
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Flexible Embedded Control Systems

Design and Implementation
Eker, Johan

1999

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Eker, J. (1999). Flexible Embedded Control Systems: Design and Implementation. [Doctoral Thesis
(compilation), Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology
(LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/3646ec0a-42d3-4aa9-9057-ed8a3b0a1fc3

Flexible Embedded Control Systems
Design and Implementation

Flexible Embedded
Control Systems
Design and Implementation

Johan Eker

Lund 1999

Till Lotta

Department of Automatic Control
Lund Institute of Technology
Box 118
S-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT–1055–SE

c&1999 by Johan Eker. All rights reserved.
Printed in Sweden by Wallin & Dahlholm Boktryckeri AB
Lund 1999

Contents

Acknowledgments . 9

Introduction . 11
1. Motivation . 11
2. Outline and Summary of Contributions 12
3. Implementation of Control Systems 15
4. The Robot Pendulum . 23
5. Feedback Scheduling . 36
6. Simulation of Embedded Control Systems 44
7. Implementation of a Hybrid Controller 52
8. A Unifying Example . 54
9. References . 63

1. A Tool for Interactive Development of Embedded Control
Systems . 69
1. Introduction . 71
2. The PÅLSJÖ System . 71
3. Configuring the System . 74
4. PAL - Pålsjö Algorithm Language 75
5. Calculate and Update . 79
6. On-Line Configurations . 81
7. Summary . 81
8. References . 81

2. A Flexible Interactive Environment for Embedded Con-
trollers . 83
1. Introduction . 85
2. PAL - PÅLSJÖ Algorithm Language 87
3. The PÅLSJÖ framework . 90
4. Signal Management . 96
5. On-line Configurations . 98
6. Conclusion . 99
7. Acknowledgment . 100
8. References . 100

3. A Contract-Based Language for Embedded Control Sys-
tems . 103
1. Introduction . 105

5

Contents

2. Related Work . 105
3. Friendly Concepts . 107
4. The FRIEND Language . 109
5. Summary . 117
6. References . 117

4. A Feedback Scheduler for Real-time Controller Tasks . . 121
1. Introduction . 123
2. Integrated Control and Scheduling 125
3. Problem Statement . 128
4. Cost Functions . 128
5. A Feedback Scheduler . 131
6. Conclusion . 136
7. References . 137
Appendix A – Proof and Continuation of Theorem 1 140

5. A Matlab Toolbox for Real-Time and Control Systems Co-
Design . 145
1. Introduction . 147
2. The Basic Idea . 148
3. The Simulation Model . 150
4. Using the Simulator . 153
5. A Co-Design Example . 157
6. Simulation Features . 159
7. Conclusions . 162
8. Acknowledgments . 163
9. References . 163

6. Design and Implementation of a Hybrid Control Strategy 165
1. Introduction . 167
2. The Controller Structure . 168
3. Stabilizing Switching-Schemes 170
4. The Processes . 171
5. Controller Design . 175
6. Simulations . 178
7. Implementation . 182
8. Experiments . 184
9. Summary . 186
10. References . 186

A. PAL – Pålsjö Algorithm Language 189
1. Introduction . 189
2. Blocks and Modules . 189
3. Block Variables . 190
4. Interface Modifiers . 190
5. Scalar Data Types . 191

6

Contents

6. Aggregate Data Types . 192
7. Expressions and Statements 193
8. Procedures, Functions and Events 194
9. References . 201

B. PCL – Pålsjö Configuration Language 203
1. Introduction . 203
2. Keywords . 203
3. Operators . 208

7

Contents

8

Acknowledgments

Starting on my first day of undergraduate studies in Lund I heard peo-
ple talking about Professor Åström. Nobody seemed to know what he did.
They had just heard about him. A couple of years later when I did my
master’s thesis at the department I got to know the object of all the ru-
mors. Karl Johan Åström has so much energy and such a drive, that it is
hard not to the get carried away. And I was. Now the thesis is written,
and I owe my gratitude to many people who have helped me along the
way.

My main thanks go to my supervisors Karl Johan Åström and Karl-
Erik Årzén, without whom this thesis would never have been completed.
Karl-Erik has done a great job in reading and improving this thesis, and
for this I am very grateful! Karl Johan’s overwhelming enthusiasm has
kept me going when things felt tough. Working with Karl Johan and Karl-
Erik has been a great pleasure and lots of fun.

Many thanks to Anders Blomdell, the best programmer I have ever
met, for always being anxious to deconstruct my vague ideas.

Thanks to my roommate and dear friend Erik Möllerstedt for putting
up with my mood swings, and for solving those equations for me.

Lui Sha changed my view on embedded control and much of the work
in this thesis is directly or indirectly inspired by his ideas. Thanks for
being so generous!

I truly enjoyed working with Jörgen Malmborg on the hybrid controller
project. I have spent many good times together with him and Johan Nils-
son.

I would like to thank all the people who work, or have worked, at
the department during these five years. Per Hagander made sure that
I got a Riccati equation into the thesis. Bo Bernhardsson has read and
commented on various manuscripts. He is always willing to switch focus
and help out. Anton Cervin did a great job on the toolbox. He also read
different versions of the papers, turning proof reading into an art form.
LEIFA has provided excellent computer facilities. Anders Robertsson was
very helpful in getting the robotics experiments to work. John Hauser
vigorously played the devil’s advocate and pointed out some blank spots
in the thesis. Klas Nilsson came with some useful last minute comments.
Paolo Tona did great work putting PALSIMART together. Thank you all!

9

Acknowledgments

This work has been supported by the Swedish National Board for In-
dustrial and Technical Development (NUTEK). I would also like to thank
the Swedish real-time research network ARTES for their support of my
work.

Finally, thanks to all my friends and family for supporting and encour-
aging me, and for giving me so many good reasons not to work! Most of
all, thanks to Lotta for being the apple of my eye.

Johan

10

Introduction

1. Motivation

The number of embedded systems is increasing rapidly. Processors ship-
ped for embedded systems are already outnumbering processors for desk-
top systems. According to [Hennessy, 1999], the ratio between the number
of 32 and 64 bit processors aimed for embedded systems and desktop sys-
tems is expected to increase to three to one in the next five years. If 8 and
16 bits processors are also considered, the difference becomes even more
profound. The large number of embedded systems puts high demands on
the software. These systems are expected to function more or less au-
tonomously and must be robust and adaptive to changes. The advantage
of using a system may easily be overshadowed by the cost of a failure. If,
for example, the cruise controller of a car fails ever so rarely, the potential
benefits from using it become very small.

Most embedded systems today are designed in an ad-hoc fashion. They
are tuned for well-defined software and hardware environments, and val-
idated through extensive testing. If the conditions change, the behavior of
the system may be unpredictable. For example, the failure of the Ariane-5
rocket was due to the use of a code module from Ariane-4, which caused
a fault when executed on a more modern processor [Le Lann, 1996]. The
more we start to depend on embedded control systems for critical tasks,
the higher are the demands on reliability and safety. Maneuvering sys-
tems in airplanes are more and more relying on computers, and it is
unlikely that the pilot can save the situation by pressing Ctrl-Alt-Delete
when an unrecoverable application error occurs. By making embedded
systems more adaptive to changes in the environment, they would be less
likely to fail. Having a more flexible set-up would also allow the support
for on-line software upgrades. Being able to change embedded software
without shutting down the plant is highly desirable, as it would save
both time and money. An upgrade must, however, be done in a safe and
well-defined way. The implementation of advanced control systems require
good interactive environments, which are nontrivial to design because of
the real-time aspects.

11

Introduction

Many applications for embedded systems are control systems. In this
thesis, some software issues for embedded control systems are investi-
gated. An interactive development tool is presented together with two
languages for controller implementation.

There is rarely any interaction between the control loops and the un-
derlying real-time kernel or operating system. From a control engineering
perspective, the system executes in open loop. In this thesis, the possibil-
ity of using feedback in the scheduling of real-time tasks is explored. This
is called feedback scheduling. An algorithm for selecting sampling rates
based on the quality of the control performance is presented.

By viewing the control task, the underlying real-time kernel, and the
controller processes as an interconnected system, it is possible to study
how the interaction between the real-time tasks influences the control
performance. A toolbox which supports simulation of such systems is pre-
sented in the thesis. This more holistic view on embedded control systems
enhances the possibilities for designing systems with predictable behavior.

2. Outline and Summary of Contributions

The thesis consists of this introduction and six papers. Below, the contents
and major contributions of each paper are summarized. References to
related publications are also given.

Paper 1 and Paper 2

The PÅLSJÖ environment for embedded control systems is presented in
two papers:

Eker, J.: “A Tool for Interactive Development of Embedded Control Sys-
tems.” In Proceedings of the 14th IFAC World Congress, 1999, Beijing,
China.

Eker, J., and A. Blomdell: “A Flexible Interactive Environment for Em-
bedded Controllers.” To appear in Control Engineering Practice.

Contributions
Design and implementation of a software environment for dynamically
configurable embedded systems and design of the controller description
language PAL.

Related publications

Tona P., J. Eker and M. M’Saad: “PALSIMART: A New Framework for
Computer Aided Rapid Prototyping of Advanced Control Systems.”

12

2. Outline and Summary of Contributions

In Proceedings of the European Control Conference, 1999, Karlsruhe,
Germany.

Robertsson, A., J. Eker, K. Nilsson and R. Johansson: “Application Spe-
cific Control for Industrial Robots." Poster presentation at the 3rd Por-
tuguese Conference on Automatic control—Controlo98, 1998, Lisboa,
Portugal.

Eker, J.: “A Framework for Dynamically Configurable Embedded Control-
lers.” Licentiate Thesis ISRN LUTFD2/TFRT–3218–SE. Department
of Automatic Control, Lund Institute of Technology, November 1997,
Lund.

Eker, J., and A. Blomdell: “Patterns in Embedded Control.” Technical Re-
port TFRT-7567. Department of Automatic Control, Lund Institute of
Technology, December 1997, Lund.

Eker, J., and A. Blomdell: “A Structured Interactive Approach to Em-
bedded Control.” In Proceedings of 4th International Symposium on
Intelligent Robotic Systems, July 1996, Lisboa, Portugal.

Eker, J., and K. J. Åström: “A C++ Class for Polynomial Operations.”,
Technical Report TFRT-7541. Department of Automatic Control, Lund
Institute of Technology, December 1995, Lund.

Paper 3

Based on the experiences from PÅLSJÖ and PAL, a new language called
FRIEND is proposed. The FRIEND language supports the implementation
of flexible embedded control systems by providing mechanisms for adding
and removing code on-line.

Eker, J., and A. Blomdell: “A Contract-Based Language For Embedded
Control Systems.” In submission to the 25th IFAC/IFIP Workshop on
Real-Time Programming WRTP’2000, Palma de Mallorca, Spain.

Contributions
FRIEND supports the implementation of flexible control systems through
the use of contracts. In FRIEND, a control algorithm may be associated
with a contract, which defines the expected behavior of the algorithm. The
contracts allow the run-time system to distinguish between blocks that are
working correctly or incorrectly. The notion of contracts in the language
supports the development of systems with a high level of adaptivity and
fault tolerance.

Paper 4

A feedback scheduler algorithm is presented. Given that all the control
tasks are associated with cost functions, it finds the optimal set of sam-

13

Introduction

pling frequencies.

Eker, J., P. Hagander and K.-E. Årzén: “A Feedback Scheduler for Real-
time Control Tasks.” In submission to Control Engineering Practice.

Contributions
A feedback loop between the control tasks and the real-time kernel is
designed based on LQG cost functions. How the cost depends on avail-
able computing resources is investigated and an algorithm for finding the
optimal resource allocation scheme is proposed.

Related publications
Årzén, K.-E., B. Bernhardsson, J. Eker, A. Cervin, K. Nilsson, P. Pers-

son, and L. Sha: “Integrated Control and Scheduling.” Technical Re-
port ISRN-7586. Department of Automatic Control, Lund Institute of
Technology, August 1999, Lund.

Paper 5

A toolbox that supports simulation of closed loop embedded control sys-
tems at task level is presented.

Eker, J., and A. Cervin. “A MATLAB Toolbox for Real-Time and Control
Systems Co-Design.” To appear in Proceedings of the 6th International
Conference on Real-Time Computing Systems and Applications, De-
cember 1999, Hong-Kong, China.

Contributions
A toolbox for simulation of embedded systems is designed and imple-
mented. The control algorithm, the dynamic process, and the underlying
real-time kernel is viewed as one system, and its behavior is investigated
through simultaneous simulation of both the process dynamics and the
real-time kernel. The toolbox also supports simulation of distributed con-
trol systems connected by a network.

Paper 6

This paper presents the design of a hybrid controller for a heating/ven-
tilation process.

Eker, J., and J. Malmborg: “Design and Implementation of a Hybrid Con-
trol Strategy.” IEEE Control Systems Magazine, vol. 19, number 4,
August 1999.

Contributions
A hybrid control strategy based on Lyapunov function arguments is first
designed. A simplified version of the control law is then proposed and

14

3. Implementation of Control Systems

implemented on a commercial embedded control system. The controller is
tested on a heating/ventilation process with good results.

Related publications
Malmborg, J., and J. Eker: “Hybrid Control of a Double Tank System.” In

Proceedings of the IEEE International Conference on Control Appli-
cations, October 1997, Hartford, Connecticut.

Other Related Publications

The nonlinear observer used in the robot and pendulum example later in
this introduction is presented in

Eker, J., and K.J. Åström: “A Nonlinear Observer for the Inverted Pendu-
lum.” In Proceedings of the IEEE Conference on Control Applications,
1996, Dearborn, Michigan.

The work on a feedback scheduler for a set of double-tank processes, pre-
sented in Section 8, will appear in

Cervin, A., J. Eker and L. Sha: “Improving Control Performance by Feed-
back Scheduling.” Manuscript in preparation.

Chapter Outline

The PÅLSJÖ environment and the PAL language are introduced in Sec-
tion 3. The continuation of this work, the proposed FRIEND language, is
discussed in the same section. The use of PÅLSJÖ/PAL is demonstrated
by an example in Section 4. A brief overview of the state-of-the-art in
integrated control and scheduling is given in Section 5. The presenta-
tion is based on [Årzén et al., 1999]. Section 6 discusses tools for sim-
ulation of embedded controllers. The PALSIMART environment and a
MATLAB/Simulink toolbox are presented. Section 7 discusses the imple-
mentation of the controller from Paper 6. Finally, in Section 8, a unifying
example is given where tools and ideas from the different papers are com-
bined.

3. Implementation of Control Systems

Many real-time control systems are components embedded in a larger en-
gineering system. They are often implemented on small microcontroller
systems. Examples of embedded systems are found in mechatronic sys-
tems such as industrial robots, in aerospace applications such as airplanes
and satellites, in vehicular systems such as cars, and in consumer elec-
tronic products. Embedded controllers are often complex systems, con-

15

Introduction

sisting of several concurrent tasks such as low-level feedback control, su-
pervision logic, data logging, and user communication. Special language
support is needed in order to implement embedded control systems in an
easy and straightforward way. Control laws are conveniently described
using polynomials or matrices, and access to these data types is an ad-
vantage. Furthermore, many algorithms are described as a combination of
periodic behavior and sequential logic. Any good language should support
both of these descriptions. Finally, it should be easy to reuse algorithms
from one application to another. One of the problems with reusing real-
time algorithms is that statements describing the algorithm are often
mixed with statements specifying the real-time behavior. Code reuse may
be better supported by separating the algorithm code and the real-time
specific information. Implementing embedded control systems is an error
prone and complicated task. The nondeterministic nature of the programs
makes them hard to test and verify. A program that works in one environ-
ment may fail in another. One reason for this is the dynamic allocation of
resources. For example, a change in the input stream may lead to changes
in the execution order of the processes, and a new run-time scenario is
created. Implementation of concurrent tasks and task communication re-
quires firm programming discipline. Incorrect implementation of real-time
tasks may cause errors that are very difficult to trace.

Embedded systems must be efficient, because the execution is con-
strained by deadlines that should not be missed. Many large and complex
systems need to be implemented using low-level techniques, in order to
get the desired performance. Many control applications are implemented
in assembly language or low-level languages such as Forth or C, due to the
requirements for fast execution and small program sizes. Other common
languages are Modula-2 or Ada, which have built-in support for concur-
rency. They provide a higher abstraction level, but will give larger and
slower programs. No matter which approach is used, the implementation
of real-time controllers becomes time-consuming and error prone. The pop-
ular language C++ has no built-in support for concurrency, and the weak
typing, the pointer arithmetics and the memory management are constant
sources to problems. The more appealing object-oriented language Java is
currently emerging as an alternative, not only for desktop applications,
but also for real-time systems. Usually, there is a trade-off between perfor-
mance and high abstraction levels; the more support the language gives
for structured programming, the larger and more inefficient the resulting
programs usually become.

Distributed control systems are common in the process and manu-
facturing industry, and are typically programmed using sequential func-
tion charts, function block languages, or relay or ladder diagram lan-
guages. Distributed control systems and programmable logic controllers

16

3. Implementation of Control Systems

share many of the characteristics of embedded systems. Many of these
systems have the bizarre property that the order of execution depends
on the order in which the systems are configured. This can lead to many
strange effects, particularly when changes are made.

Several real-time languages have been proposed. One is the functional
language Erlang [Armstrong et al., 1993], developed by the Swedish tele-
com industry. It has built-in support for concurrency and error recovery.
Erlang is aimed for use in soft real-time systems, and it also has mech-
anisms for on-line code replacement. The language HI-Pearl is an ex-
tension of the Pearl programming language, augmented with real-time
constructs [Stoyenko and Halang, 1993]. Pearl was designed in the late
1960’s as a process control language for industrial automation problems.
Real-Time Euclid offers, similarly to HI-Pearl, schedulability analysis of
the compiled code [Kligerman and Stoyenko, 1986]. It is a Pascal-style
language where all constructs are space- and time-bounded. Hence, re-
cursion and dynamic memory allocation are not allowed. The language
FLEX [Natarajan and Lin, 1988] is designed to support the implementa-
tion of dynamic and flexible real-time systems. By incorporating impreci-
sion in the language, FLEX makes it possible to adjust execution times of
tasks, so that deadlines may be met. The synchronous language approach
has emerged as a paradigm well suited for design and implementation of
safety-critical real-time systems [Halbwachs, 1993; Benveniste and Berry,
1991]. At the design level, the synchronous languages use a concurrent
task model, but after compilation the program is completely sequential.
The resulting programs are deterministic and possible to analyze. There
are currently a number of synchronous languages available, among which
Esterel [Boussinot and de Simone, 1991], Lustre [Halbwachs et al., 1991],
and Signal [Halbwachs, 1993] are the most well known.

There is an obvious need for languages dedicated towards special prob-
lem domains. General purpose languages may be used for implementing
real-time embedded control systems, but it is unnecessarily awkward and
time consuming. By using languages targeted for real-time systems, the
programmer will be better supported in the task of writing safe and pre-
dictable software.

Pålsjö

Many control systems have a similar internal structures. There are for
example functions for control logic, sequencing, user communication, task
management, and data logging. If the software modules for these basic
common activities are arranged in a framework, the user of such a frame-
work only needs to add the code that is specific for a certain application.
In the case of embedded control systems, the necessary code is typically
the control algorithm.

17

Introduction

The PÅLSJÖ environment is an attempt to provide such a framework.
The project was outlined in 1994 [Gustafsson, 1994], as a part of the
project "Autonomous Control". The goal was to create an environment
for experiments in automatic control. Initially, a C++ class library was
proposed, but the library soon became very large and cumbersome to use.
A set of C pre-processor macros were created in order to support use of the
framework. These worked reasonably well, but to further ease the use of
the framework, a new language with a compiler was created. The language
is called PAL, which stands for PÅLSJÖ Algorithmic Language [Blomdell,
1997], and was designed to support controller implementation. Control
algorithms can often be described as a combination of periodic tasks and
finite state machines. PAL supports those types of algorithms. The finite
state machine is supported in form of Grafcet [David and Alla, 1992].
Furthermore, the language supports data types such as polynomials and
matrices, which are extensively used in control theory.

The PÅLSJÖ system consists of two main parts: a compiler and a frame-
work. The compiler reads algorithms specified in PAL and generates C++

code which fits into the framework. The framework has classes for real-
time scheduling, network interface, and user interaction. The control al-
gorithm coding is made off-line, and the system configuration is made
on-line using PCL, PÅLSJÖ Configuration Language. PCL is a simple lan-
guage for managing blocks and assigning variables. The system may be
reconfigured on-line while the system is running. Introductions to PAL
and PCL are found in Appendix A and B.

Friend

The more interactive way of working with embedded systems, as pro-
posed in the PÅLSJÖ/PAL project, creates new problems. PÅLSJÖ admits
that blocks are changed on-line. Allowing blocks to be added or deleted dy-
namically will, for example, give rise to timing and scheduling problems.
In PÅLSJÖ, it is entirely up to the user to make sure that nothing goes
wrong. There are no language constructs in PAL to assist the programmer.

The design of the FRIEND language addresses the need for built-in lan-
guage support, when implementing fault-tolerant and adaptive embedded
control systems. Similarly to PÅLSJÖ/PAL, FRIEND is block-oriented, i.e., a
control system is defined by a number of blocks and their interconnections.

To support implementation of control systems that allow blocks to be
inserted and replaced on-line, the use of contracts is introduced. The con-
tract defines the behavior of a block and may be used by the run-time
system to determine:

• If a new block can replace an old block. Does it, for example, have
the desired interface towards other blocks?

18

3. Implementation of Control Systems

E

G

A

FC D

B

Figure 1. The hierarchical structure of a real-time control system designed in
FRIEND. Resources are distributed from the top down. The parent blocks control the
execution of its child blocks.

• If a new block executes correctly. The contract may contain ways to
verify the functionality of a block.

Blocks are organized in a hierarchical fashion as shown in Figure 1. There
are two block types in FRIEND: algorithm and negotiator blocks. An algo-
rithm is an input-output block that calculates new output signals based
on the values of the inputs signals, the internal states, and the parame-
ters. A negotiator is a block that allocates resources and distributes them
among its child blocks. The negotiator is a sort of resource broker. The
interface specifies how a block interacts with other blocks. The interface is
useful for on-line decisions about whether or not a new block can replace
an old block. Figure 2 shows an example of a FRIEND block diagram. At
at the top level it consists of three blocks. Block B has three child blocks
inside: block D, E, and F. These blocks may either execute concurrently
or exclusively, depending on the application. If yet another block should
be added to B, it is necessary that it fulfills some requirements in order
to work correctly with the rest of the blocks. This type of guarantees may
be expressed with contracts. The resources of block B are distributed be-
tween the blocks D, E, and F, by the supervision logic of block B. The
process of distributing resources among child blocks is in FRIEND called
negotiation. The reasons for dividing blocks into subcomponents are:

• Better reuse of control algorithms by letting the control algorithm
be described in an algorithm block and the application-specific in-
formation in a contract.

• Better support for on-line controller upgrades. By introducing inter-
faces it becomes easy to check whether or not the block reads and
writes signals as specified. Furthermore, the interface may contain
signal-data logs, needed to assign correct values to the controller
states before switching in.

19

Introduction

Interface
Block Signals

Block supervision logic

A B C

D

E

F

Figure 2. A controller in FRIEND may be organized in a hierarchical fashion. The
interfaces between blocks at different levels in the hierarchy are called contracts.

• Better support for building systems with a high level of adaptivity.
The negotiator decides which of its sub-blocks should execute when
and how. New blocks may be added on-line. As long as there is a
negotiator that is familiar with the contract of the new block, it is
possible for the system to accept it and reconfigure itself.

The FRIEND framework does not give any solutions to the design of con-
tracts or negotiation procedures. FRIEND merely provides the necessary
mechanism for creating flexible and adaptive control software.

Related Work

There are several widely used prototyping systems today, for example Au-
tocode [Integrated Systems, 1996a] which generates real-time code from
SystemBuild-models [Integrated Systems, 1996b], or Real-time Work-
shop [MathWorks, 1997] which generates real-time code from Simulink-
models [MathWorks, 1996]. The models are implemented graphically us-
ing block diagrams. In both SystemBuild and Simulink, the user has a

20

3. Implementation of Control Systems

palette of pre-defined blocks for defining controllers. To create user-defined
blocks, from which code may be generated, SystemBuild has a language
called BlockScript, which is a simple block description language with sup-
port for basic data types such as floats, integers and booleans. Autocode
generates C- or Ada-code from BlockScript blocks. A template file is used
for customizing the generated code for different target environments. The
template description is made in a template programming language and
makes it possible to generate code that is tailor-made for a special system.
User-defined blocks for Real-time Workshop must me written as C MEX S-
functions, which are standard C-functions with a specified interface. Both
Real-time Workshop and Autocode generate static systems, i.e., it is not
possible to make any changes to the system without recompilation. An-
other tool that generates real-time code from a simulation description is
Sim2DCC [Dahl, 1990]. Control algorithms are coded and simulated in the
Simnon simulation environment [Elmqvist et al., 1990], and translated to
Modula-2 code using Sim2DCC. Sequential algorithms are implemented
using the graphical GrafEdit interface.

Simulink is used both as the simulation environment and the real-time
controller in [Blomdell, 1999]. Simulink is executed on a slightly modified
Linux operating system. There are blocks for reading from analog inputs
and writing to analog outputs. There are also timer blocks handling the
sampling rate. This set-up offers a simple way to test algorithms in a near
real-time environment.

ControlShell [RealTimeInnovations, 1995] is an advanced tool for de-
signing complex real-time control systems. It consists of a C++ class library
in combination with graphical editors, which are used for configuring con-
trol applications. ControlShell is block-based, and the blocks are imple-
mented in C++. ControlShell gives the programmer great freedom, and it
allows an application to be reconfigured without recompilation.

A commercial system that has some basic ideas in common with the
PÅLSJÖ system is SattLine [Johannesson, 1994]. It is a system for pro-
gramming PLC systems. It consists of a graphical environment for im-
plementing and supervising control applications. It supports sequential
algorithms expressed using Grafcet notation, and algebraic algorithms
expressed with implicit equations. The SattLine language is based on
LICS [Elmqvist, 1985], which has also inspired the work with PÅLSJÖ.

The IEC 1131–3 [Lewis, 1995] programming standard consists of five
different ways of representing control algorithms. The five different lan-
guages are Structured Text, Function Block Diagram, Ladder Diagram,
Instruction List and Sequential Function Charts. Structured Text is a
Pascal-type language with a structure similar to PAL. Function Block Di-
agram is a graphical language for specifying data flows through function
blocks. Ladder Diagram is another graphical language that is used for

21

Introduction

expressing ladder logic. The fourth language is Instruction List which is
a low-level assembler language. Sequential Function Chart is a graphi-
cal language for implementing sequential algorithms, similar to Grafcet.
The textual representation of Sequential Function Chart was used as a
starting point when implementing support for Grafcet in PÅLSJÖ.

There are currently several initiatives trying to turn Java into a full-
fledged alternative for implementation of embedded systems. The J-Con-
sortium has a working document, “Core Real-Time Extensions for the Java
Platform” [J-Consortium, 1999], trying to establish a real-time standard.
The PERC virtual machine, which is a commercial offspring from the work
of the J-Consortium, supports deterministic real-time tasking and real-
time garbage collection [NewMonics, 1999]. SUN Microsystems together
with the Real Time Expert Group quite recently announced the “Real-
Time Specification for Java”. The specification extends the Java platform
to support deterministic real-time behavior.

The Simplex group at SEI/CMU has developed a framework, Simplex,
that supports safe on-line upgrades of real-time systems, in particular
safety-critical real-time control systems [Seto et al., 1998a; Sha, 1998].
The basic building block of Simplex is the replacement unit, and a typical
example of a replacement unit is a controller. Replacement units are or-
ganized into application units, that also contain communication and task
management functions. A special safety unit is responsible for basic re-
liable operation and operation monitoring. A common set-up is that the
system contains two units: a safety controller and a baseline controller.
The baseline controller provides the nominal control performance, and
it is assumed that it is executing when a new upgraded version of this
controller is to be installed. If the new controller, which is added on-line,
does not work correctly, Simplex switches in the safety controller. When
the controlled process is eventually back in a safe state, Simplex switches
the baseline controller back in.

Summary

PÅLSJÖ is a software environment for development of embedded real-time
systems. Effort has been put on designing a system that allows the en-
gineer to work interactively. PÅLSJÖ is highly modular, and components
may be added while the system is running on-line. Control algorithms are
coded in a dedicated controller description language called PAL. In PAL,
control algorithms are described in terms of blocks that read input signals
and calculate output signals. Compilation of PAL blocks results in C++ code
which is subsequently compiled and linked to the PÅLSJÖ run-time sys-
tem. The system is configured, i.e., blocks are instantiated and connected
on-line using PCL. Data is exported over the network to stand-alone tools
used for plotting and logging. The run-time system supports on-line edit-

22

4. The Robot Pendulum

ing of a running configuration; hence, blocks in a running controller can
be replaced without stopping the system. Scheduling and synchronization
problems encountered in many real-time systems are avoided by exploit-
ing features of PAL control algorithms that make it easier to find a logical
order of execution. PÅLSJÖ is primarily designed to run in a host-target
configuration and currently runs on Sun/Solaris, VME-m68k, VME-ppc,
and Windows NT. A complete description of the PÅLSJÖ environment, in-
cluding the run-time system, the PAL compiler, and the PAL language,
can be found in [Eker, 1997]. Paper 1 gives an introduction to PÅLSJÖ and
PAL. Paper 2 focuses more on the concepts of the PÅLSJÖ framework, and
details of the run-time system are discussed.

The proposed language FRIEND is designed to give high-level support
for implementation of flexible control systems. The main concept is to use
contracts to specify when and how control algorithms can be used. FRIEND

is presented in Paper 3 with a discussion on flexible systems and some
code examples.

4. The Robot Pendulum

Controlling the inverted pendulum is a classical problem in control labo-
ratories. The pendulum process provides a suitable test-bench for control
algorithms as well as for real-time control applications. Since the process
is both nonlinear and unstable it gives rise to a number of interesting
problems. Its unstable nature makes it a good process for testing real-time
controllers, since if the timing fails, the pendulum is likely to fall down.
The goal with the control is to bring the pendulum from the downward
position to the upward position and keep it stabilized. The ABB Irb-2000
industrial robot used in the experiments is shown in Figure 3. The robot
holds the shaft of the pendulum using a gripper that is attached to the
robot wrist, see Figure 4. Joint 1 of the robot is then used for swinging
up and balancing the pendulum.

The Model
The design of the controller is based on the following linear model of the
pendulum on the robot

ẋ � Ax+ Bτ where x �

x1

x2

x3

x4

 �

θ
θ̇
φ
φ̇

23

Introduction

Figure 3. The ABB Irb2000 robot and the pendulum used in the experiment.

and τ is the torque applied to joint 1 of the robot. The states θ and θ̇ are
the angle and the angular velocity of the pendulum, see Figure 5. The
position and velocity of joint 1 are denoted φ and φ̇ , respectively.

The model used in the control design is very much simplified. First it
is assumed that the system may be viewed as two decoupled sub-systems,
one describing the pendulum and one describing the robot-arm position.
The Corioli forces due to the rotation and the interaction between the
pendulum and the arm are neglected.

Let us first look at the pendulum, and model it as if attached to a
cart running on a straight track, see Figure 5. The input signal, u, to the
pendulum is the acceleration of the pivot, i.e., the acceleration of the cart.

24

4. The Robot Pendulum

Joint 1

Joint 2

Joint 3 Joint 4

Figure 4. The pendulum is held by the gripper on the robot.

The equation of motion of the inverted pendulum is given by

d2θ
dt2 � ω 2

0 sinθ + u/kω 2
0 cosθ

where ω 0 �
√k/l is the natural frequency for small oscillations around

the stable equilibrium, and k is the gravity. The input signal u is the
acceleration of the pivot. When the pendulum is attached to the robot, it
can be approximated by u � lφ̈ , where l is the length of the robot arm.
The equation of motion can be written as

dx1

dt
� ω 0x2

dx2

dt
� ω 0 sin x1 + u/kω 0 cos x1

where x1 � θ and x2 � θ̇/ω 0. The input signal to the pendulum system
is the acceleration of joint 1. The model for the joint is a second order
system, where the input signal τ is the applied torque, and the output
signal φ is the angle of the joint

φ � k
s(s+ D)τ

25

Introduction

θ

x

Figure 5. The pendulum on a cart.

The damping is denoted D. The input to the pendulum model is the ac-
celeration of the pivot, i.e., u � φ̈ , which is given by

φ̈ � −Dφ̇ + kτ

For the purpose of this experiment, the damping was neglected and hence

φ̈ � kτ ; u � lkτ

The linearized model for the robot and the pendulum in the upright posi-
tion may now be written as

ẋ �

0 ω 0 0 0

ω 0 0 0 0

0 0 0 1

0 0 0 0

 x +

0

klω 0/k
0

k

τ

The Controller
The controller is designed to swing up the pendulum and stabilize it in
the upright position. This is done using a hybrid controller consisting of
three sub-controllers: one for swinging up the pendulum, one for catching
the pendulum, and one for stabilizing the pendulum. The switching logic
for this hybrid controller is shown as a Grafcet in Figure 6. To swing
up the pendulum an energy approach is used. The idea is to control the
energy of the pendulum and move it to its upward position. The energy
is calculated as

E � mk(cos θ − 1)l + ml2θ̇ 2

2

26

4. The Robot Pendulum

Step3

Off

Close

Step4

Step1

Start

Step2

Upright

Stop Falling

Stabilize

Catch

Swing-Up

Figure 6. The Grafcet which describes the switching rules for the hybrid pendu-
lum controller.

The pendulum standing in the upright position corresponds to zero energy.
The algorithm used for controlling the energy was proposed in [Wiklund
et al., 1993; Åström and Furuta, 1996], and is given as

u � satnk(kE)sign(θ̇ cosθ)
where k and n are design parameters. The function satnk saturates when
its argument is larger than n times the gravity k. When the pendulum
is close to the upright equilibrium, the catching controller is switched in.
The task for this controller is to, as smoothly as possible, hand over the
control from the swing-up mode to the stabilizing mode. The controller
used in the experiments is the following state-feedback controller

u � −l1x1 − l2x2

This controller stabilizes the pendulum, but takes no concern to the po-
sition of the pivot. To balance the pendulum at the upright equilibrium,
another state feedback controller is used. The control law is the following

u � −l1x1 − l2x2 − l3(x3 − xr) − l4x4

where xr is the desired position of joint 1. The controller parameters are
calculated using pole-placement design.

27

Introduction

Designing an Observer
In order to implement the control laws discussed above, both the angle
and the angular velocity values are needed. Since no angular velocity
measurement is available, this must be estimated. A nonlinear observer
is proposed. The need for a nonlinear observer becomes evident when
considering the swing-up strategy, which requires both the angle and the
angular velocity at all positions. A linear observer will only give accurate
estimates values around some linearization point. The proposed nonlinear
observer has the same structure as a linear observer but with the linear
model replaced by a nonlinear model

dx̂1

dt
� ω 0 x̂2 + k1(x1 − x̂1)

dx̂2

dt
� ω 0 sin x̂1 + u/kω 0 cos x̂1 + k2(x1 − x̂1)

Note that the observer has a very simple structure. It combines a model
for the nonlinear dynamics with a simple feedback from the measured
angle. Conditions for stability and design based on linearized analysis are
presented in Paper 5. Before applying the observer to the robot system it is

0 2 4 6 8 10

−4

0

4
Control signal

0 2 4 6 8 10

0

4
Angle estimate

0 2 4 6 8 10

−10

0

Estimated angular velocity

Figure 7. A simulation of swinging up and stabilizing the pendulum using the
non-linear observer. The simulation starts with the pendulum in the downward
position. The observer is initiated to start in this position.

28

4. The Robot Pendulum

tested in simulation, see Figure 7. The next step is to test the observer on
a stand-alone pendulum. This experiment is shown in Figure 8. Both the
simulation and the experiments show a swing-up followed by stabilization.
The pendulum is started in the downward position. In both the simulation
and the real case, the observer was initiated to start in the downward
position. In the simulations, measurement noise is approximated with a
high frequency sinusoid. Notice the good agreement between experiment
and simulation and the good performance of the nonlinear observer.

The Pendulum on the Robot
The controller used on the robot is the same as the one previously de-
scribed. In that case, the input signal to the process was the acceleration
of the pivot. In the robot set-up, the input signal to the process is the
acceleration of the pivot point, i.e., the point where the pendulum is at-
tached to the robot. While the pivot of the pendulum on the cart moves
along a straight line, the pivot of the pendulum on the robot moves along
a circular path. This fact is not considered in the implementation, but
as long as the speed of the robot arm is low, the influence from Corioli
forces may be neglected. The output from the control block is the desired
acceleration for the pivot.

0 1 2 3 4 5 6 7 8 9 10
−5

0

5
Control Signal

0 1 2 3 4 5 6 7 8 9 10

0

2

4

Angle estimate

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

Estimated angular velocity

Figure 8. Plots from the swing-up and stabilization of a real pendulum process.
The pendulum starts in the downward position.

29

Introduction

The results from the experiments with the robot are presented in Fig-
ures 9 and 10. Initially the pendulum is in the downward position. The
robot uses joint 1 to swing up and stabilize the pendulum.

0 5 10
−5

0

5
Control Signal

Seconds

T
or

qu
e

[N
m

]

0 5 10

−6

−4

−2

0

Pendulum Angle

Seconds
D

eg
re

es

0 5 10
−0.5

0

0.5

Joint 1 position

Seconds

m
et

er
s

0 5 10
−10

0

10

Angular velocity

Seconds

D
eg

re
es

/s
ec

on
ds

Figure 9. The control signal and the measurements logged during the swing-up
shown in Figure 10.

The PAL Code
Example 1 shows the PAL code for the pendulum controller. The pendulum
controller has one sequential part and one periodic part. The sequential
part is described as a Grafcet with four steps, see Figure 6. In the initial
step, the output signal is set to zero. In step 2, the swing-up algorithm
is switched in, and when the pendulum comes close to the upright posi-
tion step 3 becomes active. Finally, when the pendulum has reached the
upright position, step 4 becomes active. The periodic part, implemented
using the calculate and update sections, contains the position and angle
observers.

30

4. The Robot Pendulum

Figure 10. The robot swings up the pendulum by adding energy. The signals from
this experiment are presented in Figure 9.

31

Introduction

EXAMPLE 1
module Pendel;

function cos(r : input real) : real; external "cos";

function sin(r : input real) : real; external "sin";

block PendulumController

x, th : input real;
u :� 0.0 : output real;
A22 : parameter matrix [1..2, 1..2] of real;
B2, K1, K2 : parameter matrix [1..2, 1..1] of real;
xhat : matrix [1..2, 1..1] of real;
L : parameter matrix [1..4, 1..1] of real;
x1hat :� 0.0, x2hat :� 0.0, dx1hat :� 0.0, dx2hat :� 0.0 : real;
thetaHat :� 0.0, dthetaHat :� 0.0 : real;
xr :� 0.0, E :� −2.0 : real;
on :� false : boolean;
k :� 280.0 : parameter real;
w0 :� 6.3 : parameter real;
n :� 0.35 : parameter real;
minTh :� 0.1, maxTh :� 0.45 : parameter real;
h : sampling interval;

calculate
begin

dx1hat :� w0 ∗ x2hat + K2[1, 1] ∗ (th − thetaHat);
dx2hat :� w0 ∗ sin(x1hat) − w0 ∗ u/9.81 ∗ cos(x1hat)

+K2[2, 1] ∗ (th− thetaHat);
x1hat :� x1hat + dx1hat ∗ h;
x2hat :� x2hat + dx2hat ∗ h;
thetaHat :� x1hat;
dthetaHat :� w0 ∗ x2hat;

end calculate;

update
begin

xhat :� A22 ∗ xhat+ B2 ∗ u+ K1 ∗ (x− xhat[1, 1]);
end update;

action off;
begin

u :� 0.0;
end off;

action swing;
begin

E :� 0.5 ∗ dthetaHat ∗ dthetaHat/(w0 ∗ w0) + cos(th) − 1.0;
u :� −sikn(dthetaHat ∗ cos(th)) ∗ sat(n ∗ 9.81, k ∗ E);

end swing;

32

4. The Robot Pendulum

action catch;
begin

xr :� x;
u :� −L[1, 1] ∗ th− L[2, 1] ∗ dthetaHat;

end catch;

action stabilize;
begin

u :� −L[1, 1] ∗ th− L[2, 1] ∗ dthetaHat
−L[3, 1] ∗ (xhat[1, 1] − xr) − L[4, 1] ∗ xhat[2, 1];

end stabilize;

initial step step1;
activate off;

end step1;

step step2;
activate swing;

end step2;

step step3;
activate catch;

end step3;

step step4;
activate stabilize;

end step4;

transition from step1 to step2 when on;

transition from step2 to step3 when
th > minTh and th < maxTh or th < −minTh and th > −maxTh;

transition from step3 to step4 when
th > −minTh and th < minTh;

transition from step4 to step1 when not on;

function sat(max : input real; value : input real) : real;
begin

if value > max then
result :� max;

elsif value < −max then
result :� −max;

else
result :� value;

end if;
end sat;

function sign(r : input real) : real;
begin

if r < 0.0 then
result :� −1.0;

33

Introduction

else
result :� 1.0;

end if;
end sat;

procedure start();
begin

on :� true;
end start;

procedure stop();
begin

on :� false;
u :� 0.0;

end stop;

end PendulumController;

end Pendel.

The PCL script
The controller is configured by the PCL-script in Example 2. A number of
PAL modules are made available through the use statement. Blocks are
allocated using new statements. The top level block is of type Periodic,
which is a system block, designated for executing other blocks. All blocks
belonging to a Periodic block are periodically executed in sequence ac-
cording to the data flow. The input and output signals of the blocks are
connected using the -> operator. Some signals are made available for
export over the network using the show command. Figure 11 shows the
resulting block diagram. The PCL language is presented in Appendix B.

EXAMPLE 2
use StandardBlocks
use Robot
use Gripper
use Pendel
{
s = new Periodic
with s

gr = new EndEffector
gref = new GripperRef
gref.forceR -> gr.forceR
gref.inhale -> gr.inhale
gref.exhale -> gr.exhale
gref.openclosed -> gr.openclosed
j1 = new IRB2000JointWrite

34

4. The Robot Pendulum

IRB2000
JointWrite

Ref

IRB2000
JointWrite

Ramp

Pendulum
Controller

IRB2000

End

JointRead

Effector

ADIn

Gripper
Ref

Periodic

Figure 11. The PAL blocks used for controlling the robot. The PCL-script for
creating this system is found in Example 2.

j1.joint = 1
j4 = new IRB2000JointWrite
j4.joint = 4
p2 = new PendulumController
thetaIn = new ADIn
j1r = new IRB2000JointRead
j1r.joint = 1
thetaIn.out -> p2.thdirect
j1r.y -> p2.xdirect
ref4 = new RampRef
ref4.out -> p2.inref4
p2.u1 -> j1.tauExtern
p2.u4 -> j4.qrExtern

endwith
s.gref.OpenClosed = false
s.gref.force=0.3
s.tsamp = 5

}

s!start
show s.p2.u
show s.p2.thetaHat
show s.p2.dthetaHat
show s.p2.x
s!connect

35

Introduction

Summary

The implementation and design of a robot controller for balancing and
swinging up the inverted pendulum was briefly presented. The process
model and the controller design were discussed. To get good estimates of
the angular velocities a nonlinear observer was used. The implementation
was presented with PAL and PCL code.

This application with PÅLSJÖ balancing the pendulum was also used
in [Henriksson, 1998] to demonstrate scheduling principles for garbage
collection in hard-real time systems. There, the underlying memory allo-
cation and deallocation routines were replaced with functions supporting
garbage collection.

5. Feedback Scheduling

Real-time systems is an inter-disciplinary research area that includes as-
pects of control engineering and computer science. It is an area of vital
importance to all control engineers. Today almost all controllers are im-
plemented on digital form with a computer. A successful implementation
of a computer-controlled system requires a good understanding of both
control theory and real-time systems.

Traditionally, when implementing computer control systems, the con-
trol community has assumed that the computer platform used can provide
the deterministic, equidistant sampling that is the basis of sampled com-
puter control theory. However, many of the computing platforms that are
commonly used to implement control systems are not able to give any
deterministic guarantees.

On the other hand, the real-time scheduling community generally as-
sumes that all control algorithms should be modeled as tasks that:

• are periodic with a set of fixed periods,

• have hard deadlines, and

• have known worst-case execution times (WCETs).
This simple model has permitted the control community to focus on its own
problem domain without worrying about how scheduling is being done,
and it has relieved the scheduling community from the need to understand
what impact scheduling delays have on the stability and performance
of the plant under control. From a historical perspective, the separate
development of control and scheduling theories for computer-based control
systems has produced many useful results and served its purpose.

36

5. Feedback Scheduling

However, upon closer inspection it is quite clear that neither of the
three above assumptions need necessarily to be true. Many control algo-
rithms are not periodic, or they may switch between a number of different
fixed sampling periods. Control algorithm deadlines are not always hard.
On the contrary, many controllers are quite robust towards variations in
sampling period and response time. It is also in many cases possible to
compensate on-line for the variations by, e.g., recomputing the controller
parameters. It is also possible to consider control systems that are able
to do a trade-off between the available computation time, i.e., how long
time the controller may spend calculating the new control signal, and the
control loop performance.

By integrating control design and scheduling it is possible to go beyond
the simple “fixed sample period and known WCET” model and to develop
theory that also addresses the dynamic interaction between control and
scheduling. The optimality of computer control is subject to the limitations
of available computing resources, especially in advanced applications with
fast plant dynamics and sophisticated state estimation and control algo-
rithms. On the other hand, the true objective of real-time scheduling for
control is to allocate limited computing resources in such a way that the
state estimation and control algorithms can ensure stability and optimize
the performance of the system. The computing resources could include
CPU time and communication bandwidth.

The approach taken in Paper 4 is based on using dynamic feedback be-
tween the scheduler and the control loops. The idea of feedback has been
used informally for a long time in scheduling algorithms for applications
where the dynamics of the computation workload cannot be characterized
accurately. For instance, the VMS operating system uses multi-level feed-
back queues to improve system throughput, and Internet protocols use
feedback to help solve the congestion problems. Recently, under the title
of quality of service (QoS), the idea of feedback has also been exploited
in multi-media scheduling R&D.

Given this, one might expect that the use of feedback in the schedul-
ing of feedback control systems would have been naturally an active area.
On the contrary, the scheduling research of feedback control systems are
dominated by open loop analytic scheduling methods such as rate or dead-
line based algorithms. This is not an accident, but rather the consequence
of some serious theoretical challenges that require the close cooperation
between control and scheduling communities.

The Vision

The work in this thesis is based upon a vision of a dynamic, flexible,
and interactive integrated control and scheduling environment with the
following features:

37

Introduction

• The control design methodology should take the availability of com-
puting resources into account.

• The requirement of known worst-case execution times should be re-
laxed. Instead the system should be able to guarantee stability and
a certain level of control performance based only on knowledge of
nominal execution times.

• The system should be able to adapt task parameters in overload
situations in such a way that stability and an acceptable level of
control performance are maintained.

• The system should be able to dynamically trade-off control perfor-
mance and computing resource utilization.

• The system should support on-line information exchange between
the on-line scheduler and the control tasks. The information could
for example consist of mode change requests from the control tasks,
execution time allotments from the on-line scheduler, etc.

• The system should be able to measure the actual execution time
spent by the different tasks, and take appropriate actions in case of
over-runs.

• The system should admit on-line experiments. Controller code should
be allowed to be added, tested and replaced on a running system un-
der safe condition as suggested in [Seto et al., 1998a].

In order to make the above visions possible, a lot of information needs
to be provided. The control tasks must be able to express the quality of
the control performance in relation to needed resources, if, and how, the
sampling rate and deadline may be adjusted, and what the consequences
will be. Paper 4 investigates how the LQ-cost depends of the sampling
rate and how this may be used in a feedback scheduling loop.

Designing a Feedback Scheduler
Viewing a computing system as a dynamical system or as a controller is
an approach that has proved to be fruitful in many cases. For example, the
step-length adjustment mechanism in numerical integration algorithms
can be viewed as a PI-controller [Gustafsson, 1991], and the traveling
salesman optimization problem can be solved by a nonlinear dynamical
system formulated as a recurrent neural network. This approach can also
be adopted for real-time scheduling, i.e., it is possible to view the on-
line scheduler as a controller. Important issues that then must be decided
are what the right control signal, measurement signals, and setpoints are,
what the correct control structure should be, and which process model that

38

5. Feedback Scheduling

may be used. Using a controller approach of the above kind it is important
to be able to measure the appropriate signals on-line, for example the
deadline miss ratio, controller performance, the CPU utilization, or the
task execution times.

Control and Scheduling Co-Design

A prerequisite for an on-line integration of control and scheduling the-
ory is to be able to make an integrated design of control algorithms and
scheduling algorithms off-line. Such a design process should allow an in-
corporation of the availability of computing resources into the control de-
sign by utilizing the results of scheduling theory. This is an area where, so
far, relatively little work has been performed. One of the first references
that addressed this problem was [Seto et al., 1996]. An algorithm was pro-
posed, which translates a control performance index into task sampling
periods considering schedulability among tasks running with pre-emptive
priority scheduling. The sampling periods were considered as variables
and the algorithm determined their values so that the overall perfor-
mance was optimized subject to the schedulability constraints. Both rate
monotonic scheduling (RM) and earliest deadline first scheduling (EDF)
were considered. The performance index was approximated by an expo-
nential function only and the approach did not take input-output latency
into account. The approach was further extended in [Seto et al., 1998b].

An approach to optimization of sampling period and input-output la-
tency subject to performance specifications and schedulability constraints
is presented in [Ryu et al., 1997; Ryu and Hong, 1998]. The control per-
formance is specified in terms of steady state error, overshoot, rise time,
and settling time. These performance parameters are expressed as func-
tions of the sampling period and the input-output latency. A heuristic
iterative algorithm is proposed for the optimization of these parameters
subject to schedulability constraints. The algorithm is based on using the
period calibration method [Gerber et al., 1995] for determining the task
attributes. The tasks are scheduled using EDF and a cyclic executive is
used for run-time dispatching.

On-line Task Attribute Adjustments

A key issue in any system that allows dynamic feedback between the
control algorithms and the on-line scheduler is the ability to dynamically
adjust task parameters. Reasons for the adjustments could for example
be to improve the performance in overload situations and to dynamically
optimize control performance. Examples of task parameters that could be
modified are periods and deadlines. One could also allow the maximum
allowed worst-case execution time for a task to be adjusted. In order for
this to be realistic, the controllers must support dynamically changing

39

Introduction

execution times. Changes in the task period and in the execution time
both have the effect of changing the utilization that the task requires.

Quality-of-service resource allocation
Much of the work on dynamic task adaptation during recent years is mo-
tivated by the requirements of multimedia applications. Activities such
as voice sampling, image acquisition, sound generation, data compres-
sion, and video playing are performed periodically, but with less rigid
timing requirements than those that can sometimes be found in closed-
loop control systems. Missing a deadline may decrease the QoS-level, but
without causing any critical system faults. Depending on the requested
QoS, tasks may adjust their attributes to accommodate the requirements
of other concurrent activities.

On-line admission control has been used to guarantee predictability of
services where request patterns are not known in advance. This concept
has also been applied to resource reservation for dynamically arriving
real-time tasks, e.g. in the Spring kernel [Stankovic and Ramamritham,
1991]. A main concern of this approach is predictability. Run-time guar-
antees given to admitted tasks are never revoked, even if they result
in rejecting subsequently arriving, more important requests competing
for the same resources. In soft real-time systems, services are more con-
cerned with maximizing overall utility, by serving the most important re-
quests first, than guaranteeing reserved resources for individual requests.
Priority-driven services can be categorized this way, and are supported in
real-time kernels such as Mach [Tokuda et al., 1990]. Under overload con-
ditions, lower-priority tasks are denied service in favor of more important
tasks. In the Rialto operating system [Jones and Leach, 1995], a resource
planner attempts to dynamically maximize user-perceived utility of the
entire system.

In [Abdelzaher et al., 1997] a QoS renegotiation scheme is proposed
as a way to allow graceful degradation in cases of overload, failures or
violation of pre-run-time violations. The mechanism permits clients to ex-
press, in their service requests, a range of QoS levels they can accept from
the provider and the perceived utility of receiving service at each of these
levels. Using this, the application designer, e.g., the control engineer, is
able to express acceptable tradeoffs in QoS and their relative cost/benefit.
The approach is demonstrated on an automated flight-control system.

Sampling Rate Adjustments
In [Buttazzo et al., 1998] an elastic task model for periodic tasks is pre-
sented. Each task is characterized by five parameters: computation time
Ci, a nominal period Ti0 , a minimum period Timin , a maximum period Timax ,
and an elasticity coefficient ei ≥ 0. A task may change its period within

40

5. Feedback Scheduling

its bounds. When this happens the periods of the other tasks are adjusted
so that the overall system is kept schedulable. An analogy with a linear
spring is used, where the utilization of a task is viewed as the length of a
spring that has a given rigidity coefficient (1/ei) and length constraints.
The elasticity coefficient is used to denote how easy or difficult it is to
adjust the period of a given task (compress or decompress the spring).
A task with ei � 0 can arbitrarily vary its period within its range. The
approach can be used under fixed or dynamic priority scheduling.

Adjustment of task periods has also been suggested by others. For
example, [Kuo and Mok, 1991] propose a load-scaling technique to grace-
fully degrade the workload of a system by adjusting the task periods.
Tasks are assumed to be equally important and the objective is to min-
imize the number of fundamental frequencies to improve schedulability
under static priority assignments. In [Nakajima and Tezuka, 1994] a sys-
tem is presented that increases the period of a task whenever the deadline
of the task is missed. In [Lee et al., 1996] a number of policies to dynami-
cally adjust task rates in overload conditions are presented. In [Nakajima,
1998] it is shown how a multimedia activity can adapt its requirements
during transient overloads by scaling down its rate or its computational
demands.

The MART scheduling algorithm [Kosugi et al., 1994; Kosugi et al.,
1996; Kosugi and Moriai, 1997] also supports task-period adjustments.
The system handles changes in both the number of periodic tasks and in
the task timing attributes. Before accepting a change request the system
analyzes the schedulability of all tasks. If needed it adjusts the period
and/or execution time of the tasks to keep them schedulable with the
rate monotonic algorithm. For the task execution time it is assumed that
a minimum value exists in order for the task to guarantee a minimum
level of service. For the task-period, neither minimum nor maximum are
assumed to exist. The MART system is implemented on top of Real-Time
Mach.

In [Shin and Meissner, 1999] the approach in [Seto et al., 1996] is ex-
tended, making on-line use of the proposed off-line method for processor
utilization allocation. The approach allows task-period changes in multi-
processor systems. A performance index for the control tasks is used to
determine the value to the system of running a given task at a given pe-
riod. The index is weighted for the importance of the task to the overall
system. The paper discusses the issue of task reallocation from one pro-
cessor to another, and the need to consider the transient effects of task
reallocations. Two algorithms are given for task reallocation and period
adjustments.

In [Stankovic et al., 1999] a PID controller is proposed as an on-line
scheduler under the notion of Feedback Control-EDF (FC-EDF). The mea-

41

Introduction

surement signal (the controlled variable) is the deadline miss ratio for the
tasks and the control signal is the requested CPU utilization. Changes in
the requested CPU utilization are effectuated by two mechanisms. An ad-
mission controller is used to control the flow of workload into the system
and a service level controller is used to adjust the workload inside the
system. The latter is done by changing between different versions of the
tasks, which have different execution times. A simple liquid tank model
is used as an approximation of the scheduling system.

Imprecise calculations
The possibility to adjust the allowed maximum execution time for a task
necessitates an approach for handling tasks with imprecise execution
times, particularly the case when the tasks can be described as “any-
time algorithms”, i.e., algorithms that always generate a result but where
the quality of the result, the QoS-level, increases with the execution time
of the algorithm.

The group of Liu has worked on scheduling of imprecise calculations
for a long time [Liu et al., 1987; Chung et al., 1990; Liu et al., 1994].
In [Liu et al., 1991] imprecise calculation methods are categorized into
milestone methods, sieve function methods, and multiple version methods.
Milestone methods use monotone algorithms that gradually refine the re-
sult and each intermediate result can be returned as an imprecise result.
Sieve function methods can skip certain computation steps to tradeoff
computation quality for time. Multiple version methods have different
implementations with different cost and precision for a task.

Examples of all three types of imprecise algorithms can be found in
control. Algorithms that are based on on-line numerical solution to an
optimization problem every sample can be viewed as milestone or “any-
time” methods. The result generated from the control algorithm is grad-
ually refined for each iteration in the optimization up to a certain bound.
Examples of this type of control algorithms are found in model-predictive
control.

It is also straightforward to find examples of controllers that be cast
on sieve function form. For example, in an indirect adaptive controller,
the updating of the adapted parameters can be skipped when time con-
straints are hard, or, in a LQG controller the updating of the observer can
be skipped when time constraints are hard. Similarly, in a PID controller
the updating of the integral part may be skipped if needed. The extreme
case is of course to skip the entire execution of the controller for a cer-
tain sample. Scheduling of systems that allow skips is treated in [Koren
and Shasha, 1995] and [Ramanathan, 1997]. The latter paper considers
scheduling that guarantees that at least k out of n instantiations will
execute.

42

5. Feedback Scheduling

Finally, it is also possible to find examples of multiple version methods
in control, e.g., situations with one nominal control algorithm and one
backup algorithm. However, in most cases the motivation for having the
backup algorithm is control performance rather then timing issues.

Mode changes

Mode changes for priority-based preemptive scheduling is an issue that
has received some interest. In the basic model, the system consists of
a number of tasks with task attributes. Depending on which modes the
system and the tasks are in, the task attributes have different values.
During a mode change, the system should switch the task attributes for
a task and/or introduce or remove tasks in such a way that the overall
system remains schedulable during and after the mode change.

A simple mode change protocol was suggested in [Sha et al., 1989]. The
protocol assumes that an on-line record of the total utilization is kept. A
task may be deleted at any time, and its utilization may be reclaimed
by a new task at the end of the period of the old task. The new task
is accepted if the resulting task set is schedulable according to the rate-
monotonic analysis. The locking of semaphores, according to the priority
ceiling protocol, during the mode change is also dealt with.

In [Tindell et al., 1992], it was pointed out that the analysis of Sha et
al. was faulty. Tasks may miss their deadlines during a mode change, even
if the task set is schedulable both before and after the switch. The tran-
sient effects of a mode change can be analyzed by extending the deadline-
monotonic framework. Formulas for the worst-case response times of old
and new tasks across the mode change were given. New tasks may be
given release offsets, relative to the mode change request, to prevent dead-
lines to be missed. It is interesting to note, that under EDF scheduling,
the reasoning about the utilization from [Sha et al., 1989] actually seems
to hold. In [Buttazzo et al., 1998], EDF scheduling of a set of tasks with
deadlines equal to their periods is considered. It is shown that a task
can decrease its period at its next release, as long as the total utilization
remains less than one.

Summary

A brief overview of state of the art in integrated control and scheduling
was given. Three papers in this thesis relate to this type of work. Pa-
per 4 presents a feedback scheduling algorithm which optimizes control
performance with respect to available computing resources. The FRIEND

language in Paper 3 is designed to support the implementation of control
systems that are adaptive to changes in resources. Using the toolbox pre-
sented in Paper 5, it is possible to study how CPU-scheduling algorithms
and network protocols affect the control performance.

43

Introduction

One could argue that this type of research is uninteresting and soon to
be superfluous. The computing power increases rapidly today and prices
are going down. Why then bother with scheduling at all? Just buy another
set of CPUs and give each task its own one, and the need for scheduling
is gone! This is probably true for some applications. On the other hand
the more powerful the CPUs get, the more software can and will be put
onto them. Available CPU power will almost always be used, no matter
speed or number of processors. Furthermore, adding more CPUs may solve
the scheduling problem, but will instead worsen the network congestion
problem.

6. Simulation of Embedded Control Systems

The complexity of embedded control systems often makes it difficult to
investigate all their properties analytically. It is therefore necessary to
have good simulation tools available. In this section two different ap-
proaches to simulation of embedded control systems are discussed. First,
the PALSIMART simulation environment, in which PAL blocks may be
simulated, is presented. Second, a MATLAB/Simulink toolbox for inte-
grated simulation of process dynamics and discrete controllers running
in a virtual computer is introduced. The toolbox is the subject of Paper 5.

PALSIMART

Rapid prototyping of advanced control systems can be properly supported
provided that the design phase is closely coupled to the real-time imple-
mentation. In many systems, once the controller is designed and tested in
simulation, the control algorithm must be rewritten, usually from scratch,
in another environment for real-time embedded implementation. Apart
from an obvious overhead, this procedure may as well cause significant
deviations from the predicted behavior, due to the basically different na-
ture of the underlying code.

One possible rapid prototyping approach, mentioned earlier, and in-
deed the most widespread so far, consists of using commercial tools like
Simulink together with Real-Time Workshop, or SystemBuild together
with AutoCode. One problem with this approach is that the languages
used in simulation may not be suitable for designing real-time applica-
tions. With PALSIMART, another approach was chosen, based on the in-
tegration of the control description language PAL and the CACSD envi-
ronment SIMART, see [M’Saad et al., 1997].

SIMART offers a wide set of advanced control techniques as well as
powerful analysis tools and a user-friendly graphical interface. The PAL

44

6. Simulation of Embedded Control Systems

compiler produces C++ code that fits both SIMART and the PÅLSJÖ run-
time system. For an algorithm whose code has been validated in sim-
ulation, no further compilation is needed for real-time implementation.
This constitutes the main advantage of the proposed environment over
the mentioned commercial packages.

SIMART
SIMART is a general purpose CACSD package designed to support all lev-
els of controller development, from design to implementation. It contains
a set of built-in toolboxes such as LQG and GPC for design support. Fur-
thermore, it has tools for performance and robustness analysis, such as
Bode diagrams and sensitivity functions. The user interface is graphical
and menu-driven. SIMART has a range of predefined realistic nonlinear
models for a number of processes. In addition, the user may enter lin-
ear model descriptions interactively. SIMART is currently available on
PCs for MS-Windows, and in an X-11 version for UNIX workstations and
Linux PCs.

Figure 12. PAL inside SIMART

45

Introduction

PAL
compiler

C coded
controller

controller
parameters

PÅLSJÖ

run-time
system

SIMART

PAL coded
controller

?

?

?

-

-

6

RECODING

REDESIGN

after
validation

process

?
6

?
start

Figure 13. The integrated environment

The PALSIMART framework
The PALSIMART environment is an integrated environment created start-
ing from three existing pieces of software: the CACSD package SIMART,
the PÅLSJÖ run-time system and the PAL meta-compiler. Its main purpose
is to quicken prototyping of advanced controllers, by letting real-time al-
gorithms be analyzed and tested in simulation prior to on-line implemen-
tation.

Using PAL to build control systems for real-time applications enables
the creation of a reusable library of control algorithms that are both
easy to write and to implement. Still, the designer spends a considerable
amount of time testing the control system under development by means
of real-time experiments. PALSIMART supports the integration of PAL
blocks into SIMART. Allowing PAL blocks to execute in the SIMART sim-
ulation environment has some immediate benefits. First, the same PAL
code may be used both in the simulation and in the real-time controller.
Second, it is possible to evaluate and test the controller code off-line. A
screen-shot from PALSIMART is shown in Figure 12. By double-clicking
on the PAL regulator block a list of available PAL modules and blocks
will appear. From this list the user chooses which PAL algorithm to be
simulated. Once a block is instantiated, its parameters can be set and its
variables can be connected to SIMART variables. A plant model is then
chosen in a similar way.

46

6. Simulation of Embedded Control Systems

The resulting PALSIMART framework is presented in Figure 13. Any
PAL coded algorithm can be easily appended to a control library that is
available both to SIMART and to PÅLSJÖ run-time system. After the con-
troller has been validated through simulation, the same PAL block, with
the exact same C coding, can be tested in the PÅLSJÖ run-time environ-
ment. Testing the controller in the simulation environment ahead of the
experiments on the real process substantially reduces prototyping time.

The main asset of PALSIMART, with respect to other available pro-
totyping systems is that algorithm coding is identical regardless of use;
the same blocks are used both in simulation and real-time, and the same
behavior is expected. With no need for code rewriting, the creation of a
versatile library of control algorithms is straightforward. PALSIMART
currently runs on Sun/Solaris workstations. A Windows NT version is
under development.

A Toolbox for Simulation of Embedded Systems

Paper 5 presents a MATLAB/Simulink-toolbox for simulation of embed-
ded systems. There currently exist many tools for simulation of control
systems, for example Simnon [Elmqvist, 1973], OMSIM/OMOLA [Ander-
sson, 1994], Modelica [Elmqvist and Mattsson, 1997], Simulink [Math-
Works, 1996], and SystemBuild [Integrated Systems, 1996b]. Similarly,
there are many tools available for simulation of real-time systems, for ex-
ample STRESS [Audsley et al., 1994], and DRTSS [Storch and Liu, 1996].
Very little effort has however been put into mixed simulations, where both
the continuous dynamics of the process, the discrete algorithm of the con-
troller and the behavior of the control task running on a computer are
simulated. One noticeable exception is [Liu, 1998], where a control task
and a continuous process are simulated using Ptolemy II [Davis II et al.,
1999].
The Toolbox

To get the full picture of the performance of an embedded control system,
it may be necessary to consider the real-time behavior of the controller
task. The well known and much used simulation-environment Simulink
was chosen as the platform for a toolbox designed to support simulations
of embedded systems at task level. Using the toolbox, the control engi-
neer may first simulate and design the controller without any real-time
considerations, and then at a later stage, with only minor modifications,
simulate it as if running on a virtual computer. The toolbox is imple-
mented as a set of Simulink-blocks and MATLAB-functions. A kernel block
is the core of the virtual computer block. It samples continuous signals
and writes discrete signals. Figure 14 shows a view from a simulation.
The model consists of two dynamic processes, which are controlled by two

47

Introduction

u1
u2

Mutex 1

y2

Schedule

y1

Figure 14. The simulation model is defined by a block diagram. There are two
blocks for the dynamic processes and one block for the computer. The control tasks
are implemented as MATLAB-files.

control tasks running in the virtual computer. Three types of output sig-
nals from the kernel block are plotted. The first type of output signals
are the control signals u1 and u2 which are fed to the dynamic processes.
The second type of output signals are the execution traces. The task ac-
tivation graph shows the state of each task at every point in time. This
signal is fed to the plot named Schedule. A task can be either running
(high), blocked (medium), or sleeping (low). The Mutex 1 signal indicates
when the mutual exclusion monitor with the same name is occupied. Sim-
ilar to the task activation graph, there is one line for each task, where
high means that the task is inside the monitor, medium that the task is
waiting to get in, and low that the task is outside the monitor.

Example 3 below shows the initialization script used for the simula-

48

6. Simulation of Embedded Control Systems

tion in Figure 14. At the top, some general settings are made. A priority
function prioRM, which implements rate monotonic priority assignment,
is chosen and the tick size of the kernel is set to 1 millisecond. Two peri-
odic tasks are then defined using the task-function. The first parameter
is the name of the task, followed by the code object, the period and the
deadline. The code object contains the statements that are to be executed
by the task.

EXAMPLE 3
function rtsys = resources_init

%% General settings
rtsys.prioFun = 'prioRM';
rtsys.tickSize = 0.001;

%% Create tasks
% TASK 1
rSegs = {'rseg1' 'rseg2'};
rParams.inCh = 1;
rParams.outCh = 1;
rCode = code(rSegs,[],rParams);
rPeriod = 0.012;
rDeadline = 0.012;
rTask = task('Task1', rCode, rPeriod, rDeadline);
% TASK 2
oSegs = {'oseg1' 'oseg2'};
oParams.inCh = 2;
oParams.outCh = 2;
oCode = code(oSegs,[],oParams);
oPeriod = 0.017;
oDeadline = 0.017;
oTask = task('Task2', oCode, oPeriod, oDeadline);

rtsys.tasks = {rTask oTask};

%% Create mutexes
m1 = mutex('M1');
m1.data = 0;
rtsys.mutexes = {m1};

%% Create events
e1 = event('E1','M1');
rtsys.events = {e1};

A code object is built up from code segments, which is the smallest entity
in the kernel and implemented as a MATLAB-function. The hierarchy of

49

Introduction

objects is shown in Figure 15. A code segment has two parts; the enter
part, which is executed when the segment is started, and exit part, which
is executed when the execution time of the segment has passed. In Ex-
ample 3 each of the code objects, rCode and oCode, consists of two code
segments. These four segments are shown in Example 4 below.

Segment
Code

Segment
Code Code

Segment

Code

Task

Figure 15. Each task is associated with a code object, which consists of one or
more code segments.

EXAMPLE 4
function[exectime,states] = rseg1(flag,states,params)
switch flag,

case 1, % enterCode
if lock('M1')

data=readData('M1');
if data < 2

await('E1');
exectime=0;

else
exectime=0.003;

end
else

exectime=0;
end

case 2, % exitCode
unlock('M1');

end

function [exectime,states] = rseg2(flag,states,params)
switch flag,

case 1, % enterCode
y=analogIn(params.inCh);
states.u=-50*y;
exectime=0.003;

case 2, % exitCode

50

6. Simulation of Embedded Control Systems

analogOut(params.outCh, states.u)
end

function [exectime,states] = oseg1(flag,states,params)
switch flag,

case 1, % enterCode
y=analogIn(params.inCh);
states.u=-20*y;
exectime=0.002;

case 2, % exitCode
analogOut(params.outCh, states.u);

end

function [exectime,states] = oseg2(flag,states,params)
switch flag,

case 1, % enterCode
if lock('M1')

data=readData('M1');
writeData('M1',data+1);
exectime=0.003;

else
exectime=0;

end
case 2, % exitCode

cause('E1');
unlock('M1');

end

The functions lock, unlock, await, cause, readData, and writeData are
toolbox functions implementing the mutual exclusion monitor with the
associated event.

In the initialization script above, the scheduling type was set by giving
a priority function. The priority function defines the criterion according
to which the ready queue is sorted. A number of different strategies is
available, and it is also straightforward for the user to implement a new
strategy. The priority function for the rate monotonic case is the following

function prio = prioRM(task)
prio = task.period;

In Example 3, Task1 has the shortest period, and since rate monotonic
priority assignment is used it gets the highest priority. A low number
corresponds to a high priority.

51

Introduction

Summary

The PALSIMART environment allows the use of exactly the same PAL
code, and C++ code in both simulation and implementation. By bridging
the gap between simulation and implementation the prototyping time is
shortened. The MATLAB/Simulink toolbox supports task-level simulation
of closed loop embedded controllers. This opens up the possibility to eval-
uate different scheduling strategies from a control performance point of
view. The toolbox does also support simulation of computer networks,
which makes it possible to investigate and simulate distributed control
systems. For example, it is possible to look at time delays in networks
and their influence on the control performance.

7. Implementation of a Hybrid Controller

Paper 6 describes the design and implementation of a hybrid control strat-
egy for a heating/ventilation system in a school in Klippan, a small town
not far from Lund. The project, which mainly consisted of control de-
sign, also gave some valuable insights through the use of commercial
control hardware/software. While the design and the test implementa-
tions were made in the lab using PÅLSJÖ, the actual implementation was
programmed in Forth on a Diana ADP 2000 system. The Diana ADP
2000, manufactured by Diana Control AB, is mainly used in heating-
ventilation applications. The software is quite flexible and it is possible
to install new controller code without having to rebuild the system. A
unit can contain several control loops, and on large installations several
units can be interconnected in a network. In the network configuration,
one of the control units is a master and the others are slaves. The master
unit can be reached over a modem connection and from the master it is
possible to communicate with all the others. It is possible to log data,
change parameters, and download new code for every controller over the
network. The identification experiments presented in Paper 6 were made
over a telephone connection from Lund. Before trying the controller on
the heating/ventilation process it was tested against a process simulation,
implemented in real-time SIMNON, see [Elmqvist et al., 1990]. The lack
of an integrated tool, like the PALSIMART environment previously de-
scribed, forced us to use four different languages during the development.
The simulations were coded in OMOLA [Andersson, 1994] for the OMSIM
simulation tool. The first real-time implementation of the controller was
made in PAL, and later translated into Forth. The Forth code was tested
on the real-time simulation of the process. A flavor of the Forth code is
given in Example 5 below.

52

7. Implementation of a Hybrid Controller

u

T→

→

Figure 16. The air temperature control loop. The water flow to the heat-exchanger
is controlled by a valve via the control signal u. The output is the air temperature
T after the fan.

EXAMPLE 5
A fragment of the Forth code for the PID sub-controller. Even a simple
algorithm like this becomes quite complex due to the lack of proper lan-
guage support.

PAR REF 2@ PAR y1 2@ F- PAR EE P2!
PAR EE 2@ PAR K 2@ F* 2DUP PAR P P2!
PAR II 2@
PAR D1 2@ PAR D 2@ F*
PAR D2 2@ PAR y1old 2@ PAR y1 2@ F- F*
F+ 2DUP PAR D P2!
F+ F+ PAR UU P2!

The process diagram is shown in Figure 16. The temperature T of the in-
flow air is controlled by adjusting the flow of hot water in a heat exchanger.
The control signal for the hot water valve is u. The previously installed
controller worked well when the process was in steady state. However, the
response to reference point changes was quite oscillative. One solution to
this problem is to use a hybrid controller consisting of two sub-controllers,
one PID controller and one time-optimal controller, together with a super-
visory switching scheme. In process control it is common practice to use
PI control for steady state regulation and to use manual control for large

53

Introduction

Init

NewRef

Ref

Opt

NewRef

PID

NewRef

Off

Close or Off

OffController

NewControllers

OptController

PIDController

Close

not NewRef

not

Figure 17. The Grafcet diagram for the hybrid controller consists of four steps.
The execution starts in the Init step. Opt is the step where the time-optimal con-
troller is active and PID is the step for the PID controller. The Ref step is an
intermediate state used for calculating new controller parameters.

changes. In this case the PID steady state regulation is combined with
a minimum time controller for the setpoint changes. The time-optimal
controller is used when the states are far away from the reference point.
Coming closer the PID controller will automatically be switched in to re-
place the time optimal controller. At each different setpoint the controller
is redesigned, keeping the same structure but using setpoint dependent
parameters. Figure 17 describes the algorithm with a Grafcet [David and
Alla, 1992]. This controller is used in Section 8, as an example of a con-
troller with highly varying execution times.

8. A Unifying Example

A feedback scheduling application is designed and simulated. The feed-
back scheduling algorithm is loosely based on the work presented in Pa-

54

8. A Unifying Example

Pump PumpPump

u1 y1 u2 y2 u3 y3

Task#1 Task#2 Task#3

Real-Time Kernel

Single-CPU System

Figure 18. Several tank controllers execute concurrently on one hardware unit.
The interaction between the control tasks affects the control performance.

per 4. The simulations are made using the toolbox described in Paper 5,
and the control problem is taken from Paper 6.

Several double-tank processes should be controlled by a single-CPU
system, see Figure 18. Since the control tasks execute on the same CPU,
they will compete for the resources and interact with each other. The goal
of this example is to show how higher resource utilization and better con-
trol performance may be achieved by a more flexible scheduling approach.
The controller used in the simulation is the same as the one presented
in Section 7. The computer executes each hybrid controller as a periodic
real-time task. The execution times for the different modes vary a lot, and
this makes the scheduling difficult.

The Problem

How should the tasks be scheduled in order to get the best performance
from the system? If the computing resources were unlimited, the con-
trollers could be designed to execute at very high rates, and with very
good control performance. But with limited computing resources, the con-
trollers must execute at much lower rates in order to avoid overload. When
the utilization of the CPU is close to 100 percent, the interaction between
the control tasks also becomes noticeable. Preemption and blocking causes
jitter and delays, and the control performance deteriorates even further.

55

Introduction

During a transient overload, some controllers might shut down completely,
depending on the scheduling policy used.

The general problem is extremely complicated because of the different
modes that the hybrid controllers might switch between. A hypothetical
optimal solution would continuously redistribute the computing resources
between the tasks depending on the current and possible future combi-
nations of the controller states, the controller modes, and the execution
history. Even if the optimal solution was obtainable, it would never be
implementable in a system with limited computing power. Instead, one
should aim for a simple heuristic solution that can be applied on-line, and
without too much detailed knowledge about the system. An approximate
version of the feedback scheduler from Paper 4, combined with standard
rate-monotonic scheduling would form such an solution. In the following,
some non-feedback and feedback scheduling solutions to the problem are
described and evaluated by simulations. It is shown that a more flexible
scheduling approach can give better control performance.

The Set-Up

The number of double tank systems to control is assumed to be constant
and equal to three. The systems are identical, except for the tank cross
sections which are different for the different double tanks. This causes
the processes to have different time constants: T1 � 60 s, T2 � 45 s,
and T3 � 30 s. Setpoint changes for the levels of the lower tanks are
assumed to occur with different frequencies for the different systems: f1 �
0.0067 s−1, f2 � 0.0094 s−1, and f3 � 0.0133 s−1. The differences between
the processes make the scheduling problem more interesting.

The control algorithm executes in either one of the modes Ref (for
setpoint changes), Opt (for optimal control), or PID (for PID control). The
setpoint change frequencies described above will cause each controller to
spend about half of its time in the Opt mode, and the other half in the
PID mode. The Ref mode is only active for a single sample at a time,
and only when a setpoint change has been detected by the controller. In
this example, the behavior of the controller is typically the following: It
executes in the Ref mode for one sample, then in the Opt mode for several
samples, then in the PID mode for several samples, and then the cycle
repeats.

The relative execution times of the different modes were obtained by
measurements on an existing PÅLSJÖ implementation of the hybrid con-
troller. It was found that the Opt mode took about twice as long to execute
as the PID mode, and that the Ref mode had about six times the exe-
cution time of the PID mode. In this example, it is assumed that the
execution times are constant in each mode, and equal to CPID � 300 ms,
COpt � 600 ms, and CRef � 1800 ms. More on the measurements of exe-

56

8. A Unifying Example

y1_1

y2_1

yref_1

y1_2

y2_2

yref_2

y1_3

y2_3

yref_3

u_1

u_2

u_3

Slow Computer

Setpoint 3

Setpoint 2

Setpoint 1
Show Results

Plot Tank 3

Show Results

Plot Tank 2

Show Results

Plot Tank 1

s

1

s

1

s

1

[ol2_1]

[ol1_1]

[ol2_3]

[ol1_3]

[ol1_2]

[ol2_2]

[J_3]

[J_2]

[J_1]

[l2_1]

[l1_1]

[yref_3]

[l2_3]

[l1_3]

[l1_2]

[l2_2]

[u_3]

[u_2]

[u_1]

[ou_3]

[ou_2]

[ou_1]

[yref_2]

[yref_1]

[yref_3][yref_3]

[yref_2]

[l2_3]

[ol2_3]

[l2_2]

[ol2_2]

[l2_1]

[ol2_1]

[yref_2]

[yref_1][yref_1]

y1_1

y2_1

yref_1

y1_2

y2_2

yref_2

y1_3

y2_3

yref_3

u_1

u_2

u_3

Fast Computer

u

Level 1

Level 2

y1

y2

Double Tank 3

u

Level 1

Level 2

y1

y2

Double Tank 3

u

Level 1

Level 2

y1

y2

Double Tank 2

u

Level 1

Level 2

y1

y2

Double Tank 2

u

Level 1

Level 2

y1

y2

Double Tank 1

u

Level 1

Level 2

y1

y2

Double Tank 1

0

Figure 19. A screen-shot of the Simulink model of the control system. To the
left, the tanks are controlled by a fast, ideal, computer. To the right, the tanks are
controlled by a slow, real, computer. The behavior of the left system is used as a
reference when evaluating the performance of the right system.

cution times for this hybrid controller is found in [Persson, 1998].

Simulation

The toolbox described in Paper 5 is used to evaluate different scheduling
strategies. The hybrid control algorithm is very easily rewritten into a
MATLAB function

[states,exectime] = hybridController(flag,states,params)

which is the control algorithm format prescribed by the toolbox. The func-
tion is executed periodically during simulation. It returns the new con-
troller states (including the controller mode), and the simulated execution
time of the algorithm.

To isolate the effects of scheduling on control performance, two com-
plete control systems are simulated in parallel, see the screen-shot shown
in Figure 19. To the left, the three double tanks are controlled by an ideal,
very fast, computer. To the right, the three double tanks are controlled
by a real, slower, computer. The behavior of the ideal system is used as a
reference when evaluating the performance of the real system. Figure 20
shows the level of the lower tanks when controlled by the ideal computer.

57

Introduction

0 100 200 300 400 500 600
0

0.1

0.2

Lo
w

er
 ta

nk
 1

Setpoint Responses with Optimal Computer

0 100 200 300 400 500 600
0

0.1

0.2

Lo
w

er
 ta

nk
 2

0 100 200 300 400 500 600
0

0.1

0.2

time (s)

Lo
w

er
 ta

nk
 3

Figure 20. The level of the lower tanks when controlled by the ideal computer.

The simulations display very good setpoint responses and steady state
behavior.

To compare different scheduling strategies, the control performance
needs to be quantified somehow. This is a difficult task even for a single
non-hybrid controller. We decided to measure the accumulated squared
distance between the outputs of the ideal system, yideal , and the outputs
of the real system, yreal , during a simulation of length Tsim .

V �
∫ Tsim

0
(yideal(t) − yreal (t))2dt

The function V is called the performance loss due to scheduling. It gives a
rough estimate of the performance of the real system by judging all devi-
ations from the ideal system as undesired. Typically, the outputs from the
real system are delayed compared to the outputs from the ideal system.

Scheduling

Three different scheduling approaches are compared: worst-case schedul-
ing, average-case scheduling, and feedback scheduling. All approaches are
based on rate-monotonic scheduling.

58

8. A Unifying Example

Worst-Case Scheduling
Worst-case scheduling is probably the most common scheduling approach
in real-time control systems today. Tasks are assigned periods off-line,
and schedulability analysis is carried out assuming worst-case conditions
during execution. In our case, the worst-case condition occurs when all
controllers happen to execute in the Ref mode at the same time. It is,
however, unnecessarily pessimistic to use the worst-case execution time
of CRef � 1800 ms in the scheduling analysis. We know that, in our
example, the controller only spends a single sample in the Ref mode and
then switches to the Opt mode in the next sample.

Average-Case Scheduling
The drawback with worst-case scheduling is that the average resource
utilization becomes low, with poor control performance as a result. An
alternative would be to use average-case scheduling, where tasks are as-
signed periods to give a higher average utilization of the CPU. Of course,
tasks may now miss their deadlines. If rate-monotonic scheduling is the
underlying scheduling principle, the lower-priority tasks may miss a lot
of deadlines, while the higher-priority tasks do not need to miss a single
deadline. This unfair distribution of computing resources during runtime
could cause the overall control performance to be quite poor.

Feedback Scheduling
Feedback scheduling in this example means that task periods are as-
signed on-line, depending on the modes of the different controllers. The
underlying scheduling principle is rate-monotonic scheduling. The feed-
back scheduler is activated each time a control task switches mode. The
feedback loop between the scheduler and the control tasks is illustrated
in Figure 21.

In this example, we assume that each controller has an associated,
known, cost function

Ji � α i + β ih2
i , (1)

where hi is the sampling frequency for task i. The goal for the feedback
scheduler is to optimize the total performance, i.e.

minimize J �
n∑

i�1

Ji,

subject to the utilization constraint
n∑

i�1

Ci/hi � U ,

59

Introduction

Control
Task #2

Scheduler

Control
Task #3Task #1

Control

FeedbackModeChanges Frequencies

Figure 21. A feedback loop is formed between the control tasks and the sched-
uler. The control tasks notify the scheduler of their current mode. The scheduler
then adjusts the frequencies of the control tasks so that the CPU load becomes the
desired.

where U is the desired utilization and Ci is the execution time for task i.
The execution time of the feedback scheduler itself is zero in the simula-
tions. We do, however, reserve some slack for the feedback scheduler by
setting the desired utilization to 80 %.

Results

The choice of sampling intervals for control loops is a research area in it-
self. In this case, the choice of sampling intervals can be motivated by the
process dynamics and the setpoint change frequencies. The fastest pro-
cess with the most frequent setpoint changes obviously requires the most
frequent actions from its controller. The sampling intervals are chosen so
that the ratio hi/Ti is the same for all tree tanks. The whole system, i.e.,
the three control tasks, the kernel and the three double tank systems, was
simulated for 1500 seconds using three different scheduling approaches.
Rate monotonic priority assignments were used in all cases. Table 1 also
presents some results from the simulations.

Worst-Case Scheduling
In the worst-case scheduling scenario, the sampling intervals are chosen
so that no deadlines are missed. The sampling intervals are through sim-
ulation found to be h1 � 7 s, h2 � 4.9 s and h3 � 3.5 s. These are the
shortest sampling intervals that will not cause missed deadlines. The uti-
lization will however be very poor, and is in the simulation found to be
only 33.1 %. The slow sampling rates result in poor performance for all
three controllers. The output of the system controlled by Controller 1 is
shown in Figure 22 (top).

60

8. A Unifying Example

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

Figure 22. The output from the tank controlled by the controller with lowest
priority for the three different scheduling strategies. The dashed line shows the ideal
behavior and the dotted line shows the reference signal. The plot show the WCET
scheduling (top), Average scheduling(middle), and Feedback scheduling (bottom).

Average-Case Scheduling
The average-case scheduling scenario allows deadlines to be missed and
instead tries to keep a high utilization level. The sampling intervals h1 �
2.6 s, h2 � 1.8 s, h3 � 1.3 s are calculated to give approximately 80 %
utilization. Actual utilization in simulation is 78.5 %. This approach will
favor the controllers with high priorities. Controller 1, however, misses a
lot of deadlines with poor performance as a result. The output from the
system controlled by Controller 1 is shown in Figure 22 (middle).

61

Introduction

Strategy V1 V2 V3 Ueff

WCET 0.21 0.20 0.15 32.7 %

Average 0.21 0.05 0.037 78.5 %

Feedback 0.067 0.067 0.095 80 %

Table 1 The different scheduling strategies are compared in terms of the addi-
tional cost due to scheduling. The Ueff is the actual utilization from the simulation.
The feedback scheduling strategy distributes the computing resources more evenly
over the tasks which results in lower total cost.

Feedback Scheduling
The feedback scheduling approach tries to achieve both high utilization
and few missed deadlines. Each task is associated with a cost function
which reflects how the task performance relates to the sampling inter-
val. The cost function is given by Equation 1, and the parameters are
assigned heuristically. The feedback scheduling in this case is very much
simplified since the same cost functions are used independently of which
mode the controller executes in. A better approach would be to derive the
cost function parameters analytically and have one cost function for each
controller mode. However, in this example, this simple approach works
very well.

The desired utilization is set to 80 %, and actual utilization in simu-
lation is 79.3 %. Furthermore there are no missed deadlines. The output
from the system controlled by Controller 1 is shown in Figure 22 (bot-
tom). The feedback scheduler gives much better control performance for
Controller 1, and slightly worse for Controllers 2 & 3.

The results for all three double-tank systems from all three simula-
tions are presented in Table 1.

Summary

This simple example shows how the control performance may be improved
by adjusting the sampling frequencies so that high CPU utilization is ob-
tained and at the same time few deadlines are missed. This example also
demonstrates the type of simulation that can be made with the real-time
kernel toolbox. The double tank system is quite robust towards missed
deadlines, and if the simulations were made using a more time-critical
process the results would probably have been different. A possible ex-
tension to the feedback scheduler would be to introduce performance ob-
servers, that give the estimated cost based on measurements.

62

9. References

9. References

Abdelzaher, T., E. Atkins, and K. Shin (1997): “QoS negotiation in real-
time systems, and its application to flight control.” In Proceedings of
the IEEE Real-Time Systems Symposium.

Andersson, M. (1994): Object-Oriented Modeling and Simulation of Hy-
brid Systems. PhD thesis ISRN LUTFD2/TFRT--1043--SE, Depart-
ment of Automatic Control, Lund Institute of Technology, Lund, Swe-
den.

Armstrong, J., R. Wirding, and M. Williams (1993): Concurrent Program-
ming in Erlang. Prentice Hall.

Årzén, K.-E., B. Bernhardsson, J. Eker, A. Cervin, K. Nilsson, P. Persson,
and L. Sha (1999): “Integrated control and scheduling.” Report ISRN
LUTFD2/TFRT--7586--SE. Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

Åström, K. J. and K. Furuta (1996): “Swinging up a pendulum by energy
control.” In IFAC’96, Preprints 13th World Congress of IFAC, vol. E,
pp. 37–42. San Francisco, California.

Audsley, N., A. Burns, M. Richardson, and A. Wellings (1994): “STRESS—
A simulator for hard real-time systems.” Software—Practice and
Experience, 24:6, pp. 543–564.

Benveniste, A. and G. Berry (1991): “The synchronous approach to
reactive and real-time systems.” In Proceedings of the IEEE, vol. 79.

Blomdell, A. (1997): “PAL – the PÅLSJÖ algorithm language.”. Report ISRN
LUTFD2/TFRT--7558--SE, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

Blomdell, A. (1999): “Linux in control.” http://www.control.lth.se.

Boussinot, F. and R. de Simone (1991): “The ESTEREL language.” In
Proceedings of the IEEE, vol. 79.

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic task model for
adaptive rate control.” In Proceedings of the IEEE Real-Time Systems
Symposium.

Chung, J.-Y., J. Liu, and K.-J. Lin (1990): “Scheduling periodic jobs that
allow imprecise results.” IEEE Trans on Computers, 39:9.

Dahl, O. (1990): “SIM2DDC—User’s manual.” Report TFRT-7443. Depart-
ment of Automatic Control, Lund Institute of Technology, Lund, Swe-
den.

63

Introduction

David, R. and H. Alla (1992): Petri Nets and Grafcet: Tools for modelling
discrete events systems. Prentice-Hall.

Davis II, J., M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong
(1999): “Overview of the Ptolemy project.” Technical Report ERL
Technical Report UCB/ERL No. M99/37. University of California,
Berkeley, EECS, CA, USA 94720.

Eker, J. (1997): A Framework for Dynamically Configurable Embedded
Controllers. Lic Tech thesis ISRN LUTFD2/TFRT--3218--SE, Depart-
ment of Automatic Control, Lund Institute of Technology, Lund, Swe-
den.

Elmqvist, H. (1973): “SIMNON—User’s guide.” Technical Report TFRT-
3106. Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

Elmqvist, H. (1985): “LICS—Language for implementation of control
systems.” Report TFRT-3179. Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

Elmqvist, H., K. J. Åström, T. Schönthal, and B. Wittenmark (1990):
Simnon User’s Guide. SSPA, Göteborg, Sweden.

Elmqvist, H. and S. E. Mattsson (1997): “Modelica—The next generation
modeling language, an international effort.” In Proceedings of the 1st
World Congress on System Simulation, WCSS’97. Singapore.

Gerber, R., S. Hong, and M. Saksena (1995): “Guaranteeing real-time
requirements with resource-based calibration of periodic processes.”
IEEE Trans on Software Engineering, 21:7.

Gustafsson, K. (1991): “Control theoretic techniques for stepsize selection
in explicit Runge-Kutta methods.” ACM Transactions on Mathematical
Software, 17:4, pp. 533–554.

Gustafsson, K. (1994): “An architecture for autonomous control.” Report
ISRN LUTFD2/TFRT--7514--SE. Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

Halbwachs, N. (1993): Synchronous programming of reactive systems.
Kluwer Academic Publishing.

Halbwachs, N., P. Caspi, P. Raymond, and D. Pilaud (1991): “The
synchronous data flow programming language LUSTRE.” In Proceedings
of the IEEE, vol. 79.

64

9. References

Hennessy, J. (1999): “The future of systems research.” IEEE Computer,
August.

Henriksson, R. (1998): Scheduling Garbage Collection in Embedded
Systems. PhD thesis, Department of Computer Science, Lund Institute
of Technolgy, Lund, Sweden.

Integrated Systems (1996a): AutoCode User’s Guide. Integrated Systems
Inc., 3260 Jay Street, Santa Clara, CA 95054-3309, USA.

Integrated Systems (1996b): SystemBuild User’s Guide. Integrated Sys-
tems Inc, 3260 Jay Street, Santa Clara, CA 95054-3309, USA.

J-Consortium (1999): “International J-Consortium specification.”
http://www.j-consortium.org/.

Johannesson, G. (1994): Object-oriented Process Automation with Satt-
Line. Chartwell Bratt Ltd. ISBN 0-86238-259-5.

Jones, M. and P. Leach (1995): “Modular real-time resource management
in the Rialto operating system.” In Proceedings of the of the Fifth
Workshop on Hot Topics in Operating Systems.

Kligerman, E. and A. D. Stoyenko (1986): “Real-Time Euclid: A language
for reliable real-time systems.” IEEE Trans. on Software Eng., SE-
12:9, pp. 941–949.

Koren, G. and D. Shasha (1995): “Skip-over: Algorithms and complexity
for overloaded systems that allow skips.” In Proceedings of the IEEE
Real-Time Systems Symposium.

Kosugi, N., A. Mitsuzawa, and M. Tokoro (1996): “Importance-based
scheduling for predictable real-time systems using MART.” In Proceed-
ings of the 4th Int. Workshop on Parallel and Distributed Systems,
pp. 95–100. IEEE Computer Society.

Kosugi, N. and S. Moriai (1997): “Dynamic scheduling for real-time
threads by period adjustment.” In Proceedings of the World Congress
on Systems Simulation, pp. 402–406.

Kosugi, N., K. Takashio, and M. Tokoro (1994): “Modification and adjust-
ment of real-time tasks with rate monotonic scheduling algorithm.” In
Proceedings of the 2nd Workshop on Parallel and Distributed Systems,
pp. 98–103.

Kuo, T.-W. and A. Mok (1991): “Load adjustment in adaptive real-
time systems.” In Proceedings of the 12th IEEE Real-Time Systems
Symposium.

65

Introduction

Le Lann, G. (1996): “The ariane flight 501 failure - a case study in sys-
tem engineering for computing systems.” In Hand-Out European Ed-
ucational Forum School on Embedded System. European Educational
Forum.

Lee, C., R. Rajkumar, and C. Mercer (1996): “Experiences with processor
reservation and dynamic QoS in real-time Mach.” In Proceedings of
Multimedia Japan 96.

Lewis, R. (1995): Programming industrial control systems using IEC
1131–3. The Institution of Electrical Engineers, London, U.K.

Liu, J. (1998): “Continuous time and mixed-signal simulation in Ptolemy
II.” Technical Report UCB/ERL Memorandum M98/74. Department of
Electrical Engineering and Computer Science, University of California,
Berkeley.

Liu, J., K.-J. Lin, and S. Natarajan (1987): “Scheduling real-time, periodic
jobs using imprecise results.” In Proceedings of the IEEE Real-Time
System Symposium, pp. 252–260.

Liu, J., K.-J. Lin, W.-K. Shih, A. Yu, J.-Y. Chung, and W. Zhao (1991):
“Algorithms for scheduling imprecise computations.” IEEE Trans on
Computers.

Liu, J., W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung (1994):
“Imprecise computations.” Proceedings of the IEEE, Jan, pp. 83–93.

MathWorks (1996): Simulink-Dynamic System Simulation for MATLAB.
The MathWorks inc., 24 Prime Park Way, Natick, MA 01760-1500.

MathWorks (1997): Simulink–Real-Time Workshop. The MathWorks inc.,
24 Prime Park Way, Natick, MA 01760-1500.

M’Saad, M., J. Chebassier, and P. Tona (1997): “Advanced control using the
CACSD package SIMART.” In IFAC Conference on Systems, Structure
and Control. Bucharest, Romania.

Nakajima, T. (1998): “Resource reservation for adaptive QoS mapping in
real-time Mach.” In Proceedings of the Sixth International Workshop
on Parallel and Distributed Real-Time Systems.

Nakajima, T. and H. Tezuka (1994): “A continuous media application
supporting dynamic QoS control on real-time Mach.” In Proceedings
of ACM Multimedia’94.

Natarajan, S. and K. Lin (1988): “FLEX: towards flexible real-time pro-
grams.” In Proceedings of the International Conference on Computer
Languages. IEEE.

66

9. References

NewMonics (1999): Making Java Applications a Reality in Embedded Sys-
tems Today. NewMonics Inc., 1755 Park Street, Suite 260, Naperville,
IL 60563. http://www.newmonics.com.

Persson, P. (1998): “A tool measuring and analyzing real-time task exe-
cution times.” Project Report, Real-Time Systems Course. Department
of Automatic Control, Lund.

Ramanathan, P. (1997): “Graceful degradation in real-time control appli-
cation using (m,k)-firm guarantee.” In Proceedings of the IEEE Real-
Time Systems Symposium.

RealTimeInnovations (1995): ControlShell–Object–Oriented Framework
fro Real–Time System Software. Real-Time Innovations, Inc., 155A
Moffet Park Drive, Suite 111, Sunnyvale, CA 94089, USA.

Ryu, M. and S. Hong (1998): “Toward automatic synthesis of schedulable
real-time controllers.” Integrated Computer-Aided Engineering, 5:3,
pp. 261–277.

Ryu, M., S. Hong, and M. Saksena (1997): “Streamlining real-time con-
troller design: From performance specifications to end-to-end timing
constraints.” In Proceedings of the IEEE Real-Time Technology and
Applications Symposium.

Seto, D., B. Krogh, L. Sha, and A. Chutinan (1998a): “Dynamic control
system upgrade using the Simplex architecture.” IEEE Control Sys-
tems, August.

Seto, D., J. Lehoczky, and L. Sha (1998b): “Task period selection and
schedulability in real-time systems.” In Proceedings of the IEEE Real-
Time Systems Symposium.

Seto, D., J. Lehoczky, L. Sha, and K. Shin (1996): “On task schedulability
in real-time control systems.” In Proceedings of the IEEE Real-Time
Systems Symposium.

Sha, L. (1998): “Dependable system upgrade.” In Proceedings of IEEE
Real Time Systems Symposium.

Sha, L., R. Rajkumar, and J. Lehoczky (1989): “Mode change protocols
for priority-driven pre-emptive scheduling.” Real-Time Systems, 1:3,
pp. 244–264.

Shin, K. G. and C. L. Meissner (1999): “Adaptation of control system per-
formance by task reallocation and period modification.” In Proceedings
of the 11th Euromicro Conference on Real-Time Systems, pp. 29–36.

67

Introduction

Stankovic, J., C. Lu, and S. Son (1999): “The case for feedback control real-
time scheduling.” In Proceedings of the 11th Euromicro Conference on
Real-Time Systems, pp. 11–20.

Stankovic, J. and K. Ramamritham (1991): “The Spring kernel: A new
paradigm for real-time systems.” IEEE Software, 8.

Storch, M. F. and J. W.-S. Liu (1996): “DRTSS: A simulation framework
for complex real-time systems.” In Proceedings of the 2nd IEEE Real-
Time Technology and Applications Symposium, pp. 160–169.

Stoyenko, A. and W. Halang (1993): “Extending Pearl for industrial real-
time applications.” IEEE Software, 10:4, pp. 65–74.

Tindell, K., A. Burns, and A. J. Wellings (1992): “Mode changes in priority
preemptively scheduled systems.” In Proceedings of the 13th IEEE
Real-Time Systems Symposium, pp. 100–109.

Tokuda, H., T. Nakajima, and P. Rao (1990): “Real-time Mach: Towards
a predictable real-time kernel.” In Proceedings of USENIX Mach
Workshop.

Wiklund, M., A. Kristenson, and K. J. Åström (1993): “A new strategy
for swinging up an inverted pendulum.” In Preprints IFAC 12th World
Congress, vol. 9, pp. 151–154. Sydney, Australia.

68

Paper 1

A Tool for Interactive Development of
Embedded Control Systems

Johan Eker

Abstract
Embedded control systems are today created using tools that give insuf-
ficient support for rapid prototyping and code reuse. New tools for im-
plementation of embedded controllers are necessary. This paper presents
a software framework for implementation of embedded control systems.
The PAL language is presented. PAL is designed to support implementa-
tion of control algorithms in particular. A run-time system called PÅLSJÖ

is also introduced. Algorithms written in PAL may be executed in the
PÅLSJÖ system. The PÅLSJÖ system is designed to allow on-line system
configuration and reconfiguration.

69

Paper 1. A Tool for Interactive Development of Embedded Control Systems

70

1. Introduction

1. Introduction

This paper presents the PÅLSJÖ system for development of embedded con-
trol systems. PÅLSJÖ is an experimental environment designed to support
code reuse and rapid prototyping. To facilitate this and to relieve the con-
trol engineer of real-time programming obstacles the controller descrip-
tion language PAL was created. Algorithms are designed and packaged
so that code reuse becomes straightforward.

It is difficult to design reusable real-time code using general purpose
languages such as C/C++. Timing requirements and algorithm specifica-
tions are hard to separate, and it becomes cumbersome to use the same
code module in two real-time scenarios, for a dramatic example of this
see [Le Lann, 1996]. If instead real-time code is generated from a simula-
tions environment code reuse may be better supported. Examples of simu-
lation environments that support code generation are SystemBuild [Inte-
grated Systems, 1996a; Integrated Systems, 1996b] and Simulink [Math-
Works, 1997]. A problem with code generators is that they may give large
and inefficient programs. The real-time specifications in simulation mod-
els are usually very sparse and this makes it difficult to generate opti-
mized real-time code. Code generators usually do not take into account
that the sampling delay can be reduced significantly by rearranging the
code, see [Åström and Wittenmark, 1997].

Development tools of today have a very low degree of interactivity.
The control application is designed, compiled and tested. If any errors are
found the plant must be stopped and restarted before the user can test the
corrected version. There is a great need for a higher level of interactivity
when developing real-time control systems. It must be possible to insert
and delete algorithms without having to stop the plant and recompile
the whole application. More flexible control software is not only needed
in the control labs, but also in the industry. The software in embedded
controllers needs to be upgraded periodically. Since the cost for shutting
down a manufacturing cell is high, the upgrade might not be feasible just
for changing control algorithms, even if the new algorithm would give
better performance and costs reduction.

2. The Pålsjö System

The internal structures for many controller implementations are very
similar. The same kind of building blocks are used and their internal
communication follows certain patterns. There are functions for user in-
teraction, task management, data logging, network interaction, etc. The
main idea with the PÅLSJÖ project is to capture the common behavior of

71

Paper 1. A Tool for Interactive Development of Embedded Control Systems

A B C

D

Figure 1. Control systems are conveniently described using block diagrams.

typical control systems. If those common features can be encapsulated in
a framework, then the size of the code that needs to be written for each
new application can be significantly reduced. Further it is possible to in-
troduce a suitable abstraction level, that will support control algorithms
in particular. The goal is to give a high level of support for those com-
mon features and let the control engineer focus on the control algorithm
implementing. The user of such a framework only needs to add the code
that is specific for a certain application, i.e. the control algorithm.

Pålsjö System Model

Control engineers extensively describe control system using block dia-
grams, see Figure 1. A block diagram contains information of the algo-
rithms and how they are interconnected. Real-time code could be gener-
ated from this this simple system description, but the resulting system
would be equally simple. If instead some additional real-time information
were added to the block diagram, its real-time behavior would become
much more precise. Figure 2 shows a system with some extra real-time
specifications. The kind of information is which blocks should be mapped
onto which real-time tasks, which signal connections are synchronous and
which are asynchronous, etc. In PÅLSJÖ blocks are implemented in the
language PAL (PÅLSJÖ Algorithm Language). Control systems are then
configured on-line using the script language PCL (PÅLSJÖ Configuration
Language). The additional real-time information discussed above is hence
in PÅLSJÖ added on-line. In PÅLSJÖ it is allowed to edit the system config-
uration without halting it first. Figure 3 shows the structure of a PÅLSJÖ

application. Two user defined processes execute in the workspace, which
is connected to modules managing operator communication, network com-
munication, plant IO, etc. When an application is written in PAL for the
PÅLSJÖ system, only the tasks specific to the application must be imple-
mented by the control engineer. In Figure 3 there are two processes that
execute the actual control application from Figure 1, and these processes
are created on-line by the user. Each of these processes consists of a two
PAL blocks. Each PAL block has a set of functions which are called by the

72

2. The PÅLSJÖ System

Task #2

Task #1

Event-Driven

Synchronous

Asynchronous

[timing spec.]
Periodic

A B C

D

Figure 2. In order to execute the block diagram in a real-time application more
information needs to be added. Such information could be which blocks that should
be mapped to which processes, timing constraints, and what kind of connections,
synchronous or asynchronous.

Operator
Communication Network

Plant IO

User Task #1 User Task #2

B C DA

Figure 3. A schematic view of the PÅLSJÖ system. There are a set of predefined
modules managing operator communication for example. Furthermore there is a set
of user defined processes which is the actual controller.

process in order to execute the block. Connections between blocks residing
in the same process is synchronous, while connections between different
processes are asynchronous.

73

Paper 1. A Tool for Interactive Development of Embedded Control Systems

User Task #1

BA

Outputs

States

Update()
Calculate()Inputs

Parameters

Figure 4. A PAL block has a set of methods that are executed by the owner
process.

3. Configuring the System

PAL blocks are instantiated and connected on-line using PCL. PCL is a
simple language for administrating blocks and assigning variables.

While PAL is used to describe the algorithm of a block, it cannot be
used to specify how the block shall be executed. All information that de-
fines real-time behavior is entered during run-time using PCL. Instances
of the system blocks Periodic and Sporadic are used to manage the exe-
cution. The Periodic block executes its child blocks periodically according
to the data flow between the child blocks. All timing and synchronization
between the child blocks is taken care of by the scheduler in the Periodic
block. Consider the block diagram in Figure 5. It consists of six blocks:
an analog input block followed by a pre-filter, two controllers in paral-
lel, a switch and an analog output block. The pre-filter is used to reduce
the noise from the measurement signal and is executed at a higher sam-
pling rate than the control blocks. The desired real-time behavior is the
following:

• Execute RST, PID, Switch and Analog Out at a slower sampling
rate.

• Execute Analog In and Filter at a higher sampling rate.

To configure the system to get this behavior, two instances of the sys-
tem block Periodic are created, one for each sampling rate. The PCL-
commands to achieve this are the following:

74

4. PAL - Pålsjö Algorithm Language

Analog
In

Analog
OutFilter

PID

RST

Switch

Figure 5. The block diagram created in Example 1.

EXAMPLE 1

pcl*> p1 = new Periodic
pcl*> p2 = new Periodic
pcl*> p1.adin = new AnalogIn
pcl*> p1.filter = new Filter
pcl*> p2.rst = new RST
pcl*> p2.pid = new PID
pcl*> p2.switch = new Switch
pcl*> p2.daout = new AnalogOut
pcl*> p1.adin.y -> p1.filter.u
pcl*> p1.filter.y -> p2.pid.u
pcl*> p1.filter.y -> p2.rst.u
pcl*> p2.pid.y -> p2.switch.u1
pcl*> p2.rst.y -> p2.switch.u2
pcl*> p2.switch.y -> p2.daout.u
pcl*> p1.tsamp = 0.010;
pcl*> p2.tsamp = 0.050

The Periodic block executes its child blocks according to a schedule
automatically created on-line. Since the child blocks are executed syn-
chronously no data sharing problems will arise. Mutual exclusion is thus
handled automatically by the system. The data-flow mechanism is imple-
mented, so that unnecessary copying is avoided

4. PAL - Pålsjö Algorithm Language

PAL is a block based imperative language for implementation of embed-
ded controllers. It is designed to support and simplify the coding of control
algorithms. Language constructs for both periodic algorithms and sequen-

75

Paper 1. A Tool for Interactive Development of Embedded Control Systems

tial algorithms are available. Furthermore complex data types such as
polynomials and matrices are fully supported. For a more in depth de-
scription see [Blomdell, 1997], which this section is based upon.

Blocks and Modules

Algorithms are described as input-output blocks. New values for the out-
put signals are calculated based on the values of the inputs, the internal
states and the parameters. A PAL block has the following structure:

EXAMPLE 2
module MyPI

block PI
r, y, u : input real;
v, r2 : output real;
I :� 0.0, e :� 0.0 : real;
K :� 0.5, Ti :� 10.0 : parameter real;
Tr :� 10.0 : parameter real;
h : sampling interval;
bi � K ∗ h/Ti; br � h/Tr;

calculate begin
e :� r− y;

end calculate;

update begin
r2 :� Limiter(minRe f , maxRe f , r);
I :� I + bi ∗ e+ br ∗ (u− v);

end update;

function Limiter(
max : real;
min : real;
value : real

) : real;
begin

. . .
end Limiter;

end PI;
end MyPI.

The top level concept of PAL is the module. Several blocks may be grouped
together in a module. In the example above the block PI is declared within
the module MyPI. The first section in the block defines the interface.
There are a set of input signals, output signals and parameters. There are

76

4. PAL - Pålsjö Algorithm Language

also two state variables I and e, and two indirect parameters bi and br.
After the interface section comes the algorithm section. The two sections
calculate and update define the periodic algorithm of the block.

Data Types

PAL has a set of predefined data types. Among these are regular scalar
ones, e.g. real, integer, boolean, as well as aggregate types such as ar-
rays, matrices, and polynomials. The availability of arithmetic operations
for polynomials and matrices makes it straightforward to express control
algorithms. Below is an example of scalar data types:

r : real;

i : integer;

bool :� true : boolean;

The type dimension is an integer variable used to specify the dimension
for aggregate data types. It gets its value upon block creation, and may
not be assigned within the algorithm section. The value of a dimension
variable can only be set by the runtime system. There is a special data type
sampling interval for handling the period time for periodic processes.
The sampling time is set by the user or the run-time system. Below is an
example of more complex data types:

n : dimension;
in1 : input array[1..n] of real;

m : dimension;
in2 : array[0..m] of input real;

out : input matrix[1..n,1..m] of real;

par : parameter polynomial[n] of real;

There are built in functionality to fully support the use of matrices and
polynomials. Function libraries for Diophantine equation solving, recur-
sive model estimation, etc are available.

Events

All procedures in PAL when executed in the PÅLSJÖ environment are reg-
istered as events. For example, let the procedure Reset below be defined
in the block Estim. The Reset procedure may then be called from the PCL
command line by the following command

pcl*> process.block = new Estim
pcl*> process.block ! Reset

77

Paper 1. A Tool for Interactive Development of Embedded Control Systems

Grafcet

Grafcet, see [David and Alla, 1992] is a convenient and powerful way of
implementing sequential algorithms. There exist constructs in PAL for ex-
pressing Grafcet algorithms. These constructs are steps, actions, and tran-
sitions. Grafcet statements are expressed in PAL with a textual represen-
tation, that is based on Sequential Function Charts in IEC-1131 [Lewis,
1995]. A Grafcet designed to control a boiler process is shown in Figure 2.

Each state in a sequential algorithm is defined as a step in Grafcet. A
step may be active or inactive. Several steps may be active at the same
time. A Grafcet must have an initial step. The syntax for defining a step
is illustrated below.

initial step Init;
pulse activate CloseV2;

end Init;

step StartHeating;
activate Heat;

end StartHeating;

step StopHeating;
pulse activate NoHeat;

end StopHeating;

A transition has a set of input steps, a set of output steps and a condition.
All input steps must be active and the condition must be true for the
transition to be fireable. When a transition is fired all output steps become
active.

transition from StartFillink
to K eepFillink, StartHeatink when L1;

transition from StartHeatink
to StopHeatink when T >� Tre f ;

A block algorithm may be described using both the calculate/update
procedures and one or or several Grafcets. This is useful when an algo-
rithm is composed of one periodic part and one sequential part. Consider
for example a hybrid controller. The control law is conveniently expressed
using Grafcet, where each step corresponds to a sub-controller. Assume
that several of the control laws used are of state feedback type, and that
all plant states cannot be measured. In this case we need to estimate
the states. We want an estimator inside the block, but we do not want
to have an estimator in each step. By implementing the estimator in the
calculate/update section the estimates are available for all the control
laws.

78

5. Calculate and Update

Init

Start

StartFilling

L1

KeepFilling

L2

StopFilling

StartHeating

T >= Tref

StopHeating

T < Tref

true

EmptyTank

not L1

CloseV2

OpenV1

CloseV1

Heat

NoHeat

OpenV2

Figure 6. Grafcet for the controller of a boiler process. This figure is generated
by the PAL compiler.

5. Calculate and Update

Periodic algorithms in PAL are divided into the two sections calculate
and update. When a PAL block is executed, new output values are calcu-
lated based on the values of the input signals and the states. The values
of the output signals are used as inputs to the next block in the signal
flow path. The two main reasons to divide the code into two parts are to
minimize the sampling delay and to handle signal limitations correctly.

Minimizing Sampling Delay

Consider the control system in Figure 7. First the value of the plant
is sampled, and then the signal propagates from the first block to the
second one, and so on. In a control system the stability of the closed loop

79

Paper 1. A Tool for Interactive Development of Embedded Control Systems

AnalogOut

1

PI

AnalogIn

5PI

AnalogIn

(7,6,5,4,3,2,1)

(1,2,3,4,5,6,7)Calculate

Update

3

2

6

4

Reference y
r

r
y v

u
7

u

r2
Limiter

v
r2

Figure 7. First the calculate method is executed for each block, starting with
block number one. Then the update method is executed for each block in the reverse
order.

system depends on the time it takes for a process measurement to show
up in the actuator signals to the process. If there are multiple blocks
between the input and output, special care has to be taken to ensure
that no unnecessary delays are introduced due to improper ordering of
calculations.

The algorithm for the PI-controller in Example 2 is divided into two
parts, one for calculating the output signal and one for updating the in-
tegral state. It is important to finish the calculation of the new control
signal as fast as possible in order to minimize the sampling delay. The
update of the internal state is on the other hand allowed to be more time
consuming. It can be shown that by treating a control block as two sep-
arate blocks, calculate and update, and scheduling them separately the
control performance is improved, see [Cervin, 1999].

Handling Limiters

Consider the implementation of a cascade PI-controller. Two PI-blocks are
connected in series. The first PI-controller generates the reference value
to the second PI-controller. In order to handle actuator limitations cor-
rectly, the integral states must be updated with care. The PI controller in
Example 2 has an extra output signal r2. The r2 signal is calculated in
the update procedure and is used to propagate actuator limitations back-
wards, against the data flow. The input signal r is the desired reference
signal and r2 is the reference signal modified with respect to actuator
limitations. This execution order of the blocks is illustrated in Figure 7.

80

6. On-Line Configurations

6. On-Line Configurations

PÅLSJÖ allows the block configuration to be edited without having to stop
and restart the system. This is managed by using two identical sets of
blocks called running and shadow. The running configuration is the set
of blocks that are executing and the shadow configuration is used for
editing. All commands that deal with creating blocks, moving blocks, con-
necting blocks, etc., are executed on the shadow configuration. When the
edit session is completed the shadow configuration becomes the running
configuration. The values of all internal states are copied to the shadow
configuration before it is switched in. The new shadow configuration is
now updated and turned into an identical copy of the current running
configuration.

7. Summary

The PÅLSJÖ system consists of two main parts; a compiler and a frame-
work. The compiler translates PAL code into C++ code that fits into the
framework. The framework has classes for real-time scheduling, network
interface and user interaction. The control algorithm coding is made off-
line and the system configuration is made on-line. The system may also
be reconfigured on-line without stopping the system.

Related Work

Two previous research projects at the Department of Automatic Con-
trol in Lund that have influenced this work are LICS [Elmqvist, 1985]
and Sim2DDC [Dahl, 1990]. The Simplex [Seto et al., 1998] project at
Carnegie Mellon University has inspired the support for variable struc-
ture controllers. Other interesting systems are the ControlShell frame-
work [Schneider et al., 1995], and the port based object approach built on
top of the Chimera system[Stewart et al., 1993].

8. References

Åström, K. J. and B. Wittenmark (1997): Computer-Controlled Systems,
third edition. Prentice Hall, Upper Saddle River, New Jersey.

Blomdell, A. (1997): “PAL – the PÅLSJÖ algorithm language.”. Report ISRN
LUTFD2/TFRT--7558--SE, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

81

Paper 1. A Tool for Interactive Development of Embedded Control Systems

Cervin, A. (1999): “Improved scheduling of control tasks.” In Proceedings
of the 11th Euromicro Conference on Real-time Systems. Euromicro,
Department of Automatic Control, Lund Institute of Technology,
Sweden. In Submission.

Dahl, O. (1990): “SIM2DDC—User’s manual.” Report TFRT-7443. Depart-
ment of Automatic Control, Lund Institute of Technology, Lund, Swe-
den.

David, R. and H. Alla (1992): Petri Nets and Grafcet: Tools for modelling
discrete events systems. Prentice-Hall International(UK).

Elmqvist, H. (1985): “LICS—Language for implementation of control
systems.” Report TFRT-3179. Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

Integrated Systems (1996a): AutoCode User’s Guide. Integrated Systems
Inc., 3260 Jay Street, Santa Clara, CA 95054-3309, USA.

Integrated Systems (1996b): SystemBuild User’s Guide. Integrated Sys-
tems Inc, 3260 Jay Street, Santa Clara, CA 95054-3309, USA.

Le Lann, G. (1996): “The ariane flight 501 failure - a case study in sys-
tem engineering for computing systems.” In Hand-Out European Ed-
ucational Forum School on Embedded System. European Educational
Forum.

Lewis, R. (1995): Programming industrial control systems using IEC
1131–3. The Institution of Electrical Engineers, London, U.K.

MathWorks (1997): Simulink–Real-Time Workshop. The MathWorks inc.,
24 Prime Park Way, Natick, MA 01760-1500.

Schneider, S. A., V. Chen, and G. Pardo-Castellote (1995): “The control-
shell component-based real-time programming system.” In IEEE Con-
ference on Robotics and Automation. Real-Time Innovations, Inc., 954
Aster, Sunnyvale, California 94086.

Seto, D., B. H. Krogh, L. Sha, and A. Chutinan (1998): “Dynamic con-
trol system upgrade using the simplex architechture.” IEEE Control
Systems, 18:4, pp. 72–80.

Stewart, D. B., R. A. Volpe, and P. K. Khosla (1993): “Design of dynami-
cally reconfigurable real-time software using port-based objects.”. Ad-
vanced Manipulators Laboratory, The Robotics Institute, and Depart-
ment of Electrical and Computer Engineering, Carnegie Mellon Uni-
versity.

82

Paper 2

A Flexible Interactive Environment
for Embedded Controllers

Johan Eker and Anders Blomdell

Abstract
Today embedded control systems are created using tools that give insuffi-
cient support for rapid prototyping and code reuse. New tools for the im-
plementation of embedded controllers are necessary. This paper presents
the experimental software framework PÅLSJÖ, and the language PAL. The
PÅLSJÖ system is a rapid prototyping environment designed to support
on-line system reconfigurations and code reuse. PAL is a new language,
designed for implementation of control algorithms.

83

Paper 2. A Flexible Interactive Environment for Embedded Controllers

84

1. Introduction

1. Introduction

The use of embedded control systems is growing rapidly. Nowadays ad-
vanced control systems can be found in a wide range of areas from in-
dustrial processes and aeroplanes to consumer products such as washing
machines and home stereo equipment. In everyday life computers are be-
coming more and more indispensable for assistance. Some tasks are non-
critical and may fail without dramatic consequences. If the word processor
or email software crashes it is usually not a big problem, it is simple to
reboot and carry on. On the other hand if the maneuvering systems in an
airplane malfunctions it is unlikely that the pilot will save the situation
by pressing Ctrl-Alt-Delete.

The development of embedded systems requires special tools. This
paper introduces the PÅLSJÖ framework [Eker, 1997] and the PAL lan-
guage [Blomdell, 1997]. PÅLSJÖ is an experimental rapid prototyping tool,
developed with an emphasis on code reuse and interactivity in embed-
ded systems. PAL, PÅLSJÖ Algorithm Language, is a dedicated controller
description language used for implementing controllers that will run in
PÅLSJÖ.

When developing real-time systems it is highly desirable to reuse com-
ponents and modules from one program version to another or from one
software project to another. The mixture of timing statements and logical
statements in languages such as ADA and C/C++ makes it cumbersome
to reuse code. Even if two applications share the implementation struc-
ture, code reuse is hindered by differences in timing requirements. There-
fore to better support code reuse, timing specifications are kept separate
from the control algorithm in PÅLSJÖ and PAL.

It is common to generate ADA or C/C++-code for controllers directly
from a simulation environment such as Simulink [MathWorks, 1997] or
SystemBuild [Integrated Systems, 1996a; Integrated Systems, 1996b]. The
same control algorithm description may then be used both in simulation
and in implementation. This is practical, if simulation is the main goal
and implementation is just a feature. It may however be a serious draw-
back if the main goal is to implement a safe and efficient controller. One
drawback with code generation is that it does not take into account the
fact that sampling delay can be significantly reduced by rearranging the
code, see [Åström and Wittenmark, 1997]. Another drawback is that most
simulation languages are not designed to deal with execution in real-time,
and therefore lack the necessary functionality. It would be better to use
a tool that is designed especially for controller implementations, but that
also supports simulation in some way. The requirements of a real-time lan-
guage are typically quite different from those of a simulation language.
For example, the weak typing in MATLAB, where basically everything is

85

Paper 2. A Flexible Interactive Environment for Embedded Controllers

matrices, is useful while designing and during simulations as the control
engineer does not have to worry about data types and variable allocations.
During implementation, on the other hand, strong typing and no global
variables are needed to create safe real-time systems. If a simulation fails
due to a programming error it is usually easy to correct it and restart the
simulation. However, if the controller fails during an experiment instead
it is much more time consuming and sometimes even dangerous.

The control engineer may add new types of blocks to Simulink and
use them later for code generation, but must write them C. In PÅLSJÖ

algorithms are written in PAL, which offers strong typing, high-level data-
types and well defined real-time semantics. It is easy to translate PAL-
code to MATLAB S-functions for use in simulation. To go in the other
direction is much more complicated since PAL is more strongly typed than
MATLAB. The code generated from Simulink and SystemBuild is static.
It is not possible to replace blocks or components at run-time. The whole
system must be recompiled with each change. The PÅLSJÖ environment
has a much higher level of interactivity. It allows system reconfiguration
and updates without having to restart the system. This offers the potential
of replacing algorithms while the system is operating. The authors believe
that an interactive development environment enhances the development
process and speeds up controller implementation substantially.

Updating control software is a related issue. The software in embedded
systems needs to be upgraded periodically. Since the cost for shutting
down a manufacturing cell is high, upgrading the control algorithms might
not be feasible, even if it would give better performance and cost reduction.
There is a definite need of embedded control system software that allows
on-line updates and reconfigurations. It should be possible to extend the
system with new data types and classes while it is operating. Furthermore
it should be possible to replace a running algorithm.

The PÅLSJÖ environment provides a framework designed to support on-
line configurations and code reuse. The control algorithm coding is made
off-line and the system configuration is made on-line. The system may
also be reconfigured on-line without stopping the system.

Basic Idea

Many control systems have a similar internal structure. The same kind of
building blocks are used and their internal communication follows certain
patterns. There are usually functions for:

• User interaction. The operator must be able to set and inspect
parameters and variables, make mode changes, start and stop oper-
ation, etc.

• Task management. Scheduling of real-time activities.

86

2. PAL - PÅLSJÖ Algorithm Language

• Data logging. Logging of events, signals, etc.

• Network interaction. Managing the communication with other
controllers and with the host system.

The code for these functions can only be reused if it is implemented
in a flexible, modular fashion with well defined interfaces. Modules for
a number of these basic common activities could then be arranged in a
framework. Then the user of such a framework only needs to add code
that is specific for a certain application, i.e., only the control algorithm.

Design Goals

A number of important issues were taken into account when the frame-
work was designed. The most important ones were:

• Rapid prototyping. The framework should reduce the develop-
ment time for prototype controllers.

• Code reuse and algorithm libraries. The framework must have
a structure that allows algorithms to be stored and reused.

• Expandable. It should be possible to add new features, for example
new data types to an existing system.

• On-line configurable. Changes in running setups should be al-
lowed without stops.

• Efficient execution. Neither the code size nor the execution speed
of an application built using the framework should differ from an
application built from scratch.

2. PAL - Pålsjö Algorithm Language

PAL is a block based imperative language for implementation of embed-
ded controllers. It is designed to support and simplify the coding of control
algorithms. Control algorithms can often be described as a combination of
periodic tasks and finite-state machines. PAL supports those types of algo-
rithms, the finite-state machine in form of Grafcet [David and Alla, 1992].
Furthermore, the language supports data types such as polynomials and
matrices, which are extensively used in control theory.

In this section a brief introduction will be given to the PAL language.
For a more in depth description see [Blomdell, 1997].

87

Paper 2. A Flexible Interactive Environment for Embedded Controllers

Blocks and Modules

Algorithms are described as input-output blocks. New values for the out-
put signals are calculated based on the values of the inputs, the internals
states and the parameters.

The top level concept of PAL is the module. Several blocks may be
grouped together in a module. In Example 1 the block SimplePI is declared
within the module M yBlocks. The first section is the block interface,
which here consists of two input signals y and yre f , one output signal u,
and two parameters K and Ti. The variable a is an indirect parameters,
i.e. a function of other parameters. There are also two state variables
e and I . The algorithm section comes after the interface section . The
two methods calculate and update, define the periodic algorithm of the
block.

EXAMPLE 1

module MyBlocks;
block SimplePI

y, re f : input real;
u : output real;
I :� 0.0, e : real;
K , Ti : parameter real;
h : sampling interval;
a � K ∗ h/Ti;

calculate begin
e :� re f − y;
u :� K ∗ e+ I ;

end calculate;

update begin
I :� I + a ∗ e;

end update;
end SimplePI;

end MyBlocks.

The calculate section is used to calculate output signals from input sig-
nals, and the update section is used to update the internal states. The
algorithm is divided into two parts to minimize the sampling delay, i.e.
the delay from the reading of the input signal to the writing of the output
signal, and to enable the states to be correctly updated in case of signal
limitations [Eker, 1997]. Typically the control signal is sent to the plant
after calculate is executed, but before update is executed.

88

2. PAL - PÅLSJÖ Algorithm Language

Grafcet

Grafcet [David and Alla, 1992] is a convenient and powerful tool for im-
plementing sequential algorithms. Grafcet statements are expressed in
PAL with a textual representation based on Sequential Function Charts
in IEC-1131 [Lewis, 1995]. An example of a Grafcet in PAL is shown in
Example 2.

As shown in Example 2, a block algorithm may be described using
both the calculate/update procedures and one or more Grafcets. This
is useful when an algorithm is composed of one periodic part and one
sequential part. Consider for example a hybrid controller. The control law
are conveniently expressed using Grafcet, where each step corresponds to
a sub-controller. Assume that several of the control laws used are of state
feedback type, and that all plant states cannot be measured. In this case
the states need to be estimated. It is desireable to have an estimator inside
the block, but not to have an estimator in each step. By implementing the
estimator in the calculate/update section the estimates are available
for all the control laws.

89

Paper 2. A Flexible Interactive Environment for Embedded Controllers

EXAMPLE 2
block Steps

t1, t2 : input boolean;

initial step s1;
activate a1;

end s1;

step s2;
pulse activate a2;

end s2;

action a1;
begin

. . .
end a1;

action a2;
begin

. . .
end a2;

transition from s1 to s2 when t1;

transition from s2 to s1 when t2;

calculate begin
. . .

end calculate;

update begin
. . .

end update;
end Steps;

s1

t1

s2

t2

a1

a2

3. The Pålsjö framework

Fig. 1 shows the inheritance structure of the framework using using ob-
ject diagram notation, see [Gamma et al., 1995]. The functionality of the
framework can be divided into three different parts: the User Interface
handles commands from the operator; the Network Communication trans-
mits and receives data over the network; and the Workspace Manager ad-
ministers the blocks and the block type libraries. The fourth component is
the block type library which contains the super class for all user defined
block classes, and a set of system classes used for execution.

90

3. The PÅLSJÖ framework

User
Interface

Workspace Manager

Network
Communication

Block Type
Library

Block
User

Figure 1. The framework handles the user interaction, the network communica-
tion and the block administration.

Definition of a Block

A block is the smallest programming entity in the PÅLSJÖ environment,
and is defined as a seven tuple B � 〈I , O, P, S, E, L, A〉. A block can have:

• A set of input signals I . An input signal must be connected to an
output signal. Input signals may not be assigned values in the PAL
code.

• A set of output signals O. An output signal may be connected to an
input signal.

• A set of parameters P. Parameters can only be set from outside the
block by the user or by the system. The value of a parameter cannot
be changed internally in the block.

• A set of states S, which describe the internal states of the block. A
state can only be assigned internally.

• A set of events E, which the block responds to. An event can be either
synchronous or asynchronous. Synchronous events are executed at
the next sampling instance. Asynchronous events are executed im-
mediately when they arrive. A synchronous event could, for example
be a request for a mode change in the controller. An emergency stop
event should typically be asynchronous.

• Sequential logic L, which is described by one or several Grafcets.

• An algorithm A, that describes the periodic behavior of the block. If
a block contains periodic algorithms it must be executed periodically.

To support the reuse of algorithms, the design decision was made to
separate temporal and functional specifications in the design. The basic
idea is to view PAL blocks as input-output blocks, which only need to
know at what frequency they are executed. A PAL block cannot contain
any temporal constraints, and neither can it demand synchronization. All
temporal functionality is taken care of by designated system blocks, which
handle the actual execution of the PAL blocks. Using this approach the

91

Paper 2. A Flexible Interactive Environment for Embedded Controllers

Add()

BlockTypeSystem

Calculate()

Remove()
Add()

Periodic

User Blocks

Filter

Calculate()
Update()

GetChild(int)
Remove()

Calculate()
Update()

GetChild(int)

Container

Sporadic

Update()
Calculate()Calculate()
Update()

Algorithms

Observer Controller
Calculate()
Update()

Calculate()
Update() Update()

Figure 2. A user defined block is inherited from the pre-defined class Algorithms.
Container is a super class designed to administer and encapsulate a set of blocks.
Two subclasses Periodic and Sporadic are available. They are both used for man-
aging the execution of other blocks.

programmer does not have to deal with any traditional real-time program-
ming. Furthermore it is possible for the systems to arrange the blocks so
that the execution is optimized.

The Framework and its Classes

The inheritance structure of the block type library is shown in Fig. 2. The
super block to all block classes is BlockType, which contains the basic
functionality that a class needs to be integrated into the PÅLSJÖ envi-
ronment. The subclasses implement the abstract methods Calculate and
Update(). Two subclasses from BlockType exist. One is Container, de-
signed to encapsulate other blocks and the other is Algorithms, the super
class for all user defined PAL blocks. Two subclasses from Container are
available, Periodic and Sporadic. These are used to manage the execu-
tion of PAL blocks at run-time. The inheritance structure is known as
the ‘composite pattern’ [Gamma et al., 1995]. Using Container blocks the
system supports a hierarchical structure. A block derived from Algorithm
must have a Container block as a parent in order to be executed.

Creating Blocks and Signals

In PÅLSJÖ blocks and data-types are loosely coupled to the rest of the
framework through the use of an ‘abstract factory’ pattern, see [Gamma

92

3. The PÅLSJÖ framework

Analog
In

Filter

PID

LQG

Switch Analog
Out

Figure 3. The block diagram created by the PCL commands in Example 3.

et al., 1995]. The run-time system calls the ‘block factory’ upon initializa-
tion and registers each available block type by giving a name tag and a
constructor function. The ‘block factory’ keeps a table over all registered
block types. When a client wants to create a new block it simply calls
the ‘block factory’. It is possible to register new block types and delete
old ones during execution. Hence it is possible to extend the system with-
out shutting it down. A similar factory is also used for dealing with data
types.

Block Execution

While PAL is used to describe the algorithm of a block, it cannot be used to
specify how the block shall be executed. All information that defines real-
time behavior is entered during run-time using the PÅLSJÖ Configuration
Language, PCL. Instances of the system blocks Periodic and Sporadic
are created to manage the execution. Consider the block diagram in Fig. 3.
It consists of six blocks. An analog input block followed by a pre-filter, two
controllers in parallel, a switch and an analog output block. The pre-filter
is used to reduce the noise from the measurement signal and is executed
at a higher sampling rate than the control blocks. The desired real-time
behaviors are the following:

• Execute LQG, PID, Switch and Analog Out at a slower sampling
rate.

• Execute Analog In and Filter at a higher sampling rate.

To configure the system to get the this behavior, two instances of the
system block Periodic are created, one for each sampling rate. The PCL-
commands to achieve this are the following:

EXAMPLE 3
pcl>{
pcl*> p1 = new Periodic
pcl*> p2 = new Periodic
pcl*> p1.adin = new AnalogIn

93

Paper 2. A Flexible Interactive Environment for Embedded Controllers

pcl*> p1.filter = new Filter
pcl*> p2.lqg = new LQG
pcl*> p2.pid = new PID
pcl*> p2.switch = new Switch
pcl*> p2.daout = new AnalogOut
pcl*>
pcl*> p1.adin.y -> p1.filter.u
pcl*> p1.filter.y -> p2.pid.u
pcl*> p1.filter.y -> p2.lqg.u
pcl*> p2.pid.y -> p2.switch.u1
pcl*> p2.lqg.y -> p2.switch.u2
pcl*> p2.switch.y -> p2.daout.u
pcl*> p1.tsamp = 0.010
pcl*> p2.tsamp = 0.050

The execution model used is shown in Fig. 4. The system blocks Periodic
and Sporadic are mapped down to threads in the real-time kernel. The
threads are scheduled with fixed priority scheduling.

Design Level

Periodic

Periodic
Sporadic

Execution Level

Concurrent Processes

Figure 4. The Periodic and Sporadic blocks are mapped down to threads in the
real-time kernel.

The Periodic block executes its child blocks according to the data
flow between them using a schedule automatically created on-line. All
timing and synchronization between the child blocks is taken care of by
the scheduler in the Periodic block. Since the child blocks are executed

94

3. The PÅLSJÖ framework

FilterAnalog In

Periodic

Periodic

PID

LQG

Switch Analog Out

= pass by reference = pass by value

u1
u2

y u y out

in

u

u

y

y

uy

Buffer

Buffer

Figure 5. A system with one process for down sampling the measurement signal,
and one process for the control algorithms.

sequentially no data sharing problems will arise. The data flow mecha-
nism is implemented so that unnecessary copying is avoided. Input signals
in blocks are implemented as pointers, which simply point at output sig-
nals, see Fig. 5. Thus no data needs to be copied when passing signals
from one block to another within the same Periodic block. For connected
blocks belonging to different Periodic blocks, mutual exclusion buffers
are automatically created to preserve the consistency of data.

By grouping blocks together, the execution gets more efficient. Con-
sider, for example, if each block was running as a separate process instead.
First, there would be a problem with data latency, since the processes are
running without synchronization. If all blocks execute with the same sam-
pling interval, it is be possible that data would be delayed by one sample
for each block, from input to output. Another disadvantage would be the
overhead introduced due to the context switching, when processes are
stopped and restarted.

95

Paper 2. A Flexible Interactive Environment for Embedded Controllers

4. Signal Management

PAL has a set of predefined data types. Among those are regular scalar
ones, e.g. real, integer, string. Furthermore there are aggregate types such
as arrays, matrices, and polynomials. The availability of arithmetic oper-
ations for polynomials and matrices makes it straightforward to express
control algorithms, see Example 4.

EXAMPLE 4

A : matrix [1..2, 1..2] of real;
B , x : matrix [1..2, 1..1] of real;
u : input real;
x :� A ∗ x+ B ∗ u;

The size of the aggregate data types cannot be changed from within the
PAL code. They may however be parameterized using dimension vari-
ables. Dimension is a special parameter type used for defining the sizes
of aggregate data types. The value of a dimension variable can only be
set by the runtime system. The need of a special data type for handling
sizes of aggegate data types is motivated by the need for synchronized
size changes. In a situation where an output polynomial is connected to
an input polynomial and the degrees are changed, it is necessary for this
change to be done simultaneously throughout the system. Dimension vari-
ables are used in Fig. 6 where in1 is an input array with n elements and
in2 is an array of m inputs.

in1

input real;[1..m] ofarrayin2 : [1..n] of real;

in2

n : dimension
in1 : input array

m : dimension;

1

n

1

n

Figure 6. The input signal can be declared either as an input array or as an array
of inputs. Dimension variables can be used to specify the size.

Connections

There are three types of connections in PÅLSJÖ:

1. Output signal to input signal;

96

4. Signal Management

2. Output signal to parameter;

3. Dimension to dimension.

The first type of connection is the most common. It is used to sim-
ply transfer data from one block to another during the execution of the
calculate/update-procedures.

The second type of connection is intended for adaptive systems, and is
more expensive regarding computation time. The reason for this is that it

calculation
Request

Periodic

Periodic

Parameter
Server

Output
to parameter

Calculate
indirect

parameters

Figure 7. To handle connections of the type "output to parameter", special care
must be taken. In PÅLSJÖ a special process, the Parameter Server process is used
to handle this.

is possible to define parameters as functions of other parameters. When
the output signals of the source block change, the parameters in the target
blocks must be updated. However, before the new parameters can be used
by the target block, all indirect parameters must be calculated. This may
be a time consuming operation and cannot be performed by the block itself,
since the extra computation time could cause deadlines to be missed.

In PÅLSJÖ when a parameter receives a new value from an output
signal, it sends a request to the ‘parameter server’, which then becomes
responsible for calculating the indirect parameters, see Fig. 7. The ‘param-
eter server’ runs at a lower priority than the Periodic/Sporadic tasks
and signals going via the ‘parameter server’ will be delayed. This is usu-
ally not a problem since this type of connection is designed for adaptive
systems where the adaptation loop is allowed to be much slower than the
feedback loop, see [Åström and Wittenmark, 1995].

The third type of connection is dimension to dimension. The dimen-
sion parameters of one or more PAL blocks may be connected to a global
dimension variable. When the global dimension variable changes, all local

97

Paper 2. A Flexible Interactive Environment for Embedded Controllers

LQG

1.

2.

3.

4.

5.

Filter

PID

LQG

Switch DAoutADin

ADin Filter

PID

LQG

Switch DAout

DAoutSwitch

LQG

PID

FilterADin

ADin Filter

PID

LQG

Switch DAout

PID

GPC

FilterADin DAoutSwitch ADin Filter

PID

GPC

Switch DAout

ADin Filter

PID

GPC

Switch DAout

FilterADin

PID

Switch DAout

Switch DAout

PID

FilterADin

ADin Filter

PID

LQG

Switch DAout

GPC

Switch
Copy variables

Update shadow

delete LQG

new GPC

running

running

running

running

running

Figure 8. The internal structure during an edit session where one block is re-
placed by another.

dimension variables connected to it are updated. This update is made syn-
chronously throughout the system. There is no restriction in what data
types that may be used in connections of type one and two.

5. On-line Configurations

PÅLSJÖ allows the block configuration to be edited without having to
stop and restart the system. It is handled by using two identical sets of
blocks called running and shadow. The running configuration is the set of

98

6. Conclusion

blocks that are executing and the shadow configuration is used for editing.
All commands that deal with creating blocks, moving blocks, connecting
blocks, etc., are done on the shadow configuration. When the edit session
is completed the shadow configuration becomes the running configuration.
The values of all internal states are copied to the shadow configuration
before it is switched in. The new shadow configuration is now updated
and turned into an identical copy of the current running configuration.
The copying of variables could become a problem if the data set is large.
A better solution would be to pass a reference to the data set, thus making
the switch independent of the size of the data set.

An edit session is shown in five steps in Fig. 8. Step one shows the
initial state of the system. There are two identical copies of the block
configuration. In step two the LQG block is deleted by the user. This
operations only affects the shadow configuration at this stage. A new block
called GPC is allocated and connected in step three. Now the shadow
configuration is a correct and executable configuration. In step four a
switch is made and the shadow configuration now becomes the running
configuration. Before the switch is performed the values of all variables
are copied from the running configuration to the shadow configuration.
Finally the new shadow configuration is updated in step five.

6. Conclusion

The design of PÅLSJÖ has been inspired and influenced by a number tools.
System descriptions in PÅLSJÖ are block oriented, similar to how systems
are described in the simulation environments Simulink/Real-time Work-
shop and SystemBuild/Autocode. Complex controllers are formed by com-
bining a number of basic building blocks. Many features in PÅLSJÖ were
inspired by LICS [Elmqvist, 1985] and SIM2DDC [Dahl, 1990], both pre-
vious research projects at the Department. Ideas from the Simplex [Seto
et al., 1998] project on fault tolerant controllers have also influenced
this work. Another interesting tool is ControlShell [RealTimeInnovations,
1995], a C++-class library combined with graphical editors.

The authors believe the goals stated in Section 1 have been reached
with the PÅLSJÖ framework. The on-line configuration feature has however
created a new set of problems. First the current switching mechanism is
too crude. It is necessary to give the control engineer more power to specify
how the switch shall be performed. There are also a number of other
problems that have to be faced. For example, is it possible to predict the
consequences of replacing one real-time task with another? Will all tasks
still be schedulable in the new configuration, and if so, how will the system
behave during the actual switching of the tasks? How can controllers be

99

Paper 2. A Flexible Interactive Environment for Embedded Controllers

designed so that they can be switched in and out without problems? The
next step is to address some those issues. Better language is needed for
writing controllers that can be switched in and out by a supervisor.

PÅLSJÖ is currently available for Motorola 68000 VME, Power PC VME
and Windows NT. PÅLSJÖ is implemented on top of the STORK real-time
kernel [Andersson and Blomdell, 1991]. STORK is a public domain real-
time kernel available for Windows NT, Motorola 68000, Motorola Power
PC and Sun Solaris 2.x. The real-time performance achieved on a Motorola
68040 are sampling intervals of around 5 milliseconds. The Power PC
version is about 10-100 times faster.

7. Acknowledgment

This work was sponsored by National Swedish Board of Technical Devel-
opment (NUTEK) under contract P9040-2. The authors wish to thank the
anonymous reviewers for valuable comments.

8. References

Andersson, L. and A. Blomdell (1991): “A real-time programming envi-
ronment and a real-time kernel.” In Asplund, Ed., National Swedish
Symposium on Real-Time Systems, Technical Report No 30 1991-06-
21. Dept. of Computer Systems, Uppsala University, Uppsala, Sweden.

Åström, K. J. and B. Wittenmark (1995): Adaptive Control, second edition.
Addison-Wesley, Reading, Massachusetts.

Åström, K. J. and B. Wittenmark (1997): Computer-Controlled Systems,
third edition. Prentice Hall, Upper Saddle River, New Jersey.

Blomdell, A. (1997): “The PÅLSJÖ algorithm language.”. Master’s thesis,
Department of Automatic Control, Lund Institute of Technology.

Dahl, O. (1990): “SIM2DDC—User’s manual.” Report TFRT-7443. Depart-
ment of Automatic Control, Lund Institute of Technology, Lund, Swe-
den.

David, R. and H. Alla (1992): Petri Nets and Grafcet: Tools for modelling
discrete events systems. Prentice-Hall International(UK).

Eker, J. (1997): A Framework for Dynamically Configurable Embedded
Controllers. Lic Tech thesis ISRN LUTFD2/TFRT--3218--SE, Depart-
ment of Automatic Control, Lund Institute of Technology, Lund, Swe-
den.

100

8. References

Elmqvist, H. (1985): “LICS—Language for implementation of control
systems.” Report TFRT-3179. Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

Gamma, E., R. Helm, J. R., and J. Vlissides (1995): Design Patterns-
Elements of Reusable Object-Oriented Software. Adison-Wesley, Read-
ing, Massachusetts.

Integrated Systems (1996a): AutoCode User’s Guide. Integrated Systems
Inc., 3260 Jay Street, Santa Clara, CA 95054-3309, USA.

Integrated Systems (1996b): SystemBuild User’s Guide. Integrated Sys-
tems Inc, 3260 Jay Street, Santa Clara, CA 95054-3309, USA.

Lewis, R. (1995): Programming industrial control systems using IEC
1131–3. The Institution of Electrical Engineers, London, U.K.

MathWorks (1997): Simulink–Real-Time Workshop. The MathWorks inc.,
24 Prime Park Way, Natick, MA 01760-1500.

RealTimeInnovations (1995): ControlShell–Object–Oriented Framework
fro Real–Time System Software. Real-Time Innovations, Inc., 155A
Moffet Park Drive, Suite 111, Sunnyvale, CA 94089, USA.

Seto, D., B. H. Krogh, L. Sha, and A. Chutinan (1998): “Dynamic con-
trol system upgrade using the simplex architechture.” IEEE Control
Systems, 18:4, pp. 72–80.

101

Paper 2. A Flexible Interactive Environment for Embedded Controllers

102

Paper 3

A Contract-Based Language for
Embedded Control Systems

Johan Eker and Anders Blomdell

Abstract
The paper presents a new proposed block-oriented language called Friend,
designed for the implementation of flexible and adaptive embedded con-
trol systems. Requirements on a controller block and its performance as a
function of available resources are specified using contracts. A Friend con-
trol system is arranged in a hierarchical structure, where a parent-block
is responsible for distributing resources to its child-blocks. The use of
contracts simplifies the design and implementation of embedded systems
that can adapt to altered operating conditions. The contracts allow the sys-
tem to negotiate about resources, and redistribute them when necessary.
Friend addresses the implementation of systems with adjustable quality
of service-levels and the implementation of hybrid controllers. Friend is
illustrated in the paper by two examples.

103

Paper 3. A Contract-Based Language for Embedded Control Systems

104

1. Introduction

1. Introduction

Embedded control systems of today are generally not very flexible. They
are often designed in an ad-hoc fashion, and the functionality is veri-
fied through testing. This makes them very sensitive to changes in the
operating conditions, for example, decreased network bandwidth or less
available CPU power. From a control-engineering point of view, the control
tasks run in open loop, i.e. there is no feedback between the control tasks
and the underlying real-time kernel. The purpose of feedback in automatic
control is to adjust the control signal to accommodate for the control er-
ror. The same principle could be applied to real-time systems by viewing
the resource-allocation level as the process output, and the priority of the
tasks as the control signal. This paper proposes a controller description
language, FRIEND, designed to support implementation of adaptive and
flexible real-time control systems. The objectives of the FRIEND-project
are to give good high-level support for flexible control systems, and to
simplify the design of embedded systems with quality of service reason-
ing and feedback scheduling. A controller in FRIEND is associated with
a contract, which specifies how the controller performance depends on
the available resources. This information may be used by a supervisor to
distribute resources to optimize the system in some respect. The FRIEND

language also addresses the implementation of so called hybrid control
systems, see [Branicky et al., 1998]. A hybrid controller consists of a set
of sub-controllers and a supervisor that selects which sub-controller to be
active. The decision of the supervisor is based on so called switching rules,
which in FRIEND are conveniently expressed in terms of contracts.

The paper is organized as follows. Section 2 gives some motivation and
overview of related work. The concept of FRIEND is presented in Section 3
and the outline of the language is presented by two examples in Section 4.
A summary is then given in Section 5.

2. Related Work

How can software be designed so that it can reconfigure itself, and load
and unload software modules on-line in order to cope with changes in
the environment? Such an adaptive behavior could prove useful in an
embedded control system. The number of real-time tasks, the available
resources and the usage thereof would then be allowed to change with
time. A simple example of such a scenario, is an embedded control system
where new control loops are added from time to time. Since it is a real-
time system, care must be taken to ensure that enough computing and
network resources are available for all tasks. A change in the task set re-

105

Paper 3. A Contract-Based Language for Embedded Control Systems

quires the task schedule to be recomputed. By introducing a feedback loop
between the control loops and the kernel, an adaptive real-time system
can be formed. Figure 1 illustrates this setup. The real-time scheduler

validity
&Available

resources

Real-Time
Scheduler

Performance

Inputs signals Output signals

Controller

Figure 1. An adaptive real-time systems is formed by introducing a feedback loop
between the real-time kernel and the tasks.

distributes system resources among the controllers, based on informa-
tion given by the controllers. The inputs to the feedback scheduler from
the control tasks are, for example, performance measurements, which in-
dicate how well the tasks are working, and resource requirements, for
example, CPU utilization. The output signals from the scheduler are the
sampling frequencies of the control loops. By adjusting the sampling rates,
the feedback scheduler can protect the system from overload. An example
of a feedback scheduler is found in [Stankovic et al., 1999].

A related language is FLEX, see [Natarajan and Lin, 1988], which
supports the implementation of flexible real-time systems by introducing
imprecise computations and constraint blocks. The body of a constraint
block is executed only if the constraint is fulfilled, otherwise an excep-
tion is raised. A constraint may specify resource or timing requirements.
FLEX allows the user to specify imprecise computations within a con-
straint block, and the run-time system then decides on a suitable precision
level, that will not violate the constraint.

There are several existing software systems that are adaptive in one
way or another. For example, RTPOOL [Abdelzaher et al., 1997] allows
the real-time processes to negotiate about system resources. Quality of
service functions are associated with each process, and are used by the
run-time system to optimize the global performance. Related work is found
in [Andersson, 1999], where a framework for an adaptive multiprocessor
system is suggested. The Rialto operating system [Jones et al., 1995],
from Microsoft Research, negotiates with its applications and distributes
resources to maximize the performance of the entire system. The ALTAS
testbed [Jehuda and Berry, 1995] implements a top-layer approach for
handling dynamic job loads. The FARA framework [Rosu et al., 1998] is
designed for adaptive resource allocation. There are software components
that represents the resources or the tasks, and they negotiate in order

106

3. Friendly Concepts

to distribute the available resources. In [Krasner and Bernard, 1997] the
design of the NASA deep-space mission software is described. Depending
on the phase of the mission, the goals change and software modules are
added or removed.

The ideas behind contracts have been adopted from [Helm et al., 1990]
and [Meyer, 1992]. A related architectural software pattern is the Broker
pattern, see [Buschman et al., 1996]. The Broker pattern is used for de-
signing software with loosely coupled components which may be added or
removed during run-time.

E

G

A

FC D

B

Figure 2. The hierarchical structure of a real-time control system designed in
FRIEND. The blocks C, D, F, and G are control tasks, and blocks A, B, and E are
supervisors.

3. Friendly Concepts

Flexible control systems may in FRIEND be designed in a hierarchical
fashion, where the resources are distributed in a top-down manner. A
block has one parent-block and possibly several child-blocks. It requests
resources from its parent blocks, and distributes them among its child-
blocks. Each block has one or more contracts with its parents-block that
it must fulfill. This hierarchical structure is illustrated in Figure 2. The
top level block A is assigned all available system resources and divides
them between blocks B and E, by inspection of their contracts. Blocks B
and C will then themselves distribute their alloted resources among their
child-blocks. The contracts allow the parent-blocks to reason about how
resources are best distributed. The blocks A, B, and E are negotiator -
blocks. They allocate resources from their parent-block and divide them
among their child-blocks. In Figure 2 only the blocks at the bottom level
are actual control tasks, they are so called algorithm-blocks.

All blocks have an interface, which defines how the block communicates
with the world, i.e. the format of its input and output signals. A block

107

Paper 3. A Contract-Based Language for Embedded Control Systems

may have none or several interfaces. The blocks C and D in Figure 3 may
communicate with each other or with the world, but then only through the
interface of block B. The interface of B may be viewed as the gateway to
the rest of the system, for the blocks in B. In Figure 3, block B is assigned
some Analog IO- and network-ports, and may divide them among its child
blocks. The two child-blocks of B can be either algorithm or negotiator
blocks, depending what type of controller block B is implementing.

All AnalogIO ports
All Network ports

C D

B

A

All Available
System Resources

Network bandwidthEx. CPU,

Signals

Some AnalogIO ports
Some Network ports
Some CPU Share
Some Network Bandwidth

Figure 3. The resources of the system are distributed in a top-down fashion. The
top block A contains all hardware specific information.

An Example

Consider a second order system, controlled by a hybrid controller with
two sub-controllers. Which sub-controller to use, depends on the current
position in the state space. Figure 4(a) shows how the state space is par-
titioned into two sectors, each corresponding to a controller mode, R1 or
R2. Assume that the controller is doing well in the first and the third
quadrants, but not so well in the second and fourth. The control engineer
wants to improve the performance by adding two more controllers, one for
the second quadrant and one for the fourth. How can this refinement pro-
cess be made as simple and straightforward as possible? If the switching
rules are implemented using automata all transitions must be altered.
If, instead, each controller is associated with a contract, describing how
well the controller operates at a certain point in the state space, the task
of the supervisor would be to evaluate the contracts and select the best
suited controller. If a new controller is added on-line, its contract is sim-
ply handed to the supervisor, which may now include it in the selection
process. The contract approach to switching rules is well suited for in-

108

4. The FRIEND Language

x2

x1

x2

x1

R1

R2

R3

R4

R1

R2

b.)a.)

Figure 4. The switching rules for a hybrid controller are expressed as sectors in
the states space. To the left the state space is divided between two controllers R1
R2, and to the right two more sub-controllers have been added.

cremental changes. Figure 4(b) shows how the state space is partitioned
after two more sub-controllers are added.

System Resources

The only block in the hierarchy in Figure 2 that has any hardware specific
information is block A. All the other blocks see the world through the eyes
of block A. This means that it may be possible to write controller code
that is parameterized in terms of the hardware. Instead of giving the
execution times directly in seconds a more measure could be used. The
task scheduling and resource allocation of the underlying real-time kernel
are hidden from the user through the specifications of the top negotiator.
A negotiator block may be viewed as a virtual computer, with a set of
available resources.

4. The Friend Language

Does the world really need another language, and why cannot the pro-
posed structure with contracts and negotiators be implemented using, for
example, Java? The answers to those questions lie in what we are trying
to achieve with FRIEND. The goal is to design a language that gives good
support in writing adaptive control applications using contracts. In the
same way that you could write object-oriented code in plain C, or write
numerical software in Cobol, contract based control software can be im-
plemented in the language of your choice. We believe, however, that the
quality of the resulting application will be higher if the design paradigm
and the implementation paradigm are the same. Hence the introduction
of a new programming language. This section gives an introduction to
FRIEND, and the syntax of the language is presented by examples.

109

Paper 3. A Contract-Based Language for Embedded Control Systems

algorithm negotiatior

block

Figure 5. The block, the algorithm and the negotiator are the three types of block
in FRIEND.

The Components

FRIEND is a small block based imperative language, and is a continuation
of the PAL/PÅLSJÖ-project, see [Eker, 1997] [Blomdell, 1997]. In FRIEND

there are four main components:

• The Algorithm An algorithm is a block that calculates new output
signals given new input signals. The actual controller code is divided
into two block-methods calculate and update. An algorithm block
may consist of a set of sub-blocks of algorithm type.

• The Negotiator A Negotiator is a block that consumes and dis-
tributes resources. A negotiator may consist of a set of sub-blocks,
which may be either algorithm blocks or negotiator blocks.

• The Contract A contract specifies how a block depends on available
resources. A possible parent-block may require that a block fulfills
a specified contract before it adopts it.

• The Interface An interface specifies how a block interacts with
other blocks, i.e. the format of the input- and output-signals and of
the parameters.

The two types of blocks, algorithm and negotiator, have the same abstract
superblock, see Figure 5. The relation between the FRIEND components
are shown in Figure 6. The labels on the arcs are the keywords used for
connecting the components. For example, a negotiator may arbitrate con-
tracts belonging to its child blocks, but also fulfill contracts with its parent
block. A contract may require that the block that fulfills the contract has
a certain interface. The FRIEND language is demonstrated below by two
examples.

A Hybrid Controller

A hybrid controller consists of a combination of several different control
strategies. Figure 7 shows an example of a hybrid control system. The

110

4. The FRIEND Language

Negotiator

Contract

Interface

fulfills fulfills

arbitratesimplements

Algorithm

implements
requires

extends

extends

Figure 6. The relations of the Friend language components.

supervisor is used to select which sub-controller that should be active, and
typically only one controller is affecting the plant at each point in time.
The supervisor uses a set of switching rules to decide when to change
the active controller. Consider an example with a hybrid controller, where

C 1

C 2

...

C i

C m

u 1

u 2

u i

u m

η

u y

supervisor

process

Figure 7. A hybrid controller consists of several sub-controllers Ci. A supervisor
is used for selecting which control signal u � uη , to be fed to the process.

each sub-controller is associated with a function V . The idea is to use the
controller corresponding to the smallest value of the function V . For more
on this switching criterion see [Malmborg, 1998]. This hybrid controller
is implemented in block B, which consists of the two sub-controllers C
and D, see Figure 2. Block B is a negotiator-block and block C and D are
algorithm-blocks. Block B decides when and how the blocks C and D shall
execute. Example 1 shows the outline of the FRIEND-code for such a hybrid
controller.

111

Paper 3. A Contract-Based Language for Embedded Control Systems

EXAMPLE 1

interface SISO {
y, yre f : input real;
u : output real;

}

The SISO interface defines a block interface with two input signals
and one output signal. The signals may at run-time be connected to
input and output signals of other blocks.

interface MISO extends SISO {
y2 : input real;

}

The SISO interface is extended with an additional input signal and
given the name MISO.

interface PI_pars {
K, Ti : parameter real;

}

As shown in PI_pars an interface may also define block parameters.

contract C1 {
negotiates sampling_interval : duration;

WCET : duration;
QoS : real;

(sampling_interval) =→ QoS;
requires invocation < WCET ;

}

The contract C1 requires that any block that fulfills it agrees with the
following:

• The duration of an invocation must be less than WCET seconds.
If the duration of an invocation exceeds WCET an exception will
be raised and the parent block will be notified.

• A relation between the sampling interval and the quality of ser-
vice (QoS) must be given in the block.

contract C2 extends C1 {
requires V : real;
requires interface io : MISO;

}

112

4. The FRIEND Language

The contracts C1 is extended to also require that:

• The MISO interface must be implemented.

• There must be an expression for calculating V.

algorithm PI {
I :� 0.0 : state real;
implements io : SISO;

pars : PI_pars;
calculate {

io.u :� pars.K*(io.yre f -io.y) + I;
}
update {

I :� I + pars.K/pars.Ti*(io.yre f -io.y);
}

}

The implementation of the PI-controller is divided into two parts: cal-
culate and update. An algorithm block calculates new output signals
based on the input signals, the states, and the parameters, and these
calculations must always be implemented in calculate and update.
The block PI implements two interfaces, one for communicating with
the process and one for retrieving controller parameters.

negotiator B {
active : block;
implements io : MISO;
fulfills myContract : C2 {

QoS � active.QoS(sampling_interval);
WCET � max(myBlocks.WCET);
V � active.V;

}
arbitrates myBlocks[] : algorithm that

fulfills C2 {
every myContract.sampling_interval {

∀i, myBlocks[i].io � io;
active :� find_min(myBlocks[i].V);
active.calculate;
io � active.io;
active.update;

}
}

}

113

Paper 3. A Contract-Based Language for Embedded Control Systems

Negotiator B accepts child blocks that fulfill the contract of type C2.
At the beginning of every sampling interval the interfaces of all the
child blocks are updated with new input values via the interface of B.
The active sub-controller is then selected as the child-block with the
smallest value of V (the function find_min is assumed to be available).
The new output signal of B is given as the output signal from the
active sub-controller.

algorithm C extends PI {
α , β : parameter real;
implements io2 : MISO {

io2.u � io.u;
io.y � io2.y;
io.yref � io2.yref;

}
fulfills myContract : C2(io2 =→ io) {

QoS � α + β ∗ sampling_interval2;
V � (io2.y1 − io2.yre f)2 + (io2.y2 − io.yre f)2;
WCET � . . .;

}
}

Block C extends the PI -block by adding a contract. This is an example
of how a control algorithm may be separated from application-specific
information through use of contracts. All information that is related
to the implementation of this specific hybrid controller is found in the
contract. Note that y2 is not used by the PI block.

A System with Feedback Scheduling

Consider a system where several control loops are executing on the same
hardware. Furthermore, let the number of loops vary with time. Fig-
ure 8 illustrates this system. The CPU-consumption of a controller may
be changed by adjusting its sampling frequency. The problem is twofold.
First, the system must be kept schedulable, in spite of the changes in
workload due to tasks arriving or tasks changing modes.

Secondly, the global control performance of the system should be op-
timized. This can be done by associating a cost function QoSi, with each
controller. The cost function indicates how the control performance de-
pends on the level of alloted resources. The task of the parent-block is to

114

4. The FRIEND Language

u1 y1 u2 y2 un yn

Ctrl#1 Ctrl#2 Ctrl#n

Plant#1 Plant#2 Plant#n

Negotiation

Block E

Figure 8. Several control loops execute at the same CPU, and are competing for
the computing resources. If the number of control tasks change during run-time,
the task schedule must be recalculated in order to avoid overload.

optimize the overall control performance, i.e.

min QoS �
n∑

i�1

QoSi,

and still keep the system schedulable. The outline of the FRIEND-code for
this system is presented in Example 2 below.

EXAMPLE 2

contract C3 extends C1 {
negotiates dQoS : real;

(sampling_interval) =→ (dQos);
requires interface io : SISO;

}

The contract C1 is extended with a new relation which specifies how
the sampling interval affects dQoS, which is the derivative of the QoS
with respect to the sampling interval.

negotiator E {
implements io[] : SISO;
fulfills myContract : C1 {

QoS � ∑ myBlocks.QoS;
WCET � . . .;

115

Paper 3. A Contract-Based Language for Embedded Control Systems

}
arbitrates myBlocks[] : algorithm that

fulfills C3 {
on resourceChange {

n :� length(myBlocks);
. . .
calculate H
. . .
myBlocks.sampling_interval � H;

}
on new Blocks[] : algorithm {

. . .
calculate H
. . .
Blocks[i].sampling_interval � H;
Blocks[i].io � io[i];
schedule(Blocks);

}
on delete Blocks[] : algorithm {

. . .
}

}
}

}

Negotiator E implements an array of interfaces. The actual size is de-
termined at run-time and depends on available resources. It accepts
blocks that fulfill contracts of type C3. The main difference between
block B and E is that the child blocks of E execute concurrently. The
task of block E is to distribute available computing resources. It deter-
mines the sampling intervals for its child-blocks through inspection of
their contracts. By using the relations between the sampling interval
and the quality of service, it may optimize the system with respect
to available computing resources. The actual calculations of the new
sampling intervals H are however omitted. Block E listens to three
events, resourceChange, new Block and delete Block, which are caused
by the run-time system. The event resourceChange is caused when the
resources available for block E changes. The events new Blocks and
delete Blocks are caused when blocks are added or removed. When
the events occur, new sampling intervals are calculated for the child-
blocks. The new blocks are then started by the schedule procedure,
and will execute as periodic threads.

116

5. Summary

algorithm F extends PI {
α , β : parameter real;
fulfills myContract : C3 {

QoS � α + β ∗ sampling_interval2;
dQoS � 2 * β ∗ sampling_interval;

}
}

Block F extends the PI algorithm by adding a contract.

5. Summary

This paper outlines the language FRIEND which is designed for the im-
plementation of flexible, embedded control systems. The main goal is to
support systems with an adaptive quality-of-service level and systems
with feedback scheduling. The main idea is to separate the controller
block into different parts that carry specific information, i.e. the actual
algorithm, the contract, the interface, and the negotiator. The algorithm
describes an input-output block. The contract describes how and when
the controller should be used. The interface describes how the controller
is connected to the environment. Contracts are suitable for expressing
the demand and performance of a control algorithm. The negotiator allo-
cates and distributes resources. The top negotiator contains all platform-
and hardware-specific information. The run-time system is responsible for
checking and evaluating contracts. It is assumed that there are underly-
ing mechanisms that support dynamic linking of block code in real-time.

There are currently no FRIEND compiler available, and it is most likely
that the language will evolve during the implementation. This paper only
discusses the contract aspects of FRIEND. The rest of the language is very
similar to PAL, and FRIEND may be viewed as ’PAL with contracts’. FRIEND

is not intended as a general real-time language, but instead as a tool that
will support the incorporation of adaptive behavior in embedded control
systems.

6. References

Abdelzaher, T., E. Atkins, and K. Shin (1997): “QoS negotiation in real-
time systems, and its application to flight control.” In Proceedings of

117

Paper 3. A Contract-Based Language for Embedded Control Systems

the IEEE Real-Time Systems Symposium.

Andersson, B. (1999): “Adaption of time-sensitive tasks on shared mem-
ory multiprocessors: A framework suggestion.”. Master’s thesis 777,
Department of Computer Engineering, Chalmers University of Tech-
nology.

Blomdell, A. (1997): “PAL – the PÅLSJÖ algorithm language.”. Report ISRN
LUTFD2/TFRT--7558--SE, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

Branicky, M. S., V. S. Borkar, and S. K. Mitter (1998): “A unified
framework for hybrid control: Model and optimal control theory.” IEEE
Trans. Automatic Control, 43(1), p. 31.

Buschman, F., R. Meunier, P. Rohnert, H. Sommerlad, and M. Stal (1996):
A System of Patterns-Pattern Oriented Software Architechture. Wiley,
Chichester, West Sussex.

Eker, J. (1997): A Framework for Dynamically Configurable Embedded
Controllers. Lic Tech thesis ISRN LUTFD2/TFRT--3218--SE, Depart-
ment of Automatic Control, Lund Institute of Technology, Lund, Swe-
den.

Helm, R., I. M. Holland, and D. Gangopadhyay (1990): “Contracts:
Specifying Behavioral Compositions in Object-Oriented Systems.” In
Proceedings of the OOPSLA/ECOOP ’90 Conference on Object-oriented
Programming Systems, Languages and Applications, pp. 169–180.
Published as ACM SIGPLAN Notices, volume 25, number 10.

Jehuda, J. and D. Berry (1995): “A top layer design approach for adaptive
real-time software.” In IFAC Real Time Programming. IFAC, Fort
Lauderdale.

Jones, M. B., P. J. Leach, R. P. Davis, and J. S. Barerra III (1995): “Mod-
ular real-time resouce management in the rialto operationg system.”
Technical Report MSR-TR-95-16. Microsoft Research, Advanced Tech-
nology Division, Microsoft Corpration, One Microsoft Way, Redmond,
WA 98052.

Krasner, S. M. and D. E. Bernard (1997): “Integrating autonomy technolo-
gies into an embedded spacecraft system-flight software system engi-
neering for new millennium.” In Aerospace Conference, vol. 2, pp. 409–
420. IEEE.

Malmborg, J. (1998): Analysis and Design of Hybrid Control Systems.
PhD thesis ISRN LUTFD2/TFRT--1050--SE, Department of Auto-
matic Control, Lund Institute of Technology, Lund, Sweden.

118

6. References

Meyer, B. (1992): “Applying “design by contract”.” Computer, 25:10,
pp. 40–51.

Natarajan, S. and K. Lin (1988): “FLEX: towards flexible real-time pro-
grams.” In Proceedings of the International Conference on Computer
Languages. IEEE.

Rosu, D., K. Schwan, and S. Yalamanchili (1998): “Fara - a framework
for adaptive resource allocation in complex real-time systems.” In
Proceedings of the 4th IEEE Real-Time Technology and Applications
Symposium, pp. 79 –84. IEEE.

Stankovic, J., C. Lu, and S. Son (1999): “The case for feedback control real-
time scheduling.” In Proceedings of the 11th Euromicro Conference on
Real-Time Systems, pp. 11–20.

119

Paper 3. A Contract-Based Language for Embedded Control Systems

120

Paper 4

A Feedback Scheduler for Real-time
Controller Tasks

Johan Eker, Per Hagander and Karl-Erik Årzén

Abstract
The problem studied in this paper is how to distribute computing re-
sources over a set of real-time control loops in order to optimize the total
control performance. Two subproblems are investigated: how the control
performance depends on the sampling interval, and how a recursive re-
source allocation optimization routine can be designed. Linear quadratic
cost functions are used as performance indicators. Expressions for calcu-
lating their dependence on the sampling interval are given. An optimiza-
tion routine, called a feedback scheduler, that uses these expressions is
designed.

121

Paper 4. A Feedback Scheduler for Real-time Controller Tasks

122

1. Introduction

1. Introduction

Control design and task scheduling are in most cases today treated as
two separate issues. The control community generally assumes that the
real-time platform used to implement the control system can provide de-
terministic, fixed sampling periods as needed. The real-time scheduling
community, similarly, assumes that all control algorithms can be modeled
as periodic tasks with constant periods, hard deadlines, and known worst
case execution times. This simple model has made it possible for the con-
trol community to focus on its own problem domain without worrying how
scheduling is being done, and it has released the scheduling community
from the need to understand how scheduling delays impact the stability
and performance of the plant under control. From a historical perspec-
tive, the separated development of control and scheduling theories for
computer based control systems has produced many useful results and
served its useful purpose.

Upon closer inspection it is, however, quite clear that neither of the
above assumptions need necessarily be true. Many of the computing plat-
forms that are commonly used to implement control systems, are not able
to give any deterministic guarantees. This is especially the case when
commercial off-the-shelf operating systems are used. These systems are,
typically, designed to achieve good average performance rather than high
worst-case performance. Many control algorithms are not periodic, or they
may switch between a number of different fixed sampling periods. Con-
trol algorithm deadlines are not always hard. On the contrary, many con-
trollers are quite robust towards variations in sampling period and re-
sponse time. It is in many cases also possible to compensate for the varia-
tions on-line by, e.g., recomputing the controller parameters, see [Nilsson,
1998]. It is also possible to consider control systems that are able to do a
tradeoff between the available computation time, i.e., how long time the
controller may spend calculating the new control signal, and the control
loop performance.

For more demanding applications, requiring higher degrees of flex-
ibility, and for situations where computing resources are limited, it is
therefore motivated to study more integrated approaches to scheduling of
control algorithms. The approach taken in this paper is based on dynamic
feedback from the scheduler to the controllers, and from the controllers
to the scheduler. The idea of feedback has been used informally for a
long time in scheduling algorithms for applications where the dynam-
ics of the computation workload cannot be characterized accurately. The
VMS operating system, for example, uses multi-level feedback queues to
improve system throughput, and Internet protocols use feedback to help
solve the congestion problems. The idea of feedback has also been ex-

123

Paper 4. A Feedback Scheduler for Real-time Controller Tasks

Feedback
Scheduler Sampling Rates

Desired Load

Performance
Exec. Times

Figure 1. New sampling rates are calculated based on the desired CPU load, the
execution times of the controllers, and the performance of the controllers.

ploited in multi-media scheduling R&D, recently, under the title of quality
of service (QoS).

In this paper we want to schedule a set of real-time control loops to
maximize their total performance. The number of control loops and their
execution times may change over time and the task schedule must hence
be adjusted to maintain optimality and schedulability. Since the optimizer
works in closed loop with the control tasks, it is referred to as a feedback
scheduler. The feedback scheduler adjusts the control loop frequencies to
optimize the control performance while maintaining schedulability. The
input signals are the performance levels of each loop, their current ex-
ecution times, and the desired workload level, see Figure 1. To design
such a feedback scheduler two problems are studied. The first is to find a
suitable performance index and calculate how it depends on the sampling
frequency. The second problem is to design an optimization routine. It
is assumed that measurements or estimates of the execution times and
system workload are available from the real-time kernel at run-time.

As a performance index, a linear quadratic (LQ) formulation is used.
The controllers are state feedback algorithms designed to minimize this
quadratic cost function. The performance index is calculated as a func-
tion of the sampling interval. Given this control performance indicator
an optimization routine is designed. The optimization routine aims at
finding the control performance optimum, given a desired CPU utiliza-
tion level (workload) and the execution times for the tasks. The global
cost function that should be minimized consists of the sum of the cost
function of each control loop. The minimization is performed subject to
a schedulability constraint. The minimization of the global cost function
constitutes a nonlinear programming problem. The solution of this prob-
lem is facilitated by the knowledge of the first and second derivatives of
the cost functions with respect to the sampling rate. Expressions for the
derivatives are calculated and used in the optimization.

Using a feedback scheduling strategy it is now possible to design real-
time control systems that are more robust against uncertainties in exe-
cution times and workload. When a control task performs a mode change
and this leads to a change in its execution time the feedback scheduler
adjusts the sampling frequencies so that the system remains schedulable.

124

2. Integrated Control and Scheduling

Deadlines may be missed if a change in execution time causes the
system to overload. In such a situation, the feedback scheduler adjusts the
sampling rates to regain schedulability, but deadlines may, however, still
be missed. If the feedback scheduler, instead, is aware of a forthcoming
mode change, it could avoid an overload by changing the sampling rates in
advance. This can be dealt with by establishing a communication channel
between the feedback scheduler and the control tasks. The control tasks
notify the feedback scheduler, by sending a request, prior to a mode change
and may not proceed with the mode change until given permission to do
so. The module that handles this is called the admission controller. It is
also responsible for handling the arrival of new tasks and the termination
of old tasks. Figure 2 shows a block diagram of the feedback scheduler
with the admission controller.

Outline

An overview of related work is given in Section 2. Section 3 defines the
problem, and the LQ-based cost function calculation are presented in Sec-
tion 4. Section 5 describes the design of the feedback scheduler.

2. Integrated Control and Scheduling

In order to achieve on-line interaction between control algorithms and the
scheduler a number of issues must be considered. Control design methods
must take schedulability constraints into account. It must be possible to
dynamically adjust task parameters, e.g., task periods, in order to com-
pensate for changes in workload. It can also be advantageous to view the
task parameters adjustment strategy in the scheduler as a controller. In
this section an overview is given of the work that has been performed
in these areas. A more detailed survey on control and scheduling can be
found in [Årzén et al., 1999].

Control and scheduling co-design

A prerequisite for an on-line integration of control and scheduling the-
ory is that we are able to make an integrated off-line design of control
algorithms and scheduling algorithms. Such a design process should ide-
ally allow an incorporation of the availability of computing resources into
the control design by utilizing the results of scheduling theory. This is an
area where so far relatively little work has been performed. In [Seto et al.,
1996] an algorithm was proposed that translates a system performance
index into task sampling periods, considering schedulability among tasks
running with pre-emptive priority scheduling. The sampling periods were

125

Paper 4. A Feedback Scheduler for Real-time Controller Tasks

considered as variables, and the algorithm determined their values so that
the overall performance was optimized subject to the schedulability con-
straints. Both fixed priority rate-monotonic and dynamic priority, Earliest
Deadline First (EDF) scheduling were considered. The loop cost function
was heuristically approximated by an exponential function. The approach
was further extended in [Seto et al., 1998].

A heuristic approach to optimization of sampling period and input-
output latency subject to performance specifications and schedulability
constraints was also presented in [Ryu et al., 1997; Ryu and Hong, 1998].
The control performance was specified in terms of steady state error, over-
shoot, rise time, and settling time. These performance parameters were
expressed as functions of the sampling period and the input-output la-
tency. An iterative algorithm was proposed for the optimization of these
parameters subject to schedulability constraints.

Task attribute adjustments

A key issue in any system allowing dynamic feedback between the control
algorithms and the on-line scheduler is the ability to dynamically adjust
task parameters. Examples of task parameters that could be modified are
period and deadline.

In [Shin and Meissner, 1999] the approach in [Seto et al., 1996] is
extended, making on-line use of the proposed off-line method for processor
utilization allocation. The approach allows task period changes in multi-
processor systems. A performance index for the control tasks is used,
weighting the importance of the task to the overall system, to determine
the value to the system of running a given task at a given period.

In [Buttazzo et al., 1998] an elastic task model for periodic tasks is
presented. A task may change its period within certain bounds. When this
happens, the periods of the other tasks are adjusted so that the overall
system is kept schedulable. An analogy with a linear spring is used, where
the utilization of a task is viewed as the length of a spring that has
a given spring coefficient and length constraints. The MART scheduling
algorithm [Kosugi et al., 1994; Kosugi et al., 1996; Kosugi and Moriai,
1997] also supports task period adjustments. MART has been extended to
also handle task execution time adjustments. The system handles changes
both in the number of periodic tasks and in the task timing attributes.
Before accepting a change request the system analyzes the schedulability
of all tasks. If needed, it adjusts the period and/or execution time of the
tasks to keep them schedulable with the rate monotonic algorithm.

Feedback scheduling

An on-line scheduler that dynamically adjusts task attributes can be
viewed as a controller. Important issues that must be decided are what

126

2. Integrated Control and Scheduling

the right control signals, measurement signals, and set-points are, what
the correct control structure should be, and which process model that may
be used.

So far, very little has been done in the area of real-time feedback
scheduling. A notable exception is [Stankovic et al., 1999] where it is pro-
posed to use a PID controller as an on-line scheduler under the notion of
Feedback Control-EDF. The measurement signal (the controlled variable)
is the deadline miss ratio for the tasks, and the control signal is the re-
quested CPU utilization. Changes in the requested CPU are effectuated
by two mechanisms (actuators). An admission controller is used to con-
trol the flow of workload into the system, and a service level controller
is used to adjust the workload inside the system. The latter is done by
changing between different versions of the tasks with different execution
time demands. A simple liquid tank model is used as an approximation
of the scheduling system.

Using a controller approach of the above kind, it is important to be able
to measure the appropriate signals on-line, e.g., to be able to measure the
deadline miss ratio, the CPU utilization, or the task execution times.

An event feedback scheduler is proposed in [Zhao and Zheng, 1999].
Several control loops share a CPU, and only one controller may be active at
each time instant. The strategy used is to activate the controller connected
to the plant with the largest error. Similar ideas are found in [Årzén,
1999], which suggests an event based PID controller that only executes if
the control error is larger than a specified threshold value.

Execution

Requests

Load

Events
Task Task Task

Kernel
Resource
allocations

Admission

statistics

reference

Feedback
scheduler

controller

Figure 2. The real-time kernel is connected in a feedback loop with the feedback
scheduler and the admission controller.

127

Paper 4. A Feedback Scheduler for Real-time Controller Tasks

3. Problem Statement

Consider a control system where several control loops share the same
CPU. Let the execution times of all tasks and the system workload be
available from the real-time kernel at all times. Furthermore, associate
each controller with a function, which indicates its performance. The ex-
ecution times, the number of tasks, and the desired workload may vary
over time. The aim of the feedback scheduler is to optimize the total con-
trol performance, while keeping the workload at the desired level.

Two separate modules are used, see Figure 2. The feedback scheduler
adjusts the sampling intervals to control the workload. The workload ref-
erence is calculated by the admission controller which contains high-level
logic for coordinating tasks.

The tasks and the feedback scheduler communicate using requests
and events. A task can send a request for more computing resources and
the scheduler may grant this by replying with the appropriate event. The
kernel manages the tasks at the low level, i.e. task dispatching, etc. The
feedback scheduler gets execution statistics, such as the actual execution
times of the tasks, and the system workload from the kernel. This infor-
mation is then used to calculate how CPU resources should be allocated
in an optimal fashion.

Let the number of tasks on the system be n, and let each task execute
with a sampling interval hi (task period) and have the execution time Ci.
Each task is associated with a cost function Ji(hi), which gives the con-
trol cost as a function of sampling interval hi. The following optimization
problem may now be formulated

minimize J �
n∑

i�1

Ji(hi), (1)

subject to the constraint
∑n

i�1 Ci/hi ≤ Uref , where Uref is the desired
utilization level.

4. Cost Functions

In this section the LQ cost function and its derivatives with respect to
the sampling interval are calculated. These functions will be used in the
feedback scheduler algorithm, as described in Section 5.

Let the system be given by the linear stochastic differential equation

dx �Axdt+ Budt+ dvc . (2)

128

4. Cost Functions

where A and B are matrices and vc is a Wiener process with the incre-
mental covariance R1cdt. The sampled system is then given by

x(kh + h) �Φx(kh) + Γu(kh) + v(kh),

where Φ � eAh, Γ � ∫ h
0 eAsdsB , and v(kh) is noise with the following

property:

Ev(kh)vT (kh) � R1(h) �
∫ h

0
eAτ R1ceATτ dτ .

The cost function for the controller is chosen as

J(h) � 1
h

E
∫ h

0
[xT (t) uT (t)]Qc

[
x(t)
u(t)

]
dt,

where

Qc �
[

Q1c Q2c

QT
2c Q3c

]
.

Note that only the cost in stationarity is regarded, and that the cost is
scaled by the time horizon, i.e. the sampling interval h. The controller
u � −Lx(t) that minimizes the cost is given by solving the stationary
Riccati equation with respect to the matrices S and L.[

S + LT G L LT G

G L G

]
�
[ΦT

ΓT

]
S [Φ Γ] + Qd (3)

where G � ΓT SΓ + Q3d, and

Qd �
∫ h

0
eΣT tQceΣtdt, Σ �

[
A B

0 0

]
(4)

The minimal value of J is given by [Åström and Wittenmark, 1997];
[Gustafsson and Hagander, 1991] as:

minJ(h) �1
h
(trSR1 + J̄) where

J̄ � tr(Q1c

∫ h

0
R1(τ)dτ)

In order to use the cost function in the optimization it is useful to know
the derivatives with respect to the sampling period.

129

Paper 4. A Feedback Scheduler for Real-time Controller Tasks

THEOREM 1
The first derivative of J is given as

dJ
dh

�1
h
(tr dS

dh
R1 + trS

dR1

dh
+ dJ̄

dh
) −

1
h2 (trSR1 + J̄)

where

dS
dh

�(Φ − Γ L)T dS
dh
(Φ − Γ L) +W ,

W �
[

Φ − Γ L

−L

]T

Qc

[
Φ − Γ L

−L

]
+

{(Φ − Γ L)T AT − LT BT}S(Φ − Γ L) +
(Φ − Γ L)T S{A(Φ − Γ L) − B L},

The matrix R1 is calculated using the expressions in Equation 1.

R1 �ΨT
22Ψ12, where[Ψ11 Ψ12

0 Ψ22

]
� exp

([−A R1c

0 AT

]
h
)
,

dR1

dh
�eAhR1ceAT h,

dJ̄
dh

�trQ1c R1

See Appendix A for the proof. The expression for the second derivative of
the cost functions is also given there.

EXAMPLE 1
Consider the linearized equations for a pendulum:

dx �
[

0 1

αω 2
0 −d

]
xdt +

[
0

α b

]
udt + dvc

y � [1 0] x, R1c �
[

0 0

0 ω 4
0

]
The natural frequency is ω 0, the damping d � 2ζ ω 0, with ζ � 0.2, and
b � ω 0/9.81. If α � 1, the equations describe the pendulum in the upright

130

5. A Feedback Scheduler

position, and if α � −1 they describe the pendulum in the downward
position. The incremental covariance of vc is R1cdt, which corresponds to
a disturbance on the control signal.

The cost functions J for the closed loop control of the inverted pen-
dulum as a function of the sampling interval is shown in Figure 3. The
corresponding function for the stable pendulum is shown in Figure 4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5000

10000

15000
Cost

Figure 3. The cost Ji(h) as a function of the sampling interval for the inverted
pendulum. The plot shows the graph for ω0 � 3.14(full), 3.77(dot-dashed), and
4.08(dashed).

Figure 4 clearly demonstrates that faster sampling not necessarily gives
better control performance. Sampling the pendulum as slowly as this is
however unrealistic. The rule of thumb from [Åström and Wittenmark,
1997] is to chose the sampling rate as ω 0h � 0.2− 0.6.

5. A Feedback Scheduler

In this section a feedback scheduler, see Figure 2, for a class of control
systems with convex cost functions is proposed. Standard nonlinear pro-
gramming results are used as a starting point for the feedback sched-
uler design. First, an algorithm, using the cost functions presented in the
previous section is designed, and then an approximate, less computation-
intense algorithm is presented. Simulation results for a system with three
control loops are also given.

131

Paper 4. A Feedback Scheduler for Real-time Controller Tasks

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

1400

1600

1800
Cost

Figure 4. The cost Ji(h) as a function of the sampling interval for the pendulum.
The plot shows the graph for ω0 � 3.14(full), 3.77(dot-dashed), and 4.08(dashed).
The peaks are due to the resonance frequencies of the pendulum.

Static Optimization

For the class of systems for which the cost functions are convex, ordi-
nary optimization theory may be applied. The optimization criterion in
Equation (1) has nonlinear constraints and is first rewritten. By optimiz-
ing over the frequencies instead of the sampling intervals, the following
optimization problem is given:

min
f

V (f) �
n∑

i�1

Ji(1/ fi),

subject to C T f ≤ Uref

f �[f1, . . . , fn]T

The Kuhn-Tucker conditions, see for example [Fletcher, 1987], give that
if f̄ � [f̄1, . . . , f̄n]T is an optimal solution then:

V f (f̄) + λ C � 0

λ [Uref − C T f̄] � 0,
λ ≥ 0

(5)

where V f is the gradient, and C � [C1, . . . , Cn]T .

132

5. A Feedback Scheduler

Recursive Optimization

Since changes in the computer load Uref and the execution times C change
the optimization problem, they need to be resolved at each step in time. In
principle, one can repeat the solution to the static optimization problem
at each step in time. However, instead of looking for a direct solution we
will consider a recursive algorithm. Assume that we have a solution f (k),
at step k, which is optimal or close to optimal. We will now construct a
recursive algorithm to compute new values for f and λ . Let the execution

C(k)
Feedback
schedulerrefU (k)

∆
f(k+1)

Figure 5. The feedback scheduler calculates new sampling frequencies to acco-
modate for changes in the execution times C or in the desired workload level.

time vector C(k) be time-varying. We want to design a control loop that
adjusts the sampling frequencies so that the control performance cost is
kept at the optimum, see Figure 5. Let

f (k+ 1) � f (k) + ∆ f (k)
λ (k+ 1) �λ (k) + ∆λ (k)
C(k+ 1) �C(k) + ∆C(k)

We assume that λ > 0, i.e. that the CPU constraint is active. Linearization
of Equation (5) around the optimum gives

V f + V f f ∆ f + (λ + ∆λ)(C + ∆C) � 0

(C T + ∆C T)(f + ∆ f) � Uref

If the quadratic delta terms are disregarded we get[
V f f C

C T 0

] [
∆ f

∆λ

]
�
[−(V f + λ C) − λ ∆C

Uref − C T f − ∆C T f

]
Now the increments in f and λ are given as[

∆ f

∆λ

]
�
[

V f f C

C T 0

]−1 [−(V f + λ C)
Uref − C T f − ∆C T f

]
(6)

A solution exists if V f f is positive (or negative) definite and C �� 0. Note
that the matrix V f f is diagonal.

V f f � diak(
[
V2V
V f 2

1
. . . V2V

V f 2
n

,
]
)

Thus, there is a solution to Equation (6) if V2V
V f 2

1
> 0, ∀i.

133

Paper 4. A Feedback Scheduler for Real-time Controller Tasks

REMARK 1 It can be shown that this optimization routine corresponds
to constrained Newton optimization, see for example [Gill et al., 1981].

EXAMPLE 2
A single CPU-system is used to control three inverted pendulums of differ-
ent lengths. Every pendulum is controlled by one controller. Each control
loop has an execution time Ci and a sampling frequency fi. Let the initial
sampling frequencies be f 0

i . One of the tasks operates in two modes with
very different execution times. The feedback scheduler adjusts the sam-
pling frequencies for the tasks, so that the total control performance is
optimized, given the current execution times and the workload reference.
The workload reference is given by the admission controller.

Figure 6 shows some plots from a simulation, where execution times,
sampling frequencies and load are plotted as functions of the iteration
steps. From the initial frequencies f 0 � [4, 4.5, 5], an optimal solution
is found after 7-8 iterations. At step 15, Task #2 sends a request to the
admission controller for more execution time, due to a forthcoming mode
change. The admission controller must first lower the workload reference,
before any task is allowed to increase its execution time, in order to avoid
overload. At step 15 the request for more CPU time from Task #2, results
in the workload reference changing from 1 to 0.7. At step 20, the actual
workload is sufficiently near the reference and the admission controller
grants the request from Task #2, which then immediately performs a mode
change. At the same time the admission controller changes the workload
reference back to 1. The final frequencies are f � [4.822 4.378 5.276].

An approximate version

The feedback scheduling algorithm proposed above, includes solving both
Riccati and Lyapunov equations on-line. This is expensive, and a compu-
tationally cheaper algorithm is desirable. From Figure 3 it seems that the
cost functions could be approximated as quadratic functions of the sam-
pling interval h. The relation between performance and sampling rates
for LQG controllers was also discussed in [Åström, 1963], where it was
shown that the cost is indeed quadratic for small sampling intervals.

Let the approximative cost J̃(h) be defined as

J̃(h) � α + β h2.

134

5. A Feedback Scheduler

5 10 15 20 25 30 35
0

0.05

0.1

Execution Times

5 10 15 20 25 30 35

4

6

8
Sampling Frequencies

5 10 15 20 25 30 35

0.7

0.8

0.9

1

1.1
Load

5 10 15 20 25 30 35
4000

5000

6000
Cost

Figure 6. Plots from Example 2. The top plot shows how the execution time for
task #2 doubles at step 20. The second plot from the top shows how the sampling
rates are adjusted by the feedback scheduler (Task #1–full, Task #2–dash-dotted,
Task#3–dashed). The load plot shows how the workload reference (dash-dotted) goes
from 100% to 70% at step 15, and back to 100% at step 20. The full line is the actual
workload. The bottom plot shows the sum of the cost functions, i.e. the optimization
criterion.

By choosing a suitable nominal sampling interval h0, and using J̃(h0) �
J(h0), J̃h(h0) � Jh(h0) the coefficients are given as:

β � Jh(h0)/(2h0)
α � J(h0) − β h2

0

135

Paper 4. A Feedback Scheduler for Real-time Controller Tasks

The following approximate cost function and derivate are then obtained:

Ṽ (f) �
n∑
i

α i + β i/ f 2

Ṽ f (f) � −2 [β 1/ f 3, . . . , β n/ f 3]T
V f f � 6 diag [β 1/ f 4, . . . , β n/ f 4]

Using these approximate functions instead of the exact ones will give a
much less computation intense problem.

The optimal solution is obtained from Equation (5), and by inserting
the approximative expression for V f we get

2β i/ f 3
i � λ Ci ; fi � (2β i/(λ Ci))1/3

; U �
n∑
1

Ci fi �
n∑
1

Ci(2β i/(λ Ci))1/3

Now, an explicit expression for the optimal solution is given by{
λ � (1/U

∑n
1 C 2/3

i (2β i)1/3)3
fi � (2β i/(λ Ci))1/3

(7)

EXAMPLE 2 continued
Again, consider the system with three pendulum controllers. From the
explicit analytical expressions in Equation (7) the following frequencies
are calculated:

f � [4.866 4.347 5.29]

Note that these frequencies are very close to those from Example 2. This
example shows that the approximative cost functions are sufficient to
achieve good optimization results for some processes.

6. Conclusion

In this paper a novel feedback scheduler has been proposed. For a class
of control systems with convex cost functions, the feedback scheduler cal-
culates the optimal resource allocation pattern. The calculation of cost
functions and their dependence on sampling intervals has been investi-
gated. Formulas for calculating the cost functions and their derivatives

136

7. References

have been presented. The feedback scheduler is demonstrated on a three
control loops system, and the result is promising. The algorithm is, how-
ever, complex and quite computation-intense. The execution time needed
for solving the optimization problem would probably exceed the execution
times of most control tasks. By instead using approximative cost functions
good results may be achieved at much less computational cost.

Many questions have been left out in our discussion on feedback sched-
uling. One thing that has been neglected is what happens during the
transient phase, when a sampling rate is changed. This problem must be
treated differently depending on the used scheduling algorithm, e.g EDF
or RMS.

Using a feedback scheduler approach it would be possible to design
real-time, plug-and-play control systems. Tasks and resources are allowed
to change and the system adapts on-line.

7. References

Årzén, K.-E. (1999): “A simple event based PID controller.” In Proceedings
of the 14th World Congress of IFAC, vol. Q, pp. 423–428. IFAC, Beijing,
P.R. China.

Årzén, K.-E., B. Bernhardsson, J. Eker, A. Cervin, K. Nilsson, P. Persson,
and L. Sha (1999): “Integrated control and scheduling.” Report ISRN
LUTFD2/TFRT--7586--SE.

Åström, K. J. (1963): “On the choice of sampling rates in optimal linear
systems.” Technical Report RJ-243. San José Research Laboratory,
IBM, San José, California.

Åström, K. J. and B. Wittenmark (1997): Computer-Controlled Systems,
third edition. Prentice Hall.

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic task model for
adaptive rate control.” In Proceedings of the IEEE Real-Time Systems
Symposium.

Fletcher, R. (1987): Practical Methods of Optimization, second edition.
Wiley.

Gill, P. E., W. Murray, and M. H. Wright (1981): Practical Optimization.
Academic Press.

Gustafsson, K. and P. Hagander (1991): “Discrete-time LQG with cross-
terms in the loss function and the noise description.” Report TFRT-
7475. Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

137

Paper 4. A Feedback Scheduler for Real-time Controller Tasks

Kosugi, N., A. Mitsuzawa, and M. Tokoro (1996): “Importance-based
scheduling for predictable real-time systems using MART.” In Proceed-
ings of the 4th Int. Workshop on Parallel and Distributed Systems,
pp. 95–100. IEEE Computer Society.

Kosugi, N. and S. Moriai (1997): “Dynamic scheduling for real-time
threads by period adjustment.” In Proceedings of the World Congress
on Systems Simulation, pp. 402–406.

Kosugi, N., K. Takashio, and M. Tokoro (1994): “Modification and adjust-
ment of real-time tasks with rate monotonic scheduling algorithm.” In
Proceedings of the 2nd Workshop on Parallel and Distributed Systems,
pp. 98–103.

Nilsson, J. (1998): Real-Time Control Systems with Delays. PhD thesis
ISRN LUTFD2/TFRT--1049--SE, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

Ryu, M. and S. Hong (1998): “Toward automatic synthesis of schedulable
real-time controllers.” Integrated Computer-Aided Engineering, 5:3,
pp. 261–277.

Ryu, M., S. Hong, and M. Saksena (1997): “Streamlining real-time con-
troller design: From performance specifications to end-to-end timing
constraints.” In Proceedings of the IEEE Real-Time Technology and
Applications Symposium.

Seto, D., J. P. Lehoczky, and L. Sha (1998): “Task period selection and
schedulability in real-time systems.” In Proceedings of the 19th IEEE
Real-Time Systems Symposium.

Seto, D., J. P. Lehoczky, L. Sha, and K. G. Shin (1996): “On task
schedulability in real-time control systems.” In Proceedings of the 17th
IEEE Real-Time Systems Symposium, pp. 13–21.

Shin, K. G. and C. L. Meissner (1999): “Adaptation of control system per-
formance by task reallocation and period modification.” In Proceedings
of the 11th Euromicro Conference on Real-Time Systems, pp. 29–36.

Stankovic, J., C. Lu, and S. Son (1999): “The case for feedback control real-
time scheduling.” In Proceedings of the 11th Euromicro Conference on
Real-Time Systems, pp. 11–20.

van Loan, C. (1978): “Computing integral involving the matrix exponen-
tial.” IEEE Transactions on Automatic Control, No AC–23, pp. 395–
404.

138

7. References

Zhao, Q. C. and D. Z. Zheng (1999): “Stable real-time scheduling of a class
of pertubed hds.” In Proceedings of the 14th World Congress of IFAC,
vol. J, pp. 91–96. IFAC, Beijing, P.R. China.

139

Paper 4. A Feedback Scheduler for Real-time Controller Tasks

Appendix A – Proof and Continuation of Theorem 1

Proof: To find out how J depends on the sampling interval it remains
to investigate S. Equation (3) is differentiated with respect to h:[

0 0
dL
dh 0

]T [S 0

0 G

] [
I 0

L I

]
+[

I 0

L I

]T [dS
dh 0

0 dG
dh

] [
I 0

L I

]
+[

I 0

L I

]T [S 0

0 G

] [
0 0

dL
dh 0

]
�

dQd

dh
+
[

dΦT

dt
dΓT

dt

]
S [Φ Γ] +

[
ΦT

ΓT

]
dS
dh

[Φ Γ] +
[

ΦT

ΓT

]
S [dΦ

dt
dΓ
dh]

Rearranging the terms yields[
0 dLT

dh G

0 0

]
+
[dS

dh 0

0 dG
dh

]
+
[

0 0

G dL
dh 0

]
�[

ΦT − LT ΓT

ΓT

]
dS
dh

[Φ − Γ L Γ] +
[

I 0

−L I

]T

W̄
[

I 0

−L I

]
(8)

where the block matrix W̄ is defined as

W̄ � dQd

dh
+
[

dΦT

dh
dΓT

dh

]
S [Φ Γ] +

[ΦT

ΓT

]
S [dΦ

dh
dΓ
dh]

The following Lyapunov equations for dS
dh and dL

dh are obtained by extract-
ing elements from Equation (8), and introducing Ψ � (Φ − Γ L).

dS
dh

� ΨT dS
dh

Ψ + [I −LT] W̄
[

I

−L

]
G

dL
dh

� ΓT dS
dh

Ψ + [0 I] W̄
[

I

−L

]

The derivative dL
dh is needed later for the calculation of the second deriva-

tive of J. To calculate W̄ formulas for dQd
dh , dΦ

dt , and dΓ
dh are needed. Since[Φ Γ

0 I

]
� exp

([A B

0 0

]
h
)
� eΣh

140

Appendix A – Proof and Continuation of Theorem 1

and Qd
dh is given from Equation (4) it is straightforward to calculate

dΦ
dh

� AΦ,
dΓ
dh

�AΓ + B ,
dQd

dh
� eΣT hQceΣh

W̄ can now be written as

W̄ �
[Φ Γ

0 I

]T

Qc

[Φ Γ
0 I

]
+

[AΦ AΓ + B]T S [Φ Γ] + [Φ Γ]T S [AΦ AΓ + B]

and now let W be

W � [I −LT] W̄
[

I

−L

]
�
[Ψ
−L

]T

Qc

[Ψ
−L

]
+

{ΨT AT − LT BT}SΨ + ΨT S{AΨ − B L}.

which now leads to the following expression, and dJ
dh may now be calcu-

lated.

dS
dh

� ΨT dS
dh

Ψ +W

G
dL
dh

� ΓT dS
dh

Ψ + [ΓT I]Qc

[Ψ
−L

]
+ ΓT S(AΨ − B L) + (AΓ + B)T SΨ

THEOREM 2
The second derivative is given by

d2J
dh2 �

1
h

{
tr(d2S

dh2 R1) + 2tr(dS
dh

R1

dh
) + tr(S d2 R1

dh2) +
d2 J̄
dh2

}
− 2

h2

{
tr(dS

dh
R1) + tr(S R1

dh
) + dJ̄

dh

}
+ 2

h3

{
tr(SR1) + J̄

}
where

d2S
dh2 �ΨT d2S

dh2 Ψ +W2, W2 � dΨT

dh
dS
dh

Ψ + ΨT dS
dh

dΨ
dh

+ dW
dh

dΨ
dh

�AΦ − (AΓ + B)L − Γ
dL
dh

141

Paper 4. A Feedback Scheduler for Real-time Controller Tasks

dW
dh

�
[dΨ

dh

− dL
dh

]T

Qc

[
Ψ
−L

]
+
[

Ψ
−L

]T

Qc

[dΨ
dh

− dL
dh

]
+

{
ΨT AT − LT BT}(dS

dh
Ψ + S

dΨ
dh
) +

(ΨT dS
dh

+ dΨT

dh
S){AΨ − B L

} +{dΨT

dh
AT − dLT

dh
BT}SΨ + ΨT S

{
A

dΨ
dh

− B
dL
dh

}

d2 J̄
dh2 �tr(Q1c

dR1

dh
), d2R1

dh2 �AΦR1cΦT + ΦR1c AT ΦT

Proof: Proven with similar techniques as Theorem 1.

LEMMA 1
The integral ∫ t

0
eAτ QeATτ dτ

is calculated using the following equations taken from [van Loan, 1978].
Consider the linear system[

ẋ1

ẋ2

]
�
[−AT Q

0 A

] [
x1

x2

]
, (9)

which has the following solution[
x1(t)
x2(t)

]
� exp(

[−A Q

0 AT

]
t)
[

x1(0)
x2(0)

]
If [φ 11 φ 12

φ 21 φ 22

]
� exp(

[−A Q

0 AT

]
t)

then

x1(t) � Ψ11x1(0) + Ψ12x2(0)
x2(t) � Ψ21x1(0) + Ψ22x2(0)

142

Appendix A – Proof and Continuation of Theorem 1

An alternative way of solving Equation (9) is

x2(t) � eAT tx2(0) ; ẋ1(t) � −Ax1(t) + QeAT tx2(0)

; x1(t) � e−Atx1(0) + e−At
∫ t

0
eAτ QATτ dτ x2(0)

Identification of the terms from the different solutions now gives∫ t

0
eAτ QeATτ dτ � ΨT

22Ψ12,

which concludes the lemma.

143

Paper 4. A Feedback Scheduler for Real-time Controller Tasks

144

Paper 5

A Matlab Toolbox for Real-Time and
Control Systems Co-Design

Johan Eker and Anton Cervin

Abstract
The paper presents a Matlab toolbox for simulation of real-time control
systems. The basic idea is to simulate a real-time kernel in parallel with
continuous plant dynamics. The toolbox allows the user to explore the
timely behavior of control algorithms, and to study the interaction be-
tween the control tasks and the scheduler. From a research perspective,
it also becomes possible to experiment with more flexible approaches to
real-time control systems, such as feedback scheduling. The importance
of a more unified approach for the design of real-time control systems is
discussed. The implementation is described in some detail and a number
of examples are given.

145

Paper 5. A Matlab Toolbox for Real-Time and Control Systems Co-Design

146

1. Introduction

u1 y1 u2 y2 u3 y3

Task#1 Task#2 Task#3

Plant#1 Plant#2 Plant#3

Real-Time Kernel

Single CPU System

Figure 1. Several control loops execute concurrently on one CPU. The interaction
between the control tasks will affect the control performance.

1. Introduction

Real-time control systems are traditionally designed jointly by two dif-
ferent types of engineers. The control engineer develops a model for the
plant to be controlled, designs a control law and tests it in simulation. The
real-time systems engineer is given a control algorithm to implement, and
configures the real-time system by assigning priorities, deadlines, etc.

The real-time systems engineer usually regards control systems as
hard real-time systems, i.e. deadlines should never be missed. The control
engineer on the other hand expects the computing platform to be predic-
tive and support equidistant sampling. In reality none of the assumptions
are necessarily true. This is even more obvious in the case where several
control loops are running on the same hardware unit. The controllers will
interact with each other since they are sharing resources such as CPU,
network, analog/digital converters, etc. see Figure 1.

A new interdisciplinary approach is currently emerging where control
and real-time issues are discussed at all design levels. One of the first pa-
pers that dealt with co-design of control and real-time systems was [Seto
et al., 1996], where the sampling rates for a set of controllers sharing
the same CPU are calculated using standard control performance met-
rics. Control and scheduling co-design is also found in [Ryu et al., 1997],
where the control performance is specified in terms of steady state error,
overshoot, rise time, and settling time. These performance parameters
are expressed as functions of the sampling period and the input-output

147

Paper 5. A Matlab Toolbox for Real-Time and Control Systems Co-Design

latency. A heuristic iterative algorithm is proposed for the optimization of
these parameters subject to schedulability constraints.

Good interaction between control theory and real-time systems theory
opens up for a unified approach and more integrated algorithms. Schedul-
ing parameters could for example be adjusted automatically on-line by a
kernel supervisor. Such a setup would allow much more flexible real-time
control systems than those available today. Ideas on adaption of schedul-
ing parameters are for example found in [Abdelzaher et al., 1997] and
[Stankovic et al., 1999].

The development of algorithms for co-design of control and real-time
systems requires new theory and new tools. This paper presents a novel
simulation environment for co-design of control systems and real-time sys-
tems within the Matlab/Simulink environment. The advantages of using
Matlab for this purpose are many. Matlab/Simulink is commonly used by
control engineers to model physical plants, to design control systems, and
to evaluate their performance by simulations. A missing piece in the sim-
ulations, however, has been the actual execution of the controllers when
implemented as tasks in a real-time system. On the other hand, most
of the existing tools for task simulations, for instance STRESS [Audsley
et al., 1994], DRTSS [Storch and Liu, 1996], and the simulator in [Ancilotti
et al., 1998], give no support for the simulation of continuous dynamics.
Not much work has previously been done on mixed simulations of both
process dynamics, control tasks, and the underlying real-time kernel. An
exception is [Liu, 1998], where a single control task and a continuous
plant was simulated within the Ptolemy II framework.

The simulator proposed in this paper is designed for simultaneous
simulation of continuous plant dynamics, real-time tasks, and network
traffic, in order to study the effects of the task interaction on the control
performance.

2. The Basic Idea

The interaction between control tasks executing on the same CPU is usu-
ally neglected by the control engineer. It is however the case that having
a set of control tasks competing for the computing resources will lead to
various amounts of delay and jitter for different tasks. Figure 2 shows
an example where three control tasks with the same execution times but
different periods are scheduled using rate-monotonic priorities. In this
case the schedule does not tell the whole story. In the example, the actual
control delay (the delay from reading the input signal until writing a new
output signal) for the low priority task varies from one to three times the
execution time. Intuitively, this delay will affect the control performance,

148

2. The Basic Idea

Schedule

Time offset: 0

Activation Graph

high

medium

low

Figure 2. The activation graph for three control tasks, with fixed priorities (high,
medium, low), running in a pre-emptive kernel. The execution times are the same
for all three processes.

One Task

Time offset: 0

: Read (sample) : Write (control)

Activation
graph

u

y

Figure 3. This is how the low priority task from Figure 2 interacts with its plant.
(u is the control signal, y is the measurement signal.)

but how much, and how can we investigate this?
To study how the execution of tasks affects the control performance

we must simulate the whole system, i.e. both the continuous dynamics
of the controlled plant and the execution of the controllers in the CPU.

149

Paper 5. A Matlab Toolbox for Real-Time and Control Systems Co-Design

Control
Signals

Process Outputs

Kernel Model

Plant#1 Plant#2 Plant#3

Controller#1

Controller#2

Controller#3

Running Ready

Blocked

Figure 4. Schematic view of the simulation setup. The controllers are tasks ex-
ecuting in a simulated pre-emptive kernel. The controllers and the control signals
are discrete while the plant dynamics and the plant output are continuous. The
continuous signals from the plants are sampled by the control tasks.

We need not simulate the execution of the controller code on instruction
level. In fact, it is enough to model the timely aspects of the code that
are of relevance to other tasks and to the controlled plant. This includes
computational phases, input and output actions, and blocking of common
resources (other than the CPU).

Figure 3 shows the activation graph for the low priority task from
Figure 2 and how it interacts with the continuous plant. The controller
samples the continuous measurement signal from the plant (y) and writes
new control outputs (u).

Figure 4 provides a schematic view of how we simulate the system. A
model of a real-time kernel handles the scheduling of the control tasks
and is also responsible for properly interfacing the tasks with the physical
environment. The outputs from the kernel model, i.e. the control signals,
are piecewise constant. The plant dynamics and the plant outputs, i.e. the
measurement signals, are continuous.

3. The Simulation Model

The heart of the toolbox is a Simulink block (an S-function) that simu-
lates a tick-driven preemptive real-time kernel. The kernel maintains a
number of data structures that are commonly found in a real-time ker-
nel: a set of task records, a ready queue, a time queue, etc. At each clock

150

3. The Simulation Model

tick, the kernel is responsible for letting the highest-priority ready task,
i.e. the running task, execute in a virtual CPU. The scheduling policy
used is determined by a priority function, which is a function of the at-
tributes of a task. For instance, a priority function that returns the period
of a task implements rate-monotonic scheduling, while a function that re-
turns the absolute deadline of a task implements earliest-deadline-first
scheduling. There currently exist predefined priority functions for rate-
monotonic (RM), deadline-monotonic (DM), arbitrary fixed-priority (FP),
and earliest-deadline-first (EDF) scheduling. The user may also write his
own priority function that implements an arbitrary scheduling policy.

The execution model used is similar to the live task model described
in [Storch and Liu, 1996]. During a simulation, the kernel executes user-
defined code, i.e. Matlab functions, that have been associated with the
different tasks. A code function returns an execution time estimate, and
the task is not allowed to resume execution until the same amount of time
has been consumed by the task in the virtual CPU.

The Task

Each task in the kernel has a set of basic attributes: A name, a list of
code segments to execute, a period, a release time, a relative deadline, and
the remaining execution time to be consumed in the virtual CPU. Some
of the attributes, such as the release time and the remaining execution
time, are constantly updated by the kernel during a simulation. The other
attributes, such as the period and the relative deadline, remain constant
unless they are explicitly changed by kernel function calls from the user
code.

The Code

The local memory of a task is represented by two local, user-defined data
structures states and parameters. The states may be changed by the user
code, while the parameters remain constant throughout the execution.

To capture the timely behavior of a task, the associated code is divided
into one or several code segments, see Figure 5. The execution time of a
segment is determined dynamically at its invocation. Normally, the seg-
ments are executed in order, but this may be changed by kernel function
calls from the user code.

On a finer level, actual execution of statements in a code segment
can only occur at two points: at the very beginning of the code segment
(in the enterCode part) or at the very end of the code segment (in the
exitCode part), see Figure 6. Typically, reading of input signals, locking of
resources, and calculations are performed in the enterCode part. Writing
of output signals, unlocking of resources, and other kernel function calls

151

Paper 5. A Matlab Toolbox for Real-Time and Control Systems Co-Design

. . .Code
Segment

#1

Code
Segment

#2

Code
Segment

#n

time

Task

Figure 5. The execution structure of a task. The flexible structure supports data
dependent execution times and advanced scheduling techniques.

enterCode exitCode

Code
Segment

Execution Time

Figure 6. A code segment is divided in two parts: the enterCode part and the
exitCode part.

are typically performed in the exitCode part. The following examples
illustrate how code segments can model real-time tasks.

EXAMPLE 1
A task implementing a control loop can often be divided into two parts:
one that calculates a new control signal and one that updates the con-
troller states. The first part, called Calculate Output, has a hard timing
constraint and should finish as fast as possible. The timing requirement
for the second part, Update State, is that it must finish before the next
invocation of the task. Two code segments are appropriate to model the
task:

Read Inputs }
Write Outputs

LOOP

CalculateOutput

UpdateState
Sleep

END

CodeCode
Segment Segment

The enterCode of the first segment contains the reading of the measure-
ment signals, and the calculation of a new control signal. In the same seg-

152

4. Using the Simulator

ment, in exitCode, the control signal is sent to the actuator. The control
delay of the controller is thus equal to the execution time of the first seg-
ment. The enterCode of the second code segment contains Update State.
When the last segment has completed, the task is suspended until the
next period by the kernel.

EXAMPLE 2
The structure of a periodic task that first calculates some data and then
writes to a common resource could look like this:

Unlock(Mutex)

LOOP

}

Sleep
END

Calculate
Lock(Mutex)
WriteData

CodeCode
Segment Segment

Again, two code segments can capture the timely behavior. The first code
segment contains the Calculate statement, located in the enterCode part.
The enterCode part of the second code segment contains the Lock(Mutex)
and WriteData statements, while exitCode contains the Unlock(Mutex)
statement. When the last segment has completed, the task is suspended
until the next period by the kernel.

4. Using the Simulator

From the user’s perspective, the toolbox offers a Simulink block that mod-
els a computer with a real-time kernel. Connecting the Computer block’s
inputs and outputs (representing for instance A-D and D-A converters) to
the plant, a complete computer-controlled system is formed, see Figure 7.

u1

u2

u3

y1

y2

y3

Plant Dynamics

Demux

Output Socket

Mux

Input Socket

Inputs Outputs

Computer

Figure 7. The simulation environment offers a Simulink Computer block that can
be connected to the model of the plant dynamics.

153

Paper 5. A Matlab Toolbox for Real-Time and Control Systems Co-Design

The plant dynamics may have to be controlled by several digital con-
trollers, each implemented as a periodic control task in the computer.
Besides the controllers, other tasks could be executing in the computer,
for instance planning tasks, supervision tasks, and user communication
tasks.

Opening up the Computer block, the user may study detailed informa-
tion about the execution of the different tasks, see Figure 8. It is for in-

1

Outputs

Schedule

Sampling instants

Kernel

S−Function

Demux

Control instants

1

Inputs

Figure 8. Inside the Computer block, it is possible to study details about the
execution of different tasks.

stance possible to study the schedule, i.e. a plot that shows when different
tasks are executing, at run-time. Further statistics about the execution is
stored in the workspace and may be analyzed when the simulation has
stopped.

Controller Implementation

It is highly desirable that the design of the kernel is flexible and al-
lows components to be reused and replaced. Much effort has been put
into writing control algorithms in Matlab, and these algorithms should
be straightforward to reuse. In the toolbox, a control algorithm can be
implemented as a code segment with the following format:

function [exectime,states] = ...
myController(flag,states,params)

switch flag,
case 1, % enterCode

y = analogIn(params.inChan);
states.u = <place control law here>
exectime = 0.002;

case 2, % exitCode
analogOut(params.outChan,states.u)

end

154

4. Using the Simulator

The input variables to myController are the state variables states, and
the controller parameters params. The flag is used to indicate whether the
enterCode or the exitCode part should be executed. If the enterCode part
is executed, the function returns the execution time estimate exectime
and the new state variables. The control signal is sent to the plant in the
exitCode part.

REMARK 1 The output signal u is not normally regarded as a state
variable in a controller. In this example, however, we need to store the
value of u between two invocations of the myController function.

Configuration

Before a simulation can start, the user must define what tasks that should
exist in the system, what scheduling policy should be used, whether any
common resources exist, etc. The initialization is performed in a Matlab
script.

EXAMPLE 3
Three dummy tasks are initialized in the script below. The tick-size of the
kernel is set to 0.001 s and the scheduling type is set to rate monotonic.
The dummy code segment empty models a task that computes nothing for
a certain amount a time. Each task is assigned a period, and a deadline
which is equal to the period.

function rtsys = rtsys_init

% 1 = RM, 2 = DM, 3 = Arbitrary FP, 4 = EDF
rtsys.st = 1;
rtsys.tick_size = 0.001;

T = [0.10 0.08 0.06]; % Task Periods
D = [0.10 0.08 0.06]; % Deadlines
C = [0.02 0.02 0.02]; % Computation times

rtsys.Tasks = {}
code1 = code('empty',[],C(1))
code2 = code('empty',[],C(2))
code3 = code('empty',[],C(3))

rtsys.Tasks{1}=task('Task1',code1,T(1),D(1));
rtsys.Tasks{2}=task('Task2',code2,T(2),D(2));
rtsys.Tasks{3}=task('Task3',code3,T(3),D(3));

The initialization script is given as a parameter to a Computer block in

155

Paper 5. A Matlab Toolbox for Real-Time and Control Systems Co-Design

a Simulink model. Simulating the model for one second produces, among
other things, the schedule plot shown in Figure 9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4
Schedule

Time (s)

Task 1
Task 2
Task 3

Figure 9. The schedule resulting from the simulation in Example 3. The bottom
graph shows when Task 1 is running (high), ready (medium) or blocked (low). The
other two graphs represent Task 2 and Task 3.

Connecting a Continuous Plant

Figure 10 shows a Simulink diagram where a Computer block is connected
to three pendulum models. The continuous plant models are described by
other Simulink blocks.

u

noise

Angle

Position

J
Pendulum 3

u

noise

Angle

Position

J
Pendulum 2

u

noise

Angle

Position

J
Pendulum 1 In1

In2

In3

Out1

Out2

Out3

Computer

Figure 10. A Simulink diagram where three continuous pendulum models are
connected with the real-time kernel. The simulation result from this system is both
the activation graph and the output from the continuous plants.

156

5. A Co-Design Example

A real-time system with three control loops are created in Example 4.
One code segment named myController is associated with each task.

EXAMPLE 4
function rtsys = rtsys_init
% Scheduling type, 1=RM, 2=DM, 3=FP, 4=EDF
rtsys.st=1;
rtsys.tick_size=0.001;

% Desired bandwidths
omega=[3 5 7];
% Sampling periods
T=[0.167 0.100 0.071];
for i=1:3

% Design controller
params=ctrl_design(omega(i),T(i));
% Initialize control code
states.xhat=[0 0]';
% The controller reads from input i
params.inChan=i;
% The controller writes to output i
params.outChan=i;
sfbcode=code('myController',states,params);
% Create task
tasks{i}=task(['Task 'num2str(i)],...

sfbcode, T(i), T(i));
end
rtsys.tasks=tasks;

The outputs from a simulation of this system are a set of continuous
signals from the plants together with an activation graph. It is hence
possible to evaluate the performance of the real-time systems both from
a control design point of view and from a scheduling point of view.

5. A Co-Design Example

Using the simulator, it is possible to evaluate different scheduling policies
and their effect on the control performance. Again consider the problem of
controlling three inverted pendulums using only one CPU, see Figure 11.
The inverted pendulum may be approximated by the following linear dif-
ferential equation

θ̈ � ω 2
0θ +ω 2

0u/k,

157

Paper 5. A Matlab Toolbox for Real-Time and Control Systems Co-Design

where ω 0 �
√k/l is the natural frequency for a pendulum with length

l. The goal is to minimize the angles, so for each pendulum we want to
minimize the accumulated quadratic loss function

Ji(t) �
∫ t

0
θ 2

i (s)ds. (1)

Three discrete-time controllers with state feedback and observers are de-
signed. Sampling periods for the controllers are chosen according to the
desired bandwidths (3, 5 and 7 rad/s respectively) and the CPU resources
available. The execution times of the control tasks, τ i, are all 28 ms, and
the periods are T1 � 167 ms, T2 � 100 ms, and T3 � 71 ms. Task objects

θ

signals
input

output
control

ττ τ
Kernel

31 2

Figure 11. The setup from described in Section 5. Three inverted pendulums with
different lengths are controlled by three control tasks running on the same CPU.

are created according to Example 4. Also, similar to Example 1, the con-
trol algorithm is divided into two code segments, Calculate Output and
Update State, with execution times of 10 and 18 ms respectively.

In a first simulation, the control tasks are assigned constant priori-
ties according to the rate-monotonic schema, and the two code segments
execute at the same priority. In a second simulation, the Calculate Out-
put code segments are assigned higher priorities than the Update State
segments, according to iterative priority/deadline assignment algorithm
suggested in [Cervin, 1999]. The accumulated loss function for the slow
pendulum (T1 � 167 ms) is easily recorded in the Simulink model, and
the results from both simulations are shown in Figure 12.

A close-up inspection of the schedule produced in the second simulation
is shown in Figure 13. It can be seen that the faster tasks sometimes
allow the slower tasks to execute, and in this way the control delays in
the slower controllers are minimized. The result is a smaller accumulated
loss, and thus, better control performance.

158

6. Simulation Features

0 20 40 60 80 100
0

2

4

6
x 10

−5

time

cost

improved

normal

Accumulated Loss

Figure 12. The accumulated loss, see Equation (1), for the low priority controller
using normal and improved scheduling. The cost is substantially reduced under the
improved scheduling.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

1

1.5

2

2.5

3

3.5

Schedule

Time offset: 0

Figure 13. The activation graph when the improved scheduling strategy is used.
Note that the control delay for the low priority task is approximately the same as
for the other tasks.

6. Simulation Features

Further features of the toolbox are the support for common real-time prim-
itives like mutual exclusion locks, events (also known as condition vari-
ables), and network communication blocks.

159

Paper 5. A Matlab Toolbox for Real-Time and Control Systems Co-Design

Locks and Events

The control tasks do not only interact with each through the use of same
CPU, but also due to sharing other user-defined resources. The kernel
allows the user to define monitors and events, for implementing complex
dependencies between the task. The syntax and semantics of the mutex
and event primitives are demonstrated by a small example. Two tasks
Regul and OpCom are sharing a variable called data. To ensure mutual
exclusion the variable is protected by the mutex variable M1. Associated
with M1 is a monitor event called E1. The Regul-task consists of two code
segments called rseg1 and rseg2, that are shown in Example 5. Each
time the Regul-task is released it tries to lock the monitor variable M1.
Once the monitor is locked it may access the shared data. If the value of
the data-variable is less than two, it waits for the event E1 to occur.

EXAMPLE 5
function [exectime, states] = ...

rseg1(flag,states,params)
switch flag,

case 1, % enterCode
if lock('M1')

data = readData('M1');
if data < 2

await('E1');
exectime = 0;

else
exectime = 0.003;

end
else

exectime = 0;
end

case 2, % exitCode
unlock('M1');

end

function [exectime,states] = ...
rseg2(flag,states,params)

switch flag,
case 1, % enterCode

y = analogIn(params.inChan);
states.u = -50*y;
exectime = 0.003;

case 2, % exitCode
analogOut(params.outChan,states.u)

end

160

6. Simulation Features

InputsOutputs

Sensor
Computer

1

Sender ID 2
2

Sender ID 1

1Receiver ID22Receiver ID 1

In
 1

In
 2

O
ut

 1

O
ut

 2Network

u y1,y2

Double Tank

DemuxDemux

Inputs Outputs

Controller
Computer

Figure 14. A distributed control system where the sensor and the CPU are dislo-
cated. The controller and the sensor are implemented as periodic tasks running on
separate CPUs.

The locks and the events are designed similarly to how monitors and
events are implemented in a standard real-time kernel, i.e. using queues
associated with the monitor for storing tasks blocking on locks or events.
The execution time used for trying, but failing to lock, is in the example
above zero.

Network Blocks

It is possible to include more than one Computer block in a Simulink
model, and this opens up the possibility to simulate much more complex
systems than the ones previously discussed. Distributed control systems
may be investigated. Furthermore, fault-tolerant systems, where, for re-
dundancy, several computers are used for control, could also be simulated.
In order to simulate different communication protocols in such systems,
communication blocks for sending data between the different Computer
blocks are needed. Figure 14 shows a simulation setup for a simple dis-
tributed system where the controller, and the actuator and sensor, are
located at different places. Besides the kernel blocks there is a network
block for communication. The network block is event driven, and each
time any of the input signals change, the network is notified. The user
needs to implement the network protocol, since the blocks simply provides
the mechanisms for sending data between kernels.

161

Paper 5. A Matlab Toolbox for Real-Time and Control Systems Co-Design

High Level Task Communication

One of the main reasons for designing the kernel and the network blocks
was to facilitate the simulation of flexible embedded control system, i.e.
systems where the task set is allowed to change dynamically and the un-
derlying real-time system must compensate for this. From a control theory
perspective we might say that we want to design a feedback connection
between the control tasks and the scheduler, see Figure 15. To support the

Scheduler

Processes

Controllers

Figure 15. The control tasks and the task scheduler are connected in a feedback
loop.

simulation of feedback scheduling, there must be ways for the tasks and
the task scheduler to communicate. Therefore the kernel also supports
system-level message passing between tasks.

7. Conclusions

This paper presented a novel simulator for the co-design of real-time sys-
tems and control systems. The main objective is to investigate the conse-
quences on control performance of task interaction on kernel level. This
way, scheduling algorithms may be evaluated from a control design per-
spective. We believe that this is an issue of increasing importance. There
are many more things to be implemented and improved before this block
set will become a truly useful tool. Currently the kernel is tick-based, and
has little support for external interrupts. The next version of the kernel
block will probably be event-based in order to better support interrupts
and event-based sampling. To make the simulations more realistic, the
scheduler itself could also be modeled as a task that consumes CPU time.
This would also enhance the possibilities for the user to implement new
scheduling strategies for control tasks.

162

8. Acknowledgments

8. Acknowledgments

This work was sponsored by the Swedish national board of technical de-
velopment (NUTEK) and by the Swedish network for real-time research
and education (ARTES).

9. References

Abdelzaher, T., E. Atkins, and K. Shin (1997): “QoS negotiation in real-
time systems, and its application to flight control.” In Proceedings of
the IEEE Real-Time Systems Symposium.

Ancilotti, P., G. Buttazzo, M. D. Natale, and M. Spuri (1998): “Design and
programming tools for time critical applications.” Real-Time Systems,
14:3, pp. 251–269.

Audsley, N., A. Burns, M. Richardson, and A. Wellings (1994): “STRESS—
A simulator for hard real-time systems.” Software—Practice and
Experience, 24:6, pp. 543–564.

Cervin, A. (1999): “Improved scheduling of control tasks.” In Proceedings
of the 11th Euromicro Conference on Real-Time Systems, pp. 4–10.

Liu, J. (1998): “Continuous time and mixed-signal simulation in Ptolemy
II.” Technical Report UCB/ERL Memorandum M98/74. Department of
Electrical Engineering and Computer Science, University of California,
Berkeley.

Ryu, M., S. Hong, and M. Saksena (1997): “Streamlining real-time con-
troller design: From performance specifications to end-to-end timing
constraints.” In Proceedings of the IEEE Real-Time Technology and
Applications Symposium.

Seto, D., J. Lehoczky, L. Sha, and K. Shin (1996): “On task schedulability
in real-time control systems.” In Proceedings of the IEEE Real-Time
Systems Symposium.

Stankovic, J., C. Lu, and S. Son (1999): “The case for feedback control real-
time scheduling.” In Proceedings of the 11th Euromicro Conference on
Real-Time Systems, pp. 11–20.

Storch, M. F. and J. W.-S. Liu (1996): “DRTSS: A simulation framework
for complex real-time systems.” In Proceedings of the 2nd IEEE Real-
Time Technology and Applications Symposium, pp. 160–169.

163

Paper 5. A Matlab Toolbox for Real-Time and Control Systems Co-Design

164

Paper 6

Design and Implementation of a
Hybrid Control Strategy

Johan Eker and Jörgen Malmborg

Abstract
A hybrid controller for set-point changes is presented. The strategy com-
bines a time-optimal controller with a PID-controller to achieve both good
set-point response and steady-state behavior. The control strategy is de-
signed and implemented both for a double tank lab process and a real-life
heating/ventilation system. Both simulations and experiments are pre-
sented.

165

Paper 6. Design and Implementation of a Hybrid Control Strategy

166

1. Introduction

1. Introduction

Traditionally there is a trade-off in design objectives when choosing con-
troller parameters. It is usually hard to achieve the desired step change
response and at the same time get the wanted steady-state behavior.
An example of contradictory design criteria is tuning a PID controller
to achieve both fast response to set-point changes, fast disturbance rejec-
tion, and no or little overshoot. In process control it is common practice to
use PI control for steady state regulation and to use manual control for
large set-point changes. Figure 1 shows a system that is controlled (left)
by a PID controller and (right) with manual control combined with a PID
controller. The simulations show a step response at time zero and a load
disturbance rejection at time 80. This paper describes a hybrid control
structure which combines a steady state PID controller with a minimum
time controller for the set-point changes. Both good response to set-point
changes and good disturbance rejection are achieved.

0 50 100 150
0

0.5

1

1.5

2

0 50 100 150
0

1

2

3

0 50 100 150
0

0.5

1

1.5

2

0 50 100 150
0

1

2

3

Figure 1. In the design of a PID control system there is often a choice between
a fast controller giving a large overshoot or a slow controller without overshoot. In
the left figure this is illustrated by two examples of PID control. The right figure
shows a PID controller combined with manual control. The top figures shows the
set-point ysp and the measured variable y. The bottom figures shows the control
signal u.

Design and implementation of such a hybrid control strategy for two
different plants are presented. The ideas were first tested in the labora-
tory on a double tank system, and later applied to a heating/ventilation
system in a public school. The experiments were performed in two differ-
ent software environments but with the same basic control algorithm.

The main focus of this work has been to apply optimal control theory
and hybrid control theory to realistic processes using as simple methods
as possible. This means taking hardware and software limitations into
account when designing the control algorithm. In practice we have been
forced to simplify and approximate the control strategy. A positive aspect

167

Paper 6. Design and Implementation of a Hybrid Control Strategy

of this has been that we have found a fairly easy way of synthesizing
our controller. This in turn makes the control strategy much more acces-
sible for industrial use. A Lyapunov based strategy is first investigated
theoretically and simulated. A simplified version of this controller is then
implemented for two different processes.

This paper is based on work found in [Malmborg, 1998], [Eker, 1997],
and [Malmborg and Eker, 1997].

2. The Controller Structure

C 1

C 2

...

C i

C m

u 1

u 2

u i

u m

η

u y

supervisor

process

Figure 2. A multi controller architecture, used in [Morse, 1995]. Several con-
trollers Ci execute in parallel and a supervisor is used to select which control signal
u � uη to be fed to the process.

Using a hybrid control scheme it is possible to combine several control al-
gorithms and thus get a controller that consists of several subcontrollers,
each designed for a special purpose. An example of a multi control ar-
chitecture is shown in Figure 2. The basic idea here is that the process
outputs y are fed back to a set of controllers. Then each controller cal-
culates a candidate control signal. Which control signal is finally used is
decided by the supervisor. For an overview of hybrid systems see [Bran-
icky, 1995] [Antsaklis and Nerode, 1998] [Antsaklis et al., 1998] [Branicky
et al., 1998].

168

2. The Controller Structure

A Two Mode Hybrid Controller

A controller structure with two sub-controllers and a supervisory switch-
ing scheme will be used. The time-optimal controller is used when the
states are far away from the reference point. Coming closer, the PID con-
troller will automatically be switched in to replace the time-optimal con-
troller. At each different set-point the controller is redesigned, keeping
the same structure but using reference point dependent parameters.

Figure 3 describes the algorithm with a Grafcet diagram, see [David
and Alla, 1992]. Grafcet, also known as Sequential Function Charts (SFC),
is a graphical language for implementation and specification of sequential
algorithms. A Grafcet consists of steps and transitions. A step corresponds
to a state and can be active or inactive. Each state may be associated
with an action which is executed when the step is active. A transition
may fire if its condition is true and the the preceding step is active. The
Grafcet diagram for our hybrid controller consists of four states. Initially
no controller is in use. This is the Init state. Opt is the state where
the time-optimal controller is active and PID is the state for the PID
controller. The Ref state is an intermediate state used for calculating new
controller parameters before switching to a new time-optimal controller.
The signal Close tells if the controller should use the PID controller or

Init

NewRef

Ref

Opt

NewRef

PID

NewRef

Off

Close or Off

OffController

NewControllers

OptController

PIDController

Close

not NewRef

not

Figure 3. A Grafcet diagram describing the control algorithm.

169

Paper 6. Design and Implementation of a Hybrid Control Strategy

the time optimal controller. Two different ways to calculate Close is given
in the section on Lyapunov function modifications.

3. Stabilizing Switching-Schemes

It is well known that switching between stabilizing controllers may lead
to an unstable closed loop system. It is therefore necessary to have a
switching scheme that guarantees stability. Consider the system

ẋ � f (x, t, ui)
ui �ci(x, t), (1)

i(t) ∈{1, . . . , n}

where the ci(x, t) represent different controllers. In a hybrid control sys-
tem different controllers are switched in for different regions of the state
space or in different operating modes.

There exist some switching schemes that guarantee stability, see for
example [Johansson and Rantzer, 1998] [Ferron, 1996]. For the applica-
tions in this paper the min-switch strategy described below is used.

The min-switching strategy is defined as follows. Let there be a Lya-
punov function Vi associated with each controller ci in Equation 1. Fur-
thermore let the controller ci be admissible only in the region Ωi. The
idea is then to use the controller corresponding to the smallest value of
the Lyapunov function. More formally:

DEFINITION 1—THE MIN-SWITCHING STRATEGY

Let fi(x, t) be the right-hand side of Equation 1 when control law ci is
used. Use a control signal u∗ such that,

ẋ �
n∑

i�1

α i fi(x, t). (2)

where α i ≥ 0 satisfies
∑

α i � 1, and α i � 0 if either x /∈ Ωi or if
Vi(x, t) > minj [Vj(x, t)]. If only one controller achieves the minimum
then α i � 1 for that controller and all the other α i are zero.

THEOREM 1—STABILITY OF HYBRID SYSTEMS

Let the system be given by Equation (1). Introduce W as

W � min(V1, V2, . . . , Vn).

170

4. The Processes

The closed loop system is then stable with W as a non-smooth Lyapunov
function if the min-switch strategy is used.

For a proof of the theorem and a more detailed description of the strategy,
see [Malmborg, 1998]. The case where several Lyapunov functions achieve
the minimum is discussed in [Malmborg, 1998].

Lyapunov function modifications

From a control designer’s point of view the design of a hybrid control
scheme using the min-switching strategy can be reduced to separate de-
signs of n different control laws and their corresponding Lyapunov func-
tions. To improve performance it is often convenient to change the location
of the switching surfaces. This can, to some degree, be achieved by differ-
ent transformations of the Lyapunov functions. One example is transfor-
mations of the form, Ṽi � ki(Vi), where ki(⋅) are monotonously increasing
functions.

In some cases there can be very fast switching, known as chattering,
between two or more controllers having the same value of their respective
Lyapunov function. The hybrid controller is still stabilizing but it may not
lead to the desired behavior in a practical implementation. One way to
avoid chattering is to add a constant ∆ to the Lyapunov functions that
are switched out and subtract ∆ from the Lyapunov functions that are
switched in. This works as a hysteresis function. For two controllers with
Lyapunov functions V1 and V2 the equations are V1 � V1+∆ and V2 � V2

if controller two is in use and V1 � V1 and V2 � V2 + ∆ if controller one
is controlling the process. This guarantees that a controller is used for a
time period t > 0 before it is switched out. It is easily shown that the
hybrid controller is globally stabilizing with this addition, if it is stabiliz-
ing without it. More information on chattering in hybrid systems can be
found in [Hay and Griffin, 1979] [Park and Barton, 1996].

4. The Processes

The first process is a double tank system, a standard laboratory process.
The second process is a real-life process, a heating/ventilation system at
a public school.

A Double Tank System

The first process is the double tank system from our laboratory. It consists
of two water tanks in series, see Figure 4. The goal is to control the level,
x2, of the lower tank and indirectly the level, x1, of the upper tank. The

171

Paper 6. Design and Implementation of a Hybrid Control Strategy

Pump

x2

x1

Figure 4. The double-tank process. The input signal u is the voltage to the pump
and the output signal y � x2 is the level of the lower tank.

two tank levels are both measurable. The following state space description
is derived

ẋ � f (x, u) �
[−α 1

√
x1 + β u

α 1
√

x1 −α 2
√

x2

]
, (3)

where the flow u into tank 1 is the control variable. The inflow can never
be negative and the maximum flow is ū � 27 ⋅ 10−6 m3/s. Furthermore,
in this experimental setting the tank areas and the outflow areas are the
same for both tanks, giving α 1 � α 2. The square root expression is derived
from Bernoulli’s energy equations.

A heating/ventilation process

The second process is a heating/ventilation system in a public school in
Klippan, Sweden. The process, see Figure 5, is a combined heating and
ventilation system where pre-heated air is blown into the classrooms. The
control problem here is to design a controller that has both the desired
steady-state behavior and transient behavior. The participating company
was interested in new ways of improving start-up and reference change
performances.

Specifically, the control problem is that they want to have two different
settings for the ventilation air temperature, one during the day and one
during the night. Another related problem is that when the system has
been shut down for some reason it is necessary to start from considerably
lower temperatures. The air is heated in a heat-exchanger and the incom-
ing air has outdoor temperature, which can be very low in Sweden during

172

4. The Processes

Figure 5. The control valve for the heating/ventilation system.

the winter. The variation in outdoor temperature will cause considerable
variation in the process parameters.

The existing PID controller was tuned very conservatively to be able to
handle these cold starts without too large overshoots. This was exactly the
problem type that the fast set-point hybrid controller previously discussed
was designed for.

The control signal, u, is the set-point for the opening of the valve.
Hot water flows through the valve to a heat-exchanger and the air is
heated. The output of the system is the air temperature, T , after the fan,
which blows the air into the classrooms. The final temperatures in the
classrooms are controlled with radiators on a separate control system.

While the double tank system was well known, there was no model
available for the heating/ventilation system. A system model was iden-
tified. The identification data was logged running the system in manual
control mode and then uploaded over a modem connection. System iden-
tification data was collected by exciting the system with the input pro-
file sketched in Figure 6. The identification software used is described
in [Wallén, 1999]. The only measurable state of the system is the outlet
air temperature. During normal use the reference temperature varies be-
tween 17 and 22 degrees centigrade. The goal of the experiment was to
also be able to handle the start-up phase from considerably lower tem-
peratures. Therefore the transfer function was estimated at a much lower

173

Paper 6. Design and Implementation of a Hybrid Control Strategy

valve
opening

t

30%

20%

Figure 6. Input profile for the system identification. The figure shows valve open-
ing in percent of full opening as a function of time.

temperature as well.
The actual modeling was done by fitting step responses of low order to

match the input-output data.The identification data was separated into
several sets, each covering different working-points. In fact there were
actually two sets for each working-point, one for raising the temperature
and one for lowering the temperature. There was no significant difference
in the models estimated from raising or lowering the temperature or at
different set-points. Basically the only difference was in the static gain.
The identification experiments gave that

G(s) � b
(s+ a1)(s+ a2) �

0.03
(s+ 0.01)(s+ 0.05) (4)

was a reasonable model of the system. During the experiments the pa-
rameter b had a variation of ±20%. At least part of the variation in this
parameter is due to the outdoor temperature changes. To raise the tem-
perature, more energy needs to be added to the outdoor air when it is
colder.

The chosen model is complicated enough to capture the dynamics of
the system and still simple enough to allow an analytical solution to the
time-optimal control problem.

There is some freedom in choosing a state space representation for the
transfer function in Equation 4. In the real process only one state, the
temperature, is measurable and to simplify the filtering needed in the
real-time implementation, the second state was chosen as the derivative
of the temperature. A suitable state-space representation for simulation
and implementation is the controllable form:[

ẋ1

ẋ2

]
�
[

0 1

−a1a2 −(a1 + a2)
]

x +
[

0

b

]
u

y � [1 0] x. (5)

174

5. Controller Design

The parameters a1, a2 are almost constant and only the gain b contributes
to the process variations as a function of the working conditions.

5. Controller Design

This section describes the design of the subcontrollers for each of the
processes. First the design of the PID-controller for both the double tank
system and the heating/ventilation process is presented. Next, the time
optimal controller is discussed for both of the plants.

PID controller design

A standard PID controller of the form

GPI D � K (1+ 1
sTI

+ sTd)

with an additional lowpass filter on the derivative is used. The design of
the PID controller parameters K , Td and TI is based on the linear second
order transfer function,

G(s) � k
(s+ a1)(s+ a2)

Both the double tank system and the heating/ventilation system may be
written in this form. The PID controller parameters are then derived with
a pole-placement design method, where the desired closed loop character-
istic equation is

(s+αω)(s2 + 2ζ ω s+ω 2).

For the double tank system the sub-controller designs are based on a
linearized version of Equation 3:

ẋ �
[−a 0

a −a

]
x+

[
b

0

]
u. (6)

For the tank system a1 � a2 � a, and k � ba, compare Equation 6.
The parameter b has been scaled so that the new control variable u is in
[0, 1]. The parameters a and b are functions of α , β and the reference level
around which the linearization is done. It is later shown how the neglected
nonlinearities affect the performance. To be able to switch in the PID
controller, a fairly accurate knowledge of the parameters is needed. The

175

Paper 6. Design and Implementation of a Hybrid Control Strategy

parameters (ω ,ζ ,α) � (0.06, 0.7, 1.0) are chosen to get a good behavior
under load disturbances.

For the heating/ventilation process the parameters in the closed loop
characteristic equation are (ω ,ζ ,α) � (0.025, 1.0, 1.0). The controller pa-
rameters are chosen to give a well damped closed loop system but with
approximately the same speed as the open system. The controller could
be more aggressively tuned than the currently used PID controller, as the
error and control signal never are large.

Time-optimal controller design

The problem of set-point response can be viewed as a purely deterministic
problem: to change the process from one state to another in shortest pos-
sible time, possibly without any overshoot, subject to constraints on the
control signal. The constraints are typically bounds on the control signal
or its rate of change. This is an optimal control problem, and the theory
of optimal control, see [Lewis, 1986] and [Leitman, 1981], is applied to
derive minimum time strategies to bring the system as fast as possible
from one set-point to another. The time-optimal control is the solution to
the following optimization problem

max
∫ T

0
−1 ⋅ dt (7)

under the constraints

x(0) � [x0
1 x0

2]T
x(T) � [xR

1 xR
2]T

u ∈ [0, 1]

This together with the system dynamics give the control law.
For a wide class of systems the solution to Equation 7 is of bang-bang

character where the optimal control signal switches between its extreme
values. For problems with a two-dimensional state space the strategy can
be expressed in terms of a switching curve that separates the state space
into two subsets, where the control signal assumes either its high or low
value. This changes the control principle from feed-forward to feedback.

Equilibrium points and switching curves around these may be derived
from the state space representations. These switching curves may then
be used as reference trajectories. For many systems analytic expressions
for the switching curves are hard to derive. The solution is then to use
approximate switching curves. If the system is known it is easy to get
numerical values for the switching curves through simulation.

176

5. Controller Design

The Hamiltonian, H(x, u, λ), for the double tank system described by
Equation 3 is

H � −1+ λ 1(−a
√

x1 + bu) + λ 2(a√x1 − a
√

x2),

with the adjoint equations, λ̇ � −VH
V x ,

[λ̇ 1

λ̇ 2

]
�
[− a

2
√

x1

a
2
√

x1

0 − a
2
√

x2

] [λ 1

λ 2

]
. (8)

The complete solution to these equations is not needed to derive the opti-
mal control signal. It is sufficient to note that the solutions to the adjoint
equations are monotonic. The switching function from solving Equation 8
is σ � λ 1bu. It gives the optimal control signal sequence that minimizes
H(u), and the possible control sequences are then

〈0, 1〉, 〈1, 0〉, 〈0〉, 〈1〉.

For linear systems of order two, there can be at most one switch between
the maximum and minimum control signal value (it is assumed that the
tanks never are empty, i.e. xi > 0).

The switching times are determined by the new and the old set-points.
In practice it is preferable to have a feedback loop instead of pre-calculated
switching times. Hence an analytical solution for the switching curves
is needed. For the linearized equation for the double tank systems it is
possible to derive the switching curve

x2(x1) � 1
a
[(ax1 − bū)(1+ ln(axR

1 − bū
ax1 − bū

)) + bū],

where ū takes values in {0, 1}. The time-optimal control signal is u � 0
above the switching curve and u � 1 below, see Figure 7.

The fact that the nonlinear system has the same optimal control se-
quence as the linearized system makes it possible to simulate the non-
linear switching curves and to compare them with the linear switching
curves. Simulation is done in the following way: initialize the state to the
value of a desired set-point and simulate backwards in time.

Note that the linear and the nonlinear switching curves are quite close
for the double-tank model, see Figure 7. The diagonal line is the set of
equilibrium points, xR

1 � xR
2 . Figure 7 shows that the linear switching

curves are always below the nonlinear switching curves. This will cause
the time-optimal controller to switch either too late or too soon.

177

Paper 6. Design and Implementation of a Hybrid Control Strategy

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

x2

x1

Figure 7. Switching curves, for different set-points, for the double tank system.
The set-points lie on the diagonal x1 � x2. The full lines show the switching curves
for the nonlinear system, while the dashed lines show the linearized, approximate
switching curves. Above the switching line the minimum control signal is applied
and below it the maximum control signal is used.

It is not necessary to use the exact nonlinear switching curves since
the time-optimal controller is only used to bring the system close to the
new set-point. When sufficiently close, the PID controller takes over.

The heating/ventilation system is a linear, second order system with
real poles, and a time optimal controller for such a system is known to
be of bang-bang type. The switching curves for the heating/ventilation
system were derived through simulation, and a simple linear function was
fitted to the simulated curves. The approximate linear function is simply
a function of the steady state coordinate. Both the simulated switching
curves and the linear approximations are shown in Figure 8.

6. Simulations

In this section some different switching methods are evaluated. In all
simulations a switching surface for the time-optimal controller based on
the linearized equations is used.

All simulations have been made in the Omola/Omsim environment
[Andersson, 1994], which supports hybrid systems.

178

6. Simulations

10 12 14 16 18 20 22 24 26 28 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Switch Curves for the Ventilation Processx2

x1

Figure 8. The switching curves for the heating/ventilation system. The figure
shows both the actual simulated switching curves (dashed) and the approximate,
linear ones (full).

The Double Tank System

A natural simple switching strategy would be to pick the best parts from
both PID control and time-optimal control. One way to accomplish this
is to use the time-optimal controller when far away from the equilibrium
point and the PID controller when coming closer.
As a measure of closeness the function Vclose is used,

Vclose �
[

xR
1 − x1

xR
2 − x2

]T

P(θ , γ)
[

xR
1 − x1

xR
2 − x2

]
,

where

P(θ , γ) �
[

cos2 θ + γ sin2 θ (1− γ) sin θ cosθ
(1− γ) sin θ cosθ sin2 θ + γ cos2 θ

]
.

The switching strategy here is to start with the time-optimal controller
and then switch to the PID controller when Vclose < ρ . The size and shape
of the catching region may be changed with the γ and θ parameters.
The P matrix above gives ellipsoidal catching curves. In this simulation
switching back to the time-optimal controller is not allowed until there
is a new reference value. See Figure 3 for a graphical description of the
algorithm. The simulation results in Figure 9, show how the best parts
from the sub-controllers are combined to give very good performance.

In this second simulation set, the min switching strategy that guaran-
tees stability for the linearized system is used. The two Lyapunov func-

179

Paper 6. Design and Implementation of a Hybrid Control Strategy

0 100 200 300
0

0.05

0.1

0.15

0.2

0 100 200 300
0

0.05

0.1

0.15

0.2
 x2, xR

2
x1

uhybrid x2

x1
0 100 200 300

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Figure 9. Simulation of the simple switching strategy for the double tank system.
Lower left figure shows the control signal. The time-optimal controller makes one
extra min-max switch because of the nonlinearity. Catching regions are shown in
lower right sub-figure.

tions are defined as

VPI D �
 xR

1 − x1

xR
2 − x2

xR
3 − x3

T

P(θ , γ)
 xR

1 − x1

xR
2 − x2

xR
3 − x3

VTO � remaining time to reach new set-point

The second Lyapunov function is associated with the time optimal control
law and is the time it takes to reach the new setpoint starting from the
current position in the state space if time optimal control is used. The state
x3 is the integrator state in the PID controller and xR

3 is its steady state
value. As in the previous simulation set, the parameters γ and θ are used
to shape the catching region. The new state x3 is preset to its value at the
new equilibrium point, i.e. xR

3 , any time there is a set-point change. This
state is not updated until after the first switch to PID control. Using this
method a similar two-dimensional catching region as in the case with the
simple switching strategy, is created. The simulation results are presented
in Figure 10.

180

6. Simulations

0 100 200 300
0

0.05

0.1

0.15

0.2

0 100 200 300
0

0.05

0.1

0.15

0.2
 x2, xR

2 x1

uhybrid x2

x1

0 100 200 300

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2
-0.05

0

0.05

0.1

0.15

0.2

Figure 10. Lyapunov based switching for the double tank system. Compare Fig-
ure 9.

This supervisory scheme may lead to two types of chattering behav-
ior. One is only related to the time-optimal controller and is due to the
nonlinearities. The nonlinear switching curve lies above the linear, see
Figure 7. That causes the trajectory of the nonlinear system to cross the
linear switching curve and the control signal goes from 0 to 1 somewhat
too late or too early. One way to remove this problem is to introduce a hys-
teresis when going from minimum to maximum control signal in the time
optimal controller. There can also be chattering between the PID and the
time-optimal controller if their corresponding Lyapunov functions have
the same value. One solution to this problem is to add and remove the
constant ∆ as discussed in the section on Lyapunov functions modifica-
tions.

The Heating/Ventilation Process

In practical applications it can be an advantage to approximate the switch-
ing curves with simpler functions. To investigate the behavior for such
approximations, the switching curves for the system in Equation 5 were
approximated with five straight lines. As can be seen in Figure 11 the

181

Paper 6. Design and Implementation of a Hybrid Control Strategy

overall performance did not deteriorate very much. The main difference
from using the theoretically correct switching strategy is that a few ex-
tra 〈min, max〉 switches are needed. Simulations to test the method’s ro-
bustness to process variations were also made. There was no significant
decrease in performance for process parameter variations of ±50%.

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

T , Tre f Ṫ

u

T

Ṫ

0 50 100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

1

14 15 16 17 18 19 20 21 22 23
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 11. Simulation of the ventilation model for the school in Klippan. The
affine approximation of the ideal switching curves is seen together with two set-point
change trajectories in the last sub-plot.

7. Implementation

The traditional way of implementing real-time systems using languages
such as C or ADA gives very poor support for algorithms expressed in a
state machine fashion. The need for a convenient way to implement hybrid
systems is evident. The programming language must allow the designer
to code the controller as a state-machine, as a periodic process, or as a
combination of both. The latter alternative is particularly useful in the
case where the controller is divided into several controllers sharing some
common code. A typical example of this is a state feedback controller for
a plant, where it is not possible to measure all states. To get informa-
tion about the non-measurable states an observer or a filter can be used.

182

7. Implementation

Typically, this information is needed by the whole set of controllers, and
thus the controller itself can be implemented as a hybrid system, consist-
ing of one global periodic task that handles the filtering of process data,
and a set of controllers that can be either active or inactive. Many hybrid
controllers have the same sort of demands on the programming language.

Implementing complex control algorithms puts high demands on the
software environment. Automatic code generation and verification are
needed together with advanced debugging and testing facilities.

The Double Tank System

The hybrid controller for the double tank system was implemented in PAL
for use in the PÅLSJÖ real-time environment.

PAL [Blomdell, 1997] is a dedicated control language with support for
hybrid algorithms. Furthermore, the language supports data-types such
as polynomials and matrices, which are extensively used in control the-
ory. PAL has a run-time environment, PÅLSJÖ [Eker and Blomdell, 1996],
that is well suited for experiments with hybrid control. PÅLSJÖ was de-
veloped to meet the needs for a software environment for dynamically
configurable embedded control systems. PÅLSJÖ features include rapid pro-
totyping, code re-usability, expandability, on-line configurability, portabil-
ity, and efficiency For a more exhaustive description of PAL and PÅLSJÖ,
see [Eker, 1997].

The Heating/Ventilation System

The hybrid controller was implemented in FORTH on a Diana ADP 2000
system and tested against a process simulation using real-time SIMNON,
see [Elmqvist et al., 1990].

The control system, Diana ADP 2000, manufactured by Diana Control
AB, is mainly used in heating-ventilation applications. The system is flex-
ible, modular and well suited for testing of new software. It is possible
to install new controller code without having to rebuild the whole system
for input/output handling, logging etc.

The controller hardware Diana ADP 2000 is modular. One unit can
itself have several control loops, and on large installations several Diana
ADP 2000 can be interconnected in a network. In the network configura-
tion, one of the control units is a master and the others are slaves. This
master unit could be reached over a modem connection and from the mas-
ter it is possible to communicate with all the others. Over the telephone
line and via a user interface it is possible to log data, change parameters,
and down-load new code for every controller.

The programming of both the real-time operating system and the ap-
plication programs is done in FORTH. Amongst its good properties are that

183

Paper 6. Design and Implementation of a Hybrid Control Strategy

it is both interactive and compiled. Structure can be built with the no-
tion of “words”. Words are executable functions or procedures that can be
arranged in a hierarchical structure. Diana ADP 2000 comes with some
predefined objects and a limited number of mathematical functions.

8. Experiments

The theory and the simulations have been verified by experiments. For
simplicity only the simple switching strategy previously presented was
implemented. Figure 12 shows the results of that experiment with the
double-tanks.

0 50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x2, xR
2

x1

uhybrid x2

x1

0 50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 12. The double tank system. The simple switching strategy is used. The
noise level is rather high, which is visible during PID control.

The measurements from the lab process have a high noise level as can
be seen in Figure 12. A first order low-pass filter

G f (s) � 1
s+ 1

is used to eliminate some of it. To further reduce the impact of the noise,
a filter is added to the derivative part of the PID controller in a standard
way.

184

8. Experiments

The parameters in the simulation model were chosen to match the
parameters of the lab process. It is thus possible to compare the experi-
mental results directly with the simulations. A comparison of Figures 9
and 12 shows a close correspondence between simulation and experimen-
tal results.

During experiments it was found that the model mismatch, i.e. the
difference between the linear and the nonlinear switching curves, did not
affect the performance in the sense of fast tracking. It resulted in a few
more 〈min, max〉 switches before reaching the target area where the PID
controller took over. However, a good model of the static gain in the system
is needed. If there is a large deviation it cannot be guaranteed that the
equilibrium points are within the catching regions. The catching region
is defined as an ellipsoid around the theoretical equilibrium points.

Field test

Finally the hybrid control strategy was tested at the school in Klippan.
The results are shown in Figure 13. As expected there were a few ex-
tra 〈min, max〉 switches due to approximation of the switching curve and
probably also due to unmodeled dynamics and nonlinearities. The param-
eter b was estimated from steady state values of the air temperature and
the control valve position.

0 20 40 60 80 100 120 140 160
19

20

21

22

23

24

25

26

T , Tre f u

0 20 40 60 80 100 120 140 160

0

0.2

0.4

0.6

0.8

1

Figure 13. A 5 degree set-point change using the hybrid controller. Air tempera-
ture (left) and control signal (right).

A similar set-point change for the controller currently in use at the
school showed that it took approximately twice as long time to reach the
new set point. However, the main advantage with the proposed method
is that it will not give a large overshoot even if started from a very low
temperature.

It is not difficult to incorporate some process parameter estimation
functions in the code. This would give a good estimate of the static gain.
Points on the switching curves could be stored in a table instead of using

185

Paper 6. Design and Implementation of a Hybrid Control Strategy

the analytical expressions. If the switch is too early or too late because of
the nonlinearities, this information could be used to update the switching
curve table.

9. Summary

Hybrid controllers for a double-tank system and a heating ventilation
process have been designed and implemented. Both simulations and real
experiments were presented. It was shown that a hybrid controller, con-
sisting of a time-optimal controller combined with a PID controller gives
very good performance. The controller is easy to implement. It gives, in
one of its forms, a guaranteed closed loop stability.

The proposed controller solves a practical and frequent problem. Many
operators switch to manual control when handling start-up and set-point
changes. It is fairly easy to combine this method with a tuning exper-
iment that gives a second order model of the system. From the tuning
experiments it is easy to automatically generate a PID controller and an
approximate time-optimal controller. The model mismatch was not seri-
ous. The nonlinearity led to some additional 〈min, max〉 switches.

The simple hybrid controller was tested on a fast set-point problem on
a school. Simulations indicated that the theoretically derived switching
curves could be approximated with simple functions without too much
performance deterioration. Measurements at the school showed that the
process variations were not significant and the variation in steady state
gain could be estimated from input output data before or during a set-
point change.

A fairly crude model of the system together with approximative switch-
ing curves gave significant improvements for set-point changes. The speed
was doubled without large overshoots. At this first test, no attempts were
made to smooth the control signal. The extra 〈min, max〉 switches could
have been avoided with a hysteresis function.

10. References

Andersson, M. (1994): Object-Oriented Modeling and Simulation of Hy-
brid Systems. PhD thesis ISRN LUTFD2/TFRT--1043--SE, Depart-
ment of Automatic Control, Lund Institute of Technology, Lund, Swe-
den.

Antsaklis, P. J., W. Kohn, A. Nerode, and S. Sastry, Eds. (1998): Hybrid
Systems V. Springer-Verlag.

186

10. References

Antsaklis, P. J. and A. Nerode (1998): “Hybrid control systems: An
introductory discussion to the special issue.” IEEE Trans. Automatic
Control, 43(4), p. 497.

Blomdell, A. (1997): “PAL – the PÅLSJÖ algorithm language.”. Report ISRN
LUTFD2/TFRT--7558--SE, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

Branicky, M. (1995): Studies in Hybrid Systems: Modeling, Analysis, and
Control. PhD thesis, LIDS, Massachusetts Institute of Technology.

Branicky, M. S., V. S. Borkar, and S. K. Mitter (1998): “A unified
framework for hybrid control: Model and optimal control theory.” IEEE
Trans. Automatic Control, 43(1), p. 31.

David, R. and H. Alla (1992): Petri Nets and Grafcet: Tools for modelling
discrete events systems. Prentice-Hall.

Eker, J. (1997): A Framework for Dynamically Configurable Embedded
Controllers. Lic Tech thesis ISRN LUTFD2/TFRT--3218--SE, Depart-
ment of Automatic Control, Lund Institute of Technology, Lund, Swe-
den.

Eker, J. and A. Blomdell (1996): “A structured interactive approach to
embedded control.” In The 4th International Symposium on Intelligent
Robotic Systems. Lisbon, Portugal.

Elmqvist, H., K. J. Åström, T. Schönthal, and B. Wittenmark (1990):
Simnon User’s Guide. SSPA, Göteborg, Sweden.

Ferron, E. (1996): “Quadratic stabilizability of switched systems via
state and output feedback.” Technical Report CICS-P-468. Center for
intelligent control systems, MIT, Cambridge, Massachusetts, 02139,
U.S.A.

Hay, J. L. and A. W. J. Griffin (1979): “Simulation of discontinuous dy-
namical systems.” In Proc. of the 9th IMACS Conference on Simulation
of Systems. Sorrento, Italy.

Johansson, M. and A. Rantzer (1998): “Computation of piecewise
quadratic lyapunov functions for hybrid systems.” IEEE Transactions
on Automatic Control, 43:4, pp. 555–559. Special issue on Hybrid Sys-
tems.

Leitman, G. (1981): The Calculus of Variations and Optimal Control.
Plenum Press, New York.

Lewis, F. L. (1986): Optimal Control. Wiley.

187

Paper 6. Design and Implementation of a Hybrid Control Strategy

Malmborg, J. (1998): Analysis and Design of Hybrid Control Systems.
PhD thesis ISRN LUTFD2/TFRT--1050--SE, Department of Auto-
matic Control, Lund Institute of Technology.

Malmborg, J. and J. Eker (1997): “Hybrid control of a double tank system.”
In IEEE Conference on Control Applications. Hartford, Connecticut.

Morse, A. S. (1995): “Control using logic-based switching.” In Isidori, Ed.,
Trends in Control. A European Perspective, pp. 69–113. Springer.

Park, T. and P. Barton (1996): “State event location in differential
algebraic models.” ACM Transactions on Modeling and Computer
Simulation, 6(2), p. 137.

Wallén, A. (1999): “A tool for rapid system identification.” In Proceedings
of the 1999 IEEE International Conference on Control Applications.

188

Appendix A

PAL – Pålsjö Algorithm Language

1. Introduction

PAL is a block based imperative language for implementation of embed-
ded controllers. It is designed to support and simplify the coding of control
algorithms. Language constructs for both periodic algorithms and sequen-
tial algorithms are available, and complex data types such as polynomials
and matrixes are fully supported.

A brief introduction to the PAL language is given below. For a more
in depth description see [Blomdell, 1997], which this text is based upon.

2. Blocks and Modules

Algorithms are described as input-output blocks. New values for the out-
put signals are calculated based on the values of the inputs, the internal
states and the parameters. A PAL block has the following structure:

EXAMPLE 1
module example1;

block block1

in : input real;
out : output real;
p : parameter real;
i :� 1.0 : real;

calculate
begin

out :� i + in;
end calculate;

update
begin

i :� i ∗ p;

189

Appendix A. PAL – Pålsjö Algorithm Language

end update;

end block1;

end example1.

The top level concept of PAL is the module. Several blocks may be grouped
together in a module. In the example above the block block1 is declared
within the module example1. The first section of the block defines the
interface. In this example it consists of one input signal in, one output
signal out, one parameter p, and one state variable i. After the interface
section comes the algorithm section. The two procedures calculate and
update, define the periodic algorithm of the block.

3. Block Variables

Variables declared in the block scope, are global at the block level. They
are visible for all procedures and functions in the block. Global variables
are also visible from outside the block, i.e. it is possible to monitor and log
those variables. Local variables are declared before the begin statement
in procedures and functions. They are only visible inside the scope of the
function or the procedure, and may not be monitored or logged. The syntax
for defining variables is:

name [:�value]: [interface modifier] data type

The possible data types and interface modifiers are described below.

4. Interface Modifiers

The interface modifiers define how the variable interacts with the envi-
ronment, i.e. other blocks and the user.

• Input The input modifier is used in variable declarations and in
procedure heads, indicating that the variable is an input. An input
variable may not be assigned a value.

• Output The output modifier is used in variable declarations and in
procedure heads, indicating that the variable is an output.

• Parameter The parameter modifier is used in variable declarations.
A parameter variable may not be assigned a value. Parameters can
only be set by the user or the run-time system. There are two types of

190

5. Scalar Data Types

parameters: direct and indirect. A direct parameter is declared with
data type and interface modifier. An indirect parameter is a function
of other parameters, and may not be assigned directly in the PAL
code. For indirect parameters the data type is given implicitly from
the relation with other direct parameters. In Example 2 the indirect
parameter c is declared as a function of the direct parameters a and
b. The data type of the c parameter will be real. Notice that indirect
parameters are declared using equality.

EXAMPLE 2

a : parameter real;
b : parameter real;
c � a ∗ b;

• State The state modifier indicates that the variable is a state. A
state variable is visible to the user and the run-time system, but
can only be assigned within the block, i.e in a PAL statement. If the
interface modifier is omitted, state is used as default.

5. Scalar Data Types

The predefined scalar data type are the following:

• real A real valued variable.

• integer An integer valued variable.

• string A text string.

– str � "initial value" : string;

– String concatenation is available using +.

• dimension An integer variable used to specify the dimension for
aggregate data types.

– n : dimension;

– A dimension variable can be used as an integer in expressions
and statements. It gets its value upon block creation, and may
not be assigned within the algorithm section. The value of a
dimension variable can only be set by the runtime system. A
dimension variable may be given a default value.

191

Appendix A. PAL – Pålsjö Algorithm Language

• boolean A boolean valued variable being either true or false.

– bool :� true : boolean;

– Predefined constants: true or false.

– Three logical operators: and, or and not.

• sampling interval The period time for the block given in seconds.
The sampling time is set by the user or the run-time system. The
sampling time is real valued.

6. Aggregate Data Types

The predefined aggregate data types are:

• array An array is a fixed sequence of elements of some scalar type.
The size of the array is given, as the upper and the lower limits
when defining the array instance. The array size cannot be changed
from within the PAL code. It may however be parameterized using
dimension variables.

– n : dimension;
in1 : input array[1..n] of real;

– m : dimension;
in2 : array[0..m] of input real;

– Accessing elements:
in1[1] :� 3.14;
tmp :� in1[2];

• matrix A matrix is a fixed size two-dimensional array of real valued
elements. The size of the matrix is given as the upper and the lower
limits, when declaring the matrix instance. Dimension parameters
may be used to parameterize the size of a matrix instance.

– out : input matrix[1..n,1..m] of real;

– Accessing elements:
out[2,2] :� 3.14;
tmp :� out[3,3];

– Operators: +,−, ∗ : applied to matrix operands.
∗ : applied to a scalar real and a matrix.

– The matrix data type maps down onto the Newmat matrix
class [Davis, 1997]. The Newmat function library may thus be
used for matrix manipulation.

192

7. Expressions and Statements

• polynomial A polynomial is a fixed one-dimensional array of real
valued elements. The degree of the polynomial is given when declar-
ing the polynomial instance. The degree of a polynomial may be pa-
rameterized using dimension parameters. A polynomial with degree
n has n+ 1 coefficients, starting with index 0.

– par : parameter polynomial[n] of real;

– Accessing elements:
par[2] :� 3.14;
tmp :� par[3];

– Operators: +,−, ∗, div, mod : applied to polynomial operands.
∗, / : applied to a scalar real and a polynomial.

– The polynomial data type maps down onto an external polyno-
mial package [Eker and Åström, 1995].

7. Expressions and Statements

An expression yields a value. The value domain of an expression is deter-
mined by the operation and the operands. Statements are used to describe
the execution of an algorithm. A statement may consist of expressions,
declarations, and statements. Below are the expressions and statements
available in PAL.

• Unary Expressions A unary expression is an expression which
only involves one operand. There are three types of unary expres-
sions in PAL:

– Referencing a variable

– Arithmetic negation (e.g. -pi)
– Logical negation (e.g. not bad)

• Binary Expressions A binary expression is an expression which
involves two operands. There are three types of binary expressions
in PAL:

– Arithmetic expressions (i.e. +,−, ∗, /,mod or div)
– Relational expressions (i.e. <,<�,<>,>�, or >)
– Polynomial evaluation, that returns the value of the polynomial

in a specific point.

• Other Expressions In PAL there are two other types of expres-
sions:

193

Appendix A. PAL – Pålsjö Algorithm Language

– Indexing (e.g. x[i]), which returns a specific part of an array,
matrix, or polynomial.

– Function calls. A function reads input parameters and returns
a value.

• Assignment A variable is assigned using the assignment opera-
tor :�.

in : input real;
out : output real;
K : parameter real;
. . .
out :� K * in;

• The if Statement Conditional execution is constructed using the
if statement.

if a � true then
i :� i + 1;

elsif b = true then
i :� i + 2;

else
i :� i + 3;

end if;

• The for statement One or more statements are repeated using the
for statement.

for i � 1 to N do
sum :� sum + vec[i];

end for;

8. Procedures, Functions and Events

A procedure is a subprogram which consists of a sequence of statements.
A procedure has a head and a body. The head defines the name of the
procedure, and the interface used for calling the procedure. The body of
the procedure contains the statements that are executed when the pro-
cedure is called. Parameters to a procedure can either be input or out-
put. Input parameters are passed by value, while output parameters are
passed by reference. Parameters of type array are however always passed
by reference. It is not allowed to assign values to input parameters in-
side the function body. In Example 3 the implementation of a function
which performs dyadic decomposition is shown. The algorithm is taken
from [Åström and Wittenmark, 1995]. Three functions RowAsRealArray,

194

8. Procedures, Functions and Events

RealArrayAsRow, and DyadicReduction are called in the code, but not de-
fined there. The first two are built-in functions for converting data from
a matrix row to an array, and back. The definition of the third function is
omitted for simplicity.

EXAMPLE 3
procedure LDFilter(

theta : output array [0..n : integer] of real;
d : output array [0..n] of real;
l : output matrix [0..n, 0..n] of real;
phi : array [0..n] of real;
lambda : input real

);
i, j : integer;
e, w : real;

begin
d[0] :� lambda;
e :� phi[0];
for i :� 1 to n do

e :� e− theta[i] ∗ phi[i];
w :� phi[i];
for j :� i + 1 to n do

w :� w+ phi[j] ∗ l[i, j];
end for;
l[0, i] :� 0.0;
l[i, 0] :� w;

end for;
for i :� n downto 1 do

RowAsRealArray(l, 0, tmp1);
RowAsRealArray(l, i, tmp2);
D yadicReduction(tmp1, tmp2, d[0], d[i], 0, i, n);
RealArrayAsRow(tmp1, 0, l);
RealArrayAsRow(tmp2, i, l);

end for;
for i :� 1 to n do

theta[i] :� theta[i] + l[0, i] ∗ e;
d[i] :� d[i]/lambda;

end for;
end LDFilter;

The variables tmp1 and tmp2 are global variables declared in the block
scope. The value of the integer variable n is dynamically bound to the size
of the input vector theta.

A function is a subprogram which consists of a sequence of statements. A
value is returned after finishing execution. The head defines the name of

195

Appendix A. PAL – Pålsjö Algorithm Language

the function, the interface used for calling the function, and the type of
the return data. Parameters are passed as inputs or outputs in the same
fashion as for procedures. The return value is stored in the predefined
variable result.

function Limiter(
max : real;
min : real;
value : real

) : real;
begin

if value < min then
result :� min;

elsif value > max then
result :� max;

else
result :� value;

end if;
end Limiter;

A PAL block may have a set of events that it responds to. An event itself
is a text string. When a block receives an event it executes the proce-
dure with the same, if there is any. All procedures in PAL are registered
as events when executed in the PÅLSJÖ run-time environment. Let, for
example, the procedure Reset be defined in the block RST.

procedure Reset();
i : integer;

begin
for i :� 0 to m do

U [i] :� 0.0;
Y [i] :� 0.0;
Uc[i] :� 0.0;

end for;
end Reset;

The Reset procedure may then be called from the PCL command line
by the following command

pcl*> process.block = new RST
pcl*> process.block ! Reset

There are two predefined block procedures calculate, and update. They
are used to implement periodic algorithms. The calculate procedure cal-
culates an output signal, while update updates the state variables. The
reason for dividing the algorithm like this is discussed in detail in [Eker,
1997].

196

8. Procedures, Functions and Events

Information

T

Q

L
1

L0

V

Sensor

Control Signals

Control Signal

Process

Controller V1

V2

L2

L1

Q
T

Figure 1. The reactor is used for mixing and heating fluids. When batch is started
the valve is opened and the tank starts filling. When the tank level reaches L1, the
heater and the mixer start. The valve stays open until the upper level L2 is reached.
When the tank is filled and the content has reached the desired temperature, the
tank is emptied and a new batch can be started.

Grafcet

Grafcet [David and Alla, 1992] is a convenient and powerful way of im-
plementing sequential algorithms. There exist constructs in PAL for ex-
pressing Grafcet algorithms. These constructs are steps, actions, and tran-
sitions. Grafcet statements are expressed in PAL with a textual represen-
tation, that is based on Sequential Function Charts in IEC-1131 [Lewis,
1995].

Each state in a sequential algorithm is defined as a step in Grafcet. A
state may be active or inactive. Several states may be active at the same
time. A Grafcet must have an initial step. The PAL syntax for parts of
the Grafcet in Figure 2 is presented below.

A step is defined as follows.

initial step Init;
pulse activate CloseV2;

end Init;

step StartHeating;
activate Heat;

end StartHeating;

step StopHeating;
pulse activate NoHeat;

end StopHeating;

To each step an action can be attached. The action contains the statements

197

Appendix A. PAL – Pålsjö Algorithm Language

Init

Start

StartFilling

L1

KeepFilling

L2

StopFilling

StartHeating

T >= Tref

StopHeating

T < Tref

true

EmptyTank

not L1

CloseV2

OpenV1

CloseV1

Heat

NoHeat

OpenV2

Figure 2. Grafcet for the controller of the boiler process, see Figure 1. This
figure is generated by the PAL compiler using the following command: pal -fig
grafcet.pal.

to be executed while the step is active.

action OpenV1;
begin

V 1 :� true;
end OpenV1;

action CloseV1;
begin

V 1 :� false;
end CloseV1;

An action can be activated in a number of different ways, for example:

• activate 〈Action〉 – the action is executed as long as the step is
active.

198

8. Procedures, Functions and Events

• pulse activate 〈Action〉 – the action is executed one time only,
when the step becomes active.

A transition has a set of input steps, a set of output steps and a condition.
All input steps must be active and the condition must be true for the
transition to be fireable. When a transition is fired all output steps become
active.

transition from Init to StartHeatink, StartFillink when Start;

transition from StartHeatink to StopHeatink when T >� Tre f ;

An Example

The PAL code for the Grafcet in Figure 2 is the following.

module grafcet;

block boiler

L1, L2, Start : input boolean;
T : input real;
Tre f : parameter real;
V 1, V 2, Q : output boolean;

initial step Init;
pulse activate CloseV2;

end Init;

step StartHeating;
activate Heat;

end StartHeating;

step StopHeating;
pulse activate NoHeat;

end StopHeating;

step StartFilling;
pulse activate OpenV1;

end StartFilling;

step KeepFilling;
end KeepFilling;

step StopFilling;
pulse activate CloseV1;

end StopFilling;

step EmptyTank;
pulse activate OpenV2;

end EmptyTank;

199

Appendix A. PAL – Pålsjö Algorithm Language

transition from Init to StartFillink when Start;

transition from StartFillink to K eepFillink, StartHeatink
when L1;

transition from StartHeatink to StopHeatink when T >� Tre f ;

transition from StopHeatink to StartHeatink when T < Tre f ;

transition from K eepFillink to StopFillink when L2;

transition from StopFillink,StopHeatink to EmptyTank
when true;

transition from EmptyTank to Init when not L1;

action OpenV1;
begin

V 1 :� false;
end OpenV2;

action CloseV1;
begin

V 1 :� false;
end CloseV1;

action OpenV2;
begin

V 2 :� false;
end OpenV2;

action CloseV2;
begin

V 2 :� false;
end CloseV2;

action Heat;
begin

Q :� L1;
end Heat;

action NoHeat;
begin

Q :� false;
end NoHeat;

end boiler;

end grafcet.

200

9. References

9. References

Åström, K. J. and B. Wittenmark (1995): Adaptive Control, second edition.
Addison-Wesley, Reading, Massachusetts.

Blomdell, A. (1997): “PAL – the PÅLSJÖ algorithm language.”. Report ISRN
LUTFD2/TFRT--7558--SE, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

David, R. and H. Alla (1992): Petri Nets and Grafcet: Tools for modelling
discrete events systems. Prentice-Hall International(UK).

Davis, R. B. (1997): “Newmat – A matrix library in C++.”
http://nz.com/webnz/robert/.

Eker, J. (1997): A Framework for Dynamically Configurable Embedded
Controllers. Lic Tech thesis ISRN LUTFD2/TFRT--3218--SE, Depart-
ment of Automatic Control, Lund Institute of Technology, Lund, Swe-
den.

Eker, J. and K. J. Åström (1995): “A C++ class for polynomial operation.”
Report ISRN LUTFD2/TFRT--7541--SE. Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

Lewis, R. (1995): Programming industrial control systems using IEC
1131–3. The Institution of Electrical Engineers, London, U.K.

201

Appendix A. PAL – Pålsjö Algorithm Language

202

Appendix B

PCL – Pålsjö Configuration Language

1. Introduction

User defined blocks for the PÅLSJÖ environment are programmed in PAL
and instantiated and connected on-line using PCL, the PÅLSJÖ Config-
uration Language. PCL is a simple language for administrating blocks
and assigning variables. In this chapter all keywords and operators in
PCL will be presented. Examples are given to illustrate the use of every
command.

2. Keywords

The predefined keywords in PCL are the following;

new delete with help
reset quit use enduse
dim show hide break
endwith

new

An instance of a specified block type is created using the new statement.
The following syntax is used

pcl> <block name> = new <block type name>

The <block name> must contain the full block name. Blocks in PÅLSJÖ

may be organized in a hierarchical fashion, and by the full block name all
the blocks above in the hierarchy is meant. In the example below the full
name for the second block is S.Input.

203

Appendix B. PCL – Pålsjö Configuration Language

pcl*>S = new Periodic
pcl*>S.Input = new AnalogIn

Periodic is a predefined block type. There are three predefined block
types, Periodic, Aperiodic and RemoteIO. All other block types must be
imported from either block libraries supplied by the user at linkage time
or from the Pålsjö standard library, see the use statement below.

delete

A block is deleted using the delete command.

pcl> delete <block name>

with

To avoid repeating the block path name, the with command is available.
It works similarly to the ’with’-statement in Modula-2 and Pascal.

EXAMPLE 1
pcl> use MyBlocks
pcl>{
pcl*>S = new Periodic
pcl*>with S
pcl (S) *>adin = new AnalogIn
pcl (S) *>control = new PI
pcl (S) *>daout = new AnalogOut
pcl (S) *>
pcl (S) *>refgen.out -> control.yr
pcl (S) *>adin.out -> control.y
pcl (S) *>control.u -> daout.in
pcl (S) *>endwith
pcl *>

reset

This command is used to remove all blocks from the workspace and clears
all system variables. All processes must be stopped before this operation
is possible.

pcl>reset

204

2. Keywords

quit

Stops the run-time system and exits to the surrounding shell. All processes
must be stopped before exiting.

pcl> quit

use

User defined PAL modules are not by default visible to the run-time shell.
They must be imported to make the block types in the modules visible.
To import a module the use command is used. The syntax is:

pcl> use < module name >

After this command has been issued, all blocks in the module are visible
to the run-time shell and may be accessed by the user. When there exists
several blocks with the same name, but in different modules, these mod-
ules may not be in use at the same time. A solution to this problem is to
use the module name when instantiating the block as shown below.

s.control = new MyBlocks.PI

enduse

When a PAL module is no longer needed, it is possible to remove it from
the list of available modules. This is done using the command enduse, as
shown below.

pcl>enduse < module name >

dim

Complex variables such as string, arrays, polynomials and matrices may
in PAL be created with dynamical sizes. The sizes of block variables such
as arrays etc., may be linked to a dimension parameter. Several variables
in the same block can be linked to the same dimension parameter. Dimen-
sion variables in different blocks can be connected via global dimension
variables in the workspace, which are defined as follows.

pcl> dim A

205

Appendix B. PCL – Pålsjö Configuration Language

In Example 2 there are two blocks BlockA and BlockB which both have
a dimension parameter, dimA and dimB, respectively. The dimension pa-
rameter dimA determines the size of the output signal out and dimB de-
termines the size of the input signal in. The output signal from BlockA
is connected to the input signal from BlockB. A global dimension variable
DIM is defined, and it is is connected to the dimension variables in the
blocks. Finally a value is given to the dimension variable

EXAMPLE 2

pcl> {
pcl> s = new Periodic
pcl> s.BlockA = new BlockTypeA
pcl> s.BlockB = new BlockTypeB
pcl> s.BlockA.out -> s.BlockB.in
pcl> dim DIM
pcl> s.BlockA.dimA = DIM
pcl> s.BlockB.dimB = DIM
pcl> DIM = 5
pcl> }

When a dimension variable is changed, all dimension parameters and all
variables that in turn are connected to them, are changed. The change
of variable sizes is synchronized throughout the whole system, so that
problems with incompatible variables are avoided.

show

Pålsjö provides a text interface for entering PCL commands. There is no
built-in facility for presenting data in graphical form. Instead it is possible
to export data to other programs via the network. The command show is
used to make data visible on the net. The syntax is shown below.

pcl> show < block >.< block >.< signal >

Before the signal of a block can be exported, the Periodic block, that
owns the block must be connected over the network to a plot or data-log
utility. This is done by sending the event connect to the Periodic block.
Below is an example of how this is done.

206

2. Keywords

pcl> show process.control.u
pcl> show process.I
pcl> process ! connect
pcl>

After the event connect is sent to process a socket is opened on the net-
work, and the data transmission will start as soon as any client program
on the host machine will connect.

hide

The opposite of show is the command hide which removes a signal from
the list of exported signals. hide is used in the same way as show:

pcl> hide < block >.< block >.< signal >

break

Several commands may be grouped together using curly brackets, and
such a set of commands is called an atomic operation, i.e. all commands
within the brackets will be interpreted as one complex command. If the
atomic operation is incorrect it will not be accepted by the system. The
command break can be used to leave an incorrect atomic operation and
discard the edits. In the example below the atomic operation is not correct
since all input signals are not connected. When the command break is
used all edits made in the atomic operations are reversed, and the running
system remains unchanged.

pcl>use StandardBlocks
pcl>{
pcl*>s = new Periodic
pcl*>use StandardBlocks
pcl*>s.b = new PI
pcl*>}
Error in 'b' : input signal 'r' not connected!
--> Configuration invalid.
pcl*>
pcl*>
-->Now discarding all edits!

Removing invalid nodes...
Block 's ' is deleted.
Block 'b ' is deleted.

pcl>

207

Appendix B. PCL – Pålsjö Configuration Language

3. Operators

The predefined PCL operators are the following:

= ! ? @
-> <- # $
=>

The Assignment Operator =

All parameters in a PAL-block can be set by the user from the command
line. Below is an example of how this is done. The first command sets the
parameter Ti to 20. In this case Ti is a real valued variable, but the same
syntax is valid for integers.

pcl>s.b.Ti = 20
pcl>s.b1.par1 = false
pcl>s.b1.par2 = {1.0, 2, 3.14}
pcl>s.b1.par3 = {1, 2.1, 3}
pcl>s.b1.par4 = {1, 2, 3.0: 4.1, 5, 6.28}

par1 is a boolean parameter and may be assigned the values true or
false, par2 is an array with three elements, par3 is a polynomial of
degreee 2, and par4 is a two by three matrix.

The Event Operator !

It is possible to manually trigger the execution of block procedures. An
event requesting the execution is sent to the block. The event simply
consists of the name of the proceure. Below a block procedure called on
are executed.

pcl> s.b2 ! on

Events make it possible to construct blocks and systems that directly
interacts with the user.

The Information Operator ?

The information operator retrieves information about a system object. A
system object may be a single variable, a block or the whole system. The
syntax is straightforward, simply the desired system object followod by
a question mark. Below are three examples of the available information,
when using the information operator.

208

3. Operators

EXAMPLE 3

Including module 'built-in'
Including module 'StandardBlocks'

P Å L S J Ö

Copyright 1995-97 Department of Automatic Control
Written by Johan Eker & Anders Blomdell

Lund Institute of Technology
version Beta-Sep 3 1997

bug report: johane@control.lth.se

pcl>use StandardBlocks
pcl>{
pcl*>s = new Periodic
pcl*>s.adin = new ADIn
pcl*>s.refgen = new RefGen
pcl*>s.regul = new PI
pcl*>s.daout = new DAOut
pcl*>?
W O R K S P A C E__

Blocks:
workspace of type WorkspaceBlock, id :0

s of type Periodic, id :1
adin of type ADIn, id :2
refgen of type RefGen, id :3
regul of type PI, id :4
daout of type DAOut, id :5

DIMENSIONS:
Block libraries____________________
built-in*: InSocket, OutSocket, Sporadic, Periodic
StandardBlocks*: ADIn, DAOut, RefGen, PI, SimplePI, PID, Filter

Information about the Periodic block process is available in the same
way. If no object is specified, then information about the run-time system
is retrived.

pcl*>s ?

209

Appendix B. PCL – Pålsjö Configuration Language

--
BlockType: Periodic, Block Name: s, Block ID: 1
SIGNALS:___

state: running(boolean) = false
PARAMETERS:___

: tsamp (int) = 2000
: skip (int) = 5
: prio (int) = 5

EVENTS:___
connect[asynchronous]
disconnect[asynchronous]
restartplot[asynchronous]
pauseplot[asynchronous]
start[synchronous]
stop[synchronous]

DIMENSIONS:___
GRAFCET:__

Block list:
Input Buffers: { }
Output Buffers: { }
Export Buffers: { }
Execution order:

In a similair fashion, information about the block regul can be retrieved.

pcl*>s.regul ?
--

BlockType: PI, Block Name: regul, Block ID: 4
SIGNALS:___

input: r (double) [not connected]
input: y (double) [not connected]
input: u (double) [not connected]
output: v (double) = 0.000000
state: I (double) = 0.000000
state: e (double) = 0.000000

PARAMETERS:___
: tsamp (int) = 100
: offset (int) = 0
: slave (int) = 1
: K (double) = 0.500000
: Ti (double) = 10000.00
: Tr (double) = 10000.00
: bi (double) = 5.000E-6

210

3. Operators

: br (double) = 10.00E-6
EVENTS:___
DIMENSIONS:___
GRAFCET:__

pcl*>

The Connect Operators - > and <-

After blocks have been allocated and assigned to Periodic blocks, they
must be connected to form an excutable system. Output signals and input
signals are connected using the connection operators -> and <-. In the
following example, two blocks and a Periodic block are allocated. The
output signal out in BlockA is connected to the input signal in in BlockB.
A connection is valid only if the input and the output signals are of the
same data types and have the same sizes.

EXAMPLE 4
pcl> {
pcl> s = new Periodic
pcl> s.BlockA = new BlockTypeA
pcl> s.BlockB = new BlockTypeB
pcl> s.BlockA.out -> s.BlockB.in

If a connection results in an algebraic loop, the system will give a warning.
When this occurs the blocks cannot be sorted according to data flow. The
execution order will then be determined from the order the blocks were
added to the Periodic block.

The Disconnect Operator #

To break up a connection the disconnect operator is applied on the input
signal. To disconnect the blocks in the previous example, the following
command is given:

pcl> #s.BlockB.in

Macro Operator @

It is possible to use macros to simplify system configuration. A macro file
consists of a set of PCL commands. A PCL macro may have arguments.
Below a macro with two arguments is shown.

211

Appendix B. PCL – Pålsjö Configuration Language

$1 = new Periodic
with $1

$2 = new PI
endwith

All occurrences of $1 are replaced by the first argument, and all occur-
rences of $2 is replaced by the second argument and so on. A macro is
called using the following syntax:

@<macro name>(par1, par2)

A call to the macro above would thus have the following look:

pcl>@macroname(S, A)

The default file extension for all macro files is ’.pcl’.

The Move Operator = >
The move operator is used to move blocks from one location to another. For
example from the workspace to a Periodic block, or from one Periodic
block to another. This is demonstrated by an example. The resulting sys-
tems in Example 4 and Example 5 are equivalent.

EXAMPLE 5
pcl> {
pcl> s = new Periodic
pcl> BlockA = new BlockTypeA
pcl> BlockB = new BlockTypeB
pcl> BlockA => s
pcl> BlockB => s
pcl> s.BlockA.out -> s.BlockB.in

212

	Front page
	Contents
	Introduction
	Paper 1 - A Tool for Interactive Development of Embedded Control Systems
	Paper 2 - A Flexible Interactive Environment for Embedded Controllers
	Paper 3 - A Contract-Based Language for Embedded Control Systems
	Paper 4 - A Feedback Scheduler for Real-time Controller Tasks
	Paper 5 - A Matlab Toolbox for Real-time and Control Systems Co-Design
	Paper 6 - Design and Implementation of a Hybrid Control Strategy
	Appendix A - PAL
	Appendix B - PCL

