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Abstract

Control methods are being used increasingly for uncer-
tainty management and QoS in modern web server sys-
tems. Previous approaches have suggested combined feed-
forward and feedback control strategies, using queuing the-
ory for feed-forward delay prediction. While queuing the-
ory allows one to predict delay as a function of arrival and
service rates, the prediction applies only to long-term av-
erages, and is therefore insensitive to sudden load changes.
Unfortunately, Internet load is very bursty, leaving room for
predictor improvement. The main contribution of this pa-
per is an extension of the combined feed-forward/feedback
framework in which the queuing model is replaced with a
predictor that instead uses instantaneous measurements to
predict future delays. The proposed strategy is evaluated
in simulation and by experiments on an Apache web server.
It is shown that the new approach performs better than the
combined queuing model based feed-forward and feedback
control presented in earlier papers.

1. Introduction

The use of feedback control techniques has recently gained
much attention in the real-time community, especially as a
means to influence the performance of complex software
applications, such as web server and router systems. The
attractive features of feedback control lie mainly in its in-
herent robustness to uncertainties, such as modeling inaccu-
racies, system nonlinearities, and time-variation of system
parameters. These types of uncertainties are very common
in unpredictable poorly modeled environments such as the
Internet.

The traditional way to model server systems is by fluid
approximations related to the steady-state response of the
server queues. The differential (or difference) equations

∗The work reported in this paper was supported in part by the Na-
tional Science Foundation under grants EHS-0208769, ANI-0105873 and
CCR-0093144 and MURI grant N00014-01-1-0576. We are grateful to the
anonymous reviewers for their valuable comments.

arising from these flow models are then used to design feed-
back controllers using traditional linear or nonlinear control
methods [21, 4].

The drawback of using feedback-based control alone is
that it is a reactive approach, where corrections are made
only after disturbances have had a chance to influence the
system. Traditional control design often uses a combina-
tion of feedback and feed-forward, where the feed-forward
controller will react to disturbances before they affect the
current system under control. In [18, 22] a solution is pre-
sented where a queuing-theoretic prediction was used to
augment the feedback loop. However, since predictions
from queuing theory apply only to long term averages, they
do not handle transient behavior very well. In this paper,
we derive a different feed-forward delay predictor that di-
rectly relates instantaneous measurements of arrival times
and queue length to the average delay over a finite predic-
tion horizon, hence allowing finer-grained prediction and
achieving tighter control.

The predictor is then used to dynamically change the ser-
vice rate in order to fulfill the delay specifications. One ex-
ample is to use dynamic voltage scaling to manipulate the
processing speed of the CPU hence saving energy when the
server is under-loaded. The energy cost has been identi-
fied as a substantial component of the total cost of running
large server farms [8, 23]. Our proposed scheme also ap-
plies to other actuator mechanisms, such as resource allo-
cation in a shared environment. The proposed delay predic-
tion and control scheme is evaluated both in simulation and
by experiments on a real Apache web server. The simula-
tion study is performed using the TrueTime [10] simulator.
It is shown that the new predictor outperforms the previ-
ous schemes where queuing theory was used to provide the
feed-forward control action.

The rest of this paper is outlined as follows. Section 2
describes the design of the feed-forward predictor and the
feedback controller, respectively. A simulation study evalu-
ating the proposed scheme is given in Section 3 and an ex-
perimental study is given in Section 4. Section 5 describes
related work. The paper concludes with Section 6.
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Figure 1. Server control loop.

2. Design

In this section, we will describe the assumptions and the
developed model used for delay prediction. The derived
scheme uses instantaneous measurements of queuing de-
lays and estimated processing times to predict and influ-
ence the average delay of future requests. In the deriva-
tion of the scheme, we will assume a server that supports
some actuation mechanism that can influence the process-
ing rate (referred to as server speed in the sequel) of the
incoming web requests. Let us denote by C, the average
number of processor cycles required to process a typical re-
quest. The actual execution time of the request is then given
by C

µ , where µ is the current server speed. Server speed can
be changed by techniques such as dynamic voltage scaling
(DVS), or scheduling algorithms such as the constant band-
width server, where only a fraction of CPU capacity is allo-
cated to the server.

The general structure of the delay control system under
consideration is shown in Figure 1. A feed-forward control
action, µff , is computed from the reference delay and infor-
mation regarding the past arrival pattern. This feed-forward
signal is then adjusted by a feedback term, ∆µ. The feed-
back controller is a gain-scheduled PI-controller that uses
feedback from actual delay measurements.

The objective of the control is to keep the service delay
(averaged over a short finite interval) as close as possible to
a pre-specified reference value. This reference value is typ-
ically determined by the QoS specification, where delays
consistently longer than the specification are unacceptable
to the user. On the other hand, delays consistently shorter
than the specification, is an indication of unnecessary con-
sumption of resources. The derivation of the feed-forward
predictor and the design of the feedback controller will be
described below.

2.1 The Feed-forward Predictor

In order to provide an efficient feed-forward control, it is
important to have an accurate model of the delays induced
by queuing in the server. The total delay for a request con-
sists of a queuing delay (e.g., in the server’s external socket
queue, and in the CPU ready queue) and a processing delay
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Figure 2. Server queuing and processing de-
lay.

(the request being processed by a server thread, and block-
ing waiting for I/O). This is illustrated in Figure 2.

Consider the situation at the time, tnow, of the most re-
cent departed request. At this time there are a number of
requests queued up waiting to be processed. Let us con-
sider N of these requests and compute their average delay
as a function of the processing speed, µ. In Figure 2 we
have N = 5.

Assuming that these requests have an average nominal
processing time, Ĉ, their individual processing time in next
sample will be, Ĉ/µ. Let D̂ denote the average delay expe-
rienced by the N requests. We will now provide a geometric
derivation of the equation relating the average delay, D̂, and
the server speed, µ.

The total delay experienced by the N requests, ND̂,
can be computed geometrically from Figure 2 as the area
BECF . This is given as the area of the rectangle ABCD,
plus the area of the triangle BEC, minus the light-gray
shaded area (ADFB). Noting that the area ADFB is the
sum of the arrival times of the requests, we arrive at the
equation

ND̂ = N · tnow +
N · (NĈ/µ)

2
−

i+N−1∑
k=i

Ak (1)

Dividing by N , we get:

D̂ = tnow − Â +
NĈ

2µ
(2)

Now introduce Âi = 1
N

∑i+N−1
k=i Ak as the average arrival

time, Di as the average delay, Ci as the average computa-
tion time, and µi as the server speed for requests being de-
queued in the ith sample. We also see that tnow − Âi = Qi

is the average queuing time for the requests being dequeued
in the ith sample. Solving for µi then gives:

µi =
NCi

2(Di − Qi)
(3)

which is a predictor equation telling us how to choose the
server speed in order to obtain an average delay, Di, of the
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next N requests. The feed-forward controller is invoked af-
ter each departure and computes the new processing speed
according to Equation (3). Di is chosen as the current delay
set-point, Dr. The average queuing time, Qi, is measured
exactly. The average nominal processing time, Ci, is esti-
mated from past measurements. N will be chosen as the
current queue length at each sampling instant.

2.2 Design of Feedback Controller

The main short-coming of the feed-forward controller is the
fact that the actual processing times of the future requests
are not known. As mentioned above, these are estimated
based on past measurements. To deal with this uncertainty
and to improve the performance of the previously described
scheme, a feedback controller is added. The feedback con-
troller uses feedback from current delay measurements, as
shown in Figure 1. The control action is computed from
the difference, ∆D, between the measurement and the set-
point, Dr. The controller is a proportional, integral (PI)
controller implemented according to the formula:

∆µ(k) = ∆µ(k − 1) + g · (∆D(k) − r · ∆D(k − 1))
∆µ(0) = 0

(4)
where g and r are controller design parameters known as
the controller gain and zero, respectively.

The relation between the average delay, Di, and the
server rate, µi, is nonlinear which means that a change, ∆µ,
in the processing speed, will have different effects depend-
ing on the current delay set-point around which we are con-
trolling. The behavior of the system also depends on the
arrival rate of the incoming requests. For this reason the PI-
control implementation exploits gain-scheduling [27] where
different controller parameters are used based on the current
set-point and estimated arrival rate.

Other, more sophisticated, non-linear control techniques,
or even stochastic control could be proposed but are hardly
necessary. The main reason for this is the effectiveness of
the proposed feed-forward predictor as shown in the simu-
lation and experimental sections below. Since the average
delay is brought close to the delay set-point by the feed-
forward action it is sufficient to use linear PI-control ac-
tion to increase the performance around the set-point. This
mainly means eliminating small stationary errors.

System models used for controller design were estimated
using simple step response experiments for different set-
points and arrival rates. Small changes of the server speed
were applied and it was observed how the average delay
was influenced. These experiments gave the stationary gain
and the approximate speed of the system. Based on these
first-order approximations of the system dynamics, a num-
ber of controller parameters, g and r, were pre-calculated
for different set-points and arrival rates. These values were

stored in a lookup table and appropriate parameters were
then chosen dynamically on-line as the set-point or arrival
rate changed.

Observe that all actuators have saturation limits (such
as when all available resources have been allocated to the
server, or when the DVS scheme operates at the maximum
voltage level.) Hence, some extra care must be taken in the
control design. Typically the most direct implication of this
is that the control signal will often saturate at its limits. This
makes it crucial to implement anti-reset windup of the I-part
to prevent integrator windup in the controller.

3. Simulation Study
The proposed feed-forward predictor has been evaluated in
a simulation study, which is described below. In the study
the performance of the feed-forward predictor is compared
with previous approaches based on queuing theory. It is also
shown how the performance is influenced by the addition of
the gain-scheduled PI-controller.

3.1. Simulation Environment
The simulations were performed using the
MATLAB/Simulink-based toolbox TrueTime [15, 10].
The simulator allows co-simulation of several computer
nodes each running pre-defined tasks scheduled according
to a chosen policy. The code that the tasks execute is
written as MATLAB m-files.

A client/server scenario was simulated with a client ap-
plication sending web requests to a server simulating the
basic properties of the HTTP/1.1 protocol. Using this sim-
ulation model it is possible to experiment with different
processing times and priorities of the requests, different
scheduling policies of the threads in the server node, and
different control strategies to change the service rate of in-
coming requests.

3.1.1 The Client
The client node generates synthetic web requests that are
sent to the server. The inter-arrival times, (i.e., the intervals
between the sending of subsequent requests on a connec-
tion), follows a bounded Pareto distribution. The Pareto dis-
tribution has been reported to fit measurements of real web
traffic very well [14]. When sending the first request on a
closed connection (a connection is closed if no new requests
are sent within the HTTP/1.1 TIMEOUT), the client awaits
an acknowledgment from the server before sending further
requests. Thereafter, requests are pipelined on the connec-
tion (i.e., multiple requests can be issued without waiting
for each response). Each request has an associated simu-
lated processing time and a blocking time that it will con-
sume on the server side. These are also Pareto distributed.

3.1.2 The Server
The server node contains a number of simulated server
threads, and a high-priority thread that handles incoming
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Figure 4. Estimated arrival rate.

requests. All incoming requests are time-stamped, and then
either forwarded to the socket queue of the server thread
serving the connection, or put in a global request queue if
there is no idle server thread available. When server threads
are finished serving their current connection they check the
global input queue for new requests.

Each server thread operates according to the state dia-
gram shown in Figure 3. The time associated with the Run-
ning and Blocking states are Pareto distributed and specified
in each request. When the server thread is finished, it waits
for a certain time (HTTP/1.1 TIMEOUT) for new requests,
before closing the connection.

The server node also contains an h-periodic low-priority
thread that estimates the arrival rate by measuring the num-
ber of arrivals between each invocation. The arrival rate
computed in each sample, λa(k) = Arr(kh)−Arr(kh−h)

h , is
smoothed using a recursive first-order filter to obtain the es-
timate, λ̂a:

λ̂a(k) = α · λ̂a(k − 1) + (1 − α) · λa(k) (5)

The forgetting factor, α, was chosen according to the
trade-off between transient and steady-state behavior of the
estimate. If the value is too high, the estimate reacts too
slowly to changes in the arrival pattern, whereas a too low
value gives large fluctuations in the estimate. In the simula-
tions below, α was chosen to 0.85.

3.2. Predictor and Controller

The combined feed-forward predictor and feedback con-
troller described in Sections 2.1 and 2.2 were implemented
in an aperiodic task that was triggered after each departure.
The estimated nominal processing time, Ĉ, of the requests
was estimated using the recursive first-order estimator:

Ĉk = β · Ĉk−1 + (1 − β) · ck (6)

where ck is the last measured processing time. The forget-
ting factor λ was chosen to 0.85.

N in Equation (3) was chosen as the number of currently
queued up requests at each sampling instant. In the case that
no requests were queued up, the server speed was put to
its minimum value. In the other special case, where Equa-
tion (3) produces a negative value (corresponding to the sit-
uation where the average queuing time of the requests al-
ready exceeds the delay set-point), the server speed was set
to its maximum value.

In this section, we consider a DVS actuator with voltage
levels in the interval [1, 5]. The value µ = 5 then corre-
sponds to the maximum speed, and µ = 1 to the minimum
server speed.

3.3. Simulation Results

A 60-second simulation scenario was run, during which a
reference delay of 0.6 seconds was enforced. The average
arrival rate in the beginning of the run was around 125 re-
quests per second. This rate then jumped to 150 requests per
second at time 30. Figure 4 shows the arrival rate computed
by the estimator task during a simulation. The average pro-
cessing times of the requests were chosen such that the in-
put load in the beginning of the run corresponded to 190%
of server capacity when running at the minimum speed. The
average input load was then increased to 225% at time 30.
The results of the simulations are shown in Figure 5.

The obtained average delay when using the feed-forward
predictor (Equation (3)) only are shown in the bottom left
(plot c.) of Figure 5. The average delay is measured us-
ing an observation window of 100 departed requests. The
results are quite satisfactory already without the addition of
feedback control. However, a small steady-state error is vis-
ible in the graphs at the higher arrival rate.

To remove this error, the PI-controller described in Sec-
tion 2.2 was introduced. The corresponding simulation re-
sults are shown in the bottom right (plot b.) of Figure 5.
Now the steady-state error is removed.

The suggested approach was compared to a feed-forward
scheme based on an M/M/1 queuing model. Assuming an
average arrival rate of λa requests per second, and a service
rate of λs requests per second, the average long-term delay,
D̂, is given by:
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Figure 5. Simulation results for the four compared control strategies. (a) M/M/1 queuing model based
feed-forward. (b) M/M/1 queuing model based feed-forward + PI-control. (c) Proposed feed-forward
predictor. (d) Proposed feed-forward predictor + PI-control.

D̂ =
λa

λs(λs − λa)
(7)

where the service rate in our case is given by λs = µ/Ĉ,
where Ĉ is the estimated nominal processing time of the
requests and µ again is the processing speed. Given a de-
sired average delay, Ddes, and the estimated arrival rate, λ̂a,
Equation (7) can be used to compute the corresponding ser-
vice rate giving the equation:

λs =
λa

2
+

√
λ2

a

4
+

λa

Ddes
(8)

Simulation results of this queuing-based feed-forward ac-
tion are shown in the top left (plot a.) of Figure 5. The
main reason that this approach performs worse than our sug-
gested scheme, is that the M/M/1 model assumes Poisson
distributed arrivals, which is not an accurate model of In-
ternet traffic. We also get transient errors due to the fact
that the queuing prediction is true only for long term av-
erages. Finally, the steady-state variance is considerably
higher than for the proposed predictor.

The addition of the PI-controller removes the steady-
state error and reduces the steady-state variance. This is
shown in the top right (plot b.) of Figure 5. However, the
performance is still not comparable with the performance

Loss (·10−2)
M/M/1 model 20.9
M/M/1 + PI-ctrl 4.08
delay prediction model 3.92
delay prediction model + PI-ctrl 2.79

Table 1. Summary of the performance loss for
the four different control strategies.

obtained using the proposed predictor in combination with
PI-control.

To quantify the simulation results, the performance loss

J =
∫ Tsim

0

(Dr − D̂)2 (9)

was recorded in each simulation case. The results are sum-
marized in Table 1.

It is seen that the prediction scheme described in this
paper significantly improves the performance loss metric.
It can be specifically noted that the feed-forward predictor
alone obtains comparable performance to the M/M/1 model
in combination with PI-control.

Next, we implemented the proposed scheme in a real
Apache server and showed that a performance improvement
is seen on the real platform as well.
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4. Experimental Evaluation

This section presents the implementation and evaluation of
the proposed algorithm in an Apache web server. To regu-
late the processing speed of a web server, a resource con-
trol mechanism must be implemented. In our prorotype, we
chose the number of spawned server processes as the vari-
able to be controlled. Due to the UNIX time-sharing pol-
icy, the number of processes allocated to serve a particular
class affects the fraction of the CPU allocated to that class.
The proposed feedforward predictor was integrated with an
instrumented version of Apache 1.3.9[17] where we imple-
mented feedback control of absolute delay. The control sys-
tem incudes a monitor, predictor, controller, and connection
scheduler. Let the total capacity, c, of the server be de-
fined as the number of server processes created when the
system boots up. Let bi(k) represent the number of server
processes reserved for classi (∀i ∈ 1, · · · , N ) at the kth
sampling instant, where bi(k) ≤ c. The predictor together
with the controller decide the process quota bi(k) for each
class. The connection scheduler enforces the quota alloca-
tion. The monitor measures achieved delay.

All experiments were conducted on a testbed of PC’s
connected with 100Mbps Ethernet. Four machines with a
450MHz AMD K6 processor and 256MB RAM were used.
One of them was assigned to run the web server with HTTP
1.1, and the rest to run clients that stress the server with a
synthetic workload.

We used an enhanced version of Surge (Scalable URL
Reference Generator) [7] to generate synthetic web work-
loads in our experiments. It generated URL requests with a
rate independent of the server load while keeping the self-
similarity characteristics in the resulting traffic. Experi-
ments with a single guaranteed-delay class of clients were
conducted. The goal of the system was to provide the de-
lay guarantee for that class with as few resources as pos-
sible. The motivation for such minimization was to leave
as much resources as possible for background best effort
traffic. The input load patterns generated by the clients are
shown in Figure 6. The desired delay for the class was set
to Dref = 4sec in all experiments.

For the apache web server, we configured the maximum
number of server processes to be c = 128. To reduce the
control overhead, instead of executing the control mecha-
nism on every dispatched connection, we set the sampling
period to 500 dispatched connections. System profiling was
carried out beforehand to get an approximate value for the
service rate. Using the estimated single process service rate,
the measured number of requests in the waiting queue that
will be dispatched at the next sampling time, and the av-
erage of their arrival times, the predictor would produce
the desired process quota by solving Equation (3). We fur-
ther added a low-pass filter to make the predictor output

α β

G/G/1 model 0.0 -
G/G/1 + PI-ctrl 0.0 0.5
delay prediction model 0.5 -
delay prediction model + PI-ctrl 0.5 0.5

Table 2. The low-pass filters configuration for
the four different control strategies.

smoother:

µ̂k = α · µ̂k−1 + (1 − α) · µk (10)

where µk is the service rate calculated from Equation (3) at
the kth sampling interval. When the feedback controller is
activated, the monitor measures and calculates the average
delay as follows and reports it to the controller:

AvgDk = β · AvgDk−1 + (1 − β) · Dk (11)

where Dk is the measured average delay at the kth sam-
pling interval. For comparison, we carried out experiments
for the following four scenarios. First, only the proposed
predictor is activated for the Apache web server. Second,
the proposed predictor is integrated with a PI controller.
Third, only a G/G/1 queuing predictor is activated. Last, the
G/G/1 queuing predictor is integrated with a PI controller.
The low-pass filters configuration for the four strategies are
shown in Table 2.

We choose α = 0.5 for the proposed predictor and
α = 0 for the G/G/1 queuing predictor. This is because
the proposed predictor is based on instantaneous measur-
ments which introduces some noise into the predictor out-
puts. The configured low-pass filter is used to reduce such
noise. While the G/G/1 queuing predictor is based on queu-
ing theory, which essentially is applied to long-term aver-
ages, therefore, the low-pass filter is deactivated (α = 0) in
this case.

In Figure 7, the experimental results for the proposed
predictor are presented. It demonstrates that the new pro-
posed predictor incurs only a small steady-state error. When
integrated with the linear PI controller, the combined sys-
tem converges to the reference.

Using the aggregate of the squared error between the
desired and actual connection delay over the duration of
the experiment, we compare the performance of different
schemes. The smaller the aggregate error, the better the
convergence. Table 3 summaries the results, which further
show that the proposed predictor beats the G/G/1 queuing
predictor and achieves better performance.

We conclude that the new predictor described in this pa-
per, when used in conjunction with a feedback controller,
offers superior performance not only in simulation but also
in a practical system. The overhead of the scheme is
minimal as it is incured only once every several hundred
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Figure 6. Arrival rate during the experiments. a) Input load1 b) Input load2

Figure 7. Average delays corresponding to input loads shown in Figure 6. The average is obtained
over an observation window of 5000 requests.

Input Load1 Input Load2
G/G/1 model 60.40 241.05
G/G/1 + PI-ctrl 4.76 3.59
delay prediction model 22.10 71.00
delay prediction model + PI-ctrl 3.20 1.59

Table 3. The aggregate error for the four dif-
ferent control strategies.

packet invocations. This scheme therefore provides the best
absolute delay control in contemporary high-performance
servers known to date.

5. Related Work

The complexity and increased growth of the Internet has
made software applications, such as web servers and routers
more and more dependent on feedback control for perfor-
mance control and uncertainty management [4]. Several
recent papers [1, 2, 3] presented a control theoretical ap-
proach to web server resource management based on web
content adaptation. QoS guarantees on request rate and de-
livered bandwidth were achieved. In [17, 24, 25], control
theory was used for CPU scheduling to achieve QoS guar-
antees on service delay. A similar approach was used for
e-mail server queue management [19]. In [21], admission

control is developed based on nonlinear control theory. At
the network layer, control theory was applied to packet flow
control in Internet routers [13, 16]. The case was recently
made for energy saving in large complex systems, such as
high-performance contemporary web servers [8]. An archi-
tecture for power-aware QoS management in web servers
was presented in [23].

Other research efforts focused on QoS control in web
servers include [3, 5, 6, 9, 11, 12, 20, 26]. By CPU schedul-
ing and accept queue scheduling respectively, Almeida et al.
[5] and Abdelzaher et al. [3] successfully provide differen-
tiated levels of service to web server clients. Demonstrating
the need to manage different resources in the system de-
pending on the workload characteristics, Pradhan et al. [20]
develop an adaptation technique for controlling multiple re-
sources dynamically. Like [20], Banga et al. [6] and Voigt
et al. [26] provide web server QoS support at the OS ker-
nel level. In [9, 12, 11], session-based QoS mechanisms are
proposed, which utilize session-based relationship among
HTTP requests. Our work is an extension of previous ap-
proaches in the area of web server control using both feed-
back and prediction [18, 22].

6. Conclusions
This paper presented a novel feed-forward predictor for web
server delay control. The algorithm exploits an actuator
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that can change server speed, such as dynamic voltage scal-
ing, or resource allocation mechanisms that assign a config-
urable fraction of machine capacity to individual tasks. The
predictor uses instantaneous measurements of queuing de-
lays and arrival times to provide a non-linear feed-forward
control action. The predictor was combined with an event-
based feedback controller. The proposed algorithms were
evaluated both in a simulation study and by experiments on
a real web server. It was shown that the predictor performed
satisfactory even without the inclusion of the feedback con-
troller, although feedback improved performance especially
on the real Apache platform. It was also shown that the pro-
posed scheme performed much better than previously re-
ported combined prediction and feedback schemes based on
queuing theory.
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