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Abstract It is proved that existence of a density
function is both necessary and sufficient for almost
glebal stability in a nonlinear system.
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1. Introduction

A new convergence criterion for nonlinear systems
was recently derived by the author [Rantzer, 2001].
From existence of a scalar “density” function satis-
fying certain inequalities, it was proved that for “al-
most all initial states” the system trajectory tends
to zero. The new criterion is similar to Lyapunov’s
second theorem but differs in several respects. An
important difference is that the statement leaves
room for exceptional sets, such as unstable equilib-
ria, while still yielding a global conclusion. For ex-
ample, the criterion can be applied to a system with
the following phase plot, to verify that almost all tra-
jectories tend to the origin.

The new criterion also has a remarkable convexity
property in the context of control synthesis. While
the set of control Lyapunov functions for a given sys-
tem may not even be connected, the corresponding
set of density functions is always convex. This prop-
erty has has been explored for numerical computa-
tions in [Rantzer and Parrilo, 2000] and for smooth
transitions beteen different nonlinear controllers in
|Rantzer and Ceragioli, 2001].

The present paper is concerned with the converse
implication, to prove that under appropriate assump-
tions, a continuously differentiable density function
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must exist. An elegant result of this type has recently
been independently reported by [Monzon, 2002).

Notation
Given any xg € R", let ¢,{x) for £ > 0 be the solution
x(£) of £(t) = f{x(2)), x{0) = xo.

2. Main result

THEOREM 1

Given f € C?(R",R"), suppose that the system
% = f(x) has a stable equilibrium in x = ¢ and no
solutions with finite escape time. Then, the following
two conditions are equivalent.

(z) For almost all initial states x{0) the solution x(t)
tends to zero as t — .

(ii) There exists a non-negative p € C1{R”\ {0},R)
which is integrable outside a fieighborhood of
zero and such that

[V - {fP)l(x) >

0 for almeost all x

The proof will be based on the following lemma:

LEMMA 1

Let f € C}{R* R} and f(x)/|x| bounded. Let h, k; €
C1(R", [0,1]) with h(x) = O for [x] < 0.5 and h{x) =1
for fx| > 1 while 0 < k; < h. Define

wi(x) = exp (— I h(m(x))ds) y(x)
5¢—:(-")

pita) = [ vi(0-t)

Then [, pi{x)dx < g, hj(x)dx and for all Z CR"

4
f p;(x)dx — ] Py (x)dx = / v (x)dxdr
(2) z o Ja(z)

0



Proof of Lemma 1 For every ¥ C R", the change of

variables z = ¢p_,(x) gives
f pi(x)dx = f / z)dzdt
oLe{Y)
In particular, with P = {x : |x| > 1}
z)dzdt

fPJ(x dx—f ‘/;_‘(P)
< [ [ vz
= [ ([ nodear) wstera

5] h;(z)dz
RJI
Moreover

pita)dx = [ p(z)dz
#(2) z

=f / y/_,-(z)dzd‘r-f f wi{z)}dzdr
0 #-c(Z) 0 ¢(Z)

t
/ v (z)dzdr
0 J4(2Z)

]

The main difficulty in applying Lemma ‘1 for the
proof of Theorem 1 is that p; need not necessarily be
differentiable. This is where the assumption about
stability of x = 0 becomes useful:

Proof of Theorem I Suppose (i) holds. Stability of
the equilibrium x = 0 guarantees existence of € > 0
such that

sup|g:(x)| < 1 for all x with x| < &

t>0

Define g € C1(R",[0,1]) with g(x) > 0for 1 < |x[ < 2
and g(x) = 0 otherwise. Define p; according to
Lemma 1 with

hi{x) = g(x)g(20;v(x)/€)

where the number v > 0 is chosen so small that
A;i(x) > 0 for some integer j whenever 1 < [x] < 2
and lim;_, |¢.(x){ =0

Given any xp, either p;(x) is identically zero near xq,
or there exists T > 0 such that neither y;{¢_7(:})
nor #;(#_7{-)) is identically zero near x. It follows
that |[g.r(xo}| = 1, 80 |¢g_r—e(x0)] > e for ¢t > 0
and therefore hj{¢_.(-)) is identically zero near xp
for every ¢ > jv + T. In particular

v+ T

v (-1 | 22D | g

pi{x) =

1891

for x in a neighborhood of xy. Note that y;(¢:(2))
is positive and differentiable at z for all ¢ whenever
hj(z) > 0. In fact, all the expressions under the in-
tegral sign have continuous derivatives on the com-
pact interval [0, jv + T, so p; € C*(R" \ {0}). Fur-
thermore, comparing the last equality of Lemma 1
to Liouville’s theorem (Lemma 1 in [Rantzer, 2001])
shows that

[V - (Fp)l(x) = w;(x)

Note that, according to (i), for almost all x with
1 < |x| < 2 there is a number j such that y;(x) > 0.
The desired p will be constructed using a linear
combination such p;:s.

almost everywhere

Define p{x} =37, ¢; 0 {x) with
-1
Cey =27 sup {1+ p; +|8p;/0x|) (x):l
—i<log |z}<j

Then p € C'(R"\ {0}) because of uniform conver-
gence on the compact sets {x : —j < log|x| < j}.
Moreover 5, p(x)dx < ¥ ¢ fp. hj{x)dx < o0 and

[V {fB(x) = ZCJ%(Z)

is positive for almost all x with 1 < |x] <2,

The same construction can be used to define p, €
CYR™\ {0}) for m +1,42,... to get positive
divergence on the intervals 2™ < |x| < 2™+1. Then,
define p = 3 v, dmm P Wwith proper choice of d, to
get [V - (f p)](x) > 0 almost everywhere in R*. This
proves the implication from (i) to (if).

The opposite implication was in proved in Theorem 1
of [Rantzer, 2001] O
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