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- ON THE MATRIX RICCATT EQUATTON '

- K. Martensson :

ABSTRACT
; Properties of the algebraic equation

. AT+ xa - xBQ;IEX Q= 0

- are studied for arbitrery nonnegative d: inite and positive
. definite matrices Q; and Q). The possil L number of stationary
- ‘ solutions of the Riccati equation is e:tablished. The theory -
for linear systems with quadratic loss is then generalized,
, and numerical ‘consequences are studied. . . o
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L. IH I‘RGDUC‘T TOH

The matrix Riccati equation appears in many optimal control and
filtering problems. In this paper the Riccati equation is studied
f£rom an algebraic point of view, and the results are applied on
optimal comtrol of linear time invariant systems with quadratic
lcss, Consider the system '

E) = axct) + BuCe) x(tg) = %g (1.1
at :
where x is the n~dimensional state vector, u the r-dimensional
control vector, A and B matrices of dimensionn x n and n x r.

It is desired to dstermine a control. u(t), so that the loss func-
tion ' o,
tg ' '

T

P (tf)ng{(th + f { (a)Qla(s) +u (s)Qzu(s)} ) A'_(lg_,Z)
. G o

is xmnimlzed. Qo and Q1 are symmetric nomsgata.ve defmzte nxn
m@‘tmc:as, and Q) is a symmetric poditive definite r x r matrix.

t is well m"n [5] that the optimal Qontrol is given as. a linear
feadhaeé' frcm the sta‘i:e of the system B

where
wosgtefsw . am

and S(t) is the solution of the Ricecati efuation |

_ st
dt

ATS(t) + S(DIA - S(EIBQ;'BTS(E) + - (1.5)
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4

@ boundary condition is given at t = te @8

8leg) = Qg | (2.5}

A specisl case of great interest is what is called the regulator
problem. The task of the control is then to minimize

3= 1 (e)qu(s) + ul(s)Quuls) as . (L.7)

]
ey §

Introdueing centrollability or stabilizsbility conditions on the
system [A, B], this can be considered as the limit of (1.2) as
tgr - [5]» [8]. The optimal control then is a linear time in-
varient feedback

w

ultd 2 - L) : ‘ (1.8)

where

L=QEs '. o aw
‘ ' N\

and S is a symmetrdic nonnegative dafinite molution of the statio-
nary Riceati equation | | |

A's + s seplEls g0 N (1,10

If an chaepvability criterda is imposed on the pair [C, Al, where
Q, = ¢'C and rank € = rank Q;, the uniqua solution S of (1.10) ie
positive definite, and the optimal system

LD o (a - BLIRCE) - - aaw
at

ia asymptotie stable 51, [6]. 1f [c, A] is just detectable, that

*

is unstable woden ave cbhoerveble, the optimal system is still asysg-
tetic stable, but the unique nomnspative definite soluticn of (1.217
is not necessarily strictly positive {8].
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In this peper ve will comsider the Riccatl eguation and the opti-

mal regulator under the move gomeral ossumption that Ql is &n ar-
bitrary nonnegetive definite symetrde mateds, It will be shown
that the cbeerwebility or datectebility condition may be relawed,
and that the Riccati equation has soma very nice ungynloited pro-
perties, o

In section 2 the alémbm,m agquation (1.10) is ﬁ:a%“dﬁmﬁ frem an
algsbraic point of view., A general form of all possible matrix
soluticns is proved in 2.1, and in 2.2 the hemmitian and real sym-
metric soluticns are sorted out. These ssctions are generalizations
of the results presented by Potter [1]. In [1] the Euler matrix was
assumed to have distinct eigenvalues, whilse cur results hold even
for multiple eigenvaluss, This wes found necessary since distinct
eigenvaluss restricted the pessible choices of the ariteria matri-
ces Ql and Q52 The effect of noncontrollable and mn&wemam.e
modes is considered in 2.3, and in 2.% conditions for ‘t:he eﬂstence
of @evegal nrmegsa‘twa definite sg:algtmns are gw@ﬁ. Similar to sec-
tion 2.1, theorems 7 and 8 in section 2.4 arve genevalizations of: [ﬁ
to the multiple &l@@m@lﬂ%ﬂ G&@ ) '

In ggﬂtz&@n 3 we votum to the @?Liﬁ&i ragulater gm%?%:ag and in 3.2
neq uppay and lowor & priond bowndsfer (1.5) sre given. In 3.3 cen-
| YETEenes propartice ave dincusned and rrosfs ave given. for 3@%&,‘ spe-
cial cases. Although casputatisnal results :wémﬂta thet . c:ss:«f:xa orgence
holds wndop pove ﬂ%@%@ aesvinrtions about the @r;fefﬂm‘a matrioes QQ,
Qi and Qy4 we have f68 goscsndsd to plve a genewal proaf of conver-
ganea. That a stred w%atf@m temveddon of the Ricooti equation
may be an unatable proceduwna, even in whot in considered &a the
-stable direstlion, iz illust rered in ., end it s shom that enly
cne of the stationsry solutiens is o rumerdesl etebla selution. Fi-
nally, in 3.5 end 5.6 the Jiffevent rommepntive dafindte solutions
are given o phynienl inver ntien, ond the msarm}, ‘oontrel *th@f;gﬁs
for: Linean systems-with quednstie loss is generelired to cover arbi-
trary nonnagotive. eafinite pedrices 5 0y

?
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), 1. CENERAL FORM OF THE S0LU TIORS

Tn this section we will consider explicite expressions for the golu-
ticn of the quadratic matrix equation

Ty x4 ~ XBQ;BX ¥ Q = 0 (2.1)

In [1] it is ghovm that if the 2n » 2n matrix

H
A -EQG . |
E =& | (2.2}
T
E‘ ‘"Ql : 'l"é% . ' ‘ ‘ v

has a disg sonal. J@rﬂ@a form, it is possible to express % in terms of
the eigenvectors of E. Tho m@tmc*'mn that E must have a dmg@na,)

- Jordan f@"m may be importent from a pure computational point of view,
bk m&:%, tn ghoun to be an unnscessary pestriction for the result to
heid. We will use the notation

AN

for 'ﬁ:?;m .fznua:gmnsmml. algenvoctor of 7 corpesponding to the elgen-

value A g0 Ay is paytitioned into "::%%:3 n-dimenaional veclors b. and ¢

vhich mrsmmte the upner end lower perts of a;. If a5 lﬁ am eigen=
*&‘a,

value of miltiplicity k, the o yeetronding @aigm*@ctcm are defined
28 the mmtmx ial esmbmw of . N

#
o]

(B = Xs I:ul =
(B - Xiilaz 3

€E§ = zi:i}gi’gﬁ &

%



5.

Q15 Bgy sees By will be called the generalized eigenvectors, and

o ay is the eigenvector of renk i corresponding to the multiple eigen-
valua A, i* The eigenvectors of E, if genereted accoz*dmg to (2.3) in
tha c;asa of multiple eigenvaluss, span the space R s and the trans-
formation

i
where
T = [al, cees a:.'n]

will b;ﬁng E on Jordan block form.
Following [1] we then have

Theorem 1. l'

Each sclutmn of (2 1) ean be axpress@d as

P £ & {(31 w00 cn] [blcoubn]-l ‘ ’ ‘ : izgl’}} |
. I N
where the inverse is assumed to exist for certain c‘znbmatiom @f

* eigenvectors. Conversely, if. [bl ces bh} is n@t@mm, then

X = [ci cn] {bl W‘;f‘bn]',‘l
satisfies (2.1)..

Proof:
Suppose X is a solutien of (2.1) and introduce

G = A - BQ;'8'X - | (2.5

(In the optimal control 1:»2»@133.#:'5&9 is the closed loop system matrdoe, )
Premultiply with X
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iy
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L]

and substitute in (2.1)

‘o = L Ak ' -
Xgﬁ ws A P e Ql {ma?}
Let S be a transformation thet brings € on Jorden form. Then

sleg=g

Furthep, let

(2.8)
X = pg7k
) - \
Substitute into (2.6} and (2.7).
ST = AS - BQSIRR
BT =~ AR - Q8
5] af
. .
s A RO, BT [ sl | [s]
Ld] s i: g; % (2.9
IR

b
e




.
%
-
.
éﬁ%
Z
.
.
_
.
%
.
%
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.

i@t&lg cons anbe‘the colums of the 2n x n matrix
is
B

J consists of the eigenvalues of G, and if A; is an eigenvalue of
renk one we then have

a;k; = Eag

and then A, is also an eigenvalue of E, and a, is the corresponding
eigenvector. Now let A; be of rank kX > 1. (2.9) then yields

1% .
@ *ohglgy, = Eag,,
Ameed ¥ Ml T B
N
[ 4
(E‘“ Ail)ai*l = ﬁi (2-10)
E - MDaygey ® 8

Since S is assumed nonsingular, ai,‘.i. = 1 ..o Ny cannot be identical
to the null vector, and thus the system (2.10) must have nontrivial
solutions. But this holds if and only if A is an eigenvalue of mul-
tiplieity & to E, and then Biy eeoy Bgg , EFS the corresponding ge-
neralized eigenvectors of E [2]. Then the columns of the composed
matrix ‘




Tt e e e el e

R

,.mu..ma
A w
]

econstitute the eigenvectors of E.

Finally from (2.8} foliows

¥ = [cl ee cn}ﬁl ‘o bn]”;

The extension to non-diagonal Jordan forms cbviously restricts
the possibilities to compose a solution out of 25 arbitrary eigen-

vectors. Suppose A i is an aigenvalug of E with mﬁltiplicity k. If

the generalized eigenvectop Asar of rank k constitute one column

. in the matrix

rs

H

then the eigenvectors Biy eves By 0 with rank i’, veesy k-1 must

@

also be columns in

[s
Consequently the & pricri uppsr limit for the possible number of

solution of (2.1) is large@ when E is assumed to have a diagonal
Jordan form.

For the sake of simplicity we have assumed the eigenvectors in

o

o appaar in increasing rank. To prove that the order is nonessen-
tial, let the solution X be camposed in the following way

X [@i ¥ c&i&é, "”;‘cﬁ}{b}. e byby e "br;];l.'
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-
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.

and assupe that

o,

[« R ]
- e - :

-1 _
[1::1 ver Dby oe bn]

o

Cy eoe
g i

vhere 4, k = 1 .,, n, are n-dimensional row vectors.

It is easy to wverify that

and the solutions will then be the same.

[C’l"“ ci'cj cn][b bib. b] 1“

[l..,cc. ;..c][bl...bbi..,b} -

The second half of the ‘thagatiaxris'pmvgd by carrying out the steps
above in reverse order, which campletes the proof of theorem 1.

The restrictions imposed by a nona-dmgor:al Jordan form is illustra-

 ted in the follewing exemple.




G e

.

GBS

1 1 ' '
(2 o) 1 )Y s W
4= ’ ' = ’ »
, -2 0j(2 32 6 -lj -
Hmever, X daes not satisfy the equation

10.

The eigenvalues of E are +1, +1, -1 ‘and -1, and the corresponding
algenvectors - ‘

1 [«lv (1 1
.12, 2 vy, 1 - 13 2 3/2
a1t L) 821 1 | ° |-l T ol P Be-1 T g

-2 { 0 0 0
Suppose &) .4 and ai:-al ave combined. Then

T+ 3 - xmg”’xwl
and thus is not & solution.

From the pmof of theorem 1 we extmz;t the following pmpert s of
the closed loop system matrix G.

be eigenvectors of

A -Bg;teT

|
- N




S R s R SR S e A

3Ls
- 3 ’ = w b I - @.}
cerresponding £0 Ags cees Ao IEH = o, Lo Sl [P oo ﬁnl .
, e b ]
. is a solution of (2.13, m@“ﬁ %lg avssy % gre elgswvolung of

A - 5{221&?& and bl’ cse s b eve the corresponding elgenvantors.

Proof:
The corrollary followe dmmediately i‘“‘%’i ¢he fact that J is the Jop-
dsn form of A - E{}gls?}{ and "% & g}» wes B ] is tha tmgfmﬁm;m

. matri.

. 8ince the mﬁtmm Ay By Ql mé. G,, sre sssumed to be veal, it is -
“trivial that the eigenvalues of E are gymmetric with vespect to the

real exis, Dut it dis a&ﬁy o prove *:h@ %:z’*%;e ave symmetric with'

pespact to the imsginax 7y arie too {3]

Then if A ie-an @;ﬁm@‘m @f By} (2; is the complex conjugste af A

“A and. *h are azgﬁwamm of £ too. If E haa no pure-d &gﬁn@ty eigen-

%il&«@% it in then pos b‘fe‘z to find n &g@ﬁm}.m with mw&tw& real
parts, and mmvw%é tﬁw 21} see b =1 exigts, it is possible to find

. & solution X a::r? (2.1} such thaz t’ﬁe clm;ead leop systsm matrix

A - BQELBT}' ia. asgﬁﬁgawizw stable,

2,2. HERMITIAN AND. REAL SYIMMETRIC SOLUTIONS

Hewt we concentrate upon thosa solutions X of (2.1) which has "thé;ﬁz}
property that they are hermition. From [1] we have tha follewing
mmu |

Iet a5 voey @r ba %@g@m@w r¢ of E corresponding to eigenvalues
-3 .

Ags sens kng eng assume that g‘i’sl ces b

enigtd, If Aj % - Ak
i §fj$ k- £ ﬂg then

A
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Tha following rroof iz o genovalizatien of the

dipgennl Jordan cese. Lat

proof in [1] to the

Lo P {E}l reo Ezgf {@1 Q:x_] ‘ ) . {2.11)

=

APl

and it vemains to pyovs that P is hemitian. Let T be the 2n x 2n
matrdn

whera [by o E.::x&}# is the gﬁfg@iﬁt of [bl cs« by]. Then

=4

L)

On

Sines B is Hewilvonian [4] it is then easily verified that

AN
E' $T =0
!?m@ ﬁé’wl} we have
& B, : &
o
e 5;@1 - g, @ Ef&é%;g
f‘? BN E & j
ek é:{éé‘ }}ié % 0. Then |
. el B e ' : o
2 : a6 m A v :
j g}%n & %Ri (Aﬁ@jé%g{ + lgﬁj‘fé’%) qg.}g}




i3.

If E is assumed to have a general block diagonal Jordan form

'ija‘gf éaes not necessarily equal %ET gsince a, may be of rank
- 4 * . 4
larger than one. Then consider the different possibilities that

may occur.

Ry b -y and Bay 2 dgag, By = hdye

Then

Py = By = By ¢ MO HEE ey + diTEa) =
= (¢ Ak)'l%ﬁaTT + TEDa, = 0

and thus ?ik = §kj’

3 Eg‘i £ 4 g o = 'ﬁ. » P
Zaj o M and Eé%j, }‘jaj but {E :akl)ak 8.1t Ak then is a
rultiple eigenvalue, and & generalized eigenvector of rank largen

than one is used to determine the solution X.
1, #.T - .
Py ® (Ai ) (ajE‘. Ta,, + ajTEak - a‘jTak-l) =
o 3 “l * T Liar s ol -
(Aj + Ak) {@jiz T '*ﬂ ﬂ:)ak - aj"ia%;_,};) =

% -1 # '
beg . %‘ 3.

Analoguous to (2.12) 'this is eguivalent to

b Bt

o = \g ? & "2 b #9 FE o
ij ij (Aj 4 3\3{) (Aj@ira%:_'l % )qkaniték_l)

if & , is of rank one, then according to A, Pyx * f»,(:} Is the renk
higher than one, the procedure above is repeated, say m times, until

., = =2 L1 =10, e
b k ij (-1) (F\ﬁ k2 hk) aj'la}t»m




-

and & . is of rank one. Then p., = P. aecording to case A,

S Tl

# - Ak @{j (E had njz}ae = E’it“q{g {Z sl } T} = B ’I‘ié‘ iu Eﬁh }’a
and Ak are assumed to be multiple eig uﬁ&‘gzl& 5, BTl &, ) &, &K
N
generalized eigenvectors boih of rank larger thun ane. Then

g feds

{

= {7 o "1
. w=Lio el % ym ST
= \Aj 4 )‘kj {&jg aj l}}a‘.ﬂgz % éj‘zkikﬁ%” t;&“l}
go - Oy N el Ty * aiTey ) (2.13)

If a5 3 or e 4 is of renk one, the corregponding term in (2.13)
will vanich according to B o A. If both have larger wenk, the pro-

Y

cedure is repeated.
=2
' {fj {‘ }k}{} (au d}; * é; Ta}(«sl

-+ &
+a, . Ta . *a.Ta B
a}al “e-1 %T@‘g -1

The renk of cne of the eszg‘*w@m:m@z in the g:"f@&ﬁf?; aa P,

is lowered by onz in each step, and finally v a gz.tus;*%:;z.m arises
where either A or B can be applied. ’mu, @jlt\. = P, j’ and this finally
proves thm: X is hermitian if ?“% §= Mo Ll ksn

Now let ), be an eigenvalue of miltipiieily v, and a;, .1, a, the
corresponding eigervectors. Then any at’tmgf: 2o include Bys eees By
but not ak‘#l’ ey B 1gk <p, in the solstion will violete the
condition j‘j

The resson for %:h:z,s *{% en folloss:

e

$ - Ao
If we have selected Bys eesy & U @&“?@3&. meke use of any of the v
»elgﬁnvectam corresponding to -~ 2\@ From the remaining 2n - 2r e;g,@n-
vectors we must eifher chocse the one corresponding to A or the one
correspending to - %, but not both. Then it only rsmains (n-r) pos-
sible ways to choose n-k eigenvectors. But n-r < n-k since it was
assumed that k < »,
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Sumarizing, we then conclude that the only pasaibilities to satise
£y the sufficient condition for X to be hermitien. is to include
all aig@ﬁtham corvesponding to: \, or ell eigenvactors corres-
ponding to =X .

In the next aeﬂtiea-, conditions will be given, that allow both }‘ﬁ and
“As 3 to be mﬂlmd%d in a hermitian solution.

If E has 2n c%wtma*’ @%@ﬁ@ﬁu%g and if Ez:l hﬂ] exista for
all corbinstions of eigenvectors the theorem states that emong the

W

e

poasible solutions X, at lesst 2" are hermitian. In the case of
multiple a:},smnw&lms cf E more complex combinatorial prablems are
abtainsd.

e

In the optimel contrel problem, only real solutions of (2.1) @i
of interest, oincs the systen matrices A, B and oriterda matrices
Ql @ﬁ ore enmmed real, Mopsover, since Q and Q,} are agmzz@d sy-
petric we will next concentrate upon real syzmetrib solutions of
(2,13, - h

Theoren 3:

Necesgavy and sufficient conditions for a solution

LR b BT

By e By oo B S
1o be real ave

i) ale elgenvectons @lg ees By are veal,

i) if a, of renk k corresponding to fhe efgmnvalus Ao T0DL0 5 0
i ‘ﬁ%ﬁ o enpmbrest The solution X, then %% of z‘ﬁ%%’; " QOO
ponding to X ; must. alszo be be includad in the soluticn.




Proof
LESO

ik

e
fe 1]

nd 2. be included in the

o

ity

i} ie trivial. To prove ii), le
aniution. Then

g

» iy . -y P L
kg [C:}:’ L ci * & & Ci LI Q@E‘Jl LI bi ﬂyoa bi LA 4 }13223
and

Ho= ;;Gl wes Qi oaaﬁi tve cﬂ]{:bl a8 bi( s bi se e bxﬂ

Since the order of the eigenvectors is irmaterial, it follews
that ‘ ‘

‘hus 3 i a real solution. This proves the sufficiency.
prove the nacessify, consider the closed loop system matrix

6= A - BQ;UBX

S ds peal if ¥ is real, and ‘then the @;gamﬁl@as of G are real
m;;l@v conjugated. ‘But according to the corrollary of section

: QLQ the eigenvaluss of 8 will be those eipenvalves that correspond
mmﬂmf actove veed in the solution X. This finally proves
that a fecsssary ﬂ@néimm for z: to be real is that 1i) holds.

Combining thecvems 2 and 3 will flml,gy a;:,;w,, uuffie&mt conditicns
symretey of a veal solution X of (2.1).
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%o
L. 2 S S S SV | " - 2 ey o pr B o 5 g
Sivies the coiteria pabraoss Ny and Q. ore symnetric novnooalive

1 gyimmatrie z&’:m.km% éﬁfiﬁi%@ﬁ,%;@ rust look for o sumetric end
ite solution of (2.1) [8]. It is well-lmown [5],

he pair [C, A], whers .Z. ’{?;‘TCS in complately ob-
Honery solution will ba pesitive definite and

‘syatew is agvaptotic steble. In that csse, there is
sonesative definite solution of (2.1) [7]. In [8] Vone
s genpralization, end proves that detectsbility of the
pain [0y A] is sufficient for the optimal system to be asymptotic
steble. In this czse the gtationsey solutien is no longsr necessa-
rily positive definite, but may ul,y be nonnegstive definite.

el
Wy

b
o o
-
@
%
%%

will now genonalize £ ﬁgﬁh@rs end m;@r Ql to be mlmitmﬁw
~upretrde nonpegstive de oFinite matriz, Thus A is allowed to have

ons on more unsteble modes not dﬁt@:@t&bla in [c, A]. (In the se-

vse the notetion [Q;, A]«) It will further ke asaumed
2luas of A are dif fferent, and nome of the wndstectabla

re pave imeginary or zero.
\

Trovavtics of the gs@}.m@&n ¥-due to nonobserveble modes o EQP ;%j
will ke congideyed in this &@g’siﬁm These vesults will later bo wed
22 2.4 and In seotion 3 to esteblish properties of the optimal

2 2o have distinot a:apm"ﬁ&w we will vze the fol--
,'yﬁ: ‘3@@”‘*@&”@1«@,‘;9

Let T he a ’@«ﬂmmgkﬁm Lineer tre ﬂfmmﬁ:;m suzh that

AT o
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Whera Ays «ees A, @re distinet eigenvalues of A. The mede z is
then an ghmawﬁzb&a mode of the pair Q A .&f and cnly if thﬂ
$th column of the matrix CT™T, vhere Ql £ ¢TC, has at lesst one
element not identical zero.

let Ay be & nonchservable mode of the pair [ng 1, and let x;
b= th% corresponding eigenvacter. Then from the definition, 5

and Qux; = C'Cx; = 0.

If A, is'a. nonchservable mode of the pair [Q;L’ A], then A; is an
e:.ganv&luﬁ of

and the corresponding eigorvecter is

Proof:

The proof is a stra;ghtfomm applieation e:;f the definition of
eigenvalues and ea,g@m@ctam. ’ ,

zgi ‘ é;gi e
= 2 A’i_
\Qn “Q0y%; O

. wﬂﬂbﬂi’ﬁy of the pair [A, B] is defined in a similer way.

Cw, = §




b

B

pDefinition:

et T be a nonsingular linear trensformation such that

where A.” cons 3% ave digtinct eigenvalues of A. The mode A 15
then a m*’*cmllabl@ mode of the pair [A, B] if and only if ‘th@
i:th row of the matrix TB has at least cne element not identical

- Z870.

If A; is a noncontrollable mode of ‘[A, B] and VT the corresponding

left hand eigenvector af A, then, analoguous to *gonobaew&blhty,
the definition yields y.xB 0 or BTy =z 0, The following theoram,
gimilar to theorem 4, is then easy to pmve.

Theoren 5:
If A, mammllablem@deafth@w[m B], then ’sAiiéiaxa
ewama of o
A -Bg;'B ]
E s
“Ql ‘"ﬁ‘r. J

Proof:
A -phtl{o] | -B3; 8Ty, o,
‘ = 2 - )
- T g i
G A ] %%ij ‘”ériv’i ¥
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Tt is now possible to juntify the dewsnd for s grabilizabili

the pair [A, B], that is controllebility of unstable modes {%} .
with pure algebraic eonpidevations. Suppooe there exists a non-
contyolleble meds Ay > 0. Then eccovding to thetwsm 9, -3y i

zn eigenvalus of B dﬁ the serzesponding eigenvector has 'thﬂ

Ty w0y
girucnuaa

ﬁgn@zza all prsaible aez:brtm% of (2.1), there is one and enly one
eolution X such that the closed loop system matrix & - BQZ B X
: asymptotic stable. This golution X conmists of the edgenvectors
responding to the eigenvalues with ngati:va real parts. Thus

4

the eigenvectory

(g}

mt ba ‘mlu ed. But by = 0 and m&ﬁ the matrix gb b
will bs si . This m&;ﬁg ‘the assurption thet them amta
a solutien X a:ﬁ (2.1) such that A - s@fa*x ia etable.

Sirce one of the main Ww of optimal control theory is to yield
an esyrptotic g%;&%l@ cleaed loop %g@t@%, wa will then frem now on
semun that the pair fa, B} is &tabﬁ lizzble.

The cnm;x:&:mm o syrmetey ;@m in g@z@m 2.1, can now b@ QU
tansed to cover ss;@ﬁu%zm whara m%@?&m% modes of [QB.’ A]
appear, As b@i‘gm it s guf%ci@ﬁ W g@ that

P by b foy oo o]

. 5'3 gmt@l@ {:&1% Eist:&ﬁ }a ?@% &J %m 1‘}{ i’ﬁ: ?g‘g&,ﬁ ?m igl 'EMM 2
that 93}; Pk” Hewr sssume ‘&j 2 - }‘}r@ whare both Aj end ) are non-
_obsexrvable modes of E‘Lzé L. Then




2 cum ey Aol s
cinzn. Finally tho oi-

may ocowr that 3&3 isa &mﬁ‘mem e mode of the prir
[Q};’ 5%1 , and that the criterdia fz&*;@a @1{3“}.‘1‘? 0y era chuzen 5o

that kk & - k3 is. en eigamaliue ef E not due to the symmetyy i:f’@w
perties of L.

For simplinity esouns thot A, is renl. f‘*» the elgenvalues of

l.-.a

natyix ave continvous functiens of the m Tirdae elenmnts, it f@lle:?;’:
that beth Agand Ay then will ba mﬁtzggla Rj being nonobsexveble

irplies that oy = 0, and

&
v"
pﬂP 7?3{3 k“’@ba“‘*bjk

It then renaing to prove that bgck % = O.

ist T be a nonsincular linsar transformation such that T&T
dinsonal. Then

;ﬁﬁmﬁhzm *ﬁ;ha 2n x Zn metrin

'

T 0, %

seer=dy T
era h )

wherm 0 denctes the o » 1 il o
eigenvnlues of

Bs vt

are the gimo as those of F
are

'ﬁ’dﬁ hgmg f@% %‘%‘:&*m,. s«*fgfi elen sere Wg&?& oD,

£




4
Fol

. " ' 1
Cayrving out the trensformation VEV ™ we gat

wmrt gttt

which reduces to

} 4
§
§
IR
A
a«-—a--—q-gl;;.. ........... :er e ﬁ

1A
I
‘ "AQ " /
: j
% .

. : -ln‘ .

wh@m R = - TAQ; 150 and P 3 - ('r‘lz Q - Tt

ot

\ jﬁf"ﬂ is-a m&b@mable wode of [Ql’ A] thv 3.th ‘column of €77
ea;lmls 260, mﬂ R&%mw bz;ﬁ.:"z the v E t}\ ct;l%.z;m and tha j.th row of P
’ 1@%@3 zero. . L |
_ m@ miﬁm‘ that k%, a i &i ig a mlmplm ngﬁmwlw of E ami £,

a5 th@ ampe'& rsg a;gmthm of ra ‘?ii m::z. :




(£ + AD) =

o o e CA Sk T i e ey W Pl . s g

A

which, since the {:th row of P equals zero, implies

ci“f»f'g L

Oty ki TS . ok W oty A TN BNy Wdll S Sy i R o q— A S bo

(2.16)
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which completes the proof. If A = - A, 3 is an eigenvalue of aulti-
plicity m, the proof still 'haoldm for the generalized eigenvectors
corresponding to Ay up to rank m-1. This follows from

"
o
”mn
g

[ - (=, }'E] z

and then

The resulte are summarized in the follewing theorem.

4

Theorenm 6:

Suppose x is a noncbservable distinct mode of le,, ] Purther let
813 seey an be eigenvectors of E ccmm@pcmdmp to A.,, eses )‘3 }:’
seey A and essund that [bl . ﬁ] exists. If- A4 § Ais 1¢ign,
md h 2 - Aj, ’th@ﬁ

¢ = | y . -1
X [Ql L 1 2 nJ [bl LA J bn]
_is hermitian if either

A is a nenchserveble meds of [QF ﬁ}

the mmbar of generelized emgﬁmf@ctam corresponding o A

included in the solution iz less than or equal to m-1, where
- m is the multiplicity of Ager

1 0 0 "
B= 0, o= Q, = (1
1 1 1o 3 2
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The aigenvalues of E are

nenchservable mode of [0, 4]
B Rt !

due to the specific choice of Qland -Q2.~}.v3 is a con-
_tinuous function of the -el@eﬁtslof»-ql'and Qe

Ay T3 | L

- E:@nveatazs of renk one mpoadmgtoxl ard A, are

£ o' -

is a symmetric solution.

amm samms f | |
smmtris: eolm:mn& wa will nos loc}% for soluticns with -
vty that they are nonnegative définites: Since the criteria
"Ql and'Q, are nonnegative and positive definite, this is a
ry condition fwwaeaaolutimoftheemimﬂ control
5] Then, vhat C‘h@l&ﬁ of n- ei.ganvectm L evas an Wlll
- [01 s c][bl cie ]'1 to be. mnﬁega‘tive éefmte?

.




Let 315 oeos a, e elgonvectors mgwmg % Al‘* eaan A e
Pssmth&tﬁaik}%e,ial‘“n.lf :

G=A- BQZJ'BTX

e

fa X is a solution of €ml} it is easy to vewif

.,Tx +X6 = = (Ql " Kﬁi}z}’%j’%)

m @ﬁymgmnc stebility of 6 then. fol,lﬁasa immediately frun Lpspu-
I s.t@.b;lmty theoyy,

ince there is cnly one way to gelect n eig@w&@s of E with
Re(a} < 6; th@mm 7 dmplies. that (2,1) can never-have meve than
_ona inite eolution:- E’a:s,z,amzzi, {1] ¢ the reveraal of

e Q; is a nomegative definite and 0, & positive dsfinite
ric matein, and lot ¢ fys coes By be @;.g@ﬂ:@cmm eoxpesponding
 eeny Ao xf Ez{ki} <0, 1i=z1... rx, and [_bl cos b} is? Y
: ,,»tmn | |

51 ree o[y oe bggf‘*l

yazetric and nonnegative definite.
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Proof: .
The symnetry immediately follows from theovems 2 and 3. o mrove
. that X is nonpsgative definita, Jot

;,..;a}"l} o[y +en,]
whera

3ime [bl cve bn} is nonsingular, it is suffi‘ci%ﬂfz to prove that P
is nennegative definite. Introduce the 2n % n matein U{L)

»

t ALt K
lalg -..,en&] :

‘;Eﬁ}:)z[ n

If Ak is a mxl"::n.gle eigenvalus @i multzplicﬁy rs tﬁzﬁ Uit} is de-
fined as ”

}.t At N
[ 1 lﬁ “eay a}_g AK (&é,{ z}ti}g, XX

T N R L TR
00 © 0 W% T Bepel (o = 171

ees @ & L : (.17
-aasily verified that U(t) satisfies the differential egsaticn

be the 2n = Zn matrix
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SR

.

Ll s

vhere O is the null mateix of oxder n x n.
4 .

Then

P = UaLCD).

Furthey m‘%:mziim .
S(e) = - UL + UNOWIey | (2.18)

Since E—%@{}\i} «fB,i=1...n, the definition of U implies that

[1]
[on ]

1im  U(E)

o

and thus

]
‘g

1im S0E)
e

(2.18) is %quivsient to

PP \

| t a ¥ -t |
8t =~ F &= U (ealiiia) jds =
, Tae T , ‘

R S
s - f [UMe)ETLIe) ¢ UadEaT}ds
0o

o - ot L b aElutedes ,

But - oo . . .

» o ‘Ql A’ an‘
' EE‘L + 1E =

~1.T
o, -BQ;B

and then $(t) 3 0 ¥t. As £ » e, S(t) » P, and thus P is nonnegative
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In [7] 3% ds gwoved that IF [Q., 8] ic acmpletely chserwsble, than

a unique nennegative definite solition of (2 L) exists. Moreover

this soluticn is pusitive dafindte. However, this is no longer tms

if the cbzepvability criterdum is relaxed. In theorem 8 conditions
or the nonexdstence of positive definite solutiens ere given, end
v thoorem 10 it is proved thet in soms cases thers may be several

ket *‘ﬂ@*@;,‘m definite soluticons of (2.1).

&
Prathlo i A A

Let a4 < O be'a noncbservable mode of {%“y. é%} . Then there is no po-

gitive definite solution of (2.1).

B

PolaNGils

\Sz!

The theorem is proved by contrediction. Assums theve is a p@@iti%
definite solution of (2 1). Then theorem 7. implies that the eigen-

vector a; correspon to ky < 0 must be includsd in the golution.
i‘%m. sinces A iz %ﬁa’fsmwab}ﬁ% @ has the structure

e

according to theepem ¥, Then

E ¥ R . *l“
e ¥ eaw PR 4 r cas D3k . = " .
A {QE* G}ﬁ %o g,;t L}}l L?:i )

, vhiich conimedicts the ﬁasmytim that ¥ iz pos; :i W

et Ay >0 be a distinet namoiae: vable mods of [QZ’ 4% Then there
aye af least two nonnegativa &;ﬁ,w ﬁ“@ solutionz of (2,1).




’lg(

Since i, » 0.is a nomchserveble medo of {Qlf ﬁﬂ both Ay and -1,

ppse dy is construnted frem the eigen

&

kd
&ra sigorvalues of E. 5

tars eorpesponding to ~Ay &N nd ff:h@ remaining n-1 eigeswalues with :
Re{x} < 0. Then X, is n am@m wive definite acoording to theovem B

How let -A; ba replased by 2, and let X, ba the carresponding so-

lution. To gimplify the proof, we assume that the eigenvalues of

E ara distinct. Comecting to the proof of theorem 8, it remalns
b0 prove that U ¥(£)U(t) » 0 a8 t » =. From the definition of U
f@lw@?:zs ‘
TR Rat”
‘ & "L s 1
% hfa cy ¢
i : : -
é 2 . . l:}t }‘i%; Az)% x
i ,‘ g“_t * xet On In D:Le 80 b}i% v et bﬁw H
bie ce f
| 0 0 Aqt At 2t
ﬁ . : n n c:la‘l’ e e LoeE !
& L ] - e Zi J
. “}: i i‘ . .
# 0 % “n
} ] }sne e, |

UG s en n o« nomatrdx, and +he elements sve

o TEat
g - o g P .g;
[ vi;;z;mg}]}& Bhee el

&

P =y TOILUCE)

§
VWW -

¥ osee i
[
ol
&
7

%k sow
(3

s

it fellmss thet UNLIUL) do eymstvie tem. Fop
k4 and 2§ 1 the elevents |

gﬂ

At ALt
Beae ta >t @0
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a8 t » = a8 Re(\} < 0 and Ra(A,} < 0. But the i:th colum of
UMeILuCe)- is ddentical to the zero eclumn veckor sinee ¢; 3 O,
The symmetry then dmplies«that the dith yow equals zevo too. Thue
UML) + 0 as t + =,oand 8(8) = - UL + UOILKO) + P.
It then follows from ﬁz@@z@gﬁﬁm%{g& nonriggative: defiinite.
The solutions X, and X, ave not:ddentical; ginee the eigenvalues
of G # A - BQLE'R, and 6, o A - BOJE'X, ave different. This
completes the preof of two different nonnegative: definite solu-.
tieng of: {2.1). -

The thecrem is easily gereralized to pultiple eigenvalues i,
P2l } < 0, and to an arbitrary numbsy of distinet nonobserveble
modes of Pl’ A} This is illustrated in the following exemple,

,{199" ' 1}
a 2 0 B= |l Q=
0 0 -3 1

Pl

0
0

x

=
o o o

The eigenvalues of E are

M

by g' -] A

2 1 due to the noncbeervable mode of [QI,A] .

AN
R ¥

2 1
2  noncbservable mode

[0 ]
11

;é ¢ -3 nonchservable mods

ot
[+
H

]

Tt
[
£a¥

Ag # =g

Az A B -3 is noncbserweble, there iz no positive dafinito selution
of (2.1) according to theoren 9, The correnponding elgenvectors ara

£ Y Y r‘g‘ ' ’\ 23 ) FQ‘ ",31

(4]

e

S
: 2]
o

o O O O Q bt
! 3
Gy B
P
i
Sl
Py

a,
L'e
-

2
&
m@
)
D D D e D
@g’éi
[
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In this case there sye: four diff@mm: rennegative definite oy |
metric solutions. '

o o ofr o ot [o o o

1) ap,ag ags X =0 0 @% o 1 6 ={¢c 0 o
e o ole o 3 o o o

(6 o a%fé o g™t (2 o o

i) gy, 2y, ag ‘ =0 0 C}E 2 1 0 = 0 0
: 0 ¢ Qj{-3 8 1 e 0 g

- o o o s ot (o o o

1) &, @, a5 Xy= (0 12 ofja 3 o ={0 4 0
le o oo -12 L)

6 0 o3, & o7t (i -z 0
W) Ay, ey ag X =00 120 012 3 0f = =24 36

z’w"smmﬁzgm dafinite. @msﬁ;:mm% :@’*&M&ﬁ’ﬁﬁ that E}z vee B, g“’z‘ cuint

at.

It is also mi@i@ to gat. oore szﬂ of cxdeyp H%“gw_m tha if rant
solutions in ke sense that thors is alwiys ons 3&??5@*%‘@ nd on
smallest solution. | B

ﬁ.ﬁ
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Theoren soenm 11:

Lat Ays oves A, D distinct noncbserveble modes of %_Q“’ Aj such

that Ra{fi} >0, 1= 3.,' esey Mo Assume that }il ie the nonnegative
definite solution obteined by the eigenvectors corvesponding to

the eigenvalusg of E with Re{r} < 0. If ‘*{ is mﬁth@r nonnagative

definite soluticn of (2. 1}, then xi 3 %o

Proof:

Both X, and X, satisfy (2.1). Then
S

g}’l-e»xfa xiangx *Q ¢

2 XA - xzsgziﬁ %yt Qe 0

%

’

Subtracting ‘Eﬁﬁ sacond aqgatm from ’ith@ firet @m yeardening the
terms yields '

e dnT, (T s : «1.T |
A - gptaTx ek, - %) ¢y - %A - BB ) e

AN

= - (X - X ma?ls‘*m }:23

since & = (A - 80;10%%,) de asyaptotic stable, it "ﬁmlm frem
Lyeap@,m ata}}i}itg thm:z; ‘é:h@:: ‘the ‘gyrmetric &ﬁlatiw aﬁ B

g‘% yz?i o gg%

ie nonnegative @fﬁgﬁas %& tf Xl XQ a ﬂ whmh fa.zmlly Wm@s

i = Kz ; S

In the previous example séi% is ‘the: }mt snlutim ﬁaing similar
technique it -can be shown that ¢ a;mg all mgatiw dafinite aolu-
tions there is e smzllsst sa}.tztm “"his sem%:z.eat is e@t&mm iﬁ the
@a,gmgmm oerpesponding to }.y ined ;m all m mﬁ%ﬁa@. In the
above .'éfl iz the &m’u@t &algﬁlm. o

example ak
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3. THE RICCATI EQUATION IN OPTIMAL CONTROL PROBLEMS

&.1. THE OPTIMAL CONTROL PROBLEM

Consider the linear time-invarient system

L () = %, : (3.1}
at

- with the oriteria

t
| £
3= et v 1 {F@gue + e (3.2)
| £ |

vhere Qﬁ and Qy are nonnagative definite symeetric matrices and ,'
Qp is & positive definite symmetric matrix. The minimm value of
(2.2} is knoun to be :

JO(x;;ﬁ) = 2 ()8t dxlty)

. | .
@hﬁm S(taﬁ is a nonmegative definite syrmetric solution of the

matrdx R;lc@&;ti a@ﬁ@:&m

- ,&Ts 4 SA - 8RO
at ’ ‘

,»sztgg = @g | S gsjgé

The a;gi:iml centrol m’%‘}, et " %:f,, 5;5 a ilfﬁ time-~-varying
feedback from the state of the gy&t&zx '
ult) = - L‘{t%ﬁ“ﬁ:}

where

L{e). = QQ&% s%a} |
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In particular we are interested in the optimal regulator problem,
that is we leok for g time-invardant linear feedback

wlt) = - La(t)

such that
J = 7 x(e)Qpue) + o ()Q,uls) Ids (3.4)
! ..

is minimized. This problem is generally solved by a straightforvard
imtegration of (3.3) until a stationary solution is reached.

Existence and uniquensss of solutions of (3.3) is proved in [5]
and [6]. It is also shown that with the assumptions made about Ql
and Q,, the solution S{t) is ncrnegative definite and symmatric.
If the pair [A, B] is completely controllable and the pair {Ql”‘ A’E
is completely obserwvable, it is shown in [51, [8] and [7] that s()
tends to & unique positive definite solution S of the algebraic
aquation

T

A + sA - sBQ;'S # Q = 0 . (3.5)

Then S yields the solution to the optimal regulator problem. It is
also shom that S(t), T ¢ Tes io & continuous function of the
boundary condition Gg-

In {8] Wonham gensralizes to [A, B] being stabilizable and [ng A}
being detectable. For an explanation of these concepts we reffer to
(8]. Then S(t) converges towards a unique nonnegative dsfinite solu-
tion 3 of (3.8}, and S{£), t % Tes is still a continuous function
of the boundary condition Qj. In both cases the optimal clesed loop
systen A - EQ?B?S will be asywtotic stable. In this section we
will mzke a further generalization, and assume that Q is an arbitrory
symmatric nonnegative definite matrix. Detectability of %:ng A} 'is
thus no longer assumed. Existence, uniqueness and fiymmstry of the
solution S(t) of (3.3) then atill holds [5], but according to sec-
tion 2 there may be move than one nomnegative definite solution of
the stationary Riceati equation (3.5).
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: the boundary condition Qg determinas the
gtationavy solution of 5(1) as ¢ =+ -», and thus S(t) is no longer
a2 continuous function of Qgﬁ

o

Foy the numerdical computation this implies tb:a,;. straightforward
integration of the Riccati equation in reversed time may bz an un~
astab l procedure.

The agyrgtotic dspandence on Qy has a nice physicel interpretation
and this finally leads to a generalization of optimal control thec-
vy for linsar systems with qmc;‘zﬁtm less functions.

3.2. UPFER AND LOWER A PRIURIL BOUNDS

Suppoze that the control varisble u(t) is givén through en erbitrery
linzar feadback fyrom the state of the svstenm.

ult) - st

A, Bl is essumed stebilizsble, it is alweys possible to
i 3 12

[ (]

[ A—
®

chooze L so that the clesed leop systen matrix A - BL is mtable [
Intreduce the fundamental matrdix ¥{tis) assacizted with A - 0f.

A8 o (4 - EBYHCese)

J = xT{%si?iﬁt?;tmgi?étfm}xii:& *
‘E;f .
+ :%Ti“%:}“?%saa*s;iﬁl ﬁ}%ia;ﬁg{t)c}g
N ‘
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o
¥ o= 2 (xRt
whors

t
f y r?s %Jk 3
3oy = FregoggWegn « 1 Fasofe + Fobfitsra ¢
- t

@
.

o
Buor®

(& - BL) being asymptotic stable, Y(t) tends towards a nonnegative
definite matrix & as t + -», § is solution of the algebraic equa-
tion

/

th - BT + Bea - L) + Q * ﬁTQQE 2 0 L (3.7

Ovvicusly Jg ¢ J, and then 5(t) z 3¢, t ¢ tee Then any linear fewd-
back T\ such that A < BL is asymptotic steble, yields an upper bound
for 8(tl), t ¢ tee This is a very rough bound, and we will show that
there existe a smaller & priori bound.

let S, be the solution of the stationaxy Riccati equation correspond-
ing to E{%{;&i} <@0,4i=21...n Then

T ~1.T
;asl%slAmslaggasl»@Ql:c

2 . ”“T * L4
and the closed loop system matrix (A - BQ{,"BTS?LB is asymptotic stable,
Further, assume Szitb is the solution of ,

as

“1.T,,
" S 7 S - 5,0 B8, 1 Qy

with boundayry condition

32 i'i;:fi =z al

I is the identity matvix and & iz & scalar.
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(s, 315 satisfy the differential equation

A e IRPRROS W, SR _ .
-~ £e (8, - 8)) = (A - BQ;B'S,) (S, - §;) *+ (S, ~ §))

ot

i

. A - GQﬂwéTs ) - (S -8 EBQZlBEQS - §)) 3.8

with boundayy condition

}gﬁ}:‘“si

Now choose a > || S, ﬁ (a > mgx A;svhera A; ave eigenvalues of 3,).
Then ol - § is positive daf;n;tes and %he solution of (3.8) exists

-and is unique. It is also nonnegative definite for t ¢ .. let y(t3s)

be the fundamental matrix sssociated with (A - %&,lﬁrs 3¢ Then

éwfyit;s} = (A - BQgﬁérSl}%étggﬁ
at

¥ltst) =

and

§w=§€t§§3 2 - 7{t32}(A M‘EQEE,TS )

ee

{2.8) ig equivalent to the integral equation

(8, - 8,)(t) = € {iui - sl>“* + -

ﬁf ? -l @
*roy itggagﬁgz %(tggs)ds} ¥t git) (3.8}
+

=1

(oI = B,) ~ exists since ¢ » 8,1 + and then




|
1
|
i
1
|
%
|
i
g
1
i
i
i
z
|
|
|

e—taals e5a- alﬁgglss +Q | ,

‘3,

F
imI«»S -1,

(3 o

sty

T -1.T -1
4 ftfﬁs;BQz B ?étfgs)ds

exists and is positive definite, If Pl and P2 are two arbitrary

*ﬁ%mwg definite matrices, the inequality P P2 implies that

g‘? » P also holds [10].

Then

fﬂ

.1 ‘“f } -1
{{@z - S S f 4 itf;s}BQg %*{tr,aicis g (al - Sl)

and

(8, = 5.)(t) € Y (tgitdal ~ §,)¥Ctgst)

/

The fundamental matoix ‘i:!{“f:gg?:} - 0 as t » -= gines (A - EQQ 82
is asymptotic stable, and then (S o Sl.f(t} + 0 ag € + =,

The solution of (3.3) %«m:h boundary condition

S(‘Ef) = el o> “ Slg

then converges to the largest 3@.1.1;"*3’&1 Sl of (3.5). New let Qg be
an exm, TEry. wmg&twe definite syzmsatm.c matrix, and agguma that

Qg is the boundary condition of

e .

at
5,(te) = Q

Further let §,(t) be the solution of

fiS
S

oo
S, + S,A - 5,B0;°B'S, + Q
" A = 5,80, 1

Szitf} z g1




by,

Az bofore the difference <Sz - S.g}(t) satisfies

ii & - “‘ja-T

1.7
- SI}BQE E {L& el l} (391@}

?@Ji*th ¥(t;8) being the fundemertal matrix associated with
(A - BQZIBTSl(t)} (3.10) is equivalent to

(S, = 8)(t) = ¥t 5e)(BI - Q¥ltyie) +

T
£oq P
* 1 Vst (S,(e) - 5,{8)) B0, "B «
t -

. {ngsé.« 8,(8))¥(sstdds (3.11)
. N\ )

igg - Sl}(t} iz then nonmnegative dafinite, @@
8p(t) 2 8,(8)

Fop

52 ||
For a solution S(t) of (3.3) with an arbitrery mg@tim definite
boundary condition 8(tgd = Qy, it is then always possible to find

“an upper & priori bound 3(t), such that S(t) g 3(t), 'tA; te 8ty

oan be chosen as ﬂz@ solution of (3.3) with boundary aondmtian

,_-,si"%:fs = oy LT vhare y > man{ il S i, ||Q0U }, and S is the larggeat
solution of the algsbraic @qu@um (3.5). '
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In a simdlar way it is easy to give 3 priowi lowr bounds for the
solutions of (3.3). let Sl(z,:& and '8, (%) be solutions corresponding

to the boundsyy conditicns 8, (*t } = ﬁ end Sgétﬁ} Qps Qp » 0. Frem
(3.11) then follows that Sgiﬂ 1{12@ & tee The smallest solution
8(t) of (3.3), will then correcpord to the bovndary condition S(t f} = 0,
“8(t) is the golution of the integral equatio

t
f i1

S(¢) = f %Tc&gt}gﬁigm;gi%{%“ Ql}ﬁ%tm o
. éc t

vhers

.
- ¥(t3a) = iﬁ &@{, B ggit)}%(ms)
z

’

From (3.12) follews that S(t) is monotenic non-decreasing as

t =2, and sines the soluticns are bounded, S(t) converges to-
wards & selution of the stationsry Riccati equation (3.8). This
chwviously is the emallest solution 8', because assume that S(t)
converges towards the solution 8" of (3.5), and 8" 3 S'. This
eontrodicts the fact that 8(¢) 5 8%, ¥ ¢ Eps unless S' = S". Thus
the solution S(£) of (3.3) with boundary e@zxd;.tim S(tf) z 0 con-
varges to the smallest golution of the alpelﬁam equation (3. 5)

¥hen the paip g:&ﬁ .é“s} in. completely e’*:;wzmble [7] or datectable

fal, there is a wnique positive dafinite ov nonnepative definite
@mm.m of (3.8). The upper end lower A pricrd bounds for S$(t)
era then identical, and then convergence g:;ﬁi’*‘ 5(t) follom. In th@:
cnme of noncbservable unstzble modes of Oy %} however, thes
henmnda do not esincido, ond it then remairs to prove converjence
of S(t} towards a staticnary 3@3*?";3@1 of (3.5} as -t + =, for ar-
bitrary n@ﬁn@ga:mv@ definite Mm«"‘é“w sonditions ﬁg

!
é
!
L
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3.3. CONVERGENCE PROPERTIES
The eonvergence of 5(t) towards a stationzy solution is proved

in [6] for the pair [0, A] comple g,eﬁii.y cheervable, and in [8] for
the case of [Ql’ Al coenlstely detectable. In this scotion we will
- Prove COnVeRgenc? mx* the caze when all modes of A are unstable
and no né“'ﬂz:‘:ta@l@g that iz ﬁ = 0, If will Surther be ossunsed that
Qq > 0. These yesults mey be combined with those of {6] end [8]
<o prove c@m&ﬂg ¢ in the general cass. |

-

&2 befors, the diffevential eguation

- 98 5 pTs v sa - ong'R's ¢ Q,

S{tg) = Q
dt . £ 0

is transformed into an integrel eguation

: €
co Ge -1

5() = Pratagt + s Ut g30080; " €‘tf,s}dg} *tg5t)

: ! |
where

N\

A ¥{tis) = ( " @glﬁﬁ%iﬁ}ﬂt;@
2t
¥itst) =

Since Qy » 0, and E?Q‘tmt} hes full renk fov t g tg 8(t) in positive
definite and hence ,&m@ﬁ’ismg fent g ¢ tee Then mﬁi@%ﬂ‘ l{t‘%

"’"1 e |
T G et e : (3.18) N
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et ¢iT3nd be the fundamental matrix essociated with -A,

dem %38} = - Asltis}

't is then pessible to give an explicit expression for the solu-.
tion of (3.13).

1
- F . -
5ty = @Tth;t){le ¢ J @Téz:géaf)@sgla‘a;tagff}ds}éitfgt) (3.14)
t T ,

which zm.aeeg to

%
f .
ey = ésriﬁf;t)le%{tf;%E ¢ J %Tiﬁgf?*ﬁ@;lﬁféfa%ﬂ}ﬁﬁ
+ ,

{-A} being asymptotic stable implies that é('%:f, tl» 0 st —e,
and’ | .

a, f g “1T e | e
57t «5*{: ¢ (8,080, B ¢ls,tids ‘ (3.18)
The pair "Qy A] having -just noncbservable unstable modes, implies
that stebilizability is equivalent to corplete comtrollsbility, and-
thus (3.15) is positive definite for t < tee S’l(t) then converges
tewards the wnigue peoitive defindte solution of

a8 t = -=, and thus 5(t) converges towards a positive definite solu-
tion of :

a5 + sa - seg;Es = 0




uk,

r

ag t + -2, This completes the proof of convergzncs for the apecial
cane Ql% 0 end QQ > §.

New assume that convergenes holds for axbitrary Qﬂ end Q lg symmata
ard nonnegative defindte. It is then of intevest to ewmmine to what
gtationary solution S{t) convargos as t + -=. Comsider the equivalent
integral equation

e
-
¢ é iﬁfgs} {Qé + ‘%iﬁ}ﬁ{}g E §@{E?’i‘t‘fﬁ}éﬁ
whera ¥{(f;e } is the fundemental matrix associated with the cloéed

loop system motein [A - um,}l‘ B°S(tY]. then T8 + -e
g0t gst) + 0

anag

'f??i"tfgs}gl%étf;g} > 0

The latter condition holds since S(t) is bounded, and means that
the optimal system A - ?’@2"5}”5 R stipsiy vin h:;% 1 urstable modes c}b@%m@ble%

EG., . éa] Then: steticnary
> § iz an olpenvalue of the
« 8 of the systen A - ?QEE‘F"E' ™

* hg
mrnpghle podn rﬁ"

Meey lat Ae 2 e be a nonohaerwe

@Jm%&?ﬁ“&l and 8, exist, 3
elosed Joop syoten A - B0,7B
Frem uézzf;s.m 2 b S?? 5 8.
theve do ooneod tointy
eriterdia. "E%wz a} iz the e@wmﬁ atat
mal aystom will ontain aa wirteble a;@ 3%“9‘;% el o ;Lf }‘z'i s observahle
of {QQQ é:! 8, caomst be %}w %zaﬁmg sines this could yield an infi-

nite cont dus to the tom i?'ﬁ}%ﬂ{ tede Then 8(t) =+ 8y 88 T+ -e,

.,;

r.rﬂ}

15 3 a"»l#

mm

gl




R

‘unchanged., It is es mlgz varified that § Sao

"4,

Ths boundayy condition Qy thus plays the same role as Q}, to deter-

-~ mine @s’m;:t stationary eolution S{t) converges at.

In the general csse, asswyre that A hes r unstable ew&w&lu%

Ays ees A,y Nembaervable in Qy é} If Ays vees My ko< Ty are
observeble in [Qm Aj s S(¢) mst converge tovards a %‘;&ﬁiﬁﬁ@&y golu=
tion B8 of (3.5}, such that the optimal system A - BEQ,"B'S has ecigen~

’ V@lﬁ@% ""’}elg «o ey “ARQ Ak‘g‘lg ‘Q’é’e B Agie

3.4, 2&‘%@&% INSTABILITY

The optimal regulator preblem is generally sclved by straightforward
integrstion of {3.3) until a stationavy solution is reached with de-
sired acourecy. In the case of complete éeteatabil:.ty of /the pair

[Q.,, , fﬁﬁ this is a steble procedure when (3.3) is intepreted back-

wards: in time.. Hovever, the eristence of several stationary solutions

gy cause aven the backwerds integration to ba an unstable process.

This is illustreted in the following example [7].

i ;} g ) m Q}.v 3 Lz j Q, = [1]

B 3

The @mt%ﬂ@ mode A &1 is. mﬁm@m in ng and *th@m are two
noanegative definite solutions of (2.6},
(3¢ /7 Lz.e»ﬁg (-1 T
5 (S . . g t;g o 4
il'f‘ \/2- 1% ﬁgj 2 /T & 1 Ve - IJ
8y €§@ﬁ*we dafinite) wvields the al@m@'i loop pode A 8 L, while Sys S

'éx:i’zmh is the zsclution of the ont imal remulater problem, leaves 4 s 1

B

To meke the: solution S(t) converge towards 8,, the boundary condi-
: &
tion 8(t;) = 0 de chosen accryding to seetion 3.2.




From (3.8) then follows thet 8(f) will have the structure
. A

’&&} ~a{t}
-t} aftl}

o

€%

e

ppppp

inecouracies ney @m@ in @lfforont woys. Suppose that at tine t,,
e

"=-:Iw

a:zf» djﬁ

Ty ¢ e the computed solution is

e{t) ¢ ~n{t}

{~alt}) alt))

wherz e » 0 is a amall quantity. S(tli then is positive definite,
zad om b comsidersd an bowdary conditien fc:m further computas
tion of 5(£), © <ty < tg. But ES(%: )s Al is completely observaiile
and the solution will converge "ﬁwgﬁ% the largest solution %
Thin is illuvstreted in fig. 1, wh@mh the §5,, element is plott
verase time. The disturbancs 1077 is introdused in the 1-1 element
exff Céy and a fourth ovder Funge-Kutta m&th@d is used for the inte-
vation [11].

o

*®

¥ . g e¢ 2 fak 4 - ¢ x il &
The oere eltuation avises i the orrdrs are equal in all elemsy

- alt) + ¢ —a{t) * ¢}
8ety) = |
B {~alt} ¢ ¢ alt) ¢ =

For elt) » 0 and e > O, 3{t,} Iz powitive %i@fi nite, and 8(t) will
eomvenge towards §,. 83 €+ -0, Another way to compute (1) is the
fundemantal patrix appreach [6]. [13]. With the comuting pethodt

proposed in [11], the erwors emtered in the following mannen,

{ af

2 wal{t) - gz

whare a{t) > 0, © < t.. Deponding on how L gy cumputed, nursriosl
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7. j o “ Direction of solution

e

ra
5 ¥ g . * i s
o H ¢ vz 18 B T

Fig, 1 = Sq4(t) computed with fourth order Runge-Kutta meth

A

-
Q, & +
L P 6

fﬂg 8Cagt is mﬁ&fmﬁ:@% and can no longer be. considered
ag new boundary conditien for further computation. Hewsvar, come

putational expaviments show that S(t) still corwerges towards 8ys

and the fundemental matrds method then can he comsidered os a

stable method, The 1-1 element of the compited solution S(£) ia ,

shoun in f£ig. 2 for different values of Q,. Hotice that the dif- -

fevences for emall. valves of te~t in slightly exsggersted.

With the sams errove. introduced, the Runge-Kutta methed was app-
lied, Due to levge waluss of 5§§§ u"i@@ﬁ%ﬁt overflow cotured, and
the: statiopary solution Sl.zazsg naver reachad,




#?f} e

Ei

g
i3
m

%

H

o

@eﬁ@ﬁ»

[

o L
g

[N,

Bienetion . of  zotution
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11{t} is plotted versus the time diffe-




THEORY FOR LIMEAR SYSTES

% pozsible gensralizntion of the
; yaters with quadretic lesa.

§ » f@gaxﬁzmﬁf'zimﬁ the éng & should be cbe
? is still ancumed that [Ay iz stabilizsbl

stability of the cptimal systen is a desired
nimizing control will be searched for in the class
nagy fesdback eowtrols.

- 13 g
2 symetric, and Q, positive definite

Uﬁ‘—*m steble linpeoy £ z&w"?;g ik

e ;,s;

troaln,

ine salution of

I EV %
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- Proof:

- solution 8, of (3.58). Bug if there are several nonnegative definite
- solutions Qf (3.5), Sp is not the solution of the optimal control

- 8ince (A - 51,1} is a@y’@te‘*:m ateble, 53. satiafies the algebraic
eguation

(A «»“ELLBTSI& S)(A = BL;) + @ ¢ L'iQQLl =0 (3.17)

- 50,

with boundary cendition
oo y =
S' (5& f} -

{t, is arbitrery)

From 2.3 follows that %%(t} converges towards the: 1@%‘*’ stationary |

problem, and a:g m to pwm that in the class of stable linear
feadbacks u = « L, L = QZ B $p ymms the minimm value of the
lozs function V.

- Censider an arbitrery stable linsar fe@dbaﬁc Uz~ L The corves-
- ponding value of V is ,

= %1 (0)8%(0)
where

T
ARG . {A«gijm
5% 'i% %.QZLLJ’“

(3.18)
is n@@mg&ti% definite symretric.,

»

The corresponding equation for Lm Q2 S ié

(A~ BL)TS ¢S (A - BL) +Qp + LQ,L =0 (3.18)
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g
%
L
?
z
%
%
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|

This is eguivalent to

- BT + 8 (A - BL) ¢ Qjm@z-ggsfs%

- %BTSW - 5Bl ¢ %@2% =0 - - (8.18)
Subtract (3.19) fram (3.17).
A - ELle«;gs)ﬂs - 8 (A - B%}%Ll%h«;“

LiB'S wsm,l 1B's, * 5Bl - IgQL = 0
a4 o

Binos Q.,Zr’% = Brsma this equation reduces to
[+ .

(A - BL)T(S, - S ¢ (S, - S - BL) + LIQL -
ST LT St T LT S 2

R S Uy . T } : ’ .
= 1%l - LpQply ¢ LGk = 0 | (3.20)

(A - g&g%; - Sm} # (8§, - 3 3@ - 5%; E 5: 1,@}

u

Sinoe (A - Bly) is asymptotic. steble, the solution {S -8} is
nermegative definite, end i zero if and enly if Ly = L . This
completes the proof.

Tt is new possible to gw% a ;’;ﬂ%m@i mmrg«m&m&m of the dif-
fevent stationary nomnegativa definite solutions of (3.5). Suppose
that [g.a »-A] hes. some unsteble noncheervoble modes. Then the
spallest sglw'mm which is the %ltzmm of the optimal




cuilrol problen, Jeovos these modes unchangnd, and the elosed roop
gysten is unnteble. I it . is dzsiréd to stehilize just one wods,
the best linesr feedbnek i glvan by the stationawy solution which
cwmegpmv to that mods gtebilized. Noturally this requires more

Cennyry, aad thus tha torm

i z;T s@é@zm‘i%)@%
{; N

.

ceczen larger. The most expurngive cass is of cowne when all modes

- 8

ara stebilized, which oorresponds to the largest solution of (3.5).

The: otetionary Ricoati equaticn then has the nice property, that i
containg the optimel solutions for all é&m@g of stability.

3.6 m&%ﬁ ENERGY RESULATOR
4s &n interesting spscial case, consider the problem to find an

asymptotic stable Llinese fasdhack u = - L for the ayaten

AN

LY L N ® b »
which minimizes

3

o i3 positive éaﬁnﬁ;t:ﬁ %@ﬁmm and ¥V can then bs

arproted ag

Thon semume that A hes adgenvalues Ays sees A}f guch that Re{x) = 0,
znd ?},%3.1@ aeeg ‘\g 331'%: \su{ 1 < {. Slﬁ% Ql vg }t}ﬂg seag A}.. E‘m
nsondwtactabla, and then E hea the az,gﬂs‘&\;&lﬁﬁ xklg cauy &.%M %

3
tRrl?
caeg wzgﬁ? indeperdent t of Qg. The optimal steble systen thus has the




| |

53,

Qmﬁ %1“&5 "”Alg LR ""Ag’,g Awlg LY }‘\ £2 ﬁl?ﬁ Can b‘ﬁs I.Cii‘i“lslw&{t d !

Theorem 13:
R B R AT 7 N S

Conzidar the aystem

o
==a fx ¢ Bu
LGt

where A hag eigsnvalues Azg seny ‘l‘}: such that Re{)} » 0, and

Meaps +oes Ay -with Re{A} < 0. The minimum energy vegulator u = - Lx
then has th@- roperty that "&h@ eigenvaluss of the clesed loop sys-
t@”ﬁ ﬁm "’}tl esv g "}ﬁkg Ak”‘l’ LR 9}& @ ‘

Hotice that the feedback L is independent of any speca,fac @xmm
of the positive definite criteria matrix Q2 !
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