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ABSTRACT

A class of recursive stochastic algorithms is considered.
This includes e.g. stochastic approximation algorithms and
algorithms for recursive identification and adaptive con-
trol.

It is shown how an ordinary differential equation can be
asgsociated with the algorithms. Problems like possible con-
vergence points for the algorithm, convergence with proba-
bility one etc. can be studied in terms of this differential

equation.
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1. INTRODUCTION

A quite general recursive algorithm can be described as fol-

lows:
x(t) = x(t-1) + y(£)Q{tix(t-1),0(t)) (1.1)

where x(.) is a sequence cof (column) vectors, which will be
called the estimates. They are updated at every sample point
t and the correction QO is based on the current estimate and

also on an (stochastic) observation ¢(t), obtained at time t.

"Observation" does not need to be understood literally. It
simply stands for the information at time t that enters the
algorithm as described. The variable ¢ may be the result of
certain treatment of actual measurements. The sequence Y

consists of positive scalars.

We shall not yet discuss the nature of the observations, but
it should be remarked that the generation of the observations
very well may depend on the previous estimates, Hence algo-
rithm (1.1) is not so easy to analyse directly: The fact that
@(t) may depend on all previous estimates means that, while
(1.1) certainly is recursive from the user's point of view, it
is not so from the viewpoint of analysis, i.e. (1.1) is not a
difference equation for x(.). Neither is there any reason to
consider x(+) as a Markov process and there is no hope for the

application of Martingale theory in general.

The approach that will be taken in this report is to associate
with (l1.1) an ordinary differential equation (ODE)

4 WPy = (%)) (1.2)
drt

where

£(x) = 1lim E Q{ts;x;0(t)) (1.3)

1o



'(The precise definition of £(.) and ©(+) will be given in Sec-
tion 2.)

T+ will be shown that under certain regularity conditions the
ODE (1.2) contains all relevant information about the asympto-
tic behaviour of (l.1): Possible convergence points of (1.1},

convergence of (l.1) w.p.l etc. can be studied in terms of (1.2).

This subject has been studied in several earlier papers and re-—
ports, e.g. Ljung (1974ab), Ljung-Wittenmark (1974ab), Soder-

strém et.al. (1974), Lijung et.al. (1975), Ljung-Lindahl (1975),
Astrém et.al. (1975), Ljung (1975a). The purpose of the present
report is to collect the theoretical results from these studies
and present full proofs of all statements in a single report.

At the same time a slightly different and more general problem

formulation will be used, that subsumes the earlier studies.

The tone of this report will be quite formal. Not much effort
will be made to discuss or examplify the applicability of the
results. For that I refer to the previously mentioned referen-
ces and also to Lijung (1975b) and to Astrdm-Wittenmark (1974).

Further, evidently a substantial part of the report consists

of proofs. While the basic idea of the proofs often is quite
simple, the formal development unfortunately is technical,
lengthy and perhaps boring. Some attempts have been made to
increase the readability by enhancing the basic ideas. It could
be remarked that the lengthyness of the proofs to a certain ex-
tent is due to the fact that a wide applicability has been a

main concern.

In a choice between a condition that enables an elegant proof
and one that ensures wider applicability, the latter has usual-
ly been chosen. Most previous studies of algorithms of the type
(1.1), like the Robbins-Monro (1951) scheme, have dealt with
the case when @(+) essentially is a sequence of independent
random variables; Blum (1954), Aizerman et.al. (1970), etc.
[cf. Ljung (1974a), Ch. 2]. This assumption allows the use of




martingale theory and many of the proofs here would be dras-
tically reduced in that case. [By the way, the martingale con-
vergence proof, e.g. Doob (1953), Chung (1968), is itself ra-
ther technical and lengthy.) Without this assumption several
of the steps of the martingale convergence proof have to be
gone through with a considerable amount of hard labour since

we are not backed up by elegant probabilistic results.

In Section 2 of this report the algorithm to be studied is
presented, and there it is also discussed how it relates to
the previous studies. Section 3 gives the main theorems on
convergence and non-convergence, while the results are exten-
ded to certain other related algorithms in Section 4. Section

5, finally, contains a summary and discussion of the results.




2. THE ALGORITHM
The algorithm to be considered is (1.1)
x(£) = x(t-1) + y(£)o(tix(t-1),0(t)) (2.1)

where the observations are obtained from a linear dynamical

system
@(t) = A(x(t-1))o(t-1) + B(x(t-1))e(t) (2.2)

where e(+) usually will be regarded as a sequence of inde-
pendent random vectors, not necessarily stationary or with
zero mean. We suppose that x(t) € R®, o(t) € R" and e(t) €

€ Rp. A(x) and B(x) are matrices of appropriate dimensions.
Consequently ¢(-) are "states" of the system. We could equal-
ly well have taken @(.) as "outputs" of the system, since
anyway Q may be a function only of certain linear combina-
tions of the components of ¢(.). The classical stochastic
approximation situation (the Robbins-Monro scheme, the Kie-
fer-Wolfowitz procedure) with independent observations is
then obtained with A(+«) = 0; B(-+)

self is regarded as "observation".]

I. [Then perhaps Q it-

In Ljung (1974ab) the case with dependent observations, not
affected by the current or previous estimates,was treated.
That situation is here obtained by taking A(-) = A, where A

has all eigenvalues inside the unit circle.

In an adaptive system, the current estimate is used to cal-
culate the current control law and thus it affects the in-
puts and outputs of the system (i.e. the observations). If
the system is linear as well as the regulator, it consequent-
ly can be described as in (2.2}, so (2.1) and (2.2) can be

regarded as a typical adaptive control scheme.




The case with adaptive control was considered in Ljung-Wit-
tenmark (1l974ab) and in Astrdm et.al. (1975), but only a spe-
cific version of (2.1), viz. the Least Squares algorithm, was

treated there.

Even for recursive identification algorithms not used toge-
ther with an adaptive controller it is in general necessary

to include dependence on x(t-1) in A. The reason is that when
the noise dynamics is modelled, the residuals usually are part
of the observation ¢. Their calculation obviously requires pre-
vious estimates as in (2.2). This case is treated in S&derstrdm
et.al. (1974) and in Ljung et.al. (1975), but again the study

there is confined to a particular structure of Q.

In this case there is an extra input signal coming into the
system. If this naturally is modelled as coloured white noise
(as often is the case) it can directly be incorporated in the
formulation (2.2). If, however, this input signal is not suit-
able for modelling as a stochastic process the whole problem
can be regarded in a non-stochastic setting as discussed be-

low.

The study in Ljung (1975a) allows for dependence of ¢(.) upon
previous estimates in a more general fashion than (2.2}, and

the results there are not entirely subsumed by this report.

It can also be mentioned that in Section 4 non-linear dynamics

in the generation of the observations will be studied.




Assumptions on the Algorithm

In order to prove the formal results certain regularity as-
sumptions on the functions Q, A and B and on the driving

"noise term" have to be introduced. Some of these are fairly
technical, but it is believed that none is very restrictive.
Several sets of assumptions are possible, and we shall give

a few. In particular there is a possibility to treat the se-
guence e(.) either in a stochastic or in a deterministic frame-

work.

We shall start by giving a formal definition of ¢ used in the

previocus section.

Let

DS = {x]A(x) has all eigenvalues strictly idinside the unit circle}
Then, for each x € DS there exists a » = A(x) such that

a5 < ¢« ax)k A(x) < 1 (2.3)

Take X € DS and define @(+,x) by

o(t,x) = A(X)o(t-1,%x) + B(x)e(t) ; ©(0,%) =0 (2.4)
Introduce also v{+,x) by
v(t,x) = a(x)v(t-1,%) + |[B(x)]|]e(t)]; v(0,x) =0 (2.5)

Let Dp be an open, connected, subset of Dg- The Regularity
conditions will be assumed to be wvalid in DR.

Now, the first set of assumptions is the following:




I.1 e(+) is a sequence of independent random variables {(not

necessarily stationary or with zero means).
1.2 Je(t)] <¢C w.p.1l all t.

I.3 0(t,x,y9) is continuously differentiable w.r.t. x and ¢
for x € Dg. The derivatives are, for fixed x and o,
bounded in t.

I.4 A(.) and B(.) are Lipschitz continuous, i.e.[A(xl)wA(xz){ <
< Clxy-x,| and analogously for B.

I.5 lim E Q(t,%,0(t,X))

toeo

exists for x € D, and is denoted by f(x). (The expecta-

tion is over e(-).)

I.6 ) y(t) =

I.7 ) y(£)P < » for some p
1l

I.8 ¥Y(.) is a decreasing sequence.

I.9 1lim sup(l/y(t) - 1/y(t-1)) <

t—oo

These conditions will be referred to as "Assumptions I". I.1l
introduces the stochastic structure into the set up. While I.2
certainly is most reasoconable for all practical purposes, it is
somewhat unattractive from a theoretical point of view, since
it excludes e.g. the common Gaussian models for noise. Below
{Assumptions II) are given conditions which allow more general

noise.
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Suppose that the estimates x(t) are plotted against this time

T3

=3
e

Let xD(T;Tno,x(no)} be the solution of (3.5) with initial va-

lue x(no) at time Ty

xD[TnO;TnO,X(nO)] = x(ng)

Plot this solution in the same diagram:

v

Let I be a set of integers. The probability that all points

x(t), t € I, simultaneously are within a certain distance ¢




Conditions I.3 and I.4 are reasonable regularity properties,
and I.5 is the baslc assumption that makes it possible to as-
sociate (2.1), (2.2} with an ODE. Condition I.6 is obvicusly
necessary to ensure convergence to the desired value, no mat-

ter how far off the initial value may be.
I.7 gives a condition for how fast y(t) must tend to zero.

[This is considerably less restrictive than the usually given

one,
%T(t)z <]

Conditions I.8 and 1.9 are motivated by technical arguments

in the proofs, but have so far not appeared to be restrictive.
If we would like to alleviate I.2 further regularity condi-
tions on Q are required. This gives us our second set of as-
sumptions:
I1.1 = 1I.1
I1.2 E|e(t)|p exists and is bounded in t for each p > 1.
IT.3 Qft,x,v) is Lipschitz continuous in x and o:
|Qts%y0y) = QU xy005) | < Ky (x,0,0,v) {[x=%,] + 07705}
for x; € B(i(p)T where x € Dy and p = p(x) > 0

¢, € B(p,v) i=1, 2

¥ B(E,p) denotes a p-neighbourhood of X, i.e.

B(}_{,p) = {X[]}{-;{| < p}.




IT.4 IKl(§:$lfp;Vl) - Kl(§,wzrp:v2)| <

< K2(§farpr;rw){{®1_@2| + |Vl'V2|}

for ¢; € B(@,w)
v, € B(V,w) i=1, 2
II.5 = I.4
IT1.6 = I.5
I1.7 Q(t,%,9(t, %)), Ky (x,0(£,%), p(x), v(t,x)),
Ky (X, (€,%), p(X), vit,x), vit,x))

have bounded absolute p-moments for all p > 1. Here
p{.,x) and v{.,x) are defined by (2.4), (2.5).

IT.8 - II.11 = I.6 - I.9.

Conditions II.3, ITI.4 and II.7 admittedly look somewhat com-
plex, but they are as a rule easy to check, in a given situa--
tion, especially since Q(t,x,¢) is a simple function of x and
® in most applications. The conditions II.3 and II.4 essential-
ly require that Q(t,x,¢p) is twice continuously differentiable
and II.7 implies that |[Q] and |Ki[ must not increase tooquick-

1y with @ and v,

In these two.cases the algorithm (2.1), (2.2) is treated di-

rectly in a stochastic framework, due to assumption I.1 = II.l.

In certain cases it may not be suitable to treat e(.) in (3)
as a sequence of random variables. Naturally the algorithms (2.1),
(2.2) still make sense, even if e(.) is a given, deterministic
sequence. Convergence of (2.1} will then depend,among other

things, on the properties of this sequence e(+). In such a case




10-

we may work with the following assumptions. Let K, be defined
as in II.3 and let &(-,E) and v{.,x) be given by (2.4) and
(2.5). Introduce the quantities z(.,x), k({.,x), kv(.,i) by

z(t,%) = z(t-1,%) + y(t)[Q(t /X, 0(t, X)) - z(t-1,%) ]

z(0,%x) = 0 (2.6a)
K(t,x) = k(t-1,%) + v(t) [Ky (Ko, %) ,p(R), v(E,X)) - k(t-1,%)]
k(0,x) =0 (2.6b)
k, (£,%) = k,(6-1,%) + v (&) [K) (x,0(t,%) 0 (), v{e,X) )vE,x) -

-k, (t=1,%) ]
k,(0,x) =0 (2.6¢)

The assumptions then are
III.1 = IT.3
I11.2 = 1.4

ITI.3 z(t,i} as defined by (2.6a) converges for all X € DR and
denote the limit by f£(x).

I1I.4 k(t,§) and kv(t,ﬁ) as defined by (2.6bc) are bounded in
t for all x € Dg-

II1.5 = I.6
III.6 yv{t) - 0 as £ -» o,
When these assumptions are used no stochastic framework has

to be introduced. The statements about the behaviour of x{+)

to be given below are true as long as e(+) is such that IITI.3
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and III.4 hold. If a stochastic framework is imposed and
I1I.3, III.4 hold w.p.l, then the statements on x{(:) will be

true w.p.1l.

This is, essentially, the approach taken in Ljung (1974ab),
which also contain a detailed study of algorithms like (2.6)
fesp. Ljung (1974a), Ch.4]. There several different sets of
conditions implying converdgence of (2.6) are given. In fact,
it will follow from the analysis given here, that conditions
IT imply that IITI.3, IIT.4 hold w.p.l. It may in this context
be remarked that there is actually a trade-off between condi-
tion I.7 = IT.9 and conditions II.2 and II.7: The largest p
for which II.2, II.7 need to hold is twice the p for which I.7
holds. This is discussed in Ljung (1974ab), and we shall not

pursue it here.

Finally, we may remark that conditions I, ITI or III assure
Lipschitz continuity of £(+). Therefore the solutions of the
ODE (1.2) are well defined as long as x(t) € DR' {(In fact,
due to the continuity, it is sufficient to require that III.3

holds in a dense subset of DR.)
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3. MAIN THECREMS

We shall in this section show how the ODE (1.2), with £(x)
defined by I.5 (or by III.3) can be associated with the algo-
rithm {(2.1), {2.2).

The first result shows that the algorithm locally and asymp-
totically follows the trajectories of the ODE.
Lemma l. Consider the algorithms (2.1}, (2.2) under the as-

sumptions I, II or III.

Let x € DR and define m{n,At) such that

mi{n,At)
vy{t) - AT as n - w«
n
Assume that x(n) € B(x,p) where o = p(%) is sufficiently

small, and that |p(n)| < K = K(w). Then, for sufficiently
small At = At (x)

x(m(n,at)) = x(n) + AtE(x) + ql(n,At,E,w) +
+ d,(n,A1,%,0) (3.1)
where
ql(n,A1,§,m) » 0 as n » o for w € 9(x)
where P{a(x)) =1 (3.2)
and

2

]qz(n,AT,Q,m)l < At + C « |x(n)-x| + C « At (3.3)
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where C depends on X but not on n,

Moreover, under assumptions I or II,

Elq; (n,a0,%,0) 1 s ¢ ymF (3.4)

The proof of Lemma 1 is given in Appendix A.

3.1. Convergence

From this lemma we first obtain the following convergence re-
sult.

[Note that the ODE (1.2) is defined only in x € Dg- ]

Theorem 1. Consider the algorithms (2.1), (2.2) under the as-

sumptions I, II or III. Assume further that

1) There is a finite valued random variable C such that
x(t) € D; = Dp and [e(t)| < C infinitely
often w.p.1l, where Dl is compact. [That is, there exists
w.p.l a subsequence tk(w), such that x(tk) € Dl and
lo(t, )| < Clw), kK =1, ....]

ii)  The ODE (1.2)
= x (1) = £(xP(0) (3.5) %)
1)

x”(r) will always refer to the solution of the ODE (3.5),
while x(t) are the estimates generated by the algorithm
(2.1), (2.2).
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has a stationary point x*, which is an asymptotically
stable solution with domain of attraction D, > Dy (i.e.
for all initial wvalues in DA' the solution of {3.5)
tends to x* as 1 + W]. It is also assumed that Dy can
be taken so that solutions of (3.5) that start in D

1
remain in there for 1 > 0.

Then x(t) -» x* w.p.l. as t = o,
=]

Sometimes the ODE (3.5) has an invariant set DC with domain of
attraction Da (of which the above is a special case if D = {x*}}
This means that the solution XD(T) to the ODE (3.5) will belong
to DC for all =« < 1 < o 1f XD(O) does and that, if xD(O) € DA’

D
then x (1) = De

neral, version of Theorem 1:

as t - «. Then we have the following, more ge-

Corollary l. If, in Theorem 1, assumption ii) is replaced by

ii') DC is an invariant set of the ODE (3.5} with domgin of

attraction DA = D1
then the conclusion is
x{t) - DC w.p.l as t » «

(meaning that inf |x(t)-x| - 0 w.p.l as t - =)
xEDC

Condition 1) has been called the boundedness condition in

Ljung (1974ab). In general it has to be verified by specific
means, and Ljung (1974a) contains a discussion on this mat-
ter (Ch.5).

The requirement for condition i) is twofold. Firstly, ocbvious-
ly x(t) must be inside Dy (with |@(t)| not too large to prevent
an immediate jump) for the ODE to be valid at all, and also

inside D, to get "caught" by a trajectory converging to D..
A g C
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Secondly, and perhaps less obviously, even if DR = DS = DA =

= R" it may happen that x(t) tends to infinity. Examples of
this are given in Ljung (1974a). The reason is that 1f Q(t,x,0)
increases rapidly with |x| it may happen that the correction
Y(t)Q[t,x(t—l),m(t)] always is too large even though y(t) tends
to zero. Another reason is that the variance of the "noise"
o(t,x,9) - £(x) may increase so fast with [x]| that a "random

walk" effect becomes predominating.

For Robbins-Monro type algorithms, i.e. when A(x) = 0, these
cases have usually been ruled out by extra conditions on cer-
tain Lyapunov functions for Q, see e.g. Blum (1954), Condition
A, or Aizerman et.,al. (1970), Condition B, p. 184. For the

case A(x) = A, B(x) = B a similar result is shown in Ljung
(1974a), Theorem 5.1.

Here we shall give two results that are more application orien-
ted. From a practical point of view the question of bounded-
ness of the estimates may seem uninteresting, since no imple-
mentation of (2.1) will allow that x(t) tends to infinity. It
will be kept bounded either by deliberate measures or due to
e.g. overflow in the computer. Now, the measures to keep x(t)
in a bounded area may not be completely arbitrary to obtain

convergence. Two useful cases are treated below.

Theorem 2. Consgider algorithms (2.1), (2.2) under the assump-
tions III. Assume that

a) lo(t,x,0)] < C all t,x,9
b) Kq in III.l can be chosen to be independent of X € Rn
c) I1.3 holds uniformly in X € Rn for each realization

d) |(A(x)]k[ < C--.Ak for all k, x € Rn; where X < 1.




16.

e) There exists a twice differentiable function W(x) > 0

such that W(x) » « as |x| - = and such that
sup W' (x)£(x) < 0, sup|W'(x)]| < « and sup|W"(x)| < «
where sup is taken over R? minus a compact area Dl'

Then condition i) of Theorem 1 holds, i.e. x(t) € Dy and
lp(t)| < Cc i.0. for all realizations such that III.3 and
III.4 hold.

The proof is given in Appendix B.

The assumptions a)and b) are, of course, fairly restrictive,
but still reasonable, since a saturation in Q for large x of~-

ten has to be introduced for numerical reasons anyway.

Also condition ¢)may seem restrictive and introduces certain
regularity conditions on Q. Often, however, Q is a simple func-

tion of x and ¢, and e.g. in the case
Q(x,0) = h,(x) + hy(xX)0
Al(x) = A

III.3 holds uniformly in x if it holds for any x. As remarked
above, conditions III are implied, e.g. by conditions II. Fi-
nally, the reason for condition e) is to assure that the tra-
jectories of (3.5) tend to Dy outside Dy and to assure that the
"attractive force" does not go to zero as |x| - «. Otherwise

the random walk effect might be predominating.

Another possibility of preventing x(t) from tending to infini-
ty is to project x(t) into a given bounded area if x(t) is too
large or if x(t) does not belong to the desired area, say e.d.

D In fact if A(x) is a known function of x it is common, and

g®
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often even necessary to test if x(t) € DS and project it in-

to DS otherwise.

We then have an algorithm of the following type:

x(t) = [X(t—l) + Y(t)Q(t;x(t—l),m(t))]Dl'D2 (3.6)
A{x(t-1))Jo(t-1) + B(x(t-1))e(t) if x(t-1) € Dy
o(t) = lee 1 _ (3.7)
zuggegeO%nRﬁ.glven compact if x(t-1) € Dl
where
£ if £ € Dy
[£] =
Dl,D2

some value in D2 if £ ¢ Dl

It should be clear that Dy, D2 cannot be chosen arbitrarily.
Loosely speaking, the trajectories of (3.5) starting in D,
must not leave the area Dy . Otherwise there may be an unde-

sired cluster point on the boundary of D,.

This may be formalized as follows.

Theorem 3. Consider algorithms (3.6), (3.7) with Dl c Dg be-
ing an open bounded set containing the compact set D,. Let
~t \D

D =0D (“Dl minus Dz"). Assume that

1 2

D, D

Dy A g

with Dy defined as in Theorem 1. Suppose that there exists a
twice differentiable function U(x) > 0 defined in a neighbour-

hood of D with properties

sup U'(x)f({x) < 0 (3.8)
XED
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for x € D

\'4
@]

(%)
(3.9)
U{x) < C, < C; for x € D,

Then Theorem 1 holds without assumption i).

The proof is given in Appendix B.

Assumption {3.8) clearly makes U{.)}) a Lyapunov function in D,
while (3.9) formalizes the intuitive notion of trajectories
from D2 never leaving Dq - We may remark that (3.8), (3.9)
hold, e.g. i1f the trajectories of (3.5) do not intersect the
boundary of D, "outwards" and D, 1s sufficiently close to Dy.

For an adaptive regulator the area D, is usually not known.

S
Then condition i} of Theorem 1 has to be ensured by overall-
stability considerations for the closed loop system, cf. Ljung-

Wittenmark (1974a).

3.2. Possible Convergence Points

Lemma 1 can also be used to characterize the possible conver-
gence points, and thereby alsc to prove failure of convergence
by showing that the desired limit does not belong to the set
of possible convergence points. It is immediately clear that
if x(t) -» x* w.p.l (or even with probability strictly greater
than zero) then f£({x*) = 0 must hold.

This result can be strengthened. It often happens that the es-
timates converge into a set (e.g. a hyperplane) w.p.l, but the
actual point it converges to depends on the realization and

initial conditions. This i1s the case, e.qg., when a linear sys-

tem is overparameterized and its parameters are to be deter-
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mined using recursive identification methods. Then, however,
the probability of convergence to any given point in this
subset is zero. One should also realize, that any other point
in the parameter space also can be reached and that there is
some degenerate sequence e{*) (with zero probability) that
will take the estimate there. How can these two situations

be distinguished? The solution is obviously that in the first
case there is a non-zero probability for convergence into an
arbitrary small neighbourhood of the point, while in the se-
cond case the probability of convergence into a neighbourhood

of the chosen point still is zero.

Another situation might be that x(t) converges into a subset,
but within this set it does not converge to any given point
for any realization. It keeps on moving in "limit cycles".

Both these situations are treated in the following theorem.

Theorem 4. Consider algorithms (2.1), (2.2) with the assump-
tions I, II or III.

i) Assume that x* € Dy has the property that
P{x(t) - B(x*,p)} > 0 for all p > O (3.10)
Then £(x*) = 0.

ii) Assume that D, < Dg and

P{(set of cluster points of x(+)) =D} > O

cl

Then, if xg € DC’ the solution x{1) of é% XD(T) =
b .
= f(XD(T)]} xD(O) = Xg belongs to De ¥ ¢ (i.e. D

is an invariant set of the ODE).
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The proof of Theorem 4 is given in Appendix C.

Theorem 4 basically states that the possible convergence points
of (2.1) are stationary points of the ODE (3.5). Moreover, it
can be shown that among these, only stable stationary points

are possible convergence points.

Theorem 5 Consider algorithms (2.1), (2.2) under the assump-
tions I or II. Assume that x¥* € Dy has property (3.10} and that

Q[t,x*,@(t;x*)] has a covariance matrix bounded

from below by a strictly positive definite matrix (3.11)
Assume further that
E Q(t,x,0(t,x))

is continuously differentiable w.r.t. x in a neighbourhood of
x* and that the derivatives converge uniformly in this neigh-
bourhood as t tends to infinity.

Then

d .
= f(x) x=x has all eigenvalues in the left half plane

{including the imaginary axis). (3.12)

0

In fact there is a connection between (3.11) and (3.12) as fol-

lows.

Corollary. Let

Var[Q[t,x*,?p(t,x*)) - f(x*)] > 7




21,

and let the matrix

have the eigenvalues Ai with corresponding eigenvectors Ay
Then

Zh, +0 = Re A, <0 | (3.13)

The proof of Theorem 5 is given in Appendix D,

3.3. Asymptotic paths of the algorithm

While Lemma 1 states that the algorithm (2.1) follows the tra-
jectories of the ODE (1.2) locally, this property can be ex-
tended to global results by concatenating pieces of trajecto-

ries using Lemma 1:

Theorem 6. Consider algorithm (2.1), (2.2) under assumptions
I or ITI. Agssume that f£(x) is continuously differentiable, and
that

E Qlt;x;o(t;x)) (= £(x))
1)

does not depend on t .

Dencte

L We here may disregard a possible transient in @(t,x) and

assume that ¢(.,x) has reached stationarity.
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and denote the solution of the ObE (1.2) with initial condi-

nO) = xo by:é%f;rno,xo). Consider the ODE (1.2) 1i-

nearized around this solution:

tion x(1

a 0]
= Ax = f'Eﬁ%T;TnO,x ) 1ax

Assume that there exists a quadratic Lyapunov function for
thisg linear, time-varying ODE (cf. e.g. Brockett (1970)). Ag-

sume that lw(no)[ < Ky and that x(no) ED < DS where D is

compact. Let I be a set of integers such that inf’Ti'Tj] =

= 2 > 0 where 1 # j and i,j € I. Then there exists a K and

an 80 such that for ¢ < 80

P sup{ X (t) “}J%T P T X(n )] > s} <
te T t 0 0]
tznO
K(r) Ry r
<=5 1 vy (3)) all r > 1 (3.14)
£ j=nO
where
N =sup t
teT

which may be «., The constant K(r) depends on r, D and Kl but

not on x(nO), ng or @(no).
The proof is given in Appendix E.

The result (3.14) is somewhat technical, and its interpreta-

tion is as follows:

Let x{t), t = Ngreees be generated by (2.l). The values can
be plotted with the sample numbers i as the abscissa. It is

also possible to introduce a fictitious time 1 by
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from the trajectory is estimated in (3.14).

Although the proof of Theorem 6 provides an estimate of K(r)
from given constants, we do not intend to use (3.14} to ob-
tain numerical bounds for the probability. The point of the
theorem is that a connection between the ODE (3.5) and the
algorithms (2.1), (2.2) is established.
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4, SOME EXTENSIONS

Tn this section we shall consider some extensions of the pre-
vious results to cases where all the assumptions of Section 3
are not satisfied. Section 4.1 deals with certain algorithwms
of the Kiefer-Wolfowitz type, and in Section 4.2 the case with

non-linear dynamics for the observations is considered.
Finally, Section 4.3 deals with the application of the results

of Section 3 to a particular structure which is common in con-

nection with recursive identification methods.

4.1. Certain Algorithms of the Kiefer-Wolfowitz Type.

The Kiefer-Wolfowitz procedure can be described as follows:
Consider the problem to minimize

EVJ(X,V) = P(x) (4.1)
with respect to x, where Ev denotes expectation w.r.t. v.
Observations J(x,v(t)), t =1, ... of the criterion are avail-
able for each chosen x. The distribution of v(+) is indepen-~

dent of x. Kiefer and Wolfowitz (1952) and Blum (1954} sugges-
ted that the minimizing point x* should be estimated recursive-

ly:

x(t) = x(t-1) + y(£)J (x(t-1),a(t),v(t))/alt) (4.2)
whexe

3(x,a,%) = col{d(x-au,,v’) - J(x,v)}

1
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and

v{(n+1)t + 1)

v {(n+1)+(t+1) )

n is here the dimensicn of the vector x and {ui} are the bha-
sis vectors in R", Consequently, to advance one step with (4.2),
n+l measurements have to be made and n+l outcomes of the noise

v(+) enter.

Bium (1954) has shown convergence w.p.l for (4.2) under cer-
tain conditions. The condition on v{-) is essentially that it
should be a sequence of independent random variables, and the

conditions on Y{(*) and a(+*) are

fee]

lim a(t) = 0, ) Y(t) = =,
1

00

a(t)r(t) < e

-1 8

o

2
and %(Y(t)/a(t)] < o (4.3)

In a series of papers, see e.g. Kushner (1972), Kushner has
treated interesting variants of the Kiefer-Wolfowitz proce-
dure, using more general minimization techniques and allowing

constraints.

The results of Section 3 cannot be applied directly to the
procedure, since the conditions on uniformity in t (1.3),
[II.3, III.4] will in general not be satisfied.

However, in the following special case of (4.2) the proofs of

Lemma 1 and Theorems 1 - 6 hold with a minor change.
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Consider the problem to minimize

P (%) (4.4)
with respect to x, when only measurements

J(x,0(t)] = P(x) + DO(t) (4.5)
are available,

where ©(t) is a zero mean noise term

©(t) = Rp(t-1) + B(xX)e(t) (4.6)
B(xX) is a matrix which may depend on the currently chosen
point x in which (4.5) is evaluated. {e(+)} is a sequence of
independent random vectors with zero means and
E|e(t)|p<Cp<°°Vp (4.7)
A is a stable matrix.

The dimension of ¢ is m and D is a lxm matrix.

Further, suppose that

P(x) is twice continuously differentiable (4.8)
and that

[B(x)] <C ¥ x (4.9)
Applying the KW procedure (4.2) for the minimization gives

an algorithm which is closely related to those considered in

Section 3. We here combine the results of Theorems 1, 4 and 5.
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Suppose that (4.6) - (4.9) hold, as well as I.6, 1.8, I.9. As-

gume that {a(t)} is decreasing to zero and that

ot P

T(v(t)/a(t)?)" < = for some p (4.10)
1

Then,

A, If the procedure converges with non zero probability,

then the convergence point must be a local minimum of
P{x).

B. If x(t) belongs to a compact subset of the domain of
attraction of a certain local minimum x*, infinitely
often w.p.l, then x(t) -» x* w.p.l as t = .

The proof is given in Appendix F.

Extensions to Theorems 2 and 3 are straightforward.

4,2, Non-Linear Dynamics.

It is possible to extend all the results also to the case with

non~linear dynamics for ¢.
Consider the algorithms

x(t-1) + yv(v)olt;x(t-1),0(t)] (4.11)

x{t)

gltie(t-1) ,x(t-1) ,e(t)] (4.12)

w{t)

We shall introduce the following restriction on gl+,+,*] which

will greatly simplify the technical problems in the proofs:
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lgle,x,e]] < C ¥ g@,e (4.13)

¥ x € DR

[C may depend on DR.]
Moreover, we assume

Q[t,%x,0] is continuously differentiable w.r.t. x and p (4.14)
and the derivatives are bounded in t for x € D

R

gltie,x,e] is continuously differentiable w.r.t.x

for x ¢ Dr (4,15)
Define @(t,%) as
@(t,x) = glt;o(t-1;%),%, e(t)]; $(0,%) = 0 (4.16)
and assume that g has the property
[@(t,x) ~ ©(t)| < Comax|x - x(k) ] (4.17)

n<k<t

if
®(n,x) = ¢(n) (4.18)

This means that small variations in ¥ in (4.12) are not ampli-

fied to a higher magnitude for the observations ®,

Moreover, let Ei(t,i) be solutions of (4.16) with ai(s,§) = wg,
1 =1, 2. Then define Dy as the set of all x for which holds

- - - - 0 - —-
[0 (£/%) = 0y (e,3) | < c(9],09) ,Es (%) (4.19)

where t > s and A(x) < 1.
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[This is the region of exponential stability of (4.12).1]
Let

lim E Q(t,x,p(t,%)) = £(x) for x € Dy (4.20)

toeco

with expectation over {e(:}}.

Finally

"{e(-)} is a sequence of independent random variables (4.21)
Then we have the following result:

Theorem 8. Consider the algorithms (4.11), (4.12) with assump-
tions {(4.13) - {(4.21) and (I.6) - (I.9). Let DR be an open con-

nected subset of DS. Then Lemma 1 and Theorems 1 - 6 hold also
for this algorithm.

The proof of Theorem 8 is given in Appendix G.

4.3, On a Particular Structure of the Algorithm

Recursive identification algorithms often have a special struc-

ture in terms of the general algorithm (2.1). Then

e(t) :
x{t) = (4.22)
[col(R(t))l

where R(t) is a square, symmetric matrix with dimensions nxn
and where n is the dimension of the vector 6(+). The algorithm

then is structured as follows:
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o(t) = 6(t-1) + y(£)R(t) 1o (0(t-1) ,0(t)) (4.23a)
R(E) = R(t-1) + v(t) [o()o(t)” - R(t-1)] (4.23b)
@(t) = A(B(t=1))o(t-1) + B(B(t-1) )e(t) (4.24)

This structure is encountered, e.g. in the recursive least
squares algorithm and several others, cf. S&derstrdm et.al.
{1974).

The ODE corresponding to (4.23) as in (1.2) evidently is

Lo = R0 lem] (4.25a)
é% R(t) = G[8(t)] - R(1) (4.25b)
where

£,(0) = E Q; (0,0(t;8)) (4.26a)
G(6) = E ®(t;0)®(t;0)" (4.26b)

as in (I.5) although the expected values here, for simplicity
are assumed to be time-invariant. [Again, we assume that @(t,e)

has reached stationarity.]

However, the results of Section 3 are not immediately appli-
cable, since the correction term Rnl(t)Ql[e(twl);w(t)] in
(4.23a) does not have all the regularity properties required
in I or II unless R(-) is guaranteed to be bounded from below

by a strictly positive definite matrix.

What could happen is that if G(B) 1is singular for some &, then
if 0(t) - 8, implying R(t) - G(B). R(t) 10 (8(t-1) ,0(t)) may
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increase without bound. The the idea of Lemma 1, that an in-
creasing number of steps have to be taken in order to accomp-
lish a change of a given {(small) size, (~At}, in the estimate,

is violated.

However, by requiring that

Ql[e,{é(t,e)) € Ra{G(6)} v 8 (4.27)
where

Ra{A} = Range space of A

this case could be eliminated and the RHS of {(4,23a) is al-
ways well-behaved, in spite of the fact that the inverse R"l
itself may be unbounded. We shall, however, not here go into
the rather technical arguments required to prove this state-

ment, since the problem is fairly artificial. Even though
R(t)_lQ1

in theory may be well-behaved for almost singular R(t), in

any application there will be numerical problems due to "leak-
age" from the unbounded eigenvalue. Therefore, in actual app-
lications there must be a safety bound, assuring boundedness
of R(t). This can e.g. be of the form that (4.23b) is replaced
by

R(£) = R(E-1) + v(t)[o(B)o(t)T + eI - R(t-1)] (4.28)

where ¢ is some suitable small positive number. This assures
that
_ll

|R(t) < C/e




33.

and there is no problem in applying the results of Section 3.

Moreover, the reason for inciuding R"l in {(4.23) is often,

as in the least squares case, to change & in the conjugate
gradient direction, rather than in the gradient direction of
the least squares loss function. Then it is not of great im-
portance if R(t) is the second derivative of the loss function,

or just a good approximation of it.

Let us also discuss how the particular structure of the ODE
(4.25) affects the linearization, which is an interesting ques-

tion in view of Theorem 3.

Linearizing the ODE (4.25) around a stationary point (&,R)* =
= (6%,6(8%)) gives, with A8 = 6 - 8%, AR = R - G(8%),

é% A6 = G(6%) “TH(8%)AB (4.29a)
4 AR = - AR + 2 G(o)| ae (4.29b)
dr da B* *
where
4
H(0%) = -3 f (e)! (4.30)
gs f1 oo

Obviously, the stability properties of the linearized ODE (4.29)

are entirely determined by (4.2%a), i.e. by the matrix
G (e%) tH(e*)

since (4.29b) is automatically stable if A6 -» 0. Hence the 1i-

nearized equation used in Theorem 3 corresponds to (4.29a).

Finally, let us consider the problem to prove global stabili-




ty for ODEs like (4.25}. Suppose

T
d
fl(a) = - ['a'—e- V(G)]

for some scalar, positive function V(8).

Then

d _d a _ _ T -1

I v(e) = 36 V(e)dT B = fl(e)R (T)fl(e)
If

eI < R(1) < C-T

we have

d 1 2

T v < - zllE @l

and we conclude from standard Lyapunov theory that
6(t) = Doy = {e]fl(e) = o}

It then directly follows from (4.25b) that

R(1) - Dpp = {RIR = G(8), 6 € De}

34,

(4.31)

Hence the global stability of (4.25) can in this case be stu-

died only in terms of properties of fl(e).
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5. SUMMARY AND CONCLUDING REMARKS

The basic idea of this report has been to study recursive,

stochastic algorithms like

x(t) = x(t-1) + y(£)Q(tix(t-1) ,p(t)) (5.1)

]

@e(t) = gtix(t-1),0(t-1),e(t)) (5.2)

in terms of an associated ODE

£ 50 = £62(0) (5.3)
where
f(x) = lim E Q(t,x,p(t,x)) (5.4)

too

with @ defined as in (2.4) or (4.16).

We have proved that, under certain regularity conditions,
which are believed to be quite mild, the asymptotic proper-
ties of the algorithms (5.1}, (5.2} can be studied in terms
of the ODE (5.3). We can summarize the precise statements

of Theorems 1 - & in a somewhat looser language as follows:

a) x(t) can converge only to stable stationary points of
(5.3)
b) If x{+) belongs to the domain of attraction of a stable

stationary point x* of (5.3) i.o. w.p.l, then x(t) con-

verges w.p.l to x*

c) The trajectories of (5.3) are "the asymptotic paths" of

the estimates x(+}.
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These statements are fairly attractive intuitively, and they
are perhaps not very surprising results. The objective of
this report has been to prove the formal results underlying

this intuitive picture.

We have not discussed how the results can be and have been
applied. This is described elsewhere, see the references men-
tioned in the introduction, but let us here give a brief sum-

mary.

) Result a) can be applied mainly to show failure of con-
verdence. In many cases it is possible to analytically
linearize the ODE around the "desired" solution, also
when the RHS has a fairly complex form. If this linea-
rized eqguation is not stable, then consequently it has
been proved that the algorithm will not converge to the
"desired" value. With this technique it has been shown
that a certain self-tuning regulator does not converge
for all possible systems, Ljung-Wittenmark (19274a), and
a commonly used identification method not necessarily
converges to the true parameter values, Ljung et.al.
(1975). It can be remarked that in both these cases it
was dgenerally believed that convergence always took place,
and in the second case there in fact exists "proofs" to
this effect.

0 Result b) is the result by which convergence can be proved.
In general it is not easy to prove global stability of an
ODE, and in some cases the RHS of the ODE (5.3) is quite
complex. For certain problems, though, like for the LS-
identification method (Ljung (l974a)], for certain esti-
mation problems, [Ljung—Lindahl (l975)),lfor special self-
tuning regulators (Ljung—Wittenmark (1974a)] and for an
approxXimate, recursive ML method (Sﬁderstrﬁm et.al., (1974)
and Astrdm et.al. (1975)) global stability and hence con-
vergence has been proved. In fact, for the last case fl(e)

as in (4.26a) is the gradient of the expected value of the
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log-likelihood function for the problem, and hence, as
discussed in Section 4.3 the convergence analysis is re-
duced to analysis of local minima of this function,

While the analytic treatment of the ODE may be diffi-
cult in some cases, it is always possible to solve the
ODE numerically when the dimension of x is not too
large. In view of result c¢) the trajectories thus ob-
tained are relevant for the asymptotic behaviour of the
algorithms. Numerical solution of the ODE has been used
to determine the number and the character of stationary
points (and hence the possible convergence pointsg) in
Ljung (1974b) (An automatic classifier), Wittenmark (1973),
Ljung~Wittenmark (1974b) and Astrdm~Wittenmark (1974)
(Self-tuning regulators). It has also been used to stu-
dy asymptotic behaviour of schemes - for recur-

sive identification, Sdderstrdm et.al. (1974) .
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APPENDICES

Notational Conventions

Throughout the proofs C will be used as any constant not ne-
cessarily the same always. The same convention applies in ge-
neral to A, which always is supposed to be a pogsitive number
less than one.

"B(x,p)" denotes an open p-neighbourhood of %, i.e.

B(xs0) = {x||x-x| < o}

Expressions like

cve = A+ B éa + B

will mean that

o A A and B A B.
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APPENDIX A

Proof of Lemma 1

We shall first prove the lemma under assumptions II, which are
"the most difficult ones". Later in this appendix will be gi-~
ven the modifications necessary for the other sets of assump-

tions.

To prove the lemma we shall use an explicit expression for
x(m(n,AT)), obtained directly from the algorithm (2.1), and
then study the terms of this expression in some detail, First,
in order to assure that the considered sequence of estimates
are within the neighbourhoods of §, introduce j = j{n,®) as a

number less than or equal to m{n,At), and such that
x(k) € B(x,2p) k =n, n+l, ..., j-1 (A.1)

Consider now

x(n) + % v(i)o(i;x(i-1),0(i)) =
i=n+1

x(3)

= x(n) + % y(i)o(isx,e(i;x)) +
n+l

3 - -
+ ) Y(i)[Q(iiX(i‘l);w(i)} - Q(i;x,w(i;x))] a
n+l
= x(n) + Rl(n,j) + Rz(n,j) (A.2)

where @(i;x) is defined by (2.4).
We shall now show that

Rl(n,j) > ATE (%) wW.p.1l as n = o
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and that R,(n,j) is bounded by quantities as stated in the

Lemma.
Consider first the terms of Rz(n,j):
lo(iix(i-1),0 (1)) ~ o(i;x,®6(i;%)) | <
< Kl(ﬁ,a(i;ﬁ),2p,v(i)){|w(i) - 9(ix)| +
+ |x(1) - El} (A.3)
according to II.3, where v(i) is a random variable, such that
[P (1) - @(i;x)] < v(i) (A.4)

We therefore have from (A.2)

[Ry(n,3) ] < max  |x(k) - x| - Ry(n,3) + R,y(n,3) (A.5)
n<k<j
where
j — — —
Ry(n,3) = ] Y (K)Kqy (x,0(k,x),20,v(k)) (A.6)
k=n+1
and
j — - P
Ry(n,3) = ] v(XIK{x,0(k,x),20,v(k))v(k) (A.7)
k=n+1

The similarities in the expressions for Ri(n,j), i=1, 3, 4,
make it possible to treat convergence of all of them in one

lemma:




41.

Lemma A.l. Let @(t) be defined by
P(t) = Ap(t-1) + Be(t) (A.8)

where {e(-)} 1s a sequence of independent random variables
(not necessarily with zero mean) such that E]e(t)|p < Cp < o
all p. Assume that A is exponentially stable, i.e. ]ﬁk] < C-Ak;

A< 1.

Let £(.) satisfy

|£(0y) = E(0) ] 3 K(p,0) [0y = wy]7 ©5 € Blosp) (A.9)
where

- |
Ee(.)[K[m(t);w(t)][ <Cp < all p (A.10)
where

wlt+l) = aw(t) + [B|Cle(t+l)]

Let y(-) be a sequence satisfying (11.8) - (IT.11) and J(n,w) <

< m(n), where

mgn)

lim sup y(t) < C (A.11)

n-rco n

Then

3 {n,w - -

. Y(t)[f[m(t)) - Ef[m(t))}l - 0 Ww.p.l (A.12)
t=n

as n - o«

and
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m(n) 2p

Bl § vy [E{®e()) - BE (o)) ] <c -+ y(mP (A.13)
n

The proof of Lemma A.l is given at the end of this appendix

for convenience.

Moreover, in order to calculate R4(n,j) (see A.7), we need

some estimate of v(t):

Lemma A.2. If x(k) € B(X,p) for sufficiently small p = p(X),

then, for some A = A(x) < 1,

lo(t) - olt,x)| < C{At'“[lwtn)l + Jon,x)|] +

t .
+ max |x(k) - x| » ¥ xt"Jle(j+1)Q (A.14)
n<k<t j=n

The proof of Lemma A.2 is also given at the end of this appen-
dix.

We are now able to treat

Ri(n'j) i = lf 3' 4

J(n,w) -
1) Ryn,d) =] yWEX) 4
n

j(n,w) - - - _
+ ) y@ellixeisx)) - £5(x0)] 4
n

j(n,w)

F Y v - £60] 2
n

& 1,(n,3) + Ly(n,3) + Lyn,3) (A.15)
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where £, (¥) = E Q(iix,0(i;x)).

Now, Lemma A.l can be applied to Lz(n,j) since, due to (II.3),
(,9) is satisfied and due to (II.7), (A.1l0) is satisfied.
This gives that

Lz(n,j(n,m)] - 0 w.p.1l as n » {A.16)
Moreover,
E|L,(n,3) [P < ym)P - c (A.17)

By definition of f(x) as
lim £, (%),

i—o0

it also follows that

L3(n,j) + 0 ags n = o (A.18)

[This follows from the obvious assertion

min)
a; » 0 and Y Y(i) <Ccalln
i=n
m{n)
= .Z Y(i)a; » 0 asn > (pr.19)]
i=n
d{n,w) - - -
2) R3(n,j) = : Z Y(k)Kl(Xﬂp(er)rzpr(k)J
k=n+1
Let

E Kl(gfa(kJQ)rzp:V(k)) = my

and let
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mg < M
Then
J J R -
Ry, 3) | s M § y(k) + | } Y(k){Kl[X,w(k,X),prV(kH - mk}
n+l n+l
< T+ M+ L4(n,m(n,T)] (A.20)

Now, Lemma A.l can be applied to Ly- To see this, take as o
in (A.8) (9(t,%) v(e)T. [v(t) is defined by (A.4) and satis-
fies (A.8) due to (A.14).] Condition (A.4) is satisfied in
view of {(II.4) and (A.10) follows from (II.7). Hence

L4(n,m(n,Ar)] » 0 w.p.1l as n = o (A.21)
and

E|L4|2p < C -+ yv(mF (A.22)
3} To treat Rd(n,j) let us first rewrite v(i) as

V(i) = vy (i) + v,y(i)

where, cf. (A.14), with

p{n,i) = max [x(x) - x|
n<k<i
vi(i) =¢ '<Aimn{lw(n)| + |5(n,§)l}

(A.23)

i .
c .+ opfn,d) T a7 Je(3+n) |
j=n

I

vy (1)

<
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Then
m - - — o
Ry (n,3) | 2 ngl ) [y (xo0 (Gesx) 20, v(K)) vy (k) - 4 1) +
+ 1 « L+ cllom)] + |on,x)]]vn) -
T k-n - = =
) YA/ ym)) Ry (xe0(k,x) 420, v (kY]] (AL24)
n+l
where

£ = BlK) (x,0(1,%) ,20,v(1)) vy (1)] < L

The first sum of (A.24) tends to zero w.p.l as n - o according
to Lemma A.l as under point 2). The sum in the last term is

bounded by a constant w.p.l by the same lemma.

Furthermore, |@(n)] < K by assumption and |@(n,x)|y(n) - 0 fol-
lows since 5(-,§) is a sequence with all moments £fi-

nite (using Chebyshev's inequality and the Borel-Cantelli lemma
as in the proof of Lemma A.l). Hence

[R4(n,j)| < Ls(n,m(n)) + ¢t « L + Cpin,]) (A.25)
where

Lg (n,m(n)) »0 w.p.1 as n = e (A.26)
and

E|Ly|°P < c¥P (A.27)

Moreover, from (II.7)
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m; $M=2C (A.28)

From (A.23)

Elv, (£) | < o(n,0)%C (A.29)
Hence
2 <L s pn,i)C (A.30)

Collecting (A.2), (A.5), (A.15), (A.16), (A.20), (A.21), (A.25),
{(r.26), (A.30) we have

] -
x(j) - x(n)- ) y&EXR}| <
n+l

< Ly(n,3) + p(n,j)[L4(n,m) + LS(n,m)] +
+ Ly(n,j) + p{n,3)[At(C+M) + Cp(n,3)] (A.31)
where
Li(n,j) + 0 w.p.l as n »
and

p(n,3) =max [x - x(t)]
ngts<)

By definition of j, o(n,j) < 2p.
By choosing p = p(§) sufficiently small it follows from (A.31)
that the RHS can be made smaller than % 1| £(x)]| for sufficient-

iy large n.

Moreover, since then
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Ix(3) - %| < |x(3) - x(m)| + |x(n) - x| <

At|E(x)}] + o (A.32)

1A
o] =

we can, by choosing At = At (X) sufficiently small, make the
RHS of (A.32) be smaller than 2p and so

x(j) € B(x,2p) ¥n<ij<mindr)

for sufficiently large n. Hence we can take j(n,w) = m(n,At)
and then from (A.31)

x{(m(n)) = x(n) + F(x)AT + ql(n,AT,ﬁ,w)-+
+ qz(n,AT,E,w) (A.33)
where

lqy (n,81,x,0) | = [Ly(n,m(n)) + o (Ly+Lg) + Ls|

|q2(n,Ar,§,w)| o (n,m)C[ar + p(n,m)]} <

LA

[|xm) - %] + 5 At[£G)]] -

. c[at + |x(n) - x| + Ac(1 + % £(x)}]

where the last inequality follows from (A.32).

In view of (A.16), (A.l7), (A.18), (A.21), (A.22), (A.26),
(A.27) the proof of Lemma 1 is now complete.
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The case with assumptions I

This case is considerably simpler than the one just treated.
Under assumptions I, K; and v are bounded. Therefore the terms
R3(n,j) and R4(n,j) defined in (A.6) and (A.7) are automatical-
ly bounded w.p.l as in (A.20} and (A.25), without any reference
to Lemma A.l. (It is in the application of this lemma, where

the assumptions of Lipschitz continuity of Kl are required.)

The case with assumptions III

Solving (2.6) we obtain

_ . j(n) _
z[j(n),x) = z(n,x) + kZ Y (k) [w(k) = z (k-1,%) ]
=n

where
wik) = 0lk,x,0(k,x))
and similarly for n and p.

Now let n tend to infinity. By (III.3)

1im z(n,%) = 1lim z(3(n),x) = £(x)
=0 oo
and so

J(n) -
Lim = § y(k)[w(k) - z2(k-1,x)] =0
N n+l

oxr
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j(n) ~ J(n) ,
Y oy(w(k) - £(x) 7 v(k) -0 as n - o
n+1 n+l

With this result we directly obtain the desired estimates for
Ri(n[j) i = ll 3! 4

in the proof of Lemma 1, without reference to Lemma A.l.

Proof of Lemma A.Ll.

We start by illustrating the proof in the special case

T 2

) r(t) < (A.1.1)
1

and then this proof will be extended to the general case. De-

note
a(k) = £{ox)) - Bf(w(k)) (A.1.2)

The idea of the proof is to show that

j(n,0) : 5
g]” ) y(Ba(t)| <cC . vy (A.1.3)

n

Then, by Chebyshev's inequality

. 4
Jn,e)
3 (ny0) B L y®ae)
P } y(Blale) | < ¢} < <
n 4

&

< “CZI Y (n) 2 (A.1.4)
&
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and hence

> a} < J% % Y(n)2 < o (2.1.5)

£

o J{n,w)
) P ] Y v(t)a(t)
n=1

n
which by the first Borel-Cantelli lemma implies that

j (n,w)
i y{t)a(t) » 0 w.p.l as n - «

n

The key relation obviously is (A.1.3). Expanding this gives

-E

j(n,w) 4
Y(t)al(t) =
n
= tz té tg ti Yt v (Ey) Y(ty) Y(E ) Balt)alty)altydalt,) <
1
n fa 3 %y

1A

vim* car T T T T [Baltpalty)altydalty) ]
t4=n t3=n tzxn tl=n

{(A.1.6)

since Y(+) is decreasing.

Let us first focus our attention on

4
B 'ﬂ a(ti) t; < t2 < t3 <ty (A.1.7)
i=1
Introduce
t
r _tr—s
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Then, since |ﬁk| < C -_Ak,
2 ooty
Ele(t,) - ot t)]" < C « 2 (A.1.9)
and
£t -t
2 r +1
Efo(t. ty) = olt sty )]% < C - * (A.1.10)
and
i1 Ei417S
ot ty) = olt ,ty )] sC ] A le(s)| <
i
ti1 £y, -8
<C 7 2 lels) | = wit; ;) (A.1.11)
bl + +]
Introduce

gltarty) = flele,t)) - £lolt,,ty,4))

Then g(tr,ti) depends only on e(s), t,

4 £8 < t,, and not on

e(s), s < ty.
Moreover, from (A.9)

Ig(trrti}| < K[Lp(trrti) rW(ti_l_l)] |(P(trrti) = @(trfti+1)l

and from (A.10) and (A.1.10)

5 t_~t,
Elg(t.,ty) " s C« 2

Finally,




f(m(tr)) = gt bt _q) +glt,t ) + oo+ glt,ty)
where r = 1, 2, 3, 4 and t0 = — o, and with
a(tr’ti) = g(trfti) - E g(tr:ti)
we have
a(tr) = a(tr’tr~l) + ... + a(tr,to)
where

£t -t

r "i+l

We can now return to (A.1l.7) using (A.1l.14):
E a(tl)a(tz)a(t3)a(t4)
= E alty,tg)falty ty) + alt,ty) ] -
+ [alty ty) + alty b)) + altg,tg)] -

cfattyitg) +oalty,ty) + altyty) + alty,tg)]

This expression consists of 2:3:4 = 24 terms. However,

52,

(A.1.12)

(A.1.13)

(A.1.14)

(A.1.15)

(A,1.16)

since

a(tr,ti) is independent of a(ti’tj)' r < i < j, and has zero

mean value, several of these terms are zero. It is easy to

check that (A.1.16) is given by, after excluding the 10 zero

|E ajga,7830840 + F 81485785789 t E @

+ E ajg8,, (@5 tag tagg) (ata  ta )| =

= |E aft)a(ty)altylayy + E ajgaya5,(a,tay,) +

10821830 (8g3%a1%2,)

+
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+ E aloazoa(t3)(a41+a42)| <

2 2 1/2
< (E{a(tl)a(tz)a(t3)] E a40] "
1/4

1/2

2 4 (1/4 4

+ (E(alOaZI) ) (B a30] / [E(a4l+a42) ) +
2}1/2 . 1/4

* [E(aloa‘t3’) (£ a50) " (B (ayyta) *)

where the inequality follows from repeated use of Schwarz' in-

equality.

Using (A.1.15) now gives, since E a(tk)2 < C

4 t,-t t,—~t t,~t L t,~t
B oalty) | C[A 4TFL TR RaThs RFaTRL o Hy 3] <
1
t,~t £, ~t.+t,—t
< c{l 4Lt e l] (A.1.17)
Returning to the sum in (A.1.6) we find that
m t4 t3 t2 4
) Z ) } |E TN a(ti) <
4= t3=n t2=n tl=n 1l
moot, t5 %y T T
<C ] ) ) I (a + A ) <
t4=n t3=n t2=n tl=n
mo oty %y tymtqatt, ~t, t,~t,
<ct ) ) L (a A + A ) <
t4=n t3=n t2=n'
mo oty ty=ty t, oty
< c" ro(x (ty=n) + X ) <
t4=n t3=n
Tttty
<cm 7 (a (m-n)) < C" (m-n) (A.1.18)




Now, from (A.1ll) and since y(:) is decreasing

C > ) Y(t) > (m-n)y(m)

So1d

Hence

(m-n) < C/Y{m)

Moreover, since (Assumption I.9)

1 1
Y (n+1} Y (n)

< C

we have

Cr (n+l)Y(n) > v(n) - yv(n+l)
or

Y(n+l) > y{(n) (1 - Cy(n+l))

which, upon repitition, gives

m
-C ¥ ¥{(J)
m . n+1l
Y(m}) > y(n) T (1L -Cr(3)) ~vy(n)e ~ C'y(n)
n+l

Hence

Y(m) » C'v(n)

and this, together with (A.1.19) implies that

(m~n)} < C/¥(n)

54.

(A.1.19)

(A.1.20)

(A.1.21)
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Using this with (A.1.18) in (A.1.6) gives

4

E < CY(n)4(m-n)2 <

j
T ovi{t)a(t)
n

< cymi/rm? < oym)? (A.1.22)

which is the desired relation (A.l1.3). This completes the proof
for the case (A.l.1).

If instead only

32. vy ()P < o (A,1.23)

for some p > 2, we have to consider

2p

E % y{t)a(t)

n

which leads to terms like

2p 2p rr-1 2p

E 0 a(t.) =E H[Z a(t ,t)]ﬂZEn a(t,, t; ) (A.1.24)
r=1 T p=1tiZg ¥ 1 ST L

using the notation of (A.l1.8) ~ (A.1.17), where the outer

summation ig over the 2p! functions r =1 with i, <r.

¥

As in the case p = 2 many of the 2p! terms in (A.1.24) are ze-
ro and the remaining ones are "small". More specifically, eve-
ry a(tr’tr—l) (which are the "large" terms) which occurs in the
non-zero terms of (A.l.24) must occur together with some Ffactor
alt, st g} s,i 2 1. (Otherwise, a(tr'tr—l) is independent of
the rest of the factors and since it has zero mean, the whole
term would be zero.} A typical term of (A.1.24)

has the form
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2p 2p 1/N(p)
E T a(t.,t; )| < 0 [E(a(tr,t ) N(p)] <
2p  Trtian
< Ce T A (A.1.25)
r=1

using {A.1.15), where N(p) is a number depending on p

(arising from repeated use of Schwarz inequality).

Moreover, we claim that if the function r-»ir is such that

the corresponding term in (A.1.24) is non zero then

2p

} (r-i.+1) > p (A.1.26)
r=1 r

This can be verified as follows:

Let us say that the index r (for the particular function ir)
is a O-index if r-i,+1 = 0. If (A.1.26) does not hold, then
there are at least p+ 1 0O-indices. As explained above,

every O-index must be accompanied by a non-0O-index. So, if
iz = r-s-1, s >0, (i.e. r does not have the O-property)
then T can be the "accompanying" index to at most s O-indices,
viz. those between ¥ - 1 and F — s - 1. Hence if the sum in
(A.1.26) contains p + 1 0O-indices, then the "accompanying"
terms give a contribution of at least p + 1 to the sum.
Therefore (A.1.26) holds for all nonzero terms in (A.1.24).

It can now be shown, cf p. 53, that for (ir) obeving {(A.1.26),

we have
t
m 2p ty 2p troty, o
) ) m A < C({m-n)

t, =n t =n t.= r=1

2p zp—l 1
Hence,

3 2p 2
BT vmaw)| < ovm Pan® < crm?

n
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by again using (A.1.21). Finally, by using Chebyshev's inequa-
lity, (A.1.23) and the Borel-Cantelli lemma, the proof of Lem-

ma A.l is complete.

Proof of Lemma A.2

Introduce for short

A, = A(x(t) ], A

I

A{X); B, = B(x.), B = B(X)
o(t) = P{t;x)

Then we have

p(t+l)

Il

Atw(t) + Bte(t+l) (A.2.1)

il

@{t+1) Ap(t) + Be(t+l) (A.2.2)

Introduce also

D(t) = w(t) - o(t) (A.2.3)
Then

B(t+1) = BG(t) + (A ~A)o(t) + (B ~B)e(t+l) (A.2.4)
or

Fie) = 520 "B f A {(As—z'i)m(s) + (BS-—E)e(s+1)}

S=n

Since x(s) € B{(x,p) and since A(.) in Lipschitz continuous
(assumption I.4) we have |3, — A s C + p, IBS -Bl <c - op
o

and since A is asymptotically stable, | A -<CXk and
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~ -t-n ~
lo(t) | ¢« 2 o) | +

t . |
+ ) C o« A S{p|¢(s)| + p|e(s+l)|} (A.2.5)

This expression is close to the desired one, (A.14), except for
the fact that it contains ¢(s), which we a priori do not know
is bounded. We have from (A.2.1)

S § 8
m A _ je(n) + m A
k=n k r=n|k=r k

P{s} = Bre(r+l) (A.2.6)

Since Ak is time-varying, we cannot immediately conclude any-
thing about the stability of (A.2.1), but if A 1s confined
to a sufficiently small region around 4, the following result
holds.

Lemma A.2.1.

%<1l (a.2.7)

Proof of Lemma A.2.1. Dencte

r-1
$(r,n) = T A ¢{n,n) =1I
k=n

Then

$(r+1l,n) = A ¢(r,n) = A¢(r,n) + (A_-RA)¢(r,n) (A.2.8)




and

o+

~-t-n -t
p{t,n} = A + .z A
S=n

and, for any r < t

~Ir—n
|o(r,n)| < CA
Introduce
3 = 3 4 AL-A) _ L+d
2 2
Then

¥ <1 and (/%) <1

Introduce also

T 6 (x,m) |

v(r,n) =

Multiply (A.2.10) by

vlr,n) < cOA/NT 4
<c(/NF M 4
< cO/MIT 4
Let

max ¢{s,n)
n<s<t

(R ~A) §(s,n)

r —
+Cp TR T lets,m) |

n

Nn r . 13
A and we obtain

r _r-s._s-r

Co J A A p{s,n) <
s=n
- r-s
Cp max y(s,n) }(x/%) <
nLS<Lr n
pC max ¢ (s,n)

59,

(r.2.9)

(A,2.10)

(A.2.11)
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be attained for s = r. For r = ¢ in (A.2.11) we then have
- l e E—n
vEm[1 -0 —E——] < cim

Choose p so small that the second factor of the LHS is grea-
ter than 1/2. Then

CO/ME™ < ¢

$(r,n) <

Hence

y(t,n) = X t[¢(t ny| < ¢{r,n) < C
and

lo(t,n)| < ¢« X0

which concludes the proof of Lemma A.2.1.

Let us now return to (A.2.6). Using (A.2.7) we obtain

s
lo(s) | < S Plom) | + c|B] T 57F|e(k+1) | (A.2.12)
k=n
Inserting (A.2.12) in (A.2.5) gives
o~ ~t—n € ~t S s n
Get) | « X Bm ]+ ] cp jo(n) | +
s=n

t ~t-8 ¢ % ~t-svs-k
+ . ) Cpa Tle(stl)| + Cp ] ) AT VAT Tle(k+l) |
s=n s=n k=n
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< CTt“n|$(n)| + Cp(t—n)?t_nlw(n)l +

+ p

| o~1¢t

{C(t—s)ftﬂsle(s+l)| + CTt_Sle(s+l)|}
s=n

Introduce C', X such that

|C(t-s)3t78 + c¥F7S| < cnats
Then

. ~ t -
Gy ] < b n{|cp(n)| s Im(n)l} roC § aFSle(stl) |
S=n

which is the desired exXpression (A.1l4).
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APPENDIX B

Proof of Theorems 1, 2 and 3

Proof of Theorem 1

Before proceeding te the proof, let us first remark that al-
though ql(n;AT,g,m) in (3.2) tends to zero w.p.l for every gi-
ven x, this need not necessarily be true if x is replaced by

a stochastic variable. To treat this, somewhat technical, prob-
lem in a formal way introduce Dd as a denumerable, dense sub-
set of Dl' Then let

o* = _n  @(x) n {w|Condition i) is satisfied}
XE"Dd

where Q{x) was defined in (3.2).

Obviously P(g*) = 1, and we shall below consider only such rea-

lizations w that belong to o¥.

It follows from the converse stability theorems that [see, e.g.
Krasovskij (1963} or Hahn (1967)] that the stability assump-

tion ii) implies the existence of a function V{(x) with proper-

ties

0 V({x) is infinitely differentiable

o 0 < V(x) <1 for x € DA and Vi{x) =0 ® x = x¥

o g% V(x(x)) = V' (x)£(x) < 0 for x € D, and equality holds

x¥,.

only for x

[For the case with an invariant set Dc’ as treated in the co-

rollary, see Zubov (1964) for the proper theorems.]
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Consider from now on a fixed realization w € 9%, All vari-

ables below depend on w, but this argument will be suppressed.
An outline of the rest of the proof is as follows:

Step 1l: A convergent subsequence x(nk) tending to X is consi-
dered. Then x(nk) is close to x infinitely often, and accord-
ing to Lemma A.l, x(m(nk,AT)] will approximately be x(nk) +
4-Arf(§). This means that V[x(m(nk,Ar)]] is strictly less than
V(x(nkﬂ if % # x*. A complication in this step is that X may
not belong to Dy- The formal proof is somewhat lengthy and in-
volves several elaborate choices of constants. The result is,
however, intuitively clear. The proof of step 1 follows over

the next few pages and extends to eq. (B.5).

Step 2: From the above result it is quite clear that x* must
be a cluster point to x(n), since V[x(n)] has a tendency to
decrease everywhere in.DAexcept for x = x*. That this actual-

ly is the case is shown in Lemma B.1l.

Step 3: If there is another cluster point to ¥ (n) than x*, say
%, the sequence must move from x* to % infinitely many times.
But then V(x(nﬂ is increasing, which contradicts the result of
step 1. Hence only one cluster point exists and convergence

follows. The formal proof of this claim is given in Lemma B.2.
From condition i) there exists a subsequence Hk' such that
x(n,) € D; and |¢(nk)| < C (B.1)
Since Dy is compact, there exists at least one cluster point
to x{(+) 1n Dl‘ Let the cluster point be denoted by % and let

n, be a subsequence of n, such that

x(nk) » %X as k » o {B.2)
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Since Dy igs dense in Dy there is for arbitrary € > 0 an ele-

ment §
|x(ny ) - x| < ¢ k > K,(e)
Consider now

vixm(ng,81))] - vIix(n)]

X(g,e) € D4 such that |§ - ¥| < &/2. Consequently,

(B.3)

where m is defined as in Lemma 1. Denote n, = k' and m(nk,AT)

= k", and use the mean value theorem. This gives
vk ] - vixx")] = v (5x) ) [x(k") - x(k')] =
= Vi@ [xkm - xkn ]+ [ex) - x]7 -
v (et ) [xxm - xx) ]
where

E(k) = x(k') + el(x(k") - x(k"))

iA
=

E' (k) = x(k") + 0,(6(k) - x(x"))

(B.4)

Now take ¢ <<p(§), and we can in view of (B.l) and (B.3) apply

Lemma 1 to x(nk), which gives

x(k") - x(k")

where q, are subject to (3.2), (3.3).
Insert this in (B.4)
V[x(k™)]= V[x(k")]= atV' (x)£(x) + Ry (AT,n /%)

where

ATf(;{) + ql(k‘:ATr;%) + qz(k|1AT1§)
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R (bt,ny ,K) = (5,7R) V(1) umxy ) + V' () (g ta,)

Now suppose that the cluster point ¥ is different from the
desired convergence point x¥*, Thenkﬁ'(g)f(g) =~ 6, 6§ >0,
This implies that 3 €9 such that

VIRIE(X) < - 6/2 if |x - K] < &

#]
Denote
sup |[vi(e) | = Cyy sup |[V' (x) | =Cq,
lg—i[<80 x€D

|£(%) ]| + Car +Ce = C, (¢)
Then
[(Ek—§)TV"(££)(xku—xk.)l < ¢ farc, (e) + qz]2

First choose & = min(eo,é/(4c3c)) and k > K, (). Then

|v'(§)ql| < At[6/4 + ceyt]

- 2
|R; (A7,my ,x) | < cylatc,(e) + q,]1% + At (8/4+cCAT) + a, =

It

Atd/4 + ATZ(Clcg(E) + C4C) + q,Cq +
+ C 2 + 2g,C,C,(e)

192 EL RS AL
Now choose

o)

2
8C2(8) + C3C

At <

which gives
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- 2
iRl(AT,nk,x)l < 3A16/8 + q,C5 + Cyq; + ZCICZ(E)qz

Finally choose XK > Ko(e) so that

2
q2C3 + C 95 + ZClCZ(s)qz < Ard/16 for k > K

which is possible since qz(AT,nk,i) » 0 as k - o,
Hence

V(x - V(xk,) < - A18/2 + Rl(AT,nk,i) < - A16/32

o)

or

V[x(m(n A1)} ] < V[x(n)] - Ac6/32 k > K

Since x(nk) > ¥ as k » «» and V is continuous this implies

vix(m(n,,a1))] < V(¥) - a16/64 k > K (B.5)

1
This means that if X is a cluster point different from x*

the sequence x(n) will i.o. be interior to {x] xEDl and V(x)<
< V(X) - AT6/64}. This region is compact. Consegquently an-
other cluster point must exist that yields a smaller value

of V. Moreover, since x{t) € B(x,2p) n
have from (A.2.12)

p St g m(n, A1) we

le(x").| + C|B| Z|

K"~k

lo (k") | < €% K

le (k+1) | (B.6)

and hence [m[m(nk,AT)]| < C 1i.0. so the argument can be re-
peated, again applying Lemma 1 to this new cluster point. In
Lemma B.l it is shown that this implies that also x* must be

a cluster point, i.e. that
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lim inf v{x(t)] = 0 (B.7)

t—oo

Lemma B.l. Suppose (B.5) holds for any subsequence'{x(nk)}

that converges to a point different from x*. Then (B.7) holds.

Proof. Consider inf V(x) taken over all cluster points in Dj-
Let this walue be U. Since the set of ?luster points %nl%xis
compact, there exists a cluster point x, such that V(x) = U.
If now U > 0, V' (X)f(x) will be strictly negative (= =§) and
from (B.5) V(x(k)) takes a value less than U - 8At/64 infinite-
ly often, which contradicts U being the infimum. Hence U = 0,

which means that x¥* is a cluster point.

To conclude the proof it must also be shown that

lim sup V(x(t)) = 0

toe
Lemma B.2. Prom {(B.5) and (B.7) it follows that

lim sup V(x(t)} =0

$—co

Proof of Lemma B.2. Let p* = p{x*) be the region for which (2.2)

is exponentially stable for x(k) € B(x*,p*), as in Lemma A.2.1.
Suppose that

lim sup V(x(n)) = A>0

I~»00
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Take A < A such that
{x]V(x) < A} < B(x*,p*)
and consider the interval I = [A/3,2A/3].

Since x¥ is a cluster point and since V(x(n)] is supposed to
have a subsequence tending to A, this interval I is crossed

"upwards" and "downwards'" infinitely many times by V(x(n)).

We shall now proceed to show that there in fact is a subse-
quence of V(x(n)] that belongs to I, by proving that in B({x*,p¥*)

the "step size" x(n+l) - x(n) tends to zero.

First, let X(gk) be a subsequence tending to x*, such that
|m(ﬁk)| < C. [The existence of such a sequence follows from
Lemma B.l and the stability argument (B.6), using the fact
that p = p(x) 1s bounded from below by a positive constant in

D cf the proof of Lemma A.2.1.]

17

For t > Hk' but such that x(t) "remains" in B{x*¥,p*) we have,
(B.6)

i~

SED o t bk
le(t) | < C) |m(nk)| + C]B[k ZJ A e (k+1)] < C + V()
=n
k

with v{t) defined by (2.4);
Hence
|y (e)o(t,x(t) ,0(t))] <
< Y(t)|Q(t,x*,o)| + Y (£)Ry (x*,0,0%,C + v(t))

c(]x(E) - x*| o+ [e(t)]) s
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< Y(£) |Q(E,x%,0) | + Y(E)K) (X*,0,0%,v(£) ) (p*+C) +
+ Y (E)K(x*,0,p*,v(t))v(t) (B.8)
where the first inequality follows from (II.3).

It is obvious from {(IT.9), (II.7) that the RHS of (B.8) tends
to zero (using Chebyshev's inequality and the Borel-Cantelli
lemma as in Lemma A.l). Consequently, inside B(x*,p*) the step
size tends to zero, and hence there will be a subsequence of
V(x(n)] entirely in the interval I. Consider now a special,
convergent sequence of "upcrossings', that is a subsequence

of this. Let n;

x be defined as follows:

V(x(nﬁ-l)) < A/3 V(x(nﬁ)) > A/3 V(x(n£+sk)] > 2A/3

~

where s, is the first s for which V(x(nj+s;)) € T and x(ny) - x
as k - =, Clearly V(X) = A/3.

Now, from (B.5)
Vix{m(n},a1)) | < B/3 - 6At/64

This means that V[x(ni+skﬂ ¢ I where Sy = m(né,AT) - nﬁ. But,
if At is sufficiently small, no s, smaller than s can have
made V(x(nﬁ+skn > 27A/3, according to Lemma A.l and the conti-

nuity of V. This contradicts the definition of the subsequence

1
nk.

Hence no interval I can exist, A must be zerco and the lemma
follows.

Lemma B.2 implies that X, 2 x* for the chosen realization. The
set of all w for which this holds, 9%, has measure 1. This con-

cludes the proof of the theorem.
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Proof of Theorem 2.

Since Dp = R® we can apply Lemma 1 to any point x = x(n). The
condition [@(n)| < K will be satisfied since assumption a) as-
sures that x(+) changes more and more slowly. Since A(x) is
uniformly exponentially stable (assumption d) this implies,

cf. Lemma A.2.1, that the dynamical system (2.3) remains stable
and that |¢(n)| does not "explode". The uniformity assumptions

b) and ¢} imply that the guantities a4 and 95 in (3.2) can be taken

uniformly in x € R",
Let

sup W' (x)f(x) = - &
x({Dl

and consider W(x(t)].

Use the technique of the proof of Theorem 1, pp. 62-66, and in
virtue of the uniformity conditions on q, and condition e all
constants, including At can be chosen globally in x € D,. We

then obtain

Wix(m(n,at))] < W[x(n)] - At5/64

as soon as x(n) € Dy and n > N(w).

Therefore, if x(t) would remain outside Dl W(x(t)] would tend

to minus infinity, which is impossible due to the assumption
W{x) > 0.
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Proof of Theorem 3.

In virtue of the projection we know that x(t) belongs to a
compact area i.o. that is part of Dy We could therefore
apply Theorem 1 directly, apart from the fact that the pro-
jection algorithm (3.6), (3.7) differs from the algorithm
(2,1), (2.2) treated in Theorem 1,

It therefore suffices to show that the "projection" takes
place at most a finite number of times w.p.l. After the last
time x(t) is forced into D, the projection algorithm coincides
with the basic algorithms (2.1), {(2.2) and the proof of Theorem

1 is wvalid.

If indeed, the estimate x(t) were outside Dy infinitely often,
then it would have to pass from D2 to outside Dy i.o., i.e. to

a higher value of U(x(t)} ([see (3.9)) in spite of the force
trying to decrease U according to (3.8). In Lemma B.2 it is
proved that this is impossible, and hence the projection fa-
cility in (3.6) is used only a finite number of times. Also,

the estimates cannot remain in D from a certain time on, since
condition (3.8) shows that (using Lemma B.l) they will be forced
into Dy
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APPENDIX C

Proof of Theorem 4

i) Suppose £ (x*} + 0.

Let At (x*) = At* be "the sufficiently small" At as de-
fined in Lemma 1.

Take

p* < Ar¥|£(x*)[/4 (C.1)
and let @* = {w|x(t) - B(x*,p*)} with P(a*) = P* > 0.
But according to Lemma 1 if x(t) is inside B(x*,2p*) in-
finitely often for w € @* it is also outside it (see

{C.1)) infinitely often for w € 2¥~q, where P(g,) = 0.

This contradicts the assumed convergence.

ii) This assertion also follows more or less directly from

Lemma 1:

If x(+) is the solution to the ODE with x(t) = x* € D
and x{t+At) § De for some sufficiently small Ar, then

C

by applying Lemma 1 to a subsequence tending to x* it

would follow that x(+) would have another cluster point

arbitrarily close x(1+At) which gives the contradiction.
]
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APPENDIX D

Proof of Theorem 5

To illustrate the basic idea of the proof, consider first the

special case
o(t,x,0(t+l)) = Ax + e(t+l)
where A is an nin matrix and e(-) is a sequence of independent

random variables with zero mean values. Suppose that A has an

eigenvalue A with Rex > 0, and let L be a corresponding left

eigenvector. Let 7t (n) Lx{n) and t£¢{(n) = Le(n). The condition

on Cov Q implies that e (n) is not identically zero. Then the
algorithm (2.1) can be written
t{n+l) = t{n) + Yi{n+l)[rt(n) + e(n+l)]

and

H
t(m) =T (n,m -{r(n) + ) B"&(k)}

n+l
where
m m
r{n,m) = 1 (1 + av(k)) ~exp{;\ ) Y(k)} (D.1)
n+l n+l
and
o k -1
B = v(k) 1 (1 +2ay(3))
n+l

Since 1 (n) and the sum of random variables are independent and
I (n,m) tends to infinity as m increases, it follows that 1 (m)

will, with probability one, not tend to zero as m tends to in-
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finity. Hence x(m} will not converge to 0 (= x*) with non

zero probabkility.

The general case is proven by linearization around x* and the
additional terms are taken care of by appropriate approxima-
tions. Like in the proof of Lemma 1, this leads to several
technicalities, as shown below, but the basic idea remains

the same as above,.
Suppose first that @ does not depend on time t, and that
x{t) =» x* for w € 29 where P(Ql) > 0 (D.2)

The completely general case is treated at the end of this ap-

pendix.

All probabilistic statements in what follows are conditioned

to Q4 i.e, "w.p.1l" should be interpreted as "for w € Ql".

According to Theorem 4, (D.2) implies that f(x*) = 0. Assume
that
d
ax T
X=X

has an eigenvalue X with Rel > 0 and a corresponding left ei-

genvector L. Denote the unstable mode

z(t) = L{x(t) - x*)

Consider the algorithm {(2.1):

x{t+l) = x(t) + y(t+1)0o(x(t) ,p(t+l)) (D.3)

Denote
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olt) = Blesx(t)) (D.4)
where the LHS is defined by (2.3).
Then from II.3 (or I.3)
lo(x(t) ,o(t+1)) = Qx(t) ,jo(t+1) )| <

< Ky (x(£),®(t+1) ,0,v(t) ) |@(t+]) - @ (t+1) | (D.5)
Furthermore,
E Qx(t),p(t+l)) = £(x(t}) =

= £(x*) + H(x*) (x(t) - x*] + g(x(t) - x*) (D.6)
where
g(x) = of{x) as x » 0

Multiply (D.3) from the left by L and rearrange terms:

z(t+l) = z(t) + Y(t+l){LH(x*)[x(t) - x*] +

+ Llo(x(t) ,@(t+1)) - E O(x() ,0(t+1) )] +

+ Llo(x(t) ,o(t+l)) - Q{x(t),@(t+l) )] +

+ L gx(t) - x*]} (D.7)
Denote

Llo(x(t) ,@(t+1)) - E ofx(t) ,0(t+])) ] = g(t+l)
(D.8)
Llo(x(t) ;o(t+l)) - ox(t) ,0(t+1)])] = n(t+1)

Lg(x(t) - x*) = g(t)



Since, by definition 0f L

LH (x*)

AL

we have from {(D.7)

z{t+l) = z(t) + v{t+1}[rz(t) + E(t+l) + n(t+l) + g(t)]
Introduce
M
r(N,M) = T [1+ ay(t)]
£=N
M
Blt,M) = ay(t) T [1 + ay(s)] = ay(t)r(t+l,M)
g=t+]1
o~ B -1 ~ -1
B(t,N) = I'(N,M) “B8(t,M) = Ay(t)T(N,t)
Then, (D.9) gives upon iteration
M
z(M) = T(N,M)z(N) + [ g(t,M[g(t+l) + n(t+l) + §(©)] =
£=N
=ty M Y2y an 2200 + a,m) 4 g (u,M) 4
+ Y (N,M) ]
where
-12 ¥
o (N,M) = y(N) L B (t,N)g (t+1)
N
$(N,M) = Y(N) ) B (t,N)n(t+l)

n
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(D.9)

(D.10)

(D.11)

(D.12)

(D.13)
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v, = v 2T B, (D.14)

In the remaining part of this appendix, we shall show that
T(N,M)Y(N)l/2 tends to infinity as M = «, while the term in
brackets, w.p.l, does not tend to zero. Hence, from (D.ll),
z (M) cannot converge to zero and so x (M) cannot converge to

x¥,

From (D.l) we see that, due to (I.6),

T(N,M) - @ as M - o

Therefore, we can take M = M(N) such that

r(w,Evn 2 s 1 (D.15)

We shall now consider the terms of the RHS of (D.1l1).

Lemma D.1.
|o(N,M(N))| >C 1.0. w.p.1 (D.16)

where C is a strictly positive constant (that may depend on

the realization ).

Proof of Lemma D.l. It follows from (3.11) [or (3.13)} that
2
Elg(t) |

> C., Suppose first that £(t) are independent. Then

M(N)

- 2 -1
E|a(N,M(N})|] >C ) v(N)
N

22 (e,m) > C' (D.17)

where the last inequality follows from
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Lemma D.1.1.

B“(t,N) > C (D.18)

The proof of Lemma D.l1.1 is given at the end of this appendizx.,
{D.17) implies that for some Cqys Gy >0
P [a[N,ﬁ(N)][ >cl] > ¢, (D.19)

Since ¢(:) (for the moment) are supposed to be independent, al-~
SO

o (N, /0800, ) ) k=1, ...

is a sequence of independent r.v. if N
(D.19) implies that

kil > ﬁ(Nk). Hence

fa{n,mN)) | > c; i.0. w.p.1 (D.20)
(using, e.qg., the second Borel-Cantelli lemma) .

Now, £{(+) are not independent, but as soon as x(t) € B(x*,p*)}

[where p* = p(x*) is the stability region of Lemma A.2], they

have a strong independence property, since the part of E(t+N)

that is dependent on Z(t) is bounded by CfAN (cf. A,1.15). Ob-
viously, the effect of the cross-terms in

Elo:(N.,ﬁ(N))[z

will be small and (D.17) is still valid for g(.) with this
kind of weak dependence. Second, choose a subsequence a(Nk,ﬁ(Nk)]

and extract that part of each element that is independent of
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e(s) s < Nk—l to form, say, aO[Nk,ﬁ(Nk)) which is a sequence

of independent r.v. if M(Nk) < Nk+l' Further if N are chosen
so that Nk+l 1
made arbitrarily close to a[Nk,M(Nk)]. By applyving the argu-
ment (D,19) - (D.20) to ao, it follows that [aO(N,ﬁ(N)][ and
hence |a{N,M(N))

. s . 0 -
- N, is sufficiently large, « [Nk,M(Nk)] can be

> C i.0. w.p.l.

Lemma D.2. ¢(N,M) (defined by (D.13))} obeys

1/2+8

|4 (N,H(N) )| < Cy(n) p.1 (D.21)

where 6 is some arbitrarily small positive number, and where

C may depend on w.

Proof of Lemma D.2. Consider first

I

|n(t+1) | LIQ(x(t) ,o(t+])) = Q(x(t) ,0(t+1) )] <

IA

|L|K) (x(t) ,0(£41) ,0,v(t+1) ) [o(£+1) ~ @(t+1) | (D.22)
from (D.5). Consider now

o (t+1) ~ @(t+1) ]

Using the method of proof of Lemma A.2 we obtain, [ﬁ = A[x(t)]],

lo(t) - w(t)]| <

t _t-s - _

< |} A {[A[x(s)] - Alp(s) + [B{x(s)] - B] e(s+1)| +
t_

0

-t

+loleg) - oe) [1A 0] <



t
sc J ol - Bllo) | + [3xe) - B
R
0

t-t, _
|e(s+1)f} + Ca lo(ty) - olty) |
From (I.4)

[2(x(s)) - a]

IA

Clx(s) - x(t)]

|B(x(s)) - B

iA

Clx(s) = x(t)]

From (2.1)

A

t
|x(t) - x(s)| Yoy (k+1) |Q(x (k) ,0(k+1) )]
s

Again using (II.3) (or (I.3)) we have
o (x(kx) ,0(k+1) )] < |ox*,0%(k+1) )] +
+ {p + v*(k+1) }Ry (x*, 0% (k+1) ,p,v* (k+1) ]
where @* (k+1) = @(k+1;x*) and x(k) € B(x*,p).
From II.7
I'3|Q(:»§"‘,q)*(}<;+l)][P/(5 <C; &§>0
and 80
E!Y(t)‘SQ[x*,co*(k+l)]|p/6 < CY(t)p
Now from Chebyshev's inequality

. & 1 P
P[[Y(t) Q(X*r@* (rt+l)]l > &) < ;’E‘J—/—é— Cy (t)

80.

(D.

(D.

(D.

23)

24)

25)

.26)
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and so

y P[[Y{t)éQ[x*,m*(t+l)]l > g < o
t=1

which from the Borel-Cantelli lemma implies
v(£) %0 (%, o* (t+1)) » 0 w.p.l
or

-6

|Q (x*, 0¥ (t+1) )| < Cy(t) ~ w.p.l (D.27)

where C may depend on w.

Similarily

le(t) | < cv(t) % w.p.l (D.28)
and

Ky (3%, 0% (£41) , o, vH (£+1) ) | < Cy () 7° w.p.1 (D.29)

From (D.26), (D.27), (D.29)

6 (D.30)

lo{x(t) ,o(t+1) )| < oy (t)™
funder the assumption that x(t) € B(x*,p) V¥ t > to(wf, which
follows from (D.2)].

Hence, using (D.30) in (D.25)

t

Ix(t) - x(s)] < C ¥ vk+D)® < ce-s)y(s) 78
S

(D.31}
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where the last inequality follows from I.8.
Using (D.31) and (D.24) in (D.23) gives

t-t

lo(t) ~ ©(t)] < Ca 0|w(t0) - oltg) | +

£ tes 1-5
+C ) A T (t-s)y(s) |o(s) | + |e(s+1) | (D.32)
t
0

Since x{t) € B{x*,p) for t > to(w) we have from Lemma A.2.1

s—t0 ] S~k
lo(s) | < Ca lolt) | + C J A7 Tle(k+l) | (D.33)
t

0
Using (D.28) and (D.33) in (D.32) gives

t-t

lo(t) - @(E)| < Ch Clotty) | +
t - _.,,. -...
rc T 3% (s)T < oy(pyte (D.34)
t
0

Using (D.34) and (P.29) in (D.22) gives

Inte) | < cy(e) 17 3 % 5 o (D.35)
and finally
- N M (N)
Lo (i, 01) | = |y /2 1 FEmn () <
- M (N) _
<oy Y2 Y Femy o)l <
N
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< cT(N)l/z”g

Zr~1 8
™
=
z
A
9!
-
2

since ZE(t,N) < oo,

This concludes the proof of Lemma D.2Z.

We also have, from (D.1l4),

(M)

= < J B, |F(E) |/ ]z () |
vy "2 2y |

Zr~1 21

Since g(t) = ofz(N)), N < t < M(N), we have

max _ g(t)/]zM)| > 0 w.p.1 as N » o
N<t<Ht (N)

and hence

(N, M(N) )
vy 2 an |

-0 w.p.l as N - o {(D.36)

We are now able to treat (D.11)

~1/2

lz(M(N) )] > [y () z(N) + o(N,M) + ¢ (N,M) + y(N,M) | (D.37)

We shall show that the RHS does not tend to zero as N increa-

ses.

4 (N,M) tends to zero according to Lemma D.2.

y(N,M) is dominated by *lr(N)—l/2

v (x) "L/?

o (N,M) will dominate the expression according to Lemma D.1,
and the RHS of (D,37) does not tend to zero.

[z(N)[ in view of (D.36). If
|z(N) | tends to zero as N tends to infinity, then
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-1/2

If v(N) % (N} does not tend to zero, then

Y(N)"l/zz(m) + o (N,M) (D.38)
will dominate the RHS of (D.37).

Suppose that the expression (D.38) tends to zero w.p.l in
spite of the fact that neither of its terms does. This means
that the correlation between these terms tends to unity. How~
ever, this is not possible, since z(N) is determined entirely
by {e(l), ..., e(N)}, while & (N, M) gets "large contributions”
from {e(N+1l), ..., e (M)} which are independent of z(N}). Hence
we have proved that the RHS of (D,37) does not tend to zero,
which is a contradiction to the assumed convergence. Hence

there can be no unstable mode of

4 f£(x)

dx *

X=X
and the theorem is proved.

Let us now consider the case when x(t) - B(x*,p) with probabi-
lity Pp -+ 0 for p » 0 but

lim P =0
p-0

This case is subsumed in the discussion above if we take p so
small that C in Lemma D.l is larger than p. Then consider o €
£ Qp, where Qp is the set for which x(t) -» B(x*,p). All argu-
ments in Lemma D.2 go through since we only use stability, and
this is assumed since x{t) € B{(x*,2p) for t > to(w) and w € Q .
The conclusion of the examination of (D.37) then is that [z(ﬁ)[
> p i.0., which, of course, contradicts the assumed convergence

into B(x*,p).

The case with a time varying @, finally, is treated as follows.
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If
E Q(tixio(t,x)) = £ (x) (D.39)
and
iig ft(x) = f(x) (D.40)

then (D.7) still holds if the term
LlE(x(t)) - £ (x(t))] (D.41)

is added within the brackets of (DP.7). Expression (D.41l) can

be rewritten
‘L[f(x*) FH(E) (x(E) - x¥) - £, (x%) - H_(e) (x(t) - x¥)]| <
< JLIE x*) | + [H(g) - H (6" |[x(t) - x*] (D.42)
where £ and g' € B(x*,|x(t) - x*|}.
Hence
|H(g) - Ht(g')[ -+ 0 as t » o (D.43)

and the second term of the RHS of (D.42) therefore can be in-

corporated in G(t).

The first term of the RHS is purely deterministic and cannot
annihilate any effects of the random variable o (N,M) in the
expression (D.37). The discussion therefore goes through with-

out further changes.




Proof of Lemma D.l.l. We have

R _1 M -
yan ™ Y Feewm =A% yan Tt T vy dran,e 2 s
N N
M M
> 32 ) Y(e)T (N, t) "% > 22 ) Y(£)T(N,t) "2
N N

where M = M(N) is such that

it
r(N,M) ~ exp{h Y Y(t)} ~ eXp A
N

i.e. such that

I~

M

Loy(e) ~ 1
N

Since T(N,M) increases with M and

T(N,M) > Y(N)'l/2

(see (D.15)), it follows that
M <M
and the last inequality in (D.44) is justified. Now

M

25 0,72 T v(t) ~ exp(~22)
N

y(E) (N, t)

Zr130

which, together with (D.44) proves (b.18).

86.

(D.44)
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APPENDIX E

Proof of Theorem 6

Order the set of indices I = {ni} such that
Dy <Dy < wue <My <D g < oeen

Denote Aty = Ty, ~ Tn,. Then by taking X = x(n,) in Lemma 1

we obtain

X(nk'['l) = x(nk) + Aka[X(nk)] + ql (nkaka}-E) +

+ qz(nk’ATk’E) (E.1)
where
|q, (n,a1 5%) | < cat? (E.2)
Qo AR 8Ty i s k .
and
E|g, (n, ,A §)|2p<c (n )P (E.3)
dy Wy r ATy = pT k *

[Notice that Aty can always be taken small enough, by enlarg-
ing the set I.]

Moreover, from the proofs of Lemma 1 it follows that C and Cp
can be taken globally in P and that they will depend on K.

From Chebyshev's inequality and (E.3)
, = 2
P{[ql(nk,Ark,x)[ > el} ; pr(nk)p/elp (E.4)

Also,
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xD(-;nkﬂ;Tnk,x(nk)] = x(n) + At £(x(n)) + LoAr, (E.5)

Combine {E.1l) and (E.5)}:

= Q%T T

2

|%(n

k+l) n

k

Define L3 = A + LZ‘

According to the assumptions of the theorem there exists a

function vV(ax,t) which is quadratic in Ax and such that

cl[Ax|2 < V{ax,1) < C2|Ax[2 (E.7)
and
% Vi{ax,t) < - ?\[Axlz; A >0 (E.8)

along solutions of the variational equation.

We shall now give an outline and a heuristic interpretation
of the rest of the proof before we proceed to the formal

treatment.

The idea of the proof can geometrically be expressed as fol-

lows:

C
Al 8
I c
T=Ty T=Ty+aT
xmnq; ( l:r.u)j;'ctorg.r
Tny*(Ng

(E.6)
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Assume that the estimate at time Ty is in the'in?erval'A.

The trajectories that start in A belong at time Ty * ATk to

the interval B. The length of B is given by (E.8). If V{(Ax,t) =
= |Ax|2, then B < (1- Ark)A. Now, the estimates obtained by the
algorithm differ from the trajectories with less than L3Arﬁ <

+ ql[nk,ATk,x(nk)) according to (E.6)., Denote this distance by
C. During the time interval &rk, the estimates have not diverged
from the nominal trajectory if A < B + 2C, i.e. if

2
A 5 (1-AaT))A + LjAty + ql(nk,ATk,x(nk))

or
AAT A < L Ar2 + [n At, ,x(n ))

kS S 438T T 9y N AT Xy
To achieve this, A and Ark must be chosen with care. The inter-
val At must be large enough to let the trajectories converge
sufficiently, and small enough to limit second order effects
and the noise influence.

We now turn to the formal proof.

Select first ¢ (corresponding to A in the discussion above)
such that

8pL.C,C
8<—————312=€
A 0

Since Ark > D, it follows that

- < ATk all k

Possibly by extending the set I, it is thus possible to obtain
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S Aty < 3ae (E.9)
C{CoLy + 8 C{CoLy - 8

Now suppose that

A2823
LBCZC1 « 64
and
v
\ Pt T, ox(ng) ) = x(n )|, ] < ¢
Then

s

Rl ) 30
V 7 r I
(Tnk+1 n, x(ng)) = x(ny,q) Tnk+l]

1/2{{)(1) D
<V (x it ax(ng)) - x (v it «x(ny) } T ] +
Npyp Bo 0 0 Mgy BT K Jj N4l

1/2{ D
# VY2 RPe e x(n)) - x(n..) ]ix ]5
( Ny 0y k J k+17 47 g

A

- A Y/2h (b, -
[l 2Cl ATk]V [%( (Tnk'THO’X(nO)} X(nk)J'Tnk] +

+ C fxD[r pt. oax(n)) - x{n__,)| 2
2 nk+l n, k k+1
A 2
< 11 - —= ATk & + C2L3ATk + Czlqz[nk,ATk,x(nk))’ <
2Cl
< & + C2L3 [&Tk - __A_E_J (ATk - _.__.?’_2\.8__] < ¢
8C1C2L3 8ClC2L3
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1/2

follows from the properties of V. The third and fourth inequa-

lities follow from the assumptions made Jjust above. The last

The first ineguality follows Since V™7™ is a norm, the second

inequality follows from (E.9). In other words, if

1/2 . -
\4 [FJ{TnkrTnOJX(nO)) x(nk)},rnk] <€
then

Vl/z[[é{Tn Pty

k+1

r()" ‘r ]
. x(ng ) X(nk+l)J Tnk+l < €

with probability at least

3A282
< —F 5 >

64C1C2L3

P{'ql(nk’ATk’X(nk))

cf} .. p/e°P

(v (np))

(see (E.4).)
Now the event

it 1x(ng))

o n,

D
g = {sup'xn -X (r
nel

> o} <

c-{sup Vl/z[[xh _XD(TniTn ,x(no))]}rn] > acl} < N Q
n€l

where
9 = {Vl/z[[x(nj) “XD(Tn.;T ,X(no)]],rnj} < eCl i < k;

Vl/z[(x(nk+l) - X



and thus
N .64C§ClL3 2p Iy
P(R) < ) P(R) < 5 3
1 3a e°P

and the theorem is proved.

N

)

j=n0

Y (§)

92.
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APPENDIX F

Proof of Theorem 7

We shall first check the proof of Lemma 1 for the present al-
gorithm.

Indeed, for (A.2) we have (dim x = 1)

x(3) = x(n) + % Y(i){J(x(i—l) + a(i)) - J[x(i—l))} .
n+1l a{i)

j D(Dl (1) - D(pz (i) A -
+ ¥ y(i) = x(n) + Ry(n,J) +
n+l a(i)

+ ﬁz(n,j) (F.1)
where
ﬁl(n,j) = % Y(1)J'(x) + §3(n,j)
n+l
- - J
|R3(n,j)| < max [x - x(i)] - g y(i) -
n<i<] n+l
g'(e(i-1) + a(i)) - a'(g(d-1)])} _
a(i) -
< max |x - x(i)] - At - Cy (F.2)

n<izgj
where £(i-1) is a point between % and ¥{i-1) and where

c; =sup _ J"(£)
EEB (X,p)
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It thus only remains to show that R (n,3) > 0 w.p.1 as n - o,

2
This follows from Lemma A.l, although (A.l0) is violated. To

see this we have as in (A.1.6) and (A.1.24)

®, (1) ]2p

E

3
y oY (i)
n

< CY(n)Zp[l/a(m)]2p ¢ X ... INBeg ()]
a(i)

The sums can be handled exactly as in Lemma A,l1, and we ob-

tain
3 @, (1) | 2p
ElY v(i) 1 < CY(n)zp[l/a(m)JZP/Y(m)P <
n a(i)
< ¢y mP(1/am)) P (F.3)

where the first inequality follows from (A.1.18) and (A.1.19)
and the second from (A.1.20).

The proof of Lemma A.l and hence also Lemma 1 now goes through
in view of Chebyshev's inequality, the Borel-Cantelli lemma

and assumption (4.10}.
Assertion B now follows directly as in Appendix B.
Assertion A follows from Appendix E without change, since the

assumption that the noise has bounded variance is not used
there.
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APPENDIX G

Proof of Theorem 8

Let us first check Lemma 1, and consider
lo(t,x(t-1) ,0(t)) - oft,x,0(t,%))]| <
<K@ {x - x(e=1) |+ |e(t) - o(t3x) |} (G.1)

where

K(;t) = Supll_a"a; Q(tfxp(p)‘ + Iai({} Q(t.-X.-tp) (G.2)

with sup taken over x € B{x,p) ., |$] < C and all t., This value

is finite according to (4.14).
We consequently obtain for Rz(n,j) in (A.2)

|R2(n,j)| < R(x)Ar + [max |§ - x(t) ]{1 + C} + CY(n)] (G.3)
n<t<]

using (4.17) and (4.19).

This is obtained as (A.5), (&.20), (A.25) in Appendix A only

after considerable technicalities.

The term Rl(n,j) is treated as in (A.l15), and we need to show

that Lz(n,j) tends to zero w.p.l, using Lemma A.1l.

But Lemma A.l goes through directly since only the stability
property (4.19) (= (A.1.9)) matters, not the linearity of (A.8).

Consequently Lemma 1 holds for the non-linear dynamics case

and hence also Theorems 1, 2, 3, 4 and 6, since they are di-
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rect consequences of Lemma 1 as shown in Appendices B, C and
El

The proof of Theorem 5 directly applies, since, in Appendix

D, the generation of ¢(t) does not influence the discussion,
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