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Preface

Research in automatic control covers many different areas. Solving a
control problem from scratch typically involve e.g.,

e Modeling and identification
e Analysis
e Synthesis

e Implementation

This thesis contains two parts and contributes to the research with-
in two quite different parts of automatic control research, the first and
fourth point above. After the modeling and identification process, one
often end up with a too complicated model. Then model reduction is
needed. Many models are highly nonlinear and it is interesting to be
able to keep important nonlinearities while doing model reduction. The
Part I of the thesis contributes to the research about nonlinear model
reduction along specific trajectories.

A process model can then be used for analysis and synthes1s The
synthesized controller needs to be implemented. Many industrial con-
trollers are implemented in PLC, Programmable Logical Computers.
PLCs are programmed in many different languages, often not compat-
ible. An attempt to standardize the PLC programming is the standard
IEC 1131-3. The Part II of this thesis contains a paper describing a
prototype implementation of the standard. The title is "Implementa-
tion aspects of the PLC standard IEC 1131-3" and it will be published
in Control Engineering Practice.
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Introduction

1.1 Background

This section discusses why it is relevant to do research in nonlinear
model reduction. Model reduction in control can be divided into

o Reduction of a process model
e Reduction of a controller model
e Reduction of a closed loop model

The model reduction methods presented in this thesis are mainly in-
tended for reduction of process models. Reduction of process models
are interesting for several reasons:

e A reduced model is often easier to analyze and understand.

e A model is often used for simulations and the simpler the model
is, the easier it is to implement and maintain.

e The controller design process is easier with a simpler process
model.

e A reduced process model often leads to simpler controller which
needs less computational power when implemented. This is the
case e.g., with Feedback Linearization and Internal Model Con-
trol.

13




Chapter 1. T ntroduction

Most model reduction methods are applicable only to linear models.
However, many process models derived from physical principles are
nonlinear. If linear reduction methods are to be used the models need
to be linearized, often with significant loss of accuracy. Therefore it is
interesting to do model reduction of nonlinear models and this is the
topic of this thesis.

1.2 Research approach

This thesis is dealing with reduction of non-linear models. It’s generally
hard to make simplifications that are valid everywhere. The approach
is therefore to find a simplified model that is valid in a neighborhood
of some typical trajectories.

Summary of Thesis ideas

This section summaries the ideas for model reduction of nonlinear mod-
els presented in the thesis. For details, see Chapter 2 and Chapter 4

In this thesis, models on the form F(5(¢),x(t)) = 0 are considered.
Suppose that a model contains several parameters and can be written
on form of Equation (2.2):

0 = F(x(t),x(t), a0, - ,Qm) x(0) = xo (1.1)

where ag =a1 =... = am = 1 is the nominal model. The user suggests
which parameter to neglect and the formulation (1.1) is chosen so that
setting ap = 0 and keeping a1 = ag = ... = &m = 1 gives the reduced
model. A trajectory is specified by the choice of initial condition xo. A
possible input signal can be included in the function F. Based on a
linearization around the trajectory a differential equation describing
the error x(t) is formulated in (2.12)

H(0) ~ (%5) (<550 o) (12)

This equation approximates of the error in the states, caused by the
truncation. A possible second step is to adjust the remaining parame-
ters in the model with some small coefficient &; to minimize the error.

0 = F(x(t), %(t),0,1 + €1, ... ,14+ €m) (1.3)

14
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1.2 Research approach

The goal is now to minimize the error in some sense, for example
r 2
mine(e, T) = min [[é(e, )| = min /0 zi:xi(s, 0%t (L4)

This is done in this thesis by simulating the Jacobian G(g) = 9f/0¢
and Hessian H(g) = 8%f /0€? and doing a line search in the Newton
direction.

e = H(0)'G(0)

Equation (1.2) only gives an approximation of the error. In Chapter 4
it is shown that in some cases an upper bound can be found using the
small gain theorem. These calculations are only done for models in the
explicit form

x(t) = f(x(¢),a0,... ,am)
but could be extended to systems in the implicit form (1.1).

Examples

The ideas presented above are applied to two different examples.

The first example is a rotating inverted pendulum, shown in Fig-
ure 2.1. An inverted pendulum is-connected to a rotating beam. The
acceleration of the pivot point of the beam is considered as the control
signal. The control goal is to swing up the pendulum from downward
to upward equilibrium. It is shown that the pendulum, for the given
swing trajectory, can be quite well approximated by a pendulum on a
cart, shown in Figure 2.2.

The second example is a drum boiler model. Input signals used for
identification of a boiler at Oresundsverket in Malmé are used. For
this trajectory it is possible to reduce large parts of the model and get
a model that is almost as correct as the original one. If the remaining
parameters are adjusted the error is reduced significantly, but then
some physical insight might get lost. A drum boiler is a classical control
problem. It is interesting to find out that a reduced model can capture
most of the behavior for a specific trajectory designed for identification
purposes.

15




Chapter 1. Introduction

Contribution

This thesis contributes to current research in nonlinear model reduc-
tion. The main contributions are:

o New ideas for reduction of nonlinear models along specific trajec-
tories.

o An estimation of the error in each state, caused by the reduction.

e In some cases, a strict upper bound on the error.

The ideas are developed for and tested on two rather different ex-
amples and it is likely that they could be useful also for other models
and other trajectories.

The criterion for using the methods is that the user knows a trajec-
tory or set of trajectories that is typical for what the model is intended
to be used for and also have hypothesis about what parts of the model
to eliminate.

Computer tools

Matlab, see Matlab (1996), has been used for simulations, since it
has a nice and concise matrix notation, an intuitive and consistent
user interface and extensive routines to present data graphically. The
simulation facilities in Matlab are good enough for the small sized
models used as examples in this thesis. For larger scale simulations it
would be natural to use a simulation package like Modelica, see Eu-
rosim (1998). Some Jacobians and Hessians are derived using Maple,
see Maple (1992).

1.3 Related work

This section describes some research areas related to the work done
in this thesis.

This thesis concerns reduction of models to simpler expressions but
of the same order. Model reduction in general, however, mostly involve
reduction to a system of lower order. This is here referred to as model
order reduction.

16
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1.3 Related work

Keep Trajecto Reduce
Nonlinear |physical | o0 | nodel
. specific
insight order
Balanced Realization - - - X
Trajectory-Specific Model Reduction ) 0 x X
by P. Mavrikis )
Perturbation Method X X
described by K. H. Khalil
Redl{ction of Chemical Systems x X X )
by Linda Petzold
Nonlinear .S"ystem Identification x 0 X X
by Jonas Sjoberg et al
Reduction as discussed in this thesis X X X -

Figure 1.1 Similarities and differences between this thesis and related work.

There exist a large number of model reduction methods, see An-
dersson (1999) for an overview. Here only those methods most closely
related to this thesis are reviewed. A schematic view of their properties
is given in Figure 1.1.

Model order reduction of Linear systems using Balanced realization

Most model order reduction methods are designed for linear systems
only. Model reduction of linear systems can be done in several different
ways, e.g. with continued fraction approximation or via a balanced
realization, both described in Johansson (1993).

Balanced realization is one of the most well known approaches to

“model order reduction of linear systems. The main purpose of doing

balanced realization is to find a state space description that separates
important states from non-important ones. The less important states
can then be reduced.

Consider a system on the form

x=Ax + Bu
y=Cx+ Du

17




Chapter 1. Introduction

A state space transformation z = T'x is applied. T is constructed
via a Cholesky factorization to give realization where the reachabil-
ity Gramian

P=> A*BBT(AT)
k=0

and the observability Gramian

Q — Z(AT)chCAk

k=0
are equal.
P = Q =diag(01;... ,0n)

The system is then “equally reachable and controllable”. Then the sin-
gular values can be used to do mode! order reduction. States corre-
sponding to small singular values are neglected. Comparing the mag-
nitude of the singular values 0; = \/4i(P Q) indicates which states that
can be eliminated. Small singular values correspond to less important
states. The states are partitioned into states to keep, x1, and states to

eliminate, xg

%1 Ay Apl jx B,

1= A Al e | T By |

X0 01 Aoo y ol .Lbo (1.5)

y=[C1 Col [ ‘] + Du
Xo

If the states xo are simply truncated, one gets a reduced-order model
that corresponds well with the original model at higher frequencies.

%1 = Anxy + Biu
y=Cix1 + Du

To instead get a model that corresponds well to the original model at
lower frequencies, Singular Perturbation Approximation can be used.
Setting %o = 0 in the first row of (1.5), solving that for x; and substi-
tuting into the other rows gives the reduced-order model. See Johans-
son (1993) for details.

18
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1.3 Related work

Trajectory specific model reduction of chemical systems 'Tra-
jectory-Specific model reduction of linear systems is done in Mavrikis
and Vinter (1997). A generalization of Balanced truncation is used to
find a reduced order model for a class of input signals. Stability is
proved. Extensions for nonlinear systems are done in Mavrikis (1997).

Model reduction of Nonlinear systems using Perturbation Theory

There are several approaches to nonlinear model reduction. One that
is closely related to the ideas in this thesis is the so called perturbation
method, described in Khalil (1996). The purpose of the method is to
find an approximation of a model where the parameter dependence
is simpler. The complexity of the parameter dependence but not the
model order is reduced.

Khalil considers systems on the form

i = f(t,x,€) (1.6)

with a solution x(¢, £) with a complicated dependence on £. The tra-
jectory is written as a Taylor expansion in € with x;(¢) as coefficients.
The coefficients x;(¢) are all independent of € and can be computed
separately.

x(t, E) = ixk(t)ek Xp = fk(t,xk) (17)
k=0 :

The question is now how to find the functions f;. This is done by
identifying coefficients in the Taylor expansion of the derivative of (1.6)
around € = 0.

D an(t)et = i(e,t) = f(ta(t, £).) = i’%ggﬂ

k=0 k=0

gk

e=0

Substituting x(¢) with the sum in (1.7) and identifying coefficients for
each power of £ gives

dk
% (t) = d—ng(t’x(t’e),g)

£=0

19




Chapter 1. Introduction

Solving this for & = 0 gives xo(t). After substituting xo(¢) one can then
solve for all x(¢). If the initial condition x(to) does not depend on &,
then the initial conditions for x;(¢) can easily be chosen as xo(to) =
x(t0), %1(to) = 0,... , 2w (to) = 0 If x(¢o) is depending on € one can doa
Taylor expansion around £ = 0 similar to (1.7) to identify the different

Xp, (to, £ ) .
For large N the remainder term is small and the solution x(£, £) to

(1.6) is then approximated as

0 N-1
x(t,e) =y xu(t)e* ~ S x(t)et (1.8)
E=0 E=0
It is shown that the error is bounded by
N-1
x(te) — Y xu(t)e* = 0(e")
£=0

but no quantitative bound on the error is given. It would be interesting
to use the error bound ideas presented in Chapter 4 to investigate the
error caused by the perturbation method for different values on N.
Then one could, before the reduction, obtain a number N that will

result in a sufficiently small error. ‘ ,
With regard to the perturbation discussions Khalil also treats sys-

tems on the form

%= f(tx2,€)
ez =g(t,x,2,€)

and
x=ef(t,x,€)
Such systems are not considered in this thesis.
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1.3 Related work

Trajectory-Specific Model Reduction of Chemical Systems

In Petzold and Zhu (1997) nonlinear models for chemical reactions
are studied. The purpose of the paper is to find a reduced model that
captures the important reactions but ignores the unimportant ones.
The reduced model is of the same order as the original one, but less
complex.

Consider a system with n chemical species y; and N reactions F;(y).
Typically N >> n. The models are written in the explicit form as

y=5SF(y) (1.9)

where y = [y1...v,]" and F(y) = [F1(y)... Fx(y)]". The amount of
each species consumed or produced by each reaction is determined by
the coefficients S = [S1...Sn], where each S; is a column vector. A
specific trajectory is chosen by choosing the initial conditions y(0) = y,.
A specified time interval is studied 0 < £ < b. A reduced model looks
like

: = SDF(z) (1.10)

where z = [z1...2,]" and D = diag(d;...dy) with each d; equal to
0 or 1 representing that a reaction F,.(z) should be neglected or not.
The user has to decide how many reactions 0 < %2, < N that should be
neglected, but then the algorithm decides which reactions. The model
reduction problem is formulated as an optimization problem.

min ||y —2||
y =SF(y) ¥(0) =0
2=8SDF(z) z(0) = yo

N
§:¢=k
i=1 -

Since solving the discrete optimization problem is hard, it is reformu-
lated as a continuous optimization problem and then the d;’s found are
rounded to 0 or 1. To avoid large rounding error, a penalty function is

21




Chapter 1. Introduction

added to the optimization problem that forces the coefficients d; to be
close to0 or 1, e.g.,

N
g(dy,....dn) =) (di—d*f <r

i=1

In the paper it is further discussed how to choose the initial conditions
of d;. Starting with all d; = 1 is the easiest choice but there are more
advanced ones. The optimization problem is solved with a package
called DASOPT using nonlinear programming techniques.

It would be interesting to combine this methods with the ideas
presented in this thesis. The method described by Petzold could be
used to determine which parameters to neglect and then the ideas
from this thesis, in an extended version, could be used to adjust the
remaining parameters and to give bounds on the error.

The paper also discusses reduction of the number of species, i.e.,
model order reduction, but that is not as closely related to the work
presented in this thesis.

Nonlinear system identification

Model reduction and system identification are closely related. Nonlin-
ear system identification is divided in Sjoberg and et al (1995) accord-
ing to how well the model structure of the model that is to be identified
is known. The categories are '

e White-box
e Grey-box
o Black-box
Identification methods can also be classified into identification of
e Linear models
s Nonlinear models

An overview of nonlinear stochastic grey-box identification, also called
probabilistic semi-physical model design, is given in

22
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1.4 Outline of thesis

Bohlin and Graebe (1994). The paper is dealing with identification of
the parameters 6 in models on the form

t i
#() = x0+ | m(z,%u,p,0)dr + / o (t,p, 0)dB
o

to

y(ts) = h(te, x,u,p, 6) + R(ts, O)w(ip)

(1.11)

The parts o and w(¢) represent stochastics and the basis for the iden-
tification is measured data points of the y and u.

The problem is similar to one studied in Chapter 2, where, how-
ever, the data points come from simulations and there is no noise and
stochastics involved. The goal there is to identify the parameters ¢ in
the equation (2.7) describing the norm of the state error.

T
f(e,T)= /0 Zozi(t)zdt (1.12)

Parameters in (1.11) are identified using the maximum likelihood
method. A likelihood function L(8) is defined depending on the param-
eters to identify 6 and statistical properties of o and w. The Jacobian
G(0) = OL/96 and Hessian H(8) = 0%2L/06? are estimated and then
the parameters 8 are found via Newton iterations

A

811 =6; —H(6,)'G(9))

This maximization of a likelihood function looks similar to the mini-
mization of the norm of the error (1.12), done in Chapter 2, equation

.(2.16), also using the Newton direction.

Eopt ~ —H(0,T)*G(0,T) (1.13)

1.4 Outline of thesfs

The Part I of the thesis is organized as follows. The reduction principles
are developed in Chapter 2 and exemplified via a rotating pendulum.

23




Chapter 1. Introduction

A drum boiler model is presented and simplified in Chapter 3. Calcu-
lation of strict upper bounds of the error are done in Chapter 4. The
conclusions are summarized in Chapter 5.

The Part II of the thesis contains the paper "Implementation as-
pects of the PLC standard IEC 1131-3".

24
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Model Reduction

2.1 Introduction

In this chapter some ideas for model reduction of nonlinear systems
are presented. The ideas are exemplified using a rotating inverted pen-
dulum.

This chapter is organized as follows. The problem is formulated
in Section 2.2 and exemplified by the pendulum in Section 2.3. The
approximation of the state error is described in Section 2.4 and Sec-
tion 2.5. Optimization of the remaining terms are done in Section 2.6.
This is then applied to the pendulum example in ’Section 2.7.

2.2 Problem formulation

"This chapter deals with nonlinear models that can be written on the

form
0 = F(x(¢), x(t)) (2.1)
Suppose that the model contains a number of parameters ay, ... , .
0= F(x(t),x(¢),a0,... ,am) (2.2)

25




Chapter 2. Model Reduction

Assuming that each parameter a; has nominal value one, the nominal
model is

0 = F(&(t), x(t), 1,... , 1) (2.3)

The formulation (2.2) is chosen so that the reduced model is written
as

0 = F(x(t),%(¢),0,1,...,1) (2.4)

The nonzero parameters can be adjusted with some coefficients
£1,... ,Em to compensate for the omitted parts. The reduced and com-
pensated model is written as

0 = F(&(2), &(£),0, 1+ £1,... , 1+ &m) (2.5)

This is closely related to system identification. One has to be aware of
that, depending on how the parameters a; are chosen, some physical
interpretation of the model might get lost.

The same notation %(¢) is used for trajectory of the reduced model
(2.4) and the trajectory of the model that is reduced and compensated
(2.5). The error of the states is in both cases denoted

() = x(t) — %(8) (2.6)

The goal is to estimate the ‘error #(¢) and to minimize the norm of
the error ||%(¢)|| over the time interval [0, T| with respect to £. With e
defined as

T
e(e,T) = |E(8)]| = /0 EIOR (2.7)
i
one has to minimize
mine(g, T)
£
Expressions for %(t) as a function of eps and e(€) is needed. The trajec-
tory %(¢) is not known, since £ is not known. Therefore a differential
equation defining % is derived and % is then simulated approximately.

This is done in Section 2.4. The optimization is then done in Section 2.6.

26




inal

2.3)

tten

2.4)

om-

2.5)

e of
ical

odel
ited

2.6)

n of
th e

2.7)

jec-
1tial
tely.

2.3 Pendulum example

Lo ~Q

C— l

Figure 2.1 The rotating pendulum.

2.3 Pendulum example

In this section the models for a rotating and a non-rotating pendulum
is compared. :

Rotating pendulum

" A rotating pendulum is shown in Figure 2.1. A pendulum of the length

Ly is hanging at the end of rotating bar with the length L;. The
acceleration of end point of the rotating bar is considered control signal
u.

The pendulum is described by

%= f(x,)

27




Chapter 2. Model Reduction

where
0
0
X =
Q
Q
and
X2
£ ginxy + % gin 2%y — L coS X1
flxu)=| I 2 Le (2.8)
X4
u
L

Non-rotating pendulum
A non-rotating pendulum is shown in Figure 2.2. The pendulum is
hanging on a cart and the acceleration of the cart is considered as con-
trol signal u The pendulum is described by partly the same equations
as the rotating one:
o)
x=| .
0

£ = | g i

Ly

sinx; — L% cos xl]

Simplification goal
The purpose is to investigate how well the rotating pendulum can be

described by a non-rotating one. The state Q is not considered at all.
Both models can now be written as (2.2) ... (2.5) with

0 = f(x,u) — x = F(%(2), x(t), a0 - -- ,a4) (2.9)

where

®
Il
Do @
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2.4 Error approximation

A
|
|
|
1
I
N
] \\ u
[ -
]
!
n 7
\/
L,

Figure 2.2 The non-rotating pendulum.

asxs
2 [
f(xu) =1 a2 sin2x; + a1 £ sinx; — ag 2 cos x; (2.10)
2 Ly Ly
a4zul—

Setting all a@; = 1 gives the rotating pendulum ‘and setting ag = 0
gives the non-rotating one. The model can then be adjusted with the
parameters a¢; = 1 + £1,...,a4 = 1 + £4. This is done in when the
pendulum example is continued in Section 2.7.

2.4 Error approximation

In this section approximate expressions are derived from which %(¢t)
in (2.6) can be simulated. The expressions are derived for the reduced
and compensated model (2.5), but setting £ = 0 gives expressions
for the reduced model (2.4). A simulation of a trajectory x(¢) from
(2.1) or a trajectory x(¢) from (2.4) or (2.5) is needed to evaluate the
linearization.
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Chapter 2. Model Reduction

The model (2.2) is linearized around the interesting trajectory. The
more linear the model F is and the smaller the error %(¢) is, the more
accurate the approximation is. Subtracting (2.5) from (2.3) and differ-
entiating gives

0=F(&x1,...,1)—F(%%0,1+¢€1,... ,1+em)

OF . OF _ OF 5F
Ngxf‘x'i__é;x"*_—&;;"‘_k ( —&) (2.11)

The partial derivatives of F can be evaluated either at (%,x,1,...,1)
or at (x %,0,1+ €1,...,1+ €n). The first trajectory can be used 1f the
numerical values of £ are not known at this stage. If, however, they
are known, or they are zero, the second trajectory can be used. This i 1s
interesting simulation of the original model is time-consuming. If

is invertible (2.11) can then be written as

o) ~ (BF ) (——— (t) — aF giisk) (2.12)

With this equation the state error %(¢) defined in (2.6) can be simulated
if the original model is known, the reduced model is known and a
trajectory from either of them is available.

2.5 Error contribution of each term

This section studies Equation (2.12) in detail. It is investigated how
the different parts of a model (2.2), associated with the different a;,
contributes to the error #(f) in (2.6) when (2.3) is approximated by
(2.5). A notation is introduced that in Section 2.6 will give a closed-
form analytic solution the problem of optimizing &. The purpose is to
find a notation dj(¢). with which the %(¢) can be written as

() me do(t) — > €xc(?) (2.13)
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2.6 Optimization

Equation (2.12) is a differential equation with m + 1 input signals.
Since the errors initial condition is zero, the superposition principle
gives that the system can be simulated for each input signal separately
and then the solutions can be added to obtain the solution of (2.12).
The solutions to the system simulated with each input is given the
notation d(¢). The different dj(¢) are defined by

da(t) = (aa—f)l (-5 - o)

with d;(0) = 0. Each dp(¢) can now be simulated separately. With this
notation %(¢) is given by (2.13).

2.6 Optimization

The purpose of this section is to find an optimal value of the coefficients
€ in (2.5) to minimize the norm of the state error x defined by (2.6) and
(2.7). The original model (2.3), its simulated trajectory x(¢), and the
structure of the compensated model (2.5) must be available. To find a
closed-form expression of the function e(€) to minimize, the notation
¢y is introduced. Each c¢y; is defined as follows

e(e,T) = [IZ(#)|| ~

do(t) — Z Exdy(t)
k=1

T m 2
= /0 Z <d0,i(t) — E Skdk,i(t)> dt =
i k=1

T m T
= / do(#)do(t)dt—2) " &x / do(t)Tdy(t))dt +
0 =1 <0 _

-

WV T
Cap Cko
m

m T
+ZZEkEZA dk(t)le(t)dt

k=1 l=1

~

Crt
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e(€) =const

Figure 2.3 The newton direction H~1G of a nonlinear optimization problem.

With this notation e(e, T') in (2.7) can then be written as

m m m
e(E, T) = Coo — 22 EpCor + ZZ ELEICE]
k=1

k=1 Il=1

and with the matrix notation

€00 \ cor --- Com

coo | co _ | qwo e Cim (2.14)
co C E . . N
Cim | Cml -~ Cmm
as
e(e,T) = coo — 2cTe +e7Ce (2.15)

The nonlinear optimization problem is now formulated as a linear opti-
mization problem using linearization around a trajectory. This problem
will be solved by going one step in the newton direction, illustrated in
Figure 2.3. This gives the following expression for an optimal g, in-
volving the Jacobian and Hessian of e.

mgjne(e,T) = g =—H(O,T)'G(0,T) (2.16)

The Jacobian of e is calculated:
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2.7 Pendulum example continued

—2c10+23 7 4 €icyi

Oe(e,T)
T = ——
G(e,T) 5e :
—2cno + 2 Z;L:o EiCni
= —2¢p+2Ce¢
Setting € = 0 gives
G(0,T) = —2¢

The Hessian is given by

2611 e 2c1,,
d%e(e,T)

562 =2C

H(e, T) =
2Cn1 e ZC,m

The conclusion is that, assuming that (2.15) is correct, the optimal
way to choose the parameters ¢ in (2.5) is

Eopt = —H(0,T)'G(0,T) = C ¢y (2.17)

Line search

Due to approximations in (2.11) it is not known how close to optimum
this choice of € is. A possible way to find a an € closer to optimum is
to do a small line search along the newton direction (see Figure 2.3).
The system (2.5) is simulated with £,., = k¢ close to the original &
given by (2.17). This is done for a number of different values of %. In
the examples in this thesis, 11 different k:s between 0.7 and 1.3 are
used. For each simulation the error e(ke) given by (2.7) is found by

_comparing the simulations of (2.3) and (2.5). The value of % giving the

minimum value of e(k¢) is chosen and ¢ is adjusted:

Enew = RE (2.18)

2.7 Pendulum example continued

In this section the algorithm developed in Section 2.4 ... Section 2.6
is applied to the pendulum example. it is shown that the pendulum
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Chapter 2. Model Reduction

Figure 2.4 The sgn function is approximated by the arctan function.

can be approximated with a non-rotating one, with somewhat different
parameters.

Choice of control law

The purpose is to swing up the rotating pendulum (2.9) with all a; = 1
from downwards (0 = =) to upwards (6 = 0) position. This can be
done by applying a control signal

|L . .
u(x) = 2g (sin 'szz + sgn(cos x1) smx1> + ngZ sinx; + Loxs

To avoid the problems of taking the derivative of the sgn function it
is approximated by the arctan function, illustrated by Figure 2.4. The
control law used is

sin x1>

|L 2
u(x) =2g (sin E?‘xz + - arctan c%sfl

+ x%Lz sinxy + Loxs (2.19)

The control law (2.19) is shown in Figure 2.5.

Simulations

A simulation of the rotating pendulum, (2.9) with all @; = 1, is shown
by the line (—) in Figure 2.6. The control signal (2.19) is shown in
Figure 2.5. The choice of parameters was.
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2.7 Pendulum example continued

Pendulum u 1688-10-07 1621
T T

tst

Figure 2.5 Control signal (2.19) used to swing up the pendulum.

L1 im
Lz 03m
g | 9.81m/s?

This results in a trajectory shown by the solid line in Figure 2.6. The
non-rotating pendulum is now simulated, obtained by setting ag = 0
in (2.9). The resulting trajectory (- -) is also shown in Figure 2.6.

To be able to simulate the error % using (2.12) some expressions,
e.g. the Jacobian is needed.

Jacobian

. The derivative of (2.9) is taken with respect to x, %, and a;.

o 0 1 0 0
OF . u  du B
. o = | 5% O x3sin2x; | + | —cosx | [5t - o]
%= 0 0 0 =
(2.20)
where
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Figure 2.6 Simulation of the pendulum (2.10), the reduced model and the
compensated model, and the model compensated with the result of the line
search. The state error e in (2.7) for the different cases is written in the box.

8_F£ (_g_ cos x1 + x% cos 2x1 + il sinxl>
%1 2 Ly

du 2 COS X1
I €oS X1

—~ =2g— arcta
dx1 8 n n

_9g 2 cosxy

. — 3 sin® x1
T x4 4 cos“ Xy

+ ngg * COS X1

du = 28 cos (ng2> Ez_
g g

dxg
du

22 —9x3Lgsinxl + Lg
dx3

Further, (2.9) gives
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2.7 Pendulum example continued

oF
55 =1
and (2.9) and (2.10) gives
0 0 0 xg O
%—Z— = %’21 sin2x; £ sinxy —ficosxy 0 0
0 0 0 0 Li‘l-

witha=[ao.--a4]T-

Simplification

The error % is now simulated using (2.12), with all &; = 0. The simu-
1ated error is shown in Figure 2.7 and compared with the actual error,
i.e., the difference between the trajectories (—) and (- -) in Figure 2.6.
The difference between the curves is explained by the approximations
associated with (2.12). The similarity between the curves verifies the
derivations of the formulas in Section 2.4 and shows that the approx-
imation errors are not to large.

Compensation
The goal is now to adjust the parameters a; = 1+¢; in (2.9) to minimize
the error. Applying (2.14) gives

5.21

15.81 | 50.04 —54.88 3.27
. 500 | 174 —208 172 6.03
€00 CO
[co - }z —54.9 | —208 289 —441 -651
521| 172 —441 252 -2.86
327| 603 -651 —2.86 9.89
and (2.17) gives
0.4749
| 01532
~ | —0.0781 (2.21)
0.1187
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Pendulum xTilde reduced 1998-10-08 21,07

0.2

0 0.5 1 15 2 25 3 35

T T
Heal
- - Est?mated E

t[s]

Figure 2.7 The state error £ for the reduced pendulum, simulated using
(2.12), with all & = 0 (- -) , compared with the difference between the sim-
ulations of the nominal and reduced model (—).

The resulting trajectory when (2.21) is applied like in (2.5) is the line
(...) in Figure 2.6.

Line search

A line search is done as described in Section 2.6. The values of & and
the corresponding errors are shown in Figure 2.8. The best choice
among the value of % seem to be 0.9. Therefore the ¢ is changed:

0.4274
oge_ | 01878 (.22
Enew =U-98 =1 00703 22)

0.1069

A simulation with £pe, is shown in Figure 2.6 (._..).
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2.7 Pendulum example continued

Pendulum linsearch 1998-10-08 21.07

e(k*eps)
o

0.6 07 0.8 0.9 1 1.1 1.2 1.3 1.4

Figure 2.8 A line search along the newton direction to find a good value of €
for the pendulum example, is done as described in Section 2.6. The error ¢ is
plotted for different values of & in (2.18).

Reduced model
A reduced and compensated pendulum model is given by

asxg
flx,u) = alfg sinx; —as 7% cosx;
(14[%1
with
g
x= 1|86
Q

and a; = 1+ ¢; with € given by (2.22).

Physical interpretation

The reduced pendulum model corresponds to a non-rotating pendulum.
The adjustments can also be interpreted physically. The &3 is a scaling
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Chapter 2. Model Reduction

in time that will affect also the other states. The &, can be interpreted
as smaller value of Ly, i.e., shorter pendulum, while gg corresponds to
a smaller control signal u. The &4 value affects only the third state,
since the states are decoupled in the reduced model. The conclusion is
that the reduced and compensated model is a non-rotating pendulum
with other numerical values on the physical parameters.

Concluding remarks

This chapter has presented ideas about how to estimate the error of the
states caused by model reduction in Section 2.4. Further it is discussed
in Section 2.5 and Section 2.6 how remaining parts of a model can be
adjusted to minimize the error. Both ideas are applied to a pendulum
example in Section 2.7. Simulation of the original and reduced models
are shown in Figure 2.6. The error is rather small, indicating that
a rotating pendulum can be quite well approximated by a pendulum
on a cart, for a swing up trajectory. The error is reduced significantly
by adjusting remaining parameters, shown by (...) in Figure 2.6. A
line search shown in Figure 2.8 reduces the error further, see (-—) in
Figure 2.6.
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Drum Boiler Example

3.1 Introduction

In this chapter, second and fourth order nonlinear models of a drum
boiler model are studied. The boiler models were presented in Bell
and Astrom (1998) and Bell and Astrom (1996). Figure 3.1 shows a
schematic picture of the boiler.

Input signals used in identification experiments of a boiler at Ore-
sundsverket, Malmé are used. It is shown that for this trajectory it
is possible to reduce large parts of the model, adjust the remaining
parameters and get a model that gives only a rather small error in the
states.

The second order model is presented in Section 3.2. The reduction
ideas from Chapter 2 is applied in Section 3.3 and the resulting reduced
model is presented in Section 3.4. A similar reduction procedure is

- applied to the fourth order model in Section 3.5.

3.2 Second order model

In the second order model, the feed-water flow g, the steam flow g;
and the amount of fuel @ are considered as input signals. The states
are the volume of water V,,; and the pressure p in the drum. The states
are considered as output signals. The following equations describe the
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Figure 3.1 A schematic picture of the drum boiler, The feed-water flow g, the
steam flow g, and the amount of fuel @ are considered as input signals. In the
second order model, the volume of water V,: and the pressure p in the drum
are considered as output signals.

dynamics of the boiler.

av, d
eu——“E +612—p =4gr—4gqs

dt dit (3.1)
AP S
21y 2 r sls

The first equation is a mass balance, while the second is an energy
balance. The terms

e11 = Pw — Ps
0ps Opu
€12 = Vst?a% + th—app—
represents mass storage while
€1 = pwhw —pshs
) aps Oh
€22 = Vst(hsé + Ps ap )
op Ohy ot
+ th(hw—agui +pw—b?) + thpé;S
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3.3 Reduction

represents energy storage. The model has a bilinear structure and
hence can be written as

0=F(x,x) = B(x)u — E(x)x

where
B 0 1 -1 _ @
@ =11 hp - L=
s
108
hfw = 10° (wawa +pp—)
Vo
R = [ -
€1 eg D
Simulation

The inputs # shown in Figure 3.2 are experimental data from Ore-
sundsverket. The pressure in Figure 3.3 are measured at the same
experiment and compared with a simulation of the model (3.1). Steam
tables are required to evaluate variables depending on the pressure,
eg., hs, hw, ps and p,. Quadratic functions have been used to represent
the steam tables. The variables depending on the pressure, e.g., ps and
h. are approximated by second order polynomials of the pressure p. The
parameters used were

v, 40 m?

m: | 325 000 kg
C, | 550

Cro | 418

3.3 Reduction

The boiler model is reduced in several steps. After studying which
parameters that are likely to be possible to neglect the reduced model
is simulated. Then an optimization adjusts the remaining parameters.
Since the optimization contain approximations, a line search along the
Newton direction is performed.
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x10° Bofler u 1998-10-05 20.27
14 T T T T T T T
12
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1
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Figure 3.2 Input signals u? = [@ qf gs] from the measurements at Ore-
sundsverket.

Boiler x measure 1998-10-05 20.27
205 T T T T T T

\ L . N s
1] 100 200 300 400 soa 600 700 800 200
tsl

Figure 3.3 Simulation of the boiler model original (3.2) with all ¢;; =1 and
the reduced model with ag = 0, all with the input signals shown in Figure 3.2.
The state error e in (2.7) is written in the box. The second state xz = p is
compared with measurements.
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3.3 Reduction

Boiler E(t) 1998-10-08 15.32
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tis] t[s]

Figure 3.4 Additive components of each element e;; in E. The largest compo-
nent (=) in each e;;(¢) is kept and the others are neglected by putting an e in
front of them in (3.2).

Simplifications goal

In this section it is studied whether it is possible to delete any part the
components e;;. Figure 3.4 shows each e;; term composed by sub-terms.
This plot provides the basis for choosing which component of each e;; to
neglect, i.e., multiply by a,. Based on the relative magnitudes shown in
Figure 3.4 the following hypothesis for model reduction can be made.
Try to keep the largest sub-term, plotted with a solid line in Figure 3.4
and neglect the others. The ¢;; terms can then be written as

€11 = A1Pw — QopPs

ops 0
ep = aoVsr(% + anwrap—;’
€91 = a3pwhw - aOpshs (3 2)
_ 0p: Oh Opw Ohy
€99 = aOVst(hs p + pPs ap ) + aOth(hw ap +pw%
Ot
+agmCp %
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Boler xTiide all 1898-10-05 20.27
T T T T

\ : L
100 200 300 400 500 600 700 800 900

——  reduced 11.7
-~~~ adjusted 0.00865
. line search 0.00865

tsl

Figure 3.5 The state error & from simulations of the reduced boiler model,
compensated model, and the model compensated with the result of the line
search. The state error e in (2.7) for the different cases is written in the box.

To use the notation of (2.1), the boiler model can be written as
0=F(i,%,a1,...,0m) = E(x,a) "%(t) — B(x)u (3.3)

The Jacobian involve quite complex expressions, but is straight for-
ward to calculate.

Simplification
The error # simulated from (2.12), with all &; = 0, is shown in Fig-
ure 3.5 and compared with the actual error, i.e., the difference between
the trajectories (—) and (- -) in Figure 3.3.

A simulation of the reduced model is shown by the line (- -) in
Figure 3.3.

Adjustment

The next step is now to compensate the remaining terms in the model.
Following the ideas and notation presented in Section 2.5 and Sec-
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tion 2.6 gives

120 | —459 1556 —4.28 —37.09 ]

’ —945| 517 —31.1 360 112
{COO Cco}z 156 | —31.1 430 —196 —13.3
o —428| 360 —196 667 222

| —87.1| 11.2 -133 222 173

Applying (2.17) gives

0.0648

0.3504
= C ey = .
Eopt =1 0.1100 (3.4)

—0.2055

The simulation of the compensated model is shown in Figure 3.3 (...).
The error % simulated from (2.12), with all & = 0, is shown in Fig-
ure 3.5.

Line search

Also for the boiler example a line search along the newton direction is
done as described in Section 2.6. The values of & and the corresponding
errors e(ke) are shown in the Figure 2.8. The best choice among the
value of £ seem to be 1.00. Therefore € is not changed and ¢ still equals
to (3.4) and therefore the curves (_ ) and (_._.) are on top of each other.

‘3.4 Results

The model obtained after reduction, adjustment and line search looks
like

det‘ apw dp .
@Pw =~ +aa Vi op dt = qr—9qs
dv, Ot d
agpwhw—t +asm,Cp P _ Q+qrhy—qshs

dt ap dt
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Boiler finsearch 1998-10-05 20.27
T T T

10" T T v ‘i

- L s
06 07 0.8 a9 1 1 12 13 1.4

Figure 3.6 A line search along the newton direction to find a good value of £
is done as described in Section 2.6. The error ¢ is plotted for different values of
k in (2.18).

with a; = 1+¢; and € given by (8.4). The model is considerably simpler
than the original one (3.1). The state error caused when reducing the
original model (3.1) to this model is shown in Figure 3.5 (=)

3.5 Fourth order model

In this section the fourth order model is simplified in a similar way as
the second order model were in Section 3.2 to Section 3.4.

Model

This section describes the fourth order model of the drum boiler as
presented in Bell and Astrom (1998). Two state variables are the same
as for the second order model, the drum pressure p, total water volume
V. The two new states are the quality at the riser outlet «;, and
volume of steam under the liquid level in the drum V4.

The model is described on the state space form
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dVy: dp
en-(ﬁ + e12a =dqr—4dgs
dVy: dp
6217 +ezza =Q +qrhr—qshs (35)
dp do, )
932% + ess dr Q _arhCQdc
dp dar std _ Ps 0 hf _hw
6423? + eq3 dt + €44 ar E(Vsd—Vsd)+ B qs
or as
0= E(x,a)%(t) — B(x,u) = F(%,x,a1,... ,an) (3.6)
with
€11 €19 0 0 th
E(x) = eg1 ez 0 O e | P
0 €32 €33 0 oy
0 e eqs ey \ &

where the coefficients e;; are given by the following equations, with all
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a; = 1.

e11 = a1Pw — A2Ps

Ops a
el = a3V ; + a4th—§u—1
P /4
€1 = a5pwh - a6pshs
3Ps Ohs O0pw Ohyw
€32 = cl*7Vst(h + Ps ap ) + a8th(hw 6]) + Pw ap ) —aQVt
ats
C,—
+ a1omiLp op
Ops Ohs\ -
ez = a11 ((1 ar)h /;) + Ps ap > auVr

oh ) _
+ <a12pw Bpw a130-h. E;?w> 1—a,)V,

o, Ot
+ a4 (ps + (pw "—ps)ar)hcvr__ - a15Vr + a16erp5;

8a
ez = a17((1 ar)Ps + arpw)h \Z B(XU

aps
eq2 = alsVsd-(%)—

1 Oh, Ohy Ot
+ — (awpsV ‘o + agoPwVwd—5— o a91Vsq + aZZdep Bp)

he
0ps
+azo, (1 BV (305 + (1 &) L2 + (p, - ap &)

oa,

e43 = a0 B(ps — Pw)V aa,

e44 = Q250 s-

(3.7,
where
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3.5 Fourth order model

ap  (pw—p)P\"dp "Top
pw_1 1 w
(1+ e Ot S)En(1+77)) (3.8)
ooy, Puw 1
— Z ,
dat,  ps n( (1+m) = 1+n)

N =0r(Pw—Ps)/Ps

- Puw Ps ( Pw—Ps )j'
. Pw —Ps [ (Pw — ps)ar Ps

Via=Vur— Vg — (1 —,)V,

/= de + Vsd
= ——-~—Ad
T, — PsVey
qsd
kq,?jc = prAdc(pw _ps)g&v \4
_ 0 ; B, \ dp
4r = qae— Vo (6 B+ (L= 0) T2+ = p0) ) 2

Oo, dot,
+ (Pw —Ps) Vg e, di

-The same inputs as for the second order model are used, shown in

Figure 3.2. A simulation of the model is shown in Figure 3.7 (—).

Choice of components to reduce

For larger models it can be difficult to know which parameters that
can be neglected without to much loss of accuracy of the model. The
calculations done in Section 2.6 can be used not only to adjust re-
maining parameters, but also to choose which parameters to neglect.
Then different coefficients a;; are put in front of each parameter, like
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Chapter 3.
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Figure 3.7 Simulation of the boiler model (3.5) and the reduced model with
the input signals shown in Figure 3.2. The state error e in (2.7) is written in
the box. The second state xp = p is compared with measurements.

in (3.7). No coefficient is denoted ao since it is not yet known what to
reduce. Simulations of di(£) and ¢;; will give a C from (2.14) with the

following first column
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Boiler 4—order xTilde all 1998-09-30 17.39

-0.2

1 1
300 400 900

700 800

T T i

_— reduced 25.7 N
-—-- adjusted 0.768 | .4
-------- , line search 0.641
1 i 1
‘o 100 200 300 400 500 600 700 800 900

t[s}

Figure 3.8 Simulation of the boiler model (3.5). The state error %; is compared
for the the reduced model, the compensated model, and the model compensated
with the result of the line search, all with the input signals shown in Figure 3.2.
The norm of the state error e in (2.7) is written in the box for the different cases.
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Chapter 3. Drum Boiler Example

[ cor | [ 0.1450 |
co2 0.5867
€o3 0.4557
Co4 -1.1782
cos -0.7060
co6 0.0981
co7 0.0729
cos 0.0374
Cog —0.0077
€010 0.4938
co11 0.0156
Co12 0.1544

Co=| cois | =10%| 0.0072 (3.9)
Co14 -0.0256
Co15 —0.0063
Co16 0.0819

ot -0.2309

o 0.0140
co19 '~0.0013
€020 -0.1652
Co21 —0.0014
Cp22 0.0270
€023 0.0123

Tcoms 0.2244

| cozs | L -0.1045 |

The magnitude of each co; value indicates how much the error e in (2.7)
will increase when a certain parameter associated with a@; is neglected.
Discussions with the authors of the drum boiler model Astrém and
Bell (1998), combined with studies of the cq; factors have determined
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(3.9)

n (2.7)
lected.
m and
rmined

which parts of the model to neglect. The terms to neglect are chosen so
that in each e;; coefficient at least one term will be kept. The parts that
are chosen to keep are the a;:s in (3.7) corresponding to a ¢,; written :
with bold face in (3.9). Therefore all a; corresponding to a non bold {
face co; will be replaced with ag and the other a;:s will be renumbered.

3.5 Fourth order model

The reduced model coefficients are then

Adjustment

The adjustment procedure described in Section 2.6 is applied. The state
error for the reduced and compensated model is shown in Figure 3.8.
A line search gives the result shown in Figure 3.9. The best value of

e11 = a1fw
d
e1g = agViyy é;w
€91 = a3pwhw
Ot
egs = agm;Cp—
22 am:Cp ap
1) _
egg — _a5arhcapr(1 - au)Vr

66_(,, Ot
+a6( —Ps )ar) ¢ 3p +a7erp

o
esn = ag (1= &)ps + trpu)heVi g™

1 Bh Ot
e4 = h—c<a9Pwde op + aiomqCy—— o )

do
€43 = allarﬂ(ps pw)V .

€44 = Q12P5.

7‘

ap

(3.10)
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Chapter 3. Drum Boiler Example

Bailer 4—oider finsearch 1898-09-30 17.39
T T T

o [«
=]
2 o
g o
£ o °
T
o
o o0
ol L PR
0.6 07 0.8 0.9 1 11

k

Figure 3.9 A line search is done along the newton direction to find a good
value of &. The error £ is plotted for different values of & in (2.18).

£ seem to be k = 0.94. This results in the following £ value.

" 0.0572 7
0.3273
0.1249

—0.1996
0.1314
1.5085
0.0007
0.2562

—0.0418

—1.0789
0.2741

| —0.0117
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good

3.5 Fourth order model

Results

After reduction, adjustment and line search the mod.el is described by
(3.5) with (3.10) anda; =1+¢1,...,am=14+¢p w1_th € from (3.1.1)_
The state error is shown in Figure 3.8 ( ... ). A disadvantage with
adjusting parameters is that some physical insight might get los.t, but
the error of the states is reduced by more than one order of magnitude.




/)

Error Bounds

4.1 Introduction

In Chapter 2 it was discussed how to minimize the error when reducing
a nonlinear model. In this chapter it is shown that in some cases a strict
upper bound of the error can be found. The problem is formulated in
Section 4.2 and solved for the scalar case in Section 4.3 and the vector
case Section 4.4. The pendulum example from Section 2.3 is treated in
Section 4.5.

4.2 Problem formulétion

In order to keep the formulas simple, the notation in this chapter is
not as general as in Chapter 2. The ideas are developed for models in
explicit form

i(t) = f(x(1))

but could be extended to models in implicit form (2.1). The notation
introduced is analogous to (2.1) ... (2.4). Suppose that a model contains

a number of parameters ay, ... ,an that can be changed or neglected.
The model is then written as
%(t) = f(x(¢t),a) = f(x(t), a0, .. ,0m) (4.1)
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ducing
a strict
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» vector
ated in

ipter is
dels in

otation
ontains

glected.

(4.1)

4.2  Problem formulation

with
ag

ay

am
The nominal model is now written as
#(t) = f(x(2), L. 1) (4.2)

where the a; = 1 corresponds to the original model. Suppose further
that there is a hypothesis that some parts of the model can be omitted.
The reduced model is written as

#0) = FE0),0,1,...,1) (4.3)
with
0
; 1
a=1.
1

The goal now it to find an upper bound on the state error introduced
by the reduction.

#(t) = x(t) — &(2)

Norms

The signal norm used in this chapter is a type of || - || norm, extended
to handle a time index ¢ as well as a state index i. Normal ||- ||, norms
are described in Doyle et al. (1992).

(2l = max |:(2)] (44)

13
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Chapter 4. Error Bounds

This definition of vector norm induces the operator norm

e 4002001
“A(t)” - x(2)#0 ”x(t)“

that can be calculated by

HAUszn?XE:n?xmﬂﬂ (4.5)

4.3 Scalar case

The method of finding error bounds is described via a small scalar
example.

Example
Consider the system

sinx sin2x
5 +

=01 +1 (4.6)

Suppose that the term %’f can be omitted. If the model is written as

sinx sin 2x

= f(x,a)=0.lag 5 +ay 5

4+ as (47)

the nominal model is given by (4.6) and the reduced is written as

sin 2%
2

%= f(x,a)= +1 (4.8)

A simulation of the original system and the reduced system is shown
in Figure 4.1.
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4.3 Scalar case

Scalar example x 1998-09-27 14.07
25— T T T T T T

on'dqinal 0
- reduced 0.00138

0.5

L L L L L L
00 02 0.4 0.6 08 1 12 1.4 1.6 18 2

Figure 4.1 Simulation of the original system (4.6) and the reduced system
| scalar (4.8). The norm of the state error, e defined in (2.7), is written in the box.

Estimation of error
The differential equation approximating the error % is a special case

of (2.12).
(4.6
X = f(x1a) - f(.f,(_l)—,Z
tten as = f(x,a) — f(% &) + f(x,a) — f(x,a) =
8f(x,a) ¥+&+ f(x,a)—f(x,a) (4.9)
(4.7) r 8f(x a) . %+ f(5a) — Flxd)
1 as where ¢ is introduced to represent the error introduced by the approx-
imations.
(4.8) 5
¢ = fea)—f(ra) - L0, (410)
s shown

The error % is can now be simulated with (4.9).
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‘1 L & Y1
® H,

Y2 €2 Ug
H, ®

Figure 4.2 Illustration of the Small Gain Theorem (4.11).

Small Gain Theorem
The goal in this section is to find an upper bound on the error, esti-
mated in the previous section. This is achieved using the Small Gain
Theorem, in Khalil (1996) stated as follows.
Consider the system shown in Figure 4.2. Suppose H; and Hj are
stable systems with the gains 73 and s, i.e.,
Iyl < mlleal] + B1
yall < vlleall + B

Then

leall < g (all + sl + B 442 (41)

Figure 4.2 shows the Small Gain Theorem is applied to (4.9), resulting
in an upper bound on the gain

[1] G

— = 4.12
[FGa) — FGall = T-GIZ] (412)
where L is the operator defined by the relation
E<Li (4.13)
and @ is the system
. _f(®a)
= —Etu (4.14)
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r, esti-
1l Gain

H, are

(4.11)

ssulting

(4.12)

(4.13)§

(4.14)

L

4.3 Scalar case

5
L
,a T xyd) u . %.d) ~ &:
f(x,a)—f( @ f=af§’f;2x+u

Figure 4.3 The Small Gain Theorem (4.11) applied to (4.9) gives an upper
bound on the gain of the system, as shown in (4.12).

If bounds on ||L||, ||f (%, @) — f(#,a)| and ||G|| can be found, an upper
bound on %(¢) can be calculated from (4.12). The bound are found in
the following subsections.

System gain

The gain of a linear time-varying system G can be found via the tran-
sition matrix ®(¢,0), see Rugh (1996). When the input to a system is
bounded ||u(£)]] < max the output y(£) can be written as

/t(D(t,r)u(r)dr

bl - |

< e | o 0)0(r,0) Y| dr

giving

6l < [ 0,0y ar (4.15)

This integral can be evaluated for some discrete values of £. A con-
tinuous curve describing the maximum gain can be found with the
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following calculations

< | o ()l de <

Iy (@)l = \\ | ot Tyu(e)dr
/0 100 |20 lumadld7 <
< Umax |@ (£ 0l /0 \)cp(r,orl\\ dr

@i < ool [ o0 de (4.16)

For the vector case (4.15) give a more tight bound on the gain then
(4.16) but for the scalar case they are equally exact.

Gain of L
An expression for the gain L is found when using Taylors Theorem,

stated in Rudin (1976) as follows.

Suppose f(t) is real, f(»~V(t) is continuous and f(M(¢) exist on [a, b}
for a positive integer 7. Let o and S be distinct points of [a, b]. Then
there exist an @ <x <f such that

n—1 of ' n(g
(-5 Mg ap+ BP0

k=0

Applying this with n = 2 to (4.10) gives that there exist a 6 € [0, 1j
such that

Flad) = F(E8) + of (8’; Dy —;-azf (’28*;29&’ P (4.18)
‘ =
P

An upper bound on \|L|| is needed when ||| < \Li||%||. This will be
easier to find if a maximum state error ||E(t)|| < 61 is introduced. If
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e

(4.16)

n then

eorem,

n [a, b]
. Then

(4.17)

c [0,1]

will be
1iced. If

4.3 Scalar case

the future calculations result in a maximum state error larger than
5y it’s necessary to start from this point again with a another ;. This
might need a few iterations. To find an upper bound on the gain of L,
the following expression needs to be simplified.

}Wf@+9&®i“ (4.19)

I X,

tel0,T]
9¢[0,1]
&) €l0.Emas]

Different methods might be used depending on the structure of L in
different cases.

In the discussion above the bound on L is used to find a bound on
%(t) using the Small Gain Theorem. On the other hand the bound on
%(t) is used to find a bound on L since the expression for L in (4.18)
include %(t). To avoid a circle argument, it is used that the error is zero
from the beginning. The Grénwall-Bellman inequality Khalil (1996) is
applied as follows.

1. The initial conditions for the original model (4.2) and the reduced
model (4.3) are equal. Therefor %(zo) = 0.

2. Suppose that the function f is Lipschitz with respect to x. Then
the Gronwall-Bellman inequality states that x(f) and %(¢) and
therefor also X(¢) can grow at the most exponentially, see Fig-
ure 4.4. Then for any number §; it’s known that #(¢) < &; for at
least some short time interval ¢ € [¢o, £1].

3. Now there exist a bound on ||£#(¢)|| < 61 for the time interval.
This can be used in (4.19) to find an upper bound on L.

4. The Small Gain Theorem can then be applied for the specific
time interval ¢ € [to,¢1] giving a bound on %(f), that is called Js.
If 8, > 61 one has to start over from point 2 with a another 6;.
If however J; < J; it follows that not only ||Z(¢)|| < &1 but also
(@)l < S.

5. Knowing that %(¢1) < 8 Gronwall-Bellman inequality can be
used again to show that for some short time interval ¢ € [t3, 3]
%(t) < 8y since %(¢) grows at the most exponentially. Point three
and four can now be repeated for the time interval ¢ € [¢1, £2].
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to t1 12 ts t

Figure 4.4 Ilustration of the iterative procedure described on the previous
page to find strict error bounds on L and on £(2).

6. Point two to five can be repeated until it is shown that ||£(2)|| < 62
for all £. The time intervals [£1, t2], [t2, ts], ... willbe equally large.

Example continued

The example introduced in the beginning of Section 4.3 is now dis-
cussed further. The state error caused when the system (4.6) is reduced
to (4.8) is simulated with (4.9). The result of this simulation is shown
in Figure 4.5 and compared with the actual error, i.e., the difference
between the trajectories (—) and (- -) in Figure 4.1. The fact that the
curves are close to each other; shows that the error € in the estimation
of % in (4.9) is small. Figure 4.6 shows all the components of f from
a simulation of (4.6).

The transition matrix ®(z,0) for the system (4.14) is shown in Fig-
ure 4.7. It is discussed in Rugh (1996) how to calculate a transition
matrix. Further the system gain ||G| of the system (4.14) is calculated
according to (4.15) as well as (4.16), both shown in Figure 4.8. The
plot gives

Gl <12

In order to use Taylors formula like in (4.18), the Jacobian and Hessian
of the system (4.8) is calculated.

’___Bf(x, a) = cos 2%
ox
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4.3 Scalar case

Scalar example xTilde 1998-09-27 14.07
T T T T

0.08 T T T T T
——  'Real”
op45F - pproximated | |
004} e a
0.035 B
003 4
0.025- o
0.02 1
0015 4
001 4
0.005 - 4
"o 0z od os o8 1 iz 1'4 CRERT 2
P
ge Figure 4.5 The state error & caused by reducing the model (4.6) to (4.8). An
approximation of the state error (- -) simulated with (4.9) is compared with the
actual difference (—) between the simulations of (4.6) and (4.8), both shown in
Figure 4.1.
lis-
ed
wn 008 Snl:sa‘af example | 1998-09-27 14.07 N
1ce 0.045} 04 18
Fhe 0.04 4 03 16
101 .
0.035 02 14
om '
0.03 01 12
Fig_ 0.025 o 1
ion 002 1 -oa 08
ted 0.015+ -02 1 0.6 i
‘he -
0.0t {1 -oaf 1 o4 |
0.005 ~0.4F 4 o2
. o .
0 1 2 o 1 2 0 1 2
. % 3 %
ian

Figure 4.6 The different components of f in (4.7). The difference
f(x, @) — f(x,a) is shown in the left plot and the norm ||f(x, a) — f(x, a)|| < 0.05.
This will be needed to use the Small Gain Theorem as in (4.12).
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Scalar example phi 1888-08-27 14.07
T T T

UVSL—J___Jr,J"
4]

L L ' ' n
0.2 04 (X3 0.8 1 12 1.4 1.6 18 2

Figure 4.7 The transition matrix ®@(¢,0) for the system (4.6).

O%f (x,a) _

py —28In2x

Some approximations of the gain of L in (4.19) is done

18%f(%+6%,a) || _
Ol e
#cfo,1} ‘

() |E[0Fmas]

- %max]|—2 sin (2(% + 0%))|| Fmax < % 2l Fmax = Fmaz

The estimation

O2f (% + 0%, @)
52 <2 (4.20)
corresponds well to Figure 4.9 where
O*f(x,a)
2 =2 4.21
tﬁgﬁ Ox2 (4.21)
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Scalar example G2 1998-08-27 14.07
T T T

14 ’7 T T T T T T
———  iG)) approximated
[o] O IGH more exact

081

061

0.4

0.2F

L n s ' L L L L L
0 0.2 0.4 08 0.8 1 12 14 18 18 2

Figure 4.8 The maximum gain ||G|| of the system (4.14) for the scalar example
(4.8). The gain is calculated with (4.15) (o) as well as with (4.16) (—). For this
scalar example the two formulas give the same result.

It is now needed to choose a value of &; to use as a hypothesis. Since
the estimated % < 0.05 in Figure 4.5 for the considered time interval, a
natural choice is §; = 0.05. The application of the Small Gain Theorem
in (4.12) gives

Il el
[FGEa) - f@ma)] = TG <

112 1.2
<1. .
T 1—|1.2(£ne ~ 1—1.2-0.05 = 13 (4.22)

Figure 4.6 gives
| = f(x,a)+ f(x,a)| <005 = [%|<1.3-0.05=0.065

Since d; = 0.065 > 0.05 = &, the hypothesis Xmar < 0.05 can not be
verified. A possible second try is §; = 0.1. The calculations above are
repeated. )

E Gl 1.2
= fGa)+ fEa)] = T= |GIL] = T-12.01 = 1%
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Scalar example d2dx2(xBar) 1998-08-27 14.07
T T T

Figure 4.9 The Hessian 6—2%%@ of the system (4.6) evaluated for the trajectory
#(t) simulated with (4.8).

|- f(&a)+ f(&a)]| < 0.05 — ||&] <0.075

Since 82 = 0.075 < 0.1 = 01 the hypothesis £max < 0.10 can be verified.

.

Conclusion

An upper bound on the error %(t) caused by setting ag equal to zero in
(4.7) is found.

%] < 0.075

4.4 Vector case

In this section the derivations of Section 4.3 is generalized to the vector
case, i.e systems of order higher than one. Derivations that are differ-
ent from the scalar case are carried out. The ideas are exemplified with
a small second order example.
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4.4 Vector case

The following matrix notation is introduced
X1 f1(x) &1
x= fla)=| : §=|:

Equation (4.9), (4.10) and (4.12) then can be written identically to the
scalar case and Taylors formula (4.18) can be generalized to

JR—— 2 bvd ~ A
Of(%,a) o 1 p0°fu(2+ 6,%,@) - ke {1,2,...,n}

fr(x, @) :fk(x,a)‘i‘Tx '|”¥2 o
&
(4.23)
where

Or = diag(Op1,... ,0kn), 6O €[0,1]

O _ron . on)
Ox Ox1 Oxn
of _ [or o 1
Ox Ox1 e Ixp
&f & f
a2 't Buibm
i
Ox2 : . :
8, P
O%,0x1 " Ox2

This notation will become clear in the example that follows. Each equa-
tion (4.23) can be treated analogous to what is done to (4.18) in (4.13)
and (4.19). This can be written with matrix notation as

§<Li
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1zT 8% f1 (%4 61%,a)
2 Ox2
Ll|| = max :
1L max : (4.24)
8,€[0,1] 12T B2f, (%+6n%,a)
Ox?

2 €0,Fmax)

[ )]

This expression needs to be simplified, with methods that can be spe-
cific for each problem. The calculations (4.15) and (4.16) are exactly
identical in the vector case.

Example
In this section error bounds are found for the following system.

0.2 sin(x1) + sin(xz) } (4.25)

cos(x1)

f(x)=[

The hypothesis is that the 0.2sin(x1) component is negligible. Hence
the system (4.25) is written as

= [P ] a
and the reduced system as
f(x,a) = [::;gj;] ' (4.27)

A simulation of the nominal system (4.25) compared with the reduced
system (4.27) is shown in Figure 4.10. A simulation of the state error
from (4.9) is shown in Figure 4.11. The Jacobian and Hessian are
needed for the Taylor expansion (4.23).

| of (x, @) [ 0 cos(xz)J

Ox —sin(x1) 0

8 fi(x,a) _ [0 0 }

Ox? 0 —sin(xy)
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4.4 Vector case

05 T T T

02

o1

08¢+

[X:1 3

045 <

02 1

Figure 4.10 Simulation of the original system (4.25) and the reduced system
(4.27). The norm of the state error, e defined in (2.7), is written in the box.

Vector example xTilde 1098-09-27 14.08
[ T T T R T T T T

0.03[ ——  "Real" r_
--- Approximated
o.05| i
a0zt 4
0.0151 -
e} . 4
0.005} ) 9
. " L . . n .
o 0.1 02 03 04 05 06 07 08 0.9 1
x10
0 T T T T T T T T T
~05f B
Rl ™ q
N X
. -1sf ™ b
D
_af N\
D
—2s5f N
3 . . L . L . . . L
o o1 02 03 04 05 08 07 0.8 08 1

Figure 4.11 The state error ¥ caused by reducing the model (4.25) to (4.27).
An approximation of the state error (- -) simulated with (4.9) is compared with
the actual difference (—) between the simulations of (4.25) and (4.27), both
shown in Figure 4.10.
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Vector example G2 1998-08-27 14.08
-

- 1iGilt approximated
16 1|GH| more exact

08
0.6
04

0.2!

0 0.1 02 03 oA 05 08 07 0.8 08 1
Figure 4,12 The maximum gain |G| of the system (4.14) for the vector ex-
ample (4.25). The gain is calculated with (4.15) (o) as well as with (4.16) (—)-

For this vector example (4.16) gives a more conservative approximation than
(4.15).

8% fo(x,a) {—cos(xl) 0]
ox? 0 0

Some approximations of the gain L in (4.24) for the system (4.25) can
be made.

12T B fi(%+61%.a)
= 1 " 1| 6%y (& + 6%, )
~ k )
L = max S Exm,,x maxz ———53?—_‘_‘
147 Fhu(E+0Ea) k=1
2 %%
1. 0 0 —cos(x1 +02%1) O
< =x max + max
= g ma ( 0 —sin(xg+ 01%2) 0 0
< 'Z’imax (1 + 1) = imax (4-28)

The gain G of the system (4.14) is calculated both with (4.15) and
(4.16) and plotted in Figure 4.12. The (4.15) points show that
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4.4 Vector case

Vector example f 1998-08-27 14.07

X 0.8
0.08 05

0.06 06

0.04 04

0.02 0.2

[ 05 t 0 as 1 o 05 1

a, &, a,

Figure 4.13 The different components of f in (4.26). The difference
f(x, @) — f{x, @) is shown in the left plot and the norm ||f(x, a) — f(x, a)|] < 0.1.

Gl <12
In Figure 4.11 % < 0.05 why starting value for &; could be §; = 0.05.

Il el 12|
—fGa) +FGa)] = 1 [GITET = 1= 1zfjo.0s] = 13

The different components of f in (4.25) are plotted in Figure 4.13. The
upper left plot gives gives

| =7F(%a)+f(xa)l|<01 = %] < 0.13
Since 2 = 0.13 > 0.05 = J; the hypothesis ||%]| < 0.05 can not be

verified. A few iterations give that a bound rather close to the best
possible that can be found with this method is %4, = 0.15

1] [tef} 2]
[=FGa)+ f@Eal ~ - @] = 1-nzfjois] =
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|- F(&a)+ f(&a)| <01 = %] < 0.147

Since 8, = 0.147 < 0.15 = 6y the hypothesis ||Z]| < 0.15 can be verified
and it is concluded that Fmax < 0.15.

Conclusion

The calculations done for the scalar case in Section 4.3 are extended
with matrix notation to higher order systems. The notation and meth-
ods are exemplified with a second order example (4.25). An upper
bound on the error X(t) caused by setting ao equal in (4.26) is found.

% < 0.147

4.5 Pendulum example

Now the pendulum example presented in Section 2.3 and Section 2.7
is treated again. The purpose is to find an upper bound on the error,
when the rotating pendulum is approximated by a non-rotating one.
Both models are in (2.10) written with the notation (4.1) ... (4.3).

agxz

. 2 . .
%= f(x,a) = | g% sin2x1 + a1 £ sinx; — ag 4 cos x1 (4.29)

u

a4 I

The Jacobian is identical to (2.20) except for the x2-term but Hessian of
the system is also needed for the error bound calculations. The Hessian
will involve quite complex expressions containing second derivatives of
the control law (2.19) why an approximation of L like (4.28) will be

complicated and lead to high values of ||L]|.

Control law saved

To avoid the problems described above a stored control signal is used.
The control signal (2.19) is used in the simulations in Chapter 2 and
then stored. The simulation in this chapter uses the stored signal, with
no feedback, i.e., open loop control is used. Then the pendulum can not
be balanced in an upwards position. The time interval studied include
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4.5 Pendulum example

Pandutum U fixed x 1888-08-27 13.49

original 0
reduced 0.183 | |

L . L :
] a1 02 03 0.4 a5 06 07

Figure 4.14 Simulation of the original system (4.29) with all a; = 1 and the
reduced system where ag = 0. The norm of the state error, e defined in (2.7), s
written in the box.

only the swing up, not the balancing. The control signal identical to
the first 0.7 second of Figure 2.5 and the resulting trajectory is shown
in Figure 4.14. The state error # are simulated using (4.9) and in
Figure 4.15 compared with the difference between the two simulations
in Figure 4.14.

Jacobian and Hessian

Since the control signal u is independent of the states and the the
reduced model (4.29) with ap = 0 is used, the Jacobian become rather
simple.

e 0 10
—féi’—@ = L%cosxl + Lizsinxl 00
. 0 00

This leads to a Hessian where all of the 27 elements except one is
equal to zero
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Chapter 4. Error Bounds

Pendulum U fixed xTilde 1998-08-27 13.48

o 0.1 02 @3 04 a5 3 0.7
i} 01 02 0.3 0.4 05 0.6 7

0.1 0.2 °3 o4 a5 0.8 07

Figure 4.15 The state error % caused by reducing the model (4.29) by set-
ting ap = 0. An approximation of the state error {- -) simulated with (4.9) is
compared with the actual difference (—) between the simulations of (4.29) and
shown in Figure 4.10. The lower (—) plot is non-zero only for numerical reasons.

% fe g . u
972 _ _ % ginxy+ ——cCcOSX
O0x12 Ly ' 1+Lz 05T

Error bound
The gain of the system is found using (4.15) as well as (4.16), both
shown in Figure 4.16. From the plot can be see that
Gl < 6
From plot Figure 4.17:

| - f(&a)+f(Za) <15

The gain L can be approximated in a similar way to what was done
to the smaller example in (4.24). The maximum value of the control
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4.5 Pendulum example

18 T T

Pendulum U fixed G2 1998-09-27 13.49
T v

T T

IIG!l approximated
[o] O JIGll more exact

Figure 4.16 The maximum gain [|G|| of the system (4.14) for the pendulum
example (4.29). The gain is calculated with (4.15) (o) as well as with (4.16)
(—); (4.16) gives a more conservative approximation.

Pendulum U fixed { 1998-09-27 13.49
1 1 1 1 1
i
05 05 05 05
; - of——o B o
! 05 o5 {os los
- L | -t -t o -1
i ¢ 05 1 8 05 1 o 05 1 0 05 1 0 05 1
1 100 1 11—
-10 05 05
0 50
- -20 o
-10 o
-30 los los
i
| E - - -1 -1 .
. ¢ o5 1 0 05 10 05 1 0 05 1 0 05 1
1 1 1 1 40
0. 5 05 05
s ° 20 A/
o
-05 0.5 +086 0.5

Figure 4.17 The different components of f in (4.29). The difference
f(x,a) = f(x,a) is shown to the left and the norm ||f(x, a) — f(x, &)|| < 15.




Chapter 4. Error Bounds

signal u(f) < 32 from Figure 2.5 is used.

1z P (E+6:%,0)
: o 1 n 152 Fy(F + 014 a)
L = max : < éicmax maxZ -_kﬁ—aﬁi’—— <
127 B fo(E+6nE.0) k=i
2x Ox?
1 —f—z sin(xy + 61%1) + 7 cos (x1+60:1%) 0 0O
< éﬁmax max 0 0 o<
0 0 0
1. +u 1. 10 + 32 .
S Exmax (ng ) _<_ Exmm ( 03 > = T0%max (430)

Figure 4.15 give that Fmax Must be at least around 2. To use the Small
Gain Theorem as in (4.12) it is necessary that |G|l - |L|| < 1. Since
|G|l ~ 1.2 other approximation methods is needed to find an upper
bound on the pendulum example as it is formulated here.

Ideas for future work

More sophisticated approximations of ||L|| than (4.30) could be used.
Knowledge about the trajectory % could be used to get a more tight
approximation of [|L|].

The approximation of the Hessian in (4.30) are dependent on the
parameters g and Le. If a-pendulum with a much larger La were
studied, the approximation of |L|| would give a lower value and an
error bound could be found.

An alternative would be to study a very short time interval. For
a small enough time interval, ||G|| would be small enough to make
|G|l - | L|| £ 1. Then a strict upper bound on the error could be found.

4.6 Conclusions

In this chapter ideas are presented describing how to find an upper
bound on the state error, when certain parameters are neglected in
nonlinear models. Notation is introduced to capture first order as well
as higher order systems. For two small examples error bound are found
that are rather close to the actual error.

80




4.6 Conclusions

The pendulum example presented in Section 2.3 is studied again.
The simplifications on the pendulum model are too extensive to be
captured by an error bound found with the ideas from this chapter.
Ideas for future work are however given, that probably would result
in an upper bound for the pendulum example.
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Conclusions

This thesis studies model reduction of nonlinear models. The models
are linearized around specific trajectories. Then a simplified model is
obtained based on the linearization.

Suppose there is a hypothesis that some parts of the model can be
neglected. A systematic procedure is suggested to estimate the error
caused by the reduction. Optimization is used to adjust remaining pa-
rameters in the model to minimize the error. The algorithm is applied
to two different examples

The first example is a rotating inverted pendulum, shown in Fig-
ure 2.1. An inverted pendulum is connected to a rotating beam. The
acceleration of the pivot point of the beam is considered as the control
signal. The control goal is to swing up the pendplum from downward
to upward equilibrium. It is shown that the pendulum, for the given
swing trajectory, can be quite well approximated by a pendulum on
a cart, shown in Figure 2.2. Further, it is possible to reduce the er-
ror significantly by adjusting remaining physical parameters in the
pendulum model. '

The second example is a drum boiler model. Both a second order and
a fourth order model are studied. Input signals used for identification
of a boiler at Oresundsverket in Malmé are used. For the resulting
trajectory it is possible to reduce large parts of the model, adjust the
remaining parameters and get a model that is almost as correct as
the original one. A drum boiler is a classical control problem. It is
interesting to find out that a reduced model can capture most of the
behavior for a specific trajectory.
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5.1 Future work

The procedures discussed above to estimate the error when reduc-
ing a system involve approximations. Therefor it is not known how
good the estimation is. This thesis also presents ideas about how to
find a strict upper bound for the error. The Small Gain Theorem is
used on the Taylor approximation of the error. This is completed for
small second order examples and the ideas are outlined for larger ex-
amples.

5.1 Future work

The results in this paper leave several questions open for further re-
search.

Error bounds The procedure presented in Chapter 4 gives strict
error bounds for small examples. It would be natural to extend this to
larger examples. The derivations are done for systems in explicit form
% = f(x,t) and could naturally be extended to systems in implicit form
F(x,x,¢) = 0.

Physical interpretation It would be interesting to find a physi-
cal interpretation of the parameter adjustments for the specific exam-
ples. Why can the rotating pendulum be approximated by a shorter
non-rotating one. Why can the volume of steam in the drum boiler be
substituted by a larger volume of water? ’

Fix certain parameters The current matlab code is written for
examples where an adjustment coefficient a; are put in front of ev-
ery remaining parameter in a reduced model, see e.g., Equation (2.2).
The formulas in this thesis however already support the possibility
of putting adjustment parameters only in front of certain parameters.
For physical reasons, it is often natural to fix certain parameters to
one, e.g., ag in (2.10) and a1; and a2 in (3.10). It would be worthwhile
include that possibility in the code.

Several trajectories The estimation of the error and the parameter
adjustment in this paper is optimized for one trajectory. It would be a
natural extension to optimize over several trajectories simultaneously.
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Chapter 5. Conclusions

Then it could be possible to draw conclusions about the validity of the
reduced model for an operating region or a class of input trajectories.
Algebraic constrains The inverse of the Jacobian % is used in
(2.12) to estimate the error. If the function F in (2.1) is independent
of the derivatives of some states %;, then the Jacobian will not be
invertible and the derivations done in this thesis would need to be

modified. Such models could then be written on the form
. {Fl(fc(t),x(t))]
Fy(x(t))

and a slightly modified version of the calculations would solve also this
case.

Stability It would be useful to characterize how the stability prop-

erties of a system are affected when applying to the methods developed
in this thesis.
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Paper 1

Implementation aspects of the PLC
standard IEC 1131-3

Martin Ohman Steofan Johansson
Karl-Erik Arzén

Abstract 1EC 1131-3 is a standard for PLCs defining four program-
ming languages and a type of Grafcet, Sequential Function Charts
(SFC). An object oriented prototype of SFC and the language Function
Block Diagram has been implemented. Various execution methods are
discussed. Algorithms for local and global sorting are implemented and
evaluated. The standard is found to be unclear in some parts.

Keywords Grafcet, IEC 113 1, Programmable logit controller, Stan-
dard.

1. Introduction

Programmable logic controllers (PLCs) are specialized computers, wid-
ely used in industrial automation. IEC 1131-3 is a standard defining
four programming languages used in PLCs. This paper concerns the
Function Block Diagram (FBD) and Sequential Function Charts (SFC)
parts of the standard. It is based on a project Johansson and Oh-
man (1995) where the purpose was to make a prototype implemen-
tation of the standard and evaluate different implementation aspects.
The standard is described in Section 2. The order of execution between
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FUNCTION D : BOOLEAN

VAR_INPUT
A, B, C : BOOLEAN;
END_VAR

1D A
OR B
AND C
ST D

END_FUNCTION

Figure 1. Instruction List

function blocks and SFC is discussed in Section 3. In Section 4 the pro-
totype implementation is described. Different implementation aspects
and alternatives are discussed. An example is shown in Section 5.

2. IEC 1131-3

This section describes IEC 1131 IEC (1995b), a PLC standard defined
by the International Electrotechnical Commission (IEC). The standard
contains five parts. This paper concerns part three, describing the pro-
gramming languages. )

IEC 1131-3 defines four different language paradigms, SFC, and
program organization units. The standard also specifies their repre-
sentation, and rules of evaluation.

Programming languages

The four defined language paradigms are described in this section.
They are illustrated with an example, written in all four languages.

Instruction List The instruction list language is similar to assem-
bly code with commands like LOAD and STORE. An accumulator is
used to store results. This language corresponds to the programming
technique that has traditionally been used in PLCs. The Instruction
List language is shown in Figure 1.
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2. IEC 1131-3

FUNCTION D : BOOLEAN
VAR_INPUT
A, B, C : BOOLEAN;
END_VAR
D := A OR B AND C;

END_FUNCTION

Figure 2. Structured text

A Cc D

A ()
_{B}_?

Figure 3. A ladder diagram

Structured Text The structured text language is similar to Pas-
cal. It has sequential statements, conditional statements like IF and
CASE and repetitive statements like FOR ... DO ... END_FOR and
REPEAT ... UNTIL. The Structured Text language is shown in Fig-
ure 2.

Ladder Diagram The ladder diagram language specifies how to
use relay ladder logic diagrams to implement boolean functions. This
is'a common language in modern PLCs. The Ladder Diagram language
is shown in Figure 3.

Function Block Diagram In the function block diagram language,
all functions, inputs and outputs are represented as graphical blocks.
They are connected with lines representing the data flow. The direction
is always from left to right except in feedback paths. The Function
Block Diagram language is shown in Figure 4.

According to the standard it shall be possible to do jumps in all
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OR

wo {5 ]
KNy

Figure 4. A function block diagram

--7 ¥

el Program 2
FB2 FB3

Figure 5. Program Organization Units.

languages. It is probably not so good to do jumps in the FBD language.
The guidelines IEC (1995a) also advises against that.

Program Organization Units

Independent of the choice of language, PLC programming according to
IEC 1131-3 uses three program organization units: functions, function
blocks and programs. They are supplied by the manufacturer or defined
by the user. A unit can not be recursive, i.e., it can not call itself.
Figure 5 shows how the units function together.

Functions Functions have one or more inputs but only one output.
A function can not store any state information, i.e., executing a func-
tion with certain values on the inputs always gives the same output
value. Functions can be hierarchically defined by using already defined
functions. A function can be extensible, meaning that the user can de-
cide the number of inputs. The standard does not state if the user
has to specify the number of inputs when the function is created or if
the number can be changed during the lifetime of the function. Func-
tions are either typed (operate on a specified data type) or overloaded
(operate on different types).
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2. IEC 1131-3

Function blocks Function blocks can have several inputs and out-
puts. They can store state information so the values of the outputs
depend on previous values.

The user must give each instance of a function block a unique name.
Function blocks can be hierarchically defined by using already defined
functions and function blocks.

The standard specifies that there can be multiple instances of fune-
tion blocks. Probably also functions can have multiple instances.

Programs Programs are built up by functions and function blocks.
Programs do not have inputs or outputs.

Tasks

The execution of programs and function blocks is controlled by tasks.
The standard does not specify whether the scheduling of tasks should
be preemptive or non-preemptive. A task can control more than one
program organization unit and a program organization unit can indi-
rectly be controlled by more than one task, as FB1 in Figure 5. If they
try to execute at the same time and if preemptive scheduling is used,
the implementation must ensure that mutual exclusion is obtained.

A task has three inputs: single, interval, and priority. It can execute
once on the rising edge of single or periodically with the period time
of interval. The priority of the task is set by priority.

Sequential Function Charts

A Sequential Function Chart (SFC) is an extended state machine, also
known as a Grafcet David and Alla (1992). In the standard, SFC is
a way of structuring programs and function blocks. A unit that is not
structured is said to be a single action, executed continuously.

An SFC consists of two main elements, steps and transitions, shown
in Figure 6. Steps can be active or inactive. The state of the SFC is
determined by which steps that are active. A transition has a boolean
input, transition condition, that can be described by any of the four
languages or by a boolean variable. A transition will fire when the
step above it is active and the transition condition is true. SFC in IEC
1131-3 does not support macro steps, as Grafcet normally do. An SFC
can contain parallel and alternative paths, shown in Figure 6.
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Transition \ D :L

~

i

Step —

T\

Figure 6. SFCs with alternative (left) and parallel (right) paths.

Actions It is possible to associate an action with a step. An action
can be a single boolean variable, be described with one of the four
programming languages or with an SFC. All actions must have unique
names.

Action blocks Action blocks are used to associate actions with steps.
An action block has a boolean input that indicates when the associated
step is active. Each action block is associated with an action. Steps,
actions and action blocks relate in the following way:

o A step can be connected one zero or more action blocks.
o Each action block is connected to one step.
e Each action block is associiated with one action.

e Each action is associated with one or more action blocks.

Figure 7 shows that the boolean action A2 is associated with the
action blocks AB1 and AB3. The non-boolean action Al is constructed
directly in the action block AB2 and associated only with that action
block.

Action qualifier An action block uses an action qualifier to control
the action. The action will execute depending on the action qualifiers
on the associated action blocks and the status of the associated steps.
The different action qualifiers are shown in Table 1.

Figure 7 shows action blocks, action qualifiers and actions.
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Non-stored The action is active

while the action block is active.

Stored The action is activated when

the action block becomes active.

Reset The action is deactivated when
the action block becomes active.

Limited The action is activated when
the action block becomes active and is
deactivated after a certain time or
when the action block becomes.

inactive.

Delayed The action is activated a
certain time after the action block
becomes active and is active as long
as the action block is active

Pulse The action is active for one
clock cycle when the action block is
activated.

SD

Stored and delayed The action is
activated a certain time after

the action block becomes active.

DS

Delayed and stored The action is
activated a certain time after

the action block becomes active if the
action block is still active.

SL

Stored and limited The action is
activated when the action block
becomes active and is deactivated

after a certain time.

Table 1. Action qualifiers
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1 .
action qualifier action block
' .

| AB2
N| Al
Z F83

/
boolean action

Figure 7. An SFC with action blocks, action qualifiers and actions.

3. Execution order

This section deals with the execution order between funections and func-
tion blocks, SFC-elements, action blocks, and actions. This is not well
specified in the standard. It is stated that no element shall be evalu-
ated until the states of all its inputs have been evaluated. The authors
believe that this leads to the following execution order, shown in Fig-
ure 8:

1. Function blocks connected to a transition.
2. Steps and transitions.
3. Action blocks and non-boolean actions.

4. Boolean actions.

Another idea would be to execute steps and action blocks in the
same phase, only executing action blocks connected to active steps. .
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1
[ ]
s1 s| a2 A2
| AB1
o N[ Al
A2 AB2
s3 —{R[ A2 ]
AB3
FB2
1 2 3 4

Figure 8. The execution order of functions, function blocks, steps, transitions,
action blocks, and actions.

This method would however cause problems with for example the ac-
tion qualifier "stored". Then the action block shall be executed also
after the step has been deactivated.

Sequential Function Charts

The standard specifies that all steps should be updated synchronously.
This could be achieved by going through all the steps twice. First it is
checked which steps can be activated and they are marked with a flag
"next", see Figure 9. Then all marked steps are activated. The order
in which the steps are treated is not important. This method makes
sure that each token can pass only one transition at a time.

Iéunction blocks

Functions and function blocks are executed so that the dataflow goes
from left to right. One way of storing the determined execution order
is to insert the functions and function blocks in a dynamic list. The
standard states that functions and function blocks can be hierarchicly
defined. It is not specified in the standard if such a function or function
block shall be considered as a fixed unit or if its internal structure
can be changed. If a unit has a hierarchical structure, the execution
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T 1

Next=False

True ————}——
®

True —'_'!—

Next=True

Next=False

False

Figure 9. Execution of an SFC.

yd

Figure 10. The function block list of the function block diagram in Figure 14
and the local list of FB4.

order can be dealt with in two ways: local and global sorting. It is not
specified which one should be used.

Local sorting In local sorting each hierarchical function block have
its own list containing the functions and function blocks in its internal
structure. Figure 10 shows the main function block list of the FBD in
Figure 14 and the local list of FB4.

The main advantage with local lists is that if changes are made in a
hierarchical function block, only a new local list for that function block
has to be built. This corresponds to separate compilation of program
units.

Global sorting In global sorting one has a global function block
list for each top level function block containing function blocks at all
levels. No hierarchical function blocks are inserted in the lists, only the
function blocks on their subworkspaces. Figure 11 shows the global list
of the FBD in Figure 14. Note that FB4 is not in the list.
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G Ry

Figure 11. The global function block list of the function block diagram in
Figure 14.

1

Lo-a
-
-FB2.2- iFB4
[P |

(EB1 B2, —{FB3} B2 —{FBd]

Figure 12. A loop is removed by using global lists.

The main advantage with global lists is that imaginary loops that
seem to exist from a local point of view are removed. If the function
block diagram in Figure 12 would be sorted locally, the user would
have to insert a loop element (described in Section 4). The global list
shows that this is not needed with global sorting. Removing loops gives
you a faster implementation by saving clock cycles.

A disadvantage with global lists is that the implementation is more
complex. When a hierarchical function block is disabled, all function
blocks in its internal structure should be disabled. If they are spread
out in a global list this will be difficult.

An Example PID controllers are commonly used in industrial con-
trol systems. In 1131-3 a PID controller is naturally implemented as a
function block that has reference signal y,, s and measured variable y
as inputs and the control signal v as output. However, if actuator sat-
urations are not taken care of in the right way, the result is integrator
(reset) windup, which influences the control performance negatively.
A common solution to integrator windup is known as tracking. The
approach is based on feeding back the saturated control signal to the
PID controller and to change the integral term in the controller in such
a way that the control signal generated from the controller will equal
the output saturation.
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yref PID Limit |
Calculate Qutput ‘

y

E— Update State

Figure 13. A PID controller.

Hence, tracking requires an additional input to the PID controller,
the saturated output, often denoted u. Tracking also means that it is
not possible to update the controller state until the saturated output
is known, e.g. has been calculated. Sometimes the saturation limits
are known in the PID controller but not always. For example, the
PID controller may be a part of a cascade construct, or the actuator
saturation is calculated in a special limit block, as shown in Figure 13.

The PID function block is internally decomposed into two blocks:
CalculateOutput and UpdateState. The only sorting strategy that will
give the correct behavior from a control point of view is global sorting.
Using that strategy the execution order will be PID:CalculateOutput,
Limit, PID:UpdateState. Using local sorting the old value of u will be
used in the calculation of UpdateState, i.e., an unnecessary delay of
one sampling interval is introduced.

General execution algorithm

Combining the discussions above gives the following general execution
algorithm:

e For each function or function block (sorted locally or globally).

~ Read inputs.
- Execute function block.
—~ Write outputs.

— Propagate output to connected function blocks.

o For each step.
~ Check if the step can be updated.

e For each step.
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4. Implementation

— If the step can be updated.
x Update the step.
— Write to action block.

e For each action block.

~ Determine if the associated actions shall be active.
- Possibly execute associated non-boolean actions.
~ Write to boolean actions.

e For each boolean action.

- Update the action.

4. Implementation

In this section the prototype implementation is described. The imple-
mentation is done in G2, a graphical and object oriented programming
environment from Gensym Corporation. G2 was chosen since it is good
as a rapid prototyping tool. Different implementation methods are dis-
cussed. Most ideas can be used generally, when working in an object
oriented environment. Some solutions, however, are G2 specific.

A hierarchy of classes containing tasks, function blocks, connec-
tions, steps, transitions, action blocks, actions, and global variables
has been developed. The user constructs the programs on a workspace
with graphical objects that are instances of these classes. Class defini-
tions and methods are hidden for the user.

Function blocks

Since programs and functions can be seen as special cases of function
blocks, only function blocks have been implemented. Programs are im-
plemented as function blocks with no inputs or outputs and functions
as single output function blocks without internal state information.
Figure 14 shows a function block diagram.

To determine the order of execution between function blocks, a list
is built when a task is initialized. The function blocks are inserted in
the list in the correct execution order. Each function block is placed in
the list after the function blocks connected to its input.
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FB4.1

Figure 14. A hierarchical function block diagram.

Hierarchical function blocks

Hierarchical function blocks have a subworkspace where their internal
structure is defined, see FB4 in Figure 14. G2 automatically makes a
link from the function block to its subworkspace. It would be natural
to include the internal structure in the class definition, but this is not
possible in G2.

Hierarchical function blocks are inserted in execution lists using
either local or global sorting.

Algebraic loops

The order in which the function blocks are executed must follow specific

rules. A function block can not be executed until the function blocks

connected to all its inputs have been executed. This rule causes prob- ,

lems when building a loop. In Figure 15 FB1 must be executed before .

FB2 to give the input of FB2 a value. For the same reason FB2 must

be executed before FB1. This problem is called an algebraic loop. ‘
The problem is solved by introducing a so called loop element. The ;

user decides where to break the loop and insert a loop element. A loop (

element has the special property that it can be executed before function

blocks connected to its input. It reads the old value from the input

and writes it to the output. Therefore, the user can use them, instead }

of variables, as a memory. In Figure 16 the algebraic loop problem is <
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Figure 15. Algebraic loop.

Figure 16. Loop element.

solved by inserting a loop element and FB1 can now be executed before
FB2.

Sequential Function Charts

SFC elements include steps, transitions and branches. Branches are
used to build alternative and parallel paths. All the elements have
methods, used to determine whether a step should be activated or
deactivated.

All steps and transitions have an input and an output, used to
connect them with each other. Steps are represented graphically as
rectangles. A filled red circle indicates when a step is active. The state
of the step is written to a boolean output that can be connected to an
action block.

Transitions are represented graphically as a horizontal bar. They
have a boolean input that acts as a transition condition. Figure 17
shows an SFC.
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Figure 17. An SFC with steps, transitions, action blocks and actions.

Giobal variables and actions

Global variables of different data types are implemented. Actions are
a subclass of boolean variables. To get the value of a variable, spe-
cial get-var functions are used. If the action only function as a boolean
variable it has a graphical representation and is placed on an arbi-
trary workspace by the user. If the action is defined with function
blocks or SFC, however, it is constructed on a subworkspace of that
action block and can then be associated only with that action block.
The standard defines when an action should be active depending on
the action qualifiers of the associated active action blocks. This fune-
tionality is implemented in a method of the class action.

When an action is defined on the subworkspace of an action block,
the action block functions like a hierarchical function block with an
enable signal associated with the action. The function blocks on the
subworkspace should only be executed when the action block is en-
abled. This is solved by placing those function blocks in local lists even
when the rest of the resource is sorted globally, i.e., total global sorting
is not implemented.
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4. Implementation

Figure 18. A test example.

[} —>{NoT}—{NGT}—~{NoT}—{NOT}—={NoTh—| ]

Figure 19. The function block list list of the test example in Figure 18,

Tasks

To control the tasks a task handler is defined. Each time unit the task
handler decreases a counter in each task. When the counter reaches
zero the task will execute and reset the counter to the execution inter-
val.

When a task executes it runs all its associated function blocks.
Hence, a link from the task to the associated function blocks is needed.
A natural solution would be to let the task have a static list of pointers
to all its function blocks, but G2 does not support pointers. Instead,
each function block stores the name of its task and when a task is
activated G2 effectively inserts all associated function blocks in a list.

Execution procedure

Execution of elements could also be handled by replacing the lists with
a procedure that would be generated automatically when the task is
activated. The list would contain the code from all the function blocks,
inserted in the correct order, using either local or global sorting. Each
time a task is executed it would only execute the procedure. A small
example was made to evaluate the time difference, see Figure 18.

The execution time between a function block list, Figure 19, and
a procedure, Figure 20 when executed 100 000 times were compared.
Execution with the list took 112 s and with the procedure 7 s. This
shows that there is a lot to gain using procedures.

Asynchronous dataflow

Another solution would be to let the execution be asynchronously con-
trolled by the data flow. Each function block would then be executed
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begin

true;
not (x);
not (x);
not (x);
not (x);
not (x);

MoW oMM M
non

o

end;

Figure 20. The procedure of the test example in Figure 18.

as soon as the value of any of its inputs is changed. This does not
correspond well to the standard since it is stated that each function
block should be executed every task cycle, independently of if its input
values have changed or not.

5. An Example

This section describes how FBD and SFC could be combined in a larger
and slightly more realistic example. The process is simulated in G2.
Figure 21 shows the process that contains a tank, a pump, a valve and
a heater. A

The example contains two PID-controllers, one controling the level
of the tank and one controling the temperature. To increase the level
the pump is used and to increase the temperature the heater is used.
The valve is used to decrease the level. If the valve is open and the
level is kept constant, new cold water must be added. This means that
the valve is used indirectly to decrease the temperature. The reference
value of each controller is set by an action. The action fill sets the
reference level to 15, while the default value is 5. The action heat sets
the reference temperature to 30, while the default value is 20.

The main process loop is represented as an SFC, shown in Fig-
ure 22. In the initial step fill is activated and starts to fill the tank.
When the tank is filled to the level 10 the step will be deactivated
and the two steps in the parallel paths will be activated. The left step
keeps the action fill active so that the level is kept around 15. The step
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QrEN

TANK-CONTROL:

Figure 22. The main process control

6. Conclusions
The standard IEC 1131-3 contains most of the needed information but

is sometimes not easy to understand. It is well specified how SFC and
FBD function separately, but not so well how they function together.
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The execution order between function blocks and SFC elements is the
most unclear part the standard. Probably, the parts of a FBD connected
to transitions should be executed before an SFC and parts associated
with actions after the SFC.

In the prototype implementation, all function blocks are sorted into
lists before they are executed. Algorithms for sorting the lists locally
or globally are implemented. Local sorting was found to be easier to
implement. However, global sort is necessary if artificial time delays
are to be avoided.

For a small example, a single procedure is written with the code
from all the function blocks in a function block diagram. The program
executed an order of magnitude faster with this method. It would be
interesting to implement methods for generating such procedures,

The programming environment G2 is useful as a prototype tool
since it is easy to learn and work with. Since it is slow and quite
expensive, it is however unrealistic to use it for real PLCs.
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TEMPERATURE-SEQUENCE

TEMPERATURE-CONTROL:

Figure 23. The control of the temperature sequence
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