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Introduction 

The displacement method developed for the analysis of the stability of circular 

arches in paper (1) excludes the mass of the arch. To overcome the short- 

comings of paper (1) in this respect, the method of initial parameters is em- 

ployed below in the derivation of the frequency equations of a circular arch 
subjected to a nonconservative follower force Q at  the free end (Figs 1, 2) and 

taking into account the mass of the arch. 

1. Eauations of motion 

The differential equation of vibration of a circular arch, with mass density m. 
subjected to uniform pressure intensity p, perpendicular to the arch, is 

where 

For notations, see appendix (l). 



Fig. 1 Fixed-free arch 

Fig. 2 Member end displacements and forces of a circular arch 

By expressing a solution in the form Gi ( X )  = w(x) e t  the characteristic 
equation of (1) is as follows 

2 Changing equation (3) to a cubic form by setting X = y, we have 

3 2 2 2 4 4 
y + ( l + v ) y  + ( v - U )  y + U  = o  



The following relations are derived 

2 2 2 where yl = XI, y2 = X2, y3 = X3 are the roots of equation (4). 

The roots of the characteristic equation (3) have the following properties 

3 2 2 1) If a > b2 then (X1 and X2) are real and different 

2 2 2) If a3 = b then (X; = X,) are two real and equal roots 

3 2 2 3) If a < b2 then (X1 and X2) are complex roots 

where a and b are given as 

2. Stabilitv analvsis 

Consider the vibration of the circular arch, assuming elastic supports at the euds 

A and B, then the deflections, moments and shear equations are as follows 



where 

Using the method of initial parameters, the 

equation for the circular arch is obtained 

(8) 

following determinantal frequency 

The functions are given in table 1. 



Table 1 

Functions Qik for the analysis of vibration of circular arches by the method of initial parameters 

Ch. ch X. 0 
J J 
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Ch. -+ 

j j=1,2,3 

Ch. X. sh X. 0 
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2 2 2 2 2 2 2 2 4 In the table t. = h.(l + X3) (J = 1,2,3), h l  = X3 - X2, h2 = A; - X3, h3 = A2 - X a n d c  = v - II -1 
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3. Numerical analvsis 

3 
The arches tested were of the same acrylic sheets with Elab = 0.03033 N m -  

and radii R = 0.5647, 0.6024 m. The values of the critical loads and frequencies 
depending on the method used are given in tabulated form. 

3.1 Oran method 

The equations derived by Oran and Reagan (3) were used to find the critical 
loads and frequencies of the cantilevered arch. The results are given in tabulated 

form according to the following criteria: 

1. (F) '  Unstable flutter as two roots coalesce 
2. (DJ)  Unstable divergence with infinitely large frequency 

3. (D.11) Unstable divergence with U1 = U2 < 0 

The results are given in table 2. 

Critical loading Frequency u 4 

397.125 (F) 
* 37.82 (D.11) 
m ( D 4  

283.59 (F) 
* 71.3 ( D J )  
* 4178.17 (D.11) 
m ( D 4  

Table 2 Results by Oran method 



3.2 Methods of displacement and initial parameters 

The results are obtained from the determinantal equation (15) of refer- 

ence (1). 

Case I. The moment of inertia of the nozzle box and it's tip mass offset have 
been ignored. The results are given in table 3. 

Critical loading ij2 Frequency U 
4 

183.40 (F) 
74.61 (F) 

68.80 (F) 
151.78 (F) 

Table 3 Results by displacement method 

Case If.  The moment of inertia and the tip mass offset have been accounted for 
and equation (15) of reference (1) has been used and the results are given in 

table 4. 

Critical loading c2 Frequency U 
4 

Table 4. Results by displacement method 

Case 111. 
The mass of the arch has been taken into account and the results are obtained 

from determinantal equation (9). The results are presented in table 5. 



Table 5 Results by method of initial parameters 

4. Exwrimental verification 

The experimental set up in reference (1) was used to investigate the instability 

of cantilevered arches with deformation dependent loading. In any experimental 
work, the study of errors is fundamental and the following factors affected the 

results: 

1. Friction between the plates due to the airbearings was not ac- 

counted for 
2. Coriolis force produced by the water jet from the nozzle box was 

ignored in the tests 

3. Laboratory air pressure was not constant during daytime 

4. Water temperature was not constant during the experiments which 

in turn affected the nozzle box made of hostaline plastic 

5. Friction in the pulleys. 

With the above restrictions in mind, it is essential to compute the standard 

deviation for the tests as the tip mass is large in comparison with the mass of 

the arch. The standard deviation is computed with reference to  the results of 

the massless arch according to the present method and the observed results are 

given in table 6. 



Test No Q N Frequency w Deviation N 

R = 0.5674 m eo = 0.31 

13 5.85 6.28 
14 5.94 6.28 
15 5.94 3.96 

Table 6 Results observed in the tests 

Now the standard deviation for the tests is presented in table 7. 

Deviation X No of Deviation x2 

The standard deviation S is seen to be 0.20 N or about 4 %. 



5. Conclusions 

The frequency equations for the dynamic instability of cantilevered arches, sub- 
jected to configuration dependent loading, are established taking into account the 
mass of the arch. 

The theoretical results obtained is compared with the observed ones. The fre- 
quencies obtained differ in some of the results. This is due to the movement 
restriction of the nozzle box to 2 cm of either side of the neutral position. In 

Figure 3, the successive positions of the arch is shown at c2 = 64.64. 

Further investigation on the case is a subject of future paper. 

Fig. 3 Successive positions of the arch with c2 = 64.64 
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APPENDIX 1 

NOTATIONS 

radius of arch 
flexural rigidity of the arch 
intensity of pressure 
uniformly distributed mass of the arch 
circular frequency 
angular coordinate 

radial deformation 

v' dimensionless quantity defined by equation (2) 
-2 v = p ~ 3 / ~ ~  dimensionless follower load 

U 
4 dimensionless frequency 

p = M/mr dimensionless mass 

& = PR follower force at  the tip of the arch 

W 
C:R~ 

C, = -FT dimensionless radial spring constant at end A 

C;R3 
C; = - dimensionless radial spring constant at end B 

v c;n3 
C, = dimensionless tangential spring constant at end A 

C E R ~  
C; = dimensionless tangential spring constant at end B 

CER 
C: = dimensionless rotational spring constant at end A 

C ~ R  
c t  = dimensionless rotational spring mnstant at end B 

'a' tangential displacements at end A and B, respectively 

Wa9 Wb radial displacements at  end A and B, respectively 

%* 'h angular displacements at end and B, respectively 
kl tangential spring constant at end B 

rotational spring constant at end B 
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