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MULTIVARIABLE CONTROL OF A BOILER - AN APPLICATION OF LINEAR
QUADRATIC CONTROL THEORY T

K. Eklund

ABSTRACT

An application of linear quadratic control theory to a multi-
variable system is presented. The process is a boiler and the
object of the control is to keep the drum pressure and the drum
level constant when the load changes. The load disturbances were
modelled from measurements as a stationary stochastic process
with rational spectral density function. The crucial difficulty
when using optimal theory for design is to find the parameters
of the loss functional. A method for choosing these parameters
is outlined. A method to eliminate steady state errors is also
presented. A Kalman filter for the estimation of the state vec-
tor as well as the load disturbance was included. The control
situation was simulated on a hybrid computer. The results of
these simulations as well as core memory requirements and exe-

cution time for the control algorithm are given.

TThis work has been supported by the Swedish Board for Technical
Development under Contract 68-336-f.
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1. INTRODUCTION

This report presents an application of linear quadratic control
theory to a multivariable system. The process used is a simplified
boiler which can be described with a linear constant coefficient
dynamical system of the 5:th order. The process has three inputs
and two outputs. There are considerable interactions between the
inputs and outputs of the process. For such processes conventio-
nal synthesis methods are not very attractive. However, using li-
near quadratic control theory we can synthesize multivariate con-

trol laws in a systematic manner.

The boiler control problem is to keep the process output variables
constant when the process is disturbed. This type of control pro-
blem is very common in process industries. Particular attention

must be payed to formulate the control problem as an optimization

problem.

A hybrid computer was used to simulate the control situation. This
is as far as the control law implementation is concerned quite
realistic. The process, however, will be the model equations simu-

lated on the analog computer.

Tn section 2 we give a résumé of the linear quadratic control
theory. The theory requires that we have models of the process
and the disturbances available. In section 3 a short presentation
of the model of the boiler is given and the models of the distur-
bances are derived and discussed in section 4. A method to elimi-
nate steady state errors using the technique of feedforward is
presented in section 5. It 1s also shown that the combination of
a feedforward and a Kalman filter is equivalent to the introduc-
tion of an integrator. The crucial difficulty when using optimal
control theory for design is to find the parameters of the loss
functional. In section 6 we discuss this problem and outline a
method for choosing these parameters. The sampling interval af-
fects the quality of control which decrease with increasing length
of the sampling interval. The choice of the sampling interval is
discussed in section 7. The complete control law is given in sec-
tion 8. In this section we also discuss the sensitivity of the

Kalman filter to changes of the process parametérs. In section 9




we give the core memory requirements and execution time for the
control algorithm. The scaling problems which arise when we use

fix point arithmetic are discussed. The results of analog and
hybrid simulations are given in section 10.




2. RESUME OF LINEAR QUADRATIC CONTROL THEORY

The theory can be developed both in the continuous and the dis-
crete case. The résumé given here is restricted to the continuous
case. In the discrete case the differential equations are replaced
by difference equations but the structure of the solution 1is iden-

tical.

Consider the linear system

dXCE) - ae) x(t) + BCE) ult) + wy(t)
dt
(£ = ClE) x(£) + w, (1) (2.1)

for tost<w. x(t) is the state n-vector, u(t) is the control m-

vector and y(t) is the output k-vector.

The formal expression (2.1) can be interpreted as a stochastic
differential equation in the usual manner. Since we will not use
(2.1) for any analysis we use this formal expression instead of
the mathematically rigorous but more elaborate notions of stochas-

tic differential equations.

The elements of the matrices A(t), B(t) and C(t) are continuous
and bounded functions of t. The variables wl(t) and wz(t) are

white noise with zero mean and the covariance functions

E wy (1) w§<t+T> R, (£) 6(0)

1"

E w, (1) Wg(t+T) R, (t) §(1) (2.2)

where &§(t) is the Dirac measure. Rl(t) is a symmetric nonnegative
definite matrix and R2(t) is a symmetric positive definite matrix.
The elements of Rl(t) and R2(t) are continuous and bounded func-

tions of t. The initial state is a random variable with
E X(to) = m

T _
cov x(to) X (to) = R (2.3)
The object of the control is to minimize the loss functional

Ty

V(xo,to,tl,u)=E{XT(tl)Qox(tl)+i [XT(S)QI(S)X(S)+UT(S>Q2(S)U(S)]dS}

© (2.4)




where Q_ and Ql(t) are symmetric nonnegative definite matrices
and Qz(t) is a symmetric positive definite matrix. The parameter

t. may be infinite. The elements of Ql(t) and Qz(t) are conti-

1
nuous and bounded functions of t.

The solution of this problem can be separated into two indepen-
dent problems: 1) a deterministic control problem and 2) an es-

timation problem.

The solution of the deterministic control problem is given by
u(t) = - L{t) =(t) (2.5)

where %(t) is the estimated state vector and
L(t) = Q7D BT () s(tyt)) (2.6)

S(t;tl) is the solution of a Riccati equation. This equation de-
pends on A(t), B(t), Q> Ql(t), Qz(t) but does not depend on C(t),
R s Rl(t), RQ(t).

The minimum mean square estimate is given by

dxCE) | p(oyn(t) + B(Oult) + K0 [y(£) - c()x(0)] (2.7)
dt

where

K(t) = P(tst,) € (E) R2"1<t> (2.8)

The matrix P(t;to) is the solution of a Riccati equation which

depends on A(t), C(t), R s Rl(t) and Rz(t).

The deterministic control problem and the estimation problem are
dual and the feedback matrix L(t) and the filter gain matrix K(t)
can be computed using the same algorithm. If the time point Ty

is set equal to infinity we will obtain the stationary values of
L(t) and K(t). There are no constraints on the state vector x(t)
and the control vector u(t). In the time invariant case the
closed system will be stable if (2.1) is controllable and ob-
servable and if the pair of matrices (Ql’A) and (Rl,AT) are
observable. A detailed presentation of the theory is found in

{1}, {5}.




3. BOILER MODEL

We consider a drum boiler with natural circulation. The configu-

ration is given in Fig. 1.
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Fig. 1 - Simplified boiler configuration

We use a detailed model only for the drum-downcomer-riser loop
of the boiler. The superheaters are simulated with a restriction

only.

The linearized model on standard form is

dx(E) - ax(e) + Bu(t) + Fvy (1)
at
y(t) = Cx(t) + vz(t) (3.1)

where A,B,F and C are constant matrices. It is a fifth order mo-

del and the state variables are

®q (£) drum pressure pj

xz(t) drum liquid level z

x4 (1) drum liquid temperature
Xu(t) riser wall temperature
X5(t) steam quality

The control variables are

ul(t) heat flow to the risers Q
uQ(t) feedwater flow Weo




and the output variables are

yl(t) the measured drum pressure

yz(t) the measured drum level.
The disturbances are

vl(t) load changes pq

vz(t) measurement noise

The heat input variable is the heat flow to the risers and not
the fuel flow. The feedwater enthalpy is taken as a constant and
not as an input variable. In a power station boiler the pressure
Py is the pressure before the throttle valve of the turbine.
Changes in the demand for steam will instantaneously cause chan-
ges in this pressure. Thus we can use the pressure p; as a direct
measure of the load changes. The controlled variables are the
output variables and the object of control is to keep these vari-
ables constant when the load changes. A detailed discussion of

the model is found in {2}.

Numerical values of the matrices A, B, C and F used in this re-
port are found in Appendix A. The values apply to a power station
boiler with a maximum steam flow of about 350 t/h. The drum pres-
sure is 140 bar. The operating point is 90% of full load. The

eigenvalues of the matrix A are

5.99 - 1072+ 1.72 - 107% i
~1.81 - 107t

~8.59 - 10772

0.00

It is not easy to give a simple physical interpretation of the

eigenvalues because of the interaction in the system. Notice that
the second column of A equals zero which gives a zero eigenvalue.
This also means that the second state variable is not coupled to

the other state variables.

The simulated responses of the state variables to step changes

in the three input variables are given in Fig. 2. Notice the non-
minimum phase characteristics of the drum level and steam quality
responses. These two state variables are closely related. The
step responses also show that we have a considerable interaction

in the process.
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L. CHARACTERISTICS OF DISTURBANCES

Tn section 2 it was stated that the solution of the formulated
problem requires that we know the characteristics of the random
processes involved. In the boiler application the input noise is
the load disturbance vl(t) and the measurement noise is v2(t).
(See equation (3.1)). In this section we will give the charac-

tepristics of the random processes which are used to describe these

noises.
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Fig. 3 - The power generated by four hydroelectric power sta-
tions in the time interval 500—24OO a weekday

Fig. 3 shows the power generated by four hydroelectric power
stations in the north of Sweden a weekday. The sampling interval
of the measurement is 300 sec. The load changes during 500~7OO

and 2100—2400 a'clock are for the main part ordered load changes.

During the time interval 700-21OO the variations are mostly due

+o the control of the mains frequency. Since the dynamics of a
hydroelectric power station are fast compared to the dynamics

of a thermal power station we will use the recording in the inter-

val 700—21OO as a measurement of the demand for power.

A set of measurements for various weekdays have been used to de-
termine the parameters of a model of the load disturbance. We
assume that the disturbance is a stationary process with rational

spectrum. Such a process can always be represented with a linear

model
~1 -1
A(z Dy(t) = » Clz e(t) (4.1)

where e(t) is a sequence of independent normal (0,1) random vari-
ables. z is the shift operator

z y(t) = y(t + T)




and T is the sampling interval. A(Z—l) and C(Z_l) are polynomials
in the inverse shiftoperator z—l. The identification method used
is the maximum likelihood method. A presentation of the used
method is found in {4}. The identification gives a first order
system

1+ clz”l
y(t) = A —————7 e(t) (4.2)
1+ a,z
1
where the average values of the coefficients and standard devia-

tions were

a, = - 0.92 = 0.036
cq = 0.10 * 0.071
A = b.b

The coefficient cq is guite small and roughly zero within one
standard deviation. We will therefore assume that ¢y equals zero.
This is not a severe assumption and will simplify the computations.
The variable y(t) has the dimension MW and gives the deviation
from the mean value of the generated power. The mean value is
about 275 MW. To fit the boiler model we must find the equiva-
lence between y(t) and the pressure vl(t). If we also consider
that the maximum power generated by the studied boiler is about
125 MW we get

1

vo(t) = » ¢« ———— e(t) (4.3)
1 1+ a z_l

where

a = -0.92

A = 0.225

For the analog and hybrid simulations it is convenient to have
a continuous approximation of the load disturbance model. Assume

a first order continuous system

dx(B) - () + p w(t)
dt
vy (£) = x(t) (1)

where w(t) is white noise with zero mean and the covariance func-

tion

cov w(t) w(t + 1) = 8(1)




The covariance functions for the discrete (4.3) and the conti-

nuous (4.4) representation of vl(t) are

n AQ
r(n) = a * —5 (4.5)
1 - a
u’ ~lal ||
r(t) = - * e (4.6)
2]l
Equating the covariance functions (4.5) and (4.6) for n = 0,
t = 0and n = 1, t = 300 sec we get
o = -2.78 + 107"
pn = 0.0130

The continuous system (4.4) has a time constant T of 3600 sek.
For our purpose we will use an observation time less than 2000
sec. During this time the system (4.4) will practically act as

if o was equal to zero. With this approximation we get

d=x(t) . Lo ()
dt
vl(t) = x(t) (4.7)

Spectral density functions for the load disturbances generated
by equations (4.4) and (4.7) are given in Fig. 4. The spectral

density function of w(t) equals a constant A.

¢ (w)
\
—— \
\\
3 \
10°A \
\
10%A \
10 A
10-5 10-4 10-3 10-2
w rad/s
Fig. 4 - Spectral densities for the load disturbance generated
by equation (4.4) ( ) and equation (4.7) (----)




The frequency content above w = 10-3 rad/s is very small. This
is expected since the sampling interval in the original measure-
ment was 300 sec. However, this is a reasonable noise considering

the dynamics of the boiler.

No recordings of the measurement noise of the drum pressure and
drum level signals were available. We will therefore assume that
the measurement noises are pure random processes and that the
amplitude distributions are normal with zero mean. The choice

of the standard deviations are.discussed in section 8.




5. ELIMINATION OF STEADY STATE ERRORS

When the control law (2.5) given in section 2 is used, there will
be no steady state errors if the disturbance is an initial error
in any state variable. But we also require that the steady state
errors of the controlled variables are zero after e.g. a step
change of the disturbance v(t), see equation (5.1). To achieve

this, we will use the technique of feedforward.
We will first consider the system

dx(t)
at

where v(t) is a s-vector. We assume that the state vector x(t) and

= Ax(t) + Bu(t) + Fv(t) (5.1)

the disturbance vector v(t) can be measured directly. Using index

o to indicate steady state values equation (5.1) gives

Ax + Bu_ + Fv_ =0 (5.2)
o o o

We thus find that with a control law ug = - LXO there will in ge-
neral be a steady state error. To eliminate this we add a feed-
forward term from the disturbance v(t) to the stationary control

law. Hence

u = - Lx_ - Rv (5.3)
o o o

where R is a constant matrix which will be chosen in such a way
that the steady state values of i1 components of the state vector
are zero. We assume that equation (5.1) is arranged so that these

components are the first i components. Introduce the notations

“nx(n-1)]_ r -
A[ J— Lai+l c o anJ
T [mx(n-1)] _

L = [2ypq o-o |
- _ T
x = [Xi+l Cen xn]

where ay and " stand for the k:th column of A and L respectively.

Introducing the zero error requirement in equation (5.2) and (5.3)

we get

Ax_+ Bu_ + Fv_ = 0 (5.4)
O @] O

u, = - LXO - Rvo (5.5)




or g'_ 7
BN
[A]B]i:;mj = - Fv_ (5.6)
@]
_ ; i
Ry = - [lejémgi% (5.7)

The existence of a solution to equation (5.6) determines possible
numbers i. For example if 1 equals the number of control variables
a unique solution to equation (5.6) exists for all matrices F, if
the inverse of [AlB] exists. If the inverse does not exist, we
must require that the columns of F lie in the column space of
[AgBl. In this case the solution is obtained using the pseudo-

inverse ofIﬂA BI. If equation (5.6) has a solution the feedfor-

ward matrix R is computed using equation (5.7).

In many physical systems the number 1 will equal the number of
control variables. For this case it has been shown numerically
for several specific probféms that the feedforward matrix R ob-
tained when using the technique described above can be obtained
directly when the control law is computed. The details of this

is given in Appendix B.

We will now consider the case when only the output vector y(t)

can be measured. The system then is

A oax(t) + Bu(t) + Fv(t)
at
yOE) = Cx() + w, (1) (5.8)

We assume that the disturbance v(t) is a Wiener process. Hence

dv(t)
dt

= wl(t) (5.9)

wl(t) and wZ(t) are white noise with zero mean and covariance
functions given by equation (2.2). Especially the equations
(5.8) and (5.9) hold for the boiler application. Combining
equations (5.8) and (5.9) the system equations get the form
of equation (2.1)

a [xo] . {A T Erch)f . [ B|

v oo lveel |
t

y(t) = Cx(t) + w,(t) (5.10)

dat




Equation (5.10) is used when the Kalman filter is computed. The
filter equation gives the estimates of the state and disturbance

vectors. The control law then is
ult) = - Lx(t) - Rv(t) (5.11)

The combination of a Kalman filter and a feedforward is equiva-
lent to the introduction of an integrator, if the disturbance v(t)

is a Wienerprocess. To illustrate this we will consider an example.

Example
Consider a first order system with one control and one disturbance

variable
dxl(t)
—— =y () + v(t)
dt
y(t) = Xl(t) + wz(t) (5.12)

The disturbance v(t) is a Wienerprocess

dxz(t)
——— = wl(t)
dt
v(t) = x2(t) (5.13)

The control law including the feedforward is
u(t) = - 2xq(t) - v(t)

Combining equations (5.12) and (5.13) we get

- - — ~

, -
dx(t) _ 10 1) gy 42 u(”“ﬁoj“’l(t)

dt 0 0 0 1

The filter equation then is

dx(£) _ 10 1 Sy + | 1w Jkl‘“% Y1) - % ()}

dt 0 0 0 k. () |
2

Using the stationary filter gains kq and k, we can compute the

transfer function of the feedback loop. We get
U(s) = G(s) Y(s)

where

(2k, + k2)s + ka

1
s(s + 1 + kl)

G(s) = -




Since G(s) contains an integrator the steady state error of y(t)

egquals zero.

Notice that if any of the conditions, a Wienerprocess disturbance
or correct feedforward, are voilent there will be a steady state
error. It is easy to verify that components of the state vector
which have no steady state error are stationary processes. The
feedforward does not influence the dynamics of the closed system
and thus not the guaranteed stability associated with the optimal
feedback. It should also be mentioned that this technique to com-
pute the feedforward matrix R and the properties discussed above

also apply in the discrete case.




6. CHOICE OF LOSS FUNCTIONAL

The feedback matrix L(t) given by equation (2.6) does not depend
on the disturbances but only on the loss functional which deter-

mines the control law uniquely. Hence we will consider the system

equation
dx(E) - ax(t) + Bu(t) (6.1)
dt
and the loss functional
T
1T 1 T T
V== x (tl)Q X(tl) + = J {ox (S)le(s)+u (S)QQu(s)}dS (6.2)
2 © 2t
o

where the scalar o is used to vary the weight of the state vari-

ables in relation to the control variables.

The interpretation of Qs Qqs Q, is apparent. Q_ represents the
weight we put on the difference between the reached and the de-
sired state at the terminal time Ty Qq and Q, represents how we
weight deviations from the desired state of the state vector x(t)

and the use of the control vector u(t) in the control interval.

If we only use the diagonal elements of the loss functional ma-
trices it is easy to qualitatively predict the effect of a para-
meter change on the closed loop dynamics. For example if we in-
crease the ii-th element of Qq the deviations from the desired
state of the state variable Xy will decrease. Since the relative
weight of all other state variables then is decreased, the devia-
tions in these variables will increase. If all the elements of

Q, are increased the poles of the closed system will move to the
left in the complex s-plane and the system becomes faster. At

the same time the magnitude of the control variables will in-

crease.,

In the boiler application we will use the stationary value of the
feedback matrix L(t). This is physically motivated since in the
control problem defined for the boiler the terminal time t, can
be regarded as plus infinity. This also means that Q_  can be set

equal to zero.

In many cases there is no rational a priori choice of the para-
meters of the loss functional. Especially there is no rational

way to match the relative magnitudes of Ql and Q5 - To find the




parameters of the loss functional we will use the iteration pro-

cedure shown in Fig. 5.

[Initial guess of
[t

| ’ e )
i Com?gte L g Modify Q1 and Q2 g

i
i

:
i
i

' Analog simulation §

|
e,

-~ Satisfactory? ™
[ Yes
|
|
Fig. 5 - The iteration procedure for finding the loss func-

tional matrices.

The idea behind the initial guess of Qq and Q, is to give all
punished variables the same weight in the loss functional. This

is achieved by normalizing the variables with an assumed maxi-

mum deviation. Notice that we have to punish all control variables
but not all state variables since Q, must be positive definite

and Ql only nonnegative definite. The control law is computed

and evaluated by simulation. We can not take any constraints on
the control vector explicitly into account. We thus have to ba-
lance a fast response of the closed system against the magnitude
of the control variables for typical disturbances. It is impor-
tant that the feedforward term is included in the simulations
since this term alters the magnitude of the control variables.
Notice, however, that we can not change the steady state value

of the control vector by a change of a parameter of the loss func-

tional.




The object of the control in the boiler application is to keep
the drum pressure xl(t) and the drum level xz(t) constant with
no steady state error. This error can be eliminated since the
inverse of the matrix [A\B] exists in this case. The feedforward

matrix R is computed using equations (5.6) and (5.7).

The initial guess of Q; and Q, is

2
(—E—) 0 0 0 0
X
lmax 2
(——) 0 0 0
%
- max
Qy
0 0 O 0 0
0 0 0 0 O
0 0 0 0 o0
and B
_ , _
(—2—) 0
‘lmaX
Q, = L2
0 (- )
)
max

where the assumed maximum deviations are

®q = 10 bar
max

%, = 0.1 m
max

u = lOL’L kJ/s
lmax

u, = 10 kg/s
max

The disturbances used in the analog simulation are a 10% step
change of the load and a disturbance in the initial value of xl(t)

and Xz(t).

Fig. 6 and 7 give the results of the simulation using the initially
guessed Ql and Q2 with o = 10. The corresponding control law will
be called control law I. The responses of the controlled variab-
les xl(t) and Xz(t) are not satisfactory. Especially the response
of Xz(t) is quite slow. Fig. 7 shows the responses to a load
change with and without the feedforward matrix included in the

control law.




X

X3

%

Xg

|

1
bar ( a ) A bar ( b)
1 X1 0.1
N _ .
100 200 tsec o - 100 200 "tsec
cm cm
2 K z \
-24
c °c
05 X3 05
Q
¢$t x, 05f°C
-0.|v -0.51
% %
Z‘WL\ X5 1&'
A
klls N kils
10" Uy Ia’
qa///" q&r”————f
-240°
A A
/
11 kgls u 2 kgls
-1 / -24
-2{ -4+
-§ 4
Fig. 6 - Responses of state variables to an initial value

disturbance of (a) Xl(t) and (b) X2(t). Control

law I is used.
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To improve the response of Xz(t) the 22-element of Ql was in-
creased. After some iterations the final choice of the two non-

zero elements of Ql were

- -2
qll = 10

- 4
Aoy = 10

The matrix Q2 was not altered. Fig. 8 and 9 show the responses
to the disturbances using o = 1. The corresponding control law
will be called control law II. It is now appraised that the mag-
nitude of u2(t) should not be further increased. The large posi-
tive value of uz(t) during the first moment after the load de-
crease is due to the increased drum pressure which causes a sud-
den decrease of the drum level, see Fig. 2c. The eigenvalues of

the closed system matrix (A-BL) are in this case

_7.55 + 1072 + 5.12 . 1072
141 - 1071 £ 1.70 . 1072
2

-4.90 -+ 10~

Numerical values of the used feadback and feedforward matrices
both for the continuous and discrete cases are found in Appendix
A. A detailed presentation of the programs used to compute the

control law is given in {5}.
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7. CHOICE OF SAMPLING INTERVAL

The choice of the sampling interval is usually a difficult pro-
blem. A common method to find a suitable sampling interval is to
determine the value of the loss functional for different sampling
intervals. The value of the loss functional, which is a measure
of the quality of control, will increase quadratically with in-
creasing length of the sampling interval. There are methods avai-
lable which give good estimates of the influence of the sampling
interval on the loss functional, see e.g. {6}. However, in this

study a very rough estimate 1s used.

The increase of the loss functional due to increasing sampling
interval will be judged from the first two diagonal elements of

the stationary S matrix. These elements correspond to the con-

trolled variables Xl(t) and Xz(t). In Table 1 numerical values

for the case of control law II are given.

iiﬁgiig% 511'10_l 822‘10_LL
0 sec 1.734897 1.450922
1 1.735418 1.451257
2 1.73698L 1.452263
5 1.748047 1.459299

10 1.789885 1.484359

Table 1. The first two diagonal elements of the stationary S

matrix for different sampling interval

In Fig. 10 the percentile increase As of the elements are plotted

against the sampling interval.

AS Nt

4 -

2 e

1 5 10 T sek

Fig. 10 - The increase As of the ll-element (x) and the 22-

element (o) for different sampling intervals.




The two diagonal elements increase with approximately 3% for a
sampling interval of 10 sec. The increase of the loss functional
can roughly be estimated to the same amount. An increase less
than 5% 1s acceptable and we choose a sampling interval of 10

sec.




8. COMPLETE CONTROL LAW

Having obtained the feedback and feedforward matrices the com-
plete control law is obtained by adding the Kalman filter equa-
tion for reconstruction of the state vector. Using the model of

the process (3.1) and the model of the load disturbance (4.7)

we get
x(t + 1) = o x(t) + Iy u(t) + I'p vl(t) (8.1 a)
y(t) = 61 x(t) + eQ(t) (8.1 b)
and
vl(t + 1) = vl(t) + el(t) (8.2)
where
E el(t) el(t) = rq (8.3)

T _
E e2(t) ez(t) = R2

The conversion to discrete form is done in the usual manner. The

sampling interval has been taken as the time unit. Introducing
xe (t) = v (1)

and combining equations (8.1) and (8.2) we get

-

b1 Tr| 1l 0
x(t+l) = | x(t) + Cult) v e (1)
o 1 | 0 | L1
- Lo Lo
y(t) = [6,0] x(£) + e, (t)
or
x(t + 1) = ¢ x(t) + T ult) + 1 e () (8.4 a)
y(t) = 8 x(t) + eZ(t) (8.4 b)
where the covariance matrix of the noise term in equation (8.4 a)
is . .
0 0 0 0 0 0
0 0 0 0 0 0
T 0 0 0 0 0 0
R, =T r.T =
1 ele o 0o 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0

1.69-10




The Kalman filter equation is given by
x(t + 1) = ¢ x(t) + T u(t) + K[y(t) - 8 x(1)] (8.5)

If we assume that the covariance matrix R2 of the measurement
noise equals zero the steady state covariance matrix of the re-
construction error and the filter gains can be computed in the
following manner {7}. The control variables are omitted since
as usual they only represent an additional term in the equations

and do not influence the solution. Then equation (8.4) gives
x(t + 1) = ¢ x(t) + Ty el(t) (8.6 a)
y(t) = 6 x(t) (8.6 b)

The input-output relation is given by

Bzz_2 R T 2 an
y(t) = T - el(t) (8.7)
1 + alz + ... * anz n

-1

where a a_ are the coefficients of the characteristic poly-

EREEEE
nomial and BZ”'

coefficient matrix Bl is zero since By equals 9T .

"Bn are coefficient matrices of order 2xl. The

Assume that the system is initialized at t = 0. Equation (8.6 a)

then gives
x(t) = ¢F x(0) + T & e (s) (8.8)

Given y(0),...,y(t), t>n the stochastic variables e(0),...,e(t-2)
can be computed exactly using equation (8.7). Assume that the
initial value x(0) is known then we can compute x(t-1) exactly
from equation (8.8). Given x(t-1) the minimum mean square estimate
of x(t+l) 1is

RC£+ 1) = 6% x(t - 1) (8.9)

The true value of state vector at t+l is

(£ + 1) = 6% x(t - 1) + oI e (t = 1) + T_ ey (1)

Then the steady state value of the covariance matrix P of the

reconstruction error is

P o= B{x(t) - x(£)1{x(t) - x()}' = o7 v 1 T4 + o T,

(8.10)




or

_ T T
P=r (o~ + I T ) (8.11)

where Qg is the sixth column of ¢. To compute the filter gains

we use equation (8.6) and the fact that 6T is zero. We get
y(t) = e¢2 x(t-2) + 89T el(t—2) (8.12)

86T is nonzero and we can solve equation (8.12) using the pseudo-

inverse of 6¢Te. Hence
2

e (t-2) = (81 )" [y(0) - 09" x(£-2)] (8.13)

Combining this equation and equation (8.6 a) we get the following

recursive equation for the state vector

x(t-1) = ¢ x(t-2) + (09T )" [y(©) - 8s” x(t-2)] (8.11)

Equations (8.9) and (8.14) now give the filter equation (8.5)
and the filter gains are

K = ¢2 re(e¢re)+ (8.15)

Notice that the filter gains are not uniquely determined. This
fact can be exploited to adjust the weight given to the diffe-
rent measured variables in the Kalman filter. Equation (8.13)
gives us two equations which both can be used to compute the

scalar el(t—Z). The use of these equations can be weighted as
el(t—Z) = B el(t—Z) + (1-8) el (t-2)

where ei(t—?) and e]”(t-2) are computed from the first and se-
cond equation of (8.13) respectively. 8 is the weighting factor.
The eigenvalues of matrix (¢-K6), which give the dynamics of the
reconstruction error will be independent of the factor 8, only
if these two equations are identical. In the boiler application
there is a small difference between the two equations given by
(8.13) which will slightly alter the eigenvalues when g is
changed. Choosing g so that kll roughly equals k22 we get

s e

0.69  -28.7
~0.01 0.uy
= 0.21 ~8.72
0.21 -8.94
~0.001 0.06
0.88  -36.9 (8.16)




The eigenvalues of ¢-K6 are

.00
.00
41
.32
.99
.83

o O o o O o

There is one eigenvalue very near the unit circle in the com-

plex plane.

This means that the transient response of the recon-

struction error will contain a very slow mode. But this also

means that the filter equation is very sensitive to changes of

the process

parameters. In Appendix D the following expression

is derived for the steady state reconstruction error

X, = (I - ¢

where ¢ 1is
We have

-5.
-1.
-5,
-6.

4.
-2.

(I—¢+Ke)'l=

Ny N w ol

The large e
indicate th
the paramet

the 25:th e

+ Ke)'l(¢x - ¢>xo

the disturbed process matrix.

107t 5.8.10% —2.2.10% -1.7-10% -n.s.10% 5.7.107%

-2 y) -1 -1 3 -2
+10 1.4+10° =5.2+10 -4.0-10 -1.1.10° -1.4-10

-10~1 2.8-103 -8.8 -8.0 —2.3-10” .8-10“2

107+ 2.9-10° —1.1-10l -6.5 —2.4-10u 1-1071

-10'3 2.0 -4;8-10"3 —3.4-10'3 —1.u~101 - .7*10‘3

5.7~1o3 _2.2.107% _1.7-10% —4.7-10u 2.0
1

lements of the second and fifth column of (I-¢+Ke)~
at the Kalman filter is very sensitive to changes of
ers of the second and fifth row of ¢. If we change

lement of ¢ 1% and let the steady state value of the

state vector LI correspond to a step change of va of 1 bar (a 10%

load change

1.

= 1 o o =

.18+10
.37+10
.72+10
. 8610
.71

) the steady state reconstruction error is

75
-2

-1
-1
—y




These reconstruction errors are not acceptable. Especially the
two controlled variables xl(t) and x2(t) will deviate considerably
from their steady state value. The stationary P matrix given by

equation (8.11) equals

ue107% Z1.3-107%  s5.5.107°  1.0-107% -1.7-107% g9.-107"
-1.3-10‘5 3.1-10“7 -1.3-10'6 - .u-10"6 u.o-10'8 -2.3-10‘5
5.107° _-1.3-10°° 7:10°%  1.0-107% -1.7.1077 9.8.107°
b= y _6 -5 -5 7 y
L0+10 _0.1.10 .0-10 910 ~3.1°10 1.8-10
~1.7.107%  4.0-107% -1.7-1077 -3.1-1077 5.1:107% -2.9-107°
Y _s5 _s5 —y 5 _3
610 ~2.3-10 .8-10 1.8-10 _2.9+10 3,410

The standard deviations 0. of the reconstruction errors then are
i

ov = 2.3-10"2 bar
X

= -
ov = 5,6-10 m
X

2 -3 0
on o= 2.,4+10 C
X

3 -3 0
ov o= 4,3-10 C
X

t -5
ov = 7.1-10 %
X

5 _2
ov = 5.8+10 bar (8.17)
%g

The values for the 3:rd, 4:th and 5:th components of the state
vector are unrealistically small since obviously the model is not

that accurate.

One way to introduce uncertainties in the model is to add white
noise with a given variance to each component of the state vector.
Choosing standard deviations of this noise as roughly 1% of the
maximum deviations of the state variables when the load is changed

10% we get
r —

10“1‘L 0 0 0 0 0
0 w1078 g 0 0 0
_ 0 0 1074 0 0 0
Rl = -3
0 0 0 2.5-10 0 0
0 0 0 0 1078 0
0 0 0 0 0 1.69.10°° (8.18)




The covariance matrix of the measurement noise is chosen to

-
{ 10" 0o |
E 1

o 1077 (8.19)

[ —

Notice that the nonzero elements of R2 have roughly the same

R2 =

magnitude as the variance of the reconstruction errors of Xl(t)

and Xz(t) respectively.

Numerical values of the obtained filter gains are given in Ap-

pendix A. The eigenvalues of ¢-Ké are

0.10 £+ 0.10 1

0.26 + 0.1u i
0.51
0.3l
and the sensitivity matrix is B
_7.1-10"% 7.6 292.8-1072% —2.2.1072 _g.2-10% 7.u-10""
_g8.0-10"% g.5-107% -3.1.107% —2.u-10"°% 6.9 _1.3°10°2
“1 | -3.1-1077F -1.2 1.6 5.9.10"° -3.9-10% 1.1.10°"
(I-¢+Kp) ~= ) o 1
~3.3-1077F -1.2 1.9-10 1.8 9.8 1.1-10
-3 _2 -3 _3 -3
b.8-10"° -1.3-10 2.5+10 2.3°10 1.9 ~2.5-10
~1.6 1410 —u.2-107% —3.3.107% —9.5.107 2.3

Notice that no eigenvalue is close to the unit circle in the com-
plex plane and that the elements of the sensitivity matrix have
been reduced with about a factor 100. The standard deviations 0%

. . . 1
of the reconstruction errors 1in this case are

ov = 3.0-10“2 bar
X

* i
ov = 8.5-10 m
X

2 -2 0
ov = 1.2-10 C
X

3 -2 0
ov = 5,610 C
Xy
onv o= 1.5‘10‘L‘L %
X

5 -2
on = 6.2"10 bar
%g

Compared to (8.17) the standard deviations of the 3:rd, H:th and
5:th components of the state vector have increased about ten times
Thus the filter gains obtained using the disturbed model give rea-
sonable properties of the filter equation and these gains will be

used.




9. IMPLEMENTATION OF CONTROL LAW ON A PROCESS CONTROL COMPUTER

The whole problem was simulated on the hybrid computer at the
Research Institute of National Defense in Stockholm, Sweden.
The process was patched on the analog computer EAL 8800 and
the control law was implemented on the digital computer EAL 640.

The details of the simulation are found in {3}.

A simplified flow diagram of the control algorithm is shown in

Fig. 11.

Read y(t) and set u(t)

Compute the new estimate of the
state vector using

2(THT) = 6 x(t) + T u(t) + K[y(t)-Cx(t)]

Compute the control vector using

ult) = - L x(t)

i Wait for next sampling

Fig. 11 - Simplified flow diagram of control algorithm

The matrices ¢ and I are the sampled A and B matrices. Notice
that the filter equation is of the 6:th order since one state
has been added for the load disturbance. The filter equation
gives an estimate of the state vector and the load disturbance
one sampling interval ahead and the control vector can be com-
puted using this estimate. When the next sampling interrupt
occurs the control variables are set and a new measurement of
the output variables is made. Numerical figures of sampled ma-

trices are given in Appendix A.

The control law was implemented using fix point arithmetic and
single precision. The word length of the computer is 16 bits

including the sign bit which gives an accuracy of about U




decimal digits. The numbers in the computer are regarded as
fractionals. Then we must make sure that no constants or sums
become larger than one. Otherwise overflow will occur. Each es-
timated state variable is scaled according to the largest matrix
element on the right hand side in the filter equation. These
scale factors are then introduced in the coefficients of the L
matrix. The control variables are then also scaled according to
the largest element. Before the storing and setting of ;(t) and
u(t) they are rescaled. It is obvious that some cautlion must be
exercised so that the accuracy not unnecessarily is decreased
and that the scaling requires a considerable knowledge about

intermediate results during the calculations.

The control algorithm (CALG) is programmed in assembler language.
The program listings are given in Appendix C. The matrix calcula-
tions are performed using subroutines for vector addition (VADD)
vector subtraction (VSUB) and matrix-vector multiplication (MVMULT)

The rescaling subroutine is called RESCA. A detailed presentation

is found in {81}. ) .
The core memory requirements for the control algorithm and sub-

routines are shown in Table 3. Figures are given for a 6:th and

a 15:th order system both with 2 inputs and 2 outputs.

e " 6 15
CALG 121 words 157 words
VADD 49 49
VSUB 5 5
MVMULT 81 81
RESCA U5 b5
Matrix storage 8L 345
array
SUM 385 682

Table 3. The storage requirements for the control algorithm

and subroutines for a 6:th and a 15:th order system both with

2 inputs and 2 outputs.

The program list for CALG apply to a 15:th order system with

10 inputs and 10 outputs. There is some unnecessary storage

arrays in CALG since some intermediate results are saved.

The execution time for CALG 1s 6.7 ms.




10. SIMULATION

In the analog simulations of the boiler control it was assumed
that all state variables and the disturbance vy could be measured

directly. Hence the Kalman filter was not included.

Fig. 12 gives the open loop responses of thestate variables when

the disturbance v., is a stochastic process given by equation (4.7).

Fig. 13 and 1Y giie the responses of thestate variables when con-
trol law II, without and with feedforward respectively, is used.
Notice that the realizations of vl(t) are different in the figures
referred to above. A measurement of the variance of Xl(t) and
Xz(t) on the analog computer gave
E x,2(t) = 1.1 + 1077 bar’ .

(10.1)

E x22(t) - 6.0 » 107 em?

The results of the hybrid simulations are presented in Fig. 15,
16, 17, 18.

Fig. 15a gives the responses of the state variables to a step
change of the load disturbance vy The corresponding estimated
state and disturbance variables are given in Fig. 15b. Control
law ITI with feedforward is used and the filter gains correspond
to the covariance matrices R and R, given by equations (8.18)
and (8.19). Notice that the control variables are zero during
the first two sampling intervals. This follows from that the
control algorithm CALG is given starting values for %(O) and

u(0) which equal zero.

Fig. 16 illustrates the sensitivity of the Kalman filter using
the filter gains given by equation (8.16). The model disturbance
is a change of the 25:th element of the matrix A with 0.25%.

The estimation errors of especially Xl(t), x2(t) and Vl(t) are

considerable.

Fig. 17 which should be compared with Fig. 14 gives the responses
of the state variables to the stochastic process vl(t) defined
by equation (4.7). The estimates are presented in Fig. 18. The
measured variances of the two controlled variables are

2(t) = 2.8 - 10‘3 bar2

2¢) = 6.6 - 10°° com? (10.2)
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Compared to (10.1) the variances have increased roughly by a
factor 2 and 10 respectively. The larger increase of the varian-
ce of Xz(t) was expected considering the frequency content of
the control signals ul(t) and uz(t) in the continuous case,

see Fig. 1h.
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APPENDIX A

Numerical values of the matrices A, B, T and C of the boiler
model used in this report are given. The values apply to a

power station boiler with a maximum steam flow of about 350 t/h.
The operating point is 90% of full load. Also the discrete boiler
model matrices as well as the feedback, feedforward and filter

matrices are given.
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(continued)
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Using R, and R, according to (8.18) and (8.19) the filter

gain matrix K is

- 10073574793+000 ~5¢7569950558+4000
6¢3120600146=003 1e07570170944000
3¢7910573573-001  543174449364-001
4.0181264417-001 2¢6182033238-001
~17632880588-003 701557604587=-903

1¢1591905537+000 =1.0347879562+001




APPENDIX B

Numerically it has been shown for several specific problems
that the feedforward matrix R discussed in section 5 also can

be computed in the following way. Consider the system

dx(t) - aAx(t) + Bu(t) + Fv(t) : (1)
dt

Set

Vie T Xppp k=1,...,s

ik 0 kK = 1,...,8

and add these new state variables to the system equation (1).

We get _ - - -
M ] N
LA F B |
dx(t) | Cx(E) 4] [ ult) = Ajx(t) + Biulh) (2)
at I 0|
L - o
Introduce the notation
N 1 1
Ap = [00 ... 0aj,y .- a ]l

where ai is the k:th column of A. We require that the steady

state error of the first 1 components of the state vector equals
zero, and that i1 equals the number of control variables. The

loss functional
t
Vzi XT(t )Q x(t )+; i {XT(S)Q X(S)+(A x(s)+B u(s))TQ (A x(s)+
2 17 >0 172 + 1 1 1 2771

© +Blu(s))}ds

then gives the control law

[
;
u(t) = —Ll(t) 2

The stationary value of Lz(t) obtained when t,-» is given by

1

where R satisfy equation (5.7) using the stationary value of
Ll(t). Notice that A x_+B
tion (5.4).

1 Ju, equals the left hand side of equa-
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0o0002:
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00005:
Q0006
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00010
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0go12:
00013:
000C14:
000C15:
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0001t 7:
g0018:
00019
0002G:
00021
00022
00023
00024
00025
Qo026
00027
000258 s
00023
00030:
00031
00031:
00031:
00031
00031:
00031
00031:
00031:
00032:
0o032:
00032:
00032:
000322
00032:
00032:
00032:
00033:
00033:
00033:
00033:
00033:
00033
00033:
00034:
00034
00034:
00034
000342
00034:
00034
00034:
00035:
00035¢

SUEBROUTINE

APPENDIX C

* CALG
* COMMON AREA MATK -
COMMON MATR
00001 N BSS 1
00001 M BSS 1
00001 P BSS 1
00341 FI BSS 225
00226 GAMMA BSS 150
00226 C BSS 150
00226 K BSS 150
go226 L BSS 150
* COMMON AREA VECT
COMMON VECT
00017 XHAT BSS )
00012 U BSS 10
00012 Y BSS 10
* COMMON AREA EREGR
CoOMMoN ERROR
00010 EFDC BSS B
00012 E BSS 10
00014 UTFY2  BSS 12 FILL UP T0O 30
* EXT ASSEMBLEE CALLING SEQUENCE
% CALL CALG
"% SURROUTINES CALLED
* VALD
* VSUB
* MUVMULT
01006 00000 REL 0
‘NAME CALG
60000 00000 00000 caLc ADR 0
00001 60XXX CALL MUMULTsNsN» FI, XHAT, FIX, E, O
00002 XXXXX 00000 =«+ -
00003 XXXX4 00000 ««~+~
00004 XKXXX 00003 «««
00005 XXLXX 00000 «+~«
00006 ZXXXXKX 00128 ««~r
00007 KXKXXXX 00010 «««
00010 00000 00000 «+~= :
00011 60XXX F1 CALL MWMULTsN» M, GAMMA, Us GUs, E+ 1)
00012 XXXXX 00000 «««~ ' . '
00013 XXXXX 00001 ««~=
00014 XXXXX 00344 «+v«
00015 XXXXX 00017 ««+
00016 XXAXX 00141 ~ee
00017 XAXXX 00011 ~w~
00020 00000 00000 ~+~
00021 60XXX F2 CaLL VADD,N» FIX, GU> FIXPGUs E+ 2,0
00022 XXXXX 00000 «»~« : '
00023 XXXXX 00122 e««
00024 XXXXKZ 0014l e+~
00025 XXXXX 00160 =<~
00026 XXXXX 00012 «w-
00027 00000 00000 «+=+
00C30 60XXX F3 CALL MVMULT, PsNs Cs XHAT> CX» E+ 35 C
00031 XXXXX 00002 ««-
00032 XZXXXX 00000 «~+~-
00033 XXXXX 00572 ~«-
00034 XAXXX4 00000 «+~+
00035 XXXXX 00177 ««~«
00036 XXXXX 00013 w«~
00037 00CCO 00000 «~~ ‘
00040 60X4X Fa CALL USUB» P» Y5 CX» YMCXs E+45 0

00041

XXAXX 00002 o=~




0G035:
00035:
. 00035:
00035:
00035:
00036:
00036
00036:
00036:
00036:
00036:
000363
000361
0oG371:
00037
Q0037¢
Qu037:
00037z
00037
00037
00038
00035 ¢
00035:
D0O035:
00038
000328
00033 ¢
000383
00039:
00039:
00039:
00039:
00039
00039
-Q0039:
00040:
0004ty
00041:
00041
00041
00041
00041
00042
00042:
000423
00042:
00042:
000422
00043:
00044:
00045:
0004686
00047
00048
00049
00050:

00051y

Q0052;
00053:
00054:
00055:
00055:
00055:

00042

00043
00044
00045:
0004¢

00047 -

00050
00051
00052
00053
00054
00055
00056
00057
000&0
c0061
00062
00063
Co064
00065
00066
0C067T
00070
00071
00072
00073
C0074
00075

00076

00077
00100
00101
go102
00103
00104

00105
00106
00107
00110
00111
golie
00113
00114
00115
00116
60117
00120
go121

oo122
00141
00160
00177
00211
goe23
00242
00254

00266
0o0eeT
00270

KEREK
KLXKK
0.9.9.9,9.¢
D9 9.9:9¢
000068
60X %X
XXKKX
XXXEX
KKRXX
XKXRXX
XXXKX
XXKRX
00000
60AXXK
KEXAX
.9 9.9, 9:4
KXRAX
Y 1 9:9:4
199,99,
60000
E0XEX
KXAKK
1 9.9.9.9.¢
RARKLAL
KXKAX
NERZEX
RREXKL
00000
60XXK
XAXEX
XKKXX
XEXKX
XXXKX
XXXKX
00000

60XXX
XKXXX
) 9:9.9.9.¢
XXRXXK
XXKEX
00000
60X XX
XXKXLX
), 0,9:¢.9:¢
XXXAKK
XXXXX
00000
45657

00031
00177
00211
00014
00000

00000
0oceea
01020
goell
00223
00015
00000

00000
00160
00223
0C0C0
00016
00000

00001
00000
01246
00G00
00242
00017
00000

00001
00254
00242
00017
00020
00000

*

00000
00266
00000
00022
00000

00001
00274
00017
00023
00000
00000

*
00017
00Ci17
00017
00012
00012
QC017

T poo1e -

00060

ggota
00004

goocoe

00000

APPENDIX C

(continued)

FS CALL MUMUL T> N> Py K5 YMCX» KYCXs E+ 5
Fé CALL VADD, N» FIXPGU, KY CXs XKHAT, E+
F7 CALL MUMUL Ts Ms N s L XHAT, LXHAT, E+
F8 CALL VSUB» M, ZERD V> LXHAT, Us E+85 0
RESCALING OF XHAT AND U. <
CALL _RESCAsN» FXKHAT, XHAT, E+10, 0
CALL RESCAsM; FUs Us E+11, 0
Js 1 CALG
TAG TAELE
FIX BSS 15
GU BSS 15
FIXPGU BSS 15
cX BSS 10
YMCX ~ BSS 10
KYTZ  BSS 15
LXHAT BSS 10
ZERGV BSS 1050
’ NAME FXHAT
NAME FU
FAXHAT DEC - 202515151571

- -




CGC055:
000ss:
0C0S5:
000Gs6s
00056é:
00057

00271 00001 e
00272 00001 .
00273 00001 g
00274 00002 FU DEC
00275 00010 -
00000 END

APPENDIX C

(continued)
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FPERFORMS
*MATHIX=-VECTOR MULTIPLICATION.
JONAS AGEREERG.

APPENDIX C

(continued)

ROWS, M COLUMNS)
A VECTORs XCM)e
YN

*ALL ELEMENTS ARE IN SINGLE PRECISION
ELEMENT OFERATION

BE SET 10
(oCT

MAX OR MIN
77777 OR 100000

*AND CELL 'ERRGR' WILL BE INCREMENTED BY
*ONEe THIS CELL CaN BE TESTED BY MAIN

ERRGR

*DATA FIELD SHOULD BE DEFINED BY

MVMULT
0
0
0
SAVX
MWIULT
N

MNX
MWIULT
MUWULT
M

MMK
MUMULT

1
M
ADRA
2
M
ADEX
3
N

00001:

00002: ok SUBROUTINE MWIULT,
00003:

00004 * PROGRAMMERS

Q0005: *DATE © 9.11467
000063 *REVISION 17« SEPTs 68
00007 «A MATRIX, ACNsM)s
00003 IS POSTMULTIFLIED BY
00009 *THE PRODUCT IS A VECTOE,
000102

00011 *ON OVERFLOW ON ANY
000123 *THE FLEMENT WILL
00013: *FRACTIGONAL VALUE
00014:

00015

00016: *PHO GRAM

000172 %

00018 ¢ *CALLING SEGUENCE:
00019 %% 1, MUMULT
00020: k%  ADR N

00021 %% ADR M

pog22: %% ADK A

000233 %% ADR X

00024: *% ADR Y

00025: * % ADH

00026 %ok ADK 0
00027 *

00025

c0029: *% A BSS MeN
00030 ook b BSS M
00031 %% Y BSS N
000323 % '

00033 *

000343 *

00035z % PROGRAM STARTS HERE
000362 - NAME
00037: 01000 00000 : REL
000383 00000 ‘SHIFT EQU
00039 ©CO00 100000 00000 MUMULT ADEs I
00040: 00001 S1676 00077 A STX
00041y ©0002 145776 00000 LAy I
00042: CGOO03 161062 00065 STA
00043: 00004 20100 - TCA
00044: (00C05 26400 SSP
00045: 00006 161061 G0067 STA
00046: 00007 71771 0UGOO AOM
000472 00010 145770 000600 LAs1T
00048: 00011 161055 0G066 STA
00049: 00012 20100 TCA
00050: 00013 26400 SSP
000S1: 00014 161054 00070 STA
00052: 00015 141763 00000 LA
' 00053: 00016 26400 SSp
00054: Q0017 26500 EX
00055: 00020 142001 00001 LAsX
00056: 00021 151045 00066 A
00057: 00022 161047 0CO071 STA
00058: 00023 142002 00002 LA, X
00059: 00024 151042 00066 A
000603 0CG25 141045 0306072 STA
00061 00026 142003 00003 LAasX
00062: 00027 151036 00065 A
00063: 00030 161043 00073 STA

ADRY

OR SET AT ASSEME
FETCH N

SET MINUS N
FOR INDEX

"FETCH ™

SET MINUS ¥
FOR INDEX
FETCH STRING
ADDRESSES AND
STORE THEM-



00064
00065
00066
Qo067T:
00068
00069
00070
0Q071:
ooo7e:
00073:
00074
00075
000762
00077
GOO078:
00079:
00080
0003 1:
00032
000# 3
0003 4
Go0” 5t
G008 61
Goo8 7
Co0gs:
0QU89s
00090
CcoC9t:
oopoge:
0G09 G
0009 43
go0Ce 5
go09 6t
00097
00098 s
00099:
0100
0C101:
00102

00103y

00104
00105
00106:
001072
00108
00109
00110
Cc0111:
ocii12:
C0113:
00114:
00115:
001168
00117:
00118:
00119
00120:
00121:
00122
00123

00031
go03z
00033
00034
g0035
00036
QD037
20040
0u04l
00042
co043
00044
00045
Q0C46
00oa7
00050
00051
00052
00053
00054
GC0C55
Qoose
50057
50060
§G0o61
00062
Q0063
060G o4
00065
000e6
0o0e’
00070
Go0o71
00072
goo73
00074
00075
00076
00077

0c100
00101
00102
00103
00104
£0105
00106
60107
00110
00111
00112
00113

00114
00115
00116
0o117%
00120

142004
161044
22006
51041
53632
51031

26740

161034
53027
147627
37027
27416
61047
151026
27416
61030
161023
22001
41767
S3013
167016
141013
151007
161011
22001
41754
53014

45011

00000
00000
00ogGoo

000C0
24040
41004
26740
26440
41004
26740
20200
26400

15765

45766
45765

00000
26740
20200
26400
45774

ON

co004 Las X
Go076 STA
00005 10X
00G7S STX
00067 L LX
00067 LGOP2  S5TX
CLR
00074 STA
00070 LX
00071 LOGP1  LA,IX
00072 MsIX
SNG
001114 L
00074 A
SNG
00100 L
00074 STA
00001 I1CX
00042 J
QU067 LE
00073 STA, 1X
00071 LA
00066 A
00071 $TA
Qo001 1CX
0003€ J
00077 LX
oooT7S CJds 1
s1se]o}! N BSS
c0001 i BESS
00001 AN BSS
00001 MMK BSS
00001 ADRA BSS
00001 ADRX BSS
00001 ADRY BSS
00001 YMS B&S
00000 EXIT BSS
00000 ERRA BSS
00000 SAUX BSS
*HERE IF OVERFLOW ON
00000 GVFL ADR
SKP
00106 J
‘ CLR
SSN
00111 J
PGS CLR
GCcA
Ssp
00076 oUT AGM, T
00100 Js 1
00100 Js 1
*
*HERE 1F OVERFLOV
00000 MOV ADR
CLR
oCcA
sSSP
00114 Jsl
00000 END

el
w
p

.:.,:1
Y
ey

> 3
D O
- O
[ v"; "1

o

.

F T o I oy B ¥4

[
v
[en R a»)

1,0
ADD
0

P05

ouT

ERRA
G VL
OVFL

MULT
0]

MGV

APPENDIX C

(cohtinued)

ZERD TEMP
Y-CELLS

MPLY. PEOD IN DP
SET +1 1FOVFL
ADD ¥S PART OF Y
G VERFL$ (N0, YES-
GOTO SET MIN/MAK
VECTOR PROD 0Kt

(YES, NO-LOOFLY .

N O Y-VALUES DONEZY
(YRS, NO-LOGF2

o

MINUS N FOR INDX
[ 1o [ ]

PTR 75
PTR 10 X
PTR 10
TEMP FGR DP

wAaS OVFL POS

SET (ARY AND (@GR
TS *77777




00009
00010
00011
00012s
00013
0001 4:
Q001 5
00016
00017
00018
00019
000206
00021
0Goe2:
0TSIE3~RCH
00024
00025
000262
00027
00028
00029

I
a

L’)

Q0034:
00035
000362
000372
00035
00032:
00040
00041
00042
00043
000442
00045
00046
00047
00048
00049:
00050:
00051
Gcosa:
00053:
00054
00055
00056:
000572
00038
00059
00060
DGCe61L:
000e62:
00063

1000

3C000
0Go01
‘00002
00003
00004
60005
00006
00007
00010
00011
gootie
00013
00014
00015
00016
00017
poo20
ocobal
conz2
00023
00024
00025
00026
00027
000630
00031t
006032
0033
00034
00035
00036
00637

APPENDIX C

(continued)

%
00000 REL 0
NAME VSUB
NAME VADD :
*+ PERFORMS VECTOR ADD/SUBTRACTs C=A+B OR
% Cz=A-B IN SINGLE PRECISION
% DIMENSION OF VECTOhS = DIM®
% IF AN ELEMENT OF C OVERFLOWS IT IS SET
* TO MAX (OR MIND FmﬁCIIUVAL VALUE
% ON EACH GUERFLOW (ERR) 1S INCREMINTED BY ONE
% NO ERROR EXITS
% USUB USES VADD AFTER FIXING
% PROGRAMMER :J AGERBERG
% DATE 12 SEPT 65
% REVISED
*
% FORTRAN CALL @
%% CALL VADD (DI, A, B, Cr,  ERRD
% OR  CALL USUS (DIN, A, B, Cr  ERRD
*
% ASSEMBLER CaLL
* i VAD ' (OR VSUE)
* ADR DIM
* ADR A
% ADR B
* ADR C
* ADR ERR
* ADR 0
N :
*
* .
100000 00000 VSUB ADFs I 0
141777 00000 LA *=1 FIX RETURM
161004 00006 STA VADD ADDRESS
141033 00036 LA oP FIX SUBTRACT
101057 00063 GR SUBMSK INSTRUCTION
41004 00011 J ADD
100000 00000 VADD ADRs I 0 )
141027 00036 LA OF FIX ADD
131052 00062 AND ADDM SK INSTR.
161025 00036 ADD STA oF i
51054 00066 STX SavVXK
141773 00006 LA VADD
26400 SSP REMUVE INDBIT
26500 EX PT 10 L+1
142001 00001 LAsX 1 FETCH ARG
161036 00055 STA ABASE ADDRESSES
142002 00002 LAsX 2 ‘
161035 00056 STA EBASE
142003 00003 TLAsXK 3
161034 00057 STA CBASE
142004 00004 LAsX 4 ,
161033 00060 STa ADRERR
22006 00006 ICX 6
51032 00061 STX EXIT
145756 00006 LA,I VADD FETCH DIM
24500 EX (XR) =~ DIM
22777 00001 MORE DCX 1
27417 SKU
41030 00064 J ouT
147020 00055 LA, IX ABASE
157020 00056 OP A, IX BRASE ADD/ SUBTR
167020 00057 STAs 1X CBASE




00064:
00065
00066
000672
00065
00069:
00070
00071
000722
00073
D00 T4
00075:¢
000762
00077
00078 ¢
00079
COCOEC:
00081:
00032:
00083
0008 ux
0006 5
0008 o
0008 7:

00040
00041
00042

00044
00045
00046
00047
00650
00051
00052
00053
00054
00055
00056
00057
00060
gocot
000¢e2
00Ce3a
00064
00065
0066

00043

27401
41771 60032
24040

41004 00047
26740

26440
41004 00052
26740
20200
26400
167005
75005
41756
00000
00000
00000
goCo0
00000
157777
170000
530082
45774
00000

00057
00060
00032
00000
00D0G
00C00
0CcCGo
00000

00066
Q0061
00000
000060

SO

g

POS
STOUF

ABASE
BBASE
CBASE
ADRERR
EXIT

ADIDH 5K
SUBMSK
ouT

Savx

SKP
J
CLR
SSN
J
CLR
6CA
SSP
STA, IX
AGM, 1
J .
BSS
BSS
BSS
BSS
BSS
GCT
GCT
LX
Js 1
BSS
END

APPENDIX C

(continued)

O VEL?
MORE NG
YESs OVFL NEG?
PGS NDO, GOTO PGS
YES, SET
C(AR) =-1
STOVF
SET (AR)
MAX POS
CBASE STORE MAX/MIN
ADRERR INCR«. ERRCOUNT
MORE e
1,0
1,0
10
1,0
1,0
157777
170600
SAVX
EXIT
150
0



00001
00002:
000C03:
0000 4

00005
00006
00007
00008 ¢
00009
00010:
00011
goo1i12:s
00013
0001 43
000152
00016
00017:
000123
00019:
00020:
00021:
00022:
0o023s
Q0024:
00025
¢Cooc26:
00027
000258
00029
00030:
00031
00032:
00033
00034:
00035:
000363
00037:
00038 :
00039:
00040
00041
00042:
00043
000448
00045
00046
000472
00048
00049
00050:
00051
00058
00053
00054:
00055:
00056:
000572
00058 ¢
00059
000&0:
00061
00062
00063:

C1000

06000
00001
00062
00003
00604
00005
00006
00007
00010
00011
00012
D0013

00014
00015
00016
00017
06020
00021
00022
00023
00024
00025
00C2s6
oocev
60030
00031
00032
£0033
00034
00035
00036
00037
00040
00041
00042
00043
00044
20045
00046
00047
00056
00051
00052
00053
00054

100000
53777
14200600
20100
161046
26500
26400
26500
142001
161040
142002
161035

53037
147033
37033
161030
26117
27416
41011
167025
22001

71025,

41767
141751
26400
26500
42005
51021
53744
72003
141011
151014
141006
53013
27402
41760
20100
41756
7979
00000
00000
00000
00000
00000

00600

% SUBROUTINE HESCA.

*

PERFORMS

APPENDIX C

(continued)

* VECTOR A IN FRACTIONAL MULT WITH

% VECTOR SCALE IN

O*******.****

0000
00000
00000
00000

0oos2

00001

00051
Qoooz
00050

*
00053
00050
00051
00047
00017

00033
00050

INTEGER.

RESULT IN FRACTIONAL PLACED IN

VECTOR As

1F OVERFLOW GCCUR » AGM
WITH SIGN STORED.

CALLING SEt.

CALL RESCA,N, SCALE> A>E>Q
SCALE N-DIM VECTOHR IN
A N-DIM VECTOR IN FRACTIGNAL
E NAME OF OF ERRGR

RESCA

REL
NAME
ADHRs 1
LX
I.LAs X
TCA
5TA
EX
SSF
EX
LAsXK
STA
LAa,X
S5TA

MULTIPLICATION

. LP

AE

00001

60052
00015
00000

.00005-

00054
0000C0
00003
00047
00053
00046
00054

00023

060023

"00000

00000
60000
00000

00000

LX

LA, IX
M, IX
STA
ALD
SNG

J

STAs IX
1cX
AOM

-J

ERR

MAX
TEMP
TAA
TAS
CoOUNT
ZERG
P2

LA
SSP
EX
Js X -
STX
LX
AOMs X
LA
A
LA
LX
SM
J
TCA
J
OCT
BSS
BSS
BSS
BSS.
DEC

"BSS

O ¥ OO

CELLe.

COUNT

i
TAS
2
TAA

ZERD
TAA
TAS
TEMP
15

ERR
TAA

1
COUNT
LP '
RESCA

5
T™F2
RESCA
3
TEMP
ZERD
MAX
™P2

AE

A
TT777
1,0
1,0
1,0
1,0

1,0

E»¥MAX VALUE

INTEGER.

LOAD FIRST ARG

ADR TO SCAL
STORED IN 1

ADR TO A
STORED IN TAA

EXIT

4TH ARG

ADR 10 A

ADT T0 SCALFE
NGO OF ELEMENTS
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00064z 00000 .. END 0




APPENDIX D

Consider the system

x(H41) = ¢ x(£) + T ult) + el ()

y(t) = 0 x(t) + ez(t) (1

where ¢x is the disturbed matrix ¢. The Kalman filter is

SCEF1) = ¢ x(1) + T oult) + K[y(t) - 0 x(t)] (2)
Equations (1) and (2) give

X(H+1) - ®(H41) = (§-K) (x(1) - x(£)) + (4 -9)x(t) + e (£)-Ke, (1)

The deterministic part of the reconstruction error 2(t) = x(t) -

x(t) then is

¥(t+1) = (4 - KOX(E) + (¢ - 0)x(t)
In steady state we get

X, = (I - ¢ + Ke)"l (¢x - ¢) X (3)

Using the steady state value of the state vector corresponding
to the undisturbed system equation (3) will give an estimate of

the true reconstruction error.




