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Abstract 
The common human pathogen Streptococcus pyogenes is the causative agent of 

numerous mild and severe clinical conditions. It expresses a number of secreted or cell 

wall-anchored proteins that modulate the human immune system and facilitate 

colonization and spread of the pathogen in the human host. 

During S. pyogenes infections, human plasma leaks into the site of infection as a 

consequence of inflammation. This thesis shows that S. pyogenes rapidly alters its 

expression of extracellular and intracellular proteins in response to human plasma. In 

addition, the pathogen also expresses multiple variants of its important virulence factors, 

M1 protein and C5a peptidase, when exposed to plasma. The function of modified M1 

protein and C5a peptidase is not yet elucidated but is suggested to have important 

implications for the pathogenicity of S. pyogenes. 

Opsonizing IgG recognizes and mediates the elimination of bacteria during 

infection. Here, the identification and characterization of a novel IgG cleaving cysteine 

proteinase of S. pyogenes, denoted IdeS, is described. IdeS facilitates S. pyogenes evasion 

of Fc-mediated phagocytosis by specifically cleaving the hinge region of IgG1, IgG2, 

IgG3, and IgG4. Moreover, data suggesting that neutrophil proteinases release 

immunogenic epitopes from IdeS are presented. This is a novel mechanism by which S. 

pyogenes exploits the human immune system and prevents its virulence factors from 

being eliminated by opsonizing immunoglobulins.  
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Introduction 
Annually, more than 25% of all deaths world wide are caused by bacterial, viral, or 

parasitic infections (143). The Gram-positive bacterium Streptococcus pyogenes (Group 

A streptococci, GAS) is one of the major human pathogens that causes substantial 

morbidity and mortality on a global scale (29). The molecular interplay between S. 

pyogenes and its human host has been studied in detail during the last decades, and 

numerous streptococcal virulence factors have been identified and characterized. This 

thesis aims at describing some of the mechanisms by which S. pyogenes avoids detection 

and elimination by the human immune system, with special emphasis on streptococcal 

proteins that modulate immunoglobulin mediated phagocytosis. The present 

investigations section at the end of the thesis summarizes the original findings on which 

this thesis is based. 

Host-bacteria relations 
The human body is built up by at least 200 highly specialized eukaryotic cell types that 

cooperate and influence each other’s activities (7, 176, 200). In contrast, bacteria are 

unicellular prokaryotic cells without any distinct organelles. They replicate mainly by 

binary fission, and can divide every 20 minutes under optimal conditions. The rapid 

replication rate in combination with their susceptibility to spontaneous mutations enables 

bacteria to quickly adapt to environmental changes.  

Mucosal surfaces and epithelial membranes of the human body are constantly 

colonized by bacterial species, referred to as commensals or the normal flora (7, 176, 

200). Commensal organisms normally do not cause infection in healthy individuals and 

can sometimes even be beneficial for the host by producing vitamins or lactic acid, as 

well as competitively preventing pathogens from colonizing the body surface. In contrast, 

the interior body is sterile and invading organisms are rapidly attacked and eradicated by 

the human immune system. However, bacteria that are not part of the normal flora are 

often equipped with an array of molecules (mainly proteins) that enable them to 

circumvent the antimicrobial activities of the immune system, and thus colonize epithelial 

membranes or disseminate into sterile tissue where they produce symptoms of disease. 

Such microbes are called pathogens and their strategies for evading the host immune 

system are numerous. 

The definitions of virulence and pathogenicity have been debated to some extent 

(32, 33). This thesis defines pathogens as microorganisms that cause disease in healthy 
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human hosts. Therefore, commensals that normally do not infect humans, but cause 

disease under optimal conditions (e. g. in immuno-suppressed individuals) are not 

included by this definition. Moreover, virulence factors are here defined as extracellular 

molecules of a pathogen that directly interact with host molecules, and thereby facilitate 

survival and spread of the pathogen in the human host. 

Streptococcus pyogenes 
S. pyogenes is a major human pathogen characterized by growing in chain-like structures 

(See Fig. 1), and lysis of red blood cells when grown on blood agar plates (ß-hemolysis) 

(54). It is a Gram-positive bacterium with a thick peptidoglycan cell wall enveloping a 

single cell membrane. The pathogen is a common colonizer of skin and mucous 

membranes in the upper respiratory tract, where it causes relatively mild clinical 

conditions such as impetigo or pharyngitis respectively (53). However, invasive strains 

can penetrate into deeper tissues and cause severe and potentially life-threatening 

conditions such as necrotizing fasciitis (soft tissue destruction), streptococcal toxic shock 

syndrome (hypotension and multi-organ failure), sepsis, pneumonia and meningitis. 

These infections have rapid progressions, and can cause death within a couple of days if 

left untreated with penicillin. 

In addition, post-infectious sequelae such as acute rheumatic fever (ARF) and 

post-streptococcal glomerulonephritis (PSGN) sometimes follow the acute clinical 

conditions caused by S. pyogenes (54). ARF is often developed after untreated 

pharyngitis and affects organs such as the heart valves, joints, brain and skin. An 

important streptococcal virulence factor, denoted M protein, has immunogenic epitopes 

resembling human myosin and tropomyosin, and is therefore believed to contribute to the 

development of ARF as a consequence of cross-reacting antibodies (96, 203).    

In contrast to ARF, which exclusively follows streptococcal throat infections, 

PSGN can develop after both untreated skin infections as well as throat infections, and is 

characterized by an intense inflammation of the kidney (54). The etiology of PSGN is not 

clear and immune complex deposition and cross-reacting antibodies are examples of 

proposed mechanisms for PSGN development (186, 190). A recent study funded by the 

WHO demonstrated an annual prevalence of over 600 million cases of pharyngitis and 

111 million cases of severe streptococcal skin infections world-wide (29). Perhaps even 

more concerning is that at least 517,000 deaths occur each year due to severe GAS 

diseases (e. g. acute rheumatic fever, post-streptococcal glomerulonephritis, and invasive 
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infections). These numbers emphasize that S. pyogenes is an important global cause of 

morbidity and mortality. 
 

 
Figure 1. Electron micrograph of S. pyogenes growing in chains. 

 

Classification of S. pyogenes 
Streptococci are classified into groups based on a major carbohydrate in their cell-wall. S. 

pyogenes differs from other streptococcal species by possessing the group A carbohydrate 

in their cell wall, hence the name (Group A streptococci) (119). The expression of M- or 

T proteins on the bacterial surface further differentiates S. pyogenes strains into serotypes 

(120). Serotyping has been invaluable during the past 60 years for determining the 

relationship between different S. pyogenes strains and the varied clinical manifestations 

inflicted by these organisms. In brief, serotyping is based on a procedure where antisera 

raised against specific clinical isolates are absorbed with heterologous strains to remove 

antibodies that are not specific for the chosen strain. This procedure has allowed the 

production of a large number of M-type specific sera, and over 100 different serotypes 

have been described (65). In contrast to M proteins, T proteins are resistant against 

trypsin. By treating individual strains to trypsin prior to antibody absorption, 

approximately 25 distinct T-antigens have been described. Since production of M-type 
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precipitating antisera is very expensive and labor-intensive, serotyping by sequencing the 

hypervariable 5´ end of the M protein gene (emm) is becoming increasingly common (64, 

65). 

S. pyogenes genome 
The sequencing of S. pyogenes genome has provided researchers with new insight into 

the evolution, metabolic activities, and virulent properties of the pathogen (71). To date, 

seven genomes from five different M-types have been  successfully sequenced (two M1 

strains  (70, 196), two M3 strains (14, 146), one M6 strain (9), one M18 strain (187), and 

one M28 strain (82)). Moreover, an additional seven genomes are in progress 

(http://www.genomesonline.org). Comparative analyses have shown that the 

chromosomal sequences are well preserved between different S. pyogenes strains, and 

that the genomic variability observed is mainly due to single nucleotide polymorphisms 

and prophage DNA elements (82).  

The human immune system 
To prevent being colonized by pathogenic microorganisms, the human body is equipped 

with an armament of cells, proteins, peptides, and other molecules that recognize and kill 

everything that is identified as non-self (173). These antimicrobial components are 

referred to as the human immune system and can be divided into the innate and adaptive 

immune system. While the innate immune system relies on non-specific distinction of 

self and non-self, the adaptive immune system is highly specific for a particular pathogen 

and improves by prior exposure to the pathogen. However, it is important to realize that 

the separation of the immune system into two classes is not absolute, since components of 

each class often cooperate in eradicating microorganisms. For instance, phagocytosis of 

bacteria by neutrophils (innate) is greatly enhanced by opsonizing antibodies (adaptive).  

Opsonization 
There are two major phases of any immune response; recognition of the antigen and a 

reaction to eradicate it. Opsonization is a process where opsonins (e.g. C3b, C3bi and 

immunoglobulins (Igs)) label the antigen and make it more susceptible to phagocytosis 

by immune cells (176). Although phagocytes have some intrinsic ability to recognize and 

bind bacteria directly, the phagocytic process is greatly improved when opsonins have 

bound to the bacterial surface.  
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Immunoglobulins 
The acquired immune system relies heavily on Igs to identify and mediate killing of 

infecting microbes (173). Igs are found in all body fluids and are synthesized in billions 

of forms, each with a different amino acid (aa) sequence that recognizes and binds to a 

unique antigen. The primary function of Igs is to bind antigens, and in a few cases this 

has a direct effect such as the neutralization of bacterial toxins (6, 183). However, most 

of the time Igs act as opsonins that are recognized by secondary “effector” constituents 

that eradicate the bacteria (162). Igs covering a surface are able to activate the classical 

pathway of complement, which makes the pathogen vulnerable to the membrane attack 

complex (MAC) or phagocytosis via complement receptors. In addition, opsonizing Igs 

also enhance phagocytosis as their Fc domain is recognized by Fc receptors located on 

the surface of phagocytic cells.  

Upon antigen recognition, human B-cells generate an immunological response by 

producing five immunoglobulin isotypes (IgA, IgD, IgE, IgG, and IgM) (173). The 

different classes of Igs have slightly different functions and are found at different 

locations in the human body. IgA represents 15-20% of the human serum Ig pool but is 

also common on cutaneous surfaces and in mucous secretions such as saliva and milk. It 

defends the host against skin infections and recognizes respiratory pathogens. IgD and 

IgE are scarce in blood but are found at the surface of immune cells (98). IgE plays a role 

in parasite immunity and is commonly associated with allergic diseases such as asthma 

(99). IgM accounts for approximately 10% of the Ig pool and is often seen in the early 

immune response against bacteria and other microorganisms. IgG is the major Ig in 

normal human blood and accounts for 70-75% of the total Ig pool. It is also the major Ig 

of secondary immune responses and the exclusive antitoxin class. 

IgG 
IgG is the most abundant immunoglobulin isotype in blood and is produced in large 

quantities during the secondary immune response (173). The heavy chain is often referred 

to as γ and differs from the heavy chains of other immunoglobulin isotypes. For instance, 

the µ chain of IgM differ from γ chains in amino acid sequence and has an extra constant 

region domain in place of the IgG hinge. Moreover, within human IgG four subclasses 

(IgG1, IgG2, IgG3, and IgG4) have been identified with slightly different amino acid 

compositions in the hinge and Fc-region. The subclasses differ in antigen recognition and 

in their ability to activate the classical pathway of complement. While protein epitopes 
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are primarily recognized by IgG1, IgG3 and IgG4, carbohydrates are recognized by IgG1 

and IgG2. With the exception of IgG4, IgGs also activate the classical pathway of 

complement (8, 112). 

 

 
Figure 2. Structure of human IgG 

A) Sites that interact with human or bacterial proteins are indicated by arrows. B) The 

amino acid sequences of human IgG1, IgG2, IgG3 and IgG4 hinge regions. IgG2 has a 

slightly different amino acid sequence at the cleavage site of IdeS and SpeB, possibly 

explaining the reduced activity of IdeS against IgG2. 
 

Structure of IgG 
The basic structure of an immunoglobulin molecule consists of two light chains, of about 

220 amino acids, and two heavy chains of approximately 440 amino acids (See Fig. 

2)(177). Both the heavy and light chains are organized into repeating globular segments 

called Ig domains. A light chain consists of one variable (VL) and one constant domain 

(CL), whereas a heavy chain contains one variable (VH) and three constant domains (CH). 
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It is the variable regions of the NH2-terminal part of the light and heavy chains that come 

together to form the antigen-binding site (Fab). The remaining constant part of the IgG 

molecule (Fc) binds to Fcγ-receptors on phagocytic cells (which initiates phagocytosis), 

and activates complement (162). The Fab and Fc regions are connected through a flexible 

hinge region. Interestingly, the flexible structure of the hinge region makes it vulnerable 

to proteinase activities, which several pathogens take advantage of during infection. For 

instance, the two secreted cysteine proteinases of S. pyogenes, SpeB and IdeS, enhance 

streptococcal survival in human immune blood by cleaving the hinge region of 

opsonizing IgG (48, 206). 

Complement 
The complement system, which consists of approximately 30 serum or membrane-bound 

proteins, acts as an important member of the immune system through 1) opsonization and 

phagocytosis of invading organisms, 2) chemotaxis and activation of leukocytes, 3) direct 

lysis of microorganisms and cells, 4) clearance of immune complexes, and 5) induction of 

antibody responses (121). There are three separate routes by which the complement 

system can be activated, called the classical pathway, the mannan-binding lectin pathway, 

and the alternative pathway (see Fig. 3). The classical pathway is activated by the 

complement complex C1q that binds the Fc-domain of IgG or IgM that have bound to 

antigens (112, 131). The mannan-binding lectin pathway is activated by the serum protein 

mannan-binding lectin (MBL) that recognizes mannose-rich carbohydrate structures on 

the surface of bacterial species (150). The alternative pathway is activated by molecular 

structures on invading organisms or other foreign structures, independent of antibody 

deposition. Initiation of the alternative pathway is dependent on continuous deposition of 

C3b on surfaces, which in part may be achieved by low-level activation of the classical 

pathway.   

Common for all three pathways is that after complement activation, different C3-

convertases are formed (denoted C4b2a, C3bBb and iC3Bb). The C3-convertases 

catalyze the key reaction in the complement system, the conversion of C3 to C3b, which 

is deposited on microbial surfaces and is recognized as an opsonin by complement 

receptors 1 and 3 (CR1 and CR3). Complement also protects its host from microbial 

infections by forming membrane attack complexes (MAC), which are inserted into the 

membrane of Gram-negative bacteria and cause subsequent lysis of the microbes. In 

contrary, Gram-positive bacteria are resistant to MAC because of their thick 
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peptidoglycan cell-wall (103). A third mechanism by which complement eradicates 

microbes is by the generation of C3a and C5a that function as anaphylatoxins, neutrophil 

attractants, as well as activators for neutrophil opsonophagocytosis.  

 

 
Figure 3. Schematic diagram of the complement cascades 

MBP (lectin pathway), immune complexes (classical pathway), and C3b (alternative 

pathway) mediate the formation of C3 convertases, that in turn cleaves C3 into C3b. C3b 

acts as an opsonin but can also transform C3 convertases into C5 convertases that 

initiate the formation membrane attack complexes. The star-shaped boxes indicate 

anaphylatoxins. 
 

The complement system is an obvious target for pathogenic microorganisms 

trying to survive and multiply in the human body. There are several ways by which S. 

pyogenes avoids complement attack. For instance, M proteins bind complement 

regulators factor H (95), factor H-related protein 1 (115), and C4BP (199) to the bacterial 

surface. Moreover, Fba binds factor H and factor H-related protein 1 (154), C5a peptidase 

cleaves the anaphylatoxin C5a (44, 92), SIC inhibits the formation of MAC (4), and Ig 
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binding proteins (17) and Ig modulating enzymes inhibit antibody-mediated complement 

activation (50, 206). 

Neutrophils and phagocytosis 
Neutrophils (Polymorphonuclear leukocytes, PMNs) are essential effector cells of 

the human innate immune system and provide the primary defense against pathogenic 

microorganisms (122, 181). The cells are widely distributed throughout the body, but 

when an infection occurs they are recruited to the site of infection as a consequence of 

inflammatory responses. Upon inflammation, capillary permeability is stimulated and 

blood supply into the inflamed area is increased. Moreover, leukocytes are stimulated and 

migrate out of the venules and into the surrounding tissues upon chemotactic responses. 

In the earliest stages of infection, neutrophils are particularly prevalent, but in later stages 

other phagocytic cells such as monocytes and lymphocytes also migrate towards the 

infection. Neutrophils eradicate invading microorganisms such as bacteria through 

phagocytosis or by releasing antimicrobial components into the site of infection. 

Although neutrophils bind, engulf and kill non-opsonized particles, the process is greatly 

enhanced by opsonins such as Igs or complement. After engulfment, neutrophils utilize at 

least two mechanisms in order to kill bacteria, the oxidative or non-oxidative pathway 

(211). While the oxidative pathway, or “respiratory burst”, involves production of highly 

reactive oxidizing radicals that are harmful to bacteria (83), the non-oxidative pathway is 

composed of proteinases and antimicrobial agents that are stored in the specific or 

azurophil granules of neutrophils (10). However, activated neutrophils do not only kill 

bacteria through phagocytosis, but also release fibers composed of granule proteins and 

chromatin into the extracellular environment (22). These fibers form extracellular traps 

that bind and kill both Gram-positive and Gram-negative bacteria. 

Azurophilic serine proteinases 
The azurophil granules (also called primary granules) of neutrophils contain three 

serine proteinases denoted neutrophil elastase (NE), cathepsin G (CG) and proteinase 3 

(Pr3). The content of NE has been estimated at approximately 4 µg per 106 cells, making 

it a major component of neutrophil granules (128). Neutrophils that have been activated 

by pro-inflammatory mediators rapidly translocate NE, CG and Pr3 to the external 

surface of the plasma membrane. Stronger and more potent activation signals (e. g. when 

the cells bind to immune complexes) mediate release of the proteinases into the 

environment. Several studies have demonstrated that neutrophil serine proteinases play an 
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important role in the immune response against pathogenic bacteria. For instance, NE 

degrades outer membrane proteins in E. coli, which leads to membrane damage and 

killing of the bacteria (12). In addition to killing bacteria directly, NE and CG have 

indirect antimicrobial activities. CG contains an internal antimicrobial peptide sequence 

that is released by clostripain in vitro (182), and NE activates the antimicrobial peptide 

cathelicidine that is present in human airway secretions, thus killing both Gram-positive 

and Gram-negative bacteria (47).  

NE has also been demonstrated to degrade and inactivate virulence factors of 

enterobacteria (210). Similar studies with S. pyogenes show that the streptococcal M 

protein is released from the bacterial surface by neutrophil serine proteinases, but retains 

its affinity to fibrinogen. The pathogenic M1/fibrinogen complexes that are formed 

activate neutrophils and induce a potentially lethal inflammatory response in the host 

(90). Furthermore, we suggest in Paper IV that S. pyogenes utilizes NE and CG to release 

immunogenic epitopes from its cysteine proteinase IdeS, and thus prevents IdeS from 

being opsonized and eliminated during infection. 

Neutrophil receptors 
Phagocytes express a broad spectrum of receptors on their cell surfaces that recognize 

and mediate internalization of bacteria and other microbes. (See Table I for more 

information). 

Fcγ-receptors 
IgG-opsonized particles are recognized by surface receptors that bind to the Fc-region of 

IgG (FcγRs) (55, 169). Activated receptors bind IgG-opsonized microbes and trigger 

internalization through actin polymerization beneath the particle (1). To date, three 

classes of receptors have been identified in mice, the activating FcγRI and FcγRIII, and 

the inhibitory FcγRIIb. Activating FcγRs contain ITAM motifs in their intracellular 

domain that recruit kinases and activates phosphorylation cascades, whereas inhibitory 

FcγRs contain an ITIM motif that recruits phosphatases and thus inhibits signaling (55, 

169). 

Complement receptors 
To date, four complement receptors have been identified (CR1, CR2, CR3 and CR4), 

although CR2 has not been described as a phagocytic receptor. CR1 binds a number of 

microbial opsonins including complement components C1q, C3b, and C4b, as well as 
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mannan-binding lectin (79, 113). Although CR1 alone is unable to mediate phagocytosis, 

colligation with Fc receptors on the neutrophil surface triggers engulfment of opsonized 

particles (79). CR3 and CR4 recognize iC3b that has bound to bacterial surfaces. 

However, internalization signaled by these receptors requires a second activation step, 

e.g. TNFα or LPS, that increases the number of receptors at the cell surface (18), 

enhances receptor affinity (104), and allows the receptors to trigger phagocytosis (216). 

In addition to mediating phagocytosis, CR3 is also involved in other biological processes 

such as neutrophil adhesion and migration (52, 57). 
 

Table I. Receptors that participate in phagocytosis of microbes 

Receptors Ligands 

Complement receptors 
CR1 (CD35) MBL-, C1q-, C3b-, C4b-opsonized particles (79) 
CR3 (αMβ2, CD11b/CD18, Mac 1) iC3b-opsonized particles (61) 
CR4 (αXβ2, CD11c/CD18) iC3b-opsonized particles (175) 
 
Fc-receptors 
FcγRI (CD64) IgG-, CRP-opsonized particles (19, 20, 169) 
FcγRII (CD32) IgG-, CRP-opsonized particles (19, 20, 169) 
FcγRIII (CD16) IgG-, CRP-opsonized particles (19, 20, 169) 
FcεRI IgE-opsonized particles (166) 
FcεRII (CD23) IgE-opsonized particles (171) 
FcαRI (CD89) IgA-opsonized particles (202) 
 
Scavenger receptors 
Mannose receptor (CD206) Mannan (63) 
CD14 LPS, peptidoglycan (59, 178) 
C1qR(P) C1q, MBL, SPA (149) 
Dectin-1 Β1,3-glucan (25) 
SRA Bacteria, LPS, Lipoteichoic acid (158) 
MARCO Bacteria (201) 
 
Other receptors 
α5β1 (CD49e/CD29) Fibronectin/Vitronectin-opsonized particles (21) 
 
CRP; C-reactive protein 
LPS; Lipopolysaccharide 
MBL; Mannan-binding lectin 
SPA; Serum amyloid P component 
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Immuno-modulating proteins of S. pyogenes 

S. pyogenes evasion of opsonizing IgG 
As previously described, opsonizing IgG eliminates pathogenic bacteria by activating the 

classical pathway of complement or by enhancing phagocytic killing. Although S. 

pyogenes survives and multiplies in human blood, opsonizing antibodies from immune 

donors usually eliminate the bacteria. To protect itself from the detrimental effects of 

opsonizing IgG, S. pyogenes expresses proteins that either bind, cleave, or de-glycosylate 

IgG. Strikingly, most IgG modulating proteins of S. pyogenes are expressed during 

logarithmic growth in vitro, thus possibly suggesting that they are important for 

establishing streptococcal infections in vivo.  

IgG binding surface proteins of S. pyogenes 
The M protein family consists of M proteins and M-like proteins (e. g. Arp, Protein H, 

Protein Sir, and Mrp) (76, 80, 193, 194). They protrude from the surface of S. pyogenes 

in a hair-like structure and bind several host proteins to the bacterial surface, including 

IgG (88), IgA (127), albumin (179), fibrinogen (106), plasminogen (15), fibronectin (74), 

kininogens (13), and others (148). Most S. pyogenes strains express one emm gene and up 

to two genes encoding M-like proteins located in the Mga regulon. 

While the COOH-terminal part of M proteins is highly conserved, the variability 

between different M types increases as the structure reaches the NH2-terminus and the 

absolute NH2-terminus is unique for each M-protein. The hypervariable NH2-terminus of 

M proteins is the major epitope for opsonizing IgG, which means that patients infected 

with S. pyogenes mainly develop antibodies toward the specific strain that caused the 

infection. By subjecting M proteins to post-translational modifications, S. pyogenes can 

alter its non-immune binding to IgG and modify the immunogenic NH2-terminus (40, 

163-165, 174). Another mechanism by which S. pyogenes prevents antibody recognition 

is by generating genetically distinct subpopulations during infection (145, 157). Such 

events result in M proteins of different sizes and partly changed amino acid sequences in 

the hyper-variable region, thus allowing daughter cells to avoid antibody recognition 

during infection.  

Antiphagocytic properties of M proteins 
M protein expressing S. pyogenes strains survive in human blood lacking type-specific 

antibodies, whereas M protein lacking strains are rapidly killed (54). Therefore, M 
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proteins have been assigned anti-phagocytic properties. However, this definition has 

proven less accurate as wild type S. pyogenes strains are as rapidly engulfed by 

neutrophils as mutant strains lacking M or M-like proteins on the bacterial surface (191). 

However, wild type strains survive intracellularly whereas strains deficient in M proteins 

are rapidly killed after phagocytosis (191, 192). The exact mechanism of the 

antiphagocytic properties of M proteins is not known but several studies link this feature 

of M proteins to its binding of fibrinogen (30, 172, 214). Moreover, some M proteins 

bind the Fc-region of IgG and block the interaction between IgG and C1q of complement 

on the bacterial surface. This non-immune binding of IgG leads to a reduced surface 

deposition of the opsonin C3b on the bacterial surface (17).  

IgG modulating enzymes of S. pyogenes 
Although Igs are common targets for bacterial pathogens, few specific IgG modulating 

proteinases have been identified in bacterial pathogens. However, S. pyogenes, Prevotella 

intermedia and Prevotella nigrescens all express IgG cleaving cysteine proteinases (49, 

100, 206). In S. pyogenes, three IgG modulating enzymes have been identified. These 

include one endoglycosidase (EndoS) and two cysteine proteinases (SpeB and IdeS) that 

are discussed more extensively below.  

In contrast to the relatively small number of bacterial IgG cleaving proteinases, 

IgA-proteinases have been described for a number of bacterial species that colonize or 

infect the mucosal membranes of humans, such as oral streptococci (111), Haemophilus 

influenzae (110, 135), Streptococcus pneumoniae (110, 135), and Neisseria meningitidis 

(144). Interestingly, no specific IgA-protease has been described in S. pyogenes, although 

the streptococcal cysteine proteinase SpeB degrades the COOH-terminus of IgA (48). 

EndoS 
The endoglycosidase of streptococci (EndoS) is secreted into the environment during S. 

pyogenes infections (49). It hydrolyzes the conserved aspargine-linked glycan on the 

heavy chain of IgG, and thus alters the structural stability of the antibody. Interestingly, 

EndoS treatment of immune blood contributes to increased survival of S. pyogenes in 

vitro (50). This is due to reduced binding of IgG to Fc receptors and impaired classical 

pathway-mediated activation of complement (50, 151, 162). Both the glycan structure of 

IgG and the tertiary structure of EndoS are important for the endoglycosidase activity, as 

an increase of IgG denaturation leads to a gradual decrease of EndoS activity (48). To 

date, EndoS and EndoE (51) from Enterococcus faecalis are the only examples of 
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bacterial endoglycosidases that hydrolyze the glycan of native IgG, and little is known 

about their regulation in vivo. However, EndoS expression is increased when S. pyogenes 

interacts with human PMNs in vitro (208), and patients suffering from streptococcal 

infections develop anti-EndoS antibodies (5). 
 

 
Figure 4. S. pyogenes evasion of opsonizing IgG 

S. pyogenes evades IgG mediated phagocytosis by at least four distinct mechanisms. 1) 

EndoS alters the structural stability of IgG by hydrolyzing the conserved NH2-linked 

glycan on IgG Fc-domains. 2) Fc-binding to M proteins inhibits complement deposition 

and Fc-mediated phagocytosis. 3) Mac-2 hinders neutrophil recognition of opsonized 

particles by binding to FcγRII and FcγRIII on the neutrophil surface. 4) IdeS and SpeB 

inactivates opsonizing IgG by specific cleavage of the hinge region.  
 

SpeB 
The streptococcal pyrogenic exotoxin B (SpeB) is the classical cysteine proteinase of S. 

pyogenes. It is secreted as a 40 kDa zymogen during stationary growth and its expression 

is repressed by glucose and other nutrients in vitro (62). Despite limited sequence 

homology, the SpeB zymogen has structural homologies to the papain super-family of 
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proteinases (105). Upon secretion, the propeptide is released and an active 28kDa 

proteinase is generated. The molecular events leading to propeptide removal and 

generation of active SpeB are not fully understood. However, it is known that the 

zymogen form has some proteolytic activity under reducing conditions, and that the 

propeptide can be removed by autocatalysis (58). In addition, the intracellular protein 

RopA has also been demonstrated to be important for the generation of active SpeB (58, 

105, 133). 

The catalytic site of SpeB is composed of a catalytic dyad (Cys192-His340), 

instead of the catalytic triad (Cys-His-Asn), commonly associated with cysteine 

proteinases (129, 130). Active SpeB degrades or activates several human proteins 

(summarized in Table II) and releases streptococcal proteins from the bacterial surface, 

including IgG-binding M and M-like proteins (16, 168). The released IgG/M protein-

complexes activate and consume complement at a distance from the pathogen and 

thereby prevent complement activation at the bacterial surface (17). 

SpeB has proteolytic activities against human immunoglobulins (48). It cleaves 

human IgG between glycine residues 236 and 237 in the hinge region, generating two 

stable Fab fragments and one Fc fragment (49). SpeB cleavage of opsonizing IgG 

facilitates streptococcal survival in whole blood, suggesting that IgG cleavage by SpeB is 

a mechanism for S. pyogenes to escape Fc mediated phagocytosis and complement 

deposition (50). Moreover, SpeB also cleaves the COOH-terminal region of the heavy 

chains of human IgA, IgD, and IgM into small fragments, whereas the heavy chain of IgE 

is completely degraded (48).  

IdeS/Mac-1 
IdeS (also called Mac-1) was recently independently discovered by Lei et al and von 

Pawel-Rammingen et al (123, 206). It is a 35kDa cysteine proteinase that in contrast to 

SpeB cleaves IgG in the hinge region with a unique specificity. The expression of IdeS is 

maximal during logarithmic growth in vitro and it is negatively regulated by the 

streptococcal covR-covS two-component gene regulatory system (123). IdeS cleaves all 

subclasses of human IgG in the hinge region between glycine residues 236 and 237 (of 

IgG1), thus generating two stable Fab fragments and one Fc fragment (Fig. 2a, Fig. 4). 

However, IgG2 is slightly more resistant towards the endopeptidase activity of IdeS, 

possibly as a result of its altered amino acid composition at the cleavage site (Fig 2b). 

Several studies have confirmed that the proteolytic activity of IdeS is extremely specific, 
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and no other substrates have been identified (2, 205, 206). It has also been proposed that 

IdeS has an exosite that binds to the CH2 domain of human IgG prior to cleavage, 

explaining why synthetic and naturally occurring substrates (e.g. IgA, IgD, IgE, and 

IgM), with high sequence similarities to the hinge region of IgG, are not cleaved by IdeS 

(205). The presence of an exosite is not a novel concept and has previously been 

suggested for other types of bacterial Ig cleaving proteinases (41). 
 

 
Figure 5. Primary structure of IdeS  

The signal sequence (Ss), the aa residues that form IdeS catalytic site (C94, H262, D284) 

and the DSF-9 peptide (DSFSANQEI) released by NE are indicated.  
 

IdeS is believed to act as a major virulence factor during infections with S. 

pyogenes by removing the Fc part of opsonizing IgG that has bound to the streptococcal 

surface. As previously discussed, removal of Fc regions from opsonizing IgG inhibits 

complement deposition and Fc mediated phagocytosis, and several assays have confirmed 

that IdeS prevents killing of S. pyogenes in vitro (123, 206, 207). Although an isogenic 

IdeS mutant strain has been generated, IdeS importance for S. pyogenes colonization and 

spread during infection has never been investigated in vivo (184). However, antibodies 

against IdeS are found in both acute phase- and convalescent phase serum from patients 

suffering from mild and invasive S. pyogenes infections (5, 6) and the enzyme is 

proteolytically active in pH and salt concentrations found in skin (pH 5.5-6.5), human 

plasma (pH 7.4) and saliva (pH 7.4) (205). A recent study suggested IdeS as a suitable 

vaccine candidate against S. pyogenes infections, as it is nontoxic to mice, is present in all 

S. pyogenes serotypes, and induces protective immune responses after immunization of 

mice (109, 153).  

Structure of IdeS 
The ideS gene translates into a protein of 339 amino acids of which the 29 most NH2-

terminal residues encode a putative signal sequence (206) (Fig. 5). Apart from the 

putative signal sequence, an RGD motif, commonly found in bacterial and viral 
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pathogens, is located at residues 214–216 (97, 123, 206). This motif is involved in the 

interaction of IdeS with vitronectin and platelet receptors (2). Site-directed mutagenesis 

and crystal structure analysis have identified Cys94, His262 and Asp284 as active site 

residues, and Asp286 as important for the structure of IdeS catalytic site (125, 212). 

Interestingly, IdeS does not contain a propeptide and is thus already proteolytically active 

upon translation (206).  

The three dimensional structure of IdeS reveals that the enzyme belongs to the 

papain super-family of proteinases despite weak sequence homologies (3, 212). By 

forming symmetric dimers IdeS can increase IgG specificity and enzyme cooperativity 

(3). Similarity searches against the human genome reveal that the middle one third of the 

IdeS sequence has a significant homology to the human CR3 subunit CD11b (26% 

identity and 45% similarity over IdeS residues 139-322). It was first suggested that IdeS 

prevents opsonophagocytosis of S. pyogenes by binding and sterically blocking the Fc 

receptor FcγRIIIb, located on the neutrophil surface (123). However, it was recently 

demonstrated that IdeS does not have affinity to human Fc-receptors and that the anti-

phagocytic properties of IdeS are exclusively due to its endopeptidase activity (2, 206). 

Mac-2 
Studies of ides gene variations between 31 different S. pyogenes isolates identified a 

novel IdeS variant denoted Mac-2 (124). IdeS and Mac-2 are closely related and share 

approximately 80% sequence identity. Most of the amino acid differences are located in 

the middle one third of the protein sequences. Interestingly, all tested strains encode 

either the gene for IdeS or Mac-2, but both genes have never been identified in the same 

strain. 

In contrast to IdeS that efficiently binds and cleaves IgG in the hinge region, Mac-

2 only has weak affinity and endopeptidase activity against human immunoglobulins (2, 

124). Instead, Mac-2 binds to FcγRII and FcγRIII, located on the neutrophil surface, and 

thus prevents binding of IgG to these receptors. Although not yet demonstrated in a 

bactericidal assay, it has been proposed that Mac-2 also interferes with Fc-mediated 

phagocytosis by blocking IgGFc/ Fc-receptor interactions (2). 
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Table II. Comparison of the two cysteine proteinases of S. pyogenes 
 

 SpeB IdeS 
Size 
 

40kDa zymogen/ 28kDa active form 
 

35 kDa 
 

3D-structure 
 

Papain super-family 
 

Papain super-
family 
 

Catalytic 
site 
 

Catalytic dyad (Cys192-His340) 
 

Catalytic triad 
 

Propeptide 
 

Yes 
 

No 
 

RGD motif 
 

Yes 
 

Yes 
 

Expression 
in vitro 
 

Stationary growth phase 
 

Logarithmic 
growth phase 
 

Regulators 
 

CovR/CovS (down), Rgg/RopB (Up),  
RALP (down), Ihk/Irr (Up) 
 

CovR/CovS 
(down), 
Rgg/RopB 
(Down), Ihk/Irr 
(Up) 
 

Location 
 

Secreted 
 

Secreted 
 

Degradation 
by PMNs  
 

Zymogen No/ active Yes 
 

No 
 

Substrates 

1) IgA, IgD, IgE, IgG, IgM (48, 49) 
2) MMP-2 (26) 
3) Dermatan sulphate (180) 
4) Fibrinogen (136) 
5) Fibronectin (108) 
6) Vitronectin (108) 
7) H-kininogen (89) 
8) Interleukin 1β (107) 
9) Streptococcal surface proteins (16, 167) 
 

IgG 

Biological 
activity 

1) Facilitates  bacterial spread (108) 
2) Inhibits antimicrobial peptides (180) 
3) Degrades fibrinogen (136) 
4) Activates cytokines (107) 
5) Releases proinflammatory peptides (89) 
6) Releases streptococcal surface proteins (16, 
167) 
7) Prevents Fc-mediated phagocytosis (50) 

Prevents Fc-
mediated 
phagocytosis 
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Other immuno-modulating proteins of S. pyogenes 

C5a peptidase 
C5a peptidase (ScpA) is a 130 kDa subtilisin-like serine proteinase located on the 

bacterial surface. ScpA inactivates and depletes the anaphylatoxin C5a from the site of 

infection by cleaving the substrate between His67 and Lys68 (38, 45). The substrate of 

ScpA, C5a, is important for the host defense against bacterial infections. It increases 

vascular permeability, attracts neutrophils to the site of infection, and stimulates 

neutrophil opsonophagocytosis. All human isolates of β-hemolytic streptococci, 

including S. pyogenes, express ScpA or ScpA-homologues on their bacterial surfaces (38, 

42). Like many other virulence factors of S. pyogenes, ScpA expression is regulated by 

the mga-regulon and the protein is therefore assumed to be present on the bacterial 

surface early during infection. Recently, the crystal structure of ScpA from group B 

streptococci (ScpB) was determined (23). It revealed that the active site of ScpB is 

flanked by two RGD sequences, and it was suggested that binding of integrins to ScpB 

greatly enhanced the enzymes proteolytic activity. Apart from depleting C5a from the 

bacterial surface, ScpA has also been demonstrated to promote non-opsonizing entry of S. 

pyogenes into epithelial cells (39, 161). This is an interesting observation since it is 

becoming increasingly clear that S. pyogenes survives intracellularly during infection 

(191, 192). Immunogenicity studies have identified ScpA as an attractive target in the 

development of vaccines against S. pyogenes since it is highly immunogenic in children 

infected with S. pyogenes pharyngitis, and intranasal immunizations of ScpA in mice 

prevent streptococcal infections (155, 185). 

SpyCEP  
Lethal necrotizing soft tissue infections caused by S. pyogenes are characterized by an 

absence of neutrophils at the site of infection (46, 91, 197). Even though this feature can 

in part be explained by the C5a cleaving actions of ScpA, Hidalgo-Grass et al recently 

demonstrated that supernatants of invasive S. pyogenes strains specifically cleave and 

inactivate interleukin-8 (IL-8) (91). IL-8 is a major chemokine that is essential for 

neutrophil transmigration through the endothelial surfaces of venules and attracts 

neutrophils to sites of infection (140). To date, the IL-8 cleaving enzyme of S. pyogenes 

has only been crudely purified from growth medium by ammonium sulfate precipitation 

(60). However, supernatant fractions with IL-8 degrading activity contained a protein 

encoded by the open reading frame Spy0416 . Spy0416 (also called SpyCEP) belongs to 
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the subtilisin family of proteinases and contains a cell wall-anchoring motif (LPXTGX) 

suggesting that it is present on the streptococcal surface (101). Although subtilisin 

homologues have been characterized in S. pyogenes (ScpA), Bacillus species (43, 141), 

and other Gram-positive bacteria (67, 84), IL-8 degradation by a bacterial proteinase is a 

novel concept among pathogenic bacteria.  

SIC 
Some strains of S. pyogenes secrete the streptococcal inhibitor of complement (SIC), 

which was originally identified as an inhibitor of the membrane attack complex (MAC) 

(4). The distribution of the sic gene was first reported to be restricted to M1 and M57 

strains (4, 85), but a recent study reported occurrences of the gene in several other M 

types (134). Apart from inhibiting complement, SIC also inhibits other components of the 

innate immune system, such as lysozyme, α- and ß- defensins, LL-37, and the secretory 

leukocyte proteinase inhibitor SLPI (68, 69, 75). SIC is highly immunogenic in humans 

and its structure is highly variable between and within different S. pyogenes strains, 

possibly as a response to the need for the molecule to escape immune pressure (189). The 

high diversity of the sic gene (94), the recovery of new SIC variants within an epidemic 

wave (93), and the fact that the sic gene is present in all highly virulent M1 isolates, 

suggests that SIC has an important role during S. pyogenes infections. This view is 

emphasized by a recent study, which reported that SIC expressing M1 strains are more 

persistent in mice than SIC-negative strains after nasal inoculations (132). 

Regulation of S. pyogenes protein expression 
S. pyogenes regulates its protein expression in response to extracellular stimuli such as 

temperature, oxygen-levels and iron concentrations (See Table III for more information). 

Environmental signals from the host or other bacteria trigger positive-acting or negative-

acting gene regulatory systems that in turn stimulate the expression of extracellular 

proteins. The regulatory networks in S. pyogenes are divided into two-component signal 

transduction systems (TCSs) and “stand alone” response regulators (RRs). While TCSs 

recognize extracellular signals through transmembrane kinases, the exact mechanism of 

RRs sensing abilities is still unclear (118). The genome sequences of S. pyogenes 

serotypes M1, M3 and M18 revealed an average of 13 characterized or putative TCSs per 

genome (14, 70, 118, 187), suggesting that gene regulation is important for the 

pathogenicity of S. pyogenes. To date, only three RRs (mga, RALP, and Rgg/RopB) and 

three TCSs (CovR/CovS, FasBCAX and Ihk/Irr) have been studied in some detail with 
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respect to their influence on host-bacteria interactions. In table III, environmental signals 

that influence RR and TCS expression, and their impact on virulence gene expression in 

S. pyogenes are summarized.   

In addition to responding to different host environments, bacteria also use their 

sensing abilities to communicate with each other through quorum sensing (209). Quorum 

sensing provides a mechanism for bacteria to modulate their protein expression in 

response to population density, and to synchronize their expression of virulence factors 

(27). 

Mga (Multiple gene regulator of group A streptococci) 
Mga is the most characterized transcriptional regulator in S. pyogenes. It is found in all 

GAS serotypes, and homologs have been identified in several Gram-positive pathogens, 

including Streptococcus dysgalactiae and Streptococcus pneumoniae (78, 198, 204). 

Virulence factors that are regulated by Mga include M and M-like proteins, streptococcal 

collagen-like protein (SclA), serum opacity factor (Sof), C5a peptidase (ScpA) and 

streptococcal inhibitor of complement (SIC) (54, 170). Several studies have demonstrated 

that the Mga expression is maximal during logarithmic growth and that elevated CO2 

levels, increased temperature and iron-limiting growth conditions activate the Mga 

regulon (28, 137, 159). Beside external stimuli, Mga also binds within its own promoter 

and thus elevate Mga expression by auto-regulation (139), whereas RALP and Rgg/RopB 

both decrease Mga expression in vitro (78, 138).  

Interestingly, since a down-regulation of genes encoding surface-attached proteins 

will not immediately lead to a smaller number of surface-attached proteins on the 

bacterial surface, it has become evident that S. pyogenes utilizes proteolytic cleavage to 

down-regulate cell-wall attached proteins. Thus, SpeB releases M1 protein (16), Protein 

H (16), ScpA (16) and Protein F1 (152) from the bacterial surface. 
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Table III. Important regulatory networks in S. pyogenes and their impact on protein 

expression. 

Regulon 
family Regulon Signals 

Up-
regulated 
genes 

Down 
regulated 
genes 

 
References 

Mga 

Temperature, 
CO2, iron, 
plasma, 
logarithmic 
growth 
 

emm, scpA, 
sof, mrp, 
arp, sclA, 
sic, mga 

SclB 
(28, 54, 102, 
137, 159, 
167, 170) 

Rgg/RopB 
Temperature, 
stationary 
growth 

speB, 
covR/covS, 
ihk/irr 

ideS, sagA, 
slo, mga 

(34-37, 133, 
188) RRs 

RALP 

Temperature, 
super oxide, 
anaerobic 
conditions, 
stationary 
growth  
 

prtF, rofA 
prtF2, speA, 
speB, mga, 
nra 

(11, 73, 117, 
142, 156, 
160, 188) 

CovR/CovS 

Blood, late 
logarithmic 
growth, 
stationary 
growth 
 

------------- 

Capsule 
genes, 
sagA, speB, 
ideS, grab, 
ska, mspA 

(81, 86, 87, 
123, 126, 
213) 

FasBCAX 

Temperature, 
late 
logarithmic 
growth 
 

sagA fbp54, mrp (116, 188) 
TCS 

Ihk/Irr ROS, PMN 
contact 

sic, grab, 
ideS, endoS, 
speB 

emm1 (66, 208) 
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Present investigations 
As previously described, Streptococcus pyogenes produces a number of extra cellular 

proteins that modulate the immunological response directed against the bacteria during 

infection. A goal of our research is to identify these immuno-modulating proteins and 

understand their role during infection. In this section, the papers on which this thesis is 

based are summarized and discussed in a broader context. 
 

The protein expression of Streptococcus pyogenes is significantly influenced by 

human plasma (Paper I) 

Virulent S. pyogenes strains temporally control their transcription of virulent and 

metabolic genes in response to environmental changes. Even though we are just 

beginning to understand the regulatory networks during infections with S. pyogenes, 

several factors including temperature, O2-pressure, and ion-concentration have been 

shown to influence the streptococcal protein expression (28, 147, 159). During infection, 

S. pyogenes will at some point encounter human plasma. Superficial infectious sites with 

inflammation contain plasma as a consequence of vascular leakage, and invasive strains 

penetrate into the blood stream. Even though plasma is a rich growth medium, it is also a 

reservoir for opsonizing antibodies, complement, and other components of the human 

immune system. By expressing an array of extracellular proteins that interfere with 

various host defense mechanisms, the bacteria prevent recognition and subsequent killing 

during infection  (54). 

In Paper I, we show that S. pyogenes rapidly remodels its cellular metabolism and 

virulence pathways in response to human plasma. A proteome map was generated and S. 

pyogenes protein expression was analyzed when grown in human plasma and compared 

to the protein expression of bacteria grown in standard laboratory growth medium. In 

general, S. pyogenes increases its protein expression when grown in human plasma. A 

majority of the up-regulated proteins were either important for cell maintenance or 

involved in various metabolic pathways. However, the expression of two major 

streptococcal virulence factors, M1 protein and C5a peptidase, were not only up-

regulated in bacteria grown in plasma but also expressed in multiple forms. This suggests 

that S. pyogenes subjects virulent proteins to post-translational modifications when 

exposed to human plasma. MS/MS analysis of the different M1 protein spots revealed 

two distinct M1 forms, an intact native form, and a processed form lacking 13 amino acid 

residues in the NH2-terminus.  
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The precise mechanism responsible for the modification of the M1 protein and 

C5a peptidase, and their relevance for S. pyogenes pathogenicity is currently unknown. 

However, previous studies have suggested that the M1 protein can be subjected to 

phosphorylation and/or proteolytic processing on the bacterial surface, which alters the 

virulent phenotype S. pyogenes (40, 163-165, 174). It has also been reported that M 

proteins of different sizes and with partly changed amino acid composition in the hyper-

variable NH2-terminus can occur, as genetically distinct subpopulations develop during 

bacterial growth (145, 157) The subtilisin-like cell wall-anchored proteinase C5a 

peptidase was also expressed in multiple forms in bacteria grown in plasma. Although 

heterogeneity has been described for the C5a peptidase gene between different S. 

pyogenes strains, post translational modifications or gene heterogeneity of the C5a 

peptidase gene within the same strain have never been reported before (114). 
 

IdeS, a novel streptococcal cysteine proteinase with unique specificity for 
immunoglobulin G (Paper II). 
S. pyogenes has evolved several mechanisms to circumvent the antimicrobial effects of 

Igs in order to colonize and spread in the human host (49, 54, 215). In Paper II we 

describe the identification and characterization of a novel IgG cleaving enzyme of S. 

pyogenes denoted IdeS (Immunoglobulin G-degrading enzyme of S. pyogenes). The 

project started with the observation that a mutant strain, lacking the SpeB gene, was able 

to cleave human IgG when incubated with 10% human plasma. In addition, IgG was 

cleaved in growth medium from the virulent M1 strain AP1, grown under conditions 

repressing SpeB activity. These findings indicated that S. pyogenes expresses a novel IgG 

cleaving enzyme, distinct from SpeB. 

By fractionating the growth medium and following the enzymatic activity, a 

major band of approximately 34 kDa was associated with the IgG-cleaving activity. NH2-

terminal sequencing of the 34 kDa band gave a perfect match to a reading frame of 339 

amino acids designated Spy0861. Analyzing the amino acid sequence of the Spy0861 

reading frame revealed that IdeS contains a signal sequence, but no cell wall-attachment 

signal (LPXTGX), confirming that IdeS is secreted rather than cell wall-attached (72, 

101). Furthermore, like many other bacterial virulence factors, IdeS contains an RGD 

motif, suggesting that it might have affinity to host cell integrins (97). Interestingly, a 

cysteine and a histidine were also found in the amino acid sequence, indicating that IdeS 

belongs to the proteinase class of cysteine proteinases. This was confirmed through the 

incubation of recombinantly expressed IdeS with different proteinase inhibitors.  



Analysis of the molecular interplay between S. pyogenes and its human host 
 

 

33 

A number of experiments demonstrated the unique specificity of IdeS and NH2-

terminal analysis of hydrolyzed IgG showed that IdeS cleaves the hinge region of human 

IgG between glycine residues 236 and 237, generating two stable monomeric Fab 

fragments and one Fc fragment (Fig. 2 and 4). All subclasses of IgG are cleaved by IdeS 

but IgG2 is slightly more resistant to the endopeptidase activity. Interestingly, the IgG 

antibody response directed against M proteins on the bacterial surface is mainly 

distributed between IgG1 and IgG3 (31), suggesting that IdeS cleaves surface bound IgG 

with high efficiency. The other human immunoglobulin classes (IgA, IgD, IgE and IgM) 

are not cleaved or degraded by IdeS, and no additional protein bands appeared on SDS-

PAGE gels when human plasma was incubated with IdeS.  

Most extracellular proteinases expressed by Gram-positive bacteria have a 

propeptide located between the signal sequence and the mature protein. Interestingly, 

IdeS does not contain a propeptide and is thus already proteolytically active upon 

translation. Propeptides provide stability and prevent enzymes from degrading 

intracellular bacterial molecules. It is plausible that the extreme specificity of IdeS 

enables streptococci to express active IdeS without exposing intracellular proteins to 

degradation.  

Even though a PCR screening for the ideS gene revealed that IdeS is widespread 

among different S. pyogenes strains, only five out of 11 tested strains expressed IgG-

cleaving activity. Although puzzling at first it is now evident that the endopeptidase 

negative strains express the proteolytically inactive Mac-2 rather than IdeS (124). 

By following the growth of AP1, and continuously measuring the secretion of 

IdeS into the growth medium, it was determined that IdeS is secreted during logarithmic 

growth in vitro. This finding, in combination with previously published data 

demonstrating that SpeB is not expressed until late stationary growth phase under 

laboratory conditions (34), suggests that the two IgG-cleaving enzymes of S. pyogenes 

are expressed at different stages of infection and have complementary, rather than 

additive roles during infection. 

Although SpeB has proteolytic activities against human Igs in vitro, it is 

questionable whether SpeB has a role in cleaving opsonizing IgG during streptococcal 

infections in vivo. Elimination of IgGs is probably especially important for S. pyogenes 

during an early stage of infection, since it postpones the immune systems detection of the 

pathogen. In contrast to other IgG-modulating proteins of S. pyogenes that are expressed 

during logarithmic growth, SpeB is repressed until nutrition is scarce or the bacteria 
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reaches stationary growth phase in vitro (34). Moreover, the large number of substrates 

interacting with SpeB during an infection also suggests that Igs are not the primary target 

of SpeB, since the enzyme will be occupied with substrates other than IgG.  

As a final set of experiments, phagocytosis assays demonstrated that IdeS 

prevents Fc-mediated killing of the bacteria by human neutrophils. We concluded that the 

anti-phagocytic property of IdeS was a direct consequence of its ability to release the Fc 

fragment from opsonizing IgG that has bound to the surface of S. pyogenes. 
 

Streptococcus pyogenes and phagocytic killing (Paper III) 
Human neutrophils express an array of receptors that recognize Igs or complement that 

have bound to bacterial surfaces. Two important leukocyte receptors are the Complement 

receptor 3 (CR3, CD18/CD11b, or Mac 1), and the Fc-receptor FcγRIIIb (also called 

CD16). Previous studies have demonstrated that CR3 and FcγRIIIb are physically and 

functionally linked at the surface of human neutrophils and cooperate in binding and 

ingesting bacteria (24, 77, 195). 

After the submission of Paper II to EMBO J, Lei et al described a streptococcal 

protein designated Mac (123). Interestingly, Mac and IdeS are identical and Lei et al 

confirmed our results demonstrating that IdeS interferes with neutrophil 

opsonophagocytosis. However, instead of preventing opsonophagocytosis by cleaving 

opsonizing IgG, Lei et al suggested an alternative mechanism based on molecular 

mimicry. They postulated that the sequence homology shared between IdeS and CR3, 

enables IdeS to bind to CR3, and block the closely linked FcγRIIIb from interacting with 

opsonizing IgG. 

In Paper III we examined whether the enzymatic activity is important for IdeS 

interference with phagocyte functions. By replacing the catalytic cysteine residue with a 

glycine residue by site directed mutagenesis, a catalytically inactive IdeS mutant protein 

was generated (IdeSC94G). Although native IdeS and enzymatically inactive IdeSC94G 

interacted with the surface of human neutrophils in a similar manner, only native IdeS 

significantly increased the survival of S. pyogenes in phagocytosis assays and increased 

bacterial survival in immune blood. Hence, the results in Paper III show that the 

enzymatic activity of IdeS is essential for its ability to interfere with phagocytosis and 

subsequent killing of S. pyogenes, and that steric hindrance of FcγRIIIb per se is not 

sufficient. Later, it has been demonstrated that Mac-2 blocks the interaction between IgG 
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and Fc receptors by competitively bind to FcγRII and FcγRIII, whereas IdeS does not 

have any affinity towards neutrophil Fc receptors (2). 
 

Neutrophil serine proteinases remove immunogenic epitopes from the 
streptococcal IgG cleaving enzyme IdeS, without affecting the biological 
activity of the enzyme (Paper IV) 
Neutrophils store the serine proteinases NE, CG and Pr3 in their primary granules (56). 

Upon stimulation, activated neutrophils express all three proteinases on the cell surface or 

release them into the environment. NE has been assigned antimicrobial activities and 

degrades virulence factors of Gram-negative bacteria with pronounced sensitivity (210). 

Since IdeS and neutrophils are closely associated during streptococcal infections, 

we were interested in investigating whether IdeS and NE influence each other through 

proteolytic cleavage. By incubating recombinant IdeS with purified neutrophils, and 

analyzing the integrity of IdeS by SDS-PAGE, we observed an extra protein band of 

approximately 33 kDa. NH2-terminal sequencing revealed that the additional protein band 

represents an NH2-terminally processed IdeS protein (ΔN-IdeS), lacking the 9 outmost 

amino acids (DSFSANQEI, DSF-9, see Fig. 5). By repeating the experiment with class 

specific inhibitors, and analyzing recombinant IdeS incubated with purified neutrophil 

serine proteinases, we concluded that NE and CG were responsible for the release of 

DSF-9. In contrast, purified Pr3 did not generate the 33 kDa band, but instead efficiently 

degraded IdeS in a dose dependent manner. Liquid chromatography-mass spectrometry 

(LC-MS) identified DSF-9, together with intrinsic peptides and other peptides 

corresponding to IdeS NH2-terminus. Since processed IdeS remains stable in the presence 

of neutrophil proteinases, we suggest that the internal peptides identified result from the 

degradation of miss folded proteins. However, the three-dimensional structure of IdeS 

reveals that the NH2-terminus consists of at least 12 aa that are accessible to proteinase 

cleavage, thus explaining the presence of NH2-terminally cleaved peptides. 

Interestingly, IdeS retains its enzymatic activity and specificity after proteolytic 

cleavage by NE and CG, and ΔN-IdeS protects the bacteria against Fc-mediated killing as 

efficiently as native IdeS. We therefore suggest that evolutionary pressure has driven S. 

pyogenes to express an IdeS protein that is proteolytically active under conditions of 

inflammation. In contrast to IdeS, active SpeB is degraded by neutrophils within 60 

minutes. Although SpeB also degrades Igs, its main function during infection is probably 

not directly associated with activated neutrophils, which might explain its rapid 

degradation.   
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In addition to the intact endopeptidase activity of ΔN-IdeS, we observed that IgG 

and patient serum preparations against IdeS were preferentially directed against IdeS 

NH2-terminus rather than the intrinsic peptides identified by LC-MS. Although more 

patient serums are needed to confirm this observation, these results suggests that IdeS 

releases immunogenic peptides that otherwise would opsonize and lead to the elimination 

of the protein. 
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Conclusions 
• S. pyogenes significantly remodels its cellular metabolism and virulence pathways 

in response to human plasma. 

• M1 protein and C5a peptidase, two cell wall-attached virulence factors of S. 

pyogenes, are increasingly expressed and modified in response to human plasma. 

• IdeS is a novel IgG cleaving cysteine proteinase secreted by S. pyogenes during 

logarithmic growth phase. 

• IdeS cleaves the hinge region of human IgG1, IgG2, IgG3, and IgG4 with a 

unique specificity. 

• IdeS prevents Fc-mediated killing of S. pyogenes by releasing the Fc fragment 

from opsonizing IgG that has bound to streptococcal surfaces. 

• In contrast to virulence factors of Gram-negative bacteria, IdeS retains its 

endopeptidase activity after exposure to NE and CG. 

• Immunogenic peptides are released from IdeS after exposure to NE and CG. 
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Populärvetenskaplig sammanfattning på svenska 
Streptococcus pyogenes (också kallade grupp A streptokocker) är en vanlig 

sjukdomsframkallande bakterie som nästan alla någon gång blir infekterad av. Oftast 

infekterar S. pyogenes halsen och ger då upphov till halsfluss, eller huden, vilket orsakar 

svinkoppor eller scharlakansfeber. Det otäcka med infektioner som orsakas av S. 

pyogenes är att de i vissa fall kan utvecklas till allvarliga och direkt livshotande tillstånd 

om man inte behandlas med antibiotika. Exempel på akuta och livshotande tillstånd som 

orsakas av S. pyogenes är blodförgiftning, nekrotiserande fasciit (när bakterierna bryter 

ner muskulaturen) och ett chock-tillstånd som leder till att patientens organ kollapsar och 

slutar fungera. 

Utöver de kliniska tillstånd som exemplifierats ovan, kan obehandlade halsflussar 

och hudinfektioner även följas av minst lika allvarliga följdsjukdomar såsom reumatisk 

feber och glumerolunefrit. Nyligen publicerades en vetenskaplig artikel som uppskattade 

att mer än 600 miljoner människor årligen drabbas av halsfluss och att ungefär 500 000 

människor dör av akuta streptokockinfektioner eller av dess följdsjukdomar. Även om 

antalet dödsfall i Sverige till följd av streptokockinfektioner är relativt lågt, kostar dessa 

samhället stora summor pengar i form av uteblivna arbetsdagar och läkarbesök. 

Alla djur har någon form av immunförsvar som skyddar deras kroppar från att 

infekteras av mikroorganismer. Människans immunförsvar är avancerat och består av en 

mängd specialiserade celler, proteiner och andra molekyler, som samarbetar för att känna 

igen och avdöda sjukdomsframkallande organismer. Ytterst förenklat kan man likna 

celler vid en levande organism, medan proteiner är cellernas verktyg. 

På samma sätt som immunförsvarets celler använder proteiner för att känna igen 

och döda mikroorganismer, uttrycker S. pyogenes en mängd egna proteiner som förstör 

eller förvillar kroppens immunförsvar. Många års forskning har lett till att vi nu har en 

ganska god förståelse om de molekylära interaktioner som utspelar sig mellan 

streptokocken och immunförsvaret under en infektion med S. pyogenes. Denna 

avhandling bygger på fyra vetenskapliga artiklar som alla berör det molekylära samspelet 

mellan S. pyogenes och den mänskliga värden.  
 
Delarbete I 
När den mänskliga kroppen registrerar att den blivit infekterad av en 

sjukdomsframkallande organism, svarar den genom att försätta det infekterade området i 

ett tillstånd av inflammation. Inflammationen gör att olika bakterieavdödande celler och 
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proteiner kan ta sig ut till det infekterade området och förhindrar på så sätt att infektionen 

sprider sig. Vid inflammation finns det också alltid plasma närvarande. Plasma består av 

blodvätska samt olika proteiner. I delarbete I undersöker vi hur streptokocker reagerar när 

de hamnar i en miljö som innehåller plasma. Förekomst av plasma signalerar till S. 

pyogenes att de är inne i en mänsklig kropp, samt är ett tecken på att en inflammatorisk 

process har dragits igång. Det är intressant att veta vilka försvarsmekanismer bakterierna 

då uttrycker för att förhindra upptäckt av immunförsvaret. Intressant nog visade det sig 

att S. pyogenes snabbt arrangerar om sitt uttryck av proteiner på bakterieytan när de 

kommer i kontakt med plasma. Genom att förhöja mängden C5a-peptidas och M-

proteiner (två viktiga streptokockproteiner som lurar människans immunförsvar) på 

bakterieytan gör sig bakterien redo att möta det ankommande immunförsvaret. Kanske 

ännu mer intressant är upptäckten att S. pyogenes uttrycker olika varianter av C5a-

peptidaset och M-proteinet när de kommer i kontakt med plasma. Den upptäckten är 

intressant med tanke på att en förändring av proteiners tredimensionella struktur kan 

medföra att de uppträder på nya sätt. Än så länge kan man inte dra några säkra slutsatser 

kring varför bakterierna uttrycker olika former av C5a-peptidaset och M-proteinet, men 

det är troligt att de har en betydande roll för S. pyogenes sjukdomsframkallande 

egenskaper. 
 

Delarbeten II, III och IV 
När plasma läcker ut i infektionshärden följer stora mängder antikroppar med. 

Antikroppar är proteiner som snabbt och effektivt binder upp till bakterieytor och andra 

kroppsfrämmande element. En antikropp som har bundit upp till en bakterieyta känns lätt 

igen av andra komponenter av immunförsvaret som snabbt avdödar bakterien. Eftersom 

antikroppar har en så viktig roll i kroppens immunförsvar är de en given angreppspunkt 

för bakterier som vill hålla sig gömda i kroppen. Man vet sedan tidigare att S. pyogenes 

skyddar sig mot antikroppsattacker på tre sätt: 1) Genom att själv binda upp antikroppar 

till sin yta på ett sätt som förhindrar celler och andra proteiner från att känna igen 

antikropp-bakteriekomplexet, 2) genom att klippa av en sockermolekyl från antikroppen 

vilket leder till att antikroppen förlorar mycket av sin stabilitet, samt 3) genom att 

uttrycka ett enzym som klyver och förstör antikroppar. 

I delarbete II identifierar och karaktäriserar vi ett tidigare okänt streptokockenzym (IdeS) 

som klyver den mänskliga antikroppen IgG i två delar. Denna klyvning gör att S. 

pyogenes överlever när de inkuberas med celler som i vanliga fall snabbt hade avdödat 
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bakterierna. Detta försök i kombination med att IdeS förhindrar avdödning av S. 

pyogenes i immunt blod visar vilken stor betydelse IdeS tycks ha för bakteriernas 

förmåga att undgå upptäckt av kroppens immunförsvar. I motsats till det tidigare kända 

streptokockenzymet (SpeB), klyver IdeS IgG med en oerhörd specificitet. Vi visar också 

att IdeS uttrycks under förhållanden som tros likna den tidiga fasen av en 

streptokockinfektion, tillika den fas då antikroppsklyvning borde vara av störst betydelse. 

I delarbete III visar vi att det är den enzymatiska aktiviteten som är avgörande för 

IdeS förmåga att rädda S. pyogenes från immunförsmedierad avdödning. Genom att ändra 

om genen som kodar för IdeS, framställde vi en IdeS-variant som är identisk med vanligt 

IdeS förutom att den inte kan klyva IgG. När S. pyogenes utsätts för specifika 

förhållanden som normalt sett dödar bakterien, förhindrar IdeS till skillnad från IdeS-

varianten, att S. pyogenes avdödas. 

I delarbete IV undersöker vi vad som händer med IdeS när immunförsvaret väl 

har känt igen S. pyogenes och slagit på alla sina bakteriedödande mekanismer. En 

försvarsmekanism som immunförsvaret använder sig av är att skicka ut två enzymer som 

kallas för elastas och cathepsin G. Elastas och cathepsin G kan förstöra bakteriella 

proteiner och ibland även döda bakterier. Intressant nog visar vi att IdeS behåller sin 

förmåga att klyva IgG även efter att det har kommit i kontakt med elastas och cathepsin 

G. Vi tror inte att detta är en slump utan att S. pyogenes under evolutionens gång har 

utformat IdeS så att de ska tåla angrepp från mänskliga enzymer. En annan observation är 

att små fragment av IdeS klyvs loss av elastas och cathepsin G. Dessa fragment tycks 

vara särskilt lätta för kroppens immunförsvar att känna igen och patienter som tidigare 

varit infekterade med S. pyogenes har antikroppar riktade mot dessa fragment i större 

utsträckning än mot det resterande proteinet. Att medvetet designa IdeS så att 

lättigenkänliga delar klyvs av efter att IdeS har upptäckts är en intressant tanke som 

ytterligare förstärker intrycket av att S. pyogenes är exceptionellt välanpassad för att hålla 

sig undan människans immunförsvar. 
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