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Popular summary

Quantitative imaging, where every pixel of an image represents a physical quantity (e.g. time
or velocity) is being increasingly used in the field of diagnostic radiology and has potential to
enhance medical diagnosis. Quantitative methods for Magnetic Resonance Imaging (MRI)
enables measurements of velocity and flow using a technique called Phase Contrast Magnetic
Resonance (PC-MR), and different time constants of the magnetic resonance signal can be
measured to characterize different tissue types such as muscle and fat in MR images using a
technique called magnetic resonance relaxometry.

One of the first clinical applications of MR relaxometry was to estimate iron load in
different organs noninvasively by measuring the time constant called T2*. Patients suffering
from iron load disease are at risk of developing organ failure due to iron overload. Iron
chelate therapy has been shown to reduce chronic iron overload but it is toxic and has been
linked to renal failure at high doses. MRI T2* measurements can be used to effectively tailor
chelate therapy for patients with iron load disease, thereby reducing mortality of the disease.
Several methods for calculating T2* from MRI images are currently being used, each with
its own advantages and disadvantages. Different MRI vendors generally use slightly different
methods. Further, some methods are mainly suitable for cases with moderate to normal iron
load while other methods are more suitable for cases with severe iron load.

For other clinical applications of MR relaxometry the MR time constants called T1 and
T2 are measured. For example, T1 measurements before and after administration of a certain
MRI contrast agent makes it possible to determine the extracellular volume in different parts
of the heart muscle which can be used to examine damages to the heart muscle after a heart
attack. T2 measurements can for example be used to detect edema in the heart muscle and
to determine blood oxygen saturation noninvasively. Several methods exist for T1 and T2
calculation from MRI images and software tools that can be used to calculate T1 and T2
values could be of help to standardize methodology in the clinics. A previous software for T1
and T2 analysis exist but it is designed to be used for research only.

The latest MR relaxometry methods often use computer simulations of MR physics to-
gether with MR images to enable measurement of several MR time constants at the same
time or to increase the accuracy of each measurement. These techniques show great promise
in advancing the research field of MRI but current methods require state of the art measure-
ment techniques which can only be implemented on high-end MRI scanners, limiting wide

v
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clinical use.
Phase Contrast Magnetic Resonance (PC-MR) can be used to measure velocity in each

pixel of an MRI image and have been used for many years as the reference standard for
noninvasive measurements of blood flow. In order to measure the total net flow in a blood
vessel over a heartbeat, the vessel of interest has to be delineated in a time-resolved PC-MR
image series usually containing 15-35 images. Manual vessel delineation in these images is
time consuming and requires user experience for accurate results. Semi-automatic delineation
methods based on image analysis have reduced the amount of required user input and the total
time of analysis for PC-MR flow measurements. However, currently existing semi-automatic
methods often need manual corrections from the user.

Non-invasive flow and blood velocity measurements in the fetal cardiovascular system by
MRI is a promising alternative to doppler ultrasound for diagnosing disease such as congenital
heart defects and intra-uterine growth restriction. Conventional PC-MR flow measurements
require an ECG-recording during the MRI scan which is used to sort the collected MRI data
to form a time-resolved video over a heartbeat, a process called retrospective image gating.
The lack of a usable ECG by surface electrodes for fetal imaging requires alternative image
gating techniques. Metric Optimized Gating (MOG) is a previously published image gating
technique which does not require a fetal ECG recording. MOG together with PC-MR flow
measurements (MOG PC-MR) has demonstrated reproducibility for fetal imaging in stud-
ies from one research center. However, MOG PC-MR flow measurements have not been
validated for a range of flow rates or a range of peak velocity. This dissertation investigates
existing and newly developed MR relaxometry and PC-MR measurement methods with the
purpose of evaluating clinical applicability.

In Study I a new vendor-independent T2* calculation method was validated over the
range of clinically relevant T2* values in phantom experiments. Invivo T2* measurements
using the proposed method were in good agreement with T2* measurements using a vendor-
specific T2* method in the heart and liver of patients with known or suspected iron load
disease.

In Study II a vendor-independent software for T1 and T2 analysis was validated in phan-
tom experiments.

In Study III a new MR-relaxometry method called SQUAREMR, which was applied
to a previously introduced and widely available T1 measurement technique (MOLLI), was
shown to provide improved T1 measurement accuracy in phantom experiments.

In Study IV a new semi-automatic delineation method for PC-MR flow measurements
which uses a database of manual vessel delineations to control the shape of the delineation was
validated in a pulsatile flow phantom experiment and showed good agreement with manual
delineations in invivo PC-MR images of the ascending aorta and main pulmonary artery.

Finally, in Study VMOGPC-MR showed good agreement with conventional PC-MR in
a pulsatile flow phantom experiment except for cases with lowVelocity toNoise Ratio (VNR),
which resulted in underestimation of peak velocity and overestimation of flowwhich warrants
optimization of the PC-MR measurement to individual fetal vessels for accurate MOG PC-
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MR fetal flow measurements.





Acknowledgements

I would like to express my gratitude to everyone who have supported me during my time as
a Phd student.

My main supervisor Einar Heiberg: Thank you for excellent supervision, all your help
and support over the years and for a solution focused way of working and reasoning.

My co-supervisor Anthony Aletras. Thank you for excellent supervision, for welcoming
me as a hang-around student during scanner experiments and for introducing me to the field
of MR physics.

My co-supervisor Erik Hedström. Thank you for excellent supervision, support and co-
operation over the years.

Håkan Arheden. Thank you for creating, and letting me be apart of, the Cardiac MR
Group during these past years, for your leadership, and for sharing your thoughts on profes-
sional and personal development.

Christos Xanthis. Thank you for great cooperation and friendship over the years.
Johannes Töger. Thank you for all the years of great collaboration and for teaching me

about flow phantoms, laser experiments and everything in between.
The EAG group: For a excellent teamwork over the years.
All of my colleagues in the cardiacMRGroup: Thank you very much for all your support,

friendship, and great discussions over the years.
Lastly, to Agneta, Lars and Inger: Thank you for all your love and support over the years,

and for giving me a great start in life.

The studies in this dissertation were supported by grants from the Swedish Heart and Lung
Foundation, Swedish Research Council, the Medical Faculty at Lund University, Region of
Skåne, the Greek General Secretariat for Research and Development, the Swedish Medical
Society, Skane University Hospital, the Swedish Society of Medicine Radiology and Cardi-
ology and the European Commission.

ix





Part I

Research context





Chapter 1

Background

1.1 Introductory cardiovascular physiology

The cardiovascular system provides oxygen and nutrients to the organ systems of the body
and removes metabolic waste products. This exchange takes place in the capillaries, which
contains approximately 5% of the total blood volume [1]. The cardiovascular system is com-
posed of blood vessels, the blood and the heart, and is divided into two circuits which both
begin and end in the heart: the systemic and the pulmonary circulation. The heart contains
four chambers (shown in Figure 1.1): the right atrium (RA), the right ventricle (RV), the left
atrium (LA) and the left ventricle (LV). The ventricles are separated by a part of the cardiac
muscle wall called the interventricular septum, while atria and ventricles are separated by the
atrioventricular plane (AV-plane), a fibrous structure containing the four heart valves. On
the right side of the heart, blood flows from the atrium to the ventricle through the tricus-
pid valve and exits the ventricle through the pulmonary valve and into the main pulmonary
artery. On the left side of the heart, blood flows from the atrium to the ventricle through
the mitral valve and exits the left ventricle through the aortic valve and into the aorta. No
blood flow exists between atria or between ventricles in healthy hearts of adults. Abnormal
blood flow connections between atria or between ventricles are called cardiac shunts, which
are caused by some forms of congenital heart defects such as atrial septal defects (ASD) and
ventricular septal defects (VSD).

The tip of the heart is called the apex, and the base of the heart is located on the opposite
side of the heart.

In the pulmonary circulation, deoxygenated blood is pumped from the RV into the lungs
through the main pulmonary artery. Oxygen rich blood is transported from the lungs to the
LA and continues to the LV.

In the systemic circulation, oxygen rich blood is pumped from the LV through the aorta
and into the arterioles which branch into the microcirculation, including the capillaries. de-
oxygenated blood continues to the veins and is transported back to the RA through the su-
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2 CHAPTER 1. BACKGROUND

Figure 1.1 AnMR image showing the four chambers of the heart: the right atrium (RA), the
right ventricle (RV), the left atrium (LA) and the left ventricle (LV).

perior and inferior vena cava.

The activity of the heart is periodic/cyclic and the heart cycle consist of two phases: systole,
the contraction phase, and diastole, the relaxation phase. Immediately before the onset of
contraction the aortic and pulmonary valves are closed and the mitral and tricuspid valves are
open. During ventricular systole, the muscle tissue of the heart, known as the myocardium,
starts to contract, which exerts a force on the AV-plane, dragging it down towards the apex.
A buildup of pressure occurs in the ventricles and the tricuspid and mitral valves close. At
first, ventricular pressures will increase without an associated change in ventricular volume,
known as the isovolumetric contraction phase. The aortic and pulmonary valves open when
ventricular pressures exceed the pressure in the aorta and in the main pulmonary artery, re-
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spectively. At that point in time, ventricular volumes start to decrease and blood is ejected
from the ventricles. Eventually, ventricular pressures start to decrease and the pressure dif-
ferences between ventricles and arteries change direction. The reversed direction of pressure
differences will lead to reversed blood flow after a time delay due to the momentum of blood
flow. When blood flow is reversed, the aortic and pulmonary valves close. At this stage,
known as end-systole, all heart valves are closed. The majority of blood ejection from the
ventricles during systole is caused by longitudinal pumping due to AV-plane motion towards
the apex [2]. Radial pumping due to thickening and inward motion of the myocardium is
responsible for the remaining blood ejection. During the systolic AV-plane motion, blood is
sucked from the veins to the atria[3].

Relaxation of the heart muscle initially occurs in an isovolumetric manner, leading to
decreased ventricular pressures while ventricular volumes are unchanged. This phase is fol-
lowed by the rapid filling phase, in which the AV-plane moves towards the base of the heart
while the mitral and tricuspid valves open. After a short time period during which the heart
is approximately stationary, called the diastasis, the atria starts to contract. Atrial contraction
leads to additional filling of the ventricles and the time point after atrial contraction is called
end-diastole.

The volume of blood in a ventricle that is ejected during systole is called stroke volume (SV)
and can be calculated as the difference between the end-diastolic volume (EDV ) and the
end-systolic volume (ESV ) of the ventricle (EDV − ESV ). The percentage of ejected
blood volume is called the ejection fraction (EF) and can be calculated as:

EF =
SV

EDV
=

EDV − ESV

EDV

In healthy adults, the duration of the heart cycle is on average 860ms, corresponding to
a heart rate (HR) of 70 beats per minut (bpm). The duration of diastasis, the time phase
where the heart is approximately stationary, varies with heart rate and disappears completely
for heart rates above approximately 80bpm[4].

The product of heart rate and stroke volume gives the delivered blood volume per minute,
known as cardiac output (CO).

1.2 Nuclear Magnetic Resonance (NMR)

The nuclear magnetic resonance (NMR) method for measuring nuclear magnetic moments
was formulated in the late 1930s [5] and is used as basis for signal detection in magnetic res-
onance imaging (MRI) and magnetic resonance spectroscopy (MRS). The following sections
describe the NMR signal and how it is detected in a pulsed NMR experiment, which is the
most commonly used NMR method for MRI and MRS applications today.
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1.2.1 Nuclear spin

Atomic nuclei have an intrinsic property called nuclear spin, which is a form of angular
momentum. The nuclear spin is described by the angular momentum quantum number I
which can have a positive or negative integer or half-integer value in increments of 1/2 (e.g.
-1, -1/2, 0, 1/2, 1, etc).

Atomic nuclei with I ̸= 0 have an associated non-zero magnetic moment. When placed
in a strong external magnetic field, multiple distinct nuclear spin energy levels, or spin states,
are formed due to the Zeeman effect [6]. The energy difference between adjacent spin states is
proportional to the strength of the external magnetic fieldB0 which is measured in Tesla (T).
The following discussion on NMR will refer to experiments on atomic nuclei with I = 1/2,
for example the hydrogen nucleus (proton), with negligible mutual spin interactions.

For a sample in thermal equilibrium, the relative population among different spin states
will be slightly disproportionate, with a small overrepresentation in low-energy states. This
population difference between spin states is a prerequisite for NMRmeasurements and results
in a net magnetization along the B0 magnetic field, called longitudinal magnetization. Fur-
ther, the magnitude of population differences partly determines the maximum signal strength
in an NMR experiment, and increases with increasingB0 and decreases with increasing sam-
ple temperature. In addition, the maximum NMR signal strength is proportional to the spin
density (ρ) of the sample.

1.2.2 Spin precession and resonance

The external magnetic field (theB0-field) causes spin orientations of nuclei to precess around
the z-axis, at a precession frequency called the Larmor frequency (ω0). The Larmor frequency
is given by the product of the external magnetic field strengthB0 and the gyromagnetic ratio
γ which is a nuclei-specific constant: ω0 = γB0 and it is proportional to the energy difference
between spin states. Since the external magnetic field cannot be calibrated to have a perfectly
homogeneous field strength over a volume, a range of Larmor frequencies will exist in a sample
surrounding the Larmor frequency corresponding to the main field strength (B0). Further,
the Larmor frequency of a given nucleus, for example hydrogen, can be shifted due to the
local molecular environment, an effect known as chemical shift.

Spin precession results in a rotating magnetic field component in a plane perpendicular to
the external magnetic field direction, called the xy-plane or transverse plane. Such a rotating
magnetic field can induce a current in a receiver coil with its symmetry axis perpendicular to
the z-axis. However, in thermal equilibrium the spin orientations of nuclei do not precess in
phase with one another which causes them to add destructively and therefore, a signal cannot
be detected.

If an oscillating magnetic field, denoted as the B1-field, is applied on-resonance with
the spin precession (ω1 = ω0) and with an orientation perpendicular to the static magnetic
field, the longitudinal magnetization is gradually converted into a rotating magnetization
component in the xy-plane at a rate [γB1] (Figure 1.2). Spin orientations of nuclei now starts
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to precess in phase with one another, creating phase coherence, and the rotatingmagnetic field
in the xy-plane, called transverse magnetization, induces an alternating current in the receiver
coil, which is the measured signal in an NMR experiment.
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Figure 1.2An example of longitudinal (blue) and transverse (red)NMRmagnetization shown
in a 3D-coordinate system. During the application of an oscillating B1-field on-resonance
with the spin precession, the net magnetization is periodically converted at a rate [γB1]
between a longitudinal component along the static B0 magnetic field (z-axis), and a rotating
transverse component. The total net magnetization is normalized to 1.0 in this plot.

1.2.3 Properties of the NMR signal

Since the NMR signal originates from a rotating magnetic field, every signal sample has an
associatedmagnitude and phase. Measurement of both themagnitude and phase is performed
by quadrature detection, where two orthogonal signal components separated by a 90◦ phase
shift are sampled concurrently. The two signal components are usually represented as the real



6 CHAPTER 1. BACKGROUND

and imaginary parts of a complex number. The measured NMR signal will oscillate at the
Larmor frequency, its carrier frequency, and is often demodulated by the receiver circuit such
that only the envelope of the oscillating signal remains.

1.2.4 The pulsed NMR experiment

In a pulsed NMR experiment, the signal is detected after a short on-resonance B1-pulse.
The duration of the B1-pulse is in an order of just a few milliseconds, resulting in a wide fre-
quency bandwidth in an order of kHz. The wide pulse bandwidth makes it possible to excite
nuclei with different Larmor frequencies simultaneously, over the entire Larmor frequency
spectrum of a sample. Since the Larmor frequency is in the radio frequency (RF) range, an
electromagnetic RF-pulse can be used to generate the NMR signal. For many NMR appli-
cations, the RF-pulse is shaped by a modulation function over time in order to modify its
excitation spectrum. Gaussian or sinc shapes of the RF-pulse are commonly used.

The NMR signal amplitude immediately after the B1-pulse depends on the flip angle
(α) which is given by the product of the gyromagnetic ratio and the time integral of the B1

amplitude: α = γ
∫ tp
0 B1(t)dt, where tp is the total duration of the B1-pulse. The flip an-

gle is related to the proportion of transverse magnetization Mxy relative to the longitudinal
magnetization Mz by: tan(α) =

Mxy

Mz
. A flip angle of 90◦ corresponds to zero longitudinal

magnetization and the maximum achievable transverse magnetization; a flip angle of 180◦

corresponds to zero transverse magnetization and maximum longitudinal magnetization with
opposite polarity compared to the B0-field; and a flip angle of 0◦ corresponds to zero trans-
verse magnetization and maximum longitudinal magnetization along the B0 field, similar
to thermal equilibrium. A flip angle of 90◦ results in the maximum NMR signal amplitude
since the entire net magnetization is converted into the xy-plane.

An illustration of the real component of an NMR signal response from hydrogen nuclei
of water immediately after the application of a B1-pulse is shown in Figure 1.3. The signal
is oscillating at the Larmor frequency and is decaying at an exponential rate. This signal
response is called the free induction decay (FID) and was first observed by Hahn [7].

For samples containing several different chemical structures, for example a mix of water
and fat, the NMR spectrum may be composed of several distinct frequency peaks due to the
chemical shift effect. If this is the case, the FID signal will have more than one oscillating
component.

TheNMR frequency spectrum of a sample can be obtained by performing amathematical
operation called Fourier transformation (FT) on the measured FID signal[8]. The Fourier
transform operation is used extensively for both magnetic resonance spectroscopy (MRS) and
magnetic resonance imaging (MRI).
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Figure 1.3 An example of the real component of a NMR free induction decay complex signal
(FID) from hydrogen nuclei of water in a homogeneous static magnetic field (solid line),
together with its decay envelope (dashed lines). The FID oscillation frequency equals the
Larmor frequency but it has been reduced in this figure for better visualization.

1.2.5 Relaxation effects

NMR relaxation is the process in which an excited spin system is returned to thermal equi-
librium. The measured transverse magnetization will decay to zero and the longitudinal mag-
netization will regrow to its maximum amplitude along the B0 field. Both of these aspects
of relaxation will be described separately, starting with the recovery of longitudinal magneti-
zation.

Of note, the exponential equations used to describe NMR relaxation in this section are
approximations which are reasonably accurate for rapidly tumbling molecules, such as most
molecules in the liquid state, but breaks down for slow molecular motion. Therefore the
discussion is limited to NMR measurement of molecules in the liquid state.
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Longitudinal relaxation

After the application of a B1-pulse, the spin system will eventually be restored to thermal
equilibrium and the net longitudinal magnetization Mz will be recovered. During this pro-
cess energy is exchanged between the spin system and its molecular environment.

The rate of longitudinal relaxation depends on the difference between the current state
of longitudinal magnetization and the thermal equilibrium state according to:

dMz

dt
= −(Mz(t)−M0)/T1

Here,M0 is the longitudinal magnetization at thermal equilibrium and T1 is a time constant
known as the longitudinal relaxation time.

Longitudinal relaxation over time is described by the solution to the differential equation
above:

Mz(t) = M0 − (M0 −Mz(0))e
−t/T1

Here,Mz(0) is the longitudinal magnetization immediately after the B1-pulse.
T1 increases with increasing static magnetic field strength B0 and decreases in the pres-

ence of paramagnetic ions. T1 is also highly sensitive to the temperature and the molecular
composition of a sample. For example, at clinically used magnetic field strengths, T1 of water
is several seconds while T1 of fat is in the order of hundreds of milliseconds.

The free induction decay and the effect of off-resonance

Immediately after a B1-pulse, the FID signal decays due to loss of phase coherence between
precessing spins, also called dephasing. The FID decay rate depends on two factors: 1)
magnetic field strength inhomogeneity of the B0 magnetic field over the sample volume and
2) an irreversible process called transverse relaxation.

Magnetic field strength inhomogeneity results in a widening of the NMR frequency spec-
trum in the sample, which gives rise to off-resonance frequencies (∆ω) surrounding the center
frequency. In this setting, the net rotating magnetization in the xy-plane will be composed of
a combination of frequencies which will dephase over time, leading to destructive interference
and decay of the net NMR signal.

In addition to imperfections of the staticB0 field, local magnetic field inhomogeneity can
also be caused by regions containing ferromagnetic materials in the sample volume, leading
to an increased signal decay rate.

By assuming that the width of the NMR spectrum due to off-resonance frequencies is
much smaller than the center frequency of the spectrum, the NMR signal decay over time
can be described as[7]:

Mxy(t) ≈ Mxy(0)e
−t/T ∗

2

Here, Mxy(0) is the magnitude of transverse magnetization immediately after the B1-
pulse, T ∗

2 is a time constant describing the decay rate and t is the time from the end of
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the B1-pulse to signal measurement. By definition, T ∗
2 is the time for which the signal has

decayed to 37% of its original value and is described by the following formula[7]:

1

T ∗
2

=
1

T2
+

(∆ω)1/2

2

Here, (∆ω)1/2 is the width at half maximum of the NMR frequency spectrum due to off-
resonance and T2 is a time constant describing irreversible transverse relaxation. Since mag-
netic field inhomogeneity over a volume is not a random process and is approximately con-
stant during theNMR experiment, the decay component due to off-resonance can be reversed
by using a specific combination of B1-pulses before signal measurement. This technique is
called spin echo and will be described further in section 1.2.7.

Transverse relaxation

Transverse relaxation refers to the process in which spin precession of nuclei dephase due to
energy exchange between spins. This results in irreversible loss of transverse magnetization
over time according to:

Mxy(t) = Mxy(0)e
−t/T2

Here,Mxy(0) is the transverse magnetization immediately after the application of aB1-pulse
and T2 is a time constant which describes the rate of signal decay due to transverse relaxation.
t is the time delay between the end of the B1-pulse and the NMR signal measurement.

T2 is always shorter than T1, since the regrowth of longitudinal magnetization inherently
results in loss of transverse magnetization. Thus, any phenomena causing T1 relaxation also
causes T2 relaxation. However, T2 relaxation can occur without T1 relaxation. For example,
T2 is sensitive to the molecular composition of the sample[9].

1.2.6 The Bloch equations

If mutual spin interactions are negligible, the spin motion of atomic nuclei with I = 1/2
in the presence of external magnetic fields can be completely described by a precessing net
magnetization vector[10] according to:

dM
dt

= γM× B

Here,M is the net magnetization 3D-vector and B is a 3D-vector composed of the sum
of all active external magnetic fields. Since the transverse components of bothM and B in an
NMR experiment are rotating around the z-axis at the Larmor frequency, it is convenient to
redefine the x- and y-axes of the coordinate system as two orthogonal axes in the transverse
plane which are rotating at the Larmor frequency, also called the rotating frame of reference.
In this coordinate system, both the transverse magnetization components (Mx andMy) and
the B1-field are stationary if precessing on-resonance. One advantage with this frame of
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reference is that two B1-pulses which are out of phase with one another can be described
with simple subscripts. For example, one B1-pulse with flip angle 60◦ and one pulse with
flip angle 180◦ which are 90◦ out of phase can be written as 60x and 180y, respectively.
Further, two pulses with, for example, flip angles 90◦, which are 180◦ out of phase with each
other can be written: 90◦x and 90◦−x. In practice, signal measurements in the rotating frame
of reference can be achieved by demodulation of the NMR signal (described in section 1.2.3).

In the rotating frame, the evolution of the net magnetization 3D-vector in the presence
of external magnetic fields and relaxation processes (described in section 1.2.5) is given by
the following set of relationships known as the Bloch equations[9]:

dMx

dt
= γMy(B0 − ω/γ)− Mx

T2

dMy

dt
= γMzB1 − γMx(B0 − ω/γ)− My

T2

dMz

dt
= −γMyB1 −

(Mz −M0)

T1

Here, Mx, My, and Mz are the orthogonal components of the net magnetization 3D vec-
tor, B0 is the external magnetic field strength along the z-axis, B1 is the amplitude of the
oscillatingRF -field applied along the x-axis andω is the oscillation frequency of the RF-field.

1.2.7 Relaxometry and introductory spin manipulation

As mentioned in previous sections, the NMR signal amplitude depends on the B0-field
strength, the sample temperature and the flip angle of the B1-pulse. All of these parameters,
except for sample temperature, have magnitudes which are directly related to the experiment
design and which cannot be used for sample characterization. The NMR frequency spectrum
can be obtained by means of Fourier transformation of the measured NMR signal[8] and can
be used to characterize the sample. In addition, the relaxation time constants T1, T2 and T ∗

2

vary with different aspects of the sample composition and can therefore be of value. Relax-
ometry is the measurement of such NMR relaxation time constants and generally involves
spin manipulation schemes, also called pulse sequences, other than the FID experiment. This
section describes the basic principles of relaxometry methods for measurement of T1, T ∗

2 and
T2 time constants and associated pulse sequences.

In general, multiple NMR experiments are performed, each with different timing settings
resulting in different NMR signal amplitudes due to the relaxation effect of interest. The
signal measurements are compared to a signal model which is known to be accurate for the
performedNMR experiment and which includes the time constant of interest as an unknown
parameter. Finally, the unknown parameters of the signal model are estimated by nonlinear
least squares regression to the measured signal points. This methodology is common to mea-
surements of all three time constants.
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The number of signal measurements used in regression analysis must, as an absolute mini-
mum, equal the number of unknown parameters. When this is the case, the signal model will
find parameters to perfectly fit the data which makes the measurement extremely sensitive to
noise. By increasing the number of signal measurements, robustness to noise is gradually im-
proved. In practice, around 8-15 signal measurements are commonly used for signal models
with 2-3 unknown parameters in relaxometry.

Measurement of the T1 time constant

The T1 relaxation time can be measured by perturbing the magnetization with a prepara-
tion B1-pulse, measure the NMR signal by applying an additional excitation B1-pulse after
a time interval of undisturbed longitudinal relaxation, and repeating the experiment using
different time intervals between magnetization preparation and measurement. In theory, ar-
bitrary flip angles can be used for both magnetization preparation and excitation. In practice,
however, it is advantageous to use a preparation pulse which perturbs Mz as far away from
the equilibrium magnetizationM0 as possible in order to maximize the dynamic range of the
measurement. Further, an excitation pulse resulting in the maximumNMR signal amplitude
should be used to reduce the effect of noise on the measurement. Both of these criteria are
satisfied by using a 180◦ preparation pulse followed by a 90◦ excitation pulse, an experiment
called inversion-recovery. Longitudinal relaxation over time for inversion-recovery can be
described as:

Mz(t) = M0 − (M0 − (−M0))e
−t/T1 = M0(1− 2e−t/T1)

Here, t is the time between the end of the 180◦ preparation pulse and the start of the exci-
tation pulse, also called inversion time (TI), and Mz(t) is the measured signal. M0 and T1

are the unknown parameters which are estimated by the fitting algorithm. The longitudinal
magnetization has been perturbed to opposite polarity compared to thermal equilibrium by
the inversion preparation pulse. For an unbiased T1 measurement, the time interval between
repeated experiments, called the repetition time (TR) has to be long enough to allow for near
complete longitudinal recovery. This makes T1 measurements by inversion-recovery time
consuming.

Another commonly used method to measure T1 is the saturation-recovery experiment:

Mz(t) = M0 − (M0 − (0))e−t/T1 = M0(1− e−t/T1)

In this experiment, A 90◦ preparation pulse converts the entire longitudinal magnetization
to the xy-plane, resulting in nulling of the longitudinal magnetization (Mz(0) = 0). t
is now the time between the end of the 90◦ preparation pulse and the start of the excita-
tion pulse, also called saturation time (TS). Ideal saturation recovery measurements does not
require complete longitudinal recovery between repeated experiments, thereby improving
measurement efficiency. However, only half of the dynamic range is obtained compared to
inversion-recovery, which reduces measurement precision.
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In practice, a generalized signal model which supports preparation pulses with arbitrary
flip angle (α) and takes potential B1-pulse imperfections into account, is most commonly
used for both inversion-recovery and saturation-recovery experiments:

Mz(t) = M0−(M0−(cos(α)M0))e−t/T1 = M0(1−(1−cos(α))e−t/T1) = M0(1−Ae−t/T1)

Here, either α or A is used as an additional free parameter determined by the fitting algo-
rithm. Increasing the number of free parameters from 2 to 3 results in improved accuracy at
the cost of reduced precision.

Saturation/inversion times in use for a T1-measurement generally includes long times
corresponding to near complete longitudinal recovery which mainly define the unknown
parameter M0; short times close to the end of the preparation pulse which mainly define
the unknown parameter A or α; and a range of times in between which mainly define the
unknown parameter T1.

Measurement of the T ∗
2 time constant

T ∗
2 can be measured from repeated FID experiments with time delays (t) between the end of

the B1-pulse and signal measurement according to:

Mxy(t) = Mxy(0)e
−t/T ∗

2

Here, the unknown parameters are Mxy(0) and T ∗
2 . For an unbiased T ∗

2 measurement,
the time interval between repeated experiments, the repetition time (TR) needs to be long
enough to allow for complete longitudinal recovery. However, a B1 excitation pulse with a
flip angle lower than 90◦ can be used without invalidating the signal model. A low flip angle
reduces the time needed for the longitudinal magnetization to reach a certain percentage of
M0 compared to the time needed for a 90◦ flip angle, and the repetition time can therefore
be reduced. However, the gain in measurement efficiency comes with reduced precision since
lower flip angles result in lower NMR signal amplitudes.

The spin echo and measurement of the T2 time constant

Inhomogeneous regions of the static B0 magnetic field over the sample volume will give rise
to a distribution of spin Larmor frequencies surrounding the on-resonance frequency. Such a
distribution of off-resonance frequencies will lead to loss of phase coherence in the xy-plane
and as a result, rapid decay of transverse magnetization.

Since both off-resonance precession and transverse relaxation contribute to the free in-
duction decay (FID), the T2 time constant describing transverse relaxation alone cannot be
measured from the FID signal.

The loss of phase coherence due to off-resonance is reversible, which was first shown by
Hahn[11]. When a B1-pulse with flip angle 180◦ is applied at a time τ after an initial 90◦

B1-pulse, an echo signal is generated at time 2τ after the end of the first pulse (shown in
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figure 1.4). This echo signal is called spin echo and its origin can be explained using the
3D-vector representation of the net magnetization by Bloch[9] (section 1.2.6). Of note, the
first 90◦ B1-pulse is usually called excitation pulse and the 180◦ pulse in a spin echo is called
refocusing pulse.
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Figure 1.4 The real component of an NMR complex signal (solid line) together with its
envelope (dashed lines) in a spin echo experiment (SE), in the presence of an inhomoge-
neous static magnetic field. The signal is continuously attenuated by irreversible transverse
relaxation (T2 relaxation) and the echo signal is therefore slightly asymmetric. The signal
oscillation frequency equals the Larmor frequency but it has been reduced in this figure for
better visualization.

The 90◦ excitation B1-pulse converts the entire magnetization vector to transverse mag-
netization in the xy-plane. Since the net transverse magnetization is comprised of spin orien-
tations precessing at different frequencies due to off-resonance, spin orientations will start to
disperse/dephase. At time τ the 180◦ refocusingB1-pulse is applied and rotates the net mag-
netization, including the dephased spin orientations, by 180◦. Since the net magnetization
vector was parallel to the xy-plane before the refocusing pulse was applied, the magnetization



14 CHAPTER 1. BACKGROUND

vector will still be parallel to the xy-plane after the 180◦ rotation which was induced by the
refocusing pulse. However, the orientation of the net magnetization vector in the xy-plane,
its phase, will be shifted into an adjacent quadrant of the unit circle such that, for example a
magnetization vector with phase 45◦ before the refocusing pulse has phase 135◦ after refocus-
ing. The dephased spin orientations contained in the net magnetization vector will start to
rephase after the refocusing pulse. Since the distribution of off-resonance frequencies in the
sample hasn’t changed during the time course of the experiment, a rephased echo signal will
appear at time τ after the refocusing pulse, corresponding to 2τ after the first 90◦ excitation
pulse. This time point is called the echo time (TE).

In a spin echo experiment, the NMR signal amplitude at time point 2τ will not be
attenuated by off-resonance, but will be effected by transverse relaxation. Therefore, the T2

time constant can be measured by repeating the spin echo experiment using different τ times
according to:

Mxy(2τ) = Mxy(0)e
−2τ/T2 = Mxy(0)e

−TE/T2

Here, the unknown parameters areMxy(0) and T2. The echo time (TE) is defined as 2τ for
spin echo.

An accelerated version of the original spin echo experiment is the Carr Purcell Meiboom
Gill pulse sequence[12] (CPMG), also called multi-echo spin echo, in which several 180◦

refocusing pulses are applied in succession following the first 90◦ excitation pulse. This pulse
sequence produces multiple spin echoes after a single excitation pulse. Refocusing pulses are
phase shifted 90◦ compared to the first excitation pulse in order to reduce the accumulation
of small errors in flip angle. For example, the pulse scheme 90◦x, 180◦y, 180◦y may be used
to generate two spin echoes after a single excitation pulse. In theory, T2 can be measured
from a single CPMG experiment without repetitions. If a constant time delay (2τ ) between
adjacent 180◦ refocusing pulses is used, the echo amplitudes are given by:

Mxy(2nτ) = Mxy(0)e
−2nτ/T2 = Mxy(0)e

−TE(n)/T2

Here, n is the current echo number in the refocusing pulse train.

1.2.8 Steady state free precession (SSFP)

The efficiency of NMR experiments is limited by the need to wait for regrowth of longitudinal
magnetization between signal measurements. For FID experiments, a lower flip angle can
be used to reduce the repetition time (TR) but this results in low signal amplitudes. An
alternative is to allow the magnetization to reach a dynamic equilibrium by continuously
applying B1-pulses in close succession with a constant repetition time. TR is kept short
relative to transverse relaxation such that transverse magnetization is maintained. Therefore,
the signal at dynamic equilibrium, also called the steady state, depends on both T1 and T2

relaxation. This experiment was first suggested by Carr[13] and is called steady state free
precession (SSFP). The B1 phase is often shifted 180◦ between excitations (e.g. 90x, 90−x,
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90x, etc), resulting in refocusing of dephased spin. This refocusing mechanism creates an
echo signal centered at time point TR/2 after the end of aB1 pulse, with an echo amplitude
which is attenuated by T2 and T1 relaxation rather than T ∗

2 and T1 relaxation. However,
such refocusing can only be achieved for a limited range of off-resonance frequencies and
for a frequency of approximately 1

2TR the signal becomes highly attenuated. This effect is
known as the SSFP banding artifact in magnetic resonance imaging (MRI). The sensitivity to
off-resonance can be reduced by reducing the TR, making SSFP particularly useful for rapid
NMR experiments. In addition, high flip angles can be used. The combination of short TR
and high flip angles gives SSFP currently unmatched signal amplitude per unit time. The
SSFP pulse sequence is extensively used for cardiovascular magnetic resonance imaging at
1.5T. At field strength 3T or higher, the off-resonance sensitivity becomes problematic.

1.2.9 The effect of linear magnetic field gradients

In addition to inhomogeneity of the static B0 magnetic field (section 1.2.5), off-resonance
frequencies and widening of the NMR frequency spectrum can be induced by a purposely
designed variation in magnetic field strength across the sample, along a specific direction.
When such a field variation is present, the Larmor frequency will vary across the sample and
broadening of the NMR frequency spectrum will occurr. A linearly varying magnetic field,
also known as a field gradient, causes the Larmor frequency to vary along the direction of the
magnetic field variation according to:

ω(r) = γ(B0 +Gr)

Here, r is the coordinate along the direction in which the gradient is applied and G is the
gradient amplitude which is commonly measured in millitesla per meter (mT/m). The gra-
dient field is usually designed to be centered around the position in the magnetic field which
is calibrated to have a field strength as close as possible to the ideal value B0. This point is
also known as the isocenter of the static magnetic field. The coordinate r is then defined to
be negative on one side of the isocenter and positive on the other. For a gradient field cen-
tered around the isocenter, the Larmor frequency will equal the center frequency (γB0) at the
isocenter, and it will be lower and higher for negative and positive r coordinates, respectively.
Three gradient fields with orthogonal directions can be combined to create a linearly varying
magnetic field strength along any direction in space.

By applying a linear magnetic field gradient with strength G across a sample after a B1

excitation pulse, the FID signal will have an accelerated signal decay and spin orientations
will dephase at a faster rate due to the induced variation in Larmor frequency (section 1.2.5)
across the sample. The accumulated phase induced by the gradient field for stationary nuclei
at a given coordinate depends on the amplitude of the gradient field and the duration for
which it is activate, according to:

ϕG(r) = γr

∫ τG

0
G(t)dt
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Here, G(t) is the gradient amplitude over time, τG is the gradient duration and ϕG(r)
is the accumulated phase of spin orientation induced by the gradient field at position r. The
time integral of the gradient amplitude (

∫ τG
0 G(t)dt) is known as the zeroth order gradient

moment.
The dephased spin orientations can be rephased by applying a second gradient pulse with

opposite polarity compared to the first gradient pulse. If the zeroth order gradient moment
of the second gradient pulse is equal to or larger than that of the first gradient pulse, an NMR
signal echo will form which is known as the gradient recalled echo (GRE). The maximum
amplitude of the gradient recalled echo is found at the time point for which the total zeroth
order gradient moment from both gradient pulses is zero. A pair of gradient pulses which
have opposite polarities and which are applied in direct succession is called a bipolar gradient
pulse.

Similar to themulti-echo spin echo technique (described in section 1.2.7), a train of bipo-
lar gradient pulses can be used to generate multiple gradient echoes following a singleB1 ex-
citation pulse. This technique is called the multi-echo gradient recalled echo pulse sequence,
or mGRE. The T ∗

2 time constant can be measured from an mGRE experiment by using the
maximum signal amplitude of each gradient echo together with the mono-exponential signal
decay model described in section 1.2.7.

Linear magnetic field gradients are applied in several subfields of NMR. For example, mag-
netic field gradients are used for image formation in magnetic resonance imaging (MRI).

Phase contrast velocity measurements

In the presence of flow, the application of a bipolar gradient pulse with a total zeroth order
gradient moment equal to zero will not rephase the spin orientations completely if parts of
the flow occur along the magnetic field gradient. In this case, the accumulated phase from a
gradient pulse can be described as:

ϕG = γ

∫ τG

0
G(t)r(t)dt

Here, the time point corresponding to t = 0 is immediately before the activation of the
gradient pulse, τG corresponds to the end of the gradient pulse and the position of spins along
the gradient field direction r(t) changes over time. If the flow velocity can be assumed to be
constant during the application of the gradient pulse, the spin position along the magnetic
field gradient can be described as r(t) = r(0) + vt and the total accumulated phase during
the gradient pulse can be approximated to:

ϕ = ϕϵ + r(0)γ

∫ τG

0
G(t)dt+ vγ

∫ τG

0
G(t)tdt

Here, the background phase ϕϵ is the accumulated phase due to effects other than the gradient
pulse, for example static magnetic field inhomogeneity, and v is the constant velocity along
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the gradient direction. The second time integral term (
∫ τG
0 G(t)tdt) is known as the first

order gradient moment. If a bipolar gradient pulse is used, the zeroth order gradient moment
(
∫ τG
0 G(t)dt) equals zero.
Since the phase signal ϕ(r) includes a background phase term ϕ0, the phase signal alone

cannot be used tomeasure velocity. Instead, twomeasurements (e.g. two FID or two gradient
echo experiments) are performed with different first order gradient moments M1 and M2,
and the phase signals are subtracted:

∆ϕ = vγ

∫ τG

0
G1(t)tdt− vγ

∫ τG

0
G2(t)tdt = vγ(M1 −M2) = vγ∆M

=> v =
∆ϕ

γ∆M

This technique is known as phase contrastmagnetic resonance (PC-MR) velocitymeasurements[14].
In practice, first order gradient moments from two bipolar gradient pulses with opposite po-
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Figure 1.5 This diagram shows two bipolar gradient pulses with opposite polarity (solid and
dashed lines) which can be used for PC-MR velocity measurements. Each bipolar gradient
pulse is applied in separate NMRmeasurements performed in close succession. phase signals
from both measurements are subtracted to obtain a velocity estimate.

larity are often subtracted. The phase difference signal will often contain residual background
phase components. Therefore, background phase correction needs to be performed during
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data analysis, described further in section 1.3.2. Figure 1.5 shows an illustration of two bipo-
lar pulses with opposite polarity which can be used for PC-MR velocity measurements.

1.2.10 NMR pulse sequence parameters and signal weighting

Signal averaging of repeated experiments are often used in NMR to reduce the influence of
noise. In this setting, different degrees ofT1, T2 orT ∗

2 relaxation can be imposed on theNMR
signal by changing the pulse sequence parameters in use, also called NMR signal weighting.
In previous sections the pulse sequence parameters flip angle (FA), echo time (TE) and repeti-
tion time (TR) have been used to obtain NMR signal amplitudes effected by different degrees
of T1, T2 or T ∗

2 relaxation. In addition to the already mentioned pulse sequences for relax-
ometry, T1 and T ∗

2 weighting can be achieved by simply repeating a gradient recalled echo
experiment, using a B1-pulse with constant flip angle and phase. A T1-weighted NMR sig-
nal can be generated by using a short echo time (TE) to minimize the effect of T ∗

2 relaxation
and a short repetition time (TR) to introduce partial saturation of the NMR signal due to
incomplete longitudinal recovery between B1-pulses. In this experiment, a strong magnetic
field gradient, also known as a crusher gradient, is often used after each NMR measurement
to dephase transverse magnetization before the next B1 excitation pulse.

A T ∗
2 -weighted NMR signal can be generated by using a long echo time (TE) to induce

substantial decay of transverse magnetization due to T ∗
2 relaxation, and a long repetition

time (TR) which enables near complete longitudinal recovery between B1-pulses, minimiz-
ing the effect of T1 relaxation on the signal. T2 weighting can be achieved by using the same
principles as for T ∗

2 weighting and replacing the gradient recalled echo with a spin echo ex-
periment. If a short TE is used together with a long TR, relaxation will have limited effect on
the NMR signal, which instead will have a spin density weighting, also called proton density
(PD) weighting.

1.2.11 Magnetic Resonance Imaging (MRI)

In 1973, Lauterbur published the first image formed from NMR measurements[15], using
a method called Zeugmatography. In this experiment, NMR measurements were performed
during the application of a linear gradient field across the sample. The frequencies in the
NMR spectrum corresponded to a position along the gradient field direction and the NMR
spectrum amplitudes represented a projection of the sample spin density along the gradient
direction. Several projections at different angles were obtained by rotating the gradient field
direction and repeating the NMR measurement. An image was formed by combining the
projections at different angles using a backprojection reconstruction algorithm, similar to the
Radon transform [16]. In this method, the image resolution depends on the number of, and
angular density of, collected image projections and also theNMR frequency bandwidth of the
imaged nuclei. This bandwidth increases for increasing inhomogeneity of the static magnetic
field and for large decay of transverse magnetization. The method averaged the spin density
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of a sample along the gradient field rotational axis (perpendicular to the gradient field direc-
tions) and therefore assumes that the sample is uniform in this direction. This limitation can
be removed by using a combination of three orthogonal gradient fields such that spin density
projections can be generated in any direction in space, which enables 3D-imaging.

In 1974, Ernst and colleagues introduced NMR Fourier Zeugmatography[17], also called
Fourier imaging with cartesian sampling, and is still used in modern MRI methods. Similar
to the original Zeugmatography experiment, NMRmeasurements are performed concurrent
with the activation of a linear gradient field (Gx). However, prior to the NMR measure-
ment, and immediately after spin excitation by a B1-pulse, two gradient pulses are applied
in succession (Gz and Gy) which are orthogonal to each other and the gradient pulse (Gx)
which is active during NMR measurement. Figure 1.6 illustrates the timing of the B1-pulse
and gradient pulses in the experiment. Variations in spin orientation are thus encoded along
all three directions in 3D-space. This experiment is based on the observation that the total
accumulated spin phase at position r = (x, y, z) from three orthogonal gradient pulses with
amplitudesGz(t), Gy(t), Gx(t) which are applied during separate time intervals, equals the
sum of accumulated spin phase from each gradient pulse. The accumulated phase of spin due
to the three orthogonal gradient pulses at position (x, y, z) can be described as:

ϕG(x, y, z) = zγ

∫ tz

0
Gz(t)dt+ yγ

∫ ty

tz

Gy(t)dt+ xγ

∫ tx

ty

Gx(t)dt

If the gradient amplitudes are kept constant over time during the experiment this expression
can be simplified to:

ϕG(x, y, z) = γ(ztzGz+y(ty− tz)Gy+x(tx− ty)Gx) = γ(zTzGz+yTyGy+xTxGx)

Here, Tz , Ty and Tx are the durations of each gradient pulse. The measured NMR signal
in this experiment will contain spin orientations with different phase shifts over the sample
volume. A signal phase shift by angle ϕ can be described by a complex number according
to Eulers formula (eiϕ = cos(ϕ) + isin(ϕ)). Therefore, the measured NMR signal which
contains an ensemble of different phase shifts is proportional to the integration of phase shifts
over the sample volume S(t) according to:

S(t) =

∫ ∫ ∫
ρ(x, y, z)ei(γB0t+ϕϵ(x,y,z,t)+γ(zTzGz+yTyGy+x(t−ty)Gx))dzdydx

Here, ϕϵ(x, y, z, t) is the accumulated phase due to effects other than the gradient pulses and
B0. ρ(x, y, z) is the spin density at coordinate (x, y, z). The signal can be demodulated such
that the accumulated spin phase due to the static magnetic fieldB0 becomes invisible, which
corresponds to observation of the NMR signal in the rotating frame of reference (described
in section 1.2.6). Further, if the accumulated phase due to effects other than the gradient
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pulses and B0-field is negligible, the expression can be simplified to:

S(t) =

∫ ∫ ∫
ρ(x, y, z)eiγ(zTzGz+yTyGy+x(t−ty)Gx)dzdydx

=> S(kz, ky, kx) =

∫ ∫ ∫
ρ(x, y, z)ei2π(zkz+yky+xkx)dzdydx

Here, a change of variables was performed such that kz = γTzGz

2π , ky =
γTyGy

2π and kx =
γ(t−ty)Gx

2π . The variable S in the new coordinate system, known as k-space, equals the inverse
Fourier transform of the spin density ρ(x, y, z), which can be obtained by Fourier transfor-
mation:

ρ(x, y, z) =

∫ ∫ ∫
S(kz, ky, kx)e

−i2π(zkz+yky+xkx)dkzdkydkx

Since the NMR signal in this experiment is approximately proportional to variable S, the
Fourier transform of the NMR signal is approximately proportional to the spin density
ρ(x, y, z). Using this technique, each MRI image is a two-dimensional frequency spectrum.

In order to form an image, the NMR Fourier experiment needs to be repeated using
different values of kz and ky, while kx is sampled continuously since the gradient field along
this direction is active during the NMR measurement. The phase steps performed by kz
and ky are usually called phase encoding and the continuous dephasing during the NMR
measurement which is performed by kx is usually called frequency encoding. The required
number of repeated experiments depends in the prescribed image resolution, or voxel size,
and the image field of view (FOV), according to Fourier theory.

The original experiment used an FID pulse sequence together with a frequency encoding
gradient pulse with a single polarity. Frequency encoding with a gradient of single polarity
causes the NMR signal to dephase rapidly. Instead, a bipolar gradient pulse is commonly
used for frequency encoding in order to create a gradient echo signal. Most NMR pulse se-
quences, for example spin echo or SSFP, can be used together with this imaging method and
many currently used MRI techniques are based on NMR Fourier Zeugmatography. How-
ever, the method is rather time consuming since the entire volume of the sample is imaged,
which is not needed in all applications.

Another method for NMR imaging was proposed by Mansfield and colleagues[18] who used
frequency selective RF-pulses together with linear gradient fields to only excite spin within
a thin slice of the sample. In one of the proposed techniques the RF-pulse amplitude over
time was modulated such that the excitation frequency spectrum was focused within a narrow
bandwidth around a center frequency. A linear gradient field was applied at the same time
as the RF-pulse which resulted in spin excitation within a thin slice of the sample. This tech-
nique is called slice selection and the width of the excitation spectrum is called slice thickness.
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Todays MRI techniques commonly use a combination of slice selection and cartesian sam-
pling. For two-dimensional imaging, a thin slice is excited along one direction and cartesian
sampling is performed along the other two orthogonal directions. For 3D imaging, slice selec-
tion is commonly used to excite a thick slab of interest and cartesian sampling is performed in
all three orthogonal directions in space. The most commonly used method in cardiovascular
MRI is two-dimensional imaging with slice selection and cartesian sampling.

The hydrogen nucleus is imaged in most MRI techniques due to its abundance in bio-
logical tissue. The gyromagnetic ratio of hydrogen is approximately 42.6 MHz/T, resulting
in a Larmor frequency of approximately 64MHz and 128MHz at the clinically usedB0 field
strengths 1.5T and 3T.
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Figure 1.6 Diagram of the original Fourier Zeugmatography experiment by Ernst et al[17],
showing the amplitude of theB1 excitation pulse over time (top) together with the amplitudes
of three orthogonal gradient-fields Gz, Gy and Gx over time (bottom). The NMR signal
is continuously sampled when the Gx gradient pulse is active. In the original experiment,
an FID pulse sequence was used for spin excitation. However, most pulse sequences can be
used for Fourier Zeugmatography, which is also known as Fourier imaging with cartesian
sampling.
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1.3 Cardiovascular magnetic resonance imaging

In cardiovascular MRI, SSFP pulse sequences are commonly used to obtain high image con-
trast between blood and myocardium, high signal amplitude and efficient imaging. In ad-
dition, gradient echo pulse sequences are routinely used for phase contrast blood flow mea-
surements or T ∗

2 weighted imaging.
Imaging is often performed at a specific time point of the cardiac cycle. For this purpose,

the surface electrocardiogram (ECG) is recorded and imaging is triggered at a user-specified
delay after the R-wave. The diastasis in mid-diastole is commonly imaged to avoid image
artifacts and blurring due to rapid cardiac motion. The image acquisition can be segmented
such that only parts of the needed kspace data are acquired in each heart beat. This technique
can be used to reduce the imaging duration for each heart beat at the cost of prolonging
acquisition.

An alternative is to acquire time resolved cine images of the heart using image gating. In
this technique, the ECG-signal is recorded and the same segment of k-space is continuously
acquired. Upon detection of an R-wave, a new k-space segment is acquired. The process
is repeated over a number of heart beats such that all k-space segments are acquired over a
heart beat. Time resolved cine images can then be retrospectively reconstructed by sorting
the k-space data such that only data from the same cardiac time phase is combined into an
image. In theory, image gating can be used to obtain a time resolution equal to TR.

1.3.1 Cardiac magnetic resonance relaxometry

The basic principles of relaxometry are the same in cardiac applications as for NMR. A set
of differently T1-,T2- or T ∗

2 -weighted signals (in this case images) are acquired and the time
constant of interest is extracted from nonlinear regression of the signal points using a signal
model which includes the time constant as an unknown parameter (section 1.2.7).

Rapid pulse sequences combined with appropriate gating techniques are needed for relax-
ometry in the heart. Generally, an ECG-trigger is used to ensure that imaging is performed
in mid-diastole in order to minimize image artifacts and blurring due to cardiac motion.

In the case of imaging during a single breathhold, total acquisition times need to be
approximately less than 16 seconds. Since relaxometry generally involves the acquisition of
8-15 images, single breathhold imaging usually requires single-shot acquisition to be used, in
which each contrast prepared image is fully acquired in a single heart beat.

The alternative is to use a respiratory motion navigator which commonly measures di-
aphragm motion and triggers imaging in end-respiration. With a respiratory motion navi-
gator, single-shot acquisition is no longer needed and only parts of the k-space data used to
form an image can be acquired in each heart beat. This improves the time resolution of each
image, reducing blurring and artifacts from cardiac motion, but increases the total acquisition
time as more heartbeats are needed for the same relaxometry measurement.

For cardiac T1-measurements, saturation-recovery or inversion-recovery based methods
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are most commonly used[19, 20]. To enable inversion-recovery T1-measurements within a
single breathhold, several images are acquired after each inversion preparation and a cor-
rection factor[21] is applied to estimate T1. Since imaging is restricted to mid-diastolic
time intervals, RF-pulses for imaging are applied in a segmented fashion and not continu-
ously after inversion preparation which was the case for the experiments in which the cor-
rection factor was derived[21]. Further, a steady-state free precession (SSFP) imaging pulse
sequence is commonly used for cardiac T1-measurements, which was not used in the original
experiments[21]. These differences between inversion-recovery based cardiacT1-measurements
and the originally proposed methodology causes the use of a correction factor to introduce
bias in the T1-estimate. Saturation-recovery based cardiac T1-measurements which only ac-
quire one image after each saturation preparation does not have this bias.

Myocardial T2 measurements can be performed by using a T2 prepared SSFP pulse sequence.
In this pulse sequence, T2 contrast is generated by a spin echo preparation pulse acting on
the entire imaging volume, the transverse magnetization is stored along the longitudinal axis
and a mid-diastolic SSFP image is acquired in a single shot. This process is repeated using
different spin echo TE, after a user-specified number of recovery heart beats. The recovery
heart beats are used to minimize the T1 weighting of the signal points. Despite using recov-
ery heart beat, images from this pulse sequence will be slightly T1 weighted due to the SSFP
acquisition and the signal model becomes[22]:

Mxy(TE) = Mxy(0)e
−TE/T2 + C

Here, C is an additional unknown parameter used to enable unbiased T2 estimation from
this pulse sequence.

In the studies presented in this dissertation, invivo cardiac relaxometry is performed using
single breathhold imaging only.

1.3.2 2D phase contrast magnetic resonance blood flow quantification

The phase contrast magnetic resonance (PC-MR) technique, which was described in section
1.2.8, can be used to measure velocity and flow in the human body. For this purpose, time-
resolved and ECG-gated PC-MR imaging is performed to measure velocities over an average
heart beat. Velocities can be measured both parallel or perpendicular to the imaging plane.
The flow volume through a blood vessel is measured by using a PC-MR imaging plane ori-
ented along the vessel cross-section, and measuring velocity perpendicular to the imaging
plane (parallel to the main blood flow direction). After the vessel of interest has been delin-
eated in all PC-MR images over a heartbeat, the blood flow volume can be calculated as the
flow time integral: ∫ T

0
v̄(t)A(t)dt
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Here, v̄(t) is the average velocity inside the vessel delineation at time point t of the cardiac
cycle, A(t) is the delineation area at t and T is the RR-interval duration.

Correction of background phase residuals in PC-MR images can be performed by finding
multiple image regions containing only stationary tissue and fitting the phase spatial variation
of such regions to an assumed model. The model which best fit the phase data is then sub-
tracted from the phase difference images before velocities are analyzed. A two dimensional
linear polynomial is most commonly applied for background phase correction.

Metric Optimized Gating (MOG) for PC-MR flow measurements

Time resolved PC-MR imaging is usually performed by gating the acquisition with an ECG-
recording. Lack of a usable ECG limits the use of fetal PC-MR imaging. To overcome
the need for a fetal ECG, Metric Optimized Gating (MOG) [23] was introduced. MOG
oversamples each fetal heartbeat such that every k-line acquisition is repeated over at least
one fetal RR interval. Retrospective reconstruction is performed by successively discarding a
number of k-line repetitions until all data points span over approximately one fetal heartbeat,
resulting in time-resolved PC-MR cine images without severe gating artifacts.

An optimization algorithm is used to find the heart rate which results in minimal misgat-
ing artifacts. This optimization algorithm uses a 2-parameter piecewise constant heart rate
model which assumes that the heart rate during a PC-MR acquisition is changing only once,
in the middle of the scan when the central k-space line is acquired. With this heart rate model
the optimization algorithm tries to find the two heart rates which results in the maximum
time entropy within a user defined region of interest (ROI) in PC-MR images. During this
process, the phase difference signal is multiplied with the magnitude signal for noise robust-
ness. This method assumes that misgating results in reduced pulsatility and has been shown
to be robust to moderate heart rate variability[23].





Chapter 2

Aims

The aim of the work presented in this dissertation was to develop and evaluate quantitative
flow and relaxometry techniques for cardiovascular magnetic resonance imaging with the
purpose of enhancing clinical applicability. The specific aims of each study were:

I. To validate a new automatic algorithm for offline T2*
determination for estimation of iron load in the heart and liver.

II. To validate a software for generating T1 and T2 relaxation maps from multiple signal
models.

III. To validate a new simulation based post-processing method for improving the accuracy
of T1 measurements from the MOLLI pulse sequence based on Bloch simulations of a large
spin population with physiologically relevant tissue relaxation constants.

IV. To 1) develop a new vessel delineation algorithm with shape constraints based on man-
ual vessel delineations, 2) validate the method in phantom experiments and 3) compare the
method to manual delineation in 2D PC-MR images invivo in the ascending aorta and main
pulmonary artery.

V. To 1) validate the previously published method Metric Optimized Gating PC-MR flow
measurements for a range of fetal flow velocities using an independent reference standard in
phantom experiments; and 2) investigate interobserver variability for fetal flowmeasurements
at an additional imaging center.
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Chapter 3

Methods

The protocols and procedures comply with the Declaration of Helsinki, and were approved
by the local ethics committees.

3.1 Study population

Collected data did not overlap for any of the presented studies. In study I, patients with
known or suspected iron load disease (n=23; 15 male; median age 18 years; range 1-69 years)
were included and MR images for T2* measurements were acquired as part of routine clin-
ical iron load assessment. In study II, One healthy fetus (gestational week 36), one healthy
volunteer (female, 15) and one patient with myocarditis (male, 17 years) were included ret-
rospectively. One healthy volunteer (male, 27 years) was included prospectively. In study
III, healthy volunteers (n=12; 12 male; age 34±12 years) were prospectively included. In
study IV, a total of 201 human subjects were retrospectively included (50 females; median
age 56 years; age range 3-98 years). 18 healthy volunteers and 153 patients with heart fail-
ure, defined as having left-ventricular ejection fraction<40%, were included from a previous
study of cardiac index[2]. 16 healthy volunteers and 14 patients with atrial septal defects
were included from a previous study of atrial septal shunt volumes[24]. In study V, healthy
fetuses (n=15; gestational week 30-37) were prospectively included.

29
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3.2 Phantom experiments

Phantom experiments were performed to compare measurements designed for invivo use
to reference standard measurements. In studies I-III pulse sequences and algorithms for
invivo relaxometry were evaluated in gel-phantoms while phase contrast flow and velocity
measurements were evaluated using a pulsatile flow phantom in studies IV-V.

3.2.1 Relaxometry (Studies I-III)

MR relaxometry was performed in gel-phantoms with T1/T2* or T1/T2 values similar to hu-
man tissue. In study I, twelve phantoms consisting of a mixture of water, agarose, gadolinium
(DOTAREM; Guerbet France) and ferumoxsil (LUMIREM; Guerbet, France) were used
with T1 range 470-1012ms and T2* range 2.2-40.2ms at 1.5T. Each phantom was scanned
separately and was submerged in water during MR imaging to reduce potential susceptibility
artifacts.

In study II, a Eurospin phantom (Diagnostic Sonar, Livingston, UK) with 12 gel vials were
used consisting of a mixture of water, agarose and gadolinium.

In study III, two sets of phantoms were scanned: 1) Six vials with a T1 range 210-1520ms
and T2 range 44-58ms from the Eurospin phantom which was also scanned in study II; and
2) Six phantoms consisting of a water, agarose and CuSO4 mixture with T1/T2 values similar
to pre- and post-contrast myocardium and pre-contrast blood at 1.5T.

Phantoms were placed in the scanner iso-center 2 hours prior to MR imaging to avoid po-
tential T1 drifts during the experiment due to changes in phantom temperature.

3.2.2 Flow quantification (Studies IV-V)

A previously built pulsatile flow phantom[25] consisting of a pulsatile pump, a flow rectifier
and a water tank were used for phantom validation in studies IV-V. 2D PC-MR flow mea-
surements were compared to timer and beaker flow measurements over a range of flow rates.
Timer and beaker flow measurements were performed by measuring the total water volume
output from the water tank during 2-4 minutes of continuous pumping and were repeated
before and after PC-MR measurements to detect potential flow drifts over time. A timing
signal from the servo motor of the pump was forwarded to the pulseoximetry trigger system
of the MR scanner to enable retrospective image gating.

In study IV, 2D PC-MR flow volume measurements were compared to timer and beaker
in flow volume range 12-89ml at 1.5T, and flow volume range 24-89ml at 3T. PC-MR
velocity and flow were measured through plastic tubing inside the water tank with inner di-
ameter 26mm.
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In study V, PC MR flow and velocity measurements using the Metric Optimized Gating
method (MOG) were compared to timer and beaker flow and conventionally gated PC-MR
velocity measurements at 1.5T. The pulsatile flow phantom setup from study IV was mod-
ified to use a pump stroke frequency (145bpm) and flow rates (130-700ml/min) similar to
fetal blood flow conditions. The inflow nozzle of the water tank was extended to have a sec-
tion with inner diameter (6mm) comparable to the fetal descending aorta and umbilical vein
during the third trimester.

3.3 Magnetic Resonance Imaging

Images were acquired on MR scanners with field strengths 1.5T and 3T and human subjects
were scanned in supine position, the exception being pregnant volunteers in study V, who
were scanned in left lateral decubitus position. In study I, 1.5T Achieva scanners (Philips
Healthcare, Best, The Netherlands) were used at two centers with a 5- or 32-channel phased
array cardiac coil (invivo imaging) and a 6-channel SENSE head-coil (phantom imaging).
In Study II scanners from three different MRI vendors were used: One 1.5T Aera and one
3T Prisma scanner (Siemens Healthcare, Erlangen, Germany) with 60-channel phased ar-
ray chest coils (invivo imaging) and 20-channel head coils (phantom imaging), one 1.5T
Achieva scanner (Philips Healthcare, Best, The Netherlands) with a 32-channel phased ar-
ray coil and one 3T Discovery 750w scanner (General Electronics, USA) with a GEM flex
medium array coil. In Study III, imaging was performed on a 1.5T Achieva scanner (Philips
Healthcare, Best, The Netherlands) with a 32-channel phased array coil. In Study IV, MR
images from a 1.5T Magnetom Vision scanner, a 1.5T Aera scanner, a 3T Prisma scanner
(Siemens Healthcare, Erlangen, Germany) and a 1.5T Achieva scanner (Philips Healthcare,
Best,TheNetherlands) were used. In Study V, a 1.5T Aera and a 3T Prisma (SiemensHealth-
care, Erlangen, Germany) were used with a 16-channel phased array chest coil and one spine
imaging coil.

3.3.1 T2* measurements (Study I)

In study I T2* measurements were performed both in phantoms and in human subjects. In
the invivo study, T2* was measured in the heart and liver of patients with known or suspected
iron load disease using multi-echo gradient recalled echo (mGRE) pulse sequences.

For cardiac imaging, a mid-ventricular short-axis slice was acquired at end-diastole within
a time window of 110ms per heartbeat. A double-inversion recovery (DIR) prepulse was used
to generate black-blood image contrast to reduce blood signal contamination on myocardial
T2* measurements and enhance myocardial borders. Parallel imaging factor 2 (SENSE) was
used to enable image acquisition within a single breathhold and SPIR fat suppression was
applied to reduce the impact of fat on the measurement. The pulse sequence used voxel size
2x2x10mm3, Flip angle 20◦, TR 26ms and TE [2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0,
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22.5, 25.0] ms.
For liver imaging, a midhepatic transversal slice was acquired during free breathing and

using a mGRE pulse sequence with SPIR fat suppression, voxel size 3x3x10mm3, Flip angle
20◦, TR 17ms and TE [1.2, 2.7, 4.2, 5.7, 7.2, 8.7, 10.2, 11.7, 13.2, 14.7]ms.

T2* was measured in phantoms using mGRE pulse sequences similar to the sequences
used for invivo imaging. In addition, T2* reference standard measurements were performed
in phantoms with a single-echo gradient recalled echo pulse sequence for which TR was set
to 6xT1 to enable near complete longitudinal relaxation between excitation rf-pulses, a voxel
size 1.96x2x10mm3, Flip angle 50◦, and TE [1.34, 2, 3, 5, 7.5, 10, 12.5, 15, 20, 30, 40, 50,
75, 100, 150, 200, 300]ms.

For all mGRE sequences, T2* maps were automatically generated on the scanner by the
Maximum Likelihood Estimation (MLE) algorithm [26].

For offline T2* measurements using the introduced ADAPTSmethod, regions of interest
were manually drawn within the mid-ventricular septum and in a homogenous area of liver
parenchyma in T2* weighted images.

3.3.2 T1 measurements (Studies I-III)

TheMOdified Look Locker Inversion-recovery pulse sequence (MOLLI) was used tomeasure
T1 in phantoms (Studies I-III) and to measure myocardial T1 in human subjects (Studies
II and III). Cardiac MOLLI T1 measurements were performed in short-axis and long-axis
imaging planes. MOLLI schemes 5b(3b)3b and 4b(1b)3b(1b)2b were applied in studies I-
III for T1 measurements in estimated intervals T1<500ms and T1>500ms, respectively. In
study III, one additional MOLLI scheme (5b(0b)3b) without recovery RR-intervals between
inversion pulses was acquired.

In addition to MOLLI, T1 reference standard measurements by an inversion-recovery
single-echo spin echo pulse sequence with the TR set to 10s were performed in phantoms in
studies II-III. In the phantom validation of study II, T1 was also measured by two versions
of a single-shot bSSFP pulse sequence, one version using a saturation prepulse and one ver-
sion using an inversion prepulse. Parameters for the bSSFP pulse sequence were voxel size
1.9x1.9x6mm3, Flip angle 35◦, TE/TR 1.1/2.4ms and time delay between prepulses 40s. For
each T1 measurement, the Inversion-recovery bSSFP pulse sequence used 16 T1-weighted
images with inversion time range 150-6300ms and one image without contrast preparation.
the saturation-recovery bSSFP pulse sequence used 18 T1-weighted images with saturation
time range 150-8000ms and one image without contrast preparation.

In study II, T1 was calculated from mono-exponential nonlinear least squares fitting
to the measured signal points with three unknown parameters and using the signal model
S(t) = A−Be−t/T1 where A, B, and T1 are the unknown parameters to be determined and
t is the time delay between the end of each prepulse and the following signal measurement.

For the MOLLI pulse sequence, the Look Locker correction[21], T1 = T1∗(B/A−1),
was applied after mono-exponential fitting in order to estimate T1.
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In study III, T1was calculated fromMOLLI data using both the introduced SQUAREMR
method and the conventional mono-exponential fitting method with Look Locker correction
described above.

3.3.3 T2 measurements (Studies II-III)

T2 measurements were performed in phantoms and in human subjects in studies II-III. In
study II, invivo T2 measurements were performed in the knee of one healthy volunteer using
a multi-echo spin echo pulse sequence with voxel size 0.6x0.6x4mm3, excitation flip angle
90◦, refocusing flip angle 180◦, TR 1500ms and TE [9, 18, 27, 36, 45, 54, 63, 72, 81, 90,
99, 108, 117, 126, 135, 144]ms. In study III, myocardial T2 measurements were performed
using the MOLLI sequence together with SQUAREMR post-processing.

In phantoms, T2 was measured by a single-echo spin echo pulse sequence (Studies II-II),
a bSSFP pulse sequence with a T2 contrast preparation pulse (Studies II-III) and MOLLI
(Study III). The spin echo pulse sequence was chosen as the T2 reference standard mea-
surement in phantom experiments using a TR of 10s to allow for complete longitudinal
relaxation between excitation rf-pulses, voxel size 1.9x1.9x8mm3, excitation flip angle 90◦,
refocusing flip angle 180◦ and TE [6, 12, 20, 30, 40, 50, 70, 90, 120, 140, 180, 300, 400,
600, 1000]ms.

For both spin echo sequences in use T2 was calculated frommono-exponential nonlinear
least squares fitting to the measured signal points. The signal model S(t) = Ae−TE/T2 with
two unknown parameters A and T2, was used for single-echo spin echo data. For multi-echo
spin echo data, the signal model S(t) = Ae−TE/T2+B with the three unknown parameters
A, B and T2 was applied to reduce T2 bias due to stimulated echoes. For both signal models,
TE is the echo time in use.

Parameters for the single-shot bSSFP pulse sequence were voxel size 1.9x1.9x8mm3, flip
angle 35◦ TE/TR 1.1/2.4ms. The T2 contrast preparation pulse consisted of two excitation
pulses with 90◦ flip angles (flip-down and flip-up) and one refocusing pulse with a 180◦ flip
angle to generate T2 image contrast[27]. Single-shot image acquisition was performed imme-
diately after the T2 preparation pulse. The sequence block consisting of one T2-preparation
and one image acquisition was repeated 36 times using different TE for the T2-preparation
pulse with TE increment 5ms and range 25-200ms. In order to reduce T2 bias due to T1
effects from the bSSFP acquisition[22], T2 calculation in data from the bSSFP pulse se-
quence was performed using the same mono-exponential signal model with three unknown
parameters as were used for multi-echo spin echo data (S(t) = Ae−TE/T2 +B).

In study III,MOLLIT2-measurements in phantomswere performed by using SQUAREMR
post-processing, described in section 3.5.

3.3.4 PC-MR Flow quantification (Studies VI-V)

Two-dimensional Phase Contrast Magnetic Resonance (2D PC-MR) was used to measure
velocity and flow in studies IV-V. Velocity was measured through the selected imaging plane



34 CHAPTER 3. METHODS

in both studies and PC-MR acquisitions were gated to eithermeasured (PC-MR) or simulated
(MOG PC-MR) ECG-signals to enable cine imaging over a heartbeat.

In study IV, flow was measured in the ascending aorta (n=171) and the main pulmonary
artery of human subjects, using a transversal image orientation and a double oblique image
orientation, respectively. PC-MR data were collected using both prospectively gated (n=23
subjects) and retrospectively gated pulse sequences during free breathing and breath-holds
(n=18 healthy volunteers).

Flow analysis was performed from time-resolved semi-automatic andmanual delineations
in the vessel of interest and the net flow volume was calculated as the flow time integral (Figure
3.1). Two different background phase correction techniques were applied for each vendor: 1)
Linear background correction in Segment v2.0 R5390 was performed for data from Siemens
scanners and 2) Automatic Local Phase Correction built into the scanner was performed
during image reconstruction for data from the Philips scanner.

In study V, flow was measured by Metric Optimized Gating (MOG) PC-MR in the
fetal descending aorta (DAo) and umbilical vein (UV) of fifteen healthy fetuses during ma-
ternal breathholds. Image gating was performed using a simulated ECG with 525ms long
RR-intervals to oversample the true fetal RR-interval. Fetal RR-intervals were measured by
cardiotocography at rest 5 min before the MRI scan in eight subjects, showing maximum
RR-intervals with median 444ms (range 413-461ms), resulting in oversampling of 14-27%
for MOG PC-MR.

In the phantom experiment of study V, conventionally gated PC-MR data was also ac-
quired in order to validate MOG PC-MR velocity profiles over a beat.

Velocity profiles and flow were quantified from time-resolved manual delineations in
study V. In the phantom validation, Regions of interest from conventionally gated PC-MR
data were copied toMOGPC-MR images to exclude delineation variability as a confounding
factor. In order to reduce PC-MR flow variability due to manual delineations, the phantom
nozzle area was measured independently by a 3D-bSSFP sequence at 3T for improved reso-
lution.

3.3.5 Velocity to Noise Ratio in PC-MR data (Study V)

In study V, PC-MRVelocity to Noise Ratio (VNR) was measured in the phantom experiment
and was estimated in the fetal descending aorta (DAo) and umbilical vein (UV). VNR was
calculated as the peak velocity over a beat divided by the noise standard deviation in phase
images. In the phantom experiment, peak velocities were measured in phase images from
conventionally gated PC-MR and the noise standard deviation was calculated from the same
image region as were used for velocity measurements, in a separate PC-MR acquisition with
the water pump turned off.

For fetal imaging, noise standard deviations in the DAo and UV were estimated from a
noise prescan which was integrated in the PC-MR acquisition, combined with a previously
published algorithm[28]. The noise prescan data from all receive channels were used to esti-
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mate the noise covariance matrix. Synthetic normally distributed noise was then generated
and synthetic noise for each receive channel were correlated by Cholesky decomposition of
the noise covariance matrix. The synthetic noise was added to the k-space PC-MR data which
were reconstructed to create a replica of the PC-MR phase images with added noise. This
process was repeated to create 128 phase images with added noise and the pixelwise noise
standard deviation was calculated. The mean noise standard deviation was finally calculated
as the ROI pixel average within the vessel of interest.

As velocities in the fetal DAo and UV were measured using the MOGmethod, indepen-
dent peak velocity measurements were not available and VNR in the DAo and UV could not
be directly determined. VNR was instead estimated using peak velocity measurements in the
corresponding vessels from a previos [29], in which fetal PC-MR was gated using a doppler
ultrasound device.
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Figure 3.1 Example of a 2D PC-MR flow volume measurement. Top panel (A) shows de-
lineations (blue) of the ascending aorta in a magnitude image in transversal slice orientation
(left) and the corresponding phase image (right) in early ventricular systole. The lower panel
shows measured flow over time from vessel delineations at all time points of the cardiac cycle.
Flow volume is calculated from time integration of this curve.
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3.4 Numerical simulations

In study I, numerical simulations of T2* measurements were performed to evaluate accuracy
and precision of the new T2* algorithm and two previously introduced algorithms[30, 31]
for comparison. Mono-exponential T2* decay on the real and imagingary component of a
complex signal was generated and zero-mean normally distributed noise were added. The
magnitude signal used for T2* measurements was calculated as M =

√
Im2 +Re2 where

M , Im and Re denotes the magnitude signal, the real part and the imaginary part of the
complex signal. Simulated magnitude signals were sampled using two different sets of echo
times (TE) with ranges 2.5-25ms and 1-20ms, corresponding to values used in two clinical
pulse sequences designed for T2* measurements in the heart and liver at 1.5T. A T2* range
of 1-50ms was simulated and simulations were repeated 2000 times. The average T2* er-
ror (bias) and 95% confidence intervals were calculated for each T2* algorithm in order to
evaluate accuracy and precision. A signal to noise ratio (SNR), defined here as the noise-free
magnitude signal at TE=0ms divided by the noise standard deviation, of 15 was used in this
simulation study.

In study III, simulations of the Bloch equations were used together with the new SQUAREMR
method in order to improve T1 accuracy of the MOLLI pulse sequence. Spins with different
T1 and T2 values were simulated for T1 range 200-1900ms and T2 range 20-400ms in steps
of 1ms, except for spins with T1<T2 which were not simulated.

Simulations of the Bloch equations[9] were performed using the MR physics simulator
MRISIMUL by Xanthis et al[32], a MR physics simulator designed for efficient parallel com-
puting on graphical processing units (GPUs). Bloch simulations used a time step of 5µs and
RF-pulse slice profiles were taken into account by simulating typically 20 − 100 spins with
the same T1 and T2 values across the slice thickness.

For each MOLLI T1 measurement a total of typically 532 000−63 400 000 simula-
tions of the pulse sequence were performed for a spin population with typically 25 000−628
000 unique T1/T2 combinations. MRSIMUL made it possible to perform all simulations
needed for a T1 measurement, including the entire population of spins, on a single server
style computer (CPU: 2xhexa-core 2.3 GHz; RAM: 32GB; GPU: 4xNvidia Tesla cards with
6GB GDDR5 memory) without simplifying the MRI physics model.

3.5 Algorithm design and implementation

Algorithms presented in this chapter were implemented in Matlab (Mathworks, Natick, MA,
USA), except for the optimization routine used for T1- and T2-map generation in study III,
which was implemented in the C programming language.

Study I. The new algorithm for ADAPTive T2* estimation from combined Signal models
(ADAPTS) is initialized by a manual delineation of the region of interest (ROI) in T2*-
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weighted echo-time images, and the ROI pixel average is used for curve fitting. As a first
step, T2* is estimated using a mono-exponential signal model with three unknown parame-
ters:

S(TE) = PDe−TE/T2∗ + C

Here, the unknown parameters proton density PD, T2∗ and noise-floor C are found from
the measured signal S at echo-times TE. This signal model reduces T2* bias from noise in
low SNR conditions and for T2* values close to the minimum TE. However, the addition of
a third parameter results in lower precision compared to a 2-parameter signal model, which
can be used in data with high SNR. The initial T2* estimate is therefore only used to discard
images with echo-times longer than a multiple P1 of T2* and T2* is re-estimated from
remaining echo-time images using a 2-parameter mono-exponential model, similar to the
automatic truncation algorithm by He et al [33]:

S(TE) = PDe−TE/T2∗

The new T2* estimate is only used as final estimate if the number of included images is larger
than or equal to parameter P2. This check is performed to avoid extensive data truncation,
which may lead to unnecessary loss of precision. If the number of images is less than P2,
T2* is re-estimated again, this time using a previously published 3-parameter noise-correction
algorithmFeng et al. [30]:

S2(TE) = PD2e−2TE/T2∗ + 2Lσ2

Here, σ denotes the noise standard deviation and L the number of receiver coils in use. As
previously proposed[30], the right term 2Lσ2 is estimated as one unknown parameter, result-
ing in a 3-parameter signal model. The purpose of using different signal models and number
of included data points in ADAPTS for different signal conditions is to enable robust T2*
measurements with high accuracy and precision over a wide T2* interval. Of note, all signal
models in use by ADAPTS have been published previously. However, the proposed com-
bination scheme is novel. Algorithm parameters P1 = 4.5 and P2 = 9 were determined
from optimization using data from phantom experiments. The final parameter values were
chosen to minimize bias and maximize precision for ADAPTS T2* measurements in two
pulse sequences designed for cardiac and liver imaging.

Study II. The software tool for offline T1/T2 measurements was designed to support com-
monly used mono-exponential signal models with two and three unknown parameters. T1
and T2 curve fitting was performed using the Nelder Mead Simplex nonlinear minimization
algorithm [34] which was implemented in the C programming language to reduce compu-
tation times.

Study III.The SQUAREMRmethod was used together with Bloch simulations (described in
section 3.4) to improve T1 accuracy of the MOLLI pulse sequence. SQUAREMR compares
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the signal intensity of each pixel in the acquired inversion-recovery images from aMOLLI T1
measurement with Bloch simulations of the same pulse sequence with identical acquisition
parameters for every simulated T1/T2 combination. The simulated T1/T2 pair which best
fit the measured signal points, in terms of minimal least squares error, is used as the final
T1/T2 estimate.

Study IV. The main aim of the new semi-automatic delineation algorithm for PC-MR im-
ages was to provide high delineation accuracy by using multiple refinement steps and high
delineation robustness by using shape constrained reconstruction. An overview of the delin-
eation algorithm is shown in figure 3.3. The algorithm is initialized by a manual delineation
in one time point of the PC-MR cine image series. Rigid motion-tracking of the vessel of
interest is then performed to translate the delineation over time. Interleaved active contour
deformations in PC-MR magnitude images and shape constrained reconstruction are used
to refine the delineations in each time point.

Delineation refinement is initialized at a time point containing high velocity. Phase im-
ages are labeled as either 1) high velocity time point, or 2) low velocity time point by the
K-means clustering algorithm[35] and if the manual delineation time point is labeled as high
velocity, it is used to initialize delineation refinement. Otherwise, the time point correspond-
ing to maximum velocity is used to initialize delineation refinement.

The algorithm continues with refining remaining time points, first in the high-velocity
class and then in the low-velocity class. For each time point, the previously processed de-
lineation from its nearest neighbor is used as starting point. Active contour deformations in
PC-MR magnitude images were guided by edge feature images.

After delineation refinement, delineations from high-velocity time points are further pro-
cessed using active contour deformations in PC-MR phase images in order to increase the
inclusion of relevant blood flow. Active contour deformations in PC-MR phase images were
guided by filtered and normalized velocity images.

Shape constrained reconstruction was performed by replacing a delineation with a linear
combination of typical vessel shape profiles. Vessel shape profiles where extracted from a
dataset of 30 manual vessel delineations in time-resolved PC-MR images, 20 delineations of
the ascending aorta and 10 delineations of the main pulmonary artery.

The manual delineations where parametrized by resampling (x,y) coordinates into radial
distances and resampling the number of time points of each dataset to 20 linearly spaced
time points over the cardiac cycle. Principal component analysis (PCA) was performed on
the resampled delineations to extract a subset of eigenvectors responsible for 75% of the
total variance. The found eigenvectors represent typical vessel shapes in the dataset. A linear
combination of eigenvectors can be used to approximate a manual vessel delineation.

Thus, the combination of typical vessel shape profiles used for shape constrained recon-
struction were the linear combination of eigenvectors which best approximated the refined
delineations, in terms of minimal least squares error.
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Algorithm parameters where optimized separately for the ascending aorta and the pul-
monary artery, using the same datasets of 30 manual delineations as were used for shape
constrained reconstruction.

Study V. No algorithm development was performed in this study.
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Figure 3.2 Flow chart of the new T2* algorithm from study I.
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Figure 3.3 Flow chart of the new semi-automatic vessel delineation method from study IV.
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3.6 Image analysis

Image delineations and measurements were performed in the medical image analysis soft-
ware Segment v2.0[36], except for MOG processing which were performed using the MOG-
Public Software v2.7 (https://github.com/MetricOptimizedGating/MOG-Public).

3.7 Statistical Analysis

Numbers are expressed as mean ± standard deviation (SD), unless stated otherwise. Bland-
Altman and Modified Bland-Altman analysis[37] were used to determine bias and variabil-
ity between two methods, defined as the mean difference ±1.96 SD. For Modified Bland-
Altman analysis, error percentages were calculated as differences between two measurements
divided by the reference standard measurement and for Bland-Altman analysis, error per-
centages were calculated as difference between two measurements divided by the average of
both measurements. Coefficient of Variation (CV) were computed as the sample standard
deviation of differences between measurements divided by their sample mean. Accuracy was
determined from the bias of a method compared to a reference standard measurement and
95% confidence intervals (CI) were used to measure precision. In study III, a student’s two
tailed t-test was used to compare paired data. Study IV used the Dice coefficient to measure
delineation overlap between manual delineations and the new semi-automatic delineation
algorithm.





Chapter 4

Results and Comments

4.1 A new T2* algorithm for cardiac and liver iron load determina-
tion (Study I)

Patients suffering from iron load disease are at risk of developing organ failure due to iron
overload. Iron chelate therapy has been shown to reduce chronic iron overload and improve
the prognosis of iron load disease [38]. However, iron chelate therapy is toxic and have been
associated with renal failure[39] which warrants careful treatment planning and monitoring
of iron load.

Noninvasive T2* measurements by MRI is the current reference standard for assessing
iron load in different organs and the technique has been validated to biopsies in the heart and
liver [40, 41, 42, 43, 44, 45]. Different algorithms are currently used for determining T2*
fromMRI images, each with its own advantages and disadvantages at different T2* intervals.
In mild to normal iron levels the T2* value is relatively long (T2*>20ms in the heart at 1.5T
[40]) and conventional mono-exponential algorithms with only two parameters results in
accurate and precise T2* estimation.

In severe iron load the T2* value is short, leading to low signal to noise ratio (SNR) and
just a few images with a signal intensity above the noise floor. In this setting, conventional
2-parameter mono-exponential algorithms have been shown to result in overestimation of
T2* [46] and are therefore not suitable. Instead, 3-parameter exponential algorithms with
noise correction [30] or 2-parameter mono-exponential truncation algorithms which discard
images with signal intensity below the noise floor [33] can be used to obtain accurate T2*
estimates.

Compared to conventional 2-parameter mono-exponential algorithms, noise correction
and truncation algorithms have increased complexity, resulting in lower precision. These
algorithms are therefore not desired in cases where the conventional mono-exponential algo-
rithm is accurate.

We aimed to develop and validate a new T2* algorithm called ADAPTS which automat-

45
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ically selects algorithm complexity in order to obtain accurate results in severe iron load and
precise measurements in moderate to normal iron load.

We demonstrated algorithm behavior in numerical simulations using echo times from
two multi-echo pulse sequences designed for invivo T2* measurements in the heart and liver.
Our simulations confirmed that ADAPTS results in high T2* accuracy at short T2* values,
similar to noise correction methods, and high precision at long T2* values, similar to the
mono-exponential 2-parameter algorithm (Figure 4.1).

Validation in gel phantoms for similar multi-echo pulse sequences as were used for nu-
merical simulations showed good agreement with a previously validated noise correction al-
gorithm available on the scanner (MLE) and also with measurements from our reference stan-
dard single-echo pulse sequence (Figures 4.2-4.3). For both the new algorithm (ADAPTS)
and the MLE algorithm, the largest T2* differences compared to our reference standard se-
quence were obtained for long T2* values where T2*>30ms. Since errors for long T2* values
were obtained using both algorithms, and the errors could not be reproduced when ADAPTS
was applied to data from the single-echo reference standard pulse sequence, we believe that
T2* errors at T2*>30ms originated from the multi-echo sequence parameter configuration
rather than the T2* algorithms in use. Invivo T2* measurements in the heart and liver of 23
patients with known or suspected iron load disease showed low interobserver variability of
the ADAPTS algorithm, similar to the previously validated MLE algorithm (Figure 4.4).

Our findings suggests that the proposed automatic algorithm (ADAPTS) can provide
robust T2* measurements in the heart and liver over the range of clinically relevant T2*
values in the offline setting.
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Figure 4.1 Accuracy (top row) and precision (bottom row) of three T2* algorithms were
evaluated in numerical simulations using echo times from two clinical T2* sequences for
cardiac (left column) and liver (right column) imaging. A mono-exponential algorithm (red
solid lines) resulted in increased T2* bias and reduced precision for short T2* values, while
a noise correction algorithm (blue solid lines) resulted in increased T2* bias and reduced
precision for long T2* values. The introduced ADAPTS algorithm (open circles) switched
behavior between a noise correction and a mono-exponential algorithm, which resulted in
low bias over the simulated T2* interval.
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Figure 4.2 Phantom validation of the new ADAPTS (top row) and the MLE (bottom row)
T2* algorithms using a multi-echo gre pulse sequence designed for cardiac imaging. Scat-
ter plots (left) show T2* values from multi-echo measurements (y-axes), T2* values from the
single-echo reference standard measurement (x-axes), line of identity (dashed lines) and linear
regression lines (red solid lines). Modified Bland-Altman plots (right) show T2* differences
between multi-echo and single-echo data (y-axes), T2* from single echo reference standard
measurements (x-axis), bias (solid lines) and bias±1.96 SD (dashed lines). Both T2* algo-
rithms resulted in small errors compared to the reference standard except for measurements
in phantoms with T2*>35ms, likely due to the multi-echo pulse sequence configuration.
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Figure 4.3 Phantom validation of the new ADAPTS (top row) and the MLE (bottom row)
T2* algorithms using a multi-echo gre pulse sequence designed for liver imaging. Scatter
plots (left) show T2* values from multi-echo measurements (y-axes), T2* values from the
single-echo reference standard measurement (x-axes), line of identity (dashed lines) and linear
regression lines (red solid lines). Modified Bland-Altman plots (right) show T2* differences
between multi-echo and single-echo data (y-axes), T2* from single echo reference standard
measurements (x-axis), bias (solid lines) and bias±1.96 SD (dashed lines). Both T2* algo-
rithms resulted in small errors compared to the reference standard except for measurements
in phantoms with T2*>30ms, likely due to the multi-echo pulse sequence configuration.
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Figure 4.4 Bland-Altman plots showing T2* interobserver variability of the new ADAPTS
algorithm (left) and the MLE algorithm (right). Bias and bias±1.96 SD are shown as solid
and dashed lines, respectively. The two T2* algorithms had similar interobserver variability.
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4.2 Validation of T1 and T2 algorithms from a vendor independent
software (Study II)

Quantification of the MR relaxation time constants T1 and T2 is increasingly utilized in
medical imaging research and clinical practice. For example, T1 measurements before and
after administration of a gadolinium based contrast agent enables determination of myocar-
dial extracellular volume [47], while T2 measurements can be used to detect edema in acute
myocardial infarction [48]. Software tools for offline T1 and T2 measurements are needed
for standardized data analysis in multi-vendor studies and in the clinical setting. A previous
open-source software for T1 and T2 analysis exist which is designed to be used for research
[49]. We aimed to create and validate a software for generating T1 and T2 relaxation maps
from multiple signal models to be used in research and in clinical practice.

Figure 4.5 Invivo and exvivo T1 and T2 maps generated by the new software tool using
images from three different MRI vendors. Arrows point to findings or anatomical structures.
a)MOLLI T1-map of the cardiac 4-chamber view acquired after gd-contrast administration
in a patient with myocarditis (1.5T Siemens); b) T1-map of a healthy fetal brain from an
inversion-recovery bSSFP pulse sequence (1.5T Siemens); c) T2-map of the fetal descending
aorta from a T2-prepared bSSFP pulse sequence (1.5T Siemens); d) exvivo T1-map of a
healthy placenta from an inversion-recovery bSSFP pulse sequence (3T Siemens); e)MOLLI
T1-map of the kidneys in a healthy volunteer (1.5T Philips); f) T2-map of knee cartilage in
a healthy volunteer using a multi-echo spin echo pulse sequence (3T GE).

The new T1/T2 analysis software was able to generate T1 and T2 maps using images
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from three MRI vendors (Siemens, Philips and GE), shown in figure 4.5.
Phantom validation using pulse sequences designed for invivo measurements resulted in

low bias and variability, except for MOLLI T1-measurements in phantoms with T2<60ms,
similar to findings from a previous study [50] (Figure 4.6).



4.2. VALIDATION OF T1 AND T2 ALGORITHMS (STUDY II) 53

0 500 1000 1500 2000

-9

-6

-3

0

3

6

9

12

T1 reference (IR spin echo) [ms]

T
1

S
R

b
S

S
F

P
-

T
1

re
f

[%
]

T1 SR bSSFP at 1.5T
Bias ± SD = 0.2% ± 1.2%

0 50 100 150 200 250 300 350

-9

-6

-3

0

3

6

9

12

T2 reference (spin echo) [ms]

T
2

-p
re

p
b

S
S

F
P

-
T

2
re

f
[%

]

T2-prepared bSSFP at 1.5T
Bias ± SD = 1.9% ± 2.0%

0 500 1000 1500 2000

-9

-6

-3

0

3

6

9

12

T1 reference (IR spin echo) [ms]

T
1

M
O

L
L

I
-

T
1

re
f

[%
]

T1 MOLLI at 1.5T
Bias ± SD = -3.3% ± 3.4%

0 500 1000 1500 2000

-9

-6

-3

0

3

6

9

12

T1 reference (IR spin echo) [ms]

T
1

S
R

b
S

S
F

P
-

T
1

re
f

[%
]

T1 SR bSSFP at 3T
Bias ± SD = -0.7% ± 0.9%

0 50 100 150 200 250 300 350

-9

-6

-3

0

3

6

9

12

T2 reference (spin echo) [ms]

T
2

-p
re

p
b

S
S

F
P

-
T

2
re

f
[%

]

T2-prepared bSSFP at 3T
Bias ± SD = 0.2% ± 2.7%

Figure 4.6 Modified Bland-Altman plots from the T1 and T2 phantom validation at 1.5T
(left) and 3T (right), showing bias as solid lines and bias±1.96 SD as dashed lines. Top
panels: T1 measurements using a saturation recovery free-breathing bSSFP pulse sequence;
Middle panels: T2 measurements using a T2-prepared free-breathing bSSFP pulse sequence;
Bottom panel: T1 measurements using a MOLLI breathhold pulse sequence. Low bias and
variability were found for the evaluated T1 and T2 pulse sequences, except for MOLLI T1
measurements in phantoms with T2<60ms (encircled in red). bSSFP=balanced steady-state
free precession; MOLLI=Modified Look-Locker inversion-recovery; SR=Saturation-recovery.
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4.3 Validation of SQUAREMR, a new method for accurate T1 es-
timation using Bloch simulations of a large spin population
(Study III)

Methods for determining MR relaxation time constants using Bloch simulations together
with specific pulse sequence designs have been successfully applied invivo and is increasingly
used in the MR research community[51]. For such applications, novel pulse sequences have
so far been used which often require state of the art MR scanner performance. We hypothe-
sized that Bloch simulations could be used to improve T1-accuracy for already existing pulse
sequences. We therefore developed an algorithm (SQUAREMR) which can estimate T1 val-
ues when combined with a Bloch simulation framework[32], and applied it to data from three
schemes of the widely used MOLLI T1-mapping pulse sequence [19] (5(3p)3, 4(1p)3(1p)2
and 5(0p)3).

Validation at 1.5T in one gel-phantom set with T1/T2 values similar to myocardium
and blood, and in one gel-phantom set with T2<60ms and a range of T1 values (range 200-
1600ms) resulted in improved T1 accuracy for all three schemes of the MOLLI pulse se-
quence using SQUAREMR processing compared to using conventional mono-exponential
fitting with Look Locker correction (Figure 4.7). The largest improvement in T1 accuracy
was found for the MOLLI 5(0p)3 pulse sequence without pause RR-intervals between inver-
sions. MOLLI T1-values from SQUAREMR processing had lower bias, and were constantly
larger, than MOLLI T1-values from conventional processing with Look-Locker correction.

Myocardial T1 measurements at 1.5T, in twelve human volunteers, resulted in larger
T1-values (p<0.001, n=12) for SQUAREMR processing (T1=1117±25.6ms) compared to
conventional processing with Look-Locker correction (T1=1025±22.9ms) using MOLLI
5(3p)3, which was consistent with our findings from the phantom validation.

Our study indicates that the new SQUAREMR post-processing method can be used
with already available pulse sequences to improve the accuracy of MR relaxometry, both
prospectively from newly acquired MR data and retrospectively from previously collected
MR data.

Future work is needed to investigate sensitivity of the method to confounding factors
such as B0 and B1 variations over the image field of view or magnetization transfer effects for
different tissue types.
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Figure 4.7 Modified Bland-Altman plots from one phantom set with T1/T2 values similar
to myocardium and blood (left), and one phantom set with T2<60ms (right). T1 measure-
ments from three MOLLI schemes (rows) using either conventional Look-Locker correction
(triangles) or the new SQUAREMR method (squares) were compared to inversion-recovery
spin echo reference standard measurements. For both phantom sets and all three MOLLI
schemes, T1 bias from SQUAREMR (solid lines) was smaller than T1 bias from Look-Locker
correction (dashed lines).
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4.4 A new vessel delineation algorithm for 2D PC-MR images
(Study IV)

Flow measurements from 2D PC-MR images require accurate time-resolved vessel delin-
eations over the cardiac cycle. Previous semi-automatic delineation algorithms have reduced
the required user input and total time of analysis. However, the need for manual corrections
remain.

Figure 4.9 Example of semi-automatic delineations in PC-MRmagnitude images of the main
pulmonary artery during ventricular systole (left) and diastole (right). Delineations from
the algorithm with new vessel shape constraints (dashed lines) showed improved robustness
compared to delineations from another semi-automatic algorithm without the new shape
constraints (solid lines), which erroneously included tissue adjacent to the pulmonary artery.

We hypothesized that shape constraints based on a data set of manual delineations would
improve robustness of vessel delineation algorithms which, to our knowledge, have not been
implemented previously for 2DPC-MR images. Therefore, we developed a new semi-automatic
2D PC-MR vessel delineation algorithm with shape constraints based on manual vessel de-
lineations, validated the algorithm in phantom experiments and compared the algorithm to
manual vessel delineation in the ascending aorta and main pulmonary artery of human sub-
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jects. Figure 4.9 shows an example of semi-automatic delineation of the main pulmonary
artery demonstrating improved robustness for the new algorithm compared to a previously
published algorithm [36].

Validation of 2D PC-MR flowmeasurements at 1.5T and 3T using a pulsatile flow phan-
tom (figure 4.10) resulted in good agreement with timer and beaker flow measurements for
manual delineation. 2D PC-MR flow measurements using the new semi-automatic delin-
eation algorithm resulted in good agreement with timer and beaker flow at 1.5T and underes-
timated flow at 3T. A larger degree of PC-MR image artifacts were observed at 3T compared
to 1.5T data, which may explain the observed flow underestimation, indicating sensitivity to
image quality of the new algorithm.

in-vivo 2D PC-MR flow measurements in the ascending aorta (n=134) and main pul-
monary artery (n=30) of human subjects, using both manual delineation and the new delin-
eation algorithm initialized at 20% of the RR-interval are shown in figure 4.11. Modified
Bland-Altman analysis using manual delineation as reference standard resulted in low bias
and variability for the new algorithm (figure 4.11, bottom row), demonstrating possibility
for clinical use in both vessels.

Figure 4.12 shows how delineation performance vary when the semi-automatic algorithm
is initialized at different RR-interval time points for the ascending aorta and main pulmonary
artery. The algorithmwas robust to different initialization time points for the ascending aorta,
while delineation quality was sensitive to the initialization time point for the main pulmonary
artery. A larger variation of vessel diameter over the cardiac cycle was observed for the main
pulmonary artery compared to corresponding measurements for the ascending aorta which
may explain the sensitivity to the initialization time point for the main pulmonary artery.
Of note, the observed difference in vessel diameter variation between the two vessels is most
likely not due to differences in actual vessel anatomy but rather explained by the need for
double-oblique positioning of the pulmonary artery imaging plane. Therefore, finding the
true cross-section of the main pulmonary artery may have been more user dependent during
the MRI scan compared to the ascending aorta.

By initializing the semi-automatic algorithm in the main pulmonary artery at time points
between 15-35% of the RR-interval, high delineation quality was obtained, similar to the
performance found for the ascending aorta. Since 15-35% of the RR-interval was associated
with well defined image contrast between the main pulmonary artery and its surroundings,
initializing the algorithm in this interval with a manual delineation will most likely not be a
major challenge in the majority of cases.

PC-MR flow inter-observer variability was reduced using the semi-automatic algorithm
compared to manual delineation in 30 human subjects (Figure 4.13), which combined with
the found low bias and variability of measured flow volumes warrants the use of the new
delineation algorithm for invivo flow and shunt volume quantification.
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Figure 4.10 Phantom validation of 2D PC-MR flow volume measurements for pulsatile flow
at 1.5T (circles) and 3T (crosses). PC-MR measurements using the new semi-automatic de-
lineation algorithm (top) were in good agreement with timer and beaker measurements at
1.5T, and underestimated flow volumes at 3T. PC-MR measurements using manual delin-
eation (bottom) were in good agreement with timer and beaker at both 1.5T and 3T.
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Figure 4.11 Invivo 2D PC-MR flow volume measurements in the ascending aorta (left;
n=134) and the main pulmonary artery (right; n=30). Scatter plots (top) show PC-MR
flow volume measurements using the semi-automatic algorithm initialized at 20% of the
RR-interval (y-axes) and manual delineations (x-axes) together with lines of identity (dot-
ted lines). Flow volumes from the two methods were similar. Modified Bland-Altman plots
(bottom) show bias as solid lines, bias±1.96 SD as dashed lines and zero difference as dotted
lines. Delineations from the semi-automatic algorithm resulted in low bias and variability
compared to manual delineations for both vessels.
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Figure 4.12 Semi-automatic delineation performance was largely unchanged for the ascend-
ing aorta (left) and varied for the main pulmonary artery (right) when the algorithm was
initialized at different time points of the RR-interval. Top panels show average flow profiles
over the RR-interval from manual delineations for both vessels. Middle panels show flow
volume bias and limits of agreement (filled circles and error bars) of semi-automatic vs man-
ual delineations. Bottom panels show average Dice coefficients and 1.96 SD (filled squares
and error bars). For the main pulmonary artery, delineation quality was sensitive to the ini-
tialization time point of the semi-automatic algorithm. However, when the algorithm was
initialized at 15-35% of the RR-interval, delineation quality was similar to the ascending
aorta in terms of flow volume bias, flow volume variability and Dice coefficient.
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Figure 4.13 Bland-Altman plots showing interobserver variability of invivo PC-MR flow vol-
ume measurements in 30 human subjects using manual delineations (left) and the new semi-
automatic algorithm (right). Interobserver bias (solid lines) and variability (dashed lines) were
reduced by using the semi-automatic algorithm compared to using manual delineations.
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4.5 Validation of Metric Optimized Gating Phase Contrast flow
measurements for fetal imaging (Study V)

Non-invasive flow and blood velocity measurements in the fetal cardiovascular system by
MRI is a promising alternative to doppler ultrasound for diagnosing disease such as congeni-
tal heart defects and intra-uterine growth restriction. Conventional phase contrast magnetic
resonance (PC-MR) flow measurements require an ECG-recording during the MRI acquisi-
tion for image gating. The lack of a usable ECG by surface electrodes for fetal imaging creates
the need for alternative image gating approaches such as Metric Optimized Gating (MOG)
[23].

MOGPC-MRflowmeasurements have demonstrated reproducibility at 1.5T and 3T[52]
and low inter-observer variability for fetal imaging [53, 54] in studies from one research cen-
ter. However, validation has not been performed for a range of flow rates or using a reference
standard measurement other than PC-MR.We therefore aimed to 1) validate MOG PC-MR
flow measurements using an independent flow reference standard (timer and beaker) at a
heart-rate (145bpm), a vessel diameter (6mm) and a range of flow rates (120-700ml/min)
similar to fetal conditions in a phantom experiment and 2) investigate intra- and interob-
server variability for fetal flow measurements at an additional imaging center.

In a pulsatile flow phantom experiment, MOG PC-MR velocity profiles closely resem-
bled PC-MR with conventional image gating (Figure 4.14, top row), except for cases with
low VNR (VNR≤3.7) in which MOG PC-MR resulted in near constant velocity profiles
over the RR-interval (Figure 4.14, bottom row). Low VNR coincided with low timer and
beaker flow and high VNR coincided with high flow. At high VNR (VNR≥5.0) MOG
PC-MR resulted in underestimation of peak velocity.

MOG PC-MR flow measurements had low bias and high variability compared to timer
and beaker flow (Figure 4.15). Underestimation of flow occurred at high flow values due
to MOG PC-MR underestimation of peak velocity. Overestimation of flow occurred at low
flow values due to near constant MOG PC-MR velocity profiles over the RR-interval which
originated from MOG misgating at low VNR (VNR≤3.7).

For fetal imaging, flow volumes and interobserver variability in the fetal UV and DAo
(Figure 4.16) were comparable to previously reported values [53]. Pulsatile flow was found
for DAo but not for UV after MOG reconstruction in all subjects. Intra- and interobserver
CV for Dao were 6% and 19% and for UV 10% and 17%.

Estimated VNR regimes for MOG PC-MR measurements in the fetal DAo and UV
were similar to VNR values found in the phantom validation. VNR values associated with
successful MOG reconstruction in the phantom were similar to estimated VNR in the fetal
DAo (VNR=8.0), while VNR values associated with MOG misgating in the phantom were
similar to estimated VNR in the UV (VNR=1.6).

The found VNR sensitivity of MOG PC-MR and the estimated VNR difference between
the fetal DAo and UV warrants sequence parameter optimization to individual fetal vessels
for accurate MOG PC-MR velocity and flow measurements.
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Figure 4.14 Phantom validation of MOG PC-MR velocity profiles. Top panels: At high
flow (VNR≥5.0), MOG PC-MR velocity profiles (dotted lines) were in good agreement
with a conventionally gated PC-MR pulse sequence with similar acquisition parameters as
MOG (triangles) but underestimated peak velocity compared to a conventionally gated PC-
MR pulse sequence with improved spatial and temporal resolution (solid lines). Bottom
panels: At low flow (VNR≤3.7), MOG PC-MR underestimated peak velocity compared
to both conventionally gated PC-MR pulse sequences and MOG PC-MR velocity profiles
approximated near constant velocity over the RR-interval due to MOG misgating.
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Figure 4.15 Phantom validation of MOG PC-MR flow measurements compared to timer
and beaker flow. Modified Bland-Altman analysis resulted in low bias (solid lines) and high
variability (dashed lines) for MOG PC-MR, both when using errors in absolute flow (left)
and when using errors in percentage (right). MOG PC-MR overestimated flow at low timer
and beaker flow values due to MOG misgating and underestimated flow at high flow values
due to underestimation of peak velocity.
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Figure 4.16 Bland-Altman plots of interobserver variability for MOG PC-MR flowmeasure-
ments in the umbilical vein (left) and the fetal descending aorta (right). Solid lines show bias
and dashed lines show bias±1.96 SD.
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Conclusions

In the presented studies, different methods for MRI relaxometry and PC-MR flow quantifi-
cation were evaluated with a focus on cardiovascular applications. The conclusion for each
study was:

I. For two invivo T2* sequences the new algorithm for offline T2*
calculation gave rise to low bias and variability in phantoms over
the range of clinically relevant T2* values. Low intra- and interobserver
variability in patients with known or suspected iron load disease were
found, similar to a previously validated T2* algorithm which was available
on the MR-scanner.

II. The new software tool for offline T1 and T2 calculation resulted
in low bias and variability in phantoms compared to reference standard
spin echo pulse sequences and similar bias compared to findings
in previous studies were found for pulse sequences designed for invivo
imaging. Applicability of the software was demonstrated for images
from three MRI vendors.

III. Results from phantom experiments suggest that the new SQUAREMR
post-processing method can be used to improve T1 accuracy of the MOLLI
pulse sequence. Consistently higher pre-contrast myocardial MOLLI T1
estimates were obtained using SQUAREMR compared to conventional
mono-exponential fitting with Look-Locker correction in human volunteers.

65
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IV. The new algorithm for semi-automatic vessel delineation in 2D
PC-MR images resulted in low bias and variability when compared to
manual delineations in a phantom experiment and in invivo measurements.

V. Phantom validation showed good agreement between MOG and conven-
tionally gated PC-MR except for cases with low VNR, which resulted in
MOG misgating and underestimated peak velocities, warranting optimization
of PC-MR pulse sequence parameters to individual fetal vessels. Interobserver
variability for the fetal descending aorta and umbilical vein were comparable to
previously reported values.
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FULL PAPER

Validation of a New T2* Algorithm and Its Uncertainty
Value for Cardiac and Liver Iron Load Determination
from MRI Magnitude Images

Sebastian Bidhult,1,2 Christos G. Xanthis,1,3 Love Lindau Liljekvist,1 Gerald Greil,4,5

Eike Nagel,4,5 Anthony H. Aletras,1,6 Einar Heiberg,1,2 and Erik Hedstr€om1,4,5,7*

Purpose: To validate an automatic algorithm for offline T2*
measurements, providing robust, vendor-independent T2*, and
uncertainty estimates for iron load quantification in the heart
and liver using clinically available imaging sequences.
Methods: A T2* region of interest (ROI)-based algorithm was
developed for robustness in an offline setting. Phantom imag-
ing was performed on a 1.5 Tesla system, with clinically avail-

able multiecho gradient-recalled-echo (GRE) sequences for
cardiac and liver imaging. A T2* single-echo GRE sequence
was used as reference. Simulations were performed to assess

accuracy and precision from 2000 measurements. Inter-
and intraobserver variability was obtained in a patient study

(n¼23).
Results: Simulations: Accuracy, in terms of the mean differen-
ces between the proposed method and true T2* ranged from

0–0.73 ms. Precision, in terms of confidence intervals of
repeated measurements, was 0.06–4.74 ms showing agree-

ment between the proposed uncertainty estimate and simula-
tions. Phantom study: Bias and variability were 0.26 6 4.23 ms
(cardiac sequence) and �0.23 6 1.69 ms (liver sequence).

Patient study: Intraobserver variability was similar for experi-
enced and inexperienced observers (0.03 6 1.44 ms versus

0.16 6 2.33 ms). Interobserver variability was 1.0 6 3.77 ms for
the heart and �0.52 6 2.75 ms for the liver.

Conclusion: The proposed algorithm was shown to provide
robust T2* measurements and uncertainty estimates over the

range of clinically relevant T2* values. Magn Reson Med
75:1717–1729, 2016. VC 2015 The Authors. Magnetic
Resonance in Medicine published by Wiley Periodicals,
Inc. on behalf of International Society for Magnetic
Resonance.

Key words: MRI relaxometry; iron-load; offline image process-

ing; validation; uncertainty estimation

INTRODUCTION

Organ failure caused by iron overload is a major cause of

death in patients with iron load disease. Accurate quan-

tification of organ iron load has been shown useful in

tailoring the therapy for such patients (1). MR imaging is

used as the current reference standard to assess iron load

in different organs. It is noninvasive, has documented

high reliability and has been validated to biopsies in the

heart and liver (2–7).
Different methods for quantification of iron load by

MR T2* are generally used (7–9). T2* measurements can
be performed from signal averages in a delineated region
of interest (ROI) or on a pixel by pixel basis. Differences
between methods are related to what is included in the
ROI, the model used for curve fitting and applied echo

times (TEs). In the presence of zero-mean Gaussian

noise, a standard least-squares (LSQ) estimator is consid-
ered optimal (10). However, the non-Gaussian noise

found in magnitude MR images (11,12) introduces a bias

in the T2* measurement which depends on the signal-to-

noise ratio (SNR). To reduce impact of noise on T2*, an

exponential fit combined with a constant offset (13) and

automatic truncation of data points (14) have been pro-

posed. In addition, noise-correction schemes for single-

channel coils (15) and root-sum-square (RSS) reconstruc-

tion of phased-array coils (16) were recently introduced

to further reduce noise-bias.
Validated inline methods may simplify iron load

measurements and improves clinical availability. How-
ever, robust offline T2* methods may have an important
role in multivendor settings. The maximum likelihood
estimate (MLE) method (17–19) is currently available for
inline processing in some vendors and if the noise statis-
tics are known, it is the optimal estimation method in
terms of variance (17). However, noise statistics of an
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image-set is rarely available offline without requiring
additional user interactions such as manually defining
background regions for noise estimation or specifying
image reconstruction technique. Moreover, uncertainty
estimates for the obtained T2* value are not provided by
current ROI-based methods.

Therefore, the purpose of this study was to introduce
and validate an automatic algorithm for offline T2*
measurements also providing uncertainty estimates for
robust quantification of iron load in the heart and liver,
optimized for a wide range of T2* values. The method
was validated in numerical simulations, in a phantom
study and was applied to cardiac and liver MR imaging
in patients with known or suspected iron load disease.

METHODS

Patients were included at two centers. The protocol and
procedures comply with the Declaration of Helsinki, and
were approved by the local research ethics committees.
All studies were performed using 1.5 Tesla (T) Philips
Achieva systems (Philips Healthcare, Best, The Nether-
lands). An overview of typical sequence parameters used
in this study is provided in Table 1.

Proposed T2* Analysis Method

We propose a new algorithm for T2* estimation in mag-
nitude MR images called ADAPtive T2* estimation from
combined Signal models (ADAPTS). It is a ROI-based
algorithm adapting the curve-fitting approach to balance
accuracy and precision. All image processing including
the proposed algorithm was developed using MATLAB
(v8.1.0.604, Mathworks) and was implemented in the
medical image analysis software Segment (20), freely
available for research purposes.

An overview of the algorithm is provided in Figure 1.
In all steps, the ROI average is used for curve-fitting to
increase SNR. The only manual interaction required is
the delineation of a ROI. The first T2* estimate is a
three-parameter offset model (13), initialized by the
weighted least-squares on signal logarithm method
(WLSL) (10). The signal model is shown in Eq. [1]:

S TEð Þ ¼ PD�e�TE=T2� þ C: [1]

The signal S depends on the TE, the proton density
PD and an offset parameter C which approximates
the noise-floor. Compared with a two-parameter
monoexponential, shown in Eq. [2], The increased
degree of freedom of a three-parameter fit enables closer
approximation of the measured signal (13).

S TEð Þ ¼ PD�e�TE=T2� : [2]

This, however, makes three-parameter models inher-
ently sensitive to noise and over fitting to the obtained
data points. The estimated offset parameter is used to
approximate the noise plateau and instead of reporting
the obtained T2* estimate (denoted cT2� in the remainder
of this section) as the final T2* value, ADAPTS uses the
initial fit for data-truncation. TEs exceeding P1 � cT2�,
where P1 is a nonzero constant, are excluded from theTa
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analysis and T2* is re-estimated from a two-parameter
monoexponential fit (Eq. [2]) of remaining TE images,
similar to the automatic truncation algorithm proposed
by He et al (14). To refrain from extensive truncation
which may lead to loss of precision, ADAPTS requires a
minimum number of available TE images, a second con-
stant P2, to proceed with the truncation method. If the
number of valid TEs is below P2, ADAPTS assumes the
number of remaining data points is insufficient for
robust T2* estimation and switches to a noise-correction
approach, similar to the M2NCM method (Second-
Moment Noise-Corrected Model), proposed by Feng et al
(16). This method fits the observed signal in all available
TE images to the expected value of the noncentral chi
distribution in the presence of an underlying monoexpo-
nential decay:

E M2
� �

¼ S2 þ 2Ls2: [3]

Here, M denotes the measured signal contaminated
with noise, S is the underlying exponential decay (Eq.
[2]), s is the noise standard deviation and L the number
of receiver coils in use. As previously proposed (16), the
right term of Eq. [3] is estimated as a free parameter,
resulting in a three-parameter model. This removes the
need for manual noise measurements. The motivation for
balancing the amount of included parameters and data
points in use by switching between signal models was to
enable robust T2* estimation in a wide range of T2* val-

ues. The three-parameter noise correction method is spe-
cifically designed to reduce noise bias in low SNR
conditions and for T2* close to the minimum TE. How-
ever, the use of an additional free parameter may
degrade precision for regions with high SNR where the
noise bias is negligible. In these circumstances, a two-
parameter truncation method may result in improved
precision. Although the signal models in ADAPTS
have all been previously introduced, the proposed
combination scheme is novel. All presented curve-fitting
methods used the Nelder Mead Simplex algorithm (21)
for nonlinear optimization. Values for the constants P1
and P2 were optimized in the phantom study and in
simulations, described in more detail below.

Estimation of Uncertainty

To estimate uncertainty of the obtained T2* value, T2*
was calculated in nonoverlapping, equally sized subre-
gions. From the subregion ensemble of T2* values the
95% confidence interval (CI) size was estimated. The
size of the subregions were defined as a fixed percentage
of the ROI size to produce a near-constant number of
T2* values for each CI estimate. Due to the reduced
number of pixels in the subregions compared with the
ROI, the standard error of the mean (SEM) will increase
for the pixel averages used for subregion T2* estimation.
Assuming statistically independent pixels and a linear
error propagation from the data-points to the T2* esti-
mate, a correction factor may account for the difference
in standard error:

SEMsubroi ¼
sffiffiffi
n
p ; SEM0 ¼

sffiffiffiffiffiffiffi
N
p ¼

ffiffiffi
n
pffiffiffiffiffi

N
p SEMsubroi [4]

ŝT2� ¼
ffiffiffi
n
pffiffiffiffiffi

N
p ŝT2�subrois: [5]

Here, N denotes the number of independent pixels in

the ROI and n denotes the number of independent pixels

in a subregion. Although this measure does not directly

correspond to the precision of the full-ROI T2* estimate,

it serves as an approximation which is further affected

by T2* homogeneity and varying noise levels within the

ROI. Compared with pixelwise T2* estimates, subregion

T2* results in improved precision due to pixel averaging,

which more closely resembles the original ROI estimate.

ADAPTS reports the T2* 95% CI together with the coef-

ficient of variation (CoV; defined as the standard devia-

tion divided by the ROI T2* value). Based on the

obtained CoV estimate the user may be advised to adjust

the ROI delineation.

Numerical Simulations

Numerical simulations were performed to assess accu-
racy and precision of ADAPTS and to evaluate reliability
of the uncertainty estimate in relation to known T2* val-
ues. RSS reconstruction of 1, 6 and 32 receive-coils was
simulated with identical monoexponential T2* decay on
the real and imaginary part of a complex signal. Zero-
mean Gaussian noise with predefined standard deviation

FIG. 1. Overview of the ADAPTS algorithm.
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(SD) s was added to each channel and the magnitude
signal was created by the root sum of squares operation:

RSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

l¼1
M2

l

r
[6]

Ml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im2

l þ Re2
l

q
[7]

Ml denotes the magnitude signal of receive-channel l,
Im denotes the imaginary signal component and Re the
real component. The SNR was defined as S0/r, where S0

is the signal intensity at TE¼ 0. The mean of 40 inde-
pendent signals was averaged before curve-fitting to sim-
ulate ROI-averaging. A T2* range of 1–50 ms for
SNR¼15 was simulated. TEs corresponding to the clini-
cal T2* cardiac and liver sequences were used with TE
ranges of 2.5–25 ms and 1–20 ms, respectively. T2* val-
ues below the minimum TE were not simulated for
either sequence. This resulted in simulated T2* ranges
for cardiac and liver of 2.2–50 ms and 1–50 ms, respec-
tively. Simulations were repeated 2000 times to evaluate
accuracy and precision of ADAPTS. From the 2000 repe-
titions, the mean and 95% CI of the ADAPTS T2* calcu-
lation were computed for each simulated T2* value.

In addition to ADAPTS, a two-parameter version of
the noise correction method M2NCM was simulated
which takes the true noise standard deviation as input.
This enabled a comparison with a near-optimal method.
The optimized parameters P1 and P2, previously derived
from phantom measurements, were refined in simula-
tions and accuracy and precision of ADAPTS was com-
pared with each of the two included signal models (two-
parameter automatic truncation and three-parameter
noise-correction methods).

Reliability of ADAPTS uncertainty estimate was eval-
uated by comparing a total of 2000 CI estimates to the CI
of the 2000 ADAPTS T2* ROI estimates. This procedure
was repeated for multiple subregion sizes and ROI-sizes
to optimize the CI estimates. Simulated ROI-sizes and
region-sizes was (40, 100, 200, 400) pixels and (4%, 6%,
8%, 10%, 12%, 15%, 20% and 25%, respectively).
Simulated ROI-size for evaluating the optimal subregion
size was 40 pixels.

Phantom Study

Twelve 300 mL gel-phantoms with T2*/T1 values corre-
sponding to iron overloaded myocardium (22) were used
for validation. The phantoms consisted of a mixture of
water, agarose, gadolinium (DOTAREM; Guerbet, France)
and a SPIO Ferumoxsil contrast agent solution (LUMI-
REM; Guerbet, France). The concentrations of gadolin-
ium and SPIO contrast-agent were varied to alter T1 and
T2* while the agarose concentration was kept constant.
Each phantom was scanned separately and was sub-
merged in a water-filled container before imaging to
reduce potential susceptibility artifacts.

Phantom Imaging

Phantom imaging was performed using a six-channel
SENSE head-coil. Accuracy and precision of ADAPTS
were evaluated in two clinically used, single breath-

hold, multiecho gradient-recalled echo (mGRE) sequen-
ces for heart and liver imaging.

Accuracy of the clinical T2* sequences combined with
ADAPTS was evaluated by comparison with a single-
echo gradient-recalled echo (sGRE) reference sequence
with (TR>6 T1) to allow full longitudinal recovery
between excitation pulses. T1 was measured in all phan-
toms with a Modified Look-Locker Inversion-Recovery
(MOLLI) sequence using a 5(3s)3 scheme.

Precision was evaluated by calculating CIs in repeated
measurements (n¼ 120 repetitions), in three phantoms for
each sequence, and with target T2* selected to represent
typical values seen in clinical imaging: (4 ms, 10 ms, 20
ms) and (2 ms, 8 ms, 15 ms) for the heart and liver
sequences. All repetitions for a single phantom were per-
formed in the same session, in direct sequence with a
minimum pause of 7 s between repetitions. In addition,
the repeated measurements were used to validate the pro-
posed ADAPTS uncertainty estimate by direct comparison
with the CIs obtained from the 120 repetitions, and the
effect of varying the ADAPTS parameters P1 and P2 was
evaluated in all combinations of a set of parameter values,
specified in Figure 4. In total, 104 parameter configura-
tions were evaluated and final values of parameters were
chosen to maximize precision and minimize bias between
ADAPTS and an inline MLE method. The sGRE method
was not provided as reference in the parameter optimiza-
tion to be able to use it for independent validation of
accuracy for the chosen parameter set.

The sGRE reference sequence used a flip angle of 50�

and typical TEs¼ (1.34 ms, 2 ms, 3 ms, 5 ms, 7.5 ms, 10
ms, 12.5 ms, 15 ms, 20 ms, 30 ms, 40 ms, 50 ms, 75 ms,
100 ms, 150 ms, 200 ms, 300 ms). The mGRE sequence
for liver imaging used a flip angle of 20�, a repetition
time of 38 ms, and TE¼ (1.3, 3.4, 5.5, 7.6, 9.7, 11.8, 13.9,
16, 18, 20.1 ms) and the mGRE sequence for cardiac
imaging used a black blood DIR preparation scheme, a
parallel imaging factor of 2 (SENSE), a flip angle of 20�, a
repetition time of 26 ms and TEs¼ (2.5, 5, 7.5, 10, 12.5,
15, 17.5, 20, 22.5, and 25.0 ms). The MOLLI sequence
used a repetition time TR/TE of 2.4/1.11 ms, and a flip
angle of 35�. The shim volume was placed equivalently
for all sequences in all phantoms and a simulated electro-
cardiogram was generated with a constant heart rate of 60
bpm. Further sequence details are found in Table 1.

Phantom Data Analysis

T1 in each phantom was measured from the provided
inline T1 maps of MOLLI within a 3.1 cm2 ROI. T2*
from the sGRE sequence was determined from the
acquired magnitude images, by a two-parameter monoex-
ponential fit of the pixel-mean using a near-identical
ROI compared to the one used for T1 measurements
(ROI position was approximated due to subtle differen-
ces in resolution). The Nelder Mead Simplex algorithm
(21) was used for nonlinear optimization and the initial
starting values were obtained from the WLSL method
(10). T2* from the two mGRE sequences were deter-
mined from the same 3.1 cm2 ROI using inline MLE
maps (18,23) and ADAPTS. The number of pixels within
the ROIs for T2* estimation in phantoms was similar to
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the typical number of pixels in ROIs for heart and liver
in the patient study.

Patient Study

Twenty-three patients (15 male; median age, 18 years;
range, 1–69 years) with known or suspected iron load
disease were included in this study. Written consent
was given by the patients or, in case of minors, their
guardians. MR images for determination of T2* values
were collected as part of routine clinical iron load
assessment.

Patient Imaging

For patient imaging, clinical mGRE sequences were used
with a 5- or 32-channel cardiac coil in two centers. Two
similar sequences were used, one optimized for cardiac
and one for liver imaging (Table 1). The two sequences
differed in initial TE (2.5 ms versus 1.2 ms), and TE incre-
ment (2.5 ms versus 1.5 ms). Both sequences used the gen-
erally available SPIR fat suppression and minor parameter
changes were allowed to adapt for patient heart rate and
field of view (FOV). Fat suppression was applied to avoid
impact of fat on T2* quantification, especially in the liver,
since previous work has indicated improved precision
using fat suppression in mGRE imaging (24).

To assess cardiac iron a mid-ventricular slice was
acquired using the clinical cardiac sequence. A black-
blood double-inversion recovery (DIR) prepulse was

used to decrease measurement error induced by blood
contamination, and to enhance myocardial borders (25).
Images were acquired within a single breath-hold using
parallel imaging factor 2 (SENSE) to improve image reso-
lution. Acquisition was carried out at end-diastole
within a time window of approximately 110 ms per
heartbeat. To assess liver iron, a midhepatic transversal
slice was acquired using the clinical liver sequence.

Online reconstruction of T2* maps from an inline
MLE method (18,23) was automatically performed for
comparison with inter- and intraobserver variability of
ADAPTS. Furthermore, T2* determined from ADAPTS
and MLE in patients were directly compared as a proxy
to the reference standard sGRE sequence, based on the
results from the phantom validation.

Patient Data Analysis

Data were anonymized and randomized for blinded anal-
ysis. The ROIs were manually drawn at two occasions,
by two observers (14 years and no previous MR experi-
ence, respectively) for analysis of intra- and interobserver
variability, also accounting for user experience.

The ROIs were drawn in the acquired images for evalu-
ation of T2* in full thickness myocardial septum and in a
homogenous area of the liver parenchyma, anteriorly if
not prevented by vessels or susceptibility artifacts. These
exact ROIs were copied to the inline-constructed MLE
T2* map to avoid measurement differences related to ROI
delineation. The MLE image was reconstructed from the

FIG. 2. Accuracy and precision in numerical simulations. Solid lines indicate the M2NCM method and dashed lines show ADAPTS.
Number of simulated coils are color-coded. The upper panels show Accuracy in terms of mean differences between true T2* values,
shown on the x-axes. The lower panels show CIs from all simulation experiments (2000 repetitions), for each simulated T2* value. Within

the clinically relevant range, the proposed method results in high accuracy and precision. The gradual decrease in precision with
increasing T2* is most likely attributed to lack of available data-points above 25 ms and 20 ms for cardiac and liver TEs, respectively,

and is also seen in the near-optimal noise-corrected method. Simulated ROI size was 40 pixels.
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very same acquisition as the ADAPTS analysis. To assure
adequate ROI placement for both ADAPTS and MLE the
curve fit using ADAPTS was visually inspected and the
ROI redrawn in case of obvious incorrect placement. Soft-
ware advice based on CoV for re-evaluation of delineation
was also considered. Motion correction was not per-
formed in the current study, as motion between images
acquired within the same breath-hold was not detected.

Statistics

Statistical analyses were performed in MATLAB
(v8.1.0.604, Mathworks). By default, statistical measures
for the patient study were obtained from the experienced
observer. Bias and variability are presented as mean-
6 1.96 SD and median (range) was used where appropri-
ate. Bland-Altman analysis (26) was used to compare
methods and to analyze intraobserver and inter-observer
variability in the patient study. Accuracy was defined as
the obtained bias compared with a reference standard
and the 95% CI was used to measure precision. In this
study, CI is reported as the size of the 95% CI. A P-val-
ue< 0.001 was used to define statistical significance.

RESULTS

Numerical Simulations

Results from the simulation study are shown in
Figures 2–4. Accuracy and precision for ADAPTS and
the two-parameter M2NCM method is found in Figure 2.
The mean differences between ADAPTS and true T2* for
TEs corresponding to the cardiac and liver clinical
sequences ranged from 0 to 0.73 ms and 0 to 0.40 ms. In
both cases, the largest mean difference was found in the
32-coil simulation. Precision in terms of the 95% CI
ranged from 0.08–4.30 ms for the cardiac TEs and 0.06–
4.74 ms for the liver TEs. Mean differences for the
two-parameter M2NCM method ranged from 0 to 0.04 ms
for the cardiac and 0 to 0.10 ms for the liver TEs. For
M2NCM, the maximum mean difference was found for
the single-coil simulation. CIs were 0.05–1.97 ms and
0.02–2.27 ms for the cardiac and liver sequences. An
increase in bias was observed for the ADAPTS method
when the number of simulated coils increased. Precision
was improved when the number of simulated coils were
increased. Supporting Figure S1, which is available
online, shows bias and CIs of the optimized parameters

FIG. 3. Box-whiskers plots of the ADAPTS uncertainty estimate validation in simulations (top row) and repeated phantom measurements

(bottom row). Simulations: 2.5% (bottom whiskers) and 97.5% (top whiskers) confidence limits from 2000 ADAPTS CI estimates in
numerical simulations compared with the CIs obtained from the 2000 repetitions, shown as crosses directly to the right of each corre-
sponding CI estimate. Boxes indicate first and third quartiles of the CI estimates and the horizontal line splitting the boxes shows the

median. Note that the CI references (crosses outside boxes) all lie well within the confidence limits of the ADAPTS CI estimates for the
simulated T2* values. Simulated ROI size was 40 pixels. Phantom study: 2.5% (bottom whiskers) and 97.5% (top whiskers) confidence
limits from 120 ADAPTS CI estimations in repeated phantom scans, compared with the CIs calculated over all 120 repetitions (crosses

directly to the right of the corresponding CI estimates). Limited overestimation and underestimation of CIs are observed.
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P1 and P2 in simulations. P2¼ 9 was selected as optimal
parameter value. A comparison of accuracy and preci-
sion for ADAPTS and the two implemented signal mod-
els for the liver sequence TEs is shown in Figure 4. The
two-parameter truncation method resulted in a limited
but constant overestimation of T2* over the simulated
range, while bias was minimal for the noise correction
method for T2* below 20 ms. For T2* values above the
maximum TE, an increasing underestimation was
observed for the noise correction method.

The simulation results for ADAPTS uncertainty esti-
mates are shown in Figure 3. Four percent was selected
as the optimal subregion size, resulting in a mean
bias and CI of 0.02 ms and 0.30 ms for all simulated
ROI-sizes. For all simulated T2* values, and TEs, the CI

reference standard lies within the 2.5% and 97.5% confi-
dence limits of the 2000 uncertainty estimates and the
largest observed mean bias between the CI estimate and
the CI reference was 0.10 ms. Supporting Figures S2 and
S3 shows bias and CIs of the uncertainty estimate over
varying ROI- and subregion-sizes. A consistent improve-
ment in precision (CI) was observed when decreasing the
subregion size.

Phantom Study

The T2* and T1 ranges of the 12 phantoms were 2.20–
40.24 ms and 470–1012 ms according to the T2* refer-
ence standard (sGRE) and MOLLI T1. T1 values are in
the range of myocardial tissue. T2* of the six phantoms

FIG. 4. Parameter optimization from phantoms (left column and bottom table) and simulated optimal parameters of the ADAPTS method
for the liver sequence TEs (right column). Parameter optimization: Top row shows how varying ADAPTS two parameters impacts bias,
defined here as the mean difference between ADAPTS and the inline MLE method. Bottom row shows precision, measured as the CI

size of 120 phantom measurements over different parameter values, together with the list of evaluated parameters. In both top and bot-
tom rows, solid lines indicate measurements performed for the cardiac sequence and phantoms and the dashed lines indicate measure-

ments from the liver sequence and phantoms. Circles show the selected parameter set used in the remaining parts of this study. The
results indicate a robustness to variations in parameters above a threshold of approximately P1>3. Right column compares accuracy
and precision of the optimized ADAPTS method with the two included signal models (truncation and noise-correction) individually in

simulations. The solid lines indicates the two-parameter truncation method, the dashed line shows the three-parameter noise correction
method and the dotted line shows ADAPTS using the optimized parameter values. The optimized ADAPTS method balances low bias

with maintained precision over the simulated T2* range. The shown simulations use TEs from the liver sequence, a SNR of 15, a ROI-
size of 40 and uses RSS reconstruction with six receive-coils. The list of evaluated parameter values (bottom table) indicates the
selected values of P1 and P2 with an underlined bold font.
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used to evaluate precision was 2.3, 3.9, 7.2, 7.7, 13.2,
and 18.3 ms, obtained from the inline MLE method. The
results from the phantom validation of ADAPTS uncer-
tainty estimates for both clinical sequences are shown in
Figure 3 (bottom row). The maximum observed differ-
ence between ADAPTS uncertainty estimate and the ref-
erence CI (from 120 repetitions) was limited to 0.58 ms
for the cardiac sequence, and 0.27 ms for the liver
sequence.

The results from the parameter optimization of

ADAPTS are shown in Figure 4. The selected parameter

set was number 63 (P1¼ 4.5 and P2¼ 9), where precision

in terms of the range of obtained CIs was 0.49–1.36 ms

and 0.29–1.60 ms for the six phantoms used for preci-

sion evaluation for the cardiac and liver sequences,

respectively. The ADAPTS and MLE results from the

phantom validation of accuracy for both the cardiac and

liver sequences are shown in Figures 5 and 6. For the

cardiac sequence, bias and variability (expressed as lim-

its of agreement) for ADAPTS was 0.26 6 4.23 ms, while

MLE resulted in a bias and variability of 0.35 6 4.63 ms.

The liver sequence resulted in ADAPTS having bias and

variability of �0.23 6 1.69 ms, while bias and variability

for the MLE was �0.22 6 1.55 ms. The number of pixels

within the drawn ROIs ranged from 194 to 200 pixels.

Patient Study

All images and reconstructed T2* maps were of adequate
quality for determination of T2* in both heart and liver.
In one patient, however, the cardiac image quality was
visually suboptimal due to breathing artifacts, albeit
adequate for analysis, and was, therefore, included in
further analysis. In this patient we also found the largest
intraobserver difference of 3.96 ms (11%). The range of
cardiac and liver T2* was 9.6–51.2 ms and 0.6–25.0 ms,
respectively, using the ADAPTS method. The range of
obtained uncertainty estimates for the ADAPTS method,
expressed as coefficient of variation (the estimated stand-
ard deviation divided by the ROI T2* value), was 0.05–
0.46 for cardiac and 0.01–0.27 for liver measurements.
The number of pixels within the drawn ROI:s ranged
from 53–561 pixels for liver images and 44–358 pixels
for heart images.

T2* by the ADAPTS and MLE Methods

The ADAPTS and the MLE methods showed good agree-
ment determining T2*, resulting in a bias and variability
with limits of agreement of �1.28 6 2.19 ms for the car-
diac sequence; �0.13 6 0.38 ms for the liver sequence
and �0.71 6 1.94 ms for the cardiac and liver sequences

FIG. 5. Scatter plots (left) and

difference plots (right) of T2* by
ADAPTS (top) and MLE (bottom)

using the clinical cardiac
sequence, compared with the
T2* reference standard (sGRE) in

phantoms. Scatter plots: solid
lines indicate linear regression
and dashed lines represent iden-

tity lines. Difference plots: Solid
lines indicate bias and dashed

lines represent bias 6 1.96 SD.
T2* values by ADAPTS and MLE
using the clinical cardiac mGRE

sequence agree well with the ref-
erence standard sGRE over a

wide range of T2* values.
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combined (Fig. 7). T2* measured by the ADAPTS
method ranged from 0.60–51.2 ms, while the MLE
method ranged from 0.7�51.5 ms. A subtle trend toward
higher T2* values was found for the MLE method com-
pared with the ADAPTS method (Fig. 7) resulting in a
statistically significant linear-regression slope (P< 0.0001
for the null-hypothesis). However, poor goodness of fit
was found (r2¼0.43).

Intraobserver Variability

Low intraobserver variability was found for T2* determi-
nation by the experienced observer using both ADAPTS
(0.12 6 1.92 ms for the cardiac sequence, �0.06 6 0.63
ms for the liver sequence and 0.03 6 1.44 ms for both
sequences combined; Figure 8, top left panel) and the
MLE (0.20 6 2.39 ms for the cardiac sequence,
�0.12 6 0.65 ms for the liver sequence and 0.04 6 1.74
ms for both sequences combined; Figure 8, top right
panel). Intraobserver variability was low also for the
inexperienced observer using ADAPTS (0.01 6 2.63 ms
for the cardiac sequence, 0.31 6 1.94 ms for the liver
sequence and 0.16 6 2.33 ms for both sequences
combined; Figure 8, bottom left panel) and MLE
(0.06 6 2.66 ms for the cardiac sequence, 0.30 6 1.85 ms
for the liver sequence and 0.18 6 2.25 ms for both sequen-
ces combined; Figure 8, bottom right panel) methods.

Interobserver Variability

Interobserver variability was low for both methods. Good
agreement was found for both ADAPTS (limits of agree-
ment of 1.0 6 3.77 ms for the cardiac sequence,
�0.52 6 2.75 ms for the liver sequence and 0.24 6 3.62
ms for both sequences combined; Figure 9, left panel)
and MLE (limits of agreement of 1.17 6 4.16 ms for the
cardiac sequence, �0.53 6 2.90 ms for the liver sequence
and 0.32 6 3.88 ms for both sequences combined; Figure
9, right panel).

DISCUSSION

This study shows that the proposed automatic ADAPTS
method provides accurate and precise determination of
T2* in heart and liver for iron-load quantification in a
wide and clinically relevant range for use in an offline
setting. The ADAPTS method provides uncertainty
estimates of the calculated T2* value, which is of
importance to assess the reported T2* validity, especially
in follow-up studies and for titrating treatment. The pro-
cess of dividing pixels within the ROI into subregions to
estimate uncertainty is not unique for ADAPTS and can
be applied to most other T2* algorithms. However, vali-
dation both numerically and experimentally of such
uncertainty measurements are crucial for clinical utility.

FIG. 6. Scatter plots (left) and
difference plots (right) of T2* by

ADAPTS (top) and MLE (bottom)
using the clinical liver sequence

compared with the T2* reference
standard sGRE in phantoms.
Scatter plots: solid lines indicate

linear regression and dashed
lines represent identity lines. Dif-

ference plots: Solid lines indicate
bias and dashed lines represent
bias 6 1.96 SD. T2* values by

ADAPTS and MLE using the clin-
ical liver mGRE sequence agree
well with the reference standard

sGRE over a wide range of T2*
values.
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T2* determination by MRI is commonly used to esti-
mate iron load in patients and has been shown to pro-
vide good interscanner and interobserver reproducibility
(4,5). The requirement for manual interaction in some of
the current analysis methods adds a subjective factor
which, although often clinically insignificant in myocar-
dial T2* measurements (27), may present challenges in
liver T2* determination (9,19,28). Iron overload is usu-
ally first found in the liver (29). Therefore, accurate early

determination of liver iron load and treatment thereof
may prevent accumulation of iron throughout the body
and thus avert organ failure (30–32).

However, extremely low T2* values related to severe
iron load of the liver may give few usable data points
from the acquired images, due to current limitations in
hardware to further reduce TE. This may lead to incor-
rect iron-load assessment and possibly erroneous follow-
up of chelation therapy.

The automatic MLE method has been compared with
other available methods for iron-load determination,
showing good agreement but also superiority for lower
T2* values found in severe liver iron overload (19). By
removing the need for manual curve-fitting interaction,
the MLE method decreases user dependency. Using the
MLE method thereby allowed us to test ADAPTS’s valid-
ity in patients with reduced user bias. We found that
ADAPTS reports accurate T2* values with inter- and
intraobserver variability comparable to the MLE method,
and thereby can be reliably used, strengthened by phan-
tom validation with the sGRE reference standard. In
addition, ADAPTS was shown to have similar precision
as a near-optimal, noise correction method in numerical
simulations. Although ADAPTS resulted in increased
bias, the two-parameter M2NCM used the true noise
standard deviation generally unavailable to offline esti-
mation methods. Compared with a single simulated
receive-coil, bias was increased for 6 and 32 coils in

FIG. 8. Bland-Altman analyses of

intraobserver variability for the
experienced user for ADAPTS
(top left) and MLE (top right).

Corresponding analyses for the
inexperienced user (bottom row).

Good agreement was found
between all measurements.

FIG. 7. Bland-Altman analysis of ADAPTS and MLE in patients
measured by the experienced user. Good agreement was found.
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simulations. The observed increase in bias agrees with
the expected increase in noise bias for the noncentral chi
distribution present in the simulated RSS reconstruction
(12). This indicates that a slight sensitivity to noise-bias
remains for ADAPTS. However, the observed bias were
limited and converged when the number of coils
increased from 6 to 32. An increase in precision for both
T2* methods was observed when the number of coils
increased. The gain in SNR associated with increasing
the number of coils in RSS reconstruction may explain
this (33).

The T2* uncertainty estimate gives the user possibility
to evaluate the precision of measurement and helps
determine whether changes in iron load levels have
actually occurred between scans. This is especially
important in high liver iron load which has a very steep
T2* curve and where individual data points may have a
large impact on reported T2* values.

Over- and underestimation of the reference T2* CI
was observed in phantoms. This behavior was not seen
in the numerical simulations where the proposed uncer-
tainty estimate followed the reference CIs with low bias.
The images acquired in the phantom experiments may
include some degree of noise correlations between
receive-channels or adjacent pixels which could partly
explain the discrepancy. Furthermore, the uncertainty
estimate is sensitive to spatial variations in SNR and
T2*. This, however, may aid the user in ROI adjust-
ments by reporting elevated uncertainty in ROIs contain-
ing unwanted, heterogeneous T2* regions and noise
levels.

Noteworthy, with decrease in iron load a statistically
significant trend toward higher T2* values was found in
patients for the MLE method compared with the
ADAPTS. It remains to study why this happens, and
more importantly the clinical significance of these differ-
ences. A retrospective study in a large population with
biopsy samples available may help shed light on clinical
significance and impact of cutoff values for severity of
iron load.

Subtle differences were found between ADAPTS and
MLE for intra- and interobserver variability. The sam-

ple size was, however, too small for deductions of
increased performance in regards to user-dependency.
One major difference between MLE and ADAPTS is
the pixelwise fit performed by the MLE. This may, in
part, explain some of the observed discrepancies. Pre-
vious studies have shown decreased performance of
other pixelwise methods (27,34,35), however, investi-
gating the extent to which these findings are valid for
the MLE method is beyond the scope of this study.
Bias between observers and intraobserver variability for
the inexperienced observer using the ADAPTS method
were lower than previously published data (36). This
implies that ADAPTS may be straight-forward to
start using in centers with low experience of iron
load analyses, which may increase availability of iron
load determination using MR imaging, in turn leading
to enhanced patient care and further decrease of mor-
tality (37).

Limitations

A single-slice approach was applied for patient imaging
as this is clinical routine at one of the including centers.
The algorithm is, however, not restricted to single-slice
acquisition and can be extended to multislice analysis
where needed.

Simulations of spatially varying noise were not per-
formed. Future simulation studies using advanced MRI
pulse-sequence simulations (38) may provide improve-
ments in this regard.

CONCLUSIONS

ADAPTS is a validated automatic algorithm for T2*
determination providing accurate iron load measure-
ments over a wide range of clinically relevant T2* values
for the heart and liver. Uncertainty estimates of the
reported T2* allows more reliable determination of
changes in iron load at follow-up. To allow practical
utility of the method the software is freely available for
research purposes. Phantom data will be made available
upon request for algorithm benchmarking.

FIG. 9. Bland-Altman analysis of

interobserver variability using the
ADAPTS method (left panel) and

MLE (right panel). Good agree-
ment was found between the
experienced and inexperienced

observer.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Figure S1. Parameter optimization from simulations. Two near-optimal val-
ues of P1 was simulated over the entire range of P2 values. Left column
shows Confidence intervals (Top) and mean bias (bottom) for the simulated
parameter values for the cardiac sequence TEs and the right column shows
the corresponding plots for the liver sequence TEs. In all graphs, the solid
lines and dashed lines represent simulations using one and six coils,
respectively. The line marked with triangles indicates 32 simulated coils.
The dotted vertical line shows the selected parameter set, corresponding
to P1 5 4.5 and P2 5 9. A P1 value was selected by mainly considering sta-
bility, as shown in Figure 4.

Figure S2. Optimization of the uncertainty estimate in simulations with rela-
tive subregion sizes of 4–10%. Top row shows confidence intervals of the
uncertainty estimates in simulations and the impact of varying simulated
ROI-size and subregion size percentages. Bottom row shows Mean bias of
CI estimates with the left and right column showing the results from the
cardiac and liver sequence TEs, respectively. Decreasing subregion percen-
tages and increasing the ROI size improve precision of CI estimates. For
the liver sequence TEs, bias is consistently decreased when the subregion
size is reduced. The observed behavior is also seen in Supporting Figure
S3.

Figure S3. Optimization of the uncertainty estimate in simulations with rela-
tive subregions sizes of 12–25%. Top row shows confidence intervals of
the uncertainty estimates in simulations and the impact of varying simu-
lated ROI-size and subregion size percentages. Bottom row shows Mean
bias of CI estimates with the left and right column showing the results from
the cardiac and liver sequence TEs, respectively. Decreasing subregion
percentages and increasing the ROI size improve accuracy and precision
of CI estimates. The order of accuracy and precision among simulated sub-
region sizes is preserved over the evaluated ROI-size interval. This may
suggest that the relative percentages used to define the subregion size is
robust to changes in ROI size. The observed behavior is also seen in Sup-
porting Figure S2.
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Validation of T1 and T2 algorithms for
quantitative MRI: performance by a
vendor-independent software
Sebastian Bidhult1,2, George Kantasis1,3, Anthony H. Aletras1,3, Håkan Arheden1, Einar Heiberg1,2

and Erik Hedström1,4*

Abstract

Background: Determination of the relaxation time constants T1 and T2 with quantitative magnetic resonance
imaging is increasingly used for both research and clinical practice. Recently, groups have been formed within
the Society of Cardiovascular Magnetic Resonance to address issues with relaxometry. However, so far they have
avoided specific recommendations on methodology due to lack of consensus and current evolving research.
Standardised widely available software may simplify this process.
The purpose of the current study was to develop and validate vendor-independent T1 and T2 mapping modules
and implement those in the versatile and widespread software Segment, freely available for research and FDA
approved for clinical applications.

Results: The T1 and T2 mapping modules were developed and validated in phantoms at 1.5 T and 3 T with reference
standard values calculated from reference pulse sequences using the Nelder-Mead Simplex optimisation method. The
proposed modules support current commonly available MRI pulse sequences and both 2- and 3-parameter curve
fitting. Images acquired in patients using three major vendors showed vendor-independence. Bias and variability
showed high agreement with T1 and T2 reference standards for T1 (range 214–1752 ms) and T2 (range 45–338 ms),
respectively.

Conclusions: The developed and validated T1 and T2 mapping and quantification modules generated relaxation maps
from current commonly used MRI sequences and multiple signal models. Patient applications showed usability for
three major vendors.

Keywords: T1, T2, Mapping, Quantitative magnetic resonance imaging

Background
Quantitative magnetic resonance imaging (MRI) is increas-
ingly used for several different applications in both research
and clinical practice. For cardiac MRI, T1 quantification
enables measurement of myocardial extracellular volume
[1–3], whereas T2 mapping detects oedema in acute myo-
cardial infarction [4]. The Society of Cardiovascular Mag-
netic Resonance (SCMR) has also recently formed groups
and provides general recommendations on use of mapping

for research and clinical applications [5, 6]. However, spe-
cific recommendations have been avoided so far due to lack
of consensus and current evolving research [6]. The Society
is thus awaiting this field to develop so that guidelines can
be properly formulated. Standardised software may simplify
and speed up this process.
Further, cancer imaging has benefited from T1 to T2

mapping for determining early tumour progression in
brain [7], and provides improved discrimination between
benign and malign findings in suspected prostate cancer
[8]. Also, oxygen saturation in blood has been accurately
measured noninvasively by T2 mapping in children with
complex congenital heart disease, yielding an opportunity
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to potentially avoid cardiac catheterisation for follow-up
studies in children [9].
Different numerical algorithms can be used to com-

pute T1 and T2 relaxation maps and therefore inline
map generation may vary between MRI vendors. Also,
most inline systems do not present the curve fit, which,
if visualised, can be used as a marker of accuracy. More-
over, the algorithms used are not openly documented. A
previous open-source software overcame these limita-
tions, but is only to be used for research [10]. Last but
not least, current available software is generally limited
in signal models and fitting options.
The purpose of this study was to develop, validate and

openly document T1 and T2 relaxation map modules

with multiple signal models, test those in images ac-
quired using three major vendors, and implement the
validated modules in freely available software for
research [11].

Implementation
The T1 and T2 mapping modules were developed and
validated in phantoms with reference standard T1 and
T2 values calculated from reference spin echo (SE) pulse
sequences using the Nelder-Mead Simplex optimisation
method available in Matlab (Math Works, Natick, MA;
2014a). The proposed modules support current com-
monly available MRI pulse sequences and both 2- and 3-
parameter curve fitting (Table 1).

Table 1 Supported sequences and signal fitting models

Supported signal models

Supported sequences 3-parameter fit model 2-parameter fit model

T1 spin-echo IR (magnitude images) S(t) = |A (1 − B exp(−t/T1))| S(t) = |A (1 − 2 exp(−t/T1))|

T1 PSIR S(t) = A (1 − B exp(−t/T1)) S(t) = A (1 − 2 exp(−t/T1))

T1 saturation recovery balanced SSFP S(t) = A (1 − B exp(−t/T1)) S(t) = A (1 − exp(−t/T1))

T1 MOLLI/T1 Look-Locker correction (magnitude images) S(t) = |A (1 − B exp(−t/T1*))|; T1 = T1* (B − 1) n/a

T1 MOLLI/T1 Look-Locker correction (PSIR images) S(t) = A (1 − B exp(−t/T1*)); T1 = T1* (B − 1) n/a

T2 spin echo (multi-echo and single-echo) S(t) = A exp(−t/T2) + B; B > 0 S(t) = A exp(−t/T2)

T2-prepared balanced SSFP S(t) = A exp(−t/T2) + B; B > 0 S(t) = A exp(−t/T2)

IR inversion recovery, PSIR phase sensitive inversion recovery, MOLLI modified Look-Locker inversion recovery, SSFP steady-state free precession

Fig. 1 The image shows the graphical user interface of the T1 mapping module (the T2 mapping module shares the design). An example of a
cardiac pre-contrast MOLLI T1 map at 1.5 T in a healthy volunteer is shown. Both pixel-wise mapping, for the whole image and ROI-based, and
ROI-based global mean mapping are available. The residuals of the curve fit for both T1 and T2 mapping can be visualised, indicating areas within
the image that have a higher deviation from the curve and thus less accurate T1 and T2 values
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The T1 mapping module graphical user interface is
shown in Fig. 1 (the T2 mapping module shares the
design). Both ROI-based global mean mapping and pixel-
wise mapping for the whole image and ROI-based are
available. Further, the residuals of the curve fit for both T1
and T2 mapping can be visualised, indicating areas within
the image that have a higher deviation from the curve and
thus less accurate T1 and T2 values.
The validated modules were finally implemented in

the software Segment, freely available for research
(http://www.medviso.com) [11].
Since Segment already includes a validated module for

T2* mapping and quantification [12], this topic was not
covered in the current study.

Phantom setup and imaging
A Eurospin (Diagnostic Sonar, Livingston, UK) phantom
encompassing 12 gadolinium/agarose gel phantoms was
used for validation of the proposed modules. The phan-
toms were scanned at both 1.5 T and 3 T (Siemens Aera
and Prisma, Erlangen, Germany). Single-echo spin-echo
sequences were used for acquiring the reference T1 and
T2 values. Pulse sequence parameters are presented in

Table 2. The magnetization was allowed to fully recover
between spin radiofrequency excitations.
Commonly available T1 and T2 mapping sequences

were used to acquire images of the phantom, and the
proposed modules were applied to generate T1 and T2
relaxation constant maps. The sequences were based on
a free-breathing single-shot balanced steady-state free
precession (bSSFP) sequence.

T1 mapping
Pixelwise T1 estimates were initialized using a
lookup-table search performed in two steps in a T1
interval of 0–4000 ms. First, a step of 50 ms between
lookup-table entries was applied for high perform-
ance. Thereafter, to find the optimal value, a second
search was performed using a 5 ms difference be-
tween lookup-table entries within 100 ms of the entry
found in the first step. In these two steps, depending
on the pulse sequence, ideal inversion/saturation effi-
ciency was assumed and each pixel was normalized
with the maximum absolute value within its time-
series. The T1 lookup-table entry resulting in the
minimum sum of absolute error was chosen as the
initial T1 value.

Table 2 Typical MRI sequence parameters

TE (ms) TR (ms)/delay
between
contrast
preparations
pulses

FA
(°)

FOV
(mm)

Matrix Preparation pulse delays (ms) iPAT/
SENSE
factor

Receiver
BW (kHz)

ACQ time
(hh:mm:ss)

T1 spin-echo
IR (magnitude images)

5.8 10,000/10,000 90 241 ×
241

128 ×
128

[21, 60, 100, 200, 300, 500, 660, 900,
1050, 1300, 1600, 2000, 2250, 2500,
3000, 3500, 4300]

off 64 06:45:20

T1 PSIR 1.11 2.4/40,000 35 360 ×
270

192 ×
144

[150, 300, 400, 500, 700, 900, 1100,
1300, 1800, 2000, 2500, 3000, 3700,
4300, 5000, 6300] + 1 reference
image without IR-preparation

2 208.32 00:11:20

T1 saturation recovery
balanced SSFP

1.11 2.4/40,000 35 360 ×
270

192 ×
144

[150, 300, 400, 500, 700, 900, 1100,
1300, 1800, 2000, 2500, 3000, 3700,
4300, 5000, 5600, 6300, 8000] + 1
reference image without SR
preparation

2 208.32 00:12:40

T1 MOLLI/T1 Look-
Locker correction
(magnitude and PSIR
images)

1.1 2.4/7920 35 360 ×
270

192 ×
144

[130, 210, 1130, 1210, 2130, 2210,
3130, 4130]

2 208.32 00:00:11

T2 spin echo
(single-echo)

[6, 12, 20, 30, 40,
50, 70, 90, 120,
140, 180, 300,
400, 600, 1000]

10,000/10,000 90 241 ×
241

128 ×
128

n/a off 64 05:20:00

T2 spin echo
(multi-echo)

[9, 18, 27, 36, 45,
54, 63, 72, 81, 90,
99, 108, 117, 126,
135, 144]

1500/n/a 90 160 ×
160

256 ×
256

n/a off 62.5 00:06:24

T2-prepared balanced
SSFP

1.11 2.4/20,000 35 360 ×
270

192 ×
144

T2p range = 25 − 200; ΔT2p = 5; 2 208.32 00:12:20

IR inversion recovery, PSIR phase sensitive inversion recovery, MOLLI modified Look-Locker inversion recovery, SSFP steady-state free precession
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Following T1 initialization, pixel T1 values were refined
using a C implementation of the Nelder-Mead Simplex
nonlinear optimisation algorithm [13]. Convergence was
assumed when the maximum T1 absolute difference be-
tween two simplexes was less than 0.10 ms. The C imple-
mentation was performed to reduce computation times
and was thus not used for calculating the ROI-based glo-
bal mean where instead the pre-implemented Matlab
fminsearch method [14] was sufficient.
For T1 reference values, an inversion recovery (IR)

single-echo spin echo sequence was used with a short
echo time and long repetition time (Table 2). Two varia-
tions of the free-breathing bSSFP sequence were used
for T1 mapping; one based on SR and one based on IR
preparation pulses respectively applied before imaging
readout. At 1.5 T, T1 was also estimated using a breath-
hold MOLLI sequence with pre- and post-contrast car-
diac configurations (5(3b)3 and 4(1b)3(1b)2) for analysis
of phantoms with T1 > 600 ms and T1 < 600 ms, respect-
ively. Since the MOLLI acquisition alters the recovery
curve in itself, inducing T1* measurements, the Look-
Locker correction from T1* to T1 was performed
(Table 1), as previously proposed [15]. Magnitude images
were used to estimate T1 from spin echo, SR-bSSFP and
MOLLI sequences. For IR-bSSFP, the phase and magni-
tude images were extracted in order to reconstruct
phase-sensitive inversion recovery (PSIR) images, as pre-
viously proposed [16].

T2 mapping
The initial T2 estimate was initialized by a weighted 2-
parameter linear regression of the signal logarithm [17].
The estimation was repeated for stepwise truncation of
the maximum echo time until three data points
remained. The T2 estimate resulting in the minimum
sum of absolute error over all data points was chosen as
the initial T2 estimate.

Following the T2 initialisation, all pixels with T2 values
outside the interval 0 < T2 < 400 ms were excluded from
further analysis and the final T2 estimate was refined
using the above-mentioned nonlinear optimisation algo-
rithm. Convergence was assumed when the maximum
T2 absolute difference between two simplexes was less
than 0.10 ms. Pixels that were not refined with nonlinear
optimization were set to 0 in the resulting T2 map.
For T2 reference values, a single-echo spin echo

sequence was used. The free-breathing bSSFP se-
quence used T2 preparation pulses for T2 mapping.
An SR-prepared image with a short saturation time
was used for the T2 calculation in order to improve
the 3-parameter curve fit [18]. Magnitude images
were used to estimate T2 from both spin echo and
bSSFP sequences.

Residual calculation for T1 and T2 mapping
Curve-fit residuals for T1 and T2 mapping were calcu-
lated as the average absolute difference between the fit-
ted curve and corresponding pixel values. Residuals were
normalised relative to the maximum absolute pixel value
within its time-series and reported as a percentage.

Application on human MR images
The developed and validated T1 and T2 mapping mod-
ules were applied on images acquired from three major
vendors. Standard available sequences were used on Sie-
mens (1.5 T Aera and 3 T Prisma, Erlangen, Germany)
with 60-channel phased array coils and a 20-channel
head coil; Philips (1.5 T Achieva, Best, the Netherlands)
with 32-channel phased array coils; and on GE (3 T Dis-
covery 750w, General Electrics, USA) with a GEM flex
medium array coil. The local ethics committee approved
the research protocol and all subjects provided written
consent.

Table 3 Computational times for pixel-wise mapping in the complete image and in a selected ROI, respectively

Pixel-wise (complete image) Pixel-wise (ROI only)

T1 spin-echo IR (magnitude images) 2.5 s (3 parameters, 17 images, 128 × 128 images, 13
435 refined pixels)

0.03 s (3 parameters, 17 images, 200 pixels,
152 refined pixels)

T1 PSIR 11.7 s (3 parameters, 17 images, 192 × 144 matrix,
26 597 refined pixels)

0.15 s (3 parameters, 17 images, 200 pixels,
200 refined pixels)

T1 saturation recovery balanced SSFP 11.2 s (3 parameters, 15 images, 192 × 144 matrix,
26 594 refined pixels)

0.09 s (3 parameters, 15 images, 202 pixels,
202 refined pixels)

T1 MOLLI/T1 Look-Locker correction (magnitude
and PSIR images)

6.4 s (3 parameters, 9 images, 192 × 144 matrix, 25
128 refined pixels)

0.05 s (3 parameters, 9 images, 202 pixels,
198 refined pixels)

T2 spin echo (single-echo and multi-echo) 1.12 s (2 parameters, 15 images, 128 × 128 matrix, 9
175 refined pixels)

0.04 s (2 parameters, 15 images, 207 pixels,
160 refined pixels)

T2-prepared balanced SSFP 11.7 s (3 parameters, 37 images, 192 × 144 matrix,
16 322 refined pixels)

0.14 s (3 parameters, 37 images, 207 pixels,
184 refined pixels)

The ROI-based global mean fitting takes less than 2 s for all sequences and is not listed. Performance was tested at a 2.4 GHz, 8 GB RAM, SSD HDD standard lap-
top running the MS Windows 7 64-bit operating system
IR inversion recovery, PSIR phase sensitive inversion recovery, MOLLI modified Look-Locker inversion recovery, SSFP steady-state free precession
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Statistics
Bias and variability were determined using the modified
Bland-Altman analysis. The bias and variability percent-
ages were computed as the difference between the pro-
posed method and the reference standard divided with
the reference standard values. Values were expressed as
mean ± SD and 95 % limits of agreement.

Results
Computational times were generally fast independent of
amount of information, i.e. for both full image and ROI-
based calculations (Table 3).
The T1 and T2 reference values ranged from 214 to

1643 ms and 46–338 ms for 1.5 T, and 229–1752 ms
and 45–316 ms for 3 T, respectively. Phantom validation

results are shown for 1.5 T and 3 T (Fig. 2) and corre-
sponding curve fit examples at 1.5 T (Fig. 3). The T1
bias and variability at 1.5 T were 0.8 ± 8 ms (0.2 ± 1.2 %)
for SR-bSSFP using the 3-parameter fit, and 24 ± 9 ms
(3.5 ± 2.3 %) using the 2-parameter fit. Corresponding
bias and variability for PSIR-bSSFP at 1.5 T were 3.2 ±
3.8 ms (0.6 ± 1.0 %) and −31 ± 26 ms (−3.5 ± 2.1 %). For
cardiac MOLLI at 1.5 T the bias and variability was −39 ±
45 ms (−3.3 ± 3.4 %). The higher variability for MOLLI
was related to low T2, with errors above 5 % originating
from phantoms with reference T2 values < 60 ms.
The T1 bias and variability at 3 T were for SR-bSSFP −

6 ± 11 ms (−0.7 ± 0.9 %) when applying a 3-parameter fit,
whereas a 2-parameter fit yielded 22 ± 13 ms (2.8 ±
1.6 %). Corresponding bias and variability for PSIR-

Fig. 2 Modified Bland-Altman analyses of the phantom validation data at 1.5 T (left column) and 3 T (right column). All curve fits were performed
using the 3-parameter fit. The dotted and dashed lines represent bias and 95 % limits of agreement. A generally high agreement was found. The
T1 outliers dependent on low T2 (<60 ms) found using the MOLLI sequence at 1.5 T are encircled in red. bSSFP = balanced steady-state free pre-
cession; MOLLI = modified Look-Locker inversion recovery; SR = saturation recovery; IR = inversion recovery
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bSSFP at 3 T were −9 ± 13 ms (−1.1 ± 1.0 %) and −36 ±
33 ms (−3.3 ± 2.1 %).
The T2 bias and variability were 2.8 ± 2.7 ms (1.9 ±

2.0 %) at 1.5 T and −0.7 ± 3.6 ms (0.2 ± 2.7 %) at 3 T
using the 3-parameter fit.

Figure 4 shows T1 and T2 maps from human applica-
tions for three major vendors.

Discussion
The developed and validated T1 and T2 mapping mod-
ules generated maps from commonly used MRI se-
quences and multiple signal models. Generally low bias
and variability were found compared with reference
standard measurements in phantoms. Patient applica-
tions showed usability for three major vendors. The
main software is freely available for research and well
documented.
The proposed algorithms showed particularly good

agreement with the reference standard for saturation re-
covery sequences. However, T1 was underestimated by
MOLLI when also phantoms with low T2 values
(<60 ms) were included. This is similar to previously
published data showing T2 sensitivity for MOLLI T1
mapping, with approximately 5 % error in T1 values for
T2 below 30 ms [19]. This underestimation may be cor-
rected for by using recently proposed lookup-table
methods [20]. Another explanation for the increased
variability using MOLLI compared to saturation recov-
ery may be the reduced number of sampling points used
for MOLLI in this study.
The slightly higher, albeit not large, variability shown

for the T2 prepared sequence may be explained by lim-
ited signal-to-noise ratio. The T2 prepared mapping may
be improved by acquiring several data points (echoes),
especially late TE images since an offset is known to
occur. Another solution is to acquire fewer echoes and
instead add a saturation recovery acquisition, as per-
formed in the current study [18]. This solution only adds
a single heartbeat to the acquisition time (approximately
1 s) and is therefore applicable in most patients. Prefera-
bly, more than 1 saturation recovery acquisition should
be added for averaging. This number may on the other
hand need to be optimised in the individual case, espe-
cially in cardiac disease where the patient may have diffi-
culties extending the duration of the breath hold.
The proposed software modules include both 2- and

3-parameter T1 and T2 fitting. In theory, a reduced
number of parameters should result in reduced random
errors (i.e. reduced variability) while however also lead-
ing to a risk of introducing a bias due to increased sensi-
tivity to measurement imperfections. In cardiac MRI, 3-
parameter T1 curve fitting is commonly applied to re-
duce bias associated with imperfect preparation-pulse ef-
ficiency and/or effects from applied readout pulses [21,
22]. The 3-parameter curve fit has also been suggested
for cardiac T2 mapping when using the T2-prepared
bSSFP sequence [18]. Unbiased 2-parameter fitting for
cardiac T1 mapping has recently been proposed [23],
which may lead to an increased need for software

Fig. 3 Example curve fits for T1 and T2 at 1.5 T in two phantoms.
The solid lines represent estimated relaxation curves. bSSFP =
balanced steady-state free precession; MOLLI = modified Look-Locker
inversion recovery; SR = saturation recovery
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supporting 2-parameter T1 mapping in the near future.
Clinical validation was not performed as part of the
current study, as it is important to first validate algo-
rithms that are to be applied in future in vivo studies. Fi-
nally, albeit data from three major vendors were tested,
other vendors may use other sequences or reporting of
data for fitting, and future studies may benefit from in-
cluding additional vendors.

Limitations
In the current modules neither rigid nor non-rigid regis-
tration has been implemented. These methods may in
some cases improve the diagnostic quality and are sub-
ject to future improvements and investigations and will
be included in future updates of the modules. Further,
some MRI vendors use private dicom headers for data
needed for T1 and T2 mapping. These headers may
change between MRI vendor software updates. Current
known private dicom headers have been implemented in
the proposed modules and future updates aim to cover
these changes.

Conclusions
The developed and validated T1 and T2 mapping mod-
ules generated relaxation maps from current commonly

used MRI sequences and multiple signal models. Patient
applications showed usability for three major vendors.
The main software is freely available for research and
well documented.
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RElaxation magnetic resonance constants
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MOLLI T1 measurements
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Abstract

Background: T1 mapping is widely used today in CMR, however, it underestimates true T1 values and its measurement
error is influenced by several acquisition parameters. The purpose of this study was the extraction of accurate T1 data
through the utilization of comprehensive, parallel Simulations for QUAntifying RElaxation Magnetic Resonance constants
(SQUAREMR) of the MOLLI pulse sequence on a large population of spins with physiologically relevant tissue relaxation
constants.

Methods: A CMR protocol consisting of different MOLLI schemes was performed on phantoms and healthy human
volunteers. For every MOLLI experiment, the identical pulse sequence was simulated for a large range of physiological
combinations of relaxation constants, resulting in a database of all possible outcomes. The unknown relaxation
constants were then determined by finding the simulated signals in the database that produced the least squared
difference to the measured signal intensities.

Results: SQUAREMR demonstrated improvement of accuracy in phantom studies and consistent mean T1 values and
consistent variance across the different MOLLI schemes in humans. This was true even for tissues with long T1s and
MOLLI schemes with no pause between modified-Look-Locker experiments.

Conclusions: SQUAREMR enables quantification of T1 data obtained by existing clinical pulse sequences. SQUAREMR
allows for correction of quantitative CMR data that have already been acquired whereas it is expected that SQUAREMR
may improve data consistency and advance quantitative MR across imaging centers, vendors and experimental
configurations. While this study is focused on a MOLLI-based T1-mapping technique, it could however be extended in
other types of quantitative MRI throughout the body.

Keywords: Magnetic resonance imaging, Mapping, MOLLI, Simulations, Relaxometry

Background
In the field of cardiovascular magnetic resonance (CMR)
T1 mapping, quantitative measures of myocardial and
blood T1 enabled the calculation of important myocar-
dial biomarkers, such as extracellular volume (ECV)
fraction and native T1 in the myocardium [1, 2]. Recent

advances in T1 mapping include various new techniques
such as Modified Look-Locker inversion recovery
(MOLLI), Saturation recovery single-shot acquisition
(SASHA), AIR, SAPPHIRE and Shortened MOLLI
(ShMOLLI) [3–7]. Moreover, there have been significant
efforts towards understanding how accuracy, precision
and reproducibility of these methods are affected by ac-
quisition and post-processing parameters [8–11].
While T1 mapping has the potential to improve

patient diagnosis, the challenge remains in acquiring
reliable data in terms of accuracy and precision.
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Different T1 mapping methods and parameter sets
should yield similar results for a specific tissue type.
However, the complex nature of the underlying physics
involved and the multitude of parameters that affect
image acquisition and post-processing do not allow for
consistent reference T1 values of normal myocardium
and blood across all methods. Examples of this incon-
sistency include recent studies on cardiac T1 mapping,
which have reported different ranges of T1 values for
normal myocardium and blood depending on the
methods being used [3, 6, 11–13].
More recently, a single vendor, multicenter clinical

study [14] demonstrated reproducibility of myocardial
T1 values and provided data from healthy myocardium.
Interestingly, the reported T1 values in the literature
covers a large range depending on the methods [8]. The
T1 mapping technique (MOLLI) and the acquisition par-
ameter set used in the aforementioned multicenter study
are listed [14] as limiting factors in terms of accuracy
when compared to other setups (different T1 mapping
techniques, acquisition scheme, flip angle etc.) [8, 10].
The development of new CMR techniques for obtain-

ing quantitative information usually involves a two-step
process: acquisition of images from the MRI scanner
with a custom designed pulse sequence and post-
processing of the acquired images through a data fitting
procedure with closed form equations. Recently, a novel
approach to collect and process images for extracting
quantitative data from MRI experiments was proposed
[15]. This new approach relies on making pseudorandom
measurements and comparing the rapidly acquired data
against a large dictionary of Bloch simulations. When
the matching dictionary entry is found then the tissue
constants are known since each of the entries was cre-
ated based on specific tissue constants. This approach is
new in quantitative MRI but requires a uniquely de-
signed pulse sequence with a continuous variation of the
acquisition parameters throughout the data collection.
In the past, CMR simulations have been used within a

limited scope. Simulations have been used to identify the
effect of various acquisition parameters on measurement
accuracy and precision [10, 16] and to produce T1-maps
through an inverse problem solving fitting procedure
[17]. However, in order for the simulator to be executed
within a reasonable amount of time, several assumptions
and compromises on pulse sequence design had to be
made (such as the addition of a crusher to reduce T2-
dependency). For the same reason some realistic aspects
of the experiment (such as excitation slice profile) had
not been incorporated.
In this study, we propose Simulations for QUAntifying

RElaxation Magnetic Resonance constants (SQUAR-
EMR), a new method for extracting quantitative tissue
MR data from clinical pulse sequences with the aid of

comprehensive, parallel MRI simulations of the Bloch
equations. The specific aim was to utilize realistic simu-
lations of MOLLI on a large population of spins so as to
compute all possible outcomes of this pulse sequence
for a range of physiologically relevant tissue relaxation
constants. We hypothesized that quantitative CMR ac-
quired with MOLLI can be improved by comparing the
signals acquired from the MRI scanner to the entire pool
of possible outcomes that are produced by these simula-
tions for different tissue types. While this study is fo-
cused on a MOLLI-based T1 mapping technique, it
could however be extended in other types of quantitative
MRI throughout the body.

Methods
MOLLI theory and pitfalls
Figure 1 demonstrates a basic MOLLI pulse sequence
scheme [5], where two inversion-recovery-prepared
modified-Look-Locker experiments are separated by a
pause, which is usually defined in terms of a number of
heart cycles. In short, each modified-Look-Locker ex-
periment consists of ECG-triggered single-shot acquisi-
tions performed at end-diastole of consecutive heart
beats. Each single-shot acquisition consists of a ramp up
preparation (a startup sequence where the flip angle is
increased linearly) followed by a balanced steady-state
free precession (bSSFP) readout. For every modified-
Look-Locker experiment, the effective inversion times
(TIs) of the single-shot images are defined by the time
measured between the end of the inversion recovery (IR)
radiofrequency pulse and the center of k-space of each
bSSFP readout within the same modified-Look-Locker
experiment. At the end of the MOLLI experiment, the
acquired images undergo exponential fitting on a pixel-
by-pixel basis in order to estimate Τ1.
In MOLLI T1 mapping, the bSSFP readouts that fol-

low the IR pulse perturb the relaxation process itself and
do not allow for an ideal exponential recovery that is
based solely on the equilibrium magnetization (M0) and
the relaxation constant T1. As a result, the true recovery
follows an apparent relaxation constant T1* which is
always shorter than the true relaxation constant T1.
MOLLI reconstruction compensates for this apparent
relaxation by means of a 3-parameter exponential signal
model and the “Look-Locker” correction factor [5].
However, the “Look-Locker” correction factor has been
derived based on a Fast Low Angle Shot (FLASH) read-
out [18] and is used for the bSSFP readout since a sim-
ple closed form expression does not exist for the actual
MOLLI pulse sequence. Although it has been shown
that the FLASH-based correction factor is reasonably
effective under specific conditions [10], it does lead to
inaccuracies in T1 maps.
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SQUAREMR overview
The basic concept of this study is based on the premise
that the signals obtained from the simulation of a
clinical pulse sequence on simulated tissue with specific
relaxation constants (T1, T2) would be identical to the
measured signals acquired from the MRI scanner by
applying the same pulse sequence on real tissue with the
same relaxation constants (T1, T2). Therefore, for the
same pulse sequence, obtaining identical simulated and
measured signals would ideally indicate that the tissue
constants were identical in both the simulation and the
MRI scanner. Using a closed form expression of the clin-
ical pulse sequence was not necessary but instead the
identical pulse sequence was simulated and was applied
on a computer model of spins. The solutions of the
Bloch equations provided the temporal evolution of each
spin magnetization vector under the influence of the RF
pulses and magnetic field gradients of the pulse
sequence.
A basic block diagram of SQUAREMR is shown in

Fig. 2. In a conventional manner (dashed lines), the
patient is scanned in an MRI scanner by applying a user-
selected acquisition parameter set. Then, the MRI
signals, acquired from the MRI scanner, are processed in
order to quantify tissue relaxation constants. With
SQUAREMR, several steps were added to this workflow

(solid lines). The identical acquisition parameter set was
used by a parallel simulator to process the entire range
of physiological tissue relaxation constants. The noise-
free simulated signal was sampled at the exact inversion
times (TIs) used in the MRI scanner with MOLLI. Then,
a custom database of simulated signals was constructed
so as to link each recorded simulated signal to a single
pair of T1 and T2 values. Then, for the MOLLI images
acquired by the scanner, on a pixel-by-pixel basis, the re-
laxation times T1 and T2 were estimated by finding the
simulated signal in the database that produced the least
squared difference to the MOLLI MRI signal within a
pixel. In other words, when this least squared difference
was identified, the related database entry returned the
tissue relaxation constants.

Acquisition parameters
The acquisition parameters described the MOLLI pulse
sequence. These included the following parameters:
number of inversion-recovery-prepared modified-Look-
Locker experiments, number of ECG-triggered single-
shot acquisitions per modified-Look-Locker experiment,
number of pausing heart cycles between modified-Look-
Locker experiments, IR RF pulse duration and shape, TR
and TE durations, bSSFP readout RF pulse duration and
shape, slice thickness, acquisition scheme, Field-Of-View

Fig. 1 MOLLI acquisition scheme 5(3p)3. Illustration of a MOLLI pulse sequence scheme consisting of two successive ECG-triggered modified-
Look-Locker experiments (modified LL1 and modified LL2) with five and three single-shot readouts respectively. A pause of three heart beats has
been retained between the two modified-Look-Locker experiments. Each single-shot acquisition consists of a ramp up preparation followed by a
balanced steady-state free precession (bSSFP) readout

Fig. 2 Block diagram of SQUAREMR. The dashed lines demonstrate the conventional MOLLI workflow whereas solid lines illustrate the workflow
steps introduced by SQUAREMR. (HR = heart rate)
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(FOV), matrix size, SENSE factor, receiver bandwidth
(rBW) and number of startup TRs in the linear flip angle
ramp.
In MOLLI, the TIs for a number of the single-shot

images depend on the actual heart rate and cannot be
known before the pulse sequence execution. Therefore,
the simulations were performed after image acquisition.

Parallel simulation platform
A comprehensive MR physics simulator, MRISIMUL,
was used [19, 20]. Compared to other previously devel-
oped MR simulators, MRISIMUL is neither an image-
based simulator that utilizes T1, T2 and PD maps in
combination with equations that describe the image in-
tensity [21] nor a kspace-based simulator that utilizes
the k-space formalism [22]. MRISIMUL is a simulation
platform based on discrete-event Bloch equations ap-
plied on anatomical models of spins that incorporates
realistic aspects of the MR experiment, makes no
assumptions or simplifications for simulating the under-
lying MR physics and exploits parallel computing based
on Graphics Processing Units (GPUs) for high computa-
tional performance. The computationally demanding
core services (kernel) of MRISIMUL were developed in
CUDA-C (NVIDIA, Santa Clara, CA) and distributed in
parallel within the graphic processing units (GPUs)
whereas the simulation wrapper was developed in
MATLAB (The Mathworks Inc., Natick, MA, USA).
For each MOLLI experiment, the identical pulse se-

quence was simulated on a population of spins for a
large range of physiological combinations of T1 and T2.
T1 and T2 values of 200–1900 msec and 20–400 msec
respectively were simulated with a step of 1 msec. Simu-
lations were not performed for combinations where
T2 > T1. To explore faster SQUAREMR execution times,
a step of 5 msec was also used. The ranges of T1 and T2
values were chosen based on physiological myocardial
and blood values found in the literature [10, 14] with an
expanded range based on the characteristics of each ex-
periment. For example, since no gadolinium was admin-
istered, very short T1 values below 200 msec were not
considered. For each one of the simulations, the MOLLI
pulse sequence was applied on a spin with unique char-
acteristics (T1, T2 and position along the slice direction).
The simulated MOLLI pulse sequence was based on the
pulse sequence run on the MRI scanner. The receiver
bandwidth (rBW) of the MRI scanner also defined the
temporal step Δt of the simulated pulse sequence. A
total of approximately 75,000 to 150,000 time steps were
computed for each simulation. The Bloch simulation
temporal resolution was 10 μsec and 5 μsec respectively.
The bSSFP condition was retained throughout the simu-
lated MOLLI pulse sequence, whereas software crushers
[19] were utilized before and after the IR pulse. Also, in

order for realistic slice profiles to be incorporated in the
simulations, approximately 20 to 100 spins were simu-
lated across the slice thickness. A total of approximately
532,000 to 63,400,000 simulations of the entire imaging
pulse sequence were performed. The resulting database
consisted of a total of approximately 25,000 to 628,000
entries respectively.
Simulations were performed on a single-node system

consisting of a server style computer of 2 hexa-core
(Intel E5-2630, 2.30 GHz) processors, 32 GB RAM and
four Tesla C2075 GPU cards. Each Tesla C2075 graphics
card utilized a total dedicated memory of 6 GB GDDR5
and a total of 448 stream processors.

SQUAREMR performance
To investigate SQUAREMR performance, two sets of
pre-Gd MOLLI experiments were performed. For a
given experiment, the total SQUAREMR execution time
could be reduced by decreasing either the total number
of spins within the spin model or the total number of
pulse sequence time steps or the T1 map size or a com-
bination of them.
The first set of MOLLI experiments was performed

with a simulation temporal step of 10 μsec and an acqui-
sition matrix size of 128x128 whereas the second set of
experiments was performed with a simulation temporal
step of 5 μsec and an acquisition matrix size of 320x320.
To further investigate how spin model size relates to
SQUAREMR performance, two different test cases were
considered for each set of experiments. For the first test
case, a short T1 and T2 sampling step of 1 msec was
combined with a large number of 101 spins along slice
thickness resulting in a total of approximately 533,000
database entries. For the second test case, a longer T1
and T2 sampling step of 5 msec was combined with a
small number of 21 spins along slice thickness resulting
in a total of approximately 21,500 database entries. For
both test cases, T1 and T2 values of 600–2000 msec and
20–400 msec respectively were simulated.

Phantom setup
Two phantoms of six “tissues”, each with its own T1 and
T2 values, were used in this study. The phantoms were
prepared with varying concentrations of CuSO4 and
Agar [23] in order to obtain specific combinations of T1
and T2 values. Agarose powder was weighted and dis-
solved in distilled water and the proper amount of a
10 mM CuSO4 solution was added. The mixture was
heated, poured into containers (one per “tissue”) and
was left to reach room temperature.
The first phantom consisted of six “tissues” (plastic

bottles of 500 ml) with target T1 and T2 values close to
real cardiac tissues relaxation constants found in the
literature, both with and without gadolinium contrast
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agent present. The “tissues” used in this set had T1s and
T2s of pre-contrast normal myocardium [11, 24], pre-
contrast blood [10, 25], pre-contrast edematous myo-
cardium [26], pre-contrast infarcted myocardium [5, 24],
post-contrast normal myocardium (2–3 min after
gadolinium contrast administration) and post-contrast
normal myocardium (13–15 min after contrast adminis-
tration) [27, 28]. The second phantom set consisted of 6
“tissues” (Eurospin II Test System, Livingston, UK) with
T2 values close to T2 of normal myocardium [24] and
T1 values covering the range from 200 msec to
1600 msec.
To study the SQUAREMR T2 estimates obtained with

the MOLLI sequence a third set of 10 phantoms of vary-
ing combinations of T1 and T2 values was scanned with
the clinically relevant 5(3p)3 scheme only. The target T1
and T2 values were chosen so as to cover the following
four combinations: short T1 and short T2 values; short
T1 and long T2 values; long T1 and short T2 values;
long T1 and long T2 values.
Relaxation constants reference standard values were

measured on a 1.5 T Philips Achieva systems (Philips

Healthcare, Best, Netherlands). For T1 measurements
Saturation Recovery was used (Tsat = 0.01–15 sec,
TR = 10 sec) because it allowed for visual evaluation of
the effectiveness of the saturation pulse at the shortest
saturation time i.e. for long T1s, the remaining signal was
within or uniformly close to the noise floor. For T2
measurements T2p-SSFP was used for faster data acquisi-
tion since it has been validated in the past as a reference
standard against slow spin-echo experiments [29].

Healthy volunteer population
Twelve (12) healthy volunteers with no medical history
(12 men, age 34 ± 12 years) were studied. Eight out of
twelve were studied with the clinically relevant 5(3p)3
scheme only. The study was approved by the local ethics
committee and all subjects provided written consent
(The regional ethics committee, Lund, Sweden. Ethics
application number: 541/2004).

CMR protocol
CMR studies were performed on a 1.5 T Philips Achieva
scanner (Philips Healthcare, Best, Netherlands) equipped
with a 32-channel receiver coil and advanced research
packages for cardiac applications. The CMR protocol in-
cluded a series of MOLLI pulse sequences with different
acquisition schemes:

1. 5(3p)3 (clinical MOLLI pulse sequence for
pre-contrast myocardial T1 mapping) [9, 10]

2. 4(1p)3(1p)2 (clinical MOLLI pulse sequence for
post-contrast myocardial T1 mapping) [10]

3. 5(0p)3 (custom MOLLI pulse sequence for shorter
myocardial T1 mapping acquisition)

where p stands for heartbeats pauses between modified-
Look-Locker experiments (Fig. 1).
All MOLLI pulse sequences shared the following pa-

rameters: the IR pulse was a hyperbolic secant adiabatic
pulse [30] with 4.74 msec duration, whereas the bSSFP
readout used a 490 μsec sinc shaped RF pulse with 6 mm
slice thickness and 35° excitation flip angle, rBW 200 kHz
(1612.9 Hz/pixel), field-of-view (FOV) 272 mm×272 mm,

Fig. 3 Myocardial segmentation and blood region of interest in a
mid-ventricular short-axis slice. Display of the six myocardial segments
[32] and the region of interest within the blood pool from which blood
relaxation constants were measured (dashed area)

Table 1 Reference T1 and T2 values of the “tissues” in the myocardium phantom

Tissue type T1 [ms] T1 StDev [ms] T2 [ms] T2 StDev [ms] CuSO4 [g/L] Agarose [g/L]

Normal myocardium (pre-contrast) 1048 12 50 2 0,12 17.80

Blood (pre-contrast) 1570 20 196 11 0,07 4.00

Edema (pre-contrast) 1249 15 62 3 0,09 14.67

Infarct (pre-contrast) 1361 21 64 3 0,07 14.51

Normal myocardium (post-contrast 2–3 min) 344 6 52 4 0,2 20.00

Normal myocardium (post-contrast 13–15 min) 413 12 50 3 0,5 17.51

T1 and T2 values were measured with Saturation Recovery and T2p-SSFP respectively on a 1.5 T Philips Achieva systems (Philips Healthcare, Best, Netherlands)
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Fig. 4 Comparison between SQUAREMR and conventional MOLLI post-processing (FLASH-based) for the myocardial phantom set. Each row of
plots represents a separate MOLLI acquisition scheme. The left column shows the deviation of the measured T1 values of the phantoms with
SQUAREMR (black rectangles) and with conventional (i.e. FLASH-based Look Locker correction factor) MOLLI post-processing (open circles) from
the line of identity (gray line). The right column shows the corresponding modified Bland Altman plots for both methods (solid horizontal lines
represent the means, dashed horizontal lines represent the 95 % confidence limits). Compared to conventional MOLLI post-processing, SQUAREMR
presented high accuracy and a similar behavior across the different MOLLI schemes
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Fig. 5 Comparison between SQUAREMR and conventional MOLLI post-processing (FLASH-based) for the Eurospin II phantom set. Each row of
plots represents a separate MOLLI acquisition scheme. The left column shows the deviation of the measured T1 values of the phantoms with
SQUAREMR (black rectangles) and with conventional (i.e. FLASH-based Look Locker correction factor) MOLLI post-processing (open circles) from
the line of identity (gray line). The right column shows the corresponding modified Bland Altman plots for both methods (solid horizontal lines
represent the means, dashed horizontal lines represent the 95 % confidence limits). Compared to conventional MOLLI post-processing, SQUAREMR
presented high accuracy and a similar behavior across the different MOLLI schemes
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acquisition matrix 124×124, linear k-space trajectory and
SENSE acceleration factor of 2 (actual number of phase
encoding steps was 65). A linear ramp up preparation of
10 pulses was used to reach steady state prior to the
bSSFP readout.
In phantom studies TR was set to 2.54 msec and TE

to 1.27 msec. MOLLI schemes 1 and three used initial
TIs equal to 114 msec and 350 msec whereas MOLLI
scheme 2 used initial TIs equal to 114 msec, 232 msec
and 350 msec (initial TI increment of 118 msec). For
phantoms, a 6-channel head coil was used along with a
simulated ECG (60 beats per minute). A coronal single
slice was acquired for the myocardial phantom whereas
an axial single slice was acquired for the Eurospin II
phantom.
In healthy volunteer studies the TR was 3 msec and

the TE 1.5 msec. MOLLI schemes 1 and 3 used initial
TIs of 134 msec and 350 msec whereas MOLLI scheme
2 used initial TIs of 134 msec, 242 msec and 350 msec
(initial TI increment of 108 msec). The CMR protocol
was applied in a single mid-ventricular short axis slice
with a 32-channel receiver coil.
The term “initial TI” was defined as the first TI mea-

sured between the end of the adiabatic inversion pulse

and the center of k-space of the first single-shot bSSFP
readout that followed within the same modified-Look-
Locker experiment. The TIs between the inversion pulse
and the center of the other bSSFP readouts within the
same modified-Look-Locker experiment were deter-
mined by the initial TI and the duration of the cardiac
cycles preceding each readout.

Image analysis
Parameter mapping with SQUAREMR was performed
using the GPU-framework of MATLAB (The Mathworks
Inc., Natick, MA, USA) on a single GPU whereas MOLLI
T1 values were measured from the MOLLI magnitude im-
ages using conventional MOLLI post-processing (i.e. with
a FLASH-based Look Locker correction factor [5, 18])
with a 3-parameter fit [5, 10]. In-vivo myocardial seg-
mentation was implemented manually [31]. For phantom
studies, relaxation constants were measured by placing a
rectangular region of interest (ROI) in the center of each
phantom and estimated T1 values were reported. For the
third set of phantoms, which was intended for studying
the T2 estimates, both T1 and T2 values were reported. In
healthy volunteer studies, left-ventricular (LV) myocar-
dium was segmented in 6 areas in the mid-ventricular

Fig. 6 SQUAREMR T1 and T2 estimates of ten phantoms in comparison to their reference T1 and T2 values for a clinically relevant 5(3p)3 MOLLI
acquisition scheme. In black rectangles are the T1 and T2 values given by SQUAREMR whereas in black x are the corresponding relaxation constants
reference standard values. SQUAREMR demonstrated a small T1 estimation error for all T1 and T2 combinations. The T2 estimation error was small only
for phantoms with long T1 and short T2 values. For samples with other T1 and T2 combinations, SQUAREMR demonstrated a larger error in estimating
T2 with the MOLLI pulse sequence

Xanthis et al. Journal of Cardiovascular Magnetic Resonance  (2015) 17:104 Page 8 of 15



Fig. 7 (See legend on next page.)
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short axis (SAX) slice [32] and relaxation times were mea-
sured for each segment separately but also for the entire
LV myocardium. Blood T1 and T2 values were measured
from an ROI placed within the LV blood pool (Fig. 3).
Myocardium and blood ROIs were drawn so as to avoid
signal contamination from adjacent tissues. All values in
this study are reported as mean ± standard deviation (SD).
For phantom studies, modified Bland-Altman plots [33]
were used to demonstrate the agreement of the two
methods (SQUAREMR and conventional MOLLI post-
processing) with the reference standards.

Statistics
Comparisons were performed with student’s two tailed
t-test for paired data.

Results
Phantom studies
The reference T1 and T2 values of the “tissues” in the
first phantom are shown in Table 1. The reference T1 re-
laxation times of the “tissues” in the second phantom
ranged from 212 msec to 1522 msec whereas the
reference T2 relaxation times was kept close to that of
normal myocardium (52 ± 6 msec).
Results from the first phantom are shown in Fig. 4.

For the range of relaxation times corresponding to car-
diac tissues (pre- and post- contrast) that were studied,
SQUAREMR presented high accuracy and a similar
behavior across the different MOLLI schemes. For the
first phantom, SQUAREMR demonstrated better ac-
curacy compared to conventional MOLLI post-processing
[5(3p)3 scheme bias of 8.8 ± 15.3 msec vs. 53.6 ± 28.2 msec,
p < 0.05; 4(1p)3(1p)2 scheme bias of 11 ± 18.8 msec vs.
100.2 ± 64.9 msec, p < 0.05; 5(0p)3 scheme bias of
13.1 ± 21.1 msec vs. 107.9 ± 66.9 msec, p < 0.05; N = 6],
even in cases of “tissues” with long T1s and MOLLI
schemes that do not allow for full relaxation of long T1s
prior to the next inversion. Conventional MOLLI post-
processing in these cases presented a bias higher than
100 msec for the phantoms with high T1 values.
In the second phantom, which had close to normal

myocardium T2s and a range of T1s, SQUAREMR dem-
onstrated better accuracy than conventional MOLLI
[5(3p)3 scheme bias of 12.1 ± 20.5 msec vs. 54.7 ±
45.7 msec, p < 0.05; 4(1p)3(1p)2 scheme bias of 11.4 ±
16.1 msec vs. 90.2 ± 89.3 msec, p < 0.05; 5(0p)3 scheme
bias of 16.9 ± 27.2 msec vs. 101.3 ± 94.3 msec, p < 0.05;

N = 6], (Fig. 5). Conventional MOLLI post-processing in-
troduced an increasing error with increasing T1, as has
been previously shown in simulation studies [10].
Figure 6 shows the SQUAREMR T1 and T2 estimates in

phantoms (N = 10) against their reference T1 and refer-
ence T2 values. SQUAREMR demonstrated small error
(14.3 ± 11.2 msec; N = 10) in estimating T1 for all T1 and
T2 combinations. The error was also relatively small in es-
timating T2 (7.2 ± 6 msec; N = 4) for phantoms with high
T1 and low T2 values. For other T1 and T2 combinations,
SQUAREMR yielded larger errors (45.3 ± 31.8 msec;
N = 6) in estimating T2.

Human studies
Figure 7 shows the segmental T1 values given by
SQUAREMR and the conventional MOLLI post-
processing for the three different MOLLI schemes.
SQUAREMR yielded higher T1 values for all segments
compared to the conventional MOLLI post-processing,
for all three MOLLI schemes. With the MOLLI scheme
5(3p)3, which is being used clinically for pre-contrast
myocardial T1 mapping, the average T1 value per short
axis slice was 1025 ± 22.9 msec for conventional MOLLI
post-processing and 1117 ± 25.6 msec for SQUAREMR
(p < 0.001, N = 12). The average myocardial T1 value
for segment 9 (inferior septal myocardium) was 1053 ±
33 msec for conventional MOLLI post-processing and
1148 ± 38 msec for SQUAREMR (p < 0.001, N = 12).
The average blood T1 values were 1570 ± 52.8 msec
and 1634 ± 50 msec respectively (p < 0.001, N = 12). As
other studies have already shown [6, 14], a regional vari-
ation of segmental average T1 values was measured
whereas the average T1 value of myocardial segment 9 was
higher compared to the average T1 value of the entire slice.
Figure 8 shows how the T1 values, resulting from

SQUAREMR and from the conventional MOLLI post
processing, have been affected by the three different
MOLLI schemes. The T1 values were measured over the
entire slice, myocardial segment 9 and blood pool.
SQUAREMR was well behaved with consistent mean T1
values and consistent variance across the different MOLLI
schemes. The conventional MOLLI post-processing over-
all showed significantly different mean T1 values between
schemes [e.g. p < 0.001 for myocardial 5(3p)3 vs. 5(0p)3].
Table 2 gives the results presented in Fig. 8 whereas Fig. 9
shows T1 maps from a healthy volunteer derived from the
conventional MOLLI post processing (left image) and

(See figure on previous page.)
Fig. 7 Myocardial T1 values measured from the six myocardial segments (7 to 12). Myocardial T1 values were measured in the mid-ventricular
short-axis slices for three different MOLLI acquisition schemes. In black rectangles are the T1 values given by SQUAREMR whereas in black circles
are the corresponding T1 values given by the conventional MOLLI post-processing (FLASH-based). In solid black and gray short lines are the mean
segmental T1 values for SQUAREMR and conventional MOLLI post-processing respectively. Data were extracted from the four volunteers that were
examined additionally with 4(1p)3(1p)2 and 5(0p)3
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SQUAREMR (right image) for a 5(3p)3 acquisition
scheme.

SQUAREMR performance
To illustrate the performance of SQUAREMR, two dif-
ferent sets of pre-Gd MOLLI experiments were exam-
ined. The simulation execution times and the database
search times for different MOLLI experiment sizes were
recorded and are shown in Table 3. It can be seen that
the duration of the SQUAREMR processing varied
depending on the complexity of the experiment, which
can be defined by a number of parameters such as the
size of the acquisition matrix, the number of database
entries, MOLLI pulse sequence timesteps, etc. The total
execution times range from 33 s to 47 min on a server
with four Tesla C2075 GPU cards.

Discussion
A new method for improving measurements from clin-
ical pulse sequences in CMR relaxometry was presented.
The use of parallel simulations was shown to improve
the T1 estimates in MOLLI by comparing the MRI sig-
nals acquired from the MRI scanner to the entire pool
of physiological simulated signals that were produced by
parallel simulations of the identical pulse sequence on a
population of spins. While the current study explored
the feasibility of obtaining T1 properties from MOLLI
images, in principle it could be extended in other areas
of quantitative MR.
MOLLI T1 mapping is widely used today; however the

correction of the T1 recovery relies on the a FLASH
closed form expression [5] only because such an expres-
sion does not exist for the actual bSSFP readout that the
MOLLI pulse sequence utilizes. Several studies have
already shown that MOLLI T1 mapping underestimates
true T1 whereas its measurement error is influenced by

several acquisition protocol parameters [5, 6, 10, 12, 16].
SQUAREMR does not rely on closed form expressions
but rather on an extended simulation of the pulse
sequence itself. The basic concept of SQUAREMR was
based on the premise that realistic simulations of clinical
pulse sequences on tissue models of specific parameters
(T1, T2) would result in identical signals to the signals
acquired from the MRI scanner after the application of
the same pulse sequences on true tissues with the same
relaxation properties.
In the current work, a CMR protocol consisting of

three different MOLLI pulse sequences was imple-
mented: 5(3p)3, 4(1p)3(1p)2 and 5(0p)3. For every
MOLLI experiment, the identical MOLLI pulse sequence
was simulated for T1 and T2 ranges of 200 to 1900 msec
and of 20 to 400 msec respectively taking into account
realistic aspects of the MR experiment, such as realis-
tic excitation slice profiles and heart rate variation in
in-vivo studies. For that purpose, MRISIMUL, a GPU-
based, MR physics simulator [19, 20] was utilized in
this study.
The CMR T1 mapping protocol was applied on three

phantom setups and on twelve healthy volunteers. All
twelve volunteers and phantom setups were examined
with the clinical 5(3p)3 scheme. The actual TI timings
were extracted from the scanner data and used for the
SQUAREMR simulations allowing for more realistic
simulations. Four out of twelve volunteers and two out
of three phantom setups were imaged additionally with
4(1p)3(1p)2 and 5(0p)3. Results of the CMR protocol on
the phantom setups demonstrated improvement of ac-
curacy and a substantially reduced T1 variability across
the different MOLLI schemes. Compared to conven-
tional MOLLI post-processing, SQUAREMR showed
improved accuracy even for long T1s with no pause be-
tween modified-Look-Locker experiments. The latter

(See figure on previous page.)
Fig. 8 Mean T1 values per short axis slice, myocardial segment nine and blood pool. The mean T1 values were measured with SQUAREMR and
conventional MOLLI post-processing for three different MOLLI acquisition schemes. In black rectangles are the mean T1 values given by SQUAREMR
whereas in black circles are the corresponding mean T1 values given by the conventional MOLLI post-processing (FLASH-based). Error bars depict
the standard deviation of the mean for each MOLLI acquisition scheme. Data were extracted from the four volunteers that were examined
additionally with 4(1p)3(1p)2 and 5(0p)3

Table 2 Mean T1 values (msec) per slice, myocardial segment 9 and blood pool

Myocardium entire slice T1 Myocardium segment 9 T1 Blood pool T1

MOLLI SQUAREMR MOLLI SQUAREMR MOLLI SQUAREMR

MOLLI scheme Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

5(3p)3 998 31 1091 34 1035 32 1125 23 1546 36 1633 41

4(1p)3(1p)2 964 26 1095 35 998 16 1135 30 1408 97 1623 40

5(0p)3 887 25 1059 37 926 51 1117 31 1507 13 1646 19

T1 values were measured with SQUAREMR and conventional MOLLI post-processing for three different MOLLI acquisition schemes. Data were extracted from the
four volunteers that were examined additionally with 4(1p)3(1p)2 and 5(0p)3
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demonstrates that the T1 estimates are not dependent
on the duration of the delay between successive modi-
fied Look-Locker experiments, which in patient scans
may change due to heartrate variations.
In order to investigate whether SQUAREMR could also

provide T2 estimates from data obtained with a MOLLI
pulse sequence, the methodology was applied on phan-
toms with a range of T1 and T2 values. SQUAREMR
showed reasonable T2 values in phantoms with long T1s
and short T2s. Larger errors in estimating T2 were ob-
served for the remaining T1 and T2 combinations; how-
ever, this was expected for a T1 mapping pulse sequence,
such as MOLLI. Previous studies have shown that the
MOLLI pulse sequence introduces some T2 modulation
on the signal, which is more pronounced for long T1 and
short T2 values [10, 34]; therefore, for these values
SQUAREMR provided reasonable T2 estimates. For other
T1s and T2s, SQUAREMR was unable to provide reason-
able T2 estimates since the MOLLI signal simply did not
contain this information. The T2 results shown in Fig. 6
indicate that this was not a limitation of SQUAREMR in
terms of convergence but rather a limitation imposed by
the MOLLI pulse sequence itself which has been designed
to mainly modulate the MOLLI signal based on the T1
values of the tissues irrespective of their T2 values.
In in-vivo studies, myocardial and blood T1 values

were measured. The average T1 values obtained with the
CMR protocol for both the conventional MOLLI post-

processing and SQUAREMR are summarized in Table 2
for N = 4. SQUAREMR showed substantially elevated T1
values for both myocardium and blood pool when com-
pared to conventional MOLLI post-processing. Conven-
tional MOLLI T1 values in this work were similar to
values previously reported in the literature. In particular,
the conventional MOLLI scheme 5(3p)3 yielded an aver-
age blood T1 value of 1570 ± 52 msec (N = 12). Previous
studies have reported 1534 msec with MOLLI [27] and
1516 ± 21 msec [13] with saturation recovery FLASH.
Also, in this work, the conventional MOLLI T1 value
for myocardium (segment 9) of 1053 ± 33 msec (N = 12)
was similar to that of previous studies with MOLLI
(1034 ± 56 msec [35] and 1052 ± 41 msec [11]). On the
other hand, SQUAREMR resulted in MOLLI T1 values
similar to more accurate CMR T1 mapping techniques. In
particular, the average blood T1 value of 1634 ± 50 msec
(N = 12) was close to that previously reported with
SASHA (1639 ± 97 msec [3]). The average T1 value in
myocardial segment nine obtained with SQUAREMR
MOLLI was 1148 ± 38 msec (N = 12) which was close to
that previously reported with rapid cardiac gated single-
shot IR-FSE sequence (1092 ± 64 msec [8]) and two
dimensional SASHA (1105 ± 46 msec [36]).
The application of a parallel realistic simulator in

order to correct measured data from the scanner is a
new concept. In the past, MR simulations have been
used in a limited scope [10, 16, 17] with the exception of

Fig. 9 T1 maps of a healthy volunteer. Left image: Conventional MOLLI map derived from a clinical pulse sequence. Right image: T1 map obtained
from MOLLI-based tissue signal intensities using SQUAREMR. (MOLLI acquisition scheme 5(3p)3, rBW = 200 kHz, FOV = 272 mm×272 mm, acquisition
matrix = 124×124, SENSE acceleration factor = 2). Grayscale images are presented to avoid exaggerating contrast when crossing different color
boundaries, which commonly occurs with color images

Table 3 SQUAREMR performance for MOLLI experiments with varying complexity

# Simulation
timesteps

Simulation temporal
step (μsec)

Database
entries

Sampling step
(msec)

T1 map
size

Spins along
slice

Simulation execution
(min:sec)

Database search
(min:sec)

Total execution
time (min:sec)

1 63705 10 533400 1 128x128 101 17 m:47 s 0 m:29 s 18 m:16 s

2 63705 10 21560 5 128x128 21 0 m:9 s 0 m:24 s 0 m:33 s

3 156877 5 533400 1 320x320 101 44 m:27 s 2 m:47 s 47 m:14 s

4 156877 5 21560 5 320x320 21 0 m:22 s 1 m:50s 2 m:12 s

The simulation execution times and the database search times were recorded for the application of SQUAREMR on MOLLI experiment of varying size
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MR-fingerprinting [15]. SQUAREMR depends on ex-
tended and realistic MR simulations of already available
clinical pulse sequences in order to build an extensive
database of simulated signals identical (ideally) to the
signals obtained from the MR scanner for the same ex-
periment configuration. The utilization of multi-GPU
technology along with the technology advancements tak-
ing place on the GPU hardware suggest that this method
has the potential to become a real-time routine on the
MRI scanner in the future.
In this work, some limitations apply. Simulation of

magnetization transfer (MT) was not studied although
previous simulation studies [10, 37] suggest that MT
plays a role in T1 underestimation with MOLLI. How-
ever, accurate simulation of MT becomes challenging for
the entire range of relaxation times being studied in this
work since previous work has shown alteration of MT in
disease cases (e.g. myocardial infarction [38]) and among
different tissue types (blood vs. myocardium) [10]. Also,
blood flow effects were not studied in this work. Simula-
tions assumed a stationary spin model during the appli-
cation of MOLLI pulse sequence. Although the bSSFP
readout is applied during diastasis, when the heart
muscle is mostly stationary, blood flow effects may alter
the apparent T1 relaxation in the blood pool and, in
turn, the T1 estimation [10]. In this implementation, a
linear full search of the database was utilized, which
limited the performance of SQUAREMR in terms of its
execution speed. Non-linear optimization might be way
forward but were not tested. In the future, optimization
of algorithms for database construction (such as using a
variable step for T1 and T2 values, eliminating database
T1, T2 pairs not pertaining to a particular MR application,
etc.) and database search (such as using data specific
schemes) could further improve overall SQUAREMR per-
formance. Despite these limitations, SQUAREMR demon-
strated improved T1 accuracy in phantom studies whereas
in healthy volunteer studies the reported T1 values of
myocardium and blood were close to those acquired with
more accurate CMR T1 mapping techniques in the
literature. Last but not least, the substantially reduced T1
variability across the different MOLLI schemes with
SQUAREMR suggests that myocardial tissue charac-
terization could potentially be achieved within 8 heart
beats.

Conclusion
In conclusion, SQUAREMR is a new method that allows
for quantification of CMR data with already available
clinical pulse sequences and with the aid of compre-
hensive, parallel MRI simulations. In this study, a
MOLLI-based T1 mapping example was investigated
demonstrating improvement of accuracy in phantom
studies and consistent mean T1 values and consistent

variance across the different MOLLI schemes in humans.
This was true even for a wide range of T1 values with
MOLLI schemes with no pause between modified-Look-
Locker experiments, indicating potential value for myocar-
dial tissue characterization within just 8 heart beats.
The methods presented in this study represent a

different approach in quantitative CMR with existing
clinical pulse sequences. SQUAREMR allows for correc-
tion of quantitative CMR data (e.g. MOLLI T1 maps)
that have already been acquired by simulating the
clinical pulse sequence that was used for the data acqui-
sition. Last, it is expected that in the future SQUAREMR
may improve data consistency and advance quantitative
MR to become more robust across imaging centers,
vendors and experimental configurations and the tech-
nique may be extended in other areas of quantitative
MR imaging.
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Summary 

Blood flow measurements from two‐dimensional phase contrast magnetic resonance images require 

accurate time‐resolved vessel segmentation over the cardiac cycle. Current semi‐automatic 

segmentation methods often involve time consuming manual correction, relying on user experience 

for accurate results. The purpose of this study was to develop a vessel segmentation algorithm with 

shape constraints based on manual vessel delineations for robust segmentation of the ascending 

aorta and pulmonary artery, to evaluate the method in healthy volunteers and patients with heart 

failure and congenital heart disease, and to validate the proposed method against timer beaker flow 

measurements in a pulsatile flow phantom experiment. 

Algorithm shape constraints were extracted from manual delineations of the ascending aorta and 

pulmonary artery (n=30 human subjects including both patients and healthy volunteers) and were 

included into an active contour, semi‐automatic segmentation method requiring manual delineation 

in one image.  

Phantom validation showed good agreement between the proposed method and timer beaker flow 

volumes. Flow volume bias and variability (bias±1.96SD) for the proposed algorithm vs. manual 

delineation were 0.3±4ml in the ascending aorta (n=134 subjects; 7 healthy volunteers; 127 heart 

failure patients) and ‐1.7±4 ml in the pulmonary artery (n=30; 16 healthy volunteers; 14 patients with 

Tetralogy of Fallot). Inter‐observer flow volume bias and variability (bias±1.96SD) were lower for the 

proposed semi‐automatic method (‐0.3±1.5ml) compared to manual delineations (‐0.9±2.9ml). In 

conclusion, the proposed semi‐automatic vessel segmentation algorithm enables efficient analysis of 

flow and shunt volumes in the aorta and pulmonary artery.  

Keywords: PC‐MRI, Vessel segmentation, Aorta, Pulmonary artery, Shape regularization, Validation 

 

 

 

 

 



 

Background 

Phase‐Contrast Magnetic Resonance (PC‐MR) enables non‐invasive quantification of blood flow[1] 

and is widely used to characterize cardiovascular disease[2] in the clinical setting. The technique 

currently serves as reference standard for non‐invasive quantification of cardiac output (CO) and 

measurement of the left and right stroke volume ratio (Qp/Qs) used to detect and quantify shunt 

volumes [3].  

PC‐MR blood flow measurements require delineation of the vessel of interest over the cardiac cycle. 

Manual delineation in PC‐MR images is time consuming, warranting robust automatic or semi‐

automatic segmentation algorithms. Previous vessel segmentation algorithms have effectively 

reduced the required time of analysis and improvements have been made in edge detection 

performance [4], pixelwise detection of the vessel lumen [5], the amount of required user input [6] 

and active contour tracking [7–9] have been applied to improve segmentation robustness. However, 

the need for manual corrections remain.  

For two‐dimensional PC‐MR techniques, image contrast varies over the cardiac cycle. Time phases 

during ventricular systole which commonly contain high blood flow velocities tends to have greater 

image contrast between arteries and surrounding tissue compared to time phases during ventricular 

diastole. Therefore, segmentation algorithms often solely rely on built‐in vessel shape constraints 

during diastolic time phases for accurate results. Previous methods have used shape constraints 

based on either fixed curvature and elasticity criteria within the segmentation model[7, 8] or shape 

templates from previously completed segmentations in adjacent time phases[9].  

We hypothesized that shape constraints based on a data set of manually delineated PC‐MR images 

can improve robustness of semi‐automatic vessel segmentation methods. Therefore, the purpose of 

this study was to 1) develop a vessel segmentation algorithm with shape constraints based on 

manual vessel delineations, 2) validate the method in phantom experiments and 3) compare the 

method to manual delineation in 2D PC‐MR images invivo in the ascending aorta and main 

pulmonary artery.   

 

 

   



Methods 

The study was approved by the Regional Ethical Review Board in Lund. The study population 

consisted of 201 human subjects in total (50 females; median age 56 years; age range 3‐98 years). 

Two‐dimensional PC‐MR data of the ascending aorta from 18 healthy volunteers and 153 patients 

with heart‐failure (defined as ejection fraction below 40%) were retrospectively included from a 

previous study of cardiac index[10]. Two‐dimensional PC‐MR data of the pulmonary artery from 16 

healthy volunteers and 14 patients with atrial septal defects were also included from a previous 

study of atrial septal shunt volumes[11]. Vessel shape constraints and optimized algorithm 

parameters were extracted from 30 data sets, 20 from the ascending aorta group and 10 from the 

pulmonary artery group. Remaining data sets were used for algorithm evaluation.  

Imaging data 

The proposed segmentation algorithm was trained and evaluated for use in two‐dimensional PC‐MR 

human data from two 1.5T MR‐scanner models: Magnetom Vision (Siemens; Erlangen; Germany) and 

Achieva (Philips; Best; The Netherlands). Validation of measured flow volumes was performed in a 

pulsatile flow phantom[12] using two scanners: One 1.5 T scanner (Aera, Siemens, Erlangen, 

Germany) and one 3T scanner (Prisma, Siemens, Erlangen, Germany). Flow measurements of the 

ascending aorta were collected in a transversal slice orientation (Figure 1A) and measurements of the 

pulmonary artery were collected in a double oblique orientation, both according to clinical routine. 

Typical sequence parameters for 2D PC‐MRI pulse sequences are shown in Table 1. 2D PC‐MRI data 

was collected using both prospectively gated (n=23 subjects) and retrospectively gated sequences 

during free‐breathing and breath‐holds (n=18 healthy volunteers). For patients with suspected valve 

insufficiency, prospective gating was performed over 2 RR‐intervals to cover the entire cardiac cycle 

(n=10 subjects). Two different background phase correction techniques were applied for each 

vendor: 1) Linear background correction in Segment v2.0 R5390 was performed for data from 

Siemens scanners and 2) Automatic Local Phase Correction built into the scanner was performed 

during image reconstruction for data from the Philips scanner. For blood volume quantification, the 

vessel of interest was delineated in all cardiac time phases and the net blood flow volume was 

calculated as the blood flow time integral. A blood flow over time plot is shown in Figure 1B. 

Extracting vessel shape profiles 

Shape profiles were extracted from the training set (n=30 subjects) by parameterization of shape 

changes over the cardiac cycle from manual vessel delineations of the ascending aorta. In short, 

Principal Component Analysis (PCA)[13] was applied to compress manual delineation data such that 

typical shape profiles were extracted (implementation details are found in Appendix A). An example 



of the effect of such shape constraints is shown in Figure 2, demonstrating improved segmentation 

accuracy compared to shape constraints from optimized elasticity/curvature active contour 

parameters.  

Algorithm overview 

The proposed method for semi‐automatic vessel segmentation is based on a modified active contour 

scheme constrained by the vessel shape constraints described above. A flow chart of the method is 

shown in Figure 3. The algorithm is initialized by selecting a vessel of interest from a manual 

delineation in one time phase of the image series. The manual delineation is then subjected to rigid 

motion tracking and the time series is divided into two parts by the K‐means clustering algorithm 

using 2 classes[14] from the mean phase signal inside the time tracked manual delineation. The time 

series interval corresponding to large mean phase signal were set as potential candidates for 

initialization of the time resolved vessel segmentation. The manually delineated time phase was 

selected as starting point of the segmentation if this frame was included in the large mean phase 

class. If this was not the case, the time phase corresponding to the maximum mean phase signal was 

selected as starting point. The algorithm started to process the time interval associated with high 

velocity (as determined by the K‐means classification), continued with time phases following the high 

velocity interval and completed the segmentation by processing the time interval before the high 

velocity interval. Processing of one time phase consisted of edge guided active contour deformations 

derived from the corresponding magnitude image, and subsequent shape constrained 

reconstruction. All images except the initialization time phase were initialized as the shape 

constrained segmentation result from its previously processed neighbor. Following time resolved 

vessel segmentation from magnitude images, active contour deformations from phase images were 

performed at selected time phases in order to increase the inclusion of relevant blood flow velocity. 

The main motivation behind the proposed segmentation scheme was to balance robustness and 

flexibility such that erroneous segmentation expansions into adjacent anatomy and image artifacts 

are avoided while a high degree of segmentation accuracy is obtained. Further algorithm 

implementation details are found in Appendix B.  

Parameter optimization 

Optimization of the segmentation method was performed in order to find a set of algorithm 

parameters resulting in a high degree of segmentation accuracy and robustness. Segmentation 

performance was evaluated  by calculating the Dice overlap coefficient[15] between the proposed 

method and manual delineations from an expert reader, serving as the reference standard. A large 

mean and a small standard deviation of the Dice coefficient were considered indicators of high 



segmentation accuracy and robustness, respectively. All numerical optimizations were performed 

within the training set and the evaluated parameter combinations are summarized in Table 2. Active 

contour deformations using magnitude and phase images were optimized separately.  

Phantom measurements 

In order to validate PC‐MRI flow measurements with a reference standard largely independent of 

user experience, flow volume measurements were performed in a custom made flow phantom[12] 

consisting of a pulsatile pump and a flow rectifier connected to plastic tubing inside a water tank. 2D 

PC‐MRI flow volume measurements were compared to timer and beaker flow volumes which were 

obtained by measuring the total water volume output from the water tank during 2‐4 minutes 

(depending on pump setting) of continuous pumping while accounting for the time between pump 

trigger signals. Phantom experiments were performed at varying pump stroke volumes and at two 

field strengths: 1.5T (Aera; Siemens, Erlangen, Germany) and 3T (Prisma; Siemens, Erlangen, 

Germany). The MR scanners were connected to the phantom pump trigger signal in order to enable 

gating of the MRI acquisition. 2D PC‐MRI images were acquired in a transversal imaging plane 

through plastic tubing (26mm inner diameter) inside the water tank, with a velocity measurement 

direction perpendicular to the imaging plane. Regions of interest were drawn manually or by using 

the proposed semi‐automatic segmentation method. Sequence parameters for sequences in use are 

shown in Table 1.  

Statistical analysis 

For invivo data, the proposed semi‐automatic segmentation method was compared to manual 

delineations in the test set containing time resolved delineations of the ascending aorta in 134 

human subjects and delineations of the pulmonary artery in 30 human subjects. The Dice overlap 

coefficient was used to measure segmentation overlap with manual delineations and blood flow 

volumes were compared using modified Bland‐Altman analysis[16] with manual delineations serving 

as reference standard. Bias and variability between two methods were defined as mean±1.96 SD. The 

performance evaluation was repeated for two versions of the algorithm where the segmentation 

result was extracted before and after phase deformations, respectively. In this comparison, the RR‐

interval time phase of manual initializations was set to 20% of the RR‐interval for all data sets. The 

performance impact of changing time phase of the manual initialization was evaluated by repeating 

the test set comparison for initialization in 20 equidistant time phases over the RR‐interval. Inter‐

observer variability of manual delineations and the proposed semi‐automatic method was 

determined from two expert readers in a randomly sampled subgroup of the ascending aorta test set 

(n = 30).  



 

Results  

Optimal parameter values from numerical optimization in the training set (n=30 human subjects) are 

shown in Table 2 (right column). Phantom timer beaker measurements resulted in a flow volume 

range of 11.8‐89.3 ml (1.5T) and 24.4‐89.8 ml (3T). Good agreement between timer beaker and 2D 

PC‐MRI flow volume measurements was found at both field strengths (Figure 4). The proposed semi‐

automatic method resulted in modest underestimation of flow volumes at 3T with a bias and 

variability of XX±YY ml which was not found at 1.5T (bias±variability = ZZ±WW ml). Manual 

delineations showed good agreement at both 1.5T and 3T (XX±YY ml and ZZ±WW ml). A larger 

degree of image artifacts were observed at 3T compared to 1.5T data.  

The change in segmentation performance with added processing blocks for the ascending aorta and 

the main pulmonary artery are shown in Figure 5. In the ascending aorta, activating additional 

algorithm blocks resulted in consistently reduced flow volume variability. In the pulmonary artery, 

magnitude deformations with shape constraints resulted in improvements in terms of flow volume 

bias, flow volume variability and mean Dice coefficient. However, phase deformations in the 

segmentation algorithm gave rise to reduced performance in the pulmonary artery.  

Semi‐automatic segmentations in images from free‐breathing sequences resulted in good agreement 

with manual delineations. Semi‐automatic measurements in the ascending aorta with algorithm 

initialization at 20% of the RR interval and using full algorithm functionality (Phase deformations ON 

in Figure 4) resulted in flow volume bias±1.96 SD of 0.3±4ml or 0.8±9.1% (Figure 6A). Corresponding 

mean Dice coefficient±1.96 SD were 92.5±5.6% with range 76.8–96.9%. The processing time of the 

proposed segmentation method ranged from 0.9–3.7seconds.  

Results for the pulmonary artery (n=30) semi‐automatic segmentation with constant initialization of 

the algorithm at 20% of the RR interval and using the segmentation algorithm version of preference 

(Magnitude deformations ON in Figure 5) are shown in Figure 6B. Flow volume bias and variability 

were ‐1.7±4 ml or‐1.9±5.1% and mean Dice coefficient±1.96 SD were 93.6±3% with range 90.5–96%. 

The computation time for the pulmonary artery ranged between 1–1.4 seconds.  

Flow volume outliers marked in Figure 6 and additional Dice coefficient outliers with Dice overlap 

below the lower limit of agreement are shown in Web Supplemental Figure 1 for the pulmonary 

artery and Supplemental Figure 2 and Supplemental Figure 3 for the ascending aorta. 



Semi‐automatic segmentations of the ascending aorta from Breath‐hold acquisitions showed slightly 

degraded performance compared to corresponding free‐breathing data in terms of bias and 

variability (‐3.94±4.90 ml; Figure 7). Slight underestimation of flow volumes and increased variability 

was observed.  

Figure 8 shows changes in flow volume bias and variability, and average Dice coefficients and Dice 

variability when the proposed semi‐automatic method was initialized at different parts of the RR‐

interval for the ascending aorta and the pulmonary artery. For the ascending aorta (Figure 8A), the 

proposed segmentation algorithm was robust to changes initialization time point with worst‐case 

absolute flow volume bias and variability of 0.5ml and 7.2ml, obtained with algorithm initialization at 

85% and 100% of the RR‐interval, respectively. Dice coefficient minimum average value and 

maximum variability were 92.4% and 5.9%, obtained with algorithm initialization at 100% and 80% of 

the RR‐interval, respectively. Confidence intervals of flow volume differences were maintained below 

9.7ml for algorithm initialization within 5‐95% of the RR interval. In general, initializing 

segmentations at the very beginning and end of the RR interval gave rise to slightly reduced 

performance in terms of flow volume difference limits of agreement. 

For the pulmonary artery, segmentation performance was sensitive to the selected RR‐interval 

initialization time point (Figure 8B), resulting in a worst‐case absolute flow volume bias and 

variability of 16.5ml and 34.3ml (at 85% of the RR‐interval) and a Dice coefficient minimum average 

value and maximum variability of 88.5% and 10.7% (at 90% and 85% of the RR‐interval). However, 

initializing segmentations at 15‐35% of the RR interval resulted in worst‐case absolute flow volume 

bias and variability limited to 2.2ml and 4.8ml, and Dice coefficient minimum average value and 

maximum variability within 93.4% and 3.2%. 15‐35% of the RR interval corresponded to an expanded 

vessel radius in the acquired imaging slices for the pulmonary artery and well defined image contrast 

between the vessel of interest and its surroundings were generally found.  

The interobserver variability study in 30 human subjects with semi‐automatic segmentations 

initialized at 20% of the RR interval showed a difference in measured flow volumes of ‐0.9±2.9ml 

(bias±1.96 SD) for manual delineations and ‐0.3±1.5ml (mean±1.96 SD) for semi‐automatic 

segmentations (Figure 9). Interobserver mean Dice coefficient±1.96 SD and range were 94.7±3.7% 

(range 87.9‐96.9%) and 99.1±2.4% (range 93.1‐99.8) for manual delineations and the proposed 

segmentation method, respectively. An increased interobserver Dice overlap was found for the 

proposed segmentation method in 100% of the 30 evaluated subjects compared to manual 

delineations.  



Discussion 

Automated vessel segmentation methods for PC‐MRI data have the potential of improving efficiency 

in the clinical setting. Previous semi‐automatic algorithms have shown clear improvements in 

processing speed[4], interobserver variability compared to manual delineations[8] and good 

agreement in phantom measurements[9]. This study presents an algorithm for semi‐automatic 

segmentation of the ascending aorta and the pulmonary artery in 2D PC‐MRI images with 

implemented shape constraints based on eigenvector decomposition of manual delineation training 

data.  

The proposed method resulted in good agreement with timer and beaker flow volume 

measurements in a pulsatile flow phantom experiment at two field strengths and a wide range of 

flow volumes. The observed underestimation of flow volumes at 3T may be attributed to the 

observed image artifacts in the 3T data, indicating sensitivity to image quality for the proposed semi‐

automatic method. Good agreement between the proposed method and manual delineation was 

found for flow measurements in the ascending aorta and the main pulmonary artery, demonstrating 

possibility for clinical use in both vessels. The underestimation of flow volumes for breath‐hold 

acquisitions may be explained by an overrepresentation of free‐breathing data in the training.    

Different versions of the proposed algorithm gave rise to maximum segmentation robustness in 

terms of low flow volume bias, low flow volume variability and Dice overlap. However, due to the 

large difference in shape variation over the cardiac cycle between the ascending aorta and the main 

pulmonary artery, alteration of segmentation algorithm parameters is warranted for optimal 

performance. 

Segmentation of the ascending aorta (AO) was shown robust to the RR time point of initialization 

while segmentations of the pulmonary artery required an initialization time point at 15‐35% of the 

RR interval for satisfactory results. This may be explained by the larger variation of vessel diameter in 

imaging slices used for pulmonary artery flow volume measurements compared to corresponding 

measurements for the ascending aorta. Of note, this is not due to differences in actual vessel 

anatomy but rather explained by the need for double‐oblique positioning of the pulmonary artery 

imaging plane. Therefore, getting the true cross‐section of the pulmonary artery is more user 

dependent during the MRI scan compared to the aorta where a transversal slice at the level of the 

pulmonary bifurcation results in cross‐section of the vessel. Time points at 15‐35% of the RR‐interval, 

generally corresponding to near‐maximum expansion of the vessel diameter, usually feature modest 

vessel shape and size variations in comparison to the rapid diameter expansion found in the 



beginning of the RR interval and can be reflected in finer detail at a given temporal resolution. The 

found sensitivity to initialization time point of the proposed method may indicate an underlying 

sensitivity to temporal resolution for vessels with large shape and size variations over the RR interval. 

However, since the optimal initialization time points for pulmonary artery segmentation was 

associated with large vessel diameters and well defined image contrast between the vessel of 

interest and its surroundings, manual delineation in this time interval will most likely not be a major 

challenge in the majority of cases. 

Outliers in the validation study revealed slight sensitivity to abnormal anatomy, resulting in reduced 

segmentation quality and inability of the algorithm to reproduce rapid shape variations. Future work 

should be focused on limiting such behavior which may be reduced by adapting edge detection and 

deformation parameters to the pixel size, temporal resolution, expected rate of in‐plane vessel 

motion and vessel diameter, or by introducing additional region analysis forces to aid the tracking of 

rapid in‐plane motion. However, despite current limitations, obtained flow volume limits of 

agreement from both vessel types were small in relation to reported flow volume errors caused by 

potential background velocity offset errors[17]. A reduction in inter observer variability was found for 

the proposed semi‐automatic method compared to manual delineations in 30 subjects, which 

combined with the limited variability of measured flow volumes warrants the use of the proposed 

segmentation method for flow and shunt volume quantification. Manual user input is still required 

for initialization of the proposed segmentation method. Recent developments in the field have 

resulted in methods for automatic identification of the ascending and descending aorta in 2D PC‐MRI 

images, assuming a strictly circular vessel lumen[18]. Methods with added shape flexibility and time 

resolved segmentation algorithms, as proposed in the current study, may facilitate fully automatic 2D 

PC‐MRI flow volume measurements independent of user experience in the clinical setting in the near 

future. 

Conclusion 

Semi‐automatic segmentation methods for the ascending aorta and the pulmonary artery were 

developed and showed good agreement with manual delineations from expert readers in terms of 

flow volume bias, flow volume variability and Dice coefficient overlap with reduced inter observer 

variability, enabling efficient and robust flow and shunt volume quantification in the clinical setting. 

Limitations 

The proposed segmentation method was mainly validated using manual delineations as reference 

standard, a measure highly dependent on user experience. An extensive validation in a phantom 



experiment using a fully independent gold standard and featuring large shape variations which was 

shown difficult for the proposed method may enable further development of segmentation 

robustness. Impact of the composition of selected training data on segmentation performance was 

not explored. The selection of training data and adjustment of the amount of training data 

compression may alter segmentation performance and may limit adequate segmentation for 

pathology types not included in the training set. The segmentation method was evaluated in 

segmented MRI data only and have not been validated for use with real time PC‐MRI data. Sequence 

parameters was not matched between in‐vivo experiments and phantom validation.  
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Tables 

Table 1. Typical 2D PC‐MRI sequence parameters for in‐vivo and phantom data acquisitions 

MRI 

Sequence 

parameters 

In‐vivo data 

(Philips 1.5T) 

Free‐Breathing 

Retrospective 

gating 

In‐vivo data 

(Philips 1.5T) 

Breath‐hold 

Retrospective 

gating 

In‐vivo data 

(Siemens 1.5T) 

Free‐Breathing 

Prospective 

gating 

Phantom data 

(Siemens 1.5T) 

Retrospective 

gating 

Phantom data 

(Siemens 3T) 

Retrospective 

gating 

Echo time [ms]  5.3  2.3  5  2.66  3.0 

Slice thickness 

[mm] 

6  10  8  5  5 

Time 

resolution 

[ms] 

17.3  15.7  30  19.7  21.4 

VENC [cm/s]  200  200  250  200  200 

Flip Angle [°]  15  15  30  20  20 

 

 

 

 

 

 

 

   



Table 2. Optimized algorithm parameters 

Optimized algorithm 

parameters 

Parameter values: [min, max] 

Δ = interval spacing  

Alternatively:  [parameter values] 

Determined  

optimum value 

Number of  iterations  

(magnitude deformations) 

[5, 50]; Δ =5;  10 

External edge force 

constant 

(magnitude deformations) 

[0.5, 10]; Δ = 0.5;  1 

External region analysis 

force constant 

(magnitude deformations) 

To be re‐performed before 

submission 

 

Number of iterations  

(phase deformations) 

[5, 10, 20, 30, 40];  5 

External region analysis 

force constant 

(phase deformations) 

[3, 15]; Δ = 3;  12 

Systolic exclusion 

percentage γ 

(phase deformations) 

[40%, 90%]; Δ = 10%;  50% 

VNR threshold  

(phase deformations) 

[1, 2, 3, 4]  1 

 

 

 

 

 

 

 



Figure Legends 

 

Figure 1. Example of a 2D PC‐MRI flow volume measurement. Top panel (A) shows manual 

delineations (blue) of the ascending aorta in a magnitude image (left) and the corresponding phase 

image (right) in early systole in a transversal slice orientation. The lower panel (B) shows measured 

flow (y‐axis) over time after manual delineations in all time phases throughout the cardiac cycle. The 

flow volume is calculated from time integration of this curve.   



 

Figure 2. Improvement in segmentation accuracy using the proposed shape constraints. The image 

shows a double‐oblique imaging slice used for flow volume measurements in the pulmonary artery in 

ventricular systole (left panel) and ventricular diastole (right panel). Semi‐automatic inaccurate 

segmentations using conventional shape constraints are shown as solid black lines and semi‐

automatic segmentations using the proposed shape constrained reconstruction are shown as dashed 

black lines.   

 



 

Figure 3. Flow chart of the proposed semi‐automatic segmentation method. The method is initialized 

by a manual delineation in one time point and continues with rigid motion‐tracking, interleaved 

active contour deformations using magnitude images and shape constrained reconstruction and ends 

with active contour deformations using phase images.  

 

 



 

 

Figure 4. Validation in a pulsatile phantom experiment resulted in close agreement between timer 

beaker measurements and 2D PC‐MRI at 1.5T (squares) and 3T (triangles) and for both semi‐

automatic (top panel) and manual PC‐MRI ROI delineations. The proposed semi‐automatic method 

resulted in modest underestimation of flow volumes at 3T.   



 

Figure 5. Segmentation performance varies with different algorithm steps turned on/off and the 

vessel of interest. Top panels: Flow volume bias (open circles) and limits of agreement (error bars) for 

the semi‐automatic method vs manual delineations. Bottom panels: Dice coefficient averages (bars) 

and standard deviations (error bars). The left panels show results for the ascending aorta (denoted 

AO) and the right panels show results for the pulmonary artery (denoted Pulm). The algorithm 

setting with best performance for the ascending aorta and the pulmonary artery was “Phase 

deformations ON” and “Magnitude deformations ON”, respectively.  

 

 



Figure 6. The semi‐automatic method results in flow volumes similar to manual delineations in the 

ascending aorta (n=134; panel A) and in the pulmonary artery (n=30; panel B). Top panels show flow 

volumes measured from the semi‐automatic method (y‐axes) and manual delineations (x‐axes). The 

dashed line indicates line of identity. Bottom panels show corresponding modified Bland‐Altman 

analysis flow volume difference (y‐axes) over flow volumes from manual delineation (x‐axes). The 

dotted lines indicate zero flow volume difference, the solid lines indicate bias and the dashed lines 

indicate limits of agreement. Flow volume outliers are enclosed in solid rectangles for both vessel 

types and are shown in Web Supplemental Figures 1‐2. Low bias and variability were found. For the 

semi‐automatic method, manual initialization was performed at 20% of the RR interval and algorithm 

settings with best performance for the two vessel types were used.  

 



 

Figure 7. Flow volume comparison between semi‐automatic and manual vessel delineations of the 

ascending aorta in breath‐hold PC‐MRI data. The proposed semi‐automatic method resulted in 

underestimation of flow volumes in breath‐hold acquisitions. 



 

Figure 8. Segmentation performance varies with the time point used for algorithm initialization. Top 

panels show average flow profiles over the RR‐interval from manual delineations for the ascending 

aorta (n=134; panel A) and the pulmonary artery (n=30; panel B). Middle panels show flow volume 

bias and limits of agreement (filled circles and error bars) of the semi‐automatic method vs. manual 

delineations. Bottom panels show Dice coefficients and 1.96 SD (filled squares and error bars). The 

proposed segmentation algorithm was robust to the initialization time point for the ascending aorta. 

For the pulmonary artery, segmentations were sensitive to the initialization time point. However, 

when segmentation initializations were confined to 15‐35% of the RR‐interval, segmentation quality 

was similar to the ascending aorta in terms of flow volume bias, flow volume variability and Dice 

coefficient. 



 

Figure 9. Inter observer variability of flow volume differences and Dice coefficient overlap for manual 

delineations and the proposed semi‐automatic method between two observers. Top panel shows 

Bland‐Altman analysis of flow volume differences between two observers from manual delineations 

(y‐axis) over the average flow volume (x‐axis). The dotted line indicates zero flow volume difference, 

the solid line indicates bias and dashed lines indicate limits of agreement. Middle panel shows 

corresponding Bland‐Altman analysis for two observers using the semi‐automatic method. Bottom 

panel shows Dice overlap coefficient mean value (bars) and standard deviation (error bars) between 

two observers for manual delineations (left; Dice range 87.9‐96.9%) and the semi‐automatic method 

(right; Dice range 93.1‐99.8%). The dotted line indicates the mean Dice coefficient value for manual 

delineations. A clear reduction in inter observer variability for both measured flow volumes and Dice 

coefficient overlap were observed for the semi‐automatic method.  



 

 

Web Supplemental Figure 1. Outlier datasets with degraded segmentation quality for the pulmonary 

artery. The image shows three flow volume outliers marked in Figure 5B (outliers 1‐3) and one Dice 

coefficient outlier (outlier 4). Top panels show magnitude images from each outlier dataset with 

manual (red) and semi‐automatic (blue) segmentations at a time point which demonstrates 

segmentation errors. Bottom panels show corresponding phase images at the same time point. 

Obtained flow volumes and Dice coefficients outside the limits of agreement are displayed in a bold 

font. The outliers demonstrate flow volume underestimation during ventricular systole (outliers 1‐3) 

and an overestimation of the vessel area during ventricular diastole (outlier 4). 

 



 

Web Supplemental Figure 2. Outlier datasets with degraded segmentation quality for the ascending 

aorta. The image shows three flow volume outliers marked in Figure 5A for the ascending aorta. Top 

panels show magnitude images from each outlier dataset with manual (red) and semi‐automatic 

(blue) segmentations at a time point which demonstrates segmentation errors. Bottom panels show 

corresponding phase images at the same time point. Obtained flow volumes and Dice coefficients 

outside the limits of agreement are displayed in a bold font. The outliers demonstrate flow volume 

underestimation (outlier 5) and overestimation (oultiers 6‐7) during ventricular systole.  

 

 

 

 

 

 

 

 

 



 

Supplemental Figure 3. Outlier datasets with degraded segmentation quality for the ascending aorta.  

The image shows three outlier datasets for the ascending aorta with Dice coefficients below the 

lower limit of agreement. Top panels show magnitude images from each outlier with manual (red) 

and semi‐automatic (blue) segmentations at a time point which demonstrates segmentation errors. 

Bottom panels show corresponding phase images at the same time point. Obtained flow volumes 

and Dice coefficients outside the limits of agreement are displayed in a bold font. The outliers 

demonstrate flow volume underestimation during ventricular systole (outlier 9) and underestimation 

of the vessel area during ventricular systole and diastole (outlier 8 and 10, respectively).  

 

 

 

 

 

 

 



 

 

Appendix A: Details on Extracting shape profiles from the training set 

In order to achieve coordinate correspondence, vessel shape changes over the cardiac cycle were 

parameterized by transforming the manual delineation coordinates into radial distances, sampled at 

40 equidistant angles and normalized by the mean radial distance over time. The time resolution was 

resampled to 20 linearly spaced time phases over a cardiac cycle to ensure equidistant sampling of a 

cardiac cycle for all datasets. Shape profiles were stored in a matrix R with size 30x800 (i.e. including 

30 subjects and 40 delineation nodes in 20 time phases) and decomposition of the data into 

orthonormal eigenvectors and corresponding eigenvalues was performed using Principal Component 

Analysis (PCA)[13] of matrix R. This decomposition enables lossless reconstruction of a resampled 

vessel segmentation dataset from the weighted sum of all eigenvectors, according to equations (1‐2):  

 
ݎ ൌ ݉ ൅෍a୧v୧;

୒

୧ୀଵ

  (1)

 
ܽ௜ ൌ ௜ݒ ∙ ሺݎ െ ݉ሻ் ൌ෍ݎሺ݆ሻݒ௜ሺ݆ሻ;

ே

௝ୀଵ

  (2)

 

Here, m denotes the dataset mean shape column vector, ai indicates the eigenvector weight (scalar) 

for eigenvector vi (column vector), r is the fully reconstructed dataset (column vector) and N is the 

number of available eigenvectors (scalar). If a shape profile is reconstructed from a subset of 

eigenvectors the result will be an approximation of the original dataset constrained by shape profiles 

from the selected eigenvectors. Finding the eigenvector weights ࢇ෥ for a subset of eigenvectors from 

equation (2) can be rewritten as a solution to a linear least squares regression problem:  

  ݎ̂ ൌ ݎ െ ݉;  (3)

  ௄ܸ ൌ ሾݒଵ, ,ଶݒ … . ,  ;௄ሿݒ (4)

 
෤ܽ ൌ

݊݅݉݃ݎܽ
ܽ

ݎ̂‖ െ ௄ܸܽ‖ଶ
ଶ ൌ ሺ ௄ܸ

்
௄ܸሻିଵ ௄ܸ

ݎ்̂ ൌ ܫ ௄ܸ
ݎ்̂ ൌ ௄ܸ

 ݎ்̂
(5)

Here uppercase letters represent matrices while lower case letters represent column vectors. VK 

denotes selected eigenvectors (column vectors) with the K largest eigenvalues and ࡵ is the identity 



matrix. This method may be used to apply shape constraints on time resolved vessel segmentations 

of the ascending aorta. However, due to differences in shape variation and motion profiles over the 

cardiac cycle between the ascending aorta and the main pulmonary artery in 2D PC‐MRI images, the 

method described above is not suitable for imposing shape constraints on pulmonary artery 

segmentations. Therefore, the shape constraints were generalized by using only one mid‐systolic 

time phase of the a priori eigenvector data and reconstructing the segmentation of each time phase 

separately according to equations (6)‐ through (9):  

  ௧ݏ̂ ൌ ௧ݏ െ ݉௧;  (6)

  ௄ܸ,௧ ൌ ,ଵ,௧ݒൣ ,ଶ,௧ݒ … . ,  ;௄,௧൧ݒ (7)

  ෤ܽ௧ ൌ
௔௥௚௠௜௡

௔೟
ฮ̂ݏ௧ െ ௄ܸ,௧ܽ௧ฮଶ

ଶ
    (8)

  ௧݌ ൌ ݉௧ ൅ ௄ܸ,௧ ෤ܽ௧;  (9)

 

Here, st represents the segmentation result at time phase t, mt represents the mean a priori shape 

column vector at time phase t, VK,t represents the K eigenvectors (column vectors) corresponding to 

the K largest eigenvalues at time phase t, at (column vector) represents eigenvector weights for VK,t 

and pt represents the shape constrained segmentation result at time phase t. The number of 

eigenvalues in use K was determined from numerical optimization. An estimation of the 

segmentation mask center of mass was needed to convert segmentation node coordinates into radial 

distances before imposing shape constraints. In order to approximate the center of mass of a 

segmentation result containing outlier nodes, all segmentations were eroded before calculating the 

center of mass. 

   



Appendix B: Algorithm implementation details 

Rigid Motion‐Tracking in magnitude images 

The user‐defined delineation was tracked through the image time series by a two‐dimensional local 

cross‐correlation algorithm. An analysis window surrounding the manual delineation extracted the 

magnitude image data from two adjacent time phases. The data was then resampled using bilinear 

interpolation with a factor of 2 and cross correlation was performed by conjugate multiplication in 

the Fourier domain. The spatial shift resulting in maximum correlation was chosen as the detected 

vessel translation between adjacent time phases.  

Active contour deformation model 

The implemented active contour model is based on the original formulation by Kass et al[19] and was 

implemented in part in two previous studies[20, 21]. The active contour uses the following energy 

minimization problem for a given segmentation v(s):   

       

(10) 

 

Here v(s) is represented by a set of equidistantly spaced discrete node points along a closed contour. 

The internal energy term, Eint, imposes shape constraints on the curvature while the external energy 

term, Eext, enables attraction and repulsion from various image features. A local energy minimum is 

found by solving the Euler‐Lagrange differential equation:  

   

(11) 

 

The two derivative terms represent internal and external forces controlling the segmentation 

evolution. The equation is converted into a finite difference scheme in the right hand side of 

equation (11), where U represents the node point coordinates, the stiffness matrix K corresponds to 

internal forces, and F(U) represents forces associated with external image features at node point 

coordinates U. The internal force of the proposed method was set to zero and was replaced by the a 

priori shape constraints described above. The external force for magnitude images was based on 



edge detection while the external force for phase images was based on regional analysis in order to 

identify pixels with high velocity‐to‐noise ratio (VNR). Active contour deformations were performed 

over an optimized number of iterations.  

Edge detection in magnitude images 

The edge detection was implemented as four separate edge detectors using the one‐dimensional 

filter kernel [‐1 2 ‐1] at different orientations rotated 45° from each other, creating one horizontal, 

one vertical and two diagonal filter kernels. Convolution with the filter kernels was preceded by 

horizontal and vertical smoothing of the magnitude images using the filter kernel [0.25 0.5 0.25]. For 

each node point, the active contour model used a weighted combination of the two filter directions 

resulting in the largest and second‐largest scalar product with the local delineation normal vector, as 

previously proposed[20]. Using this method, nodes on the closed curve was attracted to strong 

image gradients along their local normal vectors.  

Region analysis in magnitude images 

The external force of active contour deformations in magnitude images were derived from the 

difference between the magnitude image and the median magnitude value inside the ROI after rigid 

motion tracking in all timeframes.  All pixels deviating from the median ROI value no more than an 

optimized constant times a robust standard deviation estimate (calculated as 1.4826*Median 

Absolute Deviation) of pixels inside the ROI were set to not produce any forces on the active contour. 

Pixels exceeding this threshold were set to produce a local expansion of the active contour while 

pixels with intensities below the threshold were set to compress the active contour. The threshold 

constant multiplier was determined from numerical optimization (labelled as External Region analysis 

force constant (magnitude deformations) in table 2).    

Region analysis in phase images 

The external force of active contour deformations in phase images was based on regional analysis of 

phase images containing a high degree of flow content within the segmented contour. A high degree 

of flow content was defined as pixel values above a set VNR threshold β and images with a high 

degree of flow content were defined as images with a median estimated VNR inside the vessel 

delineation larger than β. The pixelwise VNR was defined as VNR(x,y) = |phase(x,y)|/σnoise where 

|phase(x,y)| denotes the normalized absolute pixelwise phase and σnoise denotes the estimated noise 

standard deviation in the phase images. The noise standard deviation was estimated from pixels 

within the vessel segmentation in phase images with a low degree of flow content. These images 



were identified by calculating the average blood flow velocity within the vessel delineation in all time 

phases, computing the median blood flow velocity over time and excluding the phase image with 

maximum average flow deviation from the median iteratively. The number of iterations was set to 

exclude a fix percentage γ of all images. Pixels of the external force map with VNR values below 

threshold β were set to zero. Remaining pixels were given values mag(x,y)*phase2 (x,y)/σnoise where 

phase2(x,y) was shifted in sign such that positive values corresponded to the main flow direction 

within the vessel delineation and mag(x,y) was the magnitude pixel value which was used to reduce 

erroneous segmentation expansion from pixels in low signal areas such as lung tissue. Only the 

connected flow regions with maximum overlap with segmentations were used as non‐zero external 

forces in order to reduce erroneous segmentation expansion due to flow from adjacent vessels. The 

external force map was normalized to the maximum pixel value in images with a high degree of flow 

content before active contour deformations. The constants β and γ were determined by parameter 

optimization.  
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Abstract  

Purpose  

1) To validate Metric Optimized Gating Phase-Contrast Magnetic Resonance (MOG PC-MR) 

flow measurements for a range of fetal flow velocities in phantom experiments. 2) To investigate 

intra- and interobserver variability for fetal flow measurements at an imaging center other than 

the original site.  

 

Methods  

MOG PC-MR was compared to timer/beaker measurements in a pulsatile flow phantom using a 

heart rate (~145bpm), nozzle diameter (~6mm) and flow range (~130–700ml/min) similar to fetal 

imaging. Fifteen healthy fetuses were included for intra- and interobserver variability in the fetal 

descending aorta (DAo) and umbilical vein (UV).  

 

Results  

Phantom MOG PC-MR flow bias and variability was 2±23%. Accuracy of MOG PC-MR was 

degraded for flow profiles with low velocity to noise ratio (VNR). Intra- and interobserver 

coefficients of variation were 6% and 19% respectively for fetal DAo and 10% and 17% for the 

UV.  

 

Conclusion  

Phantom validation showed good agreement between MOG and conventionally gated PC-MR 

except for cases with low VNR, which resulted in MOG misgating and underestimated peak 

velocities, warranting optimization of sequence parameters to individual fetal vessels. Inter- and 

intra-observer variability for fetal MOG PC-MR imaging were comparable to previously reported 

values. 

 

 

Keywords: PC-MR validation, fetal MRI, Metric optimized gating 
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Introduction 

Non-invasive measurement of blood flow in the fetal cardiovascular system may increase our 

knowledge of fetal cardiovascular physiology and aid in the diagnosis of diseases such as 

congenital heart disease and intra-uterine growth restriction. Currently, the most commonly 

applied method for fetal blood flow measurements is pulsed Doppler ultrasound1,2. The 

technique is widely available, safe, relatively inexpensive and has demonstrated fair 

reproducibility3. Despite numerous advantages, flow measurements by pulsed Doppler 

ultrasound have inherent limitations, including sensitivity to the angle between the Doppler 

beam and the blood flow direction and assumptions of vessel shape and velocity profile shape 

across the vessel lumen are required4.  

Magnetic Resonance Imaging (MRI), a non-ionizing imaging modality considered safe for fetal 

applications5–9, is a viable alternative for non-invasive flow quantification by utilizing phase 

contrast (PC-MR) which has been validated extensively in large vessels10–15 and to some extent 

in small vessels16–19, including validation in coronary vessels and phantoms similar in size to the 

fetal aorta and umbilical vein19,20. Lack of a usable ECG by surface electrodes for fetal imaging 

makes fetal blood flow measurements by phase contrast MR (PC-MR) particularly challenging.  

To overcome the need for a fetal ECG, Jansz et al introduced Metric Optimized Gating (MOG)21 

which has demonstrated reproducibility at 1.5T and 3T22 and low inter-observer variability for 

fetal applications23,24 but validation and variability results published are from a single research 

center. Validation at multiple sites is crucial for wider application. Further, phantom validation of 

MOG PC-MR has not been performed for a range of flow velocities and sensitivity to varying 

signal conditions is unclear. We hypothesized that the accuracy of velocity profiles from MOG 

PC-MR is more sensitive to varying signal conditions than conventionally gated PC-MR.   

Therefore, the aims were to 1) validate MOG PC-MR flow measurements for a range of fetal 

flow velocities using an independent reference standard in phantom experiments; and 2) 

investigate intra- and interobserver variability for fetal flow measurements at an additional 

imaging center.  

 

Materials and Methods 

The study was approved by the Regional Ethical Review Board in Lund, Sweden and complies 

with the Declaration of Helsinki. Written informed consent was obtained from all study subjects 
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and MR imaging was performed at a 1.5T scanner (Aera, Siemens Healthcare, Erlangen, 

Germany) using one 16-channel phased-array chest coil and one spine imaging coil. Image 

processing and measurements, except for MOG reconstruction, were performed in the medical 

image analysis software Segment v2.025.  

 

Phantom validation  

Phantom experiments were performed to validate MOG PC-MR against an independent flow 

reference standard using a heart rate (~145bpm), a vessel diameter (~6mm) and flow (~130-

700ml/min) similar to fetal conditions. A pulsatile flow phantom26 consisting of a servo motor 

driven pump and a flow rectifier connected to a water tank was extended with an outflow nozzle 

submerged in water with an inner diameter (6mm) comparable to the umbilical vein and fetal 

descending aorta during the third trimester27,28. The pump frequency was set to 145bpm and a 

trigger signal was forwarded to the MR system for conventional image gating. 2D PC-MR 

images were acquired in a transversal plane perpendicular to the nozzle tube. Three gradient 

recalled echo PC-MR sequences were evaluated: One MOG PC-MR sequence (Table 1, 

column 2), and two versions of a conventionally gated PC-MR sequence (Table 1, columns 3 & 

4).  

The two conventionally gated acquisitions differed in sequence parameters in order to have one 

set of parameters similar to the MOG PC-MR sequence (Table 1, column 3; Gated PC-MR 

matched) and one set of parameters with improved temporal and spatial resolution, to be used 

as reference standard measurement for velocity (Table 1, column 4; Gated PC-MR velocity 

reference standard). MOG PC-MR was compared to the gated PC-MR matched sequence in 

order to exclude differences in sequence parameter settings as a confounding factor. 

Gating of the MOG PC-MR sequence was performed using a simulated ECG signal with a 

constant 525ms RR-interval in order to oversample the true RR-interval of the pump (~414ms), 

as previously described21. MOG reconstruction was performed using the MOG-Public Software 

v2.7(https://github.com/MetricOptimizedGating/MOG-Public). A square region of interest (ROI) 

11 pixels wide was placed over the phantom outflow nozzle, also covering areas with stationary 

water, and a 2-parameter heart rate model from the original MOG publication21 was used (c.f. 

supporting text S1).  

Velocity encoding (VENC) was set to 150cm/s for the MOG PC-MR sequence and the gated 

PC-MR matched sequence while a VENC of either 150cm/s or 80cm/s was used for the gated 
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PC-MR velocity reference standard sequence, depending on the expected peak velocity. Timer 

and beaker measurements were performed as an independent flow reference standard before 

and after PC-MR velocity measurements to detect potential flow drifts over time. 

PC-MR velocity profiles and flow were obtained from manual ROI delineation. Regions of 

interest from the gated PC-MR matched sequence (Table 1, column 3) were copied to MOG 

PC-MR images to exclude delineation variability as a confounding factor. In order to reduce PC-

MR flow variability due to manual delineations, the phantom nozzle area was measured 

independently by a 3D-bSSFP sequence at 3T for improved resolution (Table 1, column 5). PC-

MR max-min velocity over the RR-interval was calculated as the difference between maximum 

and minimum velocity over a beat. Velocity to noise ratio (VNR) was calculated as peak 

velocities divided by the noise standard deviation while signal to noise ratio (SNR) was 

calculated as the average magnitude signal divided by the noise standard deviation. Noise 

standard deviations were estimated in a separate PC-MR measurement with the pump turned 

off. To investigate the impact of erroneous gating from MOG on PC-MR velocity measurements, 

the MOG PC-MR dataset with highest VNR was reconstructed with pre-set erroneous heart 

rates ranging from 128-164bpm. To investigate the variation of MOG gating due to random 

noise, numerical experiments were performed (c.f. supporting text S2).  

 

Fetal imaging 

Fifteen healthy fetuses (gestational week 30-37) were prospectively included and imaging was 

performed in the maternal left lateral decubitus position. A 2D PC-MR sequence was used for 

flow measurements in the fetal descending aorta (DAo) and the intra-abdominal umbilical vein 

(UV). MOG PC-MR measurements were acquired during maternal breath-holds using a 

simulated ECG signal as described above. Cardiotocography was performed at rest 5 min 

before the MRI examination in eight subjects, showing maximum RR intervals of median 444ms 

(range 413-461ms), resulting in oversampling of 14-27% for MOG PC-MR. Background phase 

correction was performed by subtraction of a first-order polynomial. Two independent 

experienced observers assessed inter-observer variability. One observer repeated the 

measurements for intra-observer variability. Noise standard deviations in the UV and DAo were 

estimated by using a noise prescan which was integrated in the PC-MR acquisition, with a 

previously validated algorithm29.  

Statistical analysis 

Bias and variability of PC-MR measurements were determined using modified Bland-Altman 
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analysis30 with error percentages calculated as differences between two measurements divided 

by the reference standard measurement. Coefficient of Variation (CV) for intra- and 

interobserver variability were computed as the sample standard deviation of differences 

between measurements divided by their sample mean. 

Results 

Phantom validation 

Timer and beaker flow measurements ranged between 127-701ml/min. The maximum 

difference in timer and beaker flow before and after PC-MR measurements was less than 

13.1ml/min (1.86%), indicating stability of the flow reference standard measurement and low 

pump stroke volume variation.  

Gated PC-MR velocity reference standard measurements 

The maximum flow difference between the gated PC-MR velocity reference standard sequence 

and timer and beaker was 9.6ml/min (2.9%), suggesting good agreement between gated PC-

MR flow and timer and beaker flow. Max-min velocities for all pump programs ranged between 

68-143cm/s.  

Gated PC-MR matched sequence measurements 

Maximum flow differences compared to timer and beaker increased using the gated PC-MR 

sequence with sequence parameters similar to the MOG acquisition (-23.9ml/min and -6.6%). 

Max-min velocity bias and variability compared to the gated PC-MR velocity reference standard 

sequence was -4±2cm/s (-3.7±1.1%), indicating good agreement with the velocity reference 

standard.  

MOG PC-MR measurements 

Estimated pump frequency from MOG reconstructions ranged from 130-150 bpm and resulted 

in error ranges -16 to -2.3 bpm compared to the true pump frequency (Table 2, row 3-4).  

Velocity profiles from MOG PC-MR and gated PC-MR sequences are shown in Figure 1. MOG 

PC-MR velocity profiles closely resembled gated PC-MR velocity profiles except for the two 

pump settings with low flow and velocity. At all pump settings, MOG PC-MR underestimated 

max-min velocity compared to the gated PC-MR sequence with similar acquisition settings, with 

bias and variability -23±42cm/s (-27.5±53.0%). Figure 2 shows a comparison between PC-MR 

and timer and beaker flow. MOG PC-MR overestimated flow at the pump setting with minimum 

timer & beaker flow (18.8%) and underestimated flow at the pump setting with maximum timer & 
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beaker flow (-9.1%). Maximum difference in flow between MOG PC-MR and timer and beaker 

was -63.8ml/min (18.8%), shown in Table 2, row 3-4.  

Low errors in estimated pump frequency and max-min velocity from MOG were found for the 

two pump settings (Table 2 row 2-3) with VNR between 5-6. For the two remaining pump 

settings (Table 2 row 4-5) with lower VNR 2.4–3.7), errors in estimated pump frequency and 

max-min velocity increased. 

To investigate the underlying cause of the two outlier cases (Table 2, row 4-5), new MOG 

reconstructions were performed using different reconstruction settings for increased noise 

robustness. A constant heart rate was assumed, with a search step of 2 bpm and the MOG ROI 

width was reduced from 11 to 3 pixels, covering only the phantom outflow nozzle. The new 

MOG reconstructed velocity profiles are shown in Supporting Figure S1. For the pump program 

with timer and beaker flow 253ml/min the new reconstruction matched the reference velocity 

profile. The pump frequency error was reduced from -16bpm to -5.8bpm, and max-min velocity 

error was reduced from -51.9% to -5.4%. For the pump program with timer and beaker flow 

127ml/min, the new MOG reconstruction did not resemble the reference velocity profile and the 

max-min velocity error from MOG remained large (-46.8%). Supporting animations S1-S6 show 

PC-MR images after MOG reconstruction at all pump settings.  

 

Figure 3 shows the relationship between errors in MOG heart rate estimation and errors in MOG 

PC-MR max-min velocity, indicating that a MOG heart rate error less than approximately 3bpm 

was required to achieve a max-min velocity error lower than 30%. Results from numerical 

experiments are shown in Supporting text S2 and Supporting table S1.  

 

Fetal imaging 

Supporting figure S2 shows an example of a fetal MOG PC-MR flow measurement. One 

umbilical vein case was excluded due to major fetal movement. For interobserver variability, two 

other umbilical vein cases were not delineated by observer two due to challenging image quality 

and were excluded from interobserver analysis. Diameters for the fetal descending aorta and 

umbilical vein ranged between 5-8mm and 5-9mm. Pulsatility was shown for DAo but not for UV 

after MOG reconstruction in all subjects. Flow ranged between 546-948ml/min in DAo and 181-

606ml/min in the UV. Intra- and interobserver variability were for DAo 7±83ml/min 

(bias±1.96SD) and 55±263ml/min, and for UV 9±70 ml/min and 56±115ml/min, respectively 

(Supporting figure S3). Intra- and interobserver CV for Dao were 6% and 19% and for UV 10% 
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and 17%. Noise standard deviations were for DAo 7.5±3.1cm/s (mean±SD) and for UV 

9.6±3.4cm/s.   
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Discussion 

This study presents phantom validation of the Metric Optimized Gating (MOG) method for a 

range of flow values similar to the fetal descending aorta and umbilical vein, together with inter 

and intra-observer variability for fetal MOG PC-MR measurements. Low bias was found for 

MOG PC-MR flow measurements in phantom experiments, although velocities were 

underestimated for low VNR. Inter and intra-observer variability for MOG PC-MR imaging in vivo 

were comparable to previously reported values23. 

 

Our phantom validation adds data compared to previous MOG validation studies21,24 in two 

specific areas. First, phantom experiments in the current study included timer and beaker flow 

measurements as reference standard. Second, the flow phantom setup in the current study 

enabled validation for a range of flow velocities, a pump frequency and a nozzle inner diameter 

similar to fetal vessels.  

 

In the phantom experiment MOG PC-MR underestimated flow at high flow values and 

overestimated flow at low flow values compared to timer and beaker. MOG PC-MR flow 

underestimation at high flow probably originates from the observed underestimation of velocity 

peaks. The MOG PC-MR flow overestimation at low flow on the other hand, may be caused by 

reduced flow pulsatility due to MOG misgating, leading to near constant and positive velocity 

over the RR-interval.  

 

Erroneous MOG PC-MR velocity profiles at low flow and velocity can likely be attributed to 

either limited VNR or the specific MOG reconstruction settings in use. The MOG reconstruction 

errors found at pump settings with low velocity partly originated from MOG reconstruction 

parameter settings since accurate velocity profiles were obtained at one of the outlier cases 

after re-tuning of MOG reconstruction settings. The initially selected 11 pixels wide ROI was 

larger than the tubing diameter, covering both areas with stationary and flowing water. The 

increased MOG accuracy using a reduced ROI for reconstruction is likely related to exclusion of 

regions containing stationary water, enhancing the pulsatile flow component in the ROI average. 

Of note, the performed tuning of reconstruction settings in the phantom validation is not a 

feasible option for in-vivo fetal applications since the assumption of a constant heart rate is not 

realistic for fetal imaging. Numerical experiments demonstrated that VNR levels similar to that 
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found for the two MOG outlier cases gave rise to errors in estimated heart rate in the same 

range as for errors observed in the phantom study, which is in line with our hypothesis.  

 

Residual background phase error was likely not a major confounding factor in the phantom 

experiment since low bias and variability was found between timer and beaker flow and gated 

PC-MR flow.  

 

The finding that MOG PC-MR is more sensitive to VNR compared to conventionally gated PC-

MR should not discourage the use of MOG PC-MR in fetal MRI, but rather warrants optimization 

of sequence parameters to each fetal vessel of interest. Further work is needed to determine 

which specific sequence parameter optimization is best suited for improving MOG 

reconstruction robustness.  

 

For fetal imaging, flow volumes and intra- and interobserver variability in the fetal UV and DAo 

were comparable to previously reported values23. For analysis of MOG reconstructed PC-MR 

images the main source of variability is likely attributed to differences in vessel delineation. The 

interobserver variability, being slightly higher than intraobserver variability, indicates that 

delineation of fetal quantitative flow images poses additional challenges compared to 

corresponding analysis in children and adults. This may in part be related to lower image quality 

due to limited spatial resolution but also due to fetal movement and residual gating error after 

MOG reconstruction.  

 

Velocity-to-noise regimes for in-vivo fetal MOG PC-MR measurements were further analyzed as 

phantom validation showed MOG misgating at low VNR. As velocities were measured by the 

investigated MOG method in this study, VNR in DAo and UV could not be directly determined. 

However, noise standard deviations were estimated in acquired images without MOG 

processing from the current data set, and combined with peak velocities in the corresponding 

vessels assessed in a previous study31, in which fetal PC-MR was gated using a doppler 

ultrasound device. The VNR regimes for the fetal DAo and UV was thus estimated to 8.0 and 

1.6, respectively. These values are similar to VNR regimes in the current phantom validation, 

which resulted in both successful (DAo VNR=8.0) and failed (UV VNR=1.6) MOG 

reconstructions. The estimated VNR difference between DAo and UV further warrants sequence 

parameter optimization to individual fetal vessels and expected velocities for accurate MOG PC-

MR. 
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Limitations 

Phantom studies did not include heart rate variability. However, this has been evaluated 

previously21.  

The present study did not investigate the accuracy of background phase correction in fetal 

imaging, which may be challenging due to lack of stationary tissue adjacent to the vessel of 

interest. Furthermore, the currently used PC-MR sequences for fetal flow measurements result 

in approximately 4-5 pixels across the vessel lumen of the intra-abdominal umbilical vein and 

the fetal descending aorta during the third trimester. Although considered sufficient for accurate 

PC-MR velocity measurements16, limited spatial resolution may cause bias in flow 

measurements due to partial volume effects influencing ROI delineation.  

Cardiotocography was not performed in all fetuses. However, the simulated RR-interval of 

525ms used for MOG PC-MR corresponds to a fetal heart rate of 115bpm, which is lower than 

expected in healthy fetuses.  

 
Conclusion 

Phantom validation showed good agreement between MOG and conventionally gated PC-MR 

except for cases with low VNR, which resulted in MOG misgating and underestimated peak 

velocities, warranting optimization of sequence parameters to individual fetal vessels. Inter- and 

intra-observer variability for fetal MOG PC-MR imaging were comparable to previously reported 

values. 
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Table captions 

Table 1. MRI sequence parameters in use.  

  

MRI 

sequence 

parameters 

Phantom imaging:  

MOG  

PC-MR 

Phantom imaging:  

Gated 

PC-MR 

matched 

Phantom imaging:  

Gated 

PC-MR 

velocity reference 

standard 

Phantom imaging:  

 

3D-bSSFP  

Fetal imaging:  

MOG  

PC-MR 

Flip angle [°] 20 20 20 48 20 

TE/TR [ms] 2.8/5.1 2.8/5.1 3.2/5.6 3.5/7.0 2.8/5.1 

VENC [cm/s] 150 150 150 or 80 n/a 150 

Acquired 

temporal 

resolution 

[ms] 

30.5 30.5 11.2 n/a 30.4 

Acquired 

voxel size 

[mm3] 

1.3x1.3x5 1.3x1.3x5 1.0x1.0x5 0.4x0.4x0.4 1.3x1.3x5 

Views per 

segment 

3 3 1 single shot 3 

Acquisition 

time [sec] 

29 29 116 638 29 
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Table 2. MOG PC-MR errors in pump frequency and max-min velocity (columns) for each pump 

setting sorted according to declining timer & beaker flow (rows). The two pump programs with 

low timer & beaker flow have larger MOG errors in both pump frequency and max-min velocity 

compared to the two pump settings with high timer & beaker flow.  

 MOG  

Pump frequency error 

[bpm] 

MOG Max-min 

velocity error [%] 

MOG Max-min 

velocity error [cm/s] 

Pump program #1 

Timer & beaker flow: 701ml/min 

Gated PC-MR VNR: 6.0 

Gated PC-MR SNR: 55.2 

 

2.4 

 

-9.8 

 

-14.1 

Pump program #2 

Timer & beaker flow: 452ml/min 

Gated PC-MR VNR: 5.0 

Gated PC-MR SNR: 53.9 

 

-2.3 

 

-5.6 

 

-7.1 

Pump program #3 

Timer & beaker flow: 253ml/min 

Gated PC-MR VNR: 3.7 

Gated PC-MR SNR: 53.0 

 

-16.0 

 

-51.9 

 

-50.6 

Pump program #4 

Timer & beaker flow: 127ml/min 

Gated PC-MR VNR: 2.4 

Gated PC-MR SNR: 47.0 

 

-15.6 

 

-53.4 

 

-36.6 
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Figure captions 

Figure 1.  

In the phantom experiment, MOG PC-MR underestimated max-min velocity at pump settings 

with low flow (bottom panels). The four panels show velocity profiles from the three evaluated 

PC-MR sequences (Table 1) at four pump settings with different flow. For the two pump settings 

with largest flow (top panels) MOG PC-MR (dotted lines) and the gated PC-MR sequence with 

similar acquisition parameters as MOG PC-MR (open triangles) were both in good agreement 

with the gated PC-MR velocity reference standard sequence (solid lines), while MOG PC-MR 

underestimated velocity peaks at the two pump settings with low flow (bottom panels). 
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Figure 2.  
Metric Optimized Gating PC-MR shows low flow bias and high flow variability (bottom panels). 

The panels show modified Bland Altman analysis comparing PC-MR flow measurements with 

timer and beaker (T/B) flow in absolute volumes (left panels) and percentage units (right 

panels). Open circles indicate individual data points, solid lines indicate bias and dashed lines 

indicate bias±1.96SD. The gated PC-MR velocity reference standard sequence (top panels) 

showed good agreement with timer and beaker flow with low bias and variability. The gated PC-

MR sequence with similar acquisition parameters as MOG PC-MR (middle panels) also 

demonstrated low bias and variability, while MOG PC-MR (bottom panels) resulted in increased 

flow variability compared to both conventionally gated PC-MR sequences (top and middle 

panels).  
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Figure 3.  
In the phantom experiment, MOG PC-MR max-min velocity measurements were sensitive to 

heart rate errors from MOG reconstruction (x-axis). The y-axis shows the error in max-min 

velocity from MOG PC-MR compared to gated PC-MR for the pump setting with largest VNR. In 

the phantom experiment, a heart rate error less than approximately 3bpm was required to 

achieve a max-min velocity error below 30%.  
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Supporting information legends:  

Supporting Figure S1.  

In the phantom experiment, re-tuned MOG reconstruction settings resulted in accurate MOG 

velocity profiles in one out of two outlier cases (top panel). The figure shows Metric Optimized 

Gating (MOG) velocity profiles for the outlier cases both before (dotted lines) and after (solid 

lines) re-tuning of MOG reconstruction settings, together with conventionally gated PC-MR 

velocity profiles (open triangles). The remaining erroneous MOG velocity profiles (bottom panel) 

are likely caused by limited peak velocity of the underlying flow relative to the PC-MR velocity 

encoding in use (150cm/s). The re-tuning of MOG parameters was performed to investigate the 

cause of obtained velocity errors from MOG and is not feasible for in vivo fetal applications. 
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Supporting Figure S2.  

Magnitude (A and D) and velocity-encoded (B and E) MOG PC-MR images and corresponding 

typical flow curves (C and F) for the fetal descending aorta (top row) and umbilical vein (bottom 

row) with the respective vessel delineated in blue.  
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Supporting Figure S3.  

Bland-Altman analyses of intra- (left panels) and inter-observer (right panels) variability for flow 

measurements in the fetal descending aorta (DAo; top panels) and umbilical vein (UV; bottom 

panels). The dotted lines indicate bias and the solid lines indicate bias±1.96SD.  
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Supporting animation S1-S2.  

MOG PC-MR magnitude (left panels) and phase difference (right panels) image time series from 

pump settings 701ml/min and 452ml/min in the phantom experiment resulted in accurate 

pulsatile flow and phase difference images without severe misgating artifacts after MOG 

reconstruction.  

Supporting animation S3-S4.  

MOG PC-MR magnitude (left panels) and phase difference (right panels) image time series from 

pump settings 253ml/min and 127ml/min in the phantom experiment resulted in clearly visible 

misgating artifacts in phase difference images after MOG reconstruction, indicating inaccurate 

heart rate estimation from MOG.  

Supporting animation S5.  

With the modified MOG reconstruction settings, MOG PC-MR magnitude (left panels) and 

phase difference (right panels) image time series from pump setting 253ml/min in the phantom 

experiment resulted in accurate pulsatile flow and phase difference images without severe 

misgating artifacts after MOG reconstruction.  

Supporting animation S6.  

With the modified MOG reconstruction settings, MOG PC-MR magnitude (left panels) and 

phase difference (right panels) image time series from pump setting 127ml/min in the phantom 

experiment did not result in accurate pulsatile flow, indicating inaccurate heart rate estimation 

from MOG. However, only subtle misgating artifacts were visible in phase difference images, 

indicating that misgating artifacts alone may be insufficient for determining the accuracy of MOG 

reconstructions.  
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Supporting text:  

Supporting text S1: Description of the MOG optimization algorithm 

The optimization algorithm used in Metric Optimized Gating, which was originally proposed by 

Jansz et al1, uses a 2-parameter piecewise constant heart rate model which assumes that the 

heart rate during a PC-MR acquisition is changing once, in the middle of the scan when the 

central k-space line is acquired. With this heart rate model the optimization algorithm tries to find 

the two heart rates which results in the maximum time entropy (defined in 1) within a user 

defined quadratic 11 pixels wide region of interest (ROI) in PC-MR images where the phase 

difference signal has been multiplied with the magnitude signal for noise robustness. This 

method assumes that misgating results in reduced pulsatility and has been shown to be robust 

to moderate heart rate variability1.  

 

In the current study, two versions of the MOG algorithm was used: 1) The original algorithm 

using the 2-parameter piecewise constant heart rate model and a 11 pixels wide ROI covering 

both the vessel of interest and immediately surrounding stationary regions was applied to all 

phantom and invivo MOG PC-MR datasets and 2) for two MOG datasets from the phantom 

study a modified version of the MOG algorithm was also applied using a 1-parameter constant 

heart rate model and a 3 pixels wide ROI which only covered flow regions within the phantom 

outflow nozzle in order to improve noise robustness by increasing the maximum time entropy 

during MOG reconstruction. The purpose of using the modified MOG algorithm was to 

investigate noise sensitivity of MOG during the phantom experiment. However, the modified 

algorithm is not suitable for use invivo since the assumption that the fetal heart rate is constant 

during a PC-MR acquisition is not realistic and the small ROI size in use which is defined in the 

PC-MR images before gating may miss the vessel of interest completely for vessels with large 

inplane motion during a fetal heartbeat.  

 

 

 

Reference:  

1. Jansz M, Seed M, van Amerom J, Wong D, Grosse-Wortmann L, Yoo S, Macgowan C. Metric 

optimized gating for fetal cardiac MRI. Magn Reson Med. 2010;64(5):1304–1314. 
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Supporting text S2: Numerical experiments using computer generated noise 

Methods:  

In order to evaluate the effect of noise on the MOG algorithm in the phantom experiment, 

computer generated zero mean Gaussian random noise was added to phase difference images 

from the MOG PC-MR dataset with largest velocity to noise ratio (VNR), corresponding to the 

pump setting with timer and beaker flow 701ml/min. The standard deviation of computer 

generated noise was chosen such that the resulting VNR had similar orders of magnitude as 

VNRs observed in the phantom experiment, ranging from 2-6. For each VNR case the mean 

and standard deviation of estimated heart rates from MOG was estimated from 500 repetitions. 

The MOG heart rate estimate from the phantom dataset without added noise was used as 

ground truth for simulations.  

Results:  

Supporting Table S1 shows MOG heart rate mean±SD and ranges from numerical experiments 

at different velocity to noise ratio (VNR; range 2-6). The MOG heart rate errors associated with 

failed MOG reconstructions in the phantom experiment (-15.6 bpm and -16 bpm) were within the 

range of heart rate errors found in numerical experiments (-17.5 bpm to 12.5 bpm) at similar 

VNR, indicating that the two cases for which MOG failed to reconstruct accurate velocity profiles 

in the phantom experiment may have been caused by insufficient VNR. 
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Supporting tables:  

Supporting Table S1. The variation of estimated MOG heart rate due to noise increased with 
decreasing velocity to noise in numerical experiments. The observed heart rate errors from 
MOG associated with inaccurate velocity profiles in the phantom experiment (-16 bpm and -15.6 
bpm) were within the range of MOG variation due to noise for simulated VNR 3 (bold), indicating 
that inaccurate MOG velocity profiles in the phantom experiment may have been caused by 
insufficient VNR.    

Simulated velocity to noise ratio Variation of estimated MOG heart rate due to 
noise mean±1.96SD (range) [bpm] 

6 -0.4±2.7 (-4.5 to 12.5) 

4 -0.6±5.5 (-17.5 to 12.5) 

3 -0.3±8.9 (-17.5 to 12.5) 

2 -1.5±12 (-33.5 to 26.5) 

  

 


