
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Eager Evaluation Considered Harmful

Blomdell, Anders

2000

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Blomdell, A. (2000). Eager Evaluation Considered Harmful. (Technical Reports TFRT-7590). Department of
Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/501dc1f8-3c76-425b-971c-26d6939506e0


Eager evaluation considered harmful

Anders Blomdell
Department of Automatic Control

Lund Institute of Technology
Box 118 S-221 00 Lund

anders.blomdell@control.lth.se

Abstract In real-time systems potentially unbounded loops and lazy
(late) evaluation are often avoided in order to improve predictability.
This paper will show that a commonly suggested way to implement
semaphores can lead to unnecessary blocking of high-priority tasks.
It also presents a scheme with lazy evaluation and (potentially) un-
bounded loops that gives less blocking of high-priority tasks.

Keywords blocking, mutual exclusion, priority inversion, real-time
kernel, scheduling, semaphore.

Introduction

Often, real-time blocking primitives like semaphores and monitors are coded in
such a way that scheduling decisions are taken as soon as a task releases its lock
on the resource. These eager (early) evaluations are done with the belief that sys-
tem predictability will be improved and the processor load be decreased ("...the
increment of a semaphore immediately followed by its decrement is avoided..."
[Burns and Wellings, 1997, p 215] ). A common way to implement semaphores
[Dijkstra, 1968] is the following [Brinch Hansen, 1973], [Buttazzo, 1997]:
procedure wait(s : semaphore);
begin wait

disable();
if (s.count > 0) then

s.count := s.count − 1;
else

insert(s.waiting, current);
schedule();

end if;
reenable();

end wait;

procedure signal(s : semaphore);
begin signal

disable();
if (not empty(s.waiting)) then

insert(readyqueue, first(s.waiting));
schedule();

else
s.count := s.count + 1;

end if;
reenable();

end signal;

This paper presents a real-world situation where this implementation fails to
give the expected timing, then the problem is analyzed and an alternative semaphore
implementation is presented.

1



A Toy Example

In our lab we have a LEGOTM car factory that assembles a number of LEGO
bricks and prebuilt modules into finished LEGO cars.

Chassis
assembly

Roof
assembly

Conveyor 2Conveyor 1 Storage 1 Storage 2Inverter

Platform
feeder

At the far left of the factory, the Platform feeder loads prebuilt platforms on
Conveyor 1. When a platform reaches the Chassis assembly, the conveyor is
stopped and four LEGO bricks are mounted on the platform. The finished chassis
is transported to the Inverter that moves it from its upside-down position to
Storage 1 conveyor. The chassis then passes Storage 2 conveyor to Conveyor
2 which transfers the chassis to the Roof assembly, where a roof is mounted.
Finally the finished car is transferred out of the factory. In the figure the various
motors and detectors are not shown. There are hard deadlines in the conveyor
control, since failure to stop the transport or storage conveyors in time will lead
to cars colliding or jamming the assembly stations.

The factory was recently equipped with a serial I/O system in order to be able
to control it from an ordinary PC without any special I/O-cards. Due to physical
reasons 3 digital I/O-units were used for the conveyors and 4 digital I/O-units
were used for the feeder, assembly stations and inverter. The communication is
done via the PC serial port (RS-232) at a speed of 9600 baud. The rest of this
section will describe the software design for controlling the factory.

Since the software was intended to run under Windows NT, which only has a few
priority levels available for each process, it was decided that control should be
divided in two tasks; one high-priority task controlling the time critical conveyors
and a lower-priority task controlling the feeder, assembly stations and inverter:

process ConveyorControl;

begin ConveyorControl
t := now;
loop

conveyor_1_in := DigIn(1);
storage_in := DigIn(2);
conveyor_2_in := DigIn(3);
Calculate conveyor control signals...
DigOut(1, conveyor_1_out);
DigOut(2, storage_out);
DigOut(3, conveyor_2_out);
t := t + T_conveyor;
WaitUntil(t);

end loop
end ConveyorControl;

process AssemblyControl;

begin AssemblyControl
t := now;
loop

feeder_in := DigIn(4);
chassis_in := DigIn(5);
inverter_in := DigIn(6);
roof_in := DigIn(7);
Calculate assembly control values...
DigOut(4, feeder_out);
DigOut(5, chassis_out);
DigOut(6, inverter_out);
DigOut(7, roof_out);
t := t + T_assembly;
WaitUntil(t);

end loop
end AssemblyControl;

The serial port is a shared resource and is protected with a semaphore. The code
for the digital I/O can briefly be described as:

2



procedure DigIn(device : int) : byte;

begin DigIn
wait(rs232semaphore);

Send command to get data from device...
Wait for data to arrive...
Read result data...

signal(rs232semaphore);
Return result...

end DigIn;

procedure DigOut(device : int; data : byte);
begin DigOut

wait(rs232semaphore);
Send data to device...
Wait for acknowledge to arrive...

signal(rs232semaphore);
end DigOut;

In the absence of higher priority tasks competing for the serial bus, the worst
case timing for the conveyor control task occurs when: (a) a detector is triggered
the moment after it has been polled; (b) the next sampling instant is delayed by
an I/O-operation performed by the assembly control task.

1 2 3
1 2 3

1 2 3
1 2 3

Tconveyor

tmax

?

Conveyor task
input

output

Assembly task
input

output

Conveyor 11
Storage 1-22
Conveyor 23
Platform feeder4
Chassis assembly5
Inverter6
Roof assembly7

t
tdetect tstopped

Since the digital I/O-units require 10 bytes of transmitted data for each I/O-
operation, each operation takes approximately 10 ms. Together with the the con-
veyor speed of 160 mm/s and the fact that conveyors has to be stopped within
20 mm from the detector we get tmax = 20 mm

160 mm/s = 125 ms and from the timing dia-
gram we derive Tconveyor ≤ tmax−40 ms = 85 ms. We then choose Tconveyor = 80 ms
since the Windows NT time resolution is 10 ms. If we then schedule the lower-
priority loop with Tassembly = 400 ms the total schedule for the RS-232 bus will
be:

1 2 3
1 2 3

Conveyor task
input

output

Assembly task
input

output
t

4 5

1 2 3
1 2 3

6 7

1 2 3
1 2 3

4 5

1 2 3
1 2 3

6 7

1 2 3
1 2 3

80 160 240 320 ms

But when this system was implemented and run, we found that the system
occasionally did misfeed cars. Logging of the activity revealed that the RS-232
bus was allocated as follows:

1

4

2

5

3

6

Conveyor task
input

output

Assembly task
input

output
t

1

7

2

4

3

5

1

6

2

7

3
1 2 3

1 2 3
1 2 3

1 2 3
1

1 2 3
1 2 3

80 160 240 320 ms

2 3

As we can see from the gray blocks of the high-priority process, 3 out of five
deadlines are missed. It would be easy to assume that the use of a non-real-time
operating system accounts for this error, but as the next section will show, it is

3



the textbook semaphore implementation that is the cause of the error.

The Problem Analyzed

Let us consider what happens if we use the semaphore from the introduction to
control access to some resource and the task is then blocked on some operation
(e.g. protecting devices connected to a serial port and blocking on read/write
operations). If multiple acquisitions are done from a high-priority task, the as-
sociated code could look like:

procedure acquire();
begin acquire

wait(s); Claim device.
Setup device for acquisition...
Blocking wait for data to arrive.
Acquire data...
signal(s); Release device.

end acquire;

procedure highpriority();
begin highpriority

for n := 1 to 3 do
acquire();

end for;
end highpriority;

The associated timing diagram would then look like:

n = 1 n = 2 n = 3

t t t

Wait semaphore

Signal semaphore

Execute inside semaphore

Now we introduce a similar low-priority task:

procedure lowpriority();
begin lowpriority

for n := 1 to 3 do
acquire();

end for;
end lowpriority;

If the two tasks are released at the same time, one would intuitively think that
the high-priority task would do all its acquisitions and then the low-priority task
would do its acquisitions. But in reality we get the following behavior:

n = 1

n = 1

n = 2

n = 2

n = 3

n = 3

t t t

t t t

1

2 3 5

4

6

Wait semaphore

Signal semaphore

Execute inside semaphore

7

8

The sequence of events that leads to unexpected behavior is:

4



&1 Both tasks are released and the high-priority task (HP) starts executing.

&2 HP does a wait on the semaphore and enters the critical region.

&3 HP blocks while waiting for data and the low-priority task (LP) starts
executing.

&4 LP does a wait on the semaphore, finds it occupied and is placed in the
semaphore queue.

&5 After finishing its wait for data, HP leaves the critical region by doing a
signal on the semaphore, finds LP in the semaphore queue and grants LP
the semaphore.

&6 HP does a wait on the semaphore, finds it occupied and is placed in the
semaphore queue. LP starts to execute.

&7 LP signals the semaphore, finds HP in the semaphore queue and grants
HP the semaphore. HP starts to execute.

&8 The history repeats itself from &3 .

The trouble starts at &5 , where the high-priority task grants the semaphore to
the low-priority task. The moment later (at &6 ), the high-priority task tries to
grab the semaphore itself, but finds it occupied by the low-priority task and thus
is forced to block until the semaphore is released.

A Modest Proposal

The proposed way to correct this problem, is to postpone the decision of who gets
the semaphore to the latest possible time. The code would then look like:

procedure wait(s : semaphore);
begin wait

disable();
while (s.count = 0) do

insert(s.waiting, current);
schedule();

end while;
s.count := s.count − 1;
reenable();

end wait;

procedure signal(s : semaphore);
begin signal

disable();
s.count := s.count + 1;
if (not empty(s.waiting)) then

insert(readyqueue, first(s.waiting));
schedule();

end if;
reenable();

end signal;

The timing diagram for the modified semaphore will then be:

5

7

Wait semaphore

Signal semaphore

Retry semaphore

Execute inside semaphore
n = 1 n = 2 n = 3

t t t

n = 1 n = 2 n = 3

t t t

6

8

1

2 3

4

5



&1 Both tasks are released and HP starts executing.

&2 – &4 See previous example.

&5 After finishing its wait for data, HP leaves the critical region by doing
a signal on the semaphore, increments the semaphore, finds LP in the
semaphore queue and puts LP into the ready-queue.

&6 HP does a wait on the semaphore, finds it free and enters the critical region
a second time.

&7 LP retries the semaphore, finds it occupied and is placed in the semaphore
queue.

&8 LP retries the semaphore for the third time, finds it free and can start its
acquisition cycle.

The important feature of the presented solution, is that each task compete for
the semaphore; i.e. no task grants a resource to another task. It is noteworthy
that the proposed correction uses an unbounded loop, which is often considered
unadvisable in real-time systems.

Conclusions

This paper has shown that improper implementation of blocking primitives for
uni-processors can lead to the same kind of scheduling anomalies that frequently
occurs on multi-processors.

Semaphores and priority based scheduling have been known and used by pro-
grammers for about 30 years. The combination of the two can lead to unexpected
behavior (bugs). The implementation of both concepts is relatively simple, thus
testing, code inspection and formal verification methods should have revealed
the bug many times during these years. Still, at least one modern real-world
system (i.e. Windows NT 4.0) contain the bug.

Nota Bene Even though this paper deals mostly with semaphores, it should
be noted that all blocking primitives (e.g. monitors, mailboxes, etc) are sus-
pectible to the problem. It must also be stressed that even though the effects
of the bug resembles priority-inversion, the cause may well be present in the
implementation of priority-inheritance and priority-ceiling protocols.

Bibliography

Brinch Hansen, P. (1973): Operating System Principles. Prentice-Hall, Engle-
wood Cliffs, New Jersey.

Burns, A. and A. Wellings (1997): Real–Time Systems and Their Programming
Languages. Addison–Wesley.

Buttazzo, G. (1997): Hard Real–Time Computing Systems – Predictable Schedul-
ing Algorithms and Applications. Kluwer Academic Publishers.

Dijkstra, E. (1968): “Cooperating sequential processes.” In Genuys, Ed., Pro-
gramming languages. Academic Press N.Y.

6


