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Abstract 

Percolation of a fluid into a porous material is modeled by using 
a mixture theory defined within modern continuum mechanics. The 
phenomenon referred to as capillary suction has many negative effects 
on materials used in building constructions. For example, the mass 
concentration of liquid water and its percolation velocity in aporous 
material, such as eonerete, are essential factors when the dissolved ion 
concentrations within the pore solution are of interest. Other examples 
are the swelling of the porous material due to the presenee of capil­
lary water eventually contributing to cracks in the material. A model 
in which the velocity and the mass density in the percolating fluid, 
and the stress in the solid can be calculated is developed. Two test 
examples are solved using the finite element method. There is good 
agreement between experimental observations on less dense materials, 
such as concrete and sandstones, and the simulations performed. 

1 Introduction 

The capillary suction of fluids in porous materials is most often treated as a 
potential flow. The governed equation to be solved is then Fick's second law 
with a strong non-linearity of the parameter relating the mass density flow to 
the gradient of the mass density. Here another approach is studied, namely, 
a compressible viscous fluid which is percolating the pore structure due to 
differences between the stress in the outer fluid and the fluid present within 
the material. The fluid is assumed to be subjected to loss of momentum 
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due to the 'friction' forces induced by the liquid-pore wall interfaces. This 
momentum loss is constituted to be proportional to the difference between 
the fluid velocity and the velocity of the solid in which the fluid is sucked. 

The assumed symmetric partial stress tensors for the fluid and the solid 
are constituted in a classical fashion. The Navier-Poisson law of a Newtonian 
fluid is assumed and a linear elastic solid with assumed small displacements 
and rigid-rotations is adopted. The thermodynamic equilibrium pressure in 
the fluid (which is independent of the velocity gradient) is assumed to depend 
on the mass density of the same fluid in a given pore structure, i.e. the pore 
structure is characterized in terms of the pore-size distribution assuming 
straight cylindrical pores together with an assumption of the wetting angle 
between the liquid-air interface and the solid pore wall interface. That is, 
the concept of capillary pressure based on the so-called Laplace formula, e.g. 
compare [1], can be used. The partial stress in the solid is also assumed to 
be dependent on the mass density of the fluid within the pore structure from 
a fixed state where no swelling exists. 

The strategy is, loosely speaking, to solve the momentum balance equa­
tion and the constitutive equations for the fluid in terms of the velocity fields. 
The 'known' velocity field of the fluid together with the mass balance equa­
tion can then be used to calculate the mass density for the same fluid without 
specifying any new constitutive equations, i.e. no mass exchanges between 
the fluid and the solid are considered. The 'known' velocity field and mass 
density of the fluid can, further, be used to calculate the displacements in 
the solid by using the momentum balance and constitutive equations related 
to the solid. Obviously, a quite complex equation system has to be solved 
compared to the standard potential flow equations of ten adopted to model 
capillary suction. However, it is my belief that results from simulation using 
different theories and strategies can contribute to an increase in our knowl­
edge of real physical phenomena taking place. Therefore this more complex 
equation system will be established and solved. The results are compared to 
measured responses found in concrete specimens subjected to water uptake. 

The mixture theory described in [2] will be used to develop the model. It 
should be noted, however, that mor e detailed mixture theory approaches have 
been developed recently. One of them is the hybrid mixture theory which 
is a combination of 'classical' mixture theory (described at macroscale) and 
averaging of microscale balance equations, e.g. see [3] and [4]. Another simi­
lar approach based on hybrid mixture theory has also been developed where 
balance equations are also postulated for interfaces between different phases 
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in a mixture [5]. This approach has been used to model swelling and shrink­
ing systems where interactions between various phases playa significant role. 
It is believed that the capillary suction phenomenon is a problem where the 
behavior of the interfaces of the liquid and the solid is crucial. Here, however, 
the mixture theoryas described by Bowen [2] will be used, which is a theory 
developed at macroscale without any explicit considerations of microscale 
and interfaces between different phases. Therefore the effect of the physical 
behavior at microscale and mesoscale and the effect of interfaces at these 
scales must rather be incorporated in the introduced material coefficients 
directly at the macroscale. 

It will be shown that the experimentally verified (global) response in terms 
of capillary suction of water into materials such as less dense concretes and 
sandstones can be obtained by using the model to be presented. One problem 
related to the model is that a quite complex non-linear equation system 
must be dealt with. Further, some uncertainties concerning the choice of 
physically sound boundary conditions in the momentum equation describing 
the percolating fluid must be dealt with. 

Percolation velocities and moisture content due to capillary suction of 
water into porous materials, such as concrete, are factors related to the de­
termination of the service life of surfaces in outdoor building constructiollS. 
Such issues are discussed in [6]. 

2 Mass and Momentum Balance for individ­
ual constituents in a mixture 

In this section the mixture theoryas described in [2] will be used. Far fr011l all 
aspects of this theory will be discussed in this work. The main strategies Ull 
which the mixture theory is developed may, however, be of importance. TIll" 
mixture theory rests on three so-called metaphysical princip les as descrilH'd 
by Truesdell, e.g. compare [7]. These principles are, (i) all properties of till" 
mixture must be mathematical consequences of properties of the constituell!. 
(ii) in order to describe the motion of a constituent, we may in imaginatioll 
isolate it from the rest of the mixture, provided we allow properly for actiOll:-­
of the other constituents upon it, (iii) the motion of the mixture is governc( l 
by the same equations as is a single body. 

Mass balance for an individual constituent present in a mixture may be 
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formulated in loeal form as, e.g. eompare [2], 

a = 1, ... , at, (1) 

where Pa (x, t) is the mass density of an arbitrary eonstituent denoted a. 
The total number of eonstituents is denoted at. The veloeity of the a:th 
eonstituent is denoted x~ (x, t) and Ca denotes the mass exehange rate to the 
a:th eonstituent from all other eonstituents present in the mixture. Due to 
the mass balanee for the whole mixture one must assure that there is no 
net production of mass in a material point, i.e. 2:~=1 Ca (x, t) = O. The 
derivative åPa/ åt denotes the spatial time derivative of the mass density of 
the a:th eonstituent. 

In the eapillary suction problem to be studied, no mass exehanges will be 
considered. That is, the equation (1) simplifies to 

a = 1, ... , at, (2) 

The mass balanee for the whole mixture in loeal form is the postulate 

åp d' ( ') - = - IV px 
åt 

(3) 

where je is the mean veloeity or simply the veloeity of the mixture and p is 
the mass density of the mixture. The mean velocity is defined as je (x, t) = 

~ 2:~=1 Pax~ (x, t) and the mass density of the mixture is defined as p (x, t) = 

2:~=1 Pa (x, t). 
The momentum balanee for the a:th eonstituent in loeal form is the pos­

tulate 

åx~ [d '] I d' T h A PaTt + Pa gra x a X a = IV a + Pa a + Pa; a = 1, ... , at, (4) 

where åx~/ åt denotes the spatial time derivative of the veloeity x~. The 
stress tensor for the a:th eonstituent is denoted T a and ha denotes the body 
force density. The term Pa represents the so-ealled momentum supply whieh 
models the interaction of thermodynamie forees among the eonstituents. The 
stress tensor T a is indeed allowed to be non-symmetrie when adopting the 
mixture theoryas deseribed by for example [2]; here, however, it will be 
explieitly assumed that T a is symmetrie, i.e. T a - T~ = O. In order to assure 
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that a summation of the equation (4), for all ~ constituents, is identical to the 
momentum balance for the whole mixture one must assure that L~=l Pa = 0, 
which is the proper condition for the mixture in situations when no mass 
exchanges between constituents are considered. 

The momentum balance, in local form, for the whole mixture is the pos­
tulate 

åx [ d oJ ° d p åt + p gra x x = iv T + pb (5) 

The total stress tensor for the whole mixtur e is denoted T and is defined 
as T (x, t) = L~=l (Ta + PaUa 0 ua) where Ua is the diffusion velocity of 
the a:th constituent. The diffusion velocity U a is defined as U a (x, t) = 
x~ (x, t) - x (x, t), i.e. U a is the velocity for the a:th constituent related 
to the velocity of the mixture X. The somewhat complex definition of the 
total stress tensor T is a direct consequence of requiring the momentum bal­
ance for the individual constituents, i.e. equation (4) to be compatible with 
the postulated momentum balance for the whole mixture, i.e. equation (5). 
The body force vector b is simply defined as the mass weighted sum of the 
individual body force vectors, i.e. b (x, t) = ~ L~=l Paba (x, t). 

3 Constitutive relations for the capillary suc­
tion problem 

The general concepts for developing constitutive relations will be used to 
model the problem of capillary suction of a viscous fluid into a porous ma­
terial. These general concepts consist of restrictions imposed by the second 
axiom of thermodynamics, restrictions imposed by the axiom of material 
frame-indifference and finally the restrictions imposed by material symmetry. 
In this case only isotropic material functions will be studied. The concepts 
from the second axiom of thermodynamics will only be utilized to confirm 
the generalization of the Stokes relation, i.e. the relation between the vol­
umetric viscosity and the shear viscosity. This relation assures that the 
dissipation due to the appearance of the stress power in the fluid is always 
a non-negative quantity, i.e. tr(T fD f ) 2: O. The combined effect of material 
frame-indifference and isotropic material functions means, further, that the 
stress tensor for the assumed isotropic solid and the assumed isotropic fluid 
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are described with two material parameters only, i.e. the so-called Lame's pa­
rameters. Furthermore, the axiom of material frame-indifference can be used 
to show that the momentum supply cannot depend on the velocity. However, 
by the same axiom it can be proven that velocity differences among different 
constituents (in this case the velocity difference between the fluid and the 
solid material) can be used to relate constitutive dependent and independent 
properties and still satisfy the frame-indifference axiom, compare [2]. 

The 10 introduced constitutive independent properties in the studied cap­
illary suction problem are 

x~ (x, t) ; 
Pi(x,t); 
x(x,t); 

x: (x, t) ~ O 
Ps (x, t) ~ const. 
W s (x, t) 

(6) 

where x~ and x: are the velocity of fluid and solid respectively. The mass 
density concentrations of the same two constituents are denoted by P i and 
Ps, x is the velocity of the mixture, and W s is the displacement vector of the 
solid. 

The 25 introduced constitutive dependent properties are the mechanical 
properties 

Tf(x,t); 
Pi (x, t) ; 
"Trj (x, t) 

Ts(x,t) 
Ps (x, t) (7) 

where Tf and T s are the non-equilibrium part of the stress in the fluid (i.e. 
stresses due to velocity gradients only) and the stress tensor for the solid, 
respectively. The properties Pi and Ps denote the corresponding momentum 
supplies of the two constituents, and "Trj is the equilibrium thermodynamic 
pressure in the fluid. In other words, a total of 35 unknowns are searched for 
in this specific model. 

The constitutive dependent properties in (7) are assumed to be related 
to the constitutive independent properties in (6), by the following general 
format 

(Tj,"Trj,Ts,Pi'PS) =f(gradx~, gradws, grad Pi' x~-X:,Pi) (8) 

There are 6 momentum balance equations for the fluid and 6 momentum 
balance equations for the solid when assuming symmetric partiai stress ten­
sors. From the mixture theory one also has 3 equations for the momentum 
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supplies, i.e. Pf = -Ps· Finally, one mass balance equation is introduced. 
That is, in total 16 balance equations are available. That is, 35 - 16 = 19 
constitutive relations are required. Assuming, further that x: (x, t) ~ O the 
definition x (x, t) = ~ L:~=l Pax~ (x, t) gives that x (x, t) ~ E;x~ (x, t) which 
reduces the required number of constitutive relations to 16. 

Assuming the partiai stress tensor T f for the fluid percolating the pore 
structure to be symmetric and to be dependent on the symmetric part of the 

velocity gradient D f=! (grad x~ + (grad x~ ) T) and on the thermodynamic 
pressure 1ft, the constitutive relation for the 6 stress components must be of 
the form 

(9) 

which follows from the requirement of objectivity for symmetric tensor func­
tions. The material parameters Af and /Jf represent the volumetric viscosity 
and shear viscosity of the fluid, respectively. Due to the second axiom of 
thermodynamics Af and J1f must be related as 

and (10) 

which is a generalization of the Stoke's relation, i.e. Af = -~/Jf. 
The equilibrium pressure 1f f is a thermodynamic pressure which can be 

a function of the mass density of the fluid present in the material and a 
function of tr(Es ), where E s , see equation (14), is the strain tensor. The 
term tr(Es ) is an invariant measure representing the volume of the solid with 
respect to a reference volume. The following constitutive assumption is used 
for 1f f: 

(11) 

By assuming K,fs to be a function ofthe pore distribution curve, for a certain 
material, the stress in the fluid, induced by curved water-air interfaces, can be 
introduced as a smeared pressure directly on the macro-scale. The inclusion 
of the second term on the right-hand side of (11) is due to the effect of 
the strain in the solid changing the Kelvin radius, i.e. the curved water-air 
interface is changed when the solid is strained. 

The momentum supply between the fluid and the porous material is the 
constitutive relation for the three supply components 

(12) 
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where ~fs represents a material parameter which relates the momentum sup­
ply for the fluid to the velocity of the fluid relative to the velocity of the solid. 
The first term on the right-hand side of (12) is of ten referred to as the Stokes 
drag formula. The inclusion of the second term {)jsgradpj can be argued for 
by imagining a body submerged in a fluid. The body will experience a force 
proportional to the density difference between the body and the fluid. The 
physical argument is that in the limit of a large number of submerged bodies 
this force is proportional to the density gradients of the constituents in the 
resulting mixture. The term {)fsgradpf in (12) can, therefore, be referred to 
as a buoyancy force, although this force has nothing to do with the absence 
or presence of a gravitational force. 

The 6 stress components for the solid porous material are assumed given 
by the constitutive function 

(13) 

where E s is the linear strain measure for the solid valid for situations with 
small displacement gradients and small rigid body rotations, i.e. 

(14) 

where w s = W s (Xs , t) = Xs (Xs , t) - X s is the displacement of the solid. The 
current place x is given by the deformation function Xs as X S (Xs , t) = x 
and X s represents the initial configuration of the solid. The operator GRAD 
denotes the gradient with respect to the initial configuration X s . 

Finally, it is noticed that the equation system is closed since the 16 re­
quired constitutive relations are introduced. That is 6 constitutive relations 
for the solid stress components and fluid stress components, respectively, and 
one constitutive equation for the thermodynamic equilibrium pressure, and 
3 equations for the momentum supply components. 

4 Governing equations 

The momentum balance for the fluid, compare equation (4), and the consti­
tutive relation for the partiaI stress tensor Tf, i.e. (9) where the volumetric 
viscosity )..f = 0, and the constitutive relation (12) for the momentum supply 
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P f combine to yield 

ax~ 
Prat -Pf [gradx~] x~ 

+div (- (K,fsPf + '"Y fs tr (Es)) 1+ 2/-tfDf ) 

+Pfbf - ~fs (x~ - x~) - {)fsgradpf 

(15) 

where the assumption for the thermodynamic pressure has been inserted, i.e. 

(16) 

which is equation (11) repeated. The argument for setting Af O when 
,the fluid constituent has a symmetric stress and no mass exchanges with 
other constituents will be explained in the following. The mass balance for 
the fluid in the conditions described ab ove , i.e. T f = TJ and ef = O, can 
be expressed as trDf = -p~/ Pf' where P~ is the material time derivative 
following the motion of the fluid constituent. The value of P~ is in this model 
allowed to deviate significantly from zero, making also trD f =I- O. The value 
of trDf will, however, be assumed not to contribute to any stresses in the 
fluid. This is the argument for setting the volumetric viscosity A f equal to 
zero and still allowing for the mass density of the fluid in a representative 
volume of the solid to be changed during the capillary suction process. 

The momentum balance equation for the solid, e.g. compare (4), com­
bined with the equations (12) and (13) gives 

O = div(As(trEs)I+2/-tsEs-Ts,6,PfI)+psbs (17) 

+~fs (x~ - x~) + {)fsgradpf 

where Pf - pj = ,6,Pf and where Pf = -Ps has also been used. In (17) the 
dynamic effects have been assumed to be negligible compared to the other 
terms. 

The equation for determination of the mass density field Pf (x, t) of the 
fluid is simply the mass balance equation (3), i.e. 

apf . I I at = -Pfdlvxf - x f . gradpf (18) 

The boundary conditions to be used are not given by simple arguments 
in the studied capillary suction phenomena. The main problem is that the 
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thermodynamic pressure cannot be directly measured at the boundary. It 
is therefore difficult to argue for a certain choice of a value of a driving 
thermodynamic pressure at the boundary. It seems reasonable, however, to 
choose an essentiaI boundary condition for the mass density of the fluid at 
the boundary surface exposed to capillary suction. This value should be the 
mass density of the fluid corresponding to a saturation of the pore space 
available for the capillary sucked fluid. 

5 Finite element formulation in one dimen-. SIon 

In order to illustrate the solution behavior of the proposed equation system 
a numerical method must be adopted. Here a finite element formulation will 
be discussed. A one-step time integration scheme will be used as described 
in, for example, [8] and [9]. This time stepping scheme allows for both truly 
explicit and implicit integration in the time domain. Furthermore, standard 
weighting methods, such as the Crank-Nicholson scheme, can be used simply 
by specifying one parameter in the equation system. 

Due to the 'convective' term Pi [gradx~] x~ in the equation describing the 
fluid constituent, i.e. equation (15), the standard Galerkin weighting method 
can give rise to important errors. Instead, the Petrov-Galarkin weighting 
will be adopted which has been developed by fitting a weighting parameter 
against analytical solutions to simple 'convective' one-dimensional problems. 
The mass balance equation will also be solved by using the Petrov-Galarkin 
weighting due to the presence of the term x~.gradpi which is interpreted as 
a 'convective' first-order derivative. 

The equation system to be solved is coupled and non-linear. The non­
linearity is mainly due to the 'convective' term Pi [gradx~ l x~. Other types 
of non-linearities must of course be dealt with if, for example, the introduced 
material constants are assumed to be functions of the state variables such as 
the fluid mass density. Due to the somewhat complex structure of the tran­
sient equation system it is difficult to perform and find equilibrium solutions 
by iterations within each time step. Furthermore it is very difficult to find 
oscillatory free and stable solutions with the explicit time integration scheme 
unIess extremely short time-steps are adopted. An unconditional implicit 
scheme is therefore used to avoid oscillations, and the method for tackling 
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the non-linearities is simply performed by searching for a time-step length 
where the solution is no longer significantly affected. It is realized that no 
guarantee that the 'true' solution can be followed in a non-linear problem 
by using successively short er time steps since the implicit time integration is 
used. 

It should be not ed that a non-linearity is also introduced due to the ex­
istence of the product of the mass density of the fluid and its corresponding 
velocity. This is treated by letting one of the nodal parameters, for exam­
ple the velocity, be a lump ed element propert y and letting the other nodal 
parameter be descritizased in its normal way. 

Another weakness in the proposed method is that linear approximations 
within the elements must be adopted for all three different unknown nodal 
parameters in order to justify the optimality of the Petrov-Galerkin method. 
This means that higher-order elements cannot be adopted for any of the three 
unknown nodal parameters without violating the arguments on which the 
Petrov-Galerkin weighting is based. Indeed, such combinations of different 
orders of approximations for different state variables have been shown to 
improve solutions in, for example, certain fluid dynamic problems. 

The global equation system is non-symmetric, but this is a minor problem 
compared with the present convective terms and the non-linearities in the 
problem. 

Here a simple one-dimensional problem will be considered only. The more 
general two- and three-dimensional cases can be obtained by generalization 
of the one-dimensional case to be presented. It should be observed, however, 
that bilinear elements are to be used when adopting the streamline Pet rov­
Galerkin method in two and three dimensions. 

The whole global equation system, Le. equations (15), (17) and (18), is 
arranged in the following standard manner 

Cå+Ka+f = Ö (19) 

where C is the total damping matrix, K is the total 'stiffness', f contains 
information on both source terms and boundary conditions for the total 
equation system, the row vector a contains all three nodal parameters, i.e. 
the axial velocity of the fluid, the mass density of the fluid and the axial 
displacement of the solid. The propert y å denotes the spatial time derivative 
of the corresponding nodal parameters. 
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The block matrixes within this system are established as 

where the row-vectors au, ap and aw denote the discrete values of the axial 
velocity of the fluid, the mass density concentration of the fluid and the axial 
displacement of the solid, respectively. 

The Petrov-Galerkin weighting function Vu used in the determination of 
the axial velocity components of the fluid is given by (21a) and the approxi­
mation of the velocity at the nodes is given in (21b). That is, 

_ T (T u h X~f T). 
Vu - e Nu +aopt'2IX~fIBu , (21) 

where eT is an arbitrary matrix and where Nu is the one-dimensionallinear 
shape function and Bu is the spatial derivative of Nu' The optimality of the 
Petrov-Galerkin weighting is obtained by choosing the parameter a~pt. as 

1 aU = cothPeeu - __ o 

opt. Peeu' (22) 

where h denotes the element length and Peeu is the element Peclet number. 
The weighting function vp , to be used in the equation determining the 

mass density for the fluid, is in the same manner chosen as 

_ T ( T h X~f T). 
vp-e Np+«OPt'2IX~fIBp , (23) 

where the approximation of Pf is also shown. The parameter a~pt. is devel­
oped by the element Peclet number Peep, in this case given as 

p _ hP ep 1. 
aopt. - cot e - Peep' 

I h 
Peep = xlf 

2r 
(24) 

where r is introduced for numerical convenience only. By setting r to a low 
numerical value (in this case the value 1e-25 was adopted) the desired effect 
of introducing no 'diffusion' is obtained. 
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The standard procedure is adopted for the discretization of the axial 
displacement of the solid and in terms of the choice of weight function, i.e. 

(25) 

By introducing a semi-discretization by using a weight function W (t) in the 
time domain and then performing an integration between two time levels i 
and i + 1 it can be established that only one parameter, denoted e, will 
determine the weighting method for equations containing first-order time 
derivatives. Hence, a transient solution procedure can be obtained in a 
straightforward manner. The parameter e is a number between O and 1 
and is given as 8 = lt JoL:l.t W TdT / JoL:l.t W dT where T is a normalized time 
within the considered time step Llt. Different choices of the weight function 
W (t) yield different values of 8. The value e = O is a truly explicit scheme 
and 8 = 1 is a truly implicit scheme. The famous Crank-Nicholson scheme 
is obtained by setting 8 = 0.5. The value e = 0.878 is known as the Linigel' 
algorithm, in which e is chosen to minimize the whole domain error for linear 
problems. The time discretizised version of (19) is 

where ~ is the known nodal parameter at the start of the time step and a, ~ l 
is the unknown value searched for at the end at the time step Llt. 

The different block matrixes in (20) will be explicitly shown below in tlll'ir 
local element forms. The element shape functions Ne will be supplement ed 
with a subscript u when associated with the axial velocity of the fluid alld 
with a subscript p and w when associated with the mass density of the fiuid 
and the axial displacement of the solid, respectively. The total equatioll 
system is obtained by a standard assembling procedure. 

The local element damping matrix for the axial velocity equation is e:-­

tablished as 

c~ ~ l ( N~T +<>::", ~ l:t~1 B~r) PfN~dxl 
and the corresponding damping for the mass density equation for the fluid is 
given as 

(28) 
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The 'stiffness' K u is divided into three parts in its local element forms, i.e. 
K~ = K~l + K~2 + K~3' where K~l is the standard 'stiffness', written as 

h 

K~l = J B~T2P,fB~dxI 
o 

(29) 

where is should be noted that the Petrov-Galerkin weighting reduces to the 
standard format. The second part of the 'stiffness' K~2 is due to the non­
linear convective part in the equation determining the axial velocity of the 
fluid and is given as 

K e jh (NeT + u h X~f BeT) I Bed 
u2 = O u (topt. 2lx~f I u PfXlf u Xl 

(30) 

where the term Pfx~f is treated as an element propert y which is lump ed 
within each element. The last part involved in the local 'stiffness' K~3 is the 
contribution from the momentum supply 'force' which was assumed to be 
related to the fluid velocity through the material constant ~ f s· K~3 takes the 
form 

K~3 ~ j (N:;r + <>;:" % l:t~IB~T) ~f,N~dxj (31) 

The coupling term G~p = G~pl + G~p2 in its local element form is given as 

(32) 

and 

G~p2 ~ -j ( N~T + a;:,,% 1:::1 B~T ) 19j ,B;dxj (33) 

where the weighting function Vu is used together with a discretization of the 
mass density of the fluid as Pf = Npap, and the gradient of Pf is given as 
Bpap compare equation (23a) and (23b). 

The coupling term modeling the effect of the trace of the strain tensor on 
the velocity of the fluid is in the studied one-dimensional case given as 

(34) 
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where it is noted that the axial displacement is approximated as WI = N waw. 

The local element 'load' vector f~ contains the boundary conditions at the 
surface ds. The proper conditions at the boundary are a description of the 
thermodynamic pressure Jr! and the mechanical traction tJI in the fluid nor­
mal to the same surface, i.e. 

(35) 

In the equation for the determination of the nodal values of the mass 
density of the fluid the term -Pjdivx~ is present. In one dimension this 
term is formulated by the finite element approximations as 

(36) 

where Pj is treated as an element propert y which is lump ed within each 
element. The 'stiffness' in the mass density equation for the fluid is divided 
into two parts, i.e. K~ = K~l + K~2' The element 'stiffness' matrix K~l is 
introduced for numerical convenience only, as discussed ab ove , by setting r 
to a low numerical value. K~l takes the form 

h 

K~l = J (B~T) rB~dxI (37) 
o 

The second part of the 'stiffness' K~ is due to the term -x~.gradpj which 
is treated as a convective term in which the axial velocity of the fluid is 
introduced as a lumped element property. The gradient of Pj is discretized 
by the normal procedure. Hence, the one-dimensional case of K~2 is 

(38) 

The last row in the equation system (20) is the equation for the axial dis­
placement of the solid in which the fluid is capillary sucked. In this equation 
row the standard Galerkin weighting will be adopted. The strains induced by 
the swelling of the solid due to the capillary sucked water will be calculated 
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by treating the term div( -, ft1pf I) in the equation (17) as a 'pseudo load' 
within each element. 

The stiffness takes the standard form 

h 

K~ = J B~T ksB~dXl 
o 

(39) 

where ks = 2 (As + 2/1>s) is a spring stiffness related to the elastic-modulus of 
the solid material. The momentum supply as constituted in (12) gives rise 
to the term 

h 

H~u = - J N~T~fsN~dxl (40) 
o 

And also the term 
h 

Z~p = - J N~T'!9fsB~dxl (41) 
o 

The local element load vector consists of two parts, i.e. f!O = f!l + f!2' The 
row vector f!l is the pseudo-load induced by the swelling of the solid due 
to the presence of the fluid in the pore system. This term takes the local 
element form 

h 

f!~ = - J B~TTst1Pfdxl (42) 
o 

where t1Pf = Pf - PJ is considered as an element property. 
The second part of f!O is the boundary condition in terms of an applied 

mechanical traction normal to the boundary surface, i.e. f!2 is given as 

f!2 = - J N~Ttslds (43) 
as 

By standard assembling techniques the above local element matrixes are 
easily formulated at the global level. Hence, the equation system (20) is 
obtained. 

6 Test results 

Two test examples will be studied using the mixture theory and the nu­
merical approach discussed in the previous section. Certain choices of the 
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Figure 1: Test example 1, calculated mass density concentmtion fields at 
different times from exposure. 

numerical values of the introduced material constants will be tested. The 
global response in terms of the weight ch ange due to capillary suction will 
be compared to measured values obtained for concrete. 

The first simulation is a case where water is exposed to a plane surface 
(x = O)of a porous material. The 'active' mass density concentration ofwater 
in which all available porosity is filled with capillary sucked water is set to 
Pi (O, to) = 150 kg/m3 and the initial condition is Pi (Xl, to) = 25 kg/m3 . 

The material coefficients used are: l1i = 10-4 kg/s/m, which is 10% of the 
normal value of bulk water, and ~is = 0.1 kg/s/m; all other coefficients are 
set to zero, in this the first example. 

The boundary conditions used in equations (15) and (18) are based on 
the assumption that a time and length scale can be identified in which the 
mass concentration of water forms a discontinuous step where the velocity 
of the percolating water at the exposed surface is constant during an equiv­
alent time step length flt equ .. The boundary condition to be used in (15) is 
then a description of the axial velocity of the water into the solid material 
surface during a time step length fltequ.. Simultaneously the boundary con­
dition Pi (O, to) = 150 kg/m3 is used in equation (18). In the subsequent time 
steps the velocity field is let die away by instead setting the thermodynamic 
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Figure 2: Test example 1) calculated velocity fields at different times from 
exposure of water to a porous medium. 

pressure at the exposed boundary to zero. This choice can be justified by 
imagining that no curved liquid-air interfaces are present in the pore sys­
tem near the exposed material surface when assuming that the whole active 
porosity is filled with capillary water instantaneously. External mechanical 
pressures or mechanical hydrostatic pressures are not considered in the test 
examples to be presented. The reason for not using a thermodynamic pres­
sure at the boundary as the driving force for the studied capillary suction 
problem is that this pressure cannot be directly measured by laboratory ex­
periments. The equivalent time step length flt equ. = 1 s is used, and the 
momentum pulse during this time step is set to 1.5 . 10-2 kg/s/m2 . This 
smeared value corresponds to a velocity of water of 10-4 m/sand a mass 
density of 150 kg/m3 at the boundary during the first second af ter exposure. 

The result from the first test example is presented in Figure 1-3. In Fig­
ure 2 the computed velocity fields of the percolating fluid are presented at 
different times from exposure. It is seen that the axial velocity decays in 
the whole domain as the capillary suction proceeds. The corresponding mass 
density concentration fields are shown in Figure 1 and the global weight gain 
due to uptake of water in the porous material is shown in Figure 3 (dashed 
line). The global weight gain is also compared to the experimental obser-
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Figure 3: Test example 1) camparison between calculated values (dashed line) 
and values given from the experimental evidence that for same materials the 
global weight gain due to capillary suction is linearly related to the square roat 
of time (solid line). In this case with the factor kcap = 0.0285 kg/S1/ 2 /m2 . 
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Figure 4: Test example 2, mass density concentration fields of water in a 
porous material at different times from capillary suction exposure. 

vation that the global gain of mass of a capillary sucked sample is linearly 
related to the square root of time, see Figure 3 (solid line), ('time' is here 
referred to as the duration of the capillary suction process). The agreement 
between the simulation, using the above described material constants, and 
the square root dependent mass gain is fairly good, at least during the studied 
first 1000 seconds of exposure. 

The value relating mass gain and the square root of time in Figure 3 is 
kcap = 0.0285 kg/S1/ 2 /m2 . Experimental obtained values can, for example, be 
found in [10] and [11]. For well-cured concretes with water to cement ratios 
0.5, 0.6 and 0.7 equilibrated in 50% relative humidity, the corresponding 
capillary suction numbers obtained were kg~t = 0.013 kg/S1/ 2 /m2 , kga[ = 
0.019 kg/S1/ 2 /m2 and kg~? = 0.028 kg/S1/ 2 /m2 . That is, the theoretical results 
obtained in test example 1 agree fairly well with the measured response for a 
concreted equilibrated at 50% relative humidity having a water cement ratio 
of 0.7. More experimentally obtained values of kcap can be found in [12]. 
In [13] different values of kcap and its dependence on the specimen's initial 
water content for sandstones are presented. Other test methods concerning 
capillary suction in porous materials can be found in, for example, [14] and 
[15]. 
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Figure 5: Test example 2) velacity field at different times from capillary suc­
tian exposure. 

In the second test example the gradient of the mass density concentration 
will be included in the momentum supply term describing the interaction of 
'forces' between the fluid and the solid, see equation (12). Furthermore, 
the axial stress due to swelling of the solid material will be computed with 
the proposed constitutive equation for the stress tensor for the solid, i.e. 
equation (13). The material coefficient relating the momentum supply to 
the mass density gradient is set to {Jjs = 2 . 10-9 Nm/kg, and the axial 
elastic stiffness is set to k = 30 . 109 N /m2 , and finally the stresses induced 
by moisture is calculated by using the coefficient T s = 0.2.10-10 N/m2/kg. 
The material coefficients used in test example 1 are also used in this the 
second example with the same numerical values. The same initial values and 
boundary conditions are also adopted in this second test example. Results 
are shown in Figures 4-6. 

The velocity fields computed in test example 2 differ significantly from 
those obtained in the first example, compare Figure 2 and 5. The mass 
concentration fields obtained in example 2, see Figure 4, is somewhat more 
sharp in the propagating capillary 'front' compared to the first example. 
This effect is due to the inclusion of gradpj among the constitutive variables 
describing the momentum loss from the fluid to the solid pore walls. 
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Figure 6: Test example 2, axial stress due to swelling during the capillary 
suction process. The displacement of the specimen is set to zero at x = o. 

7 Conclusions 

It is possible to simulate the experimentally verified behavior of capillary 
suction by using the constitutive model described. It should be carefully 
observed, however, that the reliability of the adopted numerical approach 
has not been properly proven to converge towards true solutions. The ap­
proach was simply to use an Euler forward method for the non-linear element 
parameters together with the use of small time-steps. 

Some difficulties were observed concerning the choice of boundary condi­
tions in the momentum balance equation for the fluid, since a certain bound­
ary value of the thermodynamic pressure cannot be justified by laboratory 
measurements in a simple manner. Instead a boundary condition in terms 
of a momentum pulse during an equivalent time-step was proposed. This 
condition seems somewhat easier to confirm with experiments. 

The verified experimental behavior of a linear relationship between the 
global weight of sample plus capillary sucked water versus the square root 
of time was obtained in both test examples. This behavior is typical of less 
dense concrete and sandstones. 

The inclusion of gradpf (test example 2) in the constitutive equation de-
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scribing the momentum interaction between the fluid and the solid pore walls 
significantly changed the velocity fields at different times from exposure com­
pared to the first test example. The calculated mass density concentration 
fields at different times from exposure do not, however, differ much from each 
other in the two studied examples. 

The model accounts for stresses in the porous material induced by the 
presence of water in the pore system. The stresses in the porous mater­
ial induced by the capillary suction flow of water are, however, very small 
compared to the stresses due to swelling of the solid in the proposed model. 

The overall performance of the model indicates that it is a physically 
sound assumption to use the Navier-Posson law of a Newtonian fluid with 
a momentum source accounting for interaction with the pore walls when 
simulating capillary suction into porous materials. 

An improvment of the model can consist of a more detailed study of the 
behavior at microscale together with upscaling techniques to the macroscale, 
for example, with the use of hybrid mixture theory where balance principles 
for the interfaces between solid-water, water-air and solid-air are also to be 
postulated. 
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