily can be used for estimation and control issues and

gives a good understanding for the underlying physics.

x

z

Figure 2.4 Illustration of the schematic tire structure used in this thesis. The

carcass is visualized as a stiff string attached to the rim by visco­elastic springs.

The springs are only showed in the radial direction but work even tangentially

and laterally (out of the wheel plane). The same holds for the elastic tread
springs.

Rolling Resistance

The vertical deformation of a tire is often clearly visible. When the

vehicle rolls the wheel rotation continuously changes this deformation.

Due to the visco­elastic properties of the carcass springs power will

dissipate from the system. The effect is called rolling resistance and

17



Chapter 2. Pneumatic Tires – Basics

is, in general, assumed to depend linearly on the tire load [Wong, 2001].
Hence,

Mr = q0RFz (2.8)
For more accurate result the dependency on the velocity has to be in­

cluded in the tire specific factor, q0. In the SWIFT tire­model [Pacejka,
2002], this dependence is described as q0 = q1 + q3vx/v0 + q4(vx/v0)4,
while in [Wong, 2001] q0 = q1 + q3vx2 is used. In the latter book also
the effect of other factors on the rolling resistance is discussed.

2.2 Tire Dynamics

The effect of the tire dynamics is generally small compared to the effect

of the dynamics of the complete vehicle. However, knowledge about

the dynamic behavior has become more important in the recent years,

since the research and development of fast vehicle control systems has

increased extensively. In this kind of system, generally, the forces and

movements in the contact patch are of interest. The placement of the

sensors limits the measurement of those entities to be performed on

the hub. For this reason the behavior of the force transmission between

the contact patch and the rim is essential to know.

Longitudinal dynamics The longitudinal dynamics of a tire, due

to the deformation can be studied by regarding a lumped version of the

stretched string model. The tire walls are approximated as a torsion

spring attached to the rim in one end and to the tire belt in the other.

The carcass is assumed to be stiff. In Figure 2.5 the mechanical system

is illustrated. The torque working on the carcass spring is

Mf = Ccx(ϕ c − ϕ r) + Dcx(ϕ̇ c − ϕ̇ r) (2.9)

where Ccx is the carcass stiffness and Dcx the damping coefficient. In­

troducing ∆ϕ = ϕ c−ϕ r, the following linear system can be established







ϕ̈ r

ϕ̈ c

∆ϕ̇






=







−Dcx
Jr

Dcx
Jr

Ccx
Jr

Dcx
Jc

−Dcx
Jc

− Ccx
Jc

−1 1 0













ϕ̇ r

ϕ̇ c

∆ϕ






+







1 0

0 R

0 0







[

MB

Fx

]

(2.10)
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2.2 Tire Dynamics

��

xy

z

Jcϕ̈ c

Jrϕ̈ r

ϕ c

ϕ r

Fx

MB

Mf

Mf

Figure 2.5 Illustration of the torque equilibrium on a tire.

y =
[

1 0 0

] [

ϕ̇ r ϕ̇ c ∆ϕ
]T

(2.11)

Since almost all vehicles are equipped with wheel speed sensors to

measure the rim rotation velocity, it is natural to choose ϕ̇ r as output
signal. As mentioned above the deformation of the tire belt and the

longitudinal movement of the rim relative the belt are not included

in the equations above. This is a restriction since the effects are not

neglectable, but will result in the same type of equation structure as

the system above with different parameters. The effects can then be

included by changes in the parameter matrix.

In many cases the realization above is too detailed and the effect of
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Chapter 2. Pneumatic Tires – Basics

the damping and inertia might be neglected. Then tire dynamics will

be described by a first order function, with a speed­dependent time­

constant, which is a common and accepted method [Pacejka, 2002]. The
time constant can be expressed as the time it takes for the wheel to roll

a specific distance, σ c, i.e T = σ c/vr. This entity is often referred to as
the relaxation length. The relaxation length can be derived from (2.10),
by using the linear relationship between the brake force and the slip

Fx = −Cλ λ c = −Cλ(1+Rϕ̇ c/vx). Then regarding ϕ̇ r as the input signal
and elimination of the first row, (2.10) becomes
[

Jcϕ̈ c

∆ϕ̇

]

=
[

−Dcx + RCλ

vx
−Ccx

1 0

][

ϕ̇ c

∆ϕ

]

+
[

Dcx

−1

]

ϕ̇ r −
[

RCλ

0

]

(2.12)
Putting Jc, Dcx to zero gives

ϕ̇ c
RCλ

vx
= RCλ − Ccx(ϕ c − ϕ r) (2.13)

Time differentiation, laplace transform and exchange of ϕ to λ , the
expression can be rewritten as

λ c =
1

R2Cλ

vxCcx
s+ 1

λ r (2.14)

which gives σ c = R2Cλ /Ccx. Note that this approximation only holds
for slip changes at low slip, where the linear approximation for the

force slip behavior still holds and vx = vr. For large torque variations
at higher slip, i.e. in an ABS­braking situation (2.10) is preferred.
In the lateral direction the relaxation­length concept for low slip

is experimentally proved as well [Pacejka, 2002]. However, a more de­
tailed analysis is difficult to perform, since the string approach allows

the carcass to have a variable lateral deformation tangentially. For

steady state conditions this is further discuss in Section 4.4, but for

the dynamic case the discussion is left outside the scope of this thesis.
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3

Modeling Tires

Much research has been done in the area of modeling tires and it

covers all from simple models aiming at understanding the physics

to advanced finite­element models that precisely can predict the be­

havior. The tire modeling was initiated by the vehicle and air craft

industry back in the 1940’s. The researchers first described the tire

characteristics from physical modeling. Later on the complex nature

of the tire increased the interest for finding equation structures that

easily could be adjusted to fit the measurements from the tire tests.

The traditional tire models only covered the static force­slip relation,

but the development of fast control system has now increased the focus

on the dynamical aspects of the tire behavior.

3.1 Tire Characteristic Functions

The aim of the force­slip describing functions is to supply a structure

that can fit measurement data well by optimal choice of included pa­

rameters. The first tire models were derived from variants of the brush

model, see Section 3.2, and often resulted in a third order polynomial

including two parameters. One example is the proposal for the lat­

eral force by Smiley and Horne (1958) described in [Nguyen and Case,
1975]

F0y =











Cα α

(

1− α 2

3(α ○)2
)

α ≤ α ○ = 3µFz
2Cα

µFz otherwise

(3.1)
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Chapter 3. Modeling Tires

where Cα is the cornering stiffness and µ the friction coefficient. The
definition of the slip angle α is given by (2.1). The friction is assumed
to be constant in the model, which disables it from characterizing the

brake force accurately for large slips. By use of different, physical con­

straints in the modeling Dugoff derived the relation

F0y =











Cα tan(α ) α ≤ α ○

µFz

(

1− µFz
4Cα tanα

)

otherwise
(3.2)

where

α ○ = arctan(µ0Fz/2Cα + εvµ0Fz)
µ = µ0(1− εv tan(α ))

µ0 : Nominal friction coefficient

ε : tire constant

Here a dependency of the vehicle speed is included to express the be­

havior of the brake force for large slip. To increase the flexibility further

Holmes proposed an empirical structure, quite different to the others,

to use for curve fitting

F0y = a0 + a1vx + a2v2x + a3α + a4α 2 + a5α 3 + a6R + a7P (3.3)

where P is a tire pattern constant and R is a tire tread constant, but

a1...7 have no physical interpretation. All the approaches above charac­

terize the relation between the lateral force and the lateral pure­slip,

but can with minor changes also be used to express the longitudinal be­

havior of the tire. In [Kiencke and Nielsen, 2000] a model is used where
the input sRes denotes the resultant slip (s2L + s2S)1/2 and even one slip
definition (compare to Equation (2.5)) is used in sL = (vc cos(α )−vx)/vx
and sS = vc sin(α )/vx perpendicular to each other. The model can then
be used for combined slip situations and the direction of the resulting

force is collinear to the slip vector s̄Res. To complicate it even further

the direction of sL is the direction of the wheel travel, v̄ in distinction

to the slip direction used in this thesis, vx which corresponds to the
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3.1 Tire Characteristic Functions

wheel plane. Also nonlinear effects of the wheel load can be accounted

for in this model, which originally was developed by Burckhardt

F = (a1 (1− exp(−a2sRes)) − a3sRes) e−c4sResv(1− c5F2z ) (3.4)

A disadvantage in the approach is that the tire characteristic is as­

sumed to be equal in both the lateral and the longitudinal direction.

Due to the influence of the carcass flexibility, which is further discussed

in Section 4.4, this is generally not the case. A way to describe the lat­

eral force and account for combined braking and cornering, without

the assumption on isotropicity, has been proposed by Chiesa.

Fy =
√

1−
(

Fx

2µN

)n

Fz
(

(a1 + a2Fz)α + (a3 + a4Fz)α 2 + . . .
)

(3.5)

The method requires that the longitudinal force is known which not is

obvious. In 1987 H.B. Pacejka presented the “Magic Formula”, which

now has become the predominating model [Bakker et al., 1987]. The
model expresses the lateral and longitudinal tire forces, as well as

aligning torque, on the form

y(x) = D sin(C arctan((1− E)x + (E/B) arctan(Bx))) (3.6)

where (x, y) is (λ , F0x), (α , F0y), or (α ,M0z). The four coefficients have
interpretations as stiffness factor (B), shape factor (C), peak fac­
tor (D), and curvature factor (E), and are unique for each of Fx,
Fy, and Mz. Approximation of the normal load dependence may be

introduced as D = a1F
2
z + a2Fz, BCD = (a3F2z + a4Fz)/ea5Fz, and

E = a6F2z +a7Fz+a8. The Magic Formula has been improved to adjust
for combined slip. The pure slip forces are then multiplied by factors

that are dependent on the slips (λ ,α ). These factors include additional
parameters that require further data to be estimated. The self­aligning

torque is derived by scaling of M0z and an addition of scaled pure­slip

forces. This is a part in the SWIFT­model [Pacejka, 2002], which is
large set of equations describing most aspects of the tire behavior and

its dependence on related factors. An extensive amount of measure­

ment data is necessary for this description.
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Chapter 3. Modeling Tires

A number of different equations to describe the tire behavior has

been reviewed in this section. It is impossible to give a complete view

of the results presented and published in this area, but a more detailed

description can be found in [Nguyen and Case, 1975]. The important
point is, however, to show on the variety and width of the expressions

and approaches that have proposed in the literature.

3.2 Physical Tire Models

The Brush Model

The brush model is a well­known approach to model tire forces, see e.g.

[Pacejka, 1988], [Pacejka, 2002] or [Wong, 2001]. The model was very
popular in the 1960’s and 1970’s before the empirical approaches be­

came dominating and it describes the physics behind the tire behavior

in an educational way. In this section the brush­model concept is ap­

plied to combined slips, much like the approach of [Gim and Nikravesh,
1991]. The brush model describes the generation of tire forces based
on partitioning of the contact patch into an adhesion and a slide re­

gion. Forces in the adhesive region are assumed to be caused by elastic

deformation in the rubber volume that is between the tire carcass and

the ground. The carcass is assumed to be stiff, which means that ef­

fects of carcass deformation are neglected. In the sliding region forces

are caused by sliding friction.

The model is obtained by dividing the rubber volume in the con­

tact region into small brush elements. Each element stretches laterally

over the entire contact region, but their length is infinitesimal in the

longitudinal direction. The elements are regarded as elastic rectangu­

lar blades, or bristles, see Figure 3.1. Even though rubber in general

is not linearly elastic, this assumption is made in the brush model.

Positions in the contact region are expressed in a reference system

attached to the carcass, with the origin located in the center of the

contact region. The length of the contact region is 2a. Each bristle is

assumed to deform independently in the longitudinal and lateral di­

rections. In the adhesive region the bristles adhere to the road surface

and the deformation force is carried by static friction. In the sliding
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Road

Carcass

0

Rubber

AdhesionSlide

vsx

Fz

a−a xs

δ x(x)

δ y(x)y

x

Figure 3.1 The deformation of the rubber layer between the tire carcass and

the road according to the brush model. The carcass moves with the velocity vsx
relative the road. The contact zone moves with the vehicle velocity vx. (Top: side
view; Bottom: top view)

region the bristles slide on the road surface under influence of sliding

friction. Hence, in the sliding region the resulting force is independent

of the bristle deformations.

Adhesive bristle forces Regard the specific infinitesimal bristle

which is attached to the carcass at position x relative the origo in

the center of the contact patch. Assume that this bristle belongs to

the adhesive region. The bristle is in contact with the road surface at

position xr(x), yr(x), see Figure 3.2. Since there is no sliding in the
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Chapter 3. Modeling Tires

adhesive region the contact­point position may be described by

xr(x) = a−
∫ tc(x)

0

vx dt (3.7a)

yr(x) = −
∫ tc(x)

0

vy dt (3.7b)

where tc(x) is the time elapsed since the bristle entered the contact
region. The velocities vc, vx and vy are assumed to be constant as a

bristle travels through the adhesive region of the contact patch, i.e.,

during the integration interval [0, tc(x)]. Hence, the bristle position is
x = a − vctc(x), and tc(x) = (a − x)/vc. The deformation of the bristle
is

δ x(x) = xr(x) − x (3.8a)
δ y(x) = yr(x) (3.8b)

Insertion of (3.7) and the expression for tc(x) yields

δ x(x) = −vx − vc
vc

(a− x) = −σ x (a− x) (3.9a)

δ y(x) = −vy
vc

(a− x) = −σ y (a− x) (3.9b)

where the slip definition from (2.5) is used in the last equality. With
the assumption of linear elasticity, the deformation force corresponding

to (3.8) is

dFax(x) = cpx dx δ x(x) (3.10a)
dFay(x) = cpy dx δ y(x) (3.10b)

where cpx and cpy are the longitudinal and lateral bristle stiffnesses

per unit length. The assumption of constant vc, vx, vy in the interval

[0, tc(x)] is relaxed to the assumption of slow variations in σ x and σ y
with respect to the duration 2a/vc, which is the maximum time for a
bristle to travel through the adhesion region. The total adhesive tire
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x

xr(x)

yr(x)

y

x

Figure 3.2 The deformation of a bristle element in the contact patch. Compare

with Figure 3.1.

force is computed by integration of (3.10) over the adhesive region.
With (3.9) this gives

Fax =
∫ a

xs

dFax(x) = −cpxσ x
∫ a

xs

(a− x) dx (3.11a)

Fay =
∫ a

xs

dFay(x) = −cpyσ y
∫ a

xs

(a− x) dx (3.11b)

where xs is the position in the contact patch which divides the adhesive

and sliding regions. To compute total adhesive force it is necessary to

know xs.

The size of the adhesion region The size of the adhesive region

is determined by the available static friction. The deformation will be

limited by the largest force that can be carried by the static friction

between the tire and the road. The static friction is assumed to be

anisotropic with the friction coefficients µsx and µsy, respectively. With
a normal force dFz(x) acting on the infinitesimal bristle at position x,
the available static friction force is described by the elliptic constraint

(

dFax(x)
dFz(x)µsx

)2

+
(

dFay(x)
dFz(x)µsy

)2

≤ 1 (3.12)
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dF

µsx dFz(x)

µsy dFz(x)

dFx(x)

dFy(x)

Figure 3.3 Illustration of the elliptic static friction constraint at anisotropic

friction and rubber characteristics. Note that the direction of dF̄(x) and σ̄ is
equal only if cpx/cpy = µsx/µsy.

As a result, the magnitude of the available static friction force is depen­

dent of the direction of the deformation force dF̄a(x), defined by (3.10).
The static friction constraint is illustrated in Figure 3.3. When dF̄a(x)
exceeds the static friction constraint the bristle will leave the adhesive

region and start to slide. Introduce the pressure distribution qz(x),
with dFz(x) = qz(x) dx. By combining (3.9) and (3.10) with (3.12) the
static friction constraint may be written as

√

(

cpxσ x
µsx

)2

+
(

cpyσ y
µsy

)2

(a− x) ≤ qz(x) (3.13)

The position xs in the contact area is the break­away point where

the static friction limit is reached and the bristles starts to slide. If

the pressure distribution qz(x) is known then xs can be calculated by
setting equality in (3.13) with x = xs.
A common assumption is to describe the pressure distribution in

the contact patch as a parabolic function:

qz(x) = 3Fz
4a

(

1−
( x

a

)2
)

(3.14)

This is proposed, for example, in [Pacejka, 1988] and has shown to give
a good agreement with experimental longitudinal force­slip curves for
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real tires. In Section 4.1 the influence of the pressure distribution is

further examined. Inserting (3.14) in (3.13) with equality gives
√

(

cpxσ x
µsx

)2

+
(

cpyσ y
µsy

)2

(a− xs) = 3Fz
4a3

(a− xs) (a+ xs) (3.15)

The solution for the break­away point xs is then

xs(σ x,σ y) = 4a
3

3Fz

√

(

cpxσ x
µsx

)2

+
(

cpyσ y
µsy

)2

− a (3.16)

Since xs is a point in the contact patch it must belong to the interval

[−a, a]. If xs = a the entire contact patch is sliding. In the case of pure
slip, i.e. either σ x or σ y is zero, this will occur at the slips σ x = σ ○

x or

σ y = σ ○
y with σ ○

x and σ ○
y given by the following definition.

DEFINITION 3.1—LIMIT SLIPS

Define the limit slips as

σ ○
x

*= 3Fzµsx
2a2cpx

(3.17a)

σ ○
y

*= 3Fzµsy
2a2cpy

(3.17b)

Introduction of normalized slips with respect to the limit slips will

simplify the notation in the following.

DEFINITION 3.2—NORMALIZED SLIP

Define the normalized slip as

ψ (σ x,σ y) *=
√

(

σ x
σ ○
x

)2

+
(

σ y
σ ○
y

)2

(3.18)
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Equation (3.16) may now be rewritten as

xs(σ x,σ y) = (2ψ (σ x,σ y) − 1)a (3.19)

It is clear that partial sliding occurs whenψ (σ x,σ y) < 1. At full sliding
then (ψ (σ x,σ y) ≥ 1) and Fax(σ x,σ y) = Fay(σ x,σ y) = 0. In the follow­
ing the construction of adhesive and sliding forces at partial sliding

will be determined.

Total adhesion force Knowing the size of the adhesive region,

xs(σ x,σ y), given by (3.19), the adhesive forces are obtained by solv­
ing the integrals (3.11) yielding:

Fax(σ x,σ y) = −2a2cpxσ x (1−ψ (σ x,σ y))2 (3.20a)
Fay(σ x,σ y) = −2a2cpyσ y (1−ψ (σ x,σ y))2 (3.20b)

for (ψ (σ x,σ y) < 1). At full sliding (ψ (σ x,σ y) ≥ 1) the forces equals
Fax(σ x,σ y) = Fay(σ x,σ y) = 0. Special notations for the forces at pure
slip are introduced as

F0ax(σ x) *= Fax(σ x, 0) (3.21a)

F0ay(σ y) *= Fay(0,σ y) (3.21b)

Note that it follows from (3.10) and (3.9) that the produced adhesive
force per unit length in the adhesion region is not affected by combined

slips:

dFax(σ x, x)
dx

= −cpxσ x (a− x) (3.22a)
dFay(σ y, x)
dx

= −cpyσ y (a− x) (3.22b)

The adhesive forces thus grow linearly with slopes cpxσ x and cpyσ y
as the contact element moves into the adhesion region. To illustrate

the generation of the adhesive force the case of pure longitudinal slip

is regarded, i.e. σ y = 0. From (3.13) the size of the contact region
is determined by the point where cpxσ x (a− x) = µsxqz(x). That is,
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Fax(σ x , 0)

σ ○
xcpxσ xcpx

0 x−a axs(σ x , 0)

µsxqz(x)

Figure 3.4 Illustration of the adhesive tire­force for pure longitudinal slip.

The elastic deformation force for an element at x in the adhesive region depends

linearly on x as cpxσ x(x− a), where the slope is proportional to the slip σ x . The
transition from adhesion to slide occurs at the cut of the lines at the break­away

point xs. For slips σ x > σ ○
x full sliding occur in the contact area since there is

then no intersection.

where the straight line describing the produced force per unit length

cuts µsxqz(x), as is shown in Figure 3.4. The striped area under the
line corresponds to the total adhesion force. The slope corresponding

to full sliding, i.e. σ x = σ ○
x is also shown. The case of pure lateral slip

is analogous.

Combined­slip slide forces The normal force acting on the sliding

region at partial sliding may be computed from (3.14) and (3.19) as

Fsz(σ x,σ y) =
∫ xs(σ x ,σ y)

−a
qz(x) dx = Fzψ 2(σ x,σ y) (3− 2ψ (σ x,σ y))

(3.23)
In case of isotropic sliding friction with the friction coefficient µk,

the friction force is collinear with the slip velocity with the magnitude
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Fsz(σ x,σ y)µk and its components are given by

Fsx(σ x,σ y) = − cos (β )µkFsz(σ x,σ y) (3.24a)
Fsy(σ x,σ y) = − sin (β )µkFsz(σ x,σ y) (3.24b)

where β is defined by (2.4). Assumptions on isotropic sliding friction
are common in tire modeling, see e.g. [Schuring et al., 1996].
If the sliding­friction is anisotropic with the different friction coef­

ficients µkx and µky, there are several ways to calculate the magnitude
and the direction of the resulting force. Three different methods are

presented in the following and which one to choose depends on the

assumptions made on the friction behavior for the actual case.

Collinear slide forces This method should be used if the friction

between two surfaces is supposed to be isotropic, but the values of µkx
and µky are unequal. A reason for that could for example be measure­
ment errors. The friction forces given by

Fsx(σ x,σ y) = − cos (β −)µkxFsx(σ x,σ y) (3.25a)
Fsy(σ x,σ y) = − sin (β −)µkyFsy(σ x,σ y) (3.25b)

where β − is defined as

tan(β −) *=
(

µky
µkx

)−1
vsy

vsx
. (3.26)

which ensures that F̄s acts in the opposite direction to the sliding

motion, with a friction coefficient that is somewhere in the interval

[µkx, µky] depending on the sliding angle β .

Maximum dissipation rate The correct way to treat anisotropic

friction according to the literature is to apply the Maximum Dissipa­

tion Rate (MDR) principle. This theory which is further presented in
[Goyal, 1989] says that the resulting sliding­friction force F̄′′

s is the

one which maximizes the mechanical work W = −v̄s ⋅ F̄′′
s under the

constraint
(

F′′
sx

Fszµkx

)2

+
(

F′′
sy

Fszµky

)2

≤ 1. (3.27)
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This results in the sliding forces

F′′
sx(σ x,σ y) = − µ2kxvsx

√

(µkxvsx)2 + (µkyvsy)2
Fsz(σ x,σ y) = −µkx cos (β ′)Fsz

(3.28a)

F′′
sy(σ x,σ y) = −

µ2kyvsy
√

(µkxvsx)2 + (µkyvsy)2
Fsz(σ x,σ y) = −µky sin (β ′)Fsz

(3.28b)

where β ′ is defined as

tan(β ′) *= µky
µkx

vsy

vsx
(3.29)

The angle of the resulting force F̄′′
s is denoted by β ′′ and is given by

tan(β ′′) =
(

µky
µkx

)2
vsy

vsx
(3.30)

Slip­projection method An intermediate approach to model aniso­

tropic sliding friction is to simply replace µk in (3.24) with µkx and µky
in the corresponding directions:

F′
sx(σ x,σ y) = − cos (β )µkxFsz(σ x,σ y) (3.31a)
F′
sy(σ x,σ y) = − sin (β )µkyFsz(σ x,σ y) (3.31b)

This means a projection of the pure­slip sliding­forces on the slip vector.

The angle of the resulting force is then equal to β ′. From the definitions
of β (2.4), β ′ (3.29) and β ′′ (3.30), it is clear that the direction of F̄′

s

will lie between the directions of F̄s and F̄
′′
s , see Figure 3.5.

To summarize: The sliding forces are described by

Fsx(σ x,σ y) = − cos(β f)µkxFsz(σ x,σ y) (3.32a)
Fsy(σ x,σ y) = − sin(β f)µkyFsz(σ x,σ y) (3.32b)
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σ i

µkxFsz

µkyFsz

Fs

F′
s

F′′
s

β

β ′
β ′′

Figure 3.5 Illustration of methods to describe kinetic friction in case of dif­

ferent longitudinal and lateral friction coefficients.

with

Fsz(σ x,σ y) = Fzψ 2(σ x,σ y) (3− 2ψ (σ x,σ y)) (3.33)

and β f is any of β − (collinear), β (slip­projection) or β ′ (MDR) depend­
ing on choice of friction model:

tan(β −) *= (
µky

µkx
)−1 vsy
vsx

tan(β ) *= (
vsy

vsx
) tan(β ′) *= (

µky

µkx
)
vsy

vsx
(3.34)

In the special case of pure­slip the sliding­forces are

F0sx(σ x) = −µkxFsz(σ x, 0) sgn(σ x) (3.35a)
F0sy(σ y) = −µkyFsz(0,σ y) sgn(σ y) (3.35b)

In Figure 3.6 the case of pure longitudinal slip is again regarded, now

with also the sliding force introduced. Since qz(x) is the normal force
per unit length, the sliding force per unit length is simply µkxqz(x), as
marked in the figure. The horizontally striped area corresponds to the

total sliding force.
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Fsx(σ x , 0)
Fax(σ x , 0)

σ xcpx

0 x−a axs(σ x , 0)

µsxqz(x)

µkxqz(x)

Figure 3.6 Illustration of partition of the contact area into a sliding and an

adhesive region for the case of pure longitudinal slip. The slide force for an

element at x is determined by the pressure distribution µkxqz(x) dx. The hori­
zontally striped area is the total slide force.

Effects of combined slips The total tire force is given by adding

the adhesive forces of (3.20) and the sliding forces of (3.32):

Fx(σ x,σ y) = Fax(σ x,σ y) + Fsx(σ x,σ y) (3.36a)
Fy(σ x,σ y) = Fay(σ x,σ y) + Fsy(σ x,σ y) (3.36b)

To illustrate the effect of combined slips Figure 3.7 shows the pro­

duction of longitudinal force in the case of combined longitudinal and

lateral slip (σ x,σ y) with σ x �= 0, σ y �= 0. From (3.19) it is clear
that the adhering region shrinks compared to the case with pure slip

(σ x, 0). The sliding region grows accordingly. From (3.22) it is clear
that the adhesive force per unit length is the same for the combined

slip (σ x,σ y) as for the pure­slip (σ x, 0). Hence, the slope is the same,
but the area corresponding to the force is smaller since the adher­

ing region is smaller. The corresponding adhesive­force slope derived

from (3.22) is cpxσ ○
xψ (σ x,σ y). The corresponding expression applies
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µkxFsz(σ x ,σ y) Fax(σ x ,σ y)

σ xcpx σ ○
xψ (σ x ,σ y)cpx σ ○

xcpx

0 x−a axs(σ x , 0) xs(σ x ,σ y)

µsxqz(x)

µkxqz(x)

Figure 3.7 Illustration of the effect of combined slip. The combined­slip has

the effect of decreasing the size of the adhesive region, compare with Figure 3.6.

for the lateral force. It is therefore clear that sliding will occur si­

multaneously in both directions as ψ (σ x,σ y) approaches unity. It is
important to note that the indicated area under the pressure distri­

bution no longer corresponds to the resulting sliding force. Instead it

describes µkxFsz(σ x,σ y), which is the force that would result for pure
longitudinal sliding with the sliding region xs(σ x,σ y). This force must
be limited by a friction constraint according to Section 3.2.

The braking and cornering stiffnesses are the linearizations of the

pure­slip friction curves at small slips and may be computed by deriva­

tion of (3.36):

Cx = − VFx(σ x, 0)
Vσ x

∣

∣

∣

∣

∣

σ x=0
= 2cpxa2 (3.37a)

Cy = − VFy(0,σ y)
Vσ y

∣

∣

∣

∣

∣

σ y=0
= 2cpya2 (3.37b)
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Self­aligning torque The self­aligning torque consists of two parts.

The main part is M ′
z, which is the torque developed by the non sym­

metric distribution of the lateral force Fy. An additional part M
′′
z comes

up due to the deformation of the tire.

The torque dM ′
z developed at position x in the contact region is

dM ′
z(x) = dFy(x) x (3.38)

In the adhesive part of the contact region the expression for dFy(x)
is given by (3.10) together with (3.9). In the sliding zone it is instead
given by differentiating (3.32) using dFz(x) = q(x) dx. Integration over
the adhesive and sliding area separately gives

M ′
az(σ x,σ y) = −cpyσ y

∫ a

xs(σ x ,σ y)
x (a− x) dx

= −cpya3σ y
2

3
(1−ψ (σ x,σ y))2(4ψ (σ x,σ y) − 1) (3.39)

M ′
sz(σ x,σ y) = −µky sin (β )

∫ xs(σ x ,σ y)

−a
x qz(x) dx

= −3µkx sin (β )aFzψ 2(σ x,σ y)(1−ψ (σ x,σ y))2 (3.40)

M ′
z(σ x,σ y) = M ′

az(σ x,σ y) + M ′
sz(σ x,σ y) (3.41)

When there is a lateral slip the tire deflects laterally and the point

of action for the longitudinal force will have an offset from the central

plane of the wheel. This produces an additional deformation torque in

the z­direction. A longitudinal deflection together with a lateral force

has the same effect. Since it is assumed that the carcass is stiff the

deformation is here described by bristle deflections. The deformation

torque developed at position x in the contact region is then described

by

dM ′′
z (x) = dFy(x)δ x(x) − dFx(x)δ y(x) (3.42)

In the same way as above, integration over the adhesive and the slid­

ing regions is performed separately. The deformation δ x(x) is computed
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from (3.9) in the adhesive region and from (3.10) using the infinitesi­
mal sliding force in the sliding region. Hence

M ′′
az(σ x,σ y) =

∫ a

xs(σ x ,σ y)
cpyσ y(a− x)σ x(a− x) dx

−
∫ a

xs(σ x ,σ y)
cpxσ x(a− x)σ y(a− x) dx

= 4
3

(Cy − Cx)aσ xσ y(1−ψ (σ x,σ y))3

= 4
3

(

1

Cx
− 1

Cy

)

a

(1−ψ (σ x,σ y))
Fax(σ x,σ y)Fay(σ x,σ y) (3.43)

M ′′
sz(σ x,σ y) =

∫ xs(σ x ,σ y)

−a
µky sin (β f)qz(x)µ2kx cos (β f)

1

cpx
qz(x) dx

−
∫ xs(σ x ,σ y)

−a
µkx cos (β f)qz(x)µky sin (β f)

1

cpy
qz(x) dx

= 6
5

(

1

Cx
− 1

Cy

)

µkxµkya sin (β f) cos (β f)F2z

⋅ψ 3(σ x,σ y)(10− 15ψ (σ x,σ y) + 6ψ 2(σ x,σ y))

= 6
5

(

1

Cx
− 1

Cy

)

a(10− 15ψ (σ x,σ y) + 6ψ 2(σ x,σ y))
ψ (σ x,σ y)(3− 2ψ (σ x,σ y))2

⋅ Fsx(σ x,σ y)Fsy(σ x,σ y) (3.44)

where (3.20) and (3.32) have been used in the last step.

M ′′
z (σ x,σ y) = M ′′

az(σ x,σ y) + M ′′
sz(σ x,σ y) (3.45)

Finally,

Mz(σ x,σ y) = M ′
z(σ x,σ y) + M ′′

z (σ x,σ y) (3.46)
A commonly used parameter is the pneumatic trail, which denotes

the distance between the center of the tire and point of action for the

lateral force. It is defined as t(σ x,σ y) = Mz(σ x,σ y)/Fy(σ x,σ y). The
coordinate for the point of action for the adhesive force is denoted by
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ta(σ x,σ y) and for the sliding force by ts(σ x,σ y). By using (3.39) and
(3.20) respective (3.40) and (3.32) the contributions from M ′

z(σ x,σ y)
to the pneumatic trail, t′a(σ x,σ y) and t′s(σ x,σ y), are given by

t′a(σ x,σ y) = M
′
az(σ x,σ y)
Fay(σ x,σ y)

= a
3

(4ψ (σ x,σ y) − 1) (3.47a)

t′s(σ x,σ y) = M
′
sz(σ x,σ y)
Fsy(σ x,σ y)

= −3a (1−ψ (σ x,σ y))2
(3− 2ψ (σ x,σ y))

(3.47b)

The contributions from M ′′
z (σ x,σ y) can be read directly from (3.43) and

(3.44).
In the same way as for the braking and cornering stiffness, the

aligning stiffness is defined as

Cz = −
VMz
Vσ y

∣

∣

∣

∣

∣

σ x ,σ y=0
= cpya3

2

3
= Cy

a

3
(3.48)

Analysis of the brush­model In Figures 3.8 and 3.9 the brush

model is compared with the Magic Formula fitted to a truck tire. For

the brush model also the combined­slip behavior is shown. The param­

eters are chosen so that the pure­slip curves have the same braking

and cornering stiffnesses and the same peak force as of the Magic For­

mula. For the pure longitudinal slip the coherence between the brush

model and the reference curve is good. For the pure lateral slip there

are discrepancies in the lateral force and the self­aligning torque. The

main reason for this is the assumption of a stiff carcass. This is real­

istic in the longitudinal direction, but for the lateral case where the

carcass is weaker the effects of this simplification is noticeable. There

exists more accurate models which include carcass flexibility based on

assumptions on stretched string or beam behavior [Pacejka, 1988], see
Section 4.4. The self­aligning torque also depends on the flexibility of

the carcass which explains some of its disagreement to the measure­

ments. Due to lack of data there were no possibilities to verify the

deformation torque, M ′′
z , which probably is underestimated since only

the rubber deformations are considered here.

A deficiency with the brush model is the assumption on velocity­

independent sliding friction resulting in constant tire­forces at full slid­

ing, which is obviously not correct as seen in e.g. Figure 3.8. Different

39



Chapter 3. Modeling Tires

0 20 40 60 80 100
0

20

40

−
F

x
 [
k
N

]

0 20 40 60 80 100
0

20

40

−
F

y
 [
k
N

]

0 20 40 60 80 100
−0.5

0

0.5

1

M
z
 [
N

m
]

λ [%]

Figure 3.8 Tire forces as function of λ with α = [0, 5, 10, 20] deg. The dotted
line shows the force from the adhesive region, the dashed line shows it from

the sliding region. The solid line is the total force and the dashed dotted line

is the reference curve created from a Magic Formula approximation of real tire

data [Gäfvert and Svendenius, 2003]. For the self aligning torque the dotted
line denotes the deformation torque M ′′

z and the dashed line M
′.

ways to introduce velocity dependence in the friction is discussed in

Section 4.2. At partial sliding the approximation normally has small

effects.

The LuGre Model

The LuGre model is known for describing special cases of friction situa­

tions and was developed as a joint cooperation between the Department

of Automatic Control in Lund (Sweden) and in Grenoble (France) [Ols­
son, 1996]. The model describes a dynamic force phenomenon that
arises when frictional surfaces are sliding on each other. The model
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Figure 3.9 Tire forces as function of α with λ = [0, 5, 10, 20] deg. The dotted
line shows the force from the adhesive region, the dashed line shows it from the

sliding region. The solid line is the total force and the dashed dotted line is the

reference curve created from the Magic Formula. For the self aligning torque

the dotted line denotes the deformation torque M ′′
z and the dashed line M

′.

is written on the form

ż = vs − σ 0hvsh
n(vs)

z (3.49a)

Fx = (σ 0z+ σ 1 ż+ σ 2vs)Fz (3.49b)

n(vs) = µk + (µs − µk)e−
√

hvs/vsth (3.49c)

where z is a state denoting deflection of the material in the friction

surface. The friction, g(⋅) is assumed to be velocity dependent and the
relation includes the static and kinetic friction coefficient, µs and µk
respectively and the stribeck velocity, vst. The material parameters are

denoted by σ i. The model was mainly aimed for describing friction in
robot joints from the beginning. Later it has been introduced in the

area of tire modeling [Canudas de Wit and Tsiotras, 1999] to describe
the dynamic process when applying a torque on the tire. The contact

patch is then, as the brush model divided into infinitesimal bristles,
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but here supposed to behave according to (3.49a). The deflection z(t)
is extended to z(x, t), denoting the bristle deflection at time t at the
point x in the contact patch. The bristle deflection then corresponds to

δ in Section 3.2. Since the bristle moves through the patch with the
speed of the wheel vc and ż(x, t) = V z

V t + V z
V x

V x
V t the LuGre model for the

contact patch can be written as

ż(x, z) = V z
V x (x, t)hvch + V z

V t (x, t) = vs − σ 0hvsh
n(vs)

z(x, t) (3.50)

F(t) =
∫ a

−a
(σ 0z(x, t) + σ 1

V z
V x (x, t) + σ 2vs) f z(x) dx (3.51)

The steady state solution for zwith constant vc and vs can be calculated

by setting V z
V t (x, t) = 0 and is given by

zss(vs, vc, x) = n(vs)
σ 0

(

1− e−
σ0

n(vs) h vsvc hx
)

(3.52)

Figure 3.10 shows the steady state bristle deflection in the contact

patch for the LuGre model at different slips. This could be compared

to the brush model, see Figure 3.6, where the bristle deflection is pro­

portional to the force working on a specific bristle illustrated by the

marked area. In the brush model the pressure distribution limits the

bristle deformation, but in the LuGre­model this limitation is included

first in the force calculation (3.51). An analytical solution to (3.50) has
not yet been presented, but even though it is numericly solvable it has

to be simplified to allow practical use. Therefore, the lumped form has

been introduced in the sense that the average bristle deformation, z̄(t)
defined as

z̄ = 1

Fz

∫ L

0

z(x, t) f z(x) dζ (3.53)

is used as state variable. Then the dynamics of the system can be

written as

˙̄z = 1

Fz

∫ L

0

V z
V t (x, t) f z(x) dx = vs − σ 0hvsh

n(vs)
z̄(t) − κ hvchz̄(t) (3.54)
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Figure 3.10 The steady state bristle deformation zss(x) in the contact patch
for different slip values λ . Note that vs = λv and vc = v(1 − λ). The vehicle
velocity, v is 60 kph and the length L of the contact patch is 2a = 0.15 m.

Compared to (3.49a) only the term −κ hvchz̄(t) is added, where

κ (t) = −
∫ L

0
z(t, x) f ′

z(x)dx
∫ L

0
z(t, x) f z(x)dx

(3.55)

The function κ (t) has upper and lower bounds and depends of the
choice on pressure distribution and the actual bristle deflection. It is

descending with the upper bound 1/a at zero slip and zero as lower
bound at high slips, assuming uniform distribution [Deur, 2002]. The
effect of κ reduces at braking since the wheel velocity, vc, then de­
creases. Therefore κ often is assumed to be constant with a value
around its upper bound.

The lumped form is used in control and estimation issues, but when

matching the σ ­parameters to tune the model to experimental data
the steady­state version of the distributed approach must be used.
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The force corresponding to a certain slip is derived by insertion of zss

from (3.52) into (3.51). Assuming constant vehicle velocity the steady­
state force is only depending on the slip and can be written as

Fssx (λ) = sign(λv)Fzn(λv)

⋅

(

1+
(

1− σ 1hλvh
n(λv)

) n(λv)h1+ λ h
σ 02ahλ h

(

e
− σ02ahλ h

n(λv)h1+λ h − 1
)

)

+ Fzσ 2λv (3.56)

where 2a is the length of the contact patch. There are six parameters

that has to be identified in this formula. In [Canudas de Wit and Tsio­
tras, 1999] it is claimed that it through parameter matching can get a
shape very similar to the Magic Formula.

There exists an extension of the LuGre model into two dimensions

with different properties in each direction. For the case of isotropic

friction, the direction of the generated sliding force is opposite to the

velocity vector and its magnitude independent of the heading of the

sliding motion. Assuming anisotropic friction, the maximum dissipa­

tion principle (MDR) is generally used, see Section 3.2, which assumes
that the friction force is build up so that maximal work is done. Max­

imal work means maximation of W = vs ⋅ µ where µ is limited by the
friction ellipse, see Figure 3.5. In this context the resulting normalized

friction force can written as

µ∗ = 1
√

µ2kxvsx + µ2kyvsy

[

µ2kxvsx

µ2kyvsy

]

= M2k vs

hhMkvshh
(3.57)

Since the LuGre model is a dynamic process and the movement of

a bristle is the sum of its deformation and sliding it is necessary to

distinguish between these two. For the sliding the MDR principle is

used and for the elastic behavior the resulting force is collinear. The

problem can be solved by the following Quasi­Variational Inequality

(QVI)
−(u̇+ FzK−1u̇∗)T(µ∗ − µ) ≥ 0

µ ∈ C = {µ ∈ R2 : hhM−1
k µhh ≤ hhM−1

k µLhh}
(3.58)

In [Velenis et al., 2002] it is claimed that the QVI is fulfilled if the
lumped form of the LuGre model is written on the following form for
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two dimensions

˙̄zi = vri −
σ 0iλ(vr)

µ2ki
z̄i − κ i(t)hω rhz̄ (3.59)

Fi = −Fn(σ 0izi(t) + σ 1i żi(t) + σ 2ivri)), i = x, y (3.60)

where

λ(vs) = hhM2k vshh
n(vs)

(3.61)

and the friction function is redefined as

n(vs) = hhM2k vshh
hhMkvshh

+
( hM2k vsh

hMkvsh
− hM2k vsh

hMkvsh

)

exp−
( hvsh
vst

γ)

(3.62)

Mk =
[

µkx 0

0 µky

]

Ms =
[

µsx 0

0 µsy

]

(3.63)

Then, the same procedure as for one dimension now has to be done

for choosing the parameter values in the longitudinal and lateral di­

rection. I.e. assume a pressure distribution, calculate the steady­state

distributed bristle­deflection and integrate (3.51) over the entire con­
tact patch. An optimization towards tire data then will give the param­

eter values. The derivation of κ has to be done in an different way, and
more details on that and the procedure for deriving the self­aligning

torque can be found in [Velenis et al., 2002].

Discussion

In this section two ways to model the tire behavior have been pre­

sented. The models describe the physics quite differently even though

they both depict the tire­force generation as sliding and deformation of

bristles. The LuGre model requires six parameters in each of the two

directions for good performance, but on the other hand enables good

accuracy and flexibility for the steady state behavior and covers both

dynamics and velocity dependency. The brush model as presented is

described by only two parameters per direction, but includes neither

velocity dependence nor dynamics. Inclusion of these entities is possi­

ble, see Section 2.2 and 4.2, and would require three additional param­

eters. However, in the following only the brush model is considered,
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since it describes the physics in the most simplest form. It is possible

to include further factors and describe additional effects and still keep

the equations manageable. The LuGre model is a newer concept and

the accuracy of, specially, its dynamic properties are not yet sufficiently

documented.

3.3 Combined-Slip Semi-Empirical Tire Models

Pure­condition tire­forces may be described well by rather compact and

simple empirical models that are widely accepted. Pure­slip tire data

from test­bench experiments are often available for calibration. The sit­

uation for mixed conditions is somewhat different. The transition from

one to two dimensions makes it more difficult to apply functional ap­

proximation. Empirical models tend to be either rough approximations

or quite complex, difficult to understand, and rely on parameters that

need to be calibrated with mixed­condition experimental data. This is

a drawback since such data are only rarely available for a specific tire.

Semi­empirical models uses the information from the pure­slip models

to generate the tire forces when the vehicle brakes and turns simulta­

neously. Based on the mechanics of the tire and the available empirical

data, a number of criteria for combined models may be stated (in the
spirit of [Brach and Brach, 2000]):

1. The combined force F̄(λ ,α ) should preferably be constructed from
pure slip models F0x(λ) and F0y(α ), with few additional param­
eters.

2. The computations involved in the model must be numerically

feasible and efficient.

3. The formulas should preferably be physically motivated.

4. The combined force F̄(λ ,α ) should reduce to F0x(λ) and F0y(α )
at pure braking or cornering:

F̄(λ , 0) = [ F0x(λ), 0 ]
F̄(0,α ) = [ 0, F0y(α ) ]
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5. Sliding must occur simultaneously in longitudinal and lateral

directions.

6. The resulting force magnitudes should stay within the friction

ellipse.

7. The combined force should be F̄ = −Fzµ v̄s/vs at full sliding for
tires with isotropic friction characteristics.

The most simplistic model of combined forces is based on the fric­

tion ellipse concept, see for instance [Wong, 2001; Ellis, 1994; Nielsen
and Eriksson, 1999]. While the friction ellipse is the envelope of the
maximum achievable forces, the ellipse is here used also for model­

ing intermediate forces. It is used to compute a combined lateral force

Fy(α , λ) at a given longitudinal force Fx, and is based on the assump­
tion

(

Fx

F∗
0x

)2

+
(

Fy(α , λ)
F0y(α )

)2

= 1 (3.64)

where F∗
0x is the maximum achievable longitudinal force, and F0y(α )

the corresponding lateral force at pure slip

Fy(α , λ) = F0y(α )

√

1−
(

Fx

F∗
0x

)2

(3.65)

An objection to this model is the assumption (3.64), which is not true,
since adhesion limits are not necessarily fully reached for combined

forces in the interior of the friction ellipse.

Another simple model is the Kamm Circle [Kiencke and Nielsen,
2000], where the resultant force magnitude is described as a function of
the total slip magnitude. The force and slip vectors are then assumed

to be collinear, possibly with a corrective factor ks:

Fx = F(s) sx
s

and Fy = ksF(s) sy
s

(3.66)

A drawback with this model is that longitudinal and lateral character­

istics are assumed to be the same, modulo the corrective factor.

Some early efforts to model tire forces under combined­slip condi­

tions are described and compared in [Nguyen and Case, 1975]. One of
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the most well­known is presented in [Nicholas and Comstock, 1972]:

Fx(λ ,α ) = Fx(λ)Fy(α )λ
√

λ2F2y (α ) + tan2(α )F2x (λ)
(3.67a)

Fy(λ ,α ) = Fx(λ)Fy(α ) tan(α )
√

λ2F2y (α ) + tan2(α )F2x (λ)
(3.67b)

In [Brach and Brach, 2000] this model is shown to give incorrect result
for small slips and a modified version is presented.

In [Bakker et al., 1987], a procedure for computing combined forces
for the Magic Formula is presented. It is essentially a refinement of the

Kamm Circle for non­isotropic tire characteristics and a normalization

of the slips to guarantee simultaneous sliding. The normalized slip

σ N =
√

(

σ x
σ ∗
x

)2

+
(

σ y
σ ∗
y

)2

(3.68)

is an entity that is less than one for non­sliding conditions. It is based

on an elliptic assumption where σ ∗
x and σ ∗

y are the longitudinal and

lateral slips that corresponds to full sliding for pure slips, normally

taken as the slips at the peak values F∗
0x, and F

∗
0y. Now the combined

forces are computed as

Fx = − cos(β ∗)F0x(σ ∗
xσ N) and Fy = −ε d(σ N) sin(β ∗)F0y(σ ∗

yσ N)
(3.69)

with tan(β ∗) *= σ y/σ ∗
y

σ x/σ ∗
x
. For large slip conditions the factor ε d(σ N) must

be included to give correct direction of the resulting forces. The reason

is the fact that for small slips real tire­forces are essentially produced

by elastic deformation, and for large slips by sliding friction. There­

fore slip vectors of the same orientation but different magnitudes may

result in forces with different orientation. It is not clear how to deter­

mine ε d(σ N), and in [Bakker et al., 1989] a modified procedure was
presented:

Fx = cos ((1− ϑ )β ∗ + ϑ β ) F′
0x and Fy = sin ((1− ϑ )β ∗ + ϑ β ) F′

0y

(3.70)
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with ϑ
*= 2

π arctan(q1σ 2N) and

F′
0x

*= F0x(σ N) − sat(σ N) (F0x(σ N) − F0y(σ N)) sin2(β ∗) (3.71a)

F′
0y

*= F0y(σ N) + sat(σ N) (F0x(σ N) − F0y(σ N)) cos2(β ∗) (3.71b)

The variables ϑ , F′
0x, and F

′
0y describe the gradual change of orien­

tation of the resulting force from adhesion to sliding. At large slip­

magnitudes the force is collinear with the slip vector. In this new model

only one parameter, q1, is used.

In [Bayle et al., 1993] a model for combined braking and cornering
is presented, which is based on functional representation. The model

is much inspired by the Magic Formula and uses functions based on

arc tangents to describe forces under combined­slip conditions.

The recent COMBINATOR model [Schuring et al., 1996; Pottinger
et al., 1998] is still a variation on the Kamm Circle. Here the tire force
magnitude is described by

F = F0x(s) cos2(β ) + F0y(s) sin2(β ) (3.72a)

and the combined forces as

Fx = F cos(β ) and Fy = F sin(β ) (3.72b)

The model assumes collinearity between resulting force and the slip

vector.

Much research has been devoted to semi­empirical tire­modeling

and the brief survey above does by no means cover the area. Further

references may be found in e.g. [Böhm and Willumeit, 1996].

3.4 A Novel Semi-Empirical Method Based on
Brush-Tire Mechanics

This section presents a new model that combines empirical models for

pure braking and cornering to a model for simultaneous braking and

cornering, using a procedure based on brush­model tire mechanics, see

Section 3.2. The approach is a result from a cooperation between the

author of the thesis and PhD Magnus Gäfvert (LTH). Its most detailed
description can be found in [Gäfvert and Svendenius, 2003].
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Introduction

On a working tire the contact patch between the tire and the road is, in

general, divided into an adhesive region where the rubber is gripping

the road and a sliding region where the rubber slides on the road sur­

face. The total force generated by the tire is then composed of adhesive

as well as sliding force­components. The brush model describes these

phenomena in a physical framework. In short, the proposed model is

based on a method to extract the adhesive and sliding forces from

pure­slip tire models. These forces are then manipulated to account

for the combined­slip condition. The approach is quite different from

most previous combined­slip models in that it is based on a rather de­

tailed mechanical model in combination with empirical pure­slip mod­

els. The model does not rely on any additional parameters that depend

on combined­slip data for calibration and is computationally sound and

efficient. It does not depend on any specific pure­slip model, although

in this work the Magic Formula is used for examples. Results show

good correspondence with experimental data.

Generation of combined-slip forces

The general idea of the method to derive the forces at a combined

slip (λ , α ) is to scale the forces from the empirical pure­slip model
at the certain pure slips λ0(λ ,α ) and α 0(λ ,α ). The pure slips can be
chosen in various ways, but their relation to λ and α has to be well
motivated and different proposals are discussed below. For convenience

the arguments (λ ,α ) for λ0 and α 0 are left out in the following. The
scale factors depend on the current longitudinal and lateral slip and

the relation between the used pure slip and the combined slip. Since

the generation of forces from the adhesive and the sliding regions are

built on different physical phenomena they are treated separately. The

following equation, compare with (3.36), shows the form

F̂x(λ ,α ) = Gax(λ ,α )F̂0x(λ0a) + Gsx(λ ,α )F̂0x(λ0s) (3.73a)
F̂y(λ ,α ) = Gay(λ ,α )F̂0y(α 0a) + Gsy(λ ,α )F̂0y(α 0s) (3.73b)

where F̂0x(λ0) and F̂0y(α 0) are the forces from the empirical pure­slip
model.
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3.4 A Novel Semi­Empirical Method Based on Brush­Tire Mechanics

Scale factors

This section explains how the scale factors in (3.73a) are derived. Only
the longitudinal direction is considered, but the procedure in the lateral

direction is equivalent. As long as F0ax(λ0a) �= 0 and F0sx(λ0s) �= 0 it
is possible to write

Fax(λ ,α ) = Fax(λ ,α )
F0ax(λ0a)

F0ax(λ0a)

Fsx(λ ,α ) = Fsx(λ ,α )
F0sx(λ0s)

F0sx(λ0s)
(3.74)

To extract the adhesive and sliding forces from the empirical model

the following rewriting is done

F0ax(λ0a) = F0ax(λ0a)
F0x(λ0a)

F0x(λ0a)

F0sx(λ0s) = F0sx(λ0s)
F0x(λ0s)

F0x(λ0s)
(3.75)

Combination of (3.75) and (3.74) gives

Fax(λ ,α ) = Fax(λ ,α )
F0x(λ0a)

F0x(λ0a)

= Gax(λ ,α )F0x(λ0a) � Gax(λ ,α )F̂0x(λ0a) (3.76)

Fsx(λ ,α ) = Fsx(λ ,α )
F0x(λ0s)

F0x(λ0s)

= Gsx(λ ,α )F0x(λ0s) � Gsx(λ ,α )F̂0x(λ0s) (3.77)

Choice of Pure Slips and Derivation of Corresponding scale factor

The empirical pure­slip data include several effects which are not

present in the theoretical brush­model. The most prominent are the

mismatch of the lateral stiffness at partial sliding due to carcass flex­

ibility and the apparent velocity dependence of the sliding friction.

Still, the effects will be included in the proposed combined­slip model
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as they essentially are scalings of the empirical data. In the special

case of pure slip, these effects will be correctly reproduced. Otherwise,

the different choices of pure­slips λ0 and α 0 aim at reproducing par­
ticular effects correctly at combined­slip.

Adhesion region The bristle deformations are the source of the

adhesion forces. Therefore, for adhesion forces it makes sense to re­

gard pure slips that result in the same deformation as the combined

slip. The deformation state depends on the slip expressed in σ̄ =
(vsx, vsy)/vc. The pure slip is therefore constructed to maintain σ̄ con­
stant. Translated to practical slip entities this means

λ0a = λ (3.78)

α 0a = arctan
(

tan(α )
1− λ

)

(3.79)

The scale factors Gax and Gay can now be calculated from the Equa­

tions (3.20), (3.33), and (3.35) together with the slip transformation
in (2.6), as

Gax(λ ,α ) = Fax(λ ,α )
F0x(λ0a)

= 3
(1−ψ (λ ,α ))2

ϒ(λ0a, 0)
(3.80a)

Gay(λ ,α ) =
Fay(λ ,α )
F0y(α 0a)

= 3 (1−ψ (λ ,α ))2
ϒ(0,α 0a)

(3.80b)

with

ϒ(x, y) *= ψ 2(x, y) − 3ψ (x, y) + 3 (3.81)
if ψ (λ ,α ) < 1 otherwise Gax(λ ,α ) = Gay(λ ,α ) = 0. For convenience,
the normalized slip,ψ has been exposed to a slight redefinition. In this
section holds

ψ (λ ,α ) *=

√

(

λ(1− λ○)
(1− λ)λ○

)2

+
(

tan(α )
(1− λ) tan(α ○)

)2

(3.82)

without this redefinition the expression above would be written as,

ψ (σ x(λ ,α ),σ y(λ ,α )). The designations, λ○ and α ○, are parameters to
the model and will be further explained later on. In this section it

is assumed that the sliding and the adhesive friction coefficient are

equal, i.e. µsx = µkx and µsy = µky.
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Sliding region In the literature, slip­velocity is mentioned as a sig­

nificant factor that influences the friction coefficient for a specific tire

on a certain road foundation [Wong, 2001]. Therefore, it is reasonable
to define the pure slip used for the sliding forces so that the slip ve­

locity is invariant. The respective pure slips (λ0s, 0) and (0,α 0s) at the
wheel­travel velocity v0, with

λ0s = v

v0

√

(λ cos (α ))2 + sin2 (α ) sgn (λ) (3.83a)

sin(α 0s) = v

v0

√

(λ cos (α ))2 + sin2 (α ) sgn (α ) (3.83b)

result in the same slip velocity, vs, as the combined slip (λ ,α ) at the
wheel­travel velocity v. Note that v is the actual wheel travel velocity

and v0 the velocity at which the pure slip model is valid. The scaling

factors Gsx and Gsy may then be computed from (3.20), (3.21), (3.35)
and (3.32), using β f = β − as

Gsx(λ ,α ) = hcos (β −)h ⋅ Γx (3.84a)
Gsy(λ ,α ) = hsin (β −)h ⋅ Γ y (3.84b)

with

Γx
*=



























(

v0

√

1+ tan2(α ) − v
√

λ2 + tan2(α ) sgn (λ)
)2

⋅
Λ2ψ (λ0s, 0)(3− 2ψ (λ ,α ))

ϒ(λ0s, 0) tan2(α ○)v2(1− λ)2 if ψ (λ0s, 0) < 1

ψ 2(λ ,α )(3− 2ψ (λ ,α )) if ψ (λ0s, 0) ≥ 1

(3.85a)

and

Γ y
*=























(

(v20(1+ tan2(α )) − v2(λ2 + tan2(α ))
)

Λ2(1− λ○)2

⋅
ψ (0,α 0s)(3− 2ψ (λ ,α ))
ϒ(0,α 0s)(v(1− λ)λ○)2 if ψ (0,α 0s) < 1

ψ 2(λ ,α )(3− 2ψ (λ ,α )) if ψ (0,α 0s) ≥ 1

(3.85b)
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if ψ (λ ,α ) < 1, otherwise

Γx
*=
{

ψ −1(λ0s, 0)ϒ−1(λ0s, 0) if ψ (λ0s, 0) < 1
1 if ψ (λ0s, 0) ≥ 1

(3.86a)

and

Γ y
*=
{

ψ −1(0,α 0s)ϒ−1(0,α 0s) if ψ (0,α 0s) < 1
1 if ψ (0,α 0s) ≥ 1

(3.86b)

Λ
*= tan(α ○)hcos(β )h cos(β ○) + λ○

1− λ○ hsin(β )h sin(β ○) (3.87)

The friction­constraint angle β ′ can be derived from

tan(β −) =















ψ (0,α 0s)ϒ(0,α 0s)
ψ (λ0s, 0)ϒ(λ0s, 0)

tan(α )
λ

if ψ (0,α 0s) < 1

(ψ (λ0s, 0)ϒ(λ0s, 0))−1 tan(α )
λ

if ψ (0,α 0s) ≥ 1
(3.88a)

if ψ (λ0s, 0) < 1 otherwise

tan(β −) =















ψ (0,α 0s)ϒ(0,α 0s)
tan(α )

λ
if ψ (0,α 0s) < 1

tan(α )
λ

if ψ (0,α 0s) ≥ 1
(3.88b)

and the normalized slip angle, β ○ as

tan(β ○) *= ψ (0,α )
ψ (λ , 0) (3.89)

Self-aligning Torque

For simplicity, another pure­slip definition is used for the self­aligning

torque. The pure slips (λ ′
0, 0) and (0,α ′

0), with

λ ′
0 = λ○ψ (λ ,α )
1− λ○ + λ○ψ (λ ,α ) sgn(λ) (3.90a)

α ′
0 = arctan(tan(α ○)ψ (λ ,α ) sgn(α )) (3.90b)
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result in adhesion and sliding regions of the same size as the combined

slip (λ ,α ). The pneumatic trail then remains unchanged as it only
depends on the breakaway point, see (3.47a). The combined­slip self­
aligning torque is given by

M̂z(λ ,α ) = M̂0z(α ′
0)hsin(β ′)h + Γz F̂0y(α ′

0) (3.91)

where

Γz =
3(1−ψ (λ ,α ))2

ϒ(λ ,α ) ta(λ ,α )(sin(β ○) − hsin(β ′)h) (3.92)

if ψ (λ ,α ) < 1, otherwise Γz = 0, where ϒ(λ ,α ) is defined in (3.81),
ta(λ ,α ) as Cz/Cy(4ψ (λ ,α ) − 1) , β ○ in (3.89), and β ′ in (3.88). The
self­aligning torque consists of one adhesion and one sliding part,

see (3.41), that are the product of the respective pneumatic trail and
lateral force (3.47a). The sliding part of the empirical pure­slip torque
is obtained by subtraction of the adhesive torque from the total torque

as M̂0sz(α ′
0) = M̂0z(α ′

0) − t0a(α ′
0)F̂0ay(α ′), where F̂0ay(α ′) is given by

G′
a(0,α ′)F̂0y(α ′

0). The sliding force can be derived by using Fsy(λ ,α ) =
G′
s(λ ,α )F̂0y(α ′

0) and F0sy(α ′) = G′
s(0,α ′)F̂0y(α ′

0), and the conversion
between the combined slip and the pure slip keeps the size of the

sliding region remained. Therefore Msz(λ ,α ) can be computed by scal­
ing M̂0sz(α ′

0) with G′
s(λ ,α )/G′

s(0,α ′). The adhesive part Maz(λ ,α ) is
then added as ta(λ ,α )F̂ay(λ ,α ). The scale factors G′ can be derived
from (3.76) and (3.77) using the above pure­slip definition.

Parameters

Only three additional parameters are needed in the model, which all

have clear physical interpretations. The parameters λ○ and α ○, de­
scribe the pure slips where transition from partial to full sliding occur.

They are needed to compute the normalized slip, ψ (λ ,α ). A common
assumption is that these transitions occur when the tire forces obtain

their maxima. Hence, the parameters may simply be set to the slip

values corresponding to the maxima of F̂0x and F̂0y. The parameter

v0 denotes the wheel­travel velocity for which the empirical pure­slip

model is valid. The actual wheel­travel velocity v is assumed to be an

input signal. If v0 is not known then v/v0 = 1 may be used, which will
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neglect any velocity dependence. This is the common assumption in

most other models.

Calculation of included parameters The parameters, λ○ and α ○

can be derived directly from the measurement data if the assumptions

for the limit slips from the brush model are used. The force­peak values

are given, as F̂∗
0x, F̂

∗
0y and the braking and cornering stiffnesses as Ĉλ ,

Ĉα , the parameters λ○ and α ○ may then conveniently be estimated as

λ̂○ = 3F̂∗
0x

3F̂∗
0x + Ĉλ

(3.93a)

which follows from (3.17) and (2.6). Due to the flexibility in the carcass
which is not included in the model this method does not perform well

in the lateral direction. Instead, the following choice for α̂ ○
y, derived in

Section 4.4, is used

α̂ ○
y = arctan

(

2F̂∗
0y

Cλ
+
F̂∗
0yπ

Cα 180

)

(3.94)

The factor 180/π is due to α being expressed in degrees.
Automatic calculation of λ○ and α ○ might be very useful when using

a normal­load depending Magic­Formula pure­slip model. The param­

eters should then be calculated in every iteration using F̂∗
0x = (D)x,

F̂∗
0y = (D)y, Ĉλ = (BCD)x and Ĉα = (BCD)y.

Results

Empirical data from a truck­tire (315/80R22.5) is used to exemplify
the proposed model. The data is the same as been used in [Gäfvert
and Svendenius, 2003] and is further presented there. It consists of
pure­slip data with corresponding Magic Formula parameters. Pure­

slip data for the lateral force and the self­aligning moment is only

available for hα h < 20 deg.

Combined slip examples In Figure 3.11, the resulting forces and

aligning moments are shown for fixed slip­angles and varying slip­

ratio, ranging from 0 to 100% (braking with locked wheels). The adhe­
sion and sliding contributions are shown separately for the forces and
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Figure 3.11 Combined­slip forces for fixed α , as λ is swept from −100% (driv­
ing) to 100% (braking with locked wheels). Top: Fx (solid), Fax (dotted), Fsx
(dashed). Middle: Fy (solid), Fay (dotted), Fsy (dashed). Bottom: Mz (solid),
Maz (dashed), Msz (dotted).

the torque. The adhesion force is dominating at small slip magnitudes

and vanishes at the point of full sliding. Note the asymmetrical char­

acteristics with respect to driving (λ < 0) and braking (λ > 0). This
is, essentially, an effect of using the deformation invariant pure slip

for the adhesion forces. The combined­slip forces and moments agree

qualitatively well with observations reported in e.g. [Pacejka, 2002].
Figure 3.12 shows the corresponding case with fixed slip ratio, as the

slip angle is swept from 0 to 30 deg. Negative slip angles are not shown

since the characteristics are symmetrical. For small slips, the direction
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Figure 3.12 Combined­slip forces for fixed λ , as α is swept from 0 to 25 deg.
Top: Fx (solid), Fax (dotted), Fsx (dashed). Middle: Fy (solid), Fay (dotted), Fsy
(dashed). Bottom: Mz (solid), Maz (dashed), Maz (dotted).

of the tire­force is, primarily, determined by the stiffness characteris­

tics of the tire. For larger slips, when the sliding friction dominates,

the force is collinear with the slip vector. This gradual change in ori­

entation of the force with increasing slips is an important feature of

the model. This can be seen more clearly in the figures below.

Validation The model was validated with two sets of combined­slip

data for fixed slip­angles, α = 4.7 deg and α = 9.8 deg, with varying
slip ratios, λ , in the range 0–100%. These measurement sets were
collected together with the pure­slip tire­data used earlier. The model
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responses are shown together with the combined­slip measurements

in Figure 3.13. The model clearly captures the main combined­slip

behavior. Deviations result from the simplifications that are used in

the model, but also in difficulties in the experimental procedure for

collecting the empirical data. Some obvious anomalies in the data are

found at the end points. The combined­slip lateral forces at λ = 0%
does not agree with the corresponding force in the pure­slip data set.

The combined­slip force vectors at full sliding (λ = 100%) are difficult
to explain. They do not agree with the assumption on collinearity with

the slip vectors, or any other reasonable assumptions, see Section 3.2.

Velocity dependence The dependence on wheel­travel velocity is

illustrated in Figures 3.14 and 3.15, by varying the ratio v/v0. The
pure­slip Magic­Formula model is calibrated with data from tire mea­

surements at the wheel­travel velocity v0.
1 Tire forces are shown for

velocities that are 1–4 times the wheel­travel velocity of the pure­

slip model. The results agree qualitatively well with what is reported

in e.g. [Pacejka, 2002]. The slip velocity at a combined slip (λ ,α ), is
vs = v

(

λ2 cos2(α ) + sin2 (α )
)1/2
. Corresponding pure slips for the em­

pirical pure­slip model are given by vs = λ0sv0 and vs = sin(α 0s)v0.
These expressions can be solved for pure slips λ0s < 100% and α 0s < 90
deg, when (v/v0)2

(

λ2 cos2 (α ) + sin2 (α )
)

≤ 1, see (3.83). If instead
(v/v0)2

(

λ2 cos2 (α ) + sin2 (α )
)

> 1, which may occur only if v/v0 > 1
or α 0s is outside the valid range of the pure­slip model, then extrapola­
tion is necessary. A straightforward method is to use the end points of

the models. The Magic Formula with default shape factor has decent

extrapolation properties and may be used with slip ratios λ0s > 100%.
In general, extrapolation of empirical data must be carried out with

great care.

Relations to other models Figure 3.16 is similar to Figure 3.13

and shows the combined forces at constant slip angles, as the slip

ratio is swept from −100% to 100%. In Figure 3.16, comparisons are
shown between the proposed model, the BPL model [Bakker et al.,
1The exact value of v0 is not known for this data. Measurements are normally per­

formed at around 10 m/s on the used test­bed.
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Figure 3.13 Comparison between the proposed combined­slip model (dashed)
and combined­slip measurements for α = 4.7 deg (triangle down) and α =
9.8 deg (triangle up), as λ is swept from 0 to 100%. Transition to full sliding
ψ (λ ,α ) = 1 is marked by an asterisk

1989], and the COMBINATOR model [Schuring et al., 1996]. In the
COMBINATOR model the resulting force is always collinear with the

slip vector, which is an assumption with weak physical motivation. Also

the lateral force initially increases, as a longitudinal slip is applied.

This is a result of the assumption of a collinear combined­slip tire­force

in the full slip range, in combination with the use of the magnitude of

the combined­slip slip­vector in the empirical pure­slip models.

In [Gäfvert and Svendenius, 2003] it is shown that the proposed
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Figure 3.14 Velocity dependence at pure slips. Velocities: v = v0 (solid), 2v0
(dashed), 3v0 (dash­dotted), 4v0 (dotted).

model with a pure slip based on region invariance, (3.90), is very sim­
ilar to the BPL model. One major reason for this is that also the BPL

model uses the region­invariant pure slips.

Conclusions

This section has presented a new method to derive the tire forces

for simultaneous braking and cornering, by combining empirical mod­

els for pure braking and cornering. The proposed model is based on

understanding of the physical sources of tire forces, as given by the

theoretical rigid­carcass brush­model. Based on the brush model, the

combined­slip forces may be described by a scaling of corresponding
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Figure 3.15 Velocity dependence at combined slips. Velocities: v = v0 (solid),
2v0 (dashed), 3v0 (dash­dotted), 4v0 (dotted).

empirical pure­slip forces. There is a freedom in choosing the pure­slip

forces, which may be used to emphasize different physical effects. This

made it easy to include velocity dependence in the model, in a unique

way. The model is simple since the included parameters can be derived

automaticly. This is a feature allowing continuous changes in the pure

slip models during simulation. All necessary information is given by

the used pure­slip model. The stated criteria in Section 3.3 concerning

the behavior of a combined slip model is fulfilled, using this method.

Even though the model in its present state is useful for a number

of applications, the addition of effects of camber and flexible carcass

might be necessary to increase the applicability even more. The phys­

ical foundation of the model is expected to make this possible with

reasonable effort.

Good results are obtained in validation with empirical data. Rela­

tions to similar, previously published combined­slip models are ana­

lyzed. Previous models are partly heuristically based, while the pro­

posed model is entirely based on physical principles. It is concluded
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Figure 3.16 Combined­slip forces with the proposed model for fixed slip an­

gles α and varying λ ranging from 0 to 100% (braking with locked wheels).
The COMBINATOR model (dotted) and the BPL model (dashed) are shown for
comparison.

that the suggested model is more accurate than the COMBINATOR

model [Schuring et al., 1996]. The BPL model [Bakker et al., 1989]
show similar agreement. None of these previous models include veloc­

ity dependence.
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4

Details of the Brush Model

4.1 Vertical Pressure Distribution

Vertical Deformation Pressure Distribution

Exposed to a vertical load the tire will deform. An exact analysis of the

deformation requires good calculation tools and accurate information

about the tire design and actual conditions, as axle load, road surface,

and temperature. Schematicly, the deformation can be divided into two

parts. One part from the change of the carcass shape and one from

the compression of the rubber material. If the carcass deformation is

moderate the air volume in the tire will remain nearly constant and

no consideration to increased tire pressure is necessary. In the static

case, i.e. when the wheel is not rolling, the maximal pressure between

the tire and the road, normally, can not exceed the pressure inside

the tire, p0. There is an area in the center of the contact patch where

the pressure is equal to p0. In the outer region where the carcass lifts

from the ground the compression of the rubber gives a smooth tran­

sition of the pressure from p0 to 0, where the contact area ends. The

pressure distribution in a longitudinal cut of the tire then might look

as the example shown in Figure 4.1. In the lateral direction the distri­

bution depends on shape of the carcass. An laterally arched carcass,

which corresponds to a well­inflated tire, gives a round contact patch.
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Figure 4.1 Illustration of the vertical pressure distribution in a longitudinal

cut of the tire. Note that qz(x) = p0 in the major part of the cut.

A poorly inflated tire results in a more flat carcass, which gives a more

rectangular patch. In Figure 4.2 these two different special cases are

shown and any intermediate solution is realistic. In the first case it

is assumed that the contact zone has a shape of a circle or ellipse,

with the area A = πac. There is a linear relation between a and c
and using Fz � p0A = k0a2 makes the contact length a proportional to√
Fz. In the second case where A = 4ab, a is instead linear to Fz. Note
that if only the solid line in the figure moves when the vertical force

changes, A will remain constant for different values of Fz. Therefore

it is a difficult task to find an relation between a and Fz. An example

of the pressure distribution is shown to the left in Figure 4.3 for a

non­rolling tire. For the dynamic case it is different. The movement

of the wheel changes the appearance of the pressure distribution and

it will no longer be symmetric. When the wheel is rotating it deforms

continuously and a braking torque called rolling resistance is devel­

oped. The pressure increases in the front half of the contact patch and
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Figure 4.2 Illustration of the tire contact patch (top view). Inside the solid
lines the pressure is p0, then it decreases to zero at the dashed line. A) Well­
inflated tire; B) Poorly inflated tire.

Figure 4.3 Example of vertical pressure distribution. To the left it is shown

for the whole contact patch of a non­rolling tire and to the right only the lateral

average is shown for a rolling tire. Rolling direction is leftwise in the right

figure. Reprinted from [Pauwelussen et al., 1999].

decreases in the rear half. The amount of the change is depending on

the velocity, the damping, and the mass of the deformed material. How

a braking/driving or cornering force changes the pressure distribution
is not obvious. In general, the center for the vertical force moves in

the opposite direction as the generated tire force is working [Wong,
2001]. When the pressure distribution is used further in the paper, it
is laterally lumped, i.e. the lateral average is calculated. The pressure
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distribution in N/m is then given as a function of the longitudinal
coordinate x.

Pressure Distribution

The brush tire model described in Section 3.2 uses parabolic pressure

distribution between the tire and the road. In this chapter different

distributions are introduced and their effect on the force­slip relation

is examined. The second proposal is an asymmetric third order ap­

proach with an extra parameter which moves the top of the curve and

changes the asymmetric properties. The third curve is symmetric and

defined by a forth order formulation. All equations are scaled so that

the resulting force will be equal to Fz. The distributions are only de­

fined in the longitudinal direction and supposed to be the average value

of the distribution in the lateral direction. The parabolic pressure dis­

tribution used in Section 3.2 is denoted qz1 and given by (3.14). The
resulting force assuming only longitudinal movements and constant

friction (µs = µk) can be written

F0x = Cxσ x − 1
3

(Cxσ x)2
µFz

+ 1

27

(Cxσ x)3
(µFz)2

(4.1)

for σ x < σ ○
x, otherwise F0x = µFz. The asymmetric distribution is given

by

qz2(x) = 3Fz
4a

(

1−
( x

a

)2
)

(

1+ d x
a

)

(4.2)

and the expression for the symmetric forth order pressure curve is

qz3(x) = 5Fz
8a

(

1− x
4

a4

)

(4.3)

The curves are visualized in Figure 4.4. In (4.2) it possible to move
the point of the maximal pressure to the left or to the right by chang­

ing d. To avoid negative pressure values inside the contact patch the

parameter must stay in the range of hdh < 1. A discussion about the
shape of the contact patch and the pressure distribution is performed

previously and the special case with a circular patch as to the left in

Figure 4.2 with a very small transition region the lumped pressure
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distribution would have an elliptic shape (qz = k0
√

1− (x/a)2). Allow­
ing a larger transition region the curve close to x = ±a will decrease.
Probably, qz1(x) then is a realistic assumption. For the second case in
Section, where the contact patch is more rectangular, q3(x) is a better
choice. For these static cases the vertical pressure may not exceed the

tire pressure. When the wheel rolls the continuous deformation of the

tire changes the pressure distribution. The damping together with the

mass forces increases the pressure at the leading side and decrease it

on the trailing side. There might also be some effects from the centrifu­

gal forces caused by the wheel rotation. The asymmetric third order

function, qz2(x), with a positive d is then a realistic choice. When a
tire force is applied the carcass deforms and the center of the pres­

sure distribution even further. The parameter d could then even reach

negative values. A correct choice of pressure distribution needs a lot

of further investigation and measurements. Later on we will see how

different distributions affects the force­slip curve and that the choice

of it might not be done on theoretical foundations.

Force­slip function for an asymmetric pressure distribution.

The pressure distribution qz1(x) is now replaced by qz2 and by elim­
inating the root xs = a from (3.15) and restrict to only longitudinal
motions the breakaway point can be derived by

3 Fzµ

4 a2

(

1+ x
a

) (

1+ d x
a

)

= cpσ x (4.4)

with the solutions

xs = − a
2d

(d+ 1) ± a

2d

√

(d− 1)2 + 8Cxd
3µFz

σ x (4.5)

To be able to use the calculation scheme from Section 3.2, one and

only one solution can be inside the contact region. Therefore the sign

in front of the square root has to be positive. For d less than −0.5
there are two solutions inside the interval. Physically it means that

there are two sliding areas split by one adhesive region. To avoid that,

the interval for d is restricted to [−0.5, 1]. The total brake force, which

68



4.1 Vertical Pressure Distribution
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Figure 4.4 The pressure distributions proposed in this chapter. The wheel is

supposed to move to the right. The leading side will then be to the right and the

trailing side is accordingly to the left. the solid line shows pressure distribution

according to Equation (3.14), dashed line according to (4.3) and the dashed
dotted ones to Equation (4.2) with different choices on d.

can be derived using (3.11) and (3.23) is given by

F0x = µFz
32d3

(1− d)3(3d+ 1) + Cx

8 d2
(2 d + 5 d2 + 1)σ x

+ 1
6

C2x σ 2x
µ Fz d

−
(

µFz
32d3

(d− 1)2 + Cx

12 d2

)

(3 d+ 1)σ x

⋅

√

(d− 1)2 + 8 d Cxσ x
3µFz

(4.6)

The slip limit where the entire contact area slides towards the ground

is given by the incline of the pressure curve in x = a. Hence,

Fx = µFz if σ x > 3µFz
Cx

(1+ d) (4.7)
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Figure 4.5 Illustration showing the brake force contra the slip using the pres­

sure distribution given by (4.2). The solid line denotes a Magic Formula real­
ization from a real tire. The others are derived using different value of d.

The result for some different values of d is shown in Figure 4.5. The

complexity of (4.6) could be reduced by choosing d to 1 or −1/3. How­
ever, the idea to change the pressure distribution in this way is to get

a calibration parameter that can be changed continuously.

Symmetric fourth order pressure distribution The same pro­

cedure as above can be done for the pressure distribution described

by (4.3). There is no extra parameter introduced in this approach and
yet the expression for the solution gets too complex to be presented. The

shape of the resulting force­slip curve, which is shown in Figure 4.6,

shows the difference using the fourth order distribution.

Discussion The results from the alternative brush models have so

far only been compared to one Magic Formula estimation. The Magic

Formula is probably the best way to approximate measurement data

by an expression. However, it might not exactly cover the truth tire

characteristic and also different tire differ from each other. Therefore,
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Figure 4.6 Brake force contra slip. The solid line denotes a Magic Formula

optimized from real data. The dashed line is derived form the fourth order

pressure distribution and the dashed­dotted from the non­compensated brush

model.

it could be dangerous to draw too many conclusions just from this refer­

ence curve. There are also other factors than the pressure distribution

that can affect the shape of the curve. Having that in mind we say

that the fourth order curve matches very well at slip up to 70% of the

maximal brake force. This means that the distribution is realistic at

the trailing side, but the pressure should decrease faster when reach­

ing the leading end. The parabolic pressure distribution give a good

overall fit to the Magic Formula approximation. However, choosing the

asymmetric curve with a slightly negative d gives better accuracy for

slip up to 0.07, even though it has some mismatch at higher brake

forces. That implies that the top of the pressure distribution should

be a little bit behind the the center of the contact patch. It could also

imply that d and the peak moves with the achieved brake force, which

is reasonable. Then the d­value should be changed depending on the

load and brake force.
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Chapter 4. Details of the Brush Model

4.2 Velocity Dependent Friction

Another way to increase the flexibility of the brush tire model is to

introduce a sliding­velocity dependent friction coefficient. The bristles

in the contact patch are assumed to slide against the road with the

velocity vsx = vxσ x/(σ x+1) directly after passing the breakaway point
xs, see Figure 3.1.

Three different cases of velocity dependence are treated in the fol­

lowing. First, in the meaning that the friction is constant but has dif­

ferent value whether the bristles are gripping or sliding on the road.

The value µs denotes the static friction and µk, the kinetic. In the
second case the friction coefficient is linearly dependent on the sliding

velocity. Finally, an exponential relation between the friction and the

sliding velocity is assumed. The two last cases are examined in two

ways. Either, only the kinetic friction will be velocity dependent and

the static coefficient constant or both the static and the kinetic friction

have the same velocity dependence.

Constant Friction

The friction is in this case assumed to be constant, but having different

values whether the bristles are sliding or gripping the road. Referring

back to Section 3.2 and solving Equation (3.15) assuming only longi­
tudinal motions, gives the position for the break­away point as

xs = 1
3

a (2Cx σ x − 3 µs Fz)
µs Fz

(4.8)

Evaluating (3.36) where µ is changed to µk gives

F0x = Cx σ x + 1
3

C2x (µk − 2 µs)σ 2x
Fz µ2s

+ 1

27

C3x (3 µs − 2 µk)σ 3x
F2z µ3s

(4.9)

For σ x > σ ○
x = 3µsFz/Cx the entire surface slides and the brake force

is given by

F0x = µkFz

A difference between this realization and the one from Section 3.2 is

that the top of brake force curve is reached for a lower slip than total
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4.2 Velocity Dependent Friction

sliding occurs. By differentiating (4.9) and locating the zeros, the slip
value that corresponds to the peak force can be derived. Since (4.9) is
a third order equation two zeros are obtained. One belonging to the

maximal force, σ ∗
x and one belonging to the slip where the total sliding

starts, σ ○
x. The slip, where the force has its maximum, is given by

σ ∗
x = 3µ2s Fz
Cx (3µs − 2µk)

(4.10)

with the corresponding peak force

F∗
0x = (4µs − 3µk)µ2s

(3µs − 2µk)2
Fz (4.11)

The calibration factor m is introduced such that the shape of the

force/slip curve can be adjusted for given braking stiffness and peak
brake force. Define m = µk/µs and the static friction can be expressed
by µs = F∗

0x(3 − 2m)2/(Fz(4 − 3m)) for m ∈ [0, 1]. In Figure 4.7 the
force­slip curve is plotted for some different values of m. The expres­

sion for the force including the parameter m and µ ′ = F∗
0x/Fz, for

σ x ≤ 3µs/(2cpa2) is

F0x = Cx σ x + 1
3

C2x (m − 2)(4− 3m)
Fzµ ′(3− 2m)2 σ 2x + 1

27

C3x
(Fzµ ′)2

(4− 3m)2
(3− 2m)3σ 3x

(4.12)

Linear Velocity Dependency

To include velocity dependence on the friction, any relation µk = fk(vs)
and µs = fs(vs) can be put into (4.9). If both friction coefficients are
assumed to depend on the slip velocity in the same way µ = f (vs)
can be put into (4.1). Recall that vs is the relative velocity between
the tire carcass and the road. The entire sliding part in the contact

patch is assumed to slide with vs. Since the work is restricted to only

longitudinal movements vs = vsx and the velocity of the vehicle v=vx
and vsx can be expressed as κ xvx according to Equation (2.5). The
expressions have to be dependent on σ x instead of κ x so the transform

73



Chapter 4. Details of the Brush Model

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

slip

N
o

rm
a

liz
e

d
 B

ra
k
e

 F
o

rc
e

Figure 4.7 The figure shows the force­slip curve derived by the brush tire

model with different friction value for adhesive and sliding areas. Solid line is

the Magic Formula estimated from real data. Dashed dotted curve has m = 1
and dashed dotted lines has m equal to 0.6 and 0.8.

vsx = vxσ x/(1+σ x), is done. With constant static friction the following
expression is used for the kinetic friction.

µk(σ x, v) = µ0 − n v σ x
1+ σ x

(4.13)

In Figure 4.8 the brush model characteristics is shown assuming this

linear velocity dependency on only µk and both µk and µs for two
different values on n. As can be seen in the figure there is hardly any

difference between using velocity dependence on the static friction or

not.

Exponential Velocity Dependency

For exponential velocity dependence the following relation, proposed

by C. Canudas de Wit in [Canudas de Wit et al., 2001], is used

µk(σ x, v) = µk + (µs − µk)e−hvσ x/((1+σ x)vst)hε (4.14)
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Figure 4.8 The left figure shows the force­slip relation with linear velocity de­

pendence. Solid line is the magic formula estimated from real data. The dashed

curve has µ0 = 1.05 and n = 0.0075 and the dashed dotted curve has µ0 = 1.05
and n = 0.0075. Both the case with µs = µ0 and µs = µk is plot, but the differ­
ence is hardly noticeable. To the right exponential velocity dependence is plotted

for µ = 1.3 and h = 0.4. For the dashed dotted line µs = µ0 = µk(0) and the
dashed µs = µk(vs),

Four parameters are necessary to describe this relation. It gives good

flexibility and the brush model can almost be adjusted to fit any Magic

Formula set. Clearly, the aim to introduce one calibration parameter is

then not fulfilled and the number of parameters has to be reduced. The

reduction can be done by fixing some of parameter values. In Figure 4.8

ε = 0.5 and vst = 30 m/s and the calibration parameter h is introduced
as

µk(σ x, v) = µ
(

h+ (1− h)e−hvσ x/((1+σ x)30)h0.5
)

(4.15)

The illustration to the right in Figure 4.8 shows that the difference

between the adhesive and the sliding friction gives a sharp hook on

the force slip curve just before entering the slip for total sliding. When

studying raw data from tests of tires this phenomenon is often ob­

served, but it is not really covered by the Magic Formula parameteri­

zation.

Discussion

From the result in this section it can be seen that it is only possible to

change the slope of the curve from the brush tire model at slip values
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Chapter 4. Details of the Brush Model

close to or above the point for total sliding when including velocity

dependence. This is obvious considering the fact the larger slip the

larger share of the brake force is depending on the friction character­

istic. In some cases it has been shown that even the adhesive friction

coefficient can depend on the speed that pulls the material away form

its original position. This could motivate the use of equal static and

kinetic friction coefficient. Assuming the case with different static and

kinetic friction the slope behind the maximal force point gets too steep

negative incline compared to the reference curve. This could maybe be

changed by a combination of velocity dependent friction and another

pressure distribution then the parabolic one. The great advantage if

one could get these approximations more realistic is that it would be

possible to prescribe the negative slope without or just before entering

that zone.

4.3 Calibration Parameter

In the two previous subsections different ways to modify the original

brush model have been described. The effect on the final force­slip rela­

tion is different depending on which of the methods that is used. Vari­

ations of the pressure distribution allows correction at slip lower than

the peak force point. The velocity dependent friction mainly affects

the tire model at slip values around or above the peak force depend­

ing on the choice of relation. For critical braking and ABS­situations,

knowledge about the velocity dependence is useful. However, for con­

trol algorithms aiming at avoiding ABS­situations, the critical peak

force and its corresponding slip value are more valuable informations.

To be able to predict this point, the agreement between the model and

reality is of great importance at low slip. A drawback with the in­

troduction of asymmetric pressure distribution is that the expression

gets much more complicated. However, in [Svendenius, 2003] it has
been show that (4.6) can the simplified with good accuracy by Taylor
expansion, as

F0x = Cxσ x + 1
3

C2x
(d− 1)µFz

σ 2x − 1

27

(3 d+ 1)C3x
µ2 Fz

2(d− 1)3
σ 3x + O(σ 4x) (4.16)
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Figure 4.9 Tire lateral deformation according to the brush­model. Left: Stiff

carcass. Right: Flexible carcass.

for σ x < 3µFz/(Cx(1 + d)). The same approach can be applied to the
formulas from the velocity dependence as well.

4.4 Carcass Flexibility

As mentioned previously the brush model described in Section 3.2 is

based on the assumption of a stiff carcass. In reality the carcass is

flexible and exhibits significant deformation laterally. Figure 4.9 illus­

trates how the carcass deformation affects the brush model. Mainly,

the break­away point will move backwards and the deflection of the

bristles increases differently in the contact patch. The bristles and the

carcass can be seen as two spring elements connected serially, with the

distinction that each bristle deflects individually, when the carcass is

a coherent unit. The total deformation δ y(x) is the sum of the bristle
and carcass deflections δ yb(x) and δ yc(x)

δ y(x) = δ yb(x) + δ yc(x) (4.17)

and

dFyb(x) = dFyc(x) = dFy(x) (4.18)

Let F′
y(σ y) denote the lateral tire­force for a tire with flexible car­

cass. Regard again how the deformation of an infinitesimal bristle ele­

ment at position x in the adhesive region, δ y(x), is described by (3.9).
This is a purely kinematic relation which holds also in the case of
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Chapter 4. Details of the Brush Model

flexible carcass. The force acting on the bristle element at x will then

be

dF′
y(x) = cpyδ yb(x) dx = −cpy(σ x(a− x) + δ c(x)) (4.19)

when the bristle starts to slide the force is

dF′
y(x) = µdFz(x) (4.20)

A relation between the carcass deflection and the lateral force distri­

bution must be established and the literature propose several ways for

that. One is to treat the carcass deformation as a thread or a beam.

For the thread model the force­deflection relation has the following

differential form

S
d2δ c(x)
dx2

= qyc(x) (4.21)

where S is the tension in the thread and qyc = qy is the lateral force
per length unit equal to dFy/dx. An equation system consisting of an
expression for the break­away point given by the equality of (4.19)
and (4.20) and one differential expression for lateral force per unit for
xs ≤ x ≤ a from (4.21) and (4.19) and for −a ≤ x ≤ xs given by (4.20),
can be established. The approach requires extensive calculations and

will not be further treated here. It has, however, been solved and a

few results is presented in [Pacejka, 1988]. A simpler approach is to
assume a certain shape of the carcass deformation with an amplitude

depending on the total lateral force. Here the simplest one is used,

where it is assumed that the carcass still is straight, but gets a devi­

ation towards the rolling direction. The incline is proportional to the

lateral force. This is proposed in analogy with an assumption by von

Schlippe discussed in [Pacejka, 2002].

δ yc(x) = −
F′
y(σ y)
Cc

(a− x) (4.22)

where Cc is the carcass stiffness. From (4.17), (4.22) and (3.9) it holds
that

dF′
y(x) = cpyδ yb(x) dx = −cpy

(

σ y −
F′
y(σ y)
Cc

)

(a− x) dx (4.23)
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Using (3.12) at pure lateral slip together with a parabolic pressure
distribution (3.14) the position for the break­away point can be solved
from

cpy

(

σ y −
F′
y(σ y)
Cc

)

= 3µayFz
4a3

(a+ xs) (4.24)

The total lateral force can be derived from the following equation

F′
y(σ y) =

∫ a

xs(F′
y(σ y))

cpy

(

σ y −
F′
y(σ y)
Cc

)

(a− x)dx +
∫ xs(F′

y(σ y))

−a
µqzdx

(4.25)
It is realized that solving even this strongly simplified approach ana­

lytically will not render a smooth expression. Numerical solution can

be easily found and a comparison between this compensation and the

ordinary brush model can be seen in Figure 4.10. Some important infor­

mation can, however, be derived from this model considering the effect

of the flexible carcass on σ ○
y , see Equation (3.17), and (3.94). Regard

the case when the entire contact patch slides, i.e xs = a, σ y = σ ○
y
′, and

F′
y(σ ○

y
′) = µkyFz. Solving (4.24) for σ ○

y
′ under these conditions gives

σ ○
y
′ = 3Fzµsy
2a2cpy

+ µkyFz
Cc

= Fz
(

3µsy
2a2cpy

+ µky
Cc

)

(4.26)

Next step is to derive an expression for the relation between Cc and

the cornering stiffness C′
y. At very small slips σ y � 0 there is no sliding

in the contact patch and the tire force only consists of adhesive force.

Therefore,

C′
y =

dF′
y(σ y)
dσ y

∣

∣

∣

∣

σ y=0
= − d

dσ y

(
∫ a

−a
cpyδ b(x) dx

)
∣

∣

∣

∣

σ y=0

= 2a2cpy
(

1− 1

Cc

dF′
y(σ y)
dσ y

∣

∣

∣

∣

σ y=0

)

= 2a2cpy
(

1−
C′
y

Cc

)

(4.27)

Hence, the cornering stiffness including the flexible carcass is given by

C′
y = Cc2a

2cp y

Cc + 2a2cpy
(4.28)
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Further, the rubber will be assumed to behave isotropicly, cpy = cpx,
which is a realistic assumption. (In Section 3.2 the carcass deformation
was included in the lateral rubber stiffness.) Then the carcass stiffness
can be calculated from (4.28) as

Cc =
CxC

′
y

Cx − C′
y

(4.29)

where 2a2cpx = Cx according to (3.37). Using (4.29) then the limit­slip
adjusted for carcass deformation of (4.26), σ ○

y
′, can be written as

σ ○
y
′ = Fzµ y

(

2

Cx
+ 1

C′
y

)

(4.30)

Using F∗
y = Fzµ y, µsy = µky, and Ĉ

′
y = Cα ⋅ 180/π explains the choice

of σ ○
y
′ in (3.94).

Discussion Introducing flexibility in the carcass as described above

improves the accuracy of the brush model in the lateral direction sig­

nificantly, as can be seen in Figure 4.10. The approach can be used

even for combined slip. The agreement for the brush model is still

better in the longitudinal direction, but assuming more realistic de­

flections will complicate the expressions considerably. Note that this

approach will not affect the main part of the self­aligning torque, M ′
z

and improvement of it will require more advanced carcass deflections.

4.5 Tire Dependence on Unmodeled Factors

There are a lot of factors influencing the tire behavior, and it is prob­

ably an impossible task to try to understand them all completely. It

is not without reason that one of the major institute for tire testing

and research (TNO, Netherlands) has derived a huge empirical equa­
tion structure to describe the tire behavior by parameter optimization.

One effect that is observed in reality, but not covered by the brush

model is that the braking stiffness, Cx seems to depend on the fric­

tion. A method to distinguish between different surfaces rely on this
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Figure 4.10 Comparison of the brush­model with (dashed) and without
(dashed dotted) compensation for a flexible carcass. Asterisks denotes points
for total sliding α ○′ and α ○. Solid line is Magic Formula empirical data given
from [Gäfvert and Svendenius, 2003].

phenomena [Gustafsson, 1997]. This effect can also be seen from the
measurements in Section 5.2. Another problem is the load dependence.

Both the friction coefficient and the braking stiffness shows depen­

dence on the vertical load. Experiment shows that µ is slightly de­
creasing for increasing load, see for instance [Nordstrom, 1983]. Also
the braking stiffness depends on the load and an attempt to explain

this by changes in the contact area, since Cx = 2cpa2, is done previ­
ously. Results have shown that the braking stiffness coefficient Cx/Fz
decays slightly for larger vertical loads. The same holds for the cor­

nering coefficient, with the exception that the decrease is larger. The

difference is probably explained by that the carcass flexibility Cc re­

acts different from the bristle stiffness on load changes. Another thing

that shows in this direction is that the cornering coefficient increases

with inflation pressure, see [Wong, 2001], when the contact patch usu­

81



Chapter 4. Details of the Brush Model

ally gets smaller, which results in a lower bristle stiffness. The load

dependence is a very important observation and it probably has to be

account for in the tiremodel since the load generally changes during

the braking phase, due to load transferes.

4.6 Conclusions

This chapter has dealt with extensions to the ordinary brush­model.

The effect of velocity­dependent friction has been discussed and several

relations between the friction coefficient and the sliding velocity have

been analyzed. Allowing an exponential decay on the friction will give

a tire model that can be calibrated to measurement data in a similar

way as the Magic Formula. However, many parameters are needed for

that representation. Linear velocity­dependence introduces only one

extra parameter, but its effect on the tire model is limited to higher

slips.

The brush model is usually derived assuming symmetric pressure­

distribution between the tire and the road surface and the effects of

deviations from that are studied. A parameter is introduced to change

the position of the center of the pressure in the contact patch, which

makes it possible to adjust the tire model at low slips. It is noted that

the brush model can be extended with calibration factors in differ­

ent ways to increase its agreement. Since the properties at low slip

are important when trying to estimate the friction coefficient by mea­

surements in this range, which will be discussed in Section 5.3, the

parameter to change the pressure distribution is particularly interest­

ing.

The tire behavior in the lateral and longitudinal direction differs.

The brush model has to be corrected for cornering due to the influence

of the lateral flexibility of the carcass. It is shown that an approxima­

tion of the carcass deformation as pure twisting towards the rolling

direction will improve the accuracy in this direction significantly.
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5

Applications for Brake

Control

An important question in this thesis is how knowledge about the tire

behavior can be used in braking applications. One way is to test the

tire and mathematically approximate the data to a function. Then, the

function can be used to describe the tire behavior for a specific condi­

tion. This is most common for simulation purposes, but the benefit in

reality depends much on the quality of the tire model. If a condition

changes the vehicle stability is in danger if too much reliability is set to

the tire model. The ABS­function is a good example on how knowledge

about the tire characteristics in general can enhance the vehicle sta­

bility only by knowing that the wheels must not lock, since the driver

then is disabled from steering the car. Another aspect which has be­

come popular recently is to continuously estimate certain parameters

so the actual tire characteristic can be predicted. Here, problems con­

cerning sudden changes of road surfaces are major issues. This section

will first discuss some of the existing methods to estimate the tire be­

havior. Then, the result from a vehicle test, with the aim to examine

if the the brush model is valid enough to be used in this context, is

presented. Finally, it is shown how the brush model can be used for

estimation.
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5.1 Existing Friction Estimation Methods

Much effort has been made on developing friction estimation algo­

rithms. A literature study in this area is quite difficult, since the

published articles often describe academic nice solutions, but these

are often restricted to certain circumstances and with few real imple­

mentations. The company, having powerful test equipment, mostly do

not publish anything due to the hard competition. One exception is

a work done by NIRA­dynamics, which has been presented in many

articles, i.e [Gustafsson, 1997] and also developed to a selling prod­
uct. The product is an algorithm that using the wheel speed signal,

the vehicle velocity and the engine torque can distinguish between the

road foundations: gravel, ice, snow, and asphalt. The idea is to study

changes in the wheel speed and braking stiffness. Another approach

has been published in [Ray, 1997] where the speed of all wheels and the
corresponding tire forces, are estimated through an extended Kalman­

Busy filter and among several tire model the most probable is chosen

through Bayesian learning. One method based on the brush model is

published in [Pasterkamp and Pacejka, 1997]. The relation between
the self­aligning torque and the lateral tire force derived by the brush

model is used to estimate the friction while turning. In [Canudas de
Wit et al., 2001] it is shown how an observer for the friction can be
achieved using the LuGre model. Many approaches uses the brush

model for estimation of the friction, e.g. [Liu and Peng, 1996], [Ya­
mazaki et al., 1997], and [Pasterkamp and Pacejka, 1997]. However,
no good test results are available to this approach and this section will

validate the reliability of the brush model by comparisons to a vehicle

test. The brush model has shown good agreement to Magic Formula op­

timized test data collected in laboratorial environment, see Figure 3.8.

If the agreement is acceptable in real condition is another question.

A method to increase the flexibility and the agreement of the brush

model is to use the the calibration factor d proposed in Section 4.3 and

also further discussed in [Svendenius, 2003].
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5.2 Vehicle Test for Validation of the Brush Model

Test Equipment

The test was performed at the test facilities MIRA in England, where

there is a separate track with different road surfaces. A special ar­

rangement sprays water on the lane to reduce the friction. Four dif­

ferent foundations are available, basalt, bridport, wet and dry as­

phalt. The Scania test truck, with additional weight blocks mounted,

is equipped with a CANSAS­measurement system to record signals

from the CAN­buss with data acquisition time, 0.01s. A DGPS­sensor
called V­box measures position, velocity and acceleration of the vehicle.

Also a longitudinal accelerometer provides the retardation. The rota­

tion speed of each wheel and the brake application force of each brake

is measured through the brake system.

Test Procedure

Since the English security legislation around test facilities is strict

the maximal speed was not higher than 40 km/h. Only the brakes at
one axle are applied at the same time to reduce the number of forces

working on the vehicle. The slip calculation is then also simplified,

since two wheels always provides the reference speed. Three test runs

were performed, each containing a number of brakings on different

road surfaces. In each braking the brake pressure was applied as a

ramp aiming to reach the highest possible tire force before the vehicle

comes to a rest.

Signal Processing

To be able to validate the brush model the longitudinal tire force and

the slip signal has to be available. None of the signals are directly

measurable by the test equipment, so they have to be calculated. Since

the slip calculation is sensitive for noise all signals were filtered with

a second order filter, ω 2/(s2 + ζ ω s + ω 2) with ζ = 0.75 and ω = 20.
On each side of the truck the σ ­slip is derived as

σ x = ω 1(t) − ω 2(t)
ω 2(t)

(5.1)
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where ω 1 denotes the rotation velocity of the free rolling wheel and ω 2
corresponds to the braked wheel.

It is assumed that the brake force is equal on the both sides of the

truck and can be calculated by

Fx = ma(t)
2

(5.2)

The vertical force, Fz, working on each tire is also assumed to divide

equal on the left and the right side. It is for the front and reap tires

derived using

Fzf = mnl2
2l

+ ma(t)h
2l

; Fzr = mnl1
2l

− ma(t)h
2l

(5.3)

where the negative sign is used for the rear wheels and the positive

sign for the front wheels. The included parameters are given in Ta­

ble 5.1. The dynamical system between the brake force application

and the generation of the tire force use to be described by a first order

system with a time constant depending on the wheel speed, see (2.14).
The entire truck system, described by a transfer function from the tire

force to the measured accelerometer signal is more complex and prob­

ably the effect of the tire dynamics is small in comparison. Therefore a

first order function with a fixed time constant is assumed to describe

the dynamics between the slip signal and the retardation

Fx = F(σ x)
Ts+ 1 (5.4)

The choice of T was done manually and affected the result consider­

ably. The value that gave the brush model best agreement, T = 0.2 s
was used for the calculations.

Result and Validation

In Figure 5.1 the results from a number of brakings are shown. The

two figures show results from two different test runs, where only brak­

ing with the front wheel brakes are performed. The first collection

includes braking on different surfaces and the second only on wet as­

phalt. The normalized brake force is plotted against the wheel slip and
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5.2 Vehicle Test for Validation of the Brush Model

Table 5.1 Vehicle parameters. (CoG: Center of gravity)

Parameter Value Significance

m 12412 kg Mass of vehicle

l 3.8 m Length of wheel base

l1 1.97 m Distance between front axle and CoG

h 0.85 m Height of Cog

Table 5.2 Surface friction values compared to parameters from the brush

model optimized to the measurements.

Road surface µ µ̂ Ĉx λ○

Basalt 0.10 ­ 0.15 0.125 13 0.030

Bridport 0.3 ­ 0.4 0.4 20 0.064

Wet Asphalt 0.65 ­ 0.80 0.77 23 0.11

Dry Asphalt 0.80 ­ 0.90

compared to brush model approximations. The difference between the

road foundations is clearly visible. The result also follows the brush

model very tightly and the optimized parameters from Equation (4.1)
are presented in Table 5.2. The predicted friction values are realistic

compared to the nominal values. This means that the result from the

modeling in Section 3.2 agrees well to real circumstances (restricted to
longitudinal motions), even though it is strongly simplified. The mea­
surements also show good repetivity, which is clear from the brakings

on asphalt. Some of the spread between the collections can still be ex­

plained by different amount of water on the road. The reason for lack

of data from brakings on dry asphalt is obvious since the test was per­

formed in England. An uncertainty in the test is the dynamic relation

between the force and slip measurements, since the slip is measured at

the wheel rim and the force is derived from retardation of the vehicle.
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Figure 5.1 Plot illustrating the braking force as a function of the slip, λ . Mea­
surement values are dotted and the solid line is the brush­model approximation.

Left: Test run no. 1. Right: Test run no. 2 (only asphalt).

5.3 Friction Estimation Using the Brush Model

The expression for the brush model including a suitable d­factor, given

by (4.16), is well suited for friction estimation since the two parame­
ters, Cx, and µ are explicitly included. The brush model can be written
on the following form

y = θ0u0 + θ1u1 + θ2u2 + e (5.5)

with the following regressors

y = Fx (5.6)
u0 = Cx0σ x (5.7)

u1 = − 1

3µ0

(Cx0σ x)2
Fz

(5.8)

u2 = 1

27µ20

(Cx0σ )3
F2z

3d+ 1
(d− 1)3 = u21

3u0

3d+ 1
d− 1 (5.9)
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5.3 Friction Estimation Using the Brush Model

The tire parameters of interest can be derived as

Ĉx = θ0Cx0 (5.10)

µ̂ = θ 20
θ1

µ0 (5.11)

Then the third parameter θ2 can be expressed by the other two pa­
rameters θ0 and θ1 as θ2 = θ 21/θ0 and (5.5) can be rewritten in the
following form

y = θ0u0 + θ1u1 + θ 21
θ0

u21
3u0

3d+ 1
d− 1 + e (5.12)

There exists a number of estimation schemes to treat this kind of

model structure. A lot of criteras have to be set concerning the update

rate of the parameters before an algorithm can be chosen or derived.

There is also an enormous work to be done to tune parameters and

gains. Further measurements to exactly reveal the noise ratio on the

signals are necessary. This is hopefully, a good challenge for future

work.
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6

Conclusions and Future

Work

6.1 Conclusions

This thesis has mainly two aims. The first is to gain knowledge and

understanding about how a tire transmits the force from the rim to

the road. This has been done by studying existing methods to phys­

ically model the tire­road interaction. The modeling has been aimed

at understanding and also been kept as simple as possible. As a base

the brush model theory has been used. The influence of additional fac­

tors such as velocity and wheel load has been studied and discussed,

even though some of the effects, seen in measurements not have been

covered by the modeling. The coupling between the longitudinal and

lateral tire force has been discussed in detail and a new proposal to de­

rive the combined slip forces from pure slip models has been presented.

This method relies on the physics from the brush model and includes a

velocity dependency which is derived from the pure slip models. All in­

formation is derived from the models which allows continuous changes

of the tire characteristics.

The second aim is to examine how the knowledge about the tire be­

havior can be used in braking applications. The dynamics of the tire is

one effect that has to be accounted for since the forces and movements

in the contact patch are of interest, but the measurement now days
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6.2 Future Work

are limited to the rim. Basic equations for this has been presented and

the accuracy needed will be determined from further testing. A theory

for how the brush model can be used for detection of road surface has

also been discussed. In this matter the accuracy of the brush model

is an important issue and a method to calibrate it by introducing an

extra factor is also discussed. Results from a vehicle test have been

presented which shows good agreement between the brush model and

tire behavior in real conditions. This shows that the accuracy of the

brush model seems to be sufficient for surface prediction.

6.2 Future Work

The future work will sprawl out in two directions. The brush model

seems to agree well with observations from vehicle tests and its struc­

ture can probably be used for friction estimation. However, to create

a reliable estimation algorithm that can handle non­equally spaced

measurements, adopt slowly for wear and tire changes, and rapidly

detect a sudden friction loss, will require a lot of mathematical work.

On the other hand there are a lot of practical problems to deal with.

The treatment of non­modeled factors as the load dependency and fric­

tion sensitivity in the braking stiffness is one example. Another is the

implementation and verification of the dynamic relation between the

measured brake force and the force in the contact patch. This requires

more vehicle testing and further development of the existing measur­

ing equipment.
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