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SPATTAL XENON INSTABILITY IN THERMAL REACTORS
Gustaf Olsson

ABSTRACT

Xenon spatial oscillations in cylindrical thermal water reactors
have been analysed with several different models. The fundamentals
of the problem are discussed and different mathematical models are

described.

The nature of the oscillations makes it possible to approximate the
axis of the reactor core with only two points. This two point model
gives a good physical insight in the problem and is shown to be

rather accurate.

The linearized two point model can be treated analytically, and the
influence of different parameters are compared with more complex mo-
dels. The partial differential equation has also been approximated
by several meshpoints in space. Calculations show how the critical

values of the parameters vary with the number of meshpoints.

The nonlinear two point model has predicted unstable and stable pe-
riodic solutions, which have been verified by simulation of a more

complex nonlinear model.

If a control rod is used to maintain criticality it is shown, that
the rod does not affect linear stability in some cases. The non-
linear behaviour is, however, very much influenced by the rod. The
temperature feedback has also a big influence on linear stability

as well as nonlinear behaviour.
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1. INTRODUCTION
1.1 THE XENON OSCILLATION PROBLEM

In large power reactors there is a problem of spatial stability
depending on such parameters as size, flux level and spectrum,

fission yields, temperature feedbacks and core geometry.

Xenon-135 is the fission product which is the most important for
spatial oscillations because of its very large thermal cross
section (”2.8%%106 barns) for neutrons. In thermal reactors the
effect on reactivity is so big, that xenon has been known and
allowed for in reactor design since it was first detected through
an unexpected loss of reactivity in the first Hanford reactors [1].
Typically, ¥e-135 is responsible for a 2 to 3% loss in reactivity

following a few hours of full power operation.

There are two different problems, which are caused by xenon. It
causes large reactivity transients in the core when the total power
is altered. This problem is not treated in this report. Moreover,
divergent oscillations of the spatial flux distribution are possible
in large reactors due to xenon, see figure 1. These oscillations

will cause hot spots of the power, which must be avoided.

flux level

equilibrium

flux
level

.

core axis core axis

Fig. 1. Hot spots in flux distribution.

The xenon stability problem is thus a distributed problem.
The fundamental equations are a nonlinear partial differential

equation coupled to nonlinear ordinary differential equations.

The aim of this report is to study the one-dimensional axial xenon
stability, first by means of a crude dynamical model. This model is
used in order to see how different core parameters and nonlinearities
influence the reactor stability. Then the model is compared to re-
fined models by means of analysis and digital simulation. Digital

simulations of a nonlinear axial core model are described in [15].




1.2 HISTORY OF THE PROBLEM

The xenon spatial stability problem was first demonstrated in
Savannah River (4], where an axial flux oscillation appeared

in December, 1955. The oscillation proceeded for 14 days, while
the power was constant. The period was found to be 28 hours. In
Shippingport Ltgiié]an oscillation of 3-5% with a period of 24
hours was observed at the first fuel charge. Xenon oscillations

were found in the second fuel charge also.

The first analysis of the xenon oscillations appeared in 1956.
Ward EZé]described the problem and made a stability analysis.
The analysis was continued and extended by Henry and Germann
1957 [5] and Randall and St. John 1958 [17].

After 1958 a great number of theoretical and experimental studies
have been made. Most of the papers are based on linearized equa-
tions. As all power reactors had to be built inherent stable for
xenon, all the papers treated the problem to describe the appear-

ance of the oscillations in terms of stability criteria.

In general, the conditions for oscillations to occur are large
core size and high flux level, which now are within the range of

the specifications of modern power reactors.

A great number of references is found in Wiberg[?Lﬂ . An excellent
summary of progress through 1964 has been given in the Geneva Con-
ference paper of Kaplan et al [8]. Additional analythical and
simulation studies are presented [7-10],[13],[14],[16],[21], and

some experimental verifications are presented in[6].

Non-linear analysis was made first by Chernick [1]. Later Lya?unov's

method has been used in some papers for space independent reactor
models [3],[18] ,[20] .

Wiberg [?u] and Stacey [22] have used modern control theory for

a reactor in which spatial kinetic effects are important.

More details abocut the models are presented in section 2.4.




1.3 SUMMARY OF THE RESULTS

The xenon oscillations may appear in all three spatial dimensions,
but this report deals only with the axial problem. In chapter 2.1 .is

discussed the reasons why the axial problem is important.

The dynamical behaviour is described by a nonlinear partial diffe-
rential equation coupled to nonlinear ordinary differential equa-
tions. The general behaviour of the solution is discussed in 2.3.
Because of the complexity of the equations several authors have
made different approximations to get suitable models. In 2.4 and
2.5 are presented the most common models. The linearized ones are
either based on eigenfunction expansions or difference approxima-
tion. Nonlinear models are derived either from space independent

reactor dynamics or from difference approximation of the core.

A big part of this work is based on a nonlinear two space point
reactor model, described in 2.6. The neutron diffussion equation
is given only in two points along the core axis. The model is
linearized in 2.7. The linear model is generalized to several

space points in 2.8,

It is shown in 2.7 that the Lyapunov - Poincaré theorem is valid
for the two point model, why stability can be determined with

the linear equations.

As criticality must be maintained by a control rod or by homo-
geneous absorbtion in the core it is interesting to know how sta-
bility is affected by this absorbtion. It is shown in 2.7 and 2.8
that critical height is independent of absorbtion configuration
for symmetric fluxes in the two point model and for flat fluxes

in the model with many space points.

Chapter 3 presents practical considerations of xenon instability.
The choice of core parameters is discussed in 3.2. As the dyna-
mical behaviour is nonlinear the disturbances are important and

in 3.3 is discussed typical disturbances.

The linear two point model is easy to handle analytically. In 4.1
is discussed influence of different core parameters on stability.
The model has been very useful to detect relationships between
parameters. Thus was found an interesting relationship between

critical core height and mean flux level.




The two point model is compared to more complex models with good

agreement in 4.2 and 4.3.

The critical height for different flux shapes is calculated for
different models with different number of finite differences of

the core axis.

It is shown for flat flux and sinusoidal flux, that the critical
height as function of the number of node points converges asympto-
ticly towards a finite value when complexity (number of space points)

increases.

Out of a calculation of critical core height with 2, 3 and U
meshpoints, the asymptotic value is extrapolated within 3%.
The period of oscillation at critical height and dependence of
temperature coefficient are approximated accurately for flat

flux with a two point model.

Even in the nonlinear case, the two point model has been useful to
predict interesting features of the xenon trajectories. In chap-

ter 5 is discussed the influence of nonlinear terms on xenon in-

§

stability. The two most important terms are the temperature feed
back and the neutron absorbtion (control) term. These terms will
decide if periodic solutions will appear for a certain flux form

and core height. Both unstable and stable periodic solutions can
appear. This type of oscillations are verified by digital simulation
of a more complex nonlinear model. There are quantitative diffe-
rences of amplitudes between the models. They are explained and

discussed in 5.2.




2. MATHEMATICAL MODELS
INTRODUCTION

In this chapter are some common linear and nonlinear models
described, which have been used to solve the xenon stability

problem.

In order to simplify the study, we list the names of the models
at first. All the space models are one-dimensional. We call them

axial models as they describe the axial flux distribution.

- Linear modal expansion models
- Space independent models
- The TRAXEN model. A nonlinear finite difference model with
a) rod control
b) homogeneous control.
~ Two space point: model, which is
nonlinear or linear,
symmetric or asymmetric,
and have
flat flux or sinusoidal flux in equilibrium
rod control or homogeneous control.
- Linear multipoint model. A finite difference model with

variable number of sgpace points.

In section 2.1 is presented the reasons why we have treated the

axial problem. The simplifications of the model are also listed.

The fundamental equations which describe the dynamics are described
in 2.2, They are the neutron balance equation, a diffussion equa-
tion, and two ordinary differential equations. These two equations
describe the change of xenon and iodine respectively. They are
called

a) xenon equation and

b) iodine equation
later in this report.

The neutron equation is approximated by finite space differences
and is assumed to be stationary. This makes it to a finite number

of algebraic conditions.

The behaviour in general of the solution is discussed in 2.3.

The rest of the chapter describes a number of xenon models.




In 2.4 is described the linear modal expansion models. There is
only one complete eigenfunction expansion of the state equations,
the Kaplan modes. Due to numerical difficulties, however, even
other modes have been used, and the most common ones are the clean

reactor modes.

Some simple nonlinear space independent models have been used to

show the existence of periodic solutions.

The TRAXEN nonlinear finite difference model is described in 2.5.
Tt has been used in digital simulations, which are reported in [15].
TRAXEN has also been used to compare the results from the two point

model.

The two point model is derived in 2.6. In the nonlinear case it is
only derived for symmetric equilibrium flux. By rod control in this
model we mean, that absorbtion is only varied in one space point to
maintain criticality, while the other space point has constant ab-
sorbtion. At homogeneous control both space points have the same

absorbtion.

The linearized two space point model, in 2.7, is a linear fourth
order system. It is shown that Lyapunov - Poincaré theorem is valid
for the two-point model. It is also proved that stability is inde-

pendent of control type in the symmetric flux case.

A multipoint model is derived in 2.8. Even for this model it is
shown that stability is independent of control type, provided the
flux is flat in equilibrium. Two special cases are treated, the

flat and the sine flux. We define a sine flux to have equal buckling
in every space point. The flux shape converges to a real sine curve

when the number of space points grows to infinity.




2.

1  APPROXIMATIONS

2.1.1 THE AXIAL PROBLEM

In this report is only studied the axial xenon stability problem.

This is done of following reasons:

@

It is suitable to build water moderated reactors in cylindrical
tanks. Technological reasons make it preferable to increase
height rather than diameter, which causes the xenon problem

to be serious in axial direction.

The cooling channels are oriented axially, which causes the
void in a boiling water reactor to affect the xenon axial sta-
bility. Thus the diffussion is space dependent. This problem,
however, has not been studied here, even if programs [15] has

been prepared for hydrodynamic studies.

It is important to study the influence of control rods on xenon
stability. The movement may be rather big. This will affect the
amplitude and the stability of the oscillations very much. More-
over, an oscillation can be introduced by a rod during the start-

up of the reactor or at refuelling.

Depending on control rod configuration axial oscillations are

more difficult to control than azimuthal or radial oscillations.

Security reasons make it necessary to build the reactors inherent

stable for axial xenon oscillations.

2.1.2 ASSUMPTIONS ABOUT THE CORE

We have assumed the following simplifications in the models:

the variables are separable in space and time,

top and bottom reflectors are neglected, and the thermal flux
is zero on the core boundary,

fuel elements and control rods will reach the whole area bet-
ween the extrapolated boundaries,

power production in moderator and fuel have been combined,
the power control system is always stable (only prescribed

variations of the total power can appear).




- the temperature effects on buckling are proportional to flux
variations,

- only one control rod (the absorbtion in the rod is assumed to
be constant),

- diffussion theory is assumed even near the rod boundary,

- only the absorbtion cross section is affected by the control
rod,

- the microscopic cross section of xenon is independent of tem-
perature in the actual temperature range,

- no stochastic disturbances are treated.

2.2. FUNDAMENTAL EQUATIONS
2.2.1 THE NEUTRON EQUATION

The neutron balance is described by the Bolzmann equation in the
general case. This equation may be adequately approximated by

multigroup diffussion equations.

Since the xenon oscillations are expected to occur only in large
thermal reactors, the distribution of the thermal neutron flux is

treated by one-group diffussion theory.

As the xenon oscillations are very slow compared to neutron life
time, we assume that the neutron flux is stationary in every mo-

ment.

We also neglect the influence of delayed neutrons. The diffussion

equation then reads:

Ve (DevVg)+ (v »Za)on

f

where ®r, t) is the neutron flux.

We divide the equation with a suitable mean value of the diffussion
constant D° and get the equation:

WE - V) + B2 - 020 (1)

BQ(r, t) is the space and time dependent material buckling of the
poisoned reactor. The buckling primarily determines the flux. E is

the normalized diffussion constant.




2,2.2 XENON AND TODINE EQUATIONS

The fundamental equations for xenon and iodine process in nuclear
reactors can be found elsewhere [2 ]. They are by convenience re-

peated here:

aX
22z . . + - °
= A X + A T Yy Oy © = Oy X o 6 (2)
ol _
Tt (3)
where X = X(r,t) are functions of space and time.

I=1TIC,t)

They are normalized to the saturation value of xenon for infinite
flux.

All symbols are explained in Appendix 1.

2.2.3 BOUNDARY CONDITIONS

The initial conditions are determined by the equilibrium values
of neutron flux, xenon and iodine (1) - (3). Furthermore, the
flux is zero on the extrapolated boundary of the core axis.

(0,t) = o(H,t) = 0 (%)

This implies directly

b
o

1

X(0,t)
1(0,t)

X(H,t)
I(H,t)

(5)

]
jow]

i

The power condition reads:

; K(z) « o(z,t) dz = P(t) . (6)

where K(z) is a weight function and P(t) is total power.
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2.2.4 INCREMENTAL EQUATIONS

It is convenient to write the equations in incremental form. Let

us assign

o(z,t) = 0°(z) + w(z,t)

X(z,t) = X°(2) + £(z,t) (7)
I(z,t) = I%z) + n(z,t)

where the superscripts mean equilibrium values.

Eq. (2) and (3) are transformed to

P
"a'%é’:—Ax’é“in+vx°x@-f’x(x°t@+q>°5+q>~€> (8)
5-?—:1:-)\ n + o_ P (9)
ot i Y 9%

The buckling term B? can be expanded into two parts, one equilibrium

part BQ%’and one perturbation part,

B2(z,t) = BY(2) + a(2) 0(z,t) + 6 « E(z,t) + olz,t) + ulz,t) | (10)

o and B are coefficients, that express the dependence of B? on
changes in flux (and temperature) and xenon respectively. ¢ is
the influence on buckling from control rod movement and u is a

general control term, which is available for the operator.

Assuming the diffussion constant to be space independent (E = 1),
the one-dimensional diffussion equation can be evaluated in the

form

32@(*( o+ 0 23 -
—m v (ap+ B+t ctw(e +) + BT =0 an
3%z




2.2.5 FINITE DIFFERENCES

Finite differences are used to solve the space dependent equa-

tions. The laplace operator is approximated by

Py Px+ 1T M T o

d22 h2

The neutron equation (11) thus reads:

2 L
Py = 20ty PR (o @ F B gt b)) v )+

2 2%
+ h™ - B]< o wk = 0 k=1, ... N (12)

where k are space points.

The boundary conditions are

@O(t) = ¢N+l(t) =0
9, (0) = 0 k=1, , N
(13)
£ () = g (E) = n () = ng (€)= 0
Ek(O) = nk(O) = 0 k=1, s N
The power condition is
N
i Ku -(PU =0 ()

where all K =1 in the simpliest case. The xenon and iodine
equations for space point k are got from (8) and (8) where we
directly can put the subscript k on the variables and ordinary

instead of partial derivatives.




2.3 BEHAVIOUR OF THE SOLUTION

Consider a thermal reactor operating at constant power. The
introduction of a small tilt in the flux shape, for example
from top to bottom, causes the flux to increase at top and
decrease at bottom. The burn-out of xenon increases at once

in the top (last term in (2)), while the local rates of forma-
tion of xenon from iodine decay remain nearly constant for a
while (second term in (2)). The xenon burn-out makes the reac-
tivity higher in the top and lower in the bottom. Thus the tilt
increases. The peak of the power in the top is limited by the
condition of constant total power and by the amount of reacti-

vity, which can be added by the burn-out of xenon.

The growth of neutron flux in the top causes the prompt gene-
ration of xenon and iodine directly out of the fissions to in-
crease (third term in (2), last term in (3)). The successive
growth of xenon of the radicactive decay of iodine prevents the

neutron flux to increase, and the oscillations continue.

Xenon oscillations can occur only at high flux levels, at which
the rate of xenon burn-out is important relative to the rate of
xenon decay. Likewise, oscillations can occur only in big cores,
where the average value of buckling is small. Physically this
means that the dimension of the core is much bigger than the
migration area. Two or more regions can begin to function as
independent muclear units, i.e. hardly any of the fissions in
one region are caused by neutrons born in the other region (see

Henry - Germann [5]).

Figure 1 shows the axial flux distribution of a pressurized heavy-

water core.

The equilibrium flux has been disturbed by a transport of 0.5%

reactivity from bottom to top, while total power is constant.
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Figure 1.

The distribution of neutron flux along the core axis as
function of time due to xenon oscillation, calculated
with the TRAXEN model. The transient has resulted from
a stepwise movement of 0.5% reactivity from one core half
to the other.

Core height = 7.0 m

Migration area = Uh0 cm2

Mean flux = 5.65 % 1D13 n/cmzee sec

Time in hours is parameter.




2.4  DIFFERENT MATHEMATICAL MODELS USED BY OTHER AUTHORS
2.4.1 LINEAR MODAL EXPANSION MODELS

A number of methods have been used to solve the linearized xenon
problem. Among different modal expansion models, two methods are
most common, the first one originated by Kaplan [.7.] - 0], 1961,
the other one by Randall - St. John [17], 1958.

The Kaplan modal expansion is the only complete eigenfunction

expansion of the state equations and has the form:
w ) ¥ () =) Y () (15)

where A(r) and Xr) are spatial operators, which can be real and
Hermitian. The state vector is expanded into the modes Y,

x(r,t) = i am(t) Wm(r)

and the stability can be calculated.

The Kaplan modes are the "natural" modes to work with, as they
are independent of each other,why the mathematical treatment is
quite nice. The numerical calculations may, however, be rather
involved, and therefore other modes have been used, the clean

reactor modes, even called flux shape modes [17].

The variables ¢, ¥, I, are expanded in functions vi(;) which are
defined by (compare (1) and (10))

2% 2

+B) vy +u vy =0 P20, 1, cons (16)

(v2

where uy are the eigenvalues.

Here u is zero and v is proportional to the urpoisoned- (clean)
neutron flux. The equation consists solely by Hermitian operators,

why the modes can form an orthonormal basis

£ £ 3 _
é vi(r) vk(r) d"r = 6ik




The equations for the modal time coefficients here contain infinite
sums of cross terms like:

o0

2 S 0% v, (0) v (r) dp

o V 1

which causes a modal interaction which is high, unless the flux is
flat. If the sums are convergent, they can be truncated after a

finite number of terms, but this may cause big numerical problems.

However, the clean reactor modes have some attractive features.
Their completeness is not in doubt. The modes are rather easy to
calculate. They are independent of power level, and have not to be
recalculated at each operating point. The specific behaviour of the
clean reactor modes are better known than that of the natural modes.
Calculational results seem to indicate, that the natural mode spectral
theory is close to the flux shape mode theory for many real nuclear

reactors.

2.4.2 NONLINEAR SPACE INDEPENDENT MODELS

As the xenon equations are non-linear, the linear approximation

does not accurately describe bigger deviations from equilibrium.
Chernick [1] shows the importance of nonlinear terms in a space
independent reactor. Nonlinear stability analysis of a point reactor
has also been studied by Smets [20], Gyftopoulos [3 ] and Sha [18]

using Lyapunovs second method.

The neutron equation has the form:

dé

el (a, - a, X))o

1

The existance of periodic solutions can be shown. The nonlinear

terms affect the amplitude of the oscillations.

In [15], chapter 5, Olsson shows that a space independent model
will give bad results for big disturbances.




2.4,3 DIGITAL AND ANALOG SIMULATIONS

Nonlinear simulations of the xenon oscillations have been per-
formed with analog and digital methods. A survey of references
is made, as mentioned previously, by Wiberg[?“] .Recent works
have been done at Westinghouse [14] with particular emphasis on

azimuthal instabilities.

The axial stability problem has been studied by Norinder [13
with clean reactor mode approach and by Stacey [21] with diffe-

rence approximation approach.

Tn another report [15] is described results from digital simula-
tions of an axial pressurized water reactor, approximated by
finite differences, the TRAXEN model.

9.5 A NONLINEAR SPATIAL DIFFERENCE AXTAL MODEL, THE TRAXEN MODEL

The TRAXEN model is a nonlinear finite difference model, based on
one group diffussion theory. The simplifications from 2.1 are

even assumed here.

The model is constituted by eq. (1) - (6) or in incremental form
by (8), (9), (12), (14). The spatial operator in (1) is approxi-
mated by finite differences. The expression for the control rod

is uniquely determined by one parameter, the insertion length

A ¢ H, where 0 ¢ A ¢ 1 normally. Then

clz,t) = A » ot A0, x> 1
cl 0 <z < AH

c(z,t) = 0grgl a7
0 M <z g H

1.
where ¢~ 1s constant.

The values A < 0, and A > 1 are introduced of computational
reasons. A negative A means that reactivity must be added. A
big A means that absorbtion in the rod must be bigger in order

to maintain criticality.




The absorbtion c(z,t) can also be varied, while the insertion is

*

constant, say z*, where 0 ¢ 2z~ <« H. The parameter \ now determines

the rate of absorbtion, and we define

A-cl 2 £ Z
c(z,t) = (18)
0 7z > z*

where cy is a constant.
If 2z = H we call the control homogeneous.

Physically we can interpret this control as consisting of many

fine rods. Only one fine rod is moved at every instant.

In order to study transients, the flux can be disturbed arbitra-
rily by the term u(z,t), which can be specified in every space

point z, as a polygene chain in time.

A Fortran program TRAXEN is written for this model. The numerical
methods and simulation results are reported in [15]. The program
is tested for maximum 40 axial meshpoints. The program has been
used to compare the results of the analysis of the more simple

models, presented in chapter 4 and 5.

2.6 A TWO SPACE POINT AXTAL NONLINEAR MODEL

In order to get a simple description of the xenon problem we
approximate the stationary diffussion equation by only two finite
space points. The neutron equations then are nothing else than two
algebraic conditions. These are combined with the four xenon and

iodine equations.
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2.6.1 SYSTEM EQUATTIONS

The axis of the core is divided into three equal parts. As the
boundary conditions (13) must be satisfied the variables are

defined in two space points.
We use (12) to write the diffussion equation, and neglect the

term u(z,t).

o
- 29 P, + hz{(Bi2 + g, 00) P, + o @i’ + B@f g+

171
+ o, 0. 4+ BEL Q.+ g kpz}zo (19)
171 171 171
‘ 5 oy ) ) 0
@1—2<92+h{(82+a2@2)®2+c2¢2+s¢2£2+
2y
+02\92+B£2@2+a2‘92}-—0 (20)

where the subscripts are space points and the superscript zero

stands for equilibrium values.

The constant power condition (14) simply reads:

.2 +‘92 =0 (21)
Let us call
3 2+ 0
gl = ~5 - (Bl + OLl @1) (22)
h
3 on 0
g, = —5 - (By + o, @) (23)
h

Equations (21) - (23) are inserted in the algebraic conditions
for the flux (19) and (20) which gives:

2 o _
o, 0 %+ [BE +o) - gl + 0, + BE) = 0 (24)

2 0 _
o0 9.7+ 9 [ - 88, - o)+ g)] + 0 (e, + BE) = 0 (25)
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In addition we have an algebraic condition on the control c
(compare (17) and (18)):

fle ) =0 (26)

10 ©2

The xenon and iodine equations, (8), (9), with (21) inserted,

are written

dg

1l 0 )
g:’(" M = O 80 Ep F Ay g o (yy - XDy -0, 9y £ (27)
ii?-m(x o 00) E, + A - o.( X))@+ o 0, & (28)
o x T %k 2 2 L IR AN PP R S TG N
dnl
iz - A, .t Y. O (29)
at i1 i x Tl
dnz
—= = - A, M,y - Y: O_ (30)
at i 2 1 x 71
Out of (24) - (26) we can solve‘Pl as a function of €1 and Ege
Eq. (27) - (30) therefore constitutes a forth order nonlinear
dynamic system.
As state variables we choose:
X) 28 X I Xy Eh)tE X, = m tong (31)

and the system equations read:

dx

1 ) 0 -
” = (=2, - oy 910 %yt Ay Xy F o v, - X9y - 0,0y %y (32)
dx2
'g; = - >\i X2 + Yi OX&{)l (33)
dXS o o 0
-g;~ = GX(®2 - @l) %y + (- AX - o, @2) Xq + Ai Xy, +
+ o (X) - XD @y + oo 94 [xg - 2] (34)
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_h (35)

where‘Pl =tpl(x1, Xg).
The system is thus constituted by the equations (32) - (35) and
(24) - (26).

If the equilibrium neutron flux is assumed to be symmetric and the

buckling coefficient o space independent we get from (22) and (23)

= €9 =g
O _ O . O

Xl = X2 =X (36)
o _ o . .0

@1 = @2 = ¢

The system equations (32) - (35) are then simplified to

dx

gf = (= hy =0 00 g H Ay x, b0 Gy = X0y - 0,0y %y | (37)
dx2

_d_-t;—:_ }\i x2 +Yi O’X@l | (38)
dXS o

—= =z (- A, =0, 0 ) Xq * A%, * oxtpl(x3 - 2X1) (39)
dt

dx

m__{i = - }\i X4 40)
dt

where @l g‘ﬁl(xl, x3) is found from (24) - (26) with (36) inserted.
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2.6.2 NEUTRON FLUX EQUATIONS AT DIFFERENT CONTROL TYPES AND
SYMMETRIC EQUILIBRIUM FLUX

In order to express the neutron flux in the state variables, we
must solve (24) - (26). In this study, we shall regard two cases,

called the rod control and the homogeneous control cases.

In order to simulate a rod movement, we assume that the absorbtion
¢ is varying in one point. This means physically, that the rod is

assumed to oscillate only in one half of the core.

When the absorbtion is equal in the two points we define the

control to be homogeneous.

ROD CONTROL

The absorbtion ck(t), (12), (24) and (25), is acting only in point
one, why (26) is simplified to:
c, =0 (41)

Eq. (25) gives ¥, as a function of £y % g = Xy (see (31)),

Q1 = @q{xy = %)

B(X3 - Xl) -g bo ¢°

.= |/1 -
20 +) g - B(xy - ‘xl)]2

8(x3 - Xl)

P (42)

The plus sign is skipped of physical reasons because both X, X,

andk?l shall be zero at equilibrium.

If the temperature coefficient o equals zero we get

0° Bxy - %)

(p‘ =
1 b3
B(x3 - Xl) - g (43)

When solving the flux equilibrium equation (2) in the symmetric

case we find directly:

g1 =8 =8 * ;? - o ¢° (4l)
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HOMOGENEOUS CONTROL

The absorbtion term Sy is now constant for all k, why (26) reads:
- ¢, =0 (45)

Eq. (24) - (25) then gives a third degree equation inwpl to be

solved.

where g is defined by (hl).

With the temperature control o = 0 we get the flux equation:

) 28 0.2
Pl P, - (@) =0 (47)

B(le - x3)

These equations define an unique value oftpl of the same physical

reason as (42).

2.7 A LINEARTZED, TWO SPACE POINT MODEL

The two point model gets very attractive when the equations are
linearized. We show that the Lyapunov - Poincaré thecrem is valid

for-the model.

After the system equations for the asymmetric equilibrium flux
shape are derived, we simplify to the symmetric equilibrium flux.
Here stability is independent of control type. We also show that
the fourth order system matrix is of a special simple form. Two
eigenvalues are constant for all core parameters, and the two
other eigenvalues are calculated directly from a seeond order

submatrix.
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2.7.1 LINEARIZATION OF SYSTEM EQUATIONS

The model is constituted by the eq. (32) - (35) and (42), (43)
or (46), (47).

As the nonlinearities can be represented by higher order terms

the system equations can be written:

x = Ax + I'(x)

where the vector function I'(x) has the properties

r(g) =0

lim ]F(x)!! =0
RESN

[Ix]] =0

Consequently, the Lyapunov - Poincaré theorem can be applied.

In this section we will find expressions for the system matrix A.

2.7.2 THE LINEARIZED NEUTRON FLUX EQUATION AND THE SYSTEM
EQUATIONS FOR ASYMMETRIC FLUX

CONTROL ROD ACTION IN ONE SPACE POINT

Skipping products of the incremental variables in (24), (25) and

assuming rod control as in (41),

©2
we get from (25)

(s]

o, Blx, - x%,)

o, =2 1 3 (48)
)

Eq. (48) is inserted into (32) - (35) where all products of the
state variables are neglected. The system equations then have the

form:




- on

dx = Alx where
dt :
- o, (x0-y, )03 8 0, (X%-y, )00 ]
A -0 o0 X ; X2 N, o+ X 1 'x"°2 0
X 1 i
& 89
(o] (o]
o (Dz B A - ‘1’2 ’ 0
Vi % o e Y % g
A, = 2 )
(¢} (o] o] (¢] [¢] (o]
o_|(¢,-0 )""—*—“--“——-‘—-—-m(X2“Xl)CI)2 i 0 =-X,~0_ ¢;-0 (X2=‘X1)®2 é A
x| 2 1 X 1
g2 g?
0 0 0 —)\i
N (49)
and x is defined in (31).
HOMOGENEQUS CONTROL
Here we state
c) = ey = (see (26) and (u5))
By adding (24) and (25) and neglecting products of the increments
gi"pi’ C we get:
B(2%, - %,)
@l o1 737 (50)
H
where we have defined:
£ g
# = 2422 (51)
0% 0
1 2

The system equations (32) - (35) are now simplified to:

dx = Azx
dt
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where
0
F;A s QGX(X1~YX)8 ,
x 9% 1 &£
28
Vi 9y 7 =
A, = o .0
2 (@0 @O)+ Eﬁ%Z—Xl)B .
O%|**27%1 J
0 0

2.7.3 THE LINEARIZED SYSTEM EQUATIONS FOR SYMMETRIC FLUX

If the equilibrium flux is symmetric, the system equations are

rather attractive.

CONTROL ROD IN ONE SPACE POINT

If the control rod is affecting space point one, the system matrix

Ay (49) is simplified to:

r- O_ o
IS GX(X yx)® B
X OX
g
0
" B
Yl GX . — -A
A3 = >
0 0
0 0

where (36) is taken into account.

GX(XE_YX)B . N
L
B
Vi % 0
0 O
el (X5-x)8 N
X 2 1
0 -A.
i
(52)
GX(XO—YX)QO B N
0
g
0
vy, o, LB 0
i“x -
. 0O
—AX—OX o] Al
0 -
i
-
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HOMOGENEQOUS CONTROL

Homogeneous control leads to the system matrix out of A, (52) and

+the matrix looks like:

B o (X°-y_)B ©° o X%~y )8 a°
A —g 0% X s AL X % 0
X X 1
g 2g
[} o]
Y L2 -As Y: O Br 9 0
1 X 1 1 X
) g 2g
B, =
0 0 % ~o. ¢° XL
X 1
0 0 0 -
L l—
(sy4)

The only difference between A3 and Al+ occurs in the elements a4

and 8yge

The characteristic equations are:

| sI-A, | = (s - a,)(s - agy) [(s - aj))(s = ay) - 3, * anl=

= |sI - Aul

As the two eigenvalues:

S e T T ]

(55)

3 a = =-x. - o ¢
b

2 33 x

are always negative and real, we need only study the 2x2 matrix

in the stability analysis.




This 2x2 matrix can be derived in another way, which can give a
physical interpretation. If the absorbtion terms c; are neglected

in the flux equations (24), (25), we get only three state vari-

ables Xps Xpy Xy 35 Xg is uniquely determined by Xy The system
equations are now

X1\ [%1 %2 O Xy
d_ X, |Z] a a 0 X (56)
dtl| "2 21 722 2

%, 0 0 ‘Xi ),

where the elements of the matrix are the same as the correspond-

ing terms in Aq (53) and Ay, (54).

Thus, it is permitted in stability analysis to neglect the rod

influence in the symmetric, linear model.

2.8 A LINEAR SPACE DIFFERENCE MULTIPOINT MODEL

In this section is derived a linearized version of the TRAXEN
finite difference model. We can simply show that the rod inser-
tion is uniquely determined, why one rod is not sufficient to
control the oscillations. In the special case a flat equilibrium

flux we prove that stability is independent of control type.

2.8.1 GENERAL SYSTEM EQUATIONS

The linearized xenon and iodine equations are simply got from
(8) and (9):

dg
k _ 0 0
" SIS I VI S I cX(anpk sy gk) (57)
dnk
Z;:-—-z_}\i nk+Yi kapk k:l, -oegN (58)

where the subscripts stand for space point.




- 28 -

The linearized diffussion equation for the neutron flux in space

point k is derived directly from (12) with u(z,t) = 0,

2*
2 0 2 .o _
011 *Oray Foyl- 2 DBt ao)] +nTopfo +B g ] =0

k=1, eou, N (59)

with the boundary conditions (13) and the power condition (14),

which we simplify to:
L @, =0 ‘ (60)

As pointed out in (17), the control terms c, are determined by
one parameter, the insertion length of the rod, or by the homo-
geneous absorbtion (18). This means, that the unknown parameters

Cys wery Oy are connected by N-1 conditions.

£.(Cqs eey ) =0 i21, veu, N-1 (61)
Now, to express the N variableskpk in the state variables Exe and
n, we have 2 N equations (59) - (61) for the 2 N unknown parame-
ters ) andtpk, This simple calculus shows directly that the rod
insertion is uniquely determined in every moment, if the total
power is to be held constant. Thus the system is not controllable

by one rod.

2.8.2 SPECIAL CASE I: FLAT EQUILIBRIUM FLUX

In this section we will prove, that the stability of the flat flux
is independent of the control term c. Thus, we can simply neglect
the absorbtion ¢, when analyzing the stability of the flat flux.

In order to get a suitable representation of the system, let us
add all the Ek—equations (57) and the nk—equations (58). As all
XE and @Q are constant for all k and because of (60) we get at

once.
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N
d(Zngk) ) N N
= (- A -0 90Xz E)+ A EnN (62)
dat x X 1K 19 K
4 N N
a__;c;(i nk)=--xi(:zL nk) (63)

Let us now define the state vector x with the components:

N Xpio1 T8 i TN

N
X = L &, X =In
Z2N-1 1 i 2N 1

The system dynamics can now be represented by

dx

pers VR

where the 2Nx2N matrix AN can be partitioned into:

I
l
I
= —_———————— = (64)
AN |
!
f
!

where Ay 4 is a [?(N—l)]*{?(N~li] matrix, B is a 2(N-1)%2 matrix

as we can see from (62) and (63).

The eigenvalues of AN are the same as those of Aan plus the
eigenvalues ay and ag which are always negative and real,
(62) - (83)

4 = e X
ag = - A
For the flat flux we get a simple form of the flux equation. As

the diffussion equation (1) must be satisfied at equilibrium,

where




Ly

4]

Zi
L=

(1]

i
=
W

O

1]

o
[e]
o

i

l._.h

k=1

we get directly the conditions

0 2 ¢ k £ N-1

1 k=1, k=N

We use (B6) and (65) for all k, and (59) is simplified to:

? o 2 .o -
‘Pkel+‘pk+l+‘pk(“2+h a ¢9) +h" e (e * B8 E) =0

2 ¢ kg N-1
For k = 1 and k = N we get respectively:
P +q)[—=l+h2a©o]+h2®°(c +BE) =0
2 1 1l 1

2 0 2 .o _
“"N_l“"N[‘l*’h a ¢°] +h ®(CPI+BEN)”0

Now, let us add the flux equations (67) - (69) for k = 1, 2, ««

We get, using (60):

N N
X + 8% & =0
1 “x 1 k

This equation will be used in following section.

CONTROL ROD ACTION

(65)

(66)

(67)

(68)

(69)

(70)

With a control rod inserted to space point number k we can simplify

the control to the expression:

9]
1
0

(71)



Physically, this means that the rod is inserted in equilibrium
from point zero to space point k-1. The rog absorbtion is

3¢
included in the undisturbed buckling term B« We assume that

the rod moves just around point k, where the absorbtion is varied

with c.

Eq. (70) gives directly:

N
c=-8 i & = - B XoN-1 (72)
Eq. (72) is inserted in (67) - (69) which reads:
q -1 0 0
1 El
-1 qg -~1 0
0 -1 q -1 0 :
2 °
@ = h” o° g &y (73)
N
g, - I E
,k ;v
i1
q -1
0... 0 - ;
1 ql EN
or in matrix form
G o=n’ e p g
where we have defined
qlﬁluhzai)o
(74)
q32—h2a<bo

and E*'stands for the altered t-vector in (73).

The flux vector can be solved from (73)

q):hQ.q;o.geG"l.g*ﬁR.g

where R is a NxN matrix, or in scalar form




N N
Q. =35r,. o £, —pr. (L £ ) i=1, ..., N (75)
1 521 1] ] ik val

Now, let us neglect the term c¢ from the beginning. This will make
the system one state variable less, as (59), (60) now gives N+1

conditions for the N unknownkpk. Thus we exclude

N

3

*oN-1 v

X
1
which can be calculated from the other state variables. From (72)

we see, that

XoN-1 =0

In (73) the vector £ changes to £, while all the coefficients
rij in (75) are unaltered. The last term in (75) is now lost and
the equation reads:

r.. E. i=1, ..., N (76)

. =k
i 1 1373

1

Comparing (75) and (76) we see that the partition matrix AN_l in
(65) is unaffected if (76) is inserted instead of (75) in (57) and
(58). We exclude eq. number (2N-1) and the first column in B, but

this does not change the eigenvalues of AN—l and the stability.

HOMOGENEOUS CONTROL

A homogeneous control gives a similar result. Instead of (71) we

now assume:

1 Co = eve = oy = ¢ (77)

(78)




The right hand side of (73) is altered to

i
n? ¢° g ! (79)
I

. 1 -
1rij gj"(:?rij) 5 }i £y i=1, «e., N (80)

Even here the matrix Ale is only affected by the first term in
(80) and the last term has influence only on the B-matrix in (65).

This does not influence on the eigenvalues of Ay

As in the rod case we lose one state variable when we assume c = 0.

From (78) we conclude that:

Xn-1 = 0

why eq. number 2N-1 in (65) is excluded. The matrix ANul is
unaltered if ¢ is neglected, because the last term in (80),
which is zero for ¢ = 0 does not affect AN—l' B is altered to

a (2N-2) x 1 matrix and has no influence on the stability of

Out of these results, we can neglect the rod in this linear flat

flux case, when analyzing stability.

Only 2N-1 state variables describe the system and stability is

determined by 2N-2 eigenvalues.




2.8.3 SPECIAL CASE II
SINUSOIDAL EQUILIBRIUM FLUX

Tn this section we present an analytical expression of the constant
buckling as a function of the number of meshpoints.
Tn the continuous case we can easily find a sinusoidal flux as

the solution of the neutron flux equation

2
&2 4 B(z) « 9 =0
2 o
dz
2 1
where the buckling B_ = -7 = constant. (81)
H

When using finite space differences we get an approximation of

the sinusoidal flux by assuming the buckling

Bi = Bzi = constant k=1, ..., N

The flux equations are in equilibrium

24
2 -
(Dk—l - Q@k + q’k+1 + h Bk @k = 0 (82)

or in matrix form:

— T

p -1 0

-1 p -1 0.

0 -1 p $ =0 (83)
| 0 ... 0 -1 ©p]

or R« & =0

where p = 2 - B’ Bi‘and the matrix R is of order NsN.

In order to get a solution we must require:

det R'=D_=0
n

D can be found recursively

D (84)

n_ P Dn~1 - Dn—2




Out of this difference equation we can solve the roots p and

we find:

p(k) = 2 cos %§T k=1l, ooy N

and thus

B = g»—-(1, - cos

. Iy (85)

) N+1

oy

o
ML oy

We can see that Bk asymptoticly converges to (81).

The flux equations are defined from (59) - (61), where eq. (59)

where h =

can be written in matrix form

* o h
qlu =1 @1(Cl + B El)
-1 qg -1 0 I
AN |
. o =nl. ' (86)
\
0 \\ -1 :
\
" o
-1 iy @N(CN + B EN)
where qﬁ = 2 - hQ(Bix; o @2) i=1l, ..., N

The equilibrium flux @E is found from (83) and B?ﬁ is defined in
(85).

We also define the mean flux:

- 1 N o
d = T i ¢; = constant (87)

(Compare (65))




3., PHYSICAL AND TECHNOLOGICAL CONSIDERATIONS
3.1 CRITERION OF STABILITY - PRACTICAL STABILITY

When studying the xenon oscillations, we are concerned with devia-
tions, 6x, about some equilibrium state v°, where y represents a
spatially dependent state vector containing iodine, xenon and flux

as components.

Stability is used here in the sense of asymptotic stability. This
is defined as an asymptotic return to the equilibrium state after

initial perturbations, that is

lim lsx] = 0O

T
Otherwise the trajectory is unstable.

All the linear difference models have well-defined stability cri-

teria. They can be written in the matrix form

dx
dt

= Ax

where the biggest eigenvalue determines the stability. As the geo-
metrical dimensions are strongly connected to stability, it is
common in the one-dimensional case to define the critical core
height. This one is reached when the biggest eigenvalue has a
zero real part. Thus, the degree of stability for a certain set
of core parameters can be described either by the eigenvalues or

by critical height.

Tn the nonlinear description we must care about the single trajecto-
ries. The nonlinear terms fullfil the conditions for the Lyapunov -
- Poincaré theorem, so we know that if the linear approximation is

asymptotic stable, even the nonlinear zero solution is stable.

A practical stability criterion except the asymptotic stability
criterion, which is often used, is the maximum amplitude of an
oscillation following a certain serious disturbance. Even if a
trajectory is stable it might be forbidden of technological rea-
sons. The flux in one point must not deviate more than a certain
amount from the nominal level, and this boundary depends on
thermal margins, burn out risk, boiling of the moderator and
burn up of the fuel.




3.2 CHOICE OF REACTOR CORE PARAMETERS

The numerical values of all the nuclear and core parameters are
found in appendix 1. The core parameters are taken from the Mar-

viken heavy water reactor, whose most significant datas are:

core height, including extrapolated boundaries H=5.02m
form factor, axial ¥y = 1,35
temperature coefficient o = - 0.226%
reactively bounded in fuel, when neutron
flux is doubled
mean flux level %= 5.65 - 100

neutr./cmz'sec.

The most interesting core parameters to study are

core height H

temperature coefficient o

flux form VY

mean flux level @

¥

reactivity disturbance distributions

When a parameter is not specially mentioned it has the standard

value,

In order to compare the results from two point model analysis with

other models, two flux forms are used, namely flat flux (¥ = 1.0)
and sinusoidal flux (y = g).

More realistic flux forms have been used in the TRAXEN model in

order to study practical situations [L5].




3.3 TYPICAL DISTURBANCES

As the reactor dynamics is nonlinear the type of disturbance is
very important, when examining the stability. Both amplitude

and direction determines the convergence.

As the xenon instability problem mainly is reflected in the first
overtone of the flux, it is intuitively clear, that a disturbance
of the first overtone is a severe disturbance, which means that
reactivity is transferred from the upper core to the lower core
or vice versa. An oscillation, thus, can be induced by a slight
movement of a control rod or by a refuelling process. A fuel ele-
ment or a control rod which accidently falls into the core can
induce big disturbances. Thus, a 500 pcm (0.5%) reactivity move-

ment from one half to the other seems to be realistic.

The sensitivity of the flux to different disturbances is discussed

in more detail in [15].




4, LINEAR STABILITY ANALYSIS

The linear stability analysis is carried out of two different

models, the two point model and the multipoint model, which

both are based on finite differences.

In chapter 4.1 is made a simple analysis of the eigenvalues of
the two point model as functions of different core parameters.
Two eigenvalues are independent of core parameters, and the

other two can simply be solved out of a second order submatrix.

The locus of the two most significant eigenvalues for variable

core height shows, that the eigenvalues near the stability limit
are complex conjugate. It is also shown that critical height of
the core has a minimum when mean flux is increased. This is also

verified by more complex models.

The critical height is shown to be bigger if the equilibrium flux

deviates from a symmetric shape.

In section 4.2 is calculated the critical core height when the
number of space points for the neutron equation is increased. The
critical height converges to different values, depending on flux
shape. The two most significant eigenvalues are all the time

complex conjugate near the critical height.

In 4.3 is compared the results from different models. The beha-
viour of the two point model is verified qualitatively by other
models, which are more complex. The results of the multipoint
models are compared to the TRAXEN model and a modal expansion

model.




4,1 THE TWO POINT FLUX MODEL STABILITY
4,1.1 INFLUENCE OF CORE PARAMETERS
In section 2.7.3 we found that it is only necessary to examine

the eigenvalues of the matrix ((2:53),(2:54))

cX(XO - Yx)¢° 8

g
A= = (1)

Vi 9% A Y,

in order to analyse stability of the symmetric flux.

The eigenvalues are simply calculated to:

2
ety v e tep) 2)
S° 11 %22 T 12 f21
2 Iy
The two conditions for stability are:
i) aj; +oay, < 0 or
[¢] OX [s] 0
= - 9
A, ooy o+ ; (X yx)¢ B+ AL > 0 (3)
ii) ayy dgy = Ay dpy > 0 or
o] % o _ 0 o B
)\.i{_ )xX - 0y & - = (X YX)Q g+ Y 9y Z }< 0 (u)

As \e + Yy F 1 by definition eq. (4) can be simplified

to:

(o]
o] X 0 (o]
N B(L - X°) > 0 (5)

As B < 0 and X° < 1 this condition is always fulfilled. The
stability is thus determined only by (3). It is simply realized

from (4), that the eigenvalues are always situated at the same

side of the imaginary axis.




(1) CORE HEIGHT INFLUENCE

The eigenvalues (2) are plotted as function of the core height
in meter in fig. 1, where we have used the numerical values from
section 3.2 and appendix 1. We find the critical core height to

be H = 6.93 m. Asymptoticly the eigenvalues convergerto:

as H tends to zero.

When H increases to infinity the limits depend primarily on the

temperature coefficient o

when o = 0 the limits are 0 and «

when o < 0 the limits are a > 0 and b < » (see fig. 1)

The conditiorn for oscillations to occur is formulated from (2).

2
o a4 Jfen T e
11 %22 7 %12 91 X or
o (v, - X% 8 2 o v.: 0% 8
“ A+, - o, 0%+ X +oyy, St <0
pe i
g g

For ¢° = 1, o = - 0.0514 we get the condition for oscillations:
3.24 ¢« H < 10.1 (m)

(see fig. 1)




Figwre 1. The locus of the two most significant eigenvalues of the
linearized symmetric two point model. (2:53-54).
The parameter is core height (m).
Mean flux ¢ = 1.0
Temp. coeff. o = -0,0514

(ii) PERIOD TIME

The period for the oscillations at the stability limit is found
from (2):

21 21

. UX(XO - e g 172
Mall 92 ~ 912 91 Xi<xx tog e ® >
g (6)

The argument of the root is always positive, which means that if
the reactor is at the stability limit the eigenvalues are always
complex conjugate. The period is found to be

T = 23.8 h.

at the stability limit, where

H=16.93m

From (6) it is easily verified that T decreases when 9° increases.

The last term in the denominator in (6) is slow varying with 0°,

The coefficients



0 o (x° - 1)8 ¢°
&K= 1B 9,05 why we have - v 0.05 o o

g g

Thus we can see, that T decreases approximately as:

1

/o

(see section 4.3.1)

(iii) STABILITY AS FUNCTION OF MEAN FLUX LEVEL

We use (3) in order to determine the mean flux level influence on
stability, and as a measure of stability we take the critical core
height.

We cannot be sure that the parameters are unaltered for very high

fluxes. Therefore, this calculus will only show, what happens if only

mean flux level is varied in the equations.

H 100

5.0 T T T T T T T 1

Figure 2. Critical height H (m) as function of mean flux ¢ for the
two point model and a multipoint model.
N = number of meshpoints.
Temp. coeff. o = -0.051k4

sine flux
flat flux




Figure 2 shows the critical height as function of mean
flux.

Let us now study the asymptotic behaviour (big mean flux) of the

curves.:

(a)

(b)

Temperature coefficient nonzero

We make a conservative estimation in (3) and neglect X, and

Ay for big ¢°. Thus

(v, - X%n? g
o] X
OX<P 1l - > 0
2 - a h2®o

for stability. If

By - X%
(DO } ._,,..‘.)i.._...._.,_
o

and o < 0, the critical height tends to infinity.

For o = -0.0514 (see fig. 2) we get infinite critical height

for

14

6° > 13.5 = 13.5 * 5.65 » 10%° = 7.6 » 10" neutr./cm® sec.

Temperature coefficient o = 0

Now the asymptotic behaviour of (3) gives a conservative esti-

mate:

0 0y, 2
o, ¢ |2 - (v, - X >h* g] > 0 or

hi « 2 29,88 G < 5.1 m)

(YX - X%g

for stability.

The dependence of the mean flux which has been shown here is
later confirmed by the linear multipoint models and the non-

linear transient model (see fig. 2 and section 4.3.1)




(iv) TEMPERATURE COEFFICIENT INFLUENCE ON CRITICAL HEIGHT

is shown in figure 3. This simple dependence is found in (3),

where

g = 35‘— a o° (see eq. 2:4l4)
h

The behaviour is easy to confirm with more complicated models

(see section 4.3.2)

H 7.5

7.0 -

6.5

6.0 . :
-0.10 ~0.05 0 0.05 a.

Figure 3. Critical height H(m) as function of the
temperature coefficient o for the linear
symmetric two point model.

Mean flux ¢ = 1




4.1.2 INFLUENCE OF ASYMMETRY OF THE FLUX

The degree of stability is influenced very much by the asymmetry
of the flux. Figure 4 shows the locus of the three first eigen-
values of the system matrix A (2:52) for the homogeneous control

case as function of an asymmetry measure r, which is defined

= Cc
¥
o
.
=4

(2 - 1)

S
N C
11

The eigenvalues are calculated with program ASSXE (app. 2)

The fourth eigenvalue is always constant sy F Ao and is neg-
lected here. For symmetric flux (¢ = 1) the flux is on the sta-
bility limit.

0.6 0810
a3
0.6 0.5

Figure 4. The locus of the three most significant eigenvalues
of the linearized asymmetric two point model with
homogeneous control.(2:52). The asymmetry variable
¢ (¢ = 1 for symmetry) is used as parameter.

Core height = 6.93 m

-0.0514

Temp.coeff. o
Mean flux ¢ = 1
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4.2  INFLUENCE OF THE NUMBER OF MESHPOINTS ON STABILITY
CALCULATIONS

4.2.1 CRITICAL CORE HEIGHT

The critical height of the core is determined as function of N
for two standardized fluxes, the flat flux and the sinusoidal
flux. The control ¢ is assumed to be homogeneous. In the flat
flux case it is shown that this fact has no importance ( see
2.8.2). It is also intuitive clear that the rod configuration
has no influence on the linear stability for other flux forms,

as the rod movement is small, for small disturbances.
This is confirmed by calculations.

A program XELI (¥Enon LInear model) has been written, which gene-
rates the system matrix out of (2:57) - (2:60) with the condition
(2:61), which reads:

¢ = ¢ k=1, ..., N

in the homogeneous case. (program listing in Appendix 2)

We use the special forms of the diffussion equation (2:59) which
are calculated for the flat flux (2:79) and for the sinusoidal
flux (2:86).

The program XELI then determines the critical height and the

eigenvalues of AN.

Figure 5 shows the critical height as function of the number of

meshpoints for
=1 (see (2:65) and (2:87))

The figure shows the well-known fact, that the critical height

increases with the form factor.

The critical height converges asymptoticly to a certain value.
We want to examine if it is possible to extrapolate to the right
critical height (infinite number of meshpoints) out of simple

models. We will give a few numerical examples below.
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H 10

/) SINE FLUX

FLAT FLUX

2 5 10 15 20 N

Figure 5. Critical core height H(m) for multipoint models as
function of the number of meshpoints of the core

(N) for two different symmetric flux shapes.

Mean flux ¢ = 1
Temp.coeff.a = -0.051k4

(1) FLAT FLUX

Assume the curve in figure 5 has the form:

-b(N-2)
e

H(N) = H(=) + a (7

where a, b, and H(») are parameters to be determined. From
N =2, 3, 4 we get:

H(w) = 5.55 m

N = 20 inserted gives H(20) = 5.55 m.

The right value of H(20) is 5.38 m, why the error is 3.2%.

N =5, 6, 7 gives H(=) = 5.52 m
Extrapolation to H(20) = 5.53 m

Error = 2.8%

N =18, 9, 10 gives H(«) = 5,40 m
Extrapolation to  H(20) = 5.43 m

Error = 0.9%

N = 11, 12, 13 gives H(») = 5.33 m
Extrapolation to H(20) = 5.39 m

Error < 0.2%



The TRAXEN program calculates the critical height for flat
flux [15] to 5.36 m, 0.02 m from the linearized mcdel, where

N = 20 in both cases.

(ii) SINUSOIDAL FLUX

We extrapolate three points to an asyptotic value here as
in (7).

Exponential extrapolation from

N =2, 3and 4 gives H(w) = 8.68 m

and an estimation of H(20) = 8.68 m

=
1]

5, 6, 7 gives H(») = 8.83 m and
8, 9, 10 gives H(») = 8.89 m

=
1

from which H(20) is calculated to 8.89 m.

The TRAXEN program [15] estimates the critical height for 20
meshpoints to be about 8.89 m for the sinusodial flux. This
shows that we can estimate the critical height in a conserva-

tive direction within 2.4% by extrapolation from N = 2, 3, U.

4,2.2 THE EIGENVALUES FOR SOME DIFFERENT NUMBERS OF NODE POINTS

We show the eigenvalues of the system matrix at the critical
height as function of the number of meshpoints. The system
matrix is of order 2Nx2N (eq. 2:57, 58, 65). Two eigenvalues
are constant (2:64) why we show only 2* (N-1) eigen-

values ‘in the table.

In table 1 is shown the eigenvalues of the flat flux. The period
time is, as we can see, estimated very accurately already with
the two point model (N = 2) and is found to be:

Tz —2L - 23,81 hours

0.26389

for all cases.




Table 1

Eigenvalues for symmetric flat flux at critical height for
different numbers of core node points (N).

Mean flux ¢ = 1.0 Temp. coefficient o = -0.0514

N H {m) | Real part Imag. part

crit

i

2 | 6.930 .| - 0.00001 0,26389

3 = : 0.00001 t+ 0,26389
6'
6.533 - 0.20751 0.13788

L

b 6.250 0.00004 + 0,26389
' - 0.16664 0

- 0,22126 0.11231

- 0.36026 0

L

5 | 5.056 0.00009 ¢ 0.26390
- 0.13473 0
- 0.15180 0
~ 0.22690 £ 0.09939
- 0.39328 0
-~ 0.43921 0

H

10 5.621 0.00002 0
- 0.11154 0
- 0.11200 0
- 0.112930 0
- 0.11449 0
~ 0.11742 0
- 0.123u45 0
- 0.13970 0
0
0
0
0
0
0
0
0

i+

- 0.23386
- 0.42481
- 0.47561
- 0.48759
-~ 0.50897
- 0.51538
- 0.51904
- 0.520985

24

20 5.387 0.00000 0
- 0.10731 0
- 0.10734 0
- 0.10738 0
- 0,10745 0
~ 0.10753 0
- 0.10765 0
- 0.10780 0
- 0.10801 0
- 0.10828 0
- 0.10865 0
- 0.10915 0
- 0.10987 0




Table 1
Contd.

51 -

{m)

crit

Real part

Imag. part

.11095
11267
.11565
.12163
. 13746
. 23550
43120
.48207
. 50UL1
.51631
. 52341
.52797
. 53107
.53326
. 53485
.5360H
.53693
.53762
.53813
.53852
.53880
.53899
.53910

i
OOOOOOODOOOOODOODOOOOOO

[an R an Bk o B av Bl an e

24

.07478
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For the sinusoidgl flux we get the eigenvalues shown in
table 2. We can see directly that the estimation of the
period for the oscillations increases significantly when
the number of meshpoints is increased from 2 to 10. Already

three space points 1s a far better approximation than two

points for this flux.

Table 2
Eigenvalues for sinusoidal flux at critical height for

different number (N) of core node points.

Mean flux ¢ = 1 Temp. coeff. o = -0.0514

N Hcrit(m) Real part Imag. part T(hrs)

2 65.568 AO.OOOOO +0.30555 20.56
-0.77950 0
-0.10600 0

3 7.577 -0.00001 +0.27868 22.55
-0.10600 0
-0.18615 +0.22326
-0.72128 0

4 8.105 0.00000 +0.27383 22 .95
-0.10600
-0.18183 £0.138005
-0.25651 +0.11402
-0.69896 0

5 8.385 0.00000 +0.27282 23.03
-0.10600 0
-0.18323 *0.17251
-0.18810 0
-0.23431 +0.09106
-0.42473 0
-0.68871 0

10 8.807 0.00000 £0.27212 23.09

-0.10600 0
-0.12070 0
-0.12226 0




forts.

crit(m) Real part Imag. part T(hrs)

-0.12430
-0.12943
-0.13800
-0.15877
-0.19331
-0.19505

0
0
0
0
0.14763
0
~0.25615 0
0
0
0
0
0
0

.05651

|+

4

-0.38003
-0.475417
-0.56196
-0.63661
-0.67486
-0.69978

4.3 COMPARISON BETWEEN DIFFERENT MODELS OF INFLUENCE OF CERTAIN
CORE PARAMETERS

4.3.1 DEPENDENCE OF MEAN FLUX LEVEL

Even for more complicated models we can establish the result from
the two point model (section 4.1.1). The critical height as func-
tion of the mean flux level is shown in figure 2 for a 10 point
model with flat and with sinusoidal flux. The curves for N=2

and N = 10 are quite parallel.

With the TRAXEN program a quite similar result is shown for a
flattened sinusodial flux [15] and small disturbances.

The oscillation period at critical height for different flux levels
is shown in table 3 for the two point, the ten point and the non-
linear TRAXEN models.




Table 3
Oscillation period (hrs) at critical height for different flux
shapes and mean flux levels (a = - 0,0514)
Sinusoidal Flat.sinusoidal
Flat flux flux flux
5| (v=1.0) (¥-521.57) v = 1.35

N =2 N=10| N=2 N = 10 TRAXEN (N = 20)

23.81  23.81 | 20.56  23.09 24.5
18.32  18.32 | 15.38  18.05 -
15.38  15.38 | 12.80 15.35 -
13.51  13.51 | 11.19 13.63 -
12,19 12.19 | 10.06  12.42 13.0

o E W N

The table shows, that the period decreases, when the mean flux

increases from 1 to 5, and the decrease is

51% for the flat flux (N = 2 and 10)

ug9% " " ginusoidal - flux (N = 2)
54% " \ " 1 (I\I = lo)
53 " " TRAXEN flux (N = 20)

4.3.2 DEPENDENCE OF TEMPERATURE COEFFICIENT

Fig. 3 shows the critical height as function of o for the two
point model. Even for the multipoint models the critical height
decreases for increasing temperature coefficient. As table U4
shows, the rate of decrease of critical height is very accu-
rately determined for flat flux with the two point model, while
we need three node points to get relatively good accuracy for

the sine flux.




Table 4 - 55 -
Critical height H (m) as function of temperature coefficient
at different number of core meshpoints (N).

Mean flux = 1

AH al
K = ._._43—_ @ commerm

H Ao

0
Flat flux
N E MGt = —0ios1n) | B MGt = 0) K
2 6.929 6.499 0.0622
3 6.533 6.126 0.0623
L 6.250 5.861 0.0622
8 5.735 5.378 0.0622
10 5.621 5.271 0.0622
Sinusoidal flux
2 6.568 6.034 0.081
3 7.577 7.057 0.069
i 8.105 7.547 0.069
8 8.723 8.124 0.069
10 8.807 8.204 0.068

4,3,3 FLUX FORM INFLUENCE
(i) ASYMMETRY

In 4.1.2 we showed that stability could be better for an asym-
metric flux than for a symmetric one. Exactly the same thing is
shown with the TRAXEN model and small disturbances, where the
convergence of the transients increased for a slight asymmetric

flat flux [15].

(ii) FORM FACTOR IN SYMMETRIC FLUX

Tt is a well-known fact that stability increases for a higher
form factor (see figure 5). However, for the two point model
the result is opposite. From the discussion in preceeding sec-
tions we can conclude, that two points give a very good infor-
mation of flat flux, but not so good for sine flux, where
three points seems to be far much better (see the tables 2 - u).
This can be intuitively understood by the fact that two points
cannot represent the curvature very good, but three points
seem to be rather good, because the midpoint can represent the

top of the sine curve.




The critical height as function of form factor ¥ has been cal-
culated with three different models, shown in table 5. The dif-

ferent flux shapes are shown in figure 6.

Table 5
Critical height H (m) for different form factors ¥ calculated
with different models. (¢ = 1, o = -0.0514)

Y TRAXEN (N=20) Modal expansion Linear model
(Clean reactor) (8 2.8) N=20

1.0 5.36 - 5.38

1.14 5.15 5.2 -

1.35 7.5 7.6 -

1.57 8,89 - 8.89

The modal expansion model is presented by NorinderELé]. We can
directly see, that the form factor cannot uniquely determine
the critical height. The "ditch" flux has a lower stability

than a flat flux. The two halves of the core are less coupled

together for a ditch flux, which may explain the lower stability.

l FLAT FLUX \ DITCH FLUX

Y=1.0 Y=1.14
FLAT
SINE FLUX / SINE FLUX
Y=1.35 Y=1.57

Figure 6. Different flux shapes used in the calculations.




5. CHARACTER OF THE SOLUTIONS OF THE NONLINEAR MODELS

The nonlinear trajectories for the two point model have been
studied by digital simulations in 5.1. As the two point model
is very simple we can quickly study a big number of trajecto-
ries. The most interesting ones can then be compared to more
complex models, and we have used the TRAXEN nonlinear model

in order to compare the results in 5.2.

The most interesting nonlinear terms are the control term and
the temperature coefficient. It is shown that periodic solutions
can appear in several cases. The nature of the limit cycle is
strongly dependent on the control term as well as the tempera-

ture coefficient.

With rod control both unstable and stable periodic solutions
may appear. With homogeneous control, however, there are only

stable periodic solutions.

All the different types of nonlinear behaviour of the two point
model have been verified by digital simulation of the TRAXEN
model in section 5.2. There is, however, some important quanti-
tative differences of the behaviour with rod control. The ampli-
tudes of the unstable periodic solutions are smaller, while the
amplitude of the stable ones are bigger than those of the TRAXEN

model. A physical interpretation of the result is given.

5.1 THE TWO POINT MODEL
5.1.1 QUALITATIVE DISCUSSION OF INFLUENCE OF NONLINEAR TERMS

A Fortran program XETRA (XEnon TRAnsient) has been written (appen-

dix 2) in order to solve the nonlinear system, equations (2:37 - 40)
of the two point symmetric model with o° = 1 (flat flux). There are
three important nonlinear terms involved in the equations. As proved
in section 2.7.3 the type of control has no influence on stability

for the linear symmetric flux, but it is an essential nonlinear factor
for stability in the large. The two cases rod control and homogeneous
control are treated separately in the following sections. The direc-
tion of the disturbance has a big influence on the character of the

trajectory in the rod control, which is verified by simulations.




The next important term is the temperature coefficient o, which
has influence on the eigenvalues of the linear system as well as
the nonlinear character of the trajectories. A negative a has a
stabilizing effect on the system. The quadratic term in the xenon
equations (2:37, 39) always gives a positive contribution to the
xenon increment derivative. This depends on the fact, that the in-
crements of xenon and neutron flux in a space point have approxi-
mately opposite sign, which can be realized by simple analysis,
see (2:48, 50) and (2:44, 46). Simulations have verified this re-
sult, [15]. Thus, the term - ¢ £¢ in (2:37, 39) is positive al-

most always.

5.1.2 PERTIODIC SOLUTIONS WITH ROD CONTROL

The dynamic system is described by (2:37 - 40) with (2:42 - 43)

inserted.

Depending on the eigenvalues of the linear approximation and on

the disturbances we get different types of solutions.

As mentioned in previous section, the parameter o determines the
character of the nonlinear solutions. The state variable %, does
not affect the nonlinear behaviour at all (2:40), why it is not
interesting to show it in the diagrams. ¥, converges to zero,

which means that iodine is varying in opposite direction in the

two space points.

Figure 1 shows the qualitative appearance of the phase plane

of the solutions for different temperature coefficients and

core heights (see also figure 2:3).

Directly from figure 1 we can conclude some important features

of the solutions

(i) o = -0.02

When increasing the core height the eigenvalues of the linear
approximation move towards right and the influence of the non-
linear terms will change. At the smallest core height (1:E) it
is impossible to get unstable solutions even for very big dis-
turbances. When the size grows it is possible to get unstable
solutions for reasonable disturbances; thus we get an unstable

limit cycle (1:D). Figure 2 shows the unstable limit cycle for
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H = 6.62 m, 0.04 m below the critical height. We see the projec-

tion in the x; - X4 plane. The period time is near 24 h.

A disturbance of

o o O O

.25

is enough to get an unstable solution.

X2

Figure 2.

1.0

05 2\

AN

[
AN

0 L—
05 0 0.5 10 Xy

Projection of the state space into the Xy =X, plane
of the nonlinear two point reactor model with rod
control. Origo is a stable focus. Solutions near
origo converges asymptoticly while trajectories
from large disturbances outside an unstable limit
cycle diverge towards a stable periodic solution

(not shown in the fig.)

Xy = £ = xenon deviation in space point 1
Xy = nq T iodine deviation in space point 1
$ = 1.0 o= -0.02 H = 6. .
62 m (Hert 6.66 m)

(Compare figure 1:D)




The amplitude of this 1imit cycle decreases as the core height
increases and it approaches zero at the critical height (1:0).
There is even a stable periodic solution, which appears already
below the critical height (1:D). The amplitude of this periodic
solution increases with the core height. Already below the cri-

tical height the stable limit cycle amplitude is unrealistically

big.

g
) i
’_\ 10.0 1
UNSTABLE ]
LC 0 1 T r—— 5|0 t‘?h )
rs
0
STABLE
\\\ti\\\\ 10% gz ///ﬂ\\\\\ ///—\\\\
\\\\\\\\\\;:::i:-._ oA ' ' | | ' .
-2 —— : \/ 50 t (hrs)
-1.0- _
2.1 “1‘:“2
1“2 0 2 4 6 ! 0 T T T T —_—
50 t (hrs)
-2

Figure 3A Projection of the state space into the 3y - X, plane
of the nonlinear two point reactor model with rod control.
Origo is a stable focus. Solutions near origo are asymptoticly
stable and are not shown in figure. At the outside of the
unstable limit cycle, the solutions are diverging towards

a stable limit cycle,which is strongly asymmetric.

£y = % = xenon deviation in space point 1

£y = Xg = ¥y T xenon deviation in space point 2
ny = Xy T iodine deviation in space point 1

9= 1.0 o = -0.02 H= 6.64m (Hcrit = 6.66 m)

(Compare figure 1:D)

Figure 3B The limit cycle as function of time.



Figure 3 shows the trajectories for a core H = 6.64 m, 0.02 m
below the critical height (compare fig. 1:D). The unstable limit

cycle is very small . The unstable trajectories diverge
toward a stable limit cycle.

The extreme values are

18.06
17.74
-3.00
0

and the period time 25.5 hrs. Thus the limit cycle is so big
that it has to be avoided.

We also observe the very strong asymmetry of the trajectories.
This depends on the rod configuration, and is discussed more

in section 5.2.1.

(ii) o = -0.05

No unstable limit cycle will occur in this case and it is inte-
resting to study what happens at the critical height when o

varies.

For a decreasing o, from -0.02 to -0.05, the critical height in-

creases and the influence of the nonlinear terms changes .For big
disturbances the solutions are unstable for o = -0.02 and stable

for o = -0.05 at the two different critical heights.

The stable limit cycle decreases to a zero amplitude for core
heights below the critical heights when o decreases from -0.02
to -0.05 (see fig. 1:C, H and 1:D,J). For core heights bigger
than the critical ones the stable limit cycle decreases to a

smaller value (compare fig. 1:A, F and 1:B, G).

When o is constant the amplitude of the limit cycle increases

for increasing core height.

The stable limit cycle at H = 6.97 m and o = -0.05 (compare fig.
1:G), 5 cm over the critical height, is much smaller than the
former limit cycle in fig. 3 (or fig. 1:B, C, D) and is shown

in figure 4:A - D. The period time is found to be 24.2 h.

The asymmetry of the periodic solution is not so big here as in
the former case (figure 3), because the temperature coefficient

damps the big amplitudes very strongly (compare section 5.2.1)
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Projection of the state space into three planes of the
nonlinear two point model with rod control. The singular
point is unstable and the trajectories from origo diverges

towards a stable limit cycle.

%y = £ = xenon deviation in space point 1

Xy M = iodine deviation in space point 1

Xy = &y t £, = sun of xenon deviations

¥, = ny *t oy = sum of iodine deviations

¢ = 1.0 o = -0.05 H=56.97m (Lcrit = 6.92 m)

(Compare figure 1:G)

The limit cycle as function of time.



5.1.3 PERIODIC SOLUTIONS WITH HOMOGENEOUS CONTROL

The description of the dynamic system is found in (2:37-40) with
2:46, 47) inserted. As in the rod control case, the equations have
been simulated on a digital computer. The flux equation (2:46) is

solved with the Newton - Raphson method.

As proved in 2.7.3 the control arrangement has no influence on
the linear stability, why the critical heights are unaltered,
compared with the rod control. Figure 5 shows the type of solu-

tions in the homogeneous control case.

There are some important differences to the control rod case.
First we have no unstable limit cycle and then the amplitude
of the stable limit cycle is much smaller and more regular.
All the time x3 = El + 62 is small, which means, that the
oscillation of xenon and iodine in point one has a phase just

the opposite of point two.

Figure 6 shows the stable limit cycle related to figure 5:B,
namely H = 6.68 m, 2 cm over critical height. Compared to the
rod case (fig. 3) the amplitude is very moderate and the curve

rather regular. Period time is just below 24 hrs.

The amplitude of the stable limit cycle grows rather fast when
core height increases. Figure 7 shows o = -0.05 and H = 6.94 m,
2 cm over the critical height. For H = 6.97 m the limit cycle

amplitude has grown another 67%, while the form of the curve is

quite the same. The period is just about 24 hrs.
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Figure 5 ° Symbolic phase planes of the nonlinear two point model of

a symmetric flux with homogeneous control at different

temperature cofficients o« and core heights H.
Mean flux level ¢ = 1

Re s = real part of biggest eigenvalue at the singular point.
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Figure 6 A-C. Projection of the state space into the three planes of the

nonlinear two point model with homogeneous control. The
singular point is unstable and the trajectories from

origo diverges towards a stable limit cycle.(Compare fig.3)

X, = & = xenon deviation in space point 1

Ry =Ny = iodine deviation in space point 1

Xy = &) Y &, = sum of xenon deviations

x, = ny *on, = sum of iodine deviations

¢ = 1.0 a = ~0.02 H=6.68mnm (hcr’i‘t = 6.66 m)

(Compare fig. 5:B)

Figure 6 D. The limit cycle as function of time.
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Figure 7. Projection of the state space into the %, - %, plane of the
nonlinear two point model with homogeneous control. The
singular point is unstable and a stable limit cycle appears.

(Compare fig. 4 and 6)

Xy = &y = deviation of xenon in point 1

Xy =My = deviation of iodine in point 1

b = = -0.05 = 6.9 ., = 6.

¢ = 1.0 a = -0.05 H=26.94m (Hcrlt 6.92 m)
(Compare fig. 5:F)

Even for positive values of o we get a stable periodic solution
for a core height over the critical height. This result should
be compared to [1], where nonoscillating unstable trajectories

were found for positive o. See also [15], chapter 5.

5.2 COMPARISONS BETWEEN THE TWO POINT MODEL AND THE NONLINEAR
TRANSIENT STUDIES WITH TRAXEN

5,2.1 ROD CONTROL

The character of nonlinear solutions of the two point model has
been completely verified by digital simulation of the TRAXEN
model of a flat flux. All the stable period solutions shown in
fig. 1 are verified, as well as the unstable limit cycle. Quan-
titatively there are some important differences which must be

stressed.



The first interesting quantity is the amplitude of the limit
cycles. In order to be able to compare the calculations, we
should use quite the same core parameters. As the critical
heights of the two models differ by 28% ( 4.2.1 ), we can
only compare the order of magnitude. The period of the limit
cycles, however, are quite the same. Generally the two point
model has smaller amplitudes of the unstable limit cycles and
bigger amplitudes of the stable limit cycles. The latter fact
is specially clear when o is more positive as the gtabilizing

effect of o is smaller.

The most important cause to the difference is the rod configura-
tion. In the two point case the "rod" is acting in one point,
which means that it is uniformly "distributed" along half the
core. As the oscillations are mainly described as first over-
tone oscillations, this configuration has a maximum damping or
amplifying effect on the oscillation amplitude, and fig. 3 and
4 show clearly that the transient is damped once and amplified

once during a cycle depending on the rod.

When the symmetric flux is disturbed, the absorbtion in the
core must be increased, which will cause the flux in the "rod
point" to decrease. Now, if the first disturbance has a direc-
tion which is the same as the absorbtion effect, the rod causes
a strong amplification. Thus it is easier to get unstable solu-

tions and the stable solutions get a bigger amplitude.

In the complex transient model the rod arrangement is different
as the rod is inserted and withdrawn during an oscillation. The
amplitude of this movement depends on the absorbtion along the
rod. The amplifying or damping effect gets smaller and even the
amplitudes of the stable solutions. It is also more difficult
to get unstable 1limit cycles with the TRAXEN model of the same
reasons. However, for ditch fluxes (fig.4:6) the un-
stable limit cycles are verified. A ditch flux which was stable
for small disturbances and scme 10 cm below the critical height
was disturbed by 100 pcm moved from upper to lower core. This

disturbance caused unstable oscillations, see [15].

In order to get a rod configuration which is more like the two
point model we must use a rod which is always inserted to half
the core and has a variable absorbtion. The rod configuration

problem is discussed in detail in [lé], chapter 4.2.



5.2.2 HOMOGENEOUS CONTROL

Even here all the standard cases shown in figure 5 are verified
by the TRAXEN model. The amplitudes of the periodic solutions
are now of the same order of magnitude in the two models, which

is quite natural, as no rod can influence on the result.

Fig. 8 gives one numerical example of a flat flux, H = 5.40 m,
o = -0.0514, which is 4 cm over the critical height. If 1% reac-
tivity is moved from one half of the core to the other we get
stable solutions, while small disturbances cause unstable solu-

tions,

0.24 /\ /\
0 T T T 1 T
o o/ 4 50 t (hrs)
00057 & ///”\\\ ///ﬂ\\\
0 T T T T T T /A
Y \/ o ] e
0.005 -

Figure 8. A local trajectory of xenon deviation at the core point
z/H = 0.95 calculated with the TRAXEN digital program of

a 20-point nonlinear reactor model with homogeneous contral.

Flux shape is symmetric flat (see fig. 4:6)

¢ = 1.0
-0,0514

5.40 m (hcrit = 5,36 m)

i

a
H

The disturbance consists of r pcm reactivity moved from
one core half to the other during 2 hours.
Large disturbance trajectories converge and small disturbance

trajectories diverge to a stable limit cycle.



ACKNOWLEDGEMENT

The author wishes to express his appreciation to professor

K.J. Astrdm for stimulating discussions and constructive criti-
cism. The subroutines from the program library are written by
K. Martensson. The author also wishes to acknowledge Mrs. G.
Christensen and Miss L. Jénsson who typed the manuscript and

Mrs. B. Tell who drew the figures.




REFERENCES

{11}

{21}

{3}

{4}

{5}

{6}

{7}

{8}

{93}

{10}

{11}

J.

J.

Chernick, G. Lellouche and W. Wollman: The Effect of
Temperature on Xenon Instability, Nucl.Sci.Eng. 10,
120 - 131 (1961)

Glasstone and M.C. Edlund: The Elements of Nuclear
Reactor Theory, Van Nostrand, Princeton,New Jersey,
1852

Gyftopoulos: Applications of Geometric Theory to
Nonlinear Reactor Dynamics, Nucl.Sci.Eng.,10, 254-
-268 (1961)

Haefner: Flux Oscillations Caused by Xenon Instability,
Nucl.Sci.Technol., 2(3), 291 (1956)

Henry and J.G. Germann: Oscillations in the Power
Distribution within a Reactor, Nucl.Sci.Eng., 2,
469 - 480 (1957)

Hooper, R.A. Rydin, and W.M. Stacey: Verification of
a Xenon Spatial Stability Criterion, Trans.Am.Nucl.
Soc., 11, 227 (1968)

Kaplan: The Property of Finality and the Analysis of
Problems in Reactor Space-Time Kinetics by Various

Modal Expansions, Nucl.Sci.Eng., 9, 357 (1961)

Kaplan, A.F. Henry, S.G. Margolis and J.J. Taylor:
Space-Time Reactor Dynamics, Third UN Int.Conf. on
the Peaceful Uses of Atomic En., Geneva, 1964,
A/Conf. 28/P271

Kaplan and J.B. Yasinsky: Natural Modes of the Xenon
Problem with Flow Feedback - An Example, Nucl.Sci.
Eng., 25, 430 - 438 (1966)

Kaplan: Natural Modes of the Xenon Problem with Tempera-
ture and Control Feedback, Bettis Atomic Power Lab.,

WAPD-TM-695, May, 1967

Leonard: Nuclear Behaviour of the Shippingport
Reactor through Three Seeds,Trans.Am.Nucl.Soc.,5(1),
136 (1962)




{12}

{13}

{14}

{15}

{16}

{17}

{18}

{19}

{20}

{21}

{22}

{23}

{24}

Marviken Power Station, design Status Report, AB Atom-

energi S-353, 1966, Sweden (Not for publication)

0. Norinder: Flux-shape Eigenfunction Tables for Two-

-Zone Slabs, AB Atomenergi, Sweden, Report RFR-231
(1963)

0'Boyle: Control of Xenon Instabilities in Large
PWR's Quarterly Progress Reports, WCAP-3680-1, 2,
3, 4 (1966,1967), Westinghouse El.Corp., Pittsburgh,

Penn.

Olsson: Digital Simulation of Axial Xenon Instability

in Power Reactors, Report 6911, Division of Automatic
Control, Lunds Inst.of Techn., Lund, 1969

Poncelet and A.M. Christie: The Effect of a Finite
Time-Step Length on Calculated Spatial Xenon Stabi-
lity Characteristics in Large PWR's, Trans.Am.Nucl.
Soc., 10, 571 (1967)

Randall and D. S. St.John: Xenon Spatial Oscillations,

Nucleonics, 16(3), 82 - 86 (1958)

Sha: Stability in the Large of Xenon Oscillations,
Trans.Am.Nucl.Soc. 10, 572 (1967)

Simpson and H.G. Rickover: Shippingport Atomic Power
Station (PWR), Nucleonics 16(9), 72 (1958)

Smets: The Effect of Burnable Fission Products in
Power Reactor Kinetics, Nucl.Sci.Eng., 11; 133-
- 141 (1961)

Stacey Jr: A Numerical Study of Xenon-Power Spatial
Oscillations (KAPL), Trans.Am.Nucl.Soc., 11, 226
(1968)

Stacey Jr: Optimal Control of Xenon-Power Spatial
Transients, Nucl.Sci.Eng., 33, 162 - 168 (1968)

Ward: The Problem of Flux Instability in Large

Power Reactors, Canadian Report CRRP-657 (1956)

Wiberg: Optimal Control of Nuclear Reactor Systems.

In "Advances in Control Systems", edited by C.T.

Leondes, vol.5, Academic Press, New York, 1967




APPENDIX 1

DEFINITION OF SYMBOLS AND THEIR NUMERICAL VALULS

Al:1

First def. . Numerical
Symbol in equation Explanation value
A 2:49,52,53, | System matrix
54, 6l

Bz(z,t) 2:1 Material buckling

(Bz)%(z) 2:10 Material buckling, equilibrium value

clz,t) 2:10 Absorbtion term

D(z,t) 2: Absolute diffussion

E(z,t) 2: Relative diffussion

G 2:73 Matrix NxN

8088, |2:22,23, |

1752 g iy

H 2:4 Extrapolated core height (m)

h 2:12 Distance between two node points;
b o H

N+1

H . Critical core height

crit

I(z,t) 2:2 Todine concentration, measured with
the xenon equilibrium concentration
at infinite flux as basis

1°(2) 2:7 Equilibrium value of iodine con-
centration

n(z,t) | 2:7 I(z,t) - 19z2)

K(z) 2:6 weight function in expression for
total power

12 Migration area L0 cm2

N 2:12 Number of node points

P(t) 2:6 Total power

a4, 93 2:73

R, Tij 2:75 Matrix of order NxN

s; 2:55 Eigenvalues of A

t 2:2 Time in hours

T 4:6 Period (hrs) of the oscillations

u(z,t) 2:10 Control term in buckling

vy 2:16 Eigenfunctions

X(z,t) 2:2 Xenon concentration, measured with
the xenon equilibrium concentration
at infinite flux as basis

x°(z) 2:7 Equilibrium value of xenon con-

centration




Definition of symbols

and their numerical values

Al:2
Contd.
First def. . Numerical
Symbol in equation Explanation value
cE(z,t) | 27 X(z,t) - X°(z)
X 2:31, 64 State vector
<z 2:6 Space coordinate
-o(z) 2:10 Temperature coefficient, expressed as
reactivity bounded in fuel temperature
increase above the moderator at mean
flux and infinite gitter -0.226%
Normalization to mean flux
5=5.65%1013, M2=u40 cm2, multiply with
1
0,0440 a=-0,0514
- B 2:10 Xenon influence on changes in buckling
(-3.2% on reactivity) at saturation 0.73
g 2:2 Fraction of xenon yield (relative to
xenon + iodine yield) 0.05
Y 2:3 Fraction of iodine yield (relative to
xenon + iodine yield) 0.95
o(z,t) 2:1 Neutron flux, normalized to 5.65%1013
neutr. /cm? sec.
[ 2:65, 87 | Mean flux
0°(z) 2:7 Equilibrium flux
@(z,t) | 2:7 o(z,t) - ¢°(z2)
. 2:2 Xenon disintegration constant 0.0756 h™t
Ay 2:2 Iodine disintegration constant 0.1058 h™t
c A cl 2:17 Rod insertion length, rod absorbtion
¥ 4.3.3 Form factor, ¢ /o
max.
Y 2:15 Eigenfunctions
& 2:51
. 0, 2:2 Microscopic xenon cross_section 2,29*10“18cm2
normalized to $=5,65%10%3 and
time base in hours 0.0469
‘Ie 2: Macroscopic fission cross area
-Za 2: Macroscopic absorbtion cross area
U 2:
z 4,1.2 Measure of asymmetry 0 <g<?
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APPENDIX 2.

PROGRAM LISTINGS

FPROGRAM ASSAE

; Cap CHiL

5
C

1 Ty

[

ke oRe

OO

L)

-

BERS

M

)
3

L

T

ey
C2 00 1

@]

J

o~ e~
A

<

C SUBRROUTTINF




o

~
SR

-
L

O

&

et ad

3!
37

NS et

& B
P

-

f

{

A.Aﬂ\,&ﬁ‘&ﬂna~m
L Lad I
g3 X3 -~
A
-
ER
!

Lt

i B

-7
Lo
e

1

B
[N
1§

(R

o

LRE

o (=it

GOTO 91l
PRINT 100
i
i

GO

A

ITeERATTION

fHAEN

MTINUE

0 9t

fHE

A2

2




A2:3

ARS DD
71 = 7

[N
ﬂ.ﬁ'
I

A N
m.j'
L




n

A2




5

A2

5
w

£~

— 0 2 LD e e e

~

N




A2:6




7

.
.

A2

e




A2:8

i




9

A2

~ £y




10

A2




11

"A2

S

o

-

iis



12

A2

- [

o

"4
.
FEa—

o] i
; .
H,} e
= o

: - ;
Y - -

THE

o A

O 30 e L0 0 A o ISR IS

26

7

Do LU

P ~
L2 L0 N i o X

(\
o~



3

A2:13




