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ALGORITHMS FOR NONLINBAR MINIMIZATION WITH EQUALITY AND
INEQUALITY CONSTRAINTS BASED ON LAGRANGE MULTIPLIERS.

7. Glad

Abs tract.

Constrained minimization methods based on different ways
of updating the bLagrange multipliers are studied. It is
shown that methods can be designed to converge rapidly
{linearly or superlinearly) te the minimum. The methods
are tested on a number of numerical problems.
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1.

TRODUCTION

report deals with the nonlinear optimizafion problem which

s formulated as follows

a_ the minimum of £({x)
the constraints
=0 i=1l,..,p

£ 0 j=p+l,.. M
x is an n-vector,

“vector (gl{x),..,g (x))T will be denoted g(x).

 a previous report.{(Glad, (1973}), methods based.on Lagrange
tipliers for solving minimization problems under equality
nstralnts, were studied. Among others a method based on the
ction F(x,u) = £(x} + u g{x) + ¢ gi{x) g(x)/2 was conside-
d. The method consisted of a sequence of unconstrained mi-
f_izatlons of the function F{x,u) followed by the updating

j'u, using the formula oD (k) Guu—lgu’ where

a” T 9x F lgi and G = g. Since the unconstrained mini-
zation Was performed with a Quasi~Néwton method, an approxi-
matlon of Fx was avallable and the second derivatives of f and
were not calculated. Recently Fletcher ({1973) has published
method using this approach also for inequality constraints.
ne possible drawback of this type of method is that a full

© minimization of F(x,u) is done before u is updated, In :

U Fletcher {1973) it is shown that usually most of the computa-
Titional effort is spent on this first minimization and there-
fifore improved ways of updating u do not reduce the computation
"time  as much as one would expect, Several algorithms where
“u {s updated more often than at the end of a minimization exist.
~ Fletcher has published algorithms, see Fletcher (1970),
Fletcher and Liil (1870), where u is taken as a function of X,




:et al, have several different schemes, see e.g. Miele
(1971), for updating u at every iteration or after a

o of iterations. Tripati and Narendra (1972) have used

,dating formuia u(k+l)= u(k)+ acg at each iteration and

4 that the damping parameter o, which is less than 1,is

ailY needed to prevent divergence.

some theoretical questions concerning the pro-
: methods are investigated. In Section 2 local
'ﬁergence is studied, while global convergence prob lems

- dealt with in section 3. Finally some numerical experi-
sts with different algorithms are presented in sections 4

thig report

i 5.




SCUSSION OF LOCAL CONVERGENCE PROPERTIES:
roperties of the optimization problem.

csome basic facts concerning the optimization problem -

mize f(x)

.y the constraints

g ) =0 i=1,...p
i(x) £ 0 i=pd+l, .. m

il be given. It will be assumed that the problem has a so-
jon which is called x. Let A e(ik,..,ij) be the set of
ﬁicgs such that gi(x) =0, 1 €(p+tl,..,m} , (the active in-
pality consEraints y and 1 ={ir,..,iq) the set of indices
_h that gi(x}<:0 , 1 E(p+l,..m), {the set of inactive con-
raints} . It will also be . assumed that the standard second
aer sufficiency conditions for X to be a local minimum are

tisfied:

3 The Ffunctions f and g are twice continuously differentiable

" some open set containing X.

i) The gradient vectors Vgi(ﬁ) , 1€ {1,..,plUA , belonging
0 the equality constraints and active inequality constraints,
e linearly independent. It then follows that there exists a
ector of Lagrange multipliers u = (ﬁl,..,ﬁm)T such that the
ollowing conditions hold

(x) + ETgx(E) =0

s 0 aigi(E) =0 i=p+l, ... m




i) The second derivative with respect to x of the Lagrangian,

f + uTg ; satisfiies

all vectors z#0 such that vg’i(i)z =0 4€ {L,...spIUA

) ﬁi >0 for all i € A (strict complementarity)
é'Lagrangian does not usually have a minimum with respect to
t (x,u), only a stationary point. Tharefore the following
nciion is used, Fletcher (1973), Bertsekas (1973}).
P
L

xoa) = £(x) { (c;0, (0)+u) *uf 1 /2¢, +

i=1

4 B3

{ (o9, )2 —uly s20,

ptl
: =

ore (Cigi+ui}+ - cigi+ui if cigi+ui 0
‘- 0 if cigi+ui< 0

It is shown in the references mentioned. above that, if the para-
leters ¢, are chosen large enocugh, and the conditions {i) - (iv)
e gatisfied, then F{x,ﬁ) has a local minimum with respect to

at x,
2.2 Local convergence when u is updated at each iteration.

If the algorithm to be discussed succeeds in generating segquen-—
ces ‘%) anda u , that converge to X and u, then there is

some kg such that {cigi(x(k)) +u£k))>-0 for kvka if ieA , and
(cigi(x(kh+uik))~(0 for ieg7l and k;ko'
is held constant for kyko). It is then possible to include the

active inequality constraints among the eguality constraints and

{it is assumed that cy

disregard the inactive inequality constraints, as far as local
‘convergence is concerned. In what follows it will therefore be
 assumed that the constraint is g(x) = 0. o simplify notation




e constants ci.will be assumed to have the same value.

(x,u1) can be written
) = £ + utglx) + Su60 Tgix)

gorithm where minimization of F(x,u) anélupdating of u are

alternatingly can be described by

L) (R

(erld  00) (), (5 000y =1gT (), kbl

X !
ZB(k} is an approximation of the second derivative F__. Ths
?length a(k) is determined by some procedure for approximate
ﬁization of F{x(k)~ a%B{k)}ﬁle u(k+1]) with fespect to a.
e many linear minimization algorithms first try a=1l, it is
nterest to study the special case a=l. It will be assumed
}B(k} is updated according to the Davidon-Fletcher-Powell
ula and that h is continuously differentiable and satisfiés

natural condition h(X) = u. The algorithm is then

r

Gy o (KD

h{x
L) (K (B(k))—lF}T{{X(k) 'u(k+1) )
(30926 (0
{s(k)}T(y(k)—B(k)s(k))y{k)(y(k?)T
((s (k) )Ty (k} }2
where y(k)z Fz(k(k+l),u(k+l))—F§(x(k),u(k+1))

s K, LkHl) (k)

To study this algorithm the following lemma is used.




(Dennis and Moré {1974)) o

;' a nonsingular matrix such that ||My = M-ls||<b!|M-ls|i

: b, 0 sbs 1/3, and some vectors ¥ and s with sf0. Then
and B can be defined by '

. (y-BS)yT + Y(Y"BS)T - sT(yﬂBs)ny
- i T 2
y's (y's)

is symmetric. ILet ][JI\M be the matrix norm defined by
= ||momi|, where l[PlIF is the Frobenius norm

Elpijlz . Then there are positive constants e, o,,

(depending only on M and n) such that for any symmetric

< | 1- 002

Hy-as 1/ s 1]

0 <% g1 and
::M{B-A)s]]/(1]B«AKIM]1M—18|!) for B%A with 6 = 0 other-

R I R N

‘the following lemma can be proved in a straichtforward man*'

mma 2.
ume that Fxx(§,ﬁ) -0 (this is the case if ¢ is large enough }

d that there exist constants K and K, such that

o (K20 - FXX(E,E}lls Kll]x-ili+ Kzllu-ﬁli for (x,u) in

(k) (k}

me neighbourhood of (x,u). Then if X and 1"’ converge

o % and u there exists a kd such that the matrices g (k) gene—
ated by the formula AZ satisfy the following inequality for
f~k0. {Actually the lemma only requires that B(k) is genera-

d hy AZ; x(k} and u(k) could be any sequences converging to




¢3 and w, are positive constants, 0<as<l and

T TR T L T P T ]

tk) = = (k) .
LLI\E(B - FX:{(X’U) = l‘ Bik)%: FXX(Xfu‘}
{k) - = -1 {k
e -r G [, 1 s
(k)
| B Fxx(x,u)
SEE
Taking M=FXX(§,E)_lx2 one gets
;__,2 f Klmax(Hx‘k}—%H,Hx““"“l)- x| )+

;ztlu‘k+l)— ull? ||Hfls{kil. Then there exists a koisuch that

)L 00y 1y nilg 00y >k,

u) is large enopgh, aﬁd the starting point near enough to

optimum, the convergence will be at least linear.

ake an v, 0 <r< 1. Suppose that F_ satisfies the conditions
f Lemma 2. 7Then there exist constants c,* o, > 0 and 52>0
uch that, if c is chosen greater than ¢, and 1f

(0)_

xO0 %)) <e and ||B P (x| f<e,

en'the seguence x(k) génerated by algorithm A2 satisfies

{x(k'i-l}_ ;{Hs r| lx(k}_ ;‘:H




h is continuously differentiable there exist'constants

d €} such that [Ih{x)-h(Eﬂ‘s K||x-%|| for ||x-x|]s €3-

#({u) denote the value of x which for the given value of

tis fies Fx{m(u),u) = 0. If only values of u and x suffi-

Qfly close to the solution are gtudied, this value is well

ined, (Glad (1973)}), and y{u) is a continuously differen-
Lle function. It then follows that

X(k)’u(k+1)) - Fi(&(u(k+l)},u(k+l)) +

p_ (o ce) uH) - p®y) ae =

Fxx(e(t},u(k+l))(x(k)— %) dt -

p (o(t),uE) (etl)y _ 3y at

<x ){g(u

re 8(t) = ¢puETH) 4 e B gty

w study the derivative of #{u).

It

W = -r 2 e gy @) =

(L, Gh(w) )+ ogh (b)) g, () )7 gy (b fa)

¢ is large enough L * cgzgx ig positive definite., Buppose

hat c=cy suffices and put c=cl+c2. Then

o T T B Ui
= Lxxt €19x%x T “2%Ix T ATyl

L : T =17 _
( A+ c,8,9,) "9x =




-1 T -1 7 -1 17T _
) gxA Ie 7

all elements of ¥, can pe made arbiltrarily small by cheoosing
e enough it is bossible to find a ¢, such that,if czcg,

for arbitfary Kl>0

k+l))_ §{l=ll¢(u(k+ll}— ¢(631l < -%Eﬁl“u(k+l)— El‘ =
9 on (1] ¢ Bl M- 1L af %)= x|l e

1

following inequality is then true

: 1
KDL el lz - 8Ty Fxx(e{t),u‘k+l’)dtllqlx(k’- %1
0 -

1
(k) ,~1 (k+1) IR
) g P {8,t)u yat| | 2Kltlx x|

in the conditions imposed on Fxx it then follows that there

“cons tants aé and ei' guch that

1
(k),~-1 (k+1)
{B ) é FXX(B(t),u

yaells 5 if

L |

(k) _ ;1!661 )

E(k)— FXX(%,G}llé €y and |{x

érefore, if the algorithm is started with ||x(0)*§]| < £q=
ﬁ(ei,ei') and ilB{0>— Fxx(i,ﬁ)[|sez <ey, then the iﬁequality
e Il I r]lx{k)— %|| (1) will remain true as long as
U p (k0] <ey -

ince ][u(k+l)- ullg Kl|x(k)~ % || the inequality of Lemma 2

zan be written




10.

k1) Fxx(i,"ﬁ)HM < {1+ aéa(m)llafk)— FXX(E,E)HM+
s (2)

e 8- 11x™)- ]| . combining inequalities (1) and (2)
cén be seen that , if HB(O)— Fxx(;c,ﬁ) I.lMand HX(O)" ;(H
chosen small enocugh, then HB(k)- FXX{Q,E) | ywrill

er exceed aé and (1) will therefore be true for all k, which

ves the theorem,

is now possible to use the following theorem analogous to

esult by Dennis and Moxé (1974}.

satisfy the inequality

74 a0y |-

F %)y

(L Fo (0 | ] (YL - ate X))

(k)
4°
re I 6{k)< o . ‘Then
.(k)_ Fxx(;{’a)) é\.(k) Il -0 k » e

(0 Fxx&"a) I sufficiently small, then

500 e G o




rem 1 and the corollary to Theorem 2 show that the idea of

ging u at every jteration seems to be reasonable, at least

“the minimum. In the paper by Dennis and Moré the fact that

: A
{k)_ Fxx) s(k>||+70 iz used to prove superlinear conver-

ce for Quasi-Newton methods. It would be nice to prove su-

inear convergence of algorithm A2 in a similar way. 7o do

t it 1s necessary to specify moxre precisely vwhat function h

A natural choice is h{x) = —(gng}“lgxfz , which is used
sveral authors, Miele et al.(1971), Fletcher (1970),

iénsson (1972). ‘This updating hovever gives only linear

ergence as shown by the example in the appendix. A diffe--
cholce 1is

' k), _ ky,-1 T,-1, _ (k)},=1.T | _

h(x,B" ') = (g, (B7") "g.) g g, B ) TE, )~ <9

ch has been suggested by Pierson and O'Doherty (1974). This

of updating u can also be derived in the following way. The

timality conditions give the following equations

ving these equations by a Newton-Bephson technique ines

T

placing Fxx by B(k) and eliminating $§x gives the formula for

T+ is also interesting to note that this way
in Glad

shown above.

updating u is a natural extension of the one used
;973). There u was updated after a complete minimization,
ing szﬁ, and for FX=0 the two formulas agree.

{k}

nce the function h , in this case, depends on B as well

It

%, the result of Theorem 1l can not be used directly.




12.

orever possible to modify the theorem for this case. To do

ote that h(i,B(k)} = u for any positive definite matrix
This follows since
k), e (k) =1 T =\, =1, - k), ~1.T .,z
} = (gx(x)(B ) gx(x)) ( gx(x)(B ) fx(x))
6 50 &%)l G e, Go )T G B = 1
re the fact that gi{x) = 0 and fx{E) = - GTgx(ﬁ) has been used.
the differentisbility conditions of.fx and Iy it now follows
k - - -
t, if [[B( ). Fxx(x’u)llm 555 and ||z - %] 5gi , there

$ts a constant K such that

{x,B(k)) - h(E,B(k)]||s K[]x - %[]. The proof can then be

& according to Theorem 1. Consequen&ly the following theorem

- x%) ana w'¥) pe generated by algorithm A2 with h = n(x,B %)=

(k},-1 =1, _ (k) =1.T, _
g, (B ") g) (g g (B77) TE) cg. Suppose that
a) == (0)_ -
- Fxx(x,u)|l $€q, BE x[|sez, where e, and e, are
ufficiently small. Then there exists an r, O<r<}, such that

{kt1)_ %]] srl]x(k)- %l]. The matrices B(k) satisfy

®1p_ x,ans s 0, 1w

This result can be used to establish superlinear convergence of

o ntk

e algorithm A2 with h = h{x,B }).

Theorem 4.

Tf algorithm A2 is uwsed with h = h(x,B)) defined above and 1f

11k F (%)) )8 (k)il + 0, then x®) (k)

conpverge su-,

and u

perlinearly to % and u i.e.




13.

x(k+l)__ i (k)

s |

——
o
l.
(g |

L N -

Ly

: (k+1) +0 as k ow
. -

b
B e ree
—
'
—

"i{s shown in Dennis and Mexé (1974) that superlinear conver-
nce of the iteration x{k+l)= x(k)m{B(k}}—lf(x(k}) for sol-
ing the equation f{x)=0 is equivalent to the condition

PR T L S T A Pt e NI

£ £'(%) is nonsingular and f' continuous at x (f' is the deri-
ative of £ and x is the soliition). Applying this result to

_ the iteration

(k) Y (k+1)_ (k) iml
B Iy X X o Fx;
(k+1) (kﬂ =,
g §] i - u | g
hows that superlinear convergence is'obtainded if
(k} T - i (k+1)_ _ (k)
LB 9, xx{x,u) gx(x) X pd

=0

LR (k)
ot 0

A sufficient condition for this is cbviously that

| s k) FXX{E,E))Q(k)Il 0.
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DISCUSSION OF GLOBAL CONVERGENCE :

r an algorithm which gives
t will be given. To
d or not

A this section a general model fo
nvergence for an arbitrary starting poin
t some criterion for when an updating of u is goo

x,0) = 4L, ,..,an, gl,..gp,|min(—gp+1,up+l}I..,Imin(-gm,umif

1
introduced. Since t{x,u)
rst order conditions for a Kuhn-Tucker point,
The following algorithm is used.

= 0 only when.(x,u) satisfies the
£ can be used

check convergence.

1gorithm A3 _
j Choogse a starting pgint x(O),u(O),B(G),c(D)1 put 1=0, 4=0,
)'u(O))I]

=0; put ay ={|t(x

y If ag < § then stop
5) Compute a search directlon s 1) from glg () o -Fi

} Perform a line search along x = x(i) + as(l) such that

the value of F(x,u(i)) is reduced.
&‘i+1)

Thig gives a new value X=i

} Update the matrix B(i) accoxrding to some Quasi-Newton for-

mula. ,

) Use some formula to compute a new value
rs and a vegtor ; ( ;‘might be equal to X
) If a = ||t(§,a)l1 < Yag where 0<y<l, then put x
k+1) ’ i=i+l, a,= a, k=k+1 and go to 1), else go to A
(k+l)? ﬁ(i), u(k+1)=uik)and

4 for the multipli-
(1+1)

k+1) o 3

= U
) 1f (| F )] ¢ ;j) , then put x

ut k=k+1, i=i+1l, else put i=i+l and go to 1)

) Put.c{3+;)=Kc(3? where 1K31 . put“j=j;l and‘gé to 1)
The convergence properties of this model algorithm are given
by the following theorem, which is analogous to a theorem in
olak (1971) dealing with penalty function methods .




15.

uppose that in algorithm A3 e(j)+0 and that for each x the
cctors Vgi{x), i é{l,..,p}LJ{i=Ai>p,gi(x);'0}, are linearly
dependent. Also assume that for fixed u and fixed ¢ the al~
ggrithm will converge to a point where FX=0. {(This can be pro-
=d for several versions of the usual Quasi-Newton methods ,
rovided the line search gatisfies certain conditions, see
olak (1971)}. Then every accumulation point of the seqﬁence
(k) is a Kuhn-Tucker point. .

roof.

ere are two cases. Either u is updated infinitely hmany ti-
s or else there exists & kxkl so that u(k) remains fixed
or k>kl. In the first case, since §|tll decreases with a
actor ¥ each time, 1t ies clear that if a subsequence con-
erges to {x',u') say, then t(xju') = 0, which means that
(x',u') is a Kuhn-Tucker point. For the second case, notice
that, silnce the uncons trained minimization method converges
o a point where the derivative is zero, the condition
fllFxll £ <3 4111 be satisfied infinitely many times. Now

(ki),u{ki)] converging to (x',u'). To

‘study a subsequence (x
make the notation easier, the gibsequence will be called

just (x(k),u(k)) for the remainder of the proof.- It is then

:.true that
k), ., 2, k) (k) (k) {k)
e, 0 fiil (e g (x 1+?j I
: m
(k) (k) (k) (k) (k)
+j=§+l(c gj(x )+uj )+gjxix 11 < e
for sequences c(k) e, e{k) + 0.

1f gj(x')<0, thehAcik)gj{x{k))+uj(k)< 0 for k greater than
s one ko. Therefore

(k) P

{k) (k) k), k), (k)
e (x7) + ¢ D (gy(x) b uy /) gy 0

o .
(k) (k) , (k) (k) {k)
+ 5 (gi(x™7) +ouy /e, )+gjx(x,> BRI

- i )




16,

(k1y,

= {3+ J>p, gjfx‘)<0} . Since the vectors gjx(x
are linearly independent for k greater than some kz, it
g that gj(x(k)) + 0, 3¢4I' and comsequently x' satis-
j{x') =0, j=1,..,p and gj(x‘) £ 0 j=p+l,..,m. From
near independence it alsc follows that
ey 4 uj(k}) > By 3¢€1' , where B

{x satisfy

3 3

)y + X ﬁjgjx(x'} = 0. Therefore x' is a Kuhn-Tucker point.

ox#s that 1f x(k)

n x + D. It is adifficult to give general conditions

ﬁ guarantee that x(k) remains in some compact gset. In
ictice however it can usuélly be achieved, i1if necessary
adding extra inequality constraints or modifying the fufic-
n f.

remains in some compact set for all k,
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PRESENTATION OF THE DIFFERENT ALGORITHMS

few algorithms based on the ideas of the previous sections
have been tested. They all require that the derivatives of the
unctions f(x} and gi(x) are calculated, Both the methods of
pdating u discussed in section 2 are used:

-1 £ T

lgorithm MINGRL
) Choose a starting point x{O} (¢) B(G), c(o) and put i=0,
ompute a, = |}r{x(0} (O} (0))[[ . Put N=1,

} If a, is sufficiently small then stop, else determine a
earch direction s 1) from

&m)s{l) - — Fx(x{l),u(l)}T

} Perform a line search alonyg x = x(i) + us{i); determine
(i)+ as{i),u(l)); call

n o which approximately minimizes F(x
(i+1) (1) (1)
S ' C )}“

the naw point x 1) ang put ag = mln{ao,llr(x

using a Quasi-Newton formula.

(1+1) x(i)liss go to 9)

5) If i1 is a multlple of N, then update u using {II} and call
he new value u. Compute a new value of x from '

- T (i+¢)) P (x (1+1),§).
6} Check if f|r(x a, < ))]I ga.3 1f true then put WIES 20 %,
(1+l) 0

q, Nel, i=i+1, ~agm flz]] and go to 1)

x{x,u,c) = (F {x, u)rgl(x):--rg {X),[min( +1, {X)}l,...

p+l




18

plse go to 7) {if an interpolation has already been done ¢go to

) Calculate x,u from the interpolation formula ;:: (1~ a}x(l+l)

b oax, ur= (l—a}u(l} + au, vhere o = 0/Hr[| ; go to 6)

3) Put N = 2N; put u(i+l)= u(i), put i=i+1 and go to 1)

y If the part of ¢ containing the constraints is not suffi-

clently small then put ¢, = Ko, i=1,..,m and go to 1)

en the updating of the multipliers iz not successful it is
one more seldom because of use of the variable N.

lgorithm MINGR2Z
This algorithm is the same as MV ARl except that the variable

Instead u is updated each time the gradient

iis not used.
£ F has decreased enoudgh.

)-4) Same as MINGR1

) If ]]FK[I ¢ yb, then update u and x using (II) and put
0=ilFXl]else go to 1)

}-9) Same as MINGRI

The following algorithms use the other method uf updating u.

Algorithm MINGR4 _
Q} Choose a starting point x(O), B(O), C(G) and put i=0.
(0) ,(0)y ™).

Calculate u from (I) and compute a =|[t(x

1)-4) Same as MINGRL

$} Compute a vector u from (I). Put x = x(l+1)

: . A A (i+l)____
6) Check if |{t(x,u)|] ¢ 8ag: 1if true then put x = %,
L(i+l)m u , i=i+l and gorto 1) slse put u{l+l) (i) , put

i=1+1 and go to. 1)

7) Same as 8) in MINGRI1.

Algorlthm MINGRS
Same as MINGRé except that every second time u is updated under

~

5) formula (II) is chosen for u. % is:then computed as under

} of MINGRL.

}t(x,u) ig defined as in section 3.
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Algorithm MINGR7Y,

0) Choose a starting point x<0),u(0), B(O3 and c(o) and put i=0.
compute a =}t (x{%),a'0) ] |
“1)-4) Same as MINGR1

} Update x and u uvsing (II) and the formula for x from 5) of
1IINGR1. Call the new values x and u,
ycheck 1if |[t]] s Ba, and F(x,1) < rxEF) Gy if true

(1+1)_ ()

ut a0=l|t]f and go to 7) else put u and go-to 1)

) Update B(l) u51ng a Quasi~Newton formula operating on
x(l+l) and F (x u} - F (x{l+l),u)
} Put x(i+1)a ; p u(l+l)= u , put i=i+1 and go to 5)

} Same as MINGRL

or the inequality constraints, the formulas (I) and (II) are
used in the following way. The vector g is replaced by 3 de-
iHEd by a = (gl(X)ro-;gp(X) pgil(}{),..,qiq{)i)), Where ilypa

.,iq arerthe indices for which (cigi{x} + ui) > 0. The multi-
liers uy corresponding to the remaining indices‘are zeroed,

f the updating formula gives a negative value for a multiplier
orresponding to an ineguality constraint, then that multipli-
¥ is zerced. 'The linear minimization and the updating of the
-matrices in the algorithms above are based on the Quasi-New-
on algorithm by Fletcher (1972). The parameters ¢ are de ter—
mined in the following way.

L A max(l, (JE)-£ly) | + [£(x)-£(2) ] + [£(=z)-£)[) )

Va0 + g2 + g% ()

where x,y and z are three different points. This means that all
the algorithms abowve have the same values of Cy at the beginning.
The normal values of-u(0) and B(O) are O and the identity mat-

ix respectively.
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. COMPARISON OF THE ALGORITHMS ON TEST PROBLEMS

‘To test the algorithms a number of test problems from the
1itterature are used., For comparison two other comnstrained
minimization algorithms are also used, the one of Fletcher
{1973}, called VFOlA in the Haxwell library, and the GRG
.algorithm of Abadie (1970). The equality congtrained prob-
‘lems are the following, which were also used in Glad (1973}).

?POW, see Powell (1969)

?minimize F{x) = Xy XU aX 4 ¥e

‘under the constraints

igl(X) = x2 4+ %2 + %2 + %2+ %2 - 10

It
o

1 2 3 4 5
{x) = %oy ™ 5x4x5 = ()

gq(x) = %) + %) + 1 =0

tarting point x = {(~2,2,2,-1,-1)
olution x = {-1.7171,1.5957,1.8272,~-0.7636,~0.7636)

AV, see Himmelblau {(1972)

o _ e W2 _nu2 _ 2 _ '
minimize £{x} = 1000 X7 2x2 X3 = XyX, Xq1¥4

nder the constraints

2 2 2 _

8xl + 14x2 4+ ?x§ - 56 =0

tarting point b4 (10,10,10)
olution x = {3.512,0.217,3.552)

L
ol
I

i

XP, see Himmelblau (1972)
. 10 16
finimize f£(x) = : {exp(x,) (c,+ x, - 1In L exp{x;) )}
: - i i i . 3
i=1 | j=1
inder the constraints '
gl{x) = exp{xl} + ZexP(xz) + ZExp(x3) + exp(xG) + exp{xlﬁ)

2 =0
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®
f

exp{x4} + 2exp(x5) + exp(xﬁ) + exp(x7) - 1=20

2
gé(x) = exp{xy) + exp(x,) + explxg) + 2exp(xg) + exp (%)
1=20
here c;= -6,089 Cy= -17.164 Cy= -34,054 C4= -5.814
Cp™ -24.721 Cp= -14.986 Cop= -24.100 Cg= -10.708
Cy= -26.662 Cy1p~ -22.179
s tarting point xiu=,—2.3 i=1,..,10

olution % = {-3.2,~1.9,-0.24,~=,~0.72,~=,~3.6,~4.0,-3.3,
2.3) '

COLl, see Fletcher and Lill‘(l9?01 and Colville (1968)

5 5 5 5 3
finimize £{(x} = X e,®x., + I I LXK, XL o+ B odu%l
b P i B R S R
under the constraints
glix} = ~3.5xl + 2x3 + 0,25 & 0
gz{x) = = 9x2 - 2x3 tox, - 2.8x5 + 4 =90
g3(x} = le - 4x3 + 1 =20
g4lx) = X, * 2x, * 3x3 + 4x4 + 535 -5 =20
where the constants are given by
3 -15 -27 ~36 -18 -12
C45 30 =20 ~-10 32 -10
: -20 39 -€ - 31 32
-10 -6 10 -6 - 10
32 -31 ~6 39 -20
- 10 32 -10 -20 30
4 8 10 6 2

starting point x = (0,0,0,0,1}
solution x = (0.3000,0.3335,0,4000,0.4283,0.2240)
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TRIG

'] » — — 2
Minimize £(x) = (biEi fi(x))

it o 3

i=1

under the constraints

gi[x} ] Ei - fi(x) = 0 i=1,,.,m
where bi = 1 i=m+l,..,n

b, $ 1 i=1,,,.n

: n

fi{x) = jil { AijSLn(xj) + Bijcos(xj} )
E, = fi(§} where x is the point chosen to be the minimum
jgij, Bij' Ei’ bi and x are given in the appendix.

The inequality constrained problems are

ROS, see Rosen and Suzuki (1965)
Minimize F£(x) = x° + x° + 52 + %2 = 5x. - Bx. = 21x, + 7 X,
1T Ky Ay Xy 17 ¥y T 2Ry 4

under the constralints

_ .2 2 2 2 _ _ _
gl{x) = Xy t X, Xyt X, hxy Xy t Xg Xy ﬁ £ 0
gzix) = il + 2x§ + xg + 2x§ Xy T Xy 10 < 0
_ 2 2 2 _ ~ _
93(x) = le + % + X3 + 2x1 X, X4 5% 0
starting point x = {0,0,0,0) (ROSa)
x = (3,3,3,3) {ROSDL)

solution x = {0,1,2,-1)
PROG, see Colville (1968)

Minimize £{(x).= 5.35?8547x§ + 0.835689lxlx5+ 3?.293239x1
40752.141 ’

H

under the constraints
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0 s 85,334407 + 0,0056858x2x + 0.0006262x1x

5 4

- 0.0022053x3x g 92

5
g0 g B0.51249 + 0.007131?x2x5 + 0.0029955xlx2 +
+ 0.0021813x§ < 110
20 < 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 +
S 0.0019085};3:(4 g 25
78 < Xy € 102 , 33 %« X, € 45 , 27 x Xq € 45 ,
27 < Xy < 45 , 27 = X € 45

starting point x = (78,33,27,27,27)
solotion X = (78,33,29.99525562,45,36,7758138%)

The results are given in the following table. The entries

are the number of times that (f,fx,g,gx} has been evaluated.
For the GRG-method a separate table is presented because

in this case £, fx, g and g, are not evaluated the same number
of times. The first column gives the absolute accuracy in x

which was required.

acc MINGR1 MINGR2 MINGR4 MINGRS MINGR? VFO1A

pow  10°% 22 35 37 34 18 39
pav 1073 32 . 111 39 >150 35 135
Exp 10T »150  »>150 95 5150  »150 - 140
corl 107% 19 19 22 22 15 26
TRIG '

=2 107° 12 10 18 11 11 14
n=4 107> 111 >150 32 32 21 »150

=6 1077 52 53 36 23 25 . 63
n=8 102 »>150  >150 51 64 148 >150
ROSa 10 ° 22 41 23 84 26 -
ROSb 107° 28 30 »150  >150 20 -
PROG 1073 88 86 33 83 67 94

For TRIG n is the number of variables. The number of con-
straints was n/2. The sign "~" means that the algorithm
was not tested on this problem. The computation was stopped
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after 150 function evaluations and 1f the desired accuracy was
not reached then,the entry is marked ">150". For the provlem
pAV the algorithms found a local minimum different from the
one given above: X = {(0.332,4.678,-1.735}.

Besults for GRG. Number of evaluations to reach the accurécies

given above.

£ fx g g,
POW 82 33 101 15
PAV 114 26 192 11
EXP 192 73 631 27
coLl - 26 17 22 7
TRIG
=7 24 ‘ 8 29 5
n=4 121 29 230 14
= 201 59 564 33
n=8 235 75 902 29
PROG 67 30 131 12

It ie clear that the comparison of GRG with the other algo-
rithms depends heavily on the amount of work required to cal-
culate the different functions and their gradients. The algo-
rithms in the first table can be compared directly but since
no algorithm is better than the others on all the problems
'there is no decisive result. It is interesting to note how-
ever that MINGR4 and MINGR7, the two algorithms closest to
‘the medel aldgorithms of sections 2 and 3, get quite good £fi-

_gures.
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6. CONCLUSIONS

Section 3 shows that it is possible to constrﬁct algorithns,
where the multipliers are updated at each iteration, which
have at least as good global convergence properties as exte-
riour point penalty function methods. In section 2 it can bhe
geen that the local convargence is good if u is updated in a
sultable way. According to the results shown there, method
II is preferable to method I {using the notation of section
4), since method II is superlinearly convergent while I only

converges linearly. The numerical experiments of section 4
show however that it is not obvious which algorithm is best
in practice. Perhaps a good method should switch between the
methods according to. a suitable criterion. ‘
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8., APPENDIX

Example where u = —(gngT)—lgxfxT gives only iinear convergence,

minimize f£(x) under the constraint g({x)
_ 2 2 _ _
£fx) = O.S(xl + X, ) g(x) = Xg 1
rake %= (0,0)T
(0)_ {14c 0
0 1

Gerl)_ (k) ki g0 ) _
r ¥ 2

B

Then u

x§k+1)ﬂ 1 =(x£k)— 1)/ (c+1)
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