

LUND UNIVERSITY

The FERRUM project: improved experimental oscillator strengths in Crll

Nilsson, Hampus; Ljung, Gunilla; Lundberg, Hans; Nielsen, Krister

Published in: Astronomy & Astrophysics

DOI: 10.1051/0004-6361:20054152

2006

Link to publication

Citation for published version (APA): Nilsson, H., Ljung, G., Lundberg, H., & Nielsen, K. (2006). The FERRUM project: improved experimental oscillator strengths in Crll. Astronomy & Astrophysics, 445(3), 1165-1168. https://doi.org/10.1051/0004-6361:20054152

Total number of authors: 4

General rights

Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

· Users may download and print one copy of any publication from the public portal for the purpose of private study

or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain

· You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

The FERRUM project: laboratory-measured transition probabilities for Cr II

J. Gurell¹, H. Nilsson², L. Engström³, H. Lundberg³, R. Blackwell-Whitehead², K. E. Nielsen^{4,5}, and S. Mannervik¹

¹ Department of Physics, Stockholm University, AlbaNova University Center, SE-10691 Stockholm, Sweden e-mail: jonas.gurell@fysik.su.se

² Lund Observatory, Lund University, Box 43, SE-22100 Lund, Sweden

³ Atomic Physics, Department of Physics, Lund University, Box 118, SE-22100 Lund, Sweden

⁴ Catholic University of America, Washington, DC 20064, USA

⁵ Astrophysics Science Division, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771, USA

Received XXX; accepted XXX

ABSTRACT

Aims. We measure transition probabilities for Cr II transitions from the $z^{4}H_{J}$, $z^{2}D_{J}$, $y^{4}F_{J}$, and $y^{4}G_{J}$ levels in the energy range 63000 to 68000 cm⁻¹.

Methods. Radiative lifetimes were measured using time-resolved laser-induced fluorescence from a laser-produced plasma. In addition, branching fractions were determined from intensity-calibrated spectra recorded with a UV Fourier transform spectrometer. The branching fractions and radiative lifetimes were combined to yield accurate transition probabilities and oscillator strengths.

Results. We present laboratory measured transition probabilities for 145 Cr II lines and radiative lifetimes for 14 Cr II levels. The laboratory-measured transition probabilities are compared to the values from semi-empirical calculations and laboratory measurements in the literature.

Key words. Atomic data, Line: identification, Methods: laboratory, Techniques: spectroscopic

1. Introduction

Spectral analysis of astrophysical objects depends on the availability of accurate laboratory data including radiative lifetimes and transition probabilities. Lines of Cr II are observed in a broad range of stellar and nebular spectra (e.g. Merrill 1951; Shevchenko 1994; Andrievsky et al. 1994), and accurate Cr data are required for stellar abundance studies (Babel & Lanz 1992; Dimitrijević et al. 2007). In particular, several chemically peculiar stars show unexpectedly high abundances of Cr (Rice & Wehlau 1994; López-García et al. 2001).

Radiative lifetimes in CrII have been with the beam-foil technique by Pinnington et al. (1973) and Engman et al. (1975) and with the time-resolved (TRLIF) laser-induced fluorescence technique by Schade et al. (1990), Pinnington et al. (1993),and branching Nilsson et al. (2006).In addition, fraction (BF)measurements were combined with radiative lifetimes to vield transition probabili-(Bergeson & Lawler 1993;Spreger et al. ties 1994:Gonzalez et al. 1994; Nilsson et al. 2006), and oscillator strengths were measured by Musielok & Wujec (1979), Goly & Weniger (1980) and Wujec & Weniger (1981) using a wall-stabilized arc. Semi-empirical oscillator strengths have been calculated by Kurucz (1988) using the Cowan code, by Luke (1988) using the R matrix method, and by Raasen & Uylings (1997) using the orthogonal operator method.

Several studies have found that the stellar chromium abundance determined from CrI lines is significantly different to the abundance using CrII lines (McWilliam et al. 1995;Sobeck et al. 2007;Lai et al. 2008). This difference is greater than the uncertainty in the stellar observations and measured oscillator strengths. Furthermore, the difference increases as the metallicity of the star decreases. Sobeck et al. (2007) indicate that one possible explanation of this discrepancy could be non-LTE effects not included in the stellar model. Sobeck et al. (2007) propose that, in order to resolve this issue additional laboratory investigations of chromium should focus on weak branches of CrII and that the Cr abundance should be reanalyzed with a three-dimensional hydrodynamical model. In addition, the need for more laboratory measured CrII transition probabilities is discussed by Wallace & Hinkle (2009).

In this paper we present transition probabilities for 145 lines in Cr II from 14 upper levels, see the partial energy level diagram of Cr II in Figure 1. The lifetimes of the upper levels have been measured with the TRLIF technique.

2. Laboratory measurements

The lifetime of an upper state i can be written as

$$\tau_{\rm i} = 1/\sum_k A_{\rm ik},\tag{1}$$

arXiv:1001.2139v1 [astro-ph.SR] 13 Jan 2010

Fig. 1. Partial energy level diagram of Cr II (Ralchenko et al. 2009). Only terms belonging to the $3d^5$, $3d^44s$, $3d^44p$, and $3d^34s^2$ configurations are shown and ordered by their respective parent term shown above the diagram. The investigated upper levels are shown as dark grey boxes and the lower levels to which they decay are shown as light grey boxes.

where A_{ik} is the transition probability of a line from upper level *i* to lower level *k*. The *BF* of the line is defined as

$$BF_{ik} = A_{ik} / \sum_{k} A_{ik} = I_{ik} / \sum_{k} I_{ik}, \qquad (2)$$

where I_{ik} is the measured intensity corrected for the instrumental response. Combining these two equations gives the transition probabilities as

$$A_{ik} = BF_{ik}/\tau_{\rm i}.\tag{3}$$

The following subsections describe the measurements of the lifetimes and BFs.

2.1. Radiative lifetimes

We measured lifetimes for 14 odd parity levels in Cr II belonging to the $3d^44p$ configuration. The lifetimes were measured using the TRLIF technique at the Lund High Power Laser Facility. This technique has been described in detail in the literature (see Bergström et. al. 1988, Xu et al. 2003), so only a brief description is given here.

A laser-produced 'plasma-cone' containing Cr atoms and ions in metastable levels was created by focusing a Nd:YAG laser (Continuum Surelite) onto a target of pure Cr. Cr⁺ ions in metastable states were excited to levels of opposite parity using a pump laser and the fluorescence from the excited levels was recorded as a function of time. The excitation pulses were created by pumping a Continuum Nd-60 dye laser with a Nd:YAG Continuum NY-82 laser. The pulses from the Nd:YAG pump laser were shortened from 10 to 1.5 ns using stimulated Brillouin scattering. The Nd-60 dye laser used a DCM dye to produce light between 6000 and 6700 Å. A broader wavelength coverage was achieved by using nonlinear effects in KDP and BBO crystals and Raman shifts in a H_2 cell.

A 1/8 m monochromator was used to select the observable fluorescence wavelength. The fluorescence signal was recorded with a micro-channel plate photomultiplier tube with a rise time of 0.2 ns. The shape of the excitation pulse was measured with the same system as the fluorescence signal. The lifetimes were extracted by fitting the fluorescence data with a single exponential convoluted with the shape of the laser pulse. Each lifetime curve was averaged over 1000 laser shots, and the final lifetimes given in Table 1 are averages of at least 10 lifetime curves. The uncertainties in the lifetimes include both statistical and systematic errors.

2.2. Branching fractions

The BFs were measured from spectra recorded with the Chelsea Instrument FT500 UV FT spectrometer at Lund Observatory. The light source was a Penning discharge lamp with pure Cr cathodes and operated with Ne as buffer gas. The light source was operated at a current between 0.8 and 1.3 A, and with at a carrier gas pressure of 40 mTorr. The Penning discharge lamp provides an intensity stable emission spectrum over several hours enabling high signal-to-noise (S/N) spectra to be recorded. Figure 2 shows part of the observed spectrum.

Three separate spectral regions were recorded to cover the wavenumber region between 20000 and $52000 \,\mathrm{cm}^{-1}$.

Fig. 2. A section of the FT spectrum showing five Cr II lines indicated by their respective wavenumber.

The spectra were intensity-calibrated with standard lamps with known spectral radiances and by Cr II BFs previously measured by Nilsson et al. (2006). A continuous deuterium (D₂) lamp was used in the wavenumber range $32000 - 52000 \text{ cm}^{-1}$. A tungsten strip lamp was used in the wavenumber range $20000 - 28000 \text{ cm}^{-1}$ and the $28000-32000 \text{ cm}^{-1}$ wavenumber region was calibrated using previously intensity-calibrated Cr II BFs from the data of Nilsson et al. (2006). The calibration was performed with a software routine implemented in the program XGremlin (Nave et al. 1997). In addition, the spectra were wavenumber-calibrated using an average of nine unblended Ne II lines, which have been measured with high accuracy and suggested as suitable transitions for wavenumber calibration by Öberg (2007).

However, the wavelengths and wavenumbers in Tables 2 and 3 are Ritz values determined from the energy levels in Ralchenko et al. (2009).

The spectral lines were fitted with Voigt profiles to determine the integrated intensity using the commercially available software PeakFit. The uncertainty in the integrated intensity is determined from the standard deviation in the fitted values and the S/N of the lines. The majority of the fitted Cr II line profiles were unblended. However, a small number of Cr II lines were partially blended with other lines. The blended features were identified, and a fit of both line profiles was performed when possible. The blended Cr II lines are given with larger uncertainties in the integrated intensity.

3. Results

Our experimental lifetimes are compared to previous measurements and calculations in Table 1. Table 2 shows our laboratory measured BFs, A-values and semi-empirical BFs. The complete line list for all Cr II lines measured in this paper with comparisons to semi-empirical log gf values in the literature is shown in Table 3. A comparison between our measured A-values and values presented in the literature is shown in Table 4.

3.1. Lifetimes

In Table 1 we report radiative lifetimes for 14 levels in Cr II compared with values from the literature. Our experimental lifetimes of the z^{4} H term agree, within the uncertainties, with the beam-foil measurements by Pinnington et al. (1973) and by Engman et al. (1975), and the experimental lifetimes of Warner (1967). There is a good agreement between our lifetimes and the values from Raasen & Uylings (1997); however, the calculated values by Warner (1967) and Luke (1988) are shorter than our lifetimes by approximately four standard deviations.

There is a a three-sigma difference between our lifetimes for the y^4 G term and the measured values of Pinnington et al. (1973). The difference may come from the improved wavelength resolution of our measurements. Pinnington et al. (1973) were not able to resolve the four individual levels y^4 G and measured an average lifetime determined from a blend of transitions from these levels. Pinnington et al. (1973) also states that the assignment of the transition from the y^4 G term at 2700 Å is one of the 'less certain' ones presented. In our measurements we have resolved the individual decay channels.

There is good agreement between our work and the lifetimes calculated by Raasen & Uylings (1997) for the $y^{4}F_{9/2,7/2}$ levels. However, there is a discrepancy between our lifetimes and the values of Raasen & Uylings (1997) for $y^{4}F_{5/2,3/2}$ and the $z^{2}D_{5/2,3/2}$. This may be due to a difference in the predicted level mixing, which is difficult to reproduce in semi-empirical calculations for complex atomic systems such as Cr II. In addition, an increase in the predicted level mixing may explain the discrepancy between our experimental BFs and the calculated BFs by Raasen & Uylings (1997) for transitions from the $y^{4}F_{5/2,3/2}$ and the $z^{2}D_{5/2,3/2}$ levels.

3.2. Transition probabilities

In Table 2 we present our BFs and A-values. The BF residual value in Table 2 is determined from the semi-empirical calculations of Raasen & Uylings (1997). The residual value is used to estimate the BF contribution from transitions that were not observed in our spectra. The missing lines are very weak transitions, $BF \leq 2\%$, and for most upper levels in Table 2, the residual value is at most a few percent, which is less than the uncertainty in the BFs. The uncertainty in the A-values is determined from the BF and lifetime uncertainty using the method discussed by Sikström et al. (2002), which include uncertainties from the line-fitting, intensity calibration of each spectra, intensity cross calibration between separate spectra and the uncertainty in the fit of the decay curve.

The $a^4P_{3/2}$ - $y^4F_{5/2}$ transition at $36704.65 \,\mathrm{cm}^{-1}$ and the $a^4F_{9/2}$ - $y^4G_{11/2}$ transition at $34514.88 \,\mathrm{cm}^{-1}$ were found to be considerably stronger than predicted by semi-empirical calculations. This deviation stems from line blending with other Cr II transitions. The line at $36704.65 \,\mathrm{cm}^{-1}$ is within $0.05 \,\mathrm{cm}^{-1}$ of a line of comparable strength from the $b^4G_{11/2}$ - $y^2H_{11/2}$ transition and the line at $34514.88 \,\mathrm{cm}^{-1}$ is within $0.05 \,\mathrm{cm}^{-1}$ of the $b^2I_{11/2}$ - $z^2I_{13/2}$ transition. We observed other relatively strong transitions from these $y^2H_{11/2}$ and $z^2I_{13/2}$ upper levels, which indicated that these levels had relatively high populations and were

Table 1. Lifetimes in CrII

						τ (ns)				
Configuration	Term	$E \ (\mathrm{cm}^{-1})$	This work	$C\&B^a$	WT^{b}	\mathbf{P}^{c}	WE^d	\mathbf{E}^{e}	\mathbf{L}^{f}	$\mathrm{R}\&\mathrm{U}^g$
$(a {}^{3}\mathrm{H})4p$	$z{}^{4}\mathrm{H}^{o}_{7/2}$	63600	4.4(4)	$2.1(4)^{h}$	3.3^{h}	$4.0(4)^{h}$	$5.3^{h,i}$		3.3	4.4
$(a {}^{3}\mathrm{H})4p$	$z^{4} H_{9/2}^{o'}$	63706	4.4(4)	$2.1(4)^{h}$	3.3^{h}	$4.0(4)^{h}$	$5.3^{h,i}$		3.3	4.4
$(a^{3}{\rm H})4p$	$z^{4} \mathrm{H}^{o'}_{11/2}$	63849	4.2(3)	$2.1(4)^{h}$	3.3^{h}	$4.0(4)^{h}$	$5.3^{h,i}$	5.0(5)	3.3	4.4
$(a {}^{3}\mathrm{H})4p$	$z{}^{4}\mathrm{H}^{o}_{13/2}$	64031	4.2(3)	$2.1(4)^{h}$	3.3^{h}	$4.0(4)^{h}$	$5.3^{h,i}$	4.7(5)	3.3	4.3
$(a {}^{3}{\rm F})4p$	$y^{4} F_{5/2}^{o}$	67012	3.7(4)							4.3
$(a^{3}F)4p$	$y^{4}F_{3/2}^{o'}$	67070	3.9(5)							4.5
$(a {}^{3}{\rm F})4p$	$y^{4} F_{7/2}^{o'}$	67393	2.9(2)							2.9
$(a {}^{3}{\rm F})4p$	$y{}^4\mathrm{F}^{o'}_{9/2}$	67448	2.9(2)							2.9
$(a {}^{3}{\rm H})4p$	$y^{4}G^{o}_{7/2}$	67333	2.6(2)			$3.4(2)^{h}$				2.6
$(a^{3}{\rm H})4p$	$y^{4}G_{5/2}^{o}$	67344	2.6(2)			$3.4(2)^{h}$				2.5
$(a {}^{3}\mathrm{H})4p$	$y^{4}G_{9/2}^{o}$	67353	2.6(2)			$3.4(2)^{h}$				2.5
$(a {}^{3}\mathrm{H})4p$	$y{}^4 ext{G}^{o'}_{11/2}$	67369	2.7(2)			$3.4(2)^{h}$				2.5
$(a {}^{3}{\rm F})4p$	$z^{2}\mathrm{D}^{o}_{3/2}$	67379	3.1(3)							3.3
$(a {}^{3}{\rm F})4p$	$z^{2} D_{5/2}^{o'}$	67387	3.1(3)							3.4
a Corliss and 1	Bozman (19	962) (Intensit	v measureme	nt)						

^bWarner (1967) (Calculated)

^cPinnington et al.(1973) (Beam-foil measurement)

^dWarner (1967) (Emission measurement)

^eEngman (1975) (Beam-foil measurement)

 f Luke (1988) (Calculated)

^gRaasen & Uylings (1997) (Calculated)

^hMean lifetime

^{*i*}Upper limit

thus probable candidates for line blending. However, it was impossible to fit the two blended features to recover the individual line intensities because of the close proximity of the central wavenumbers of the transitions. Instead we used BFs from the semi-empirical calculations of Raasen & Uylings (1997) for the 36704.65 cm⁻¹ and 34514.88 cm⁻¹ transitions.

The log gfs in Table 3 are compared to the semi-empirical results by Kurucz (1988) and Raasen & Uylings (1997) and a graphical comparison is given in Figs. 3 and 4. The comparison between our laboratory log gfs and those of Raasen & Uylings (1997), Figure 4, has a smaller deviation than those in Figure 3.

There is good agreement between our experimental log gf values and the semi-empirical log gf values of Kurucz (1988) for lines from the z ⁴H_J levels as well as for lines from the y ⁴G_{5/2} and the z ²D_{3/2} levels, see Table 3. However, there is a larger deviation between our log gf values and the semi-empirical calculations of Kurucz (1988) for lines from the y ⁴F_J levels, the y ⁴G_{7/2,9/2,11/2} levels, and the z ²D_{5/2} level. This may be due to inaccurate level mixing in the semi-empirical calculations of Kurucz (1988). The semi-empirical calculations of Raasen & Uylings (1997) agree more consistently with our laboratory log gf values.

In Table 4 we compare our A-values with A-values in the literature. In general our A-values agree to within the uncertainties with the results in the literature; however, the A-values of Corliss & Bozman (1962) are significantly different to the other A-values in the literature. The compilation of Corliss & Bozman (1962) includes many values determined from a wall-stabilized arc. Inaccuracies in the wall temperature measurement for the wall-stabilized

Fig. 3. Comparison between $\log (gf)$ -values from this experimental study and semi-empirical values from Kurucz (1988). The difference between the two values for each line is plotted as a function of line strength.

arc method can significantly increase the uncertainty in the measurement, so we recommend that the A-values in Corliss & Bozman (1962) are used with caution.

4. Summary

We present experimental lifetimes for 14 highly excited energy levels in Cr II and BFs for 145 transitions from these levels, yielding experimental transition probabilities for

Table 4. A comparison between our A-values and the A-values in the literature.

Upper	Lower	σ				A(10	$^{8} \mathrm{s}^{-1})$				
level	level	(cm^{-1})	This study	$R\&U^a$	\mathbf{K}^{b}	$W\&W^c$	$G\&W^d$	M^{e}	Wt^{f}	We^{g}	$C\&B^h$
$3d^4({}^{3}\text{H})4p {}^{4}\text{H}^{o}_{13/2}$	$3d^4({}^3G)4s \; {}^4G_{11/2}$	30336.36	0.099	0.207	0.318			0.33	0.17	0.17^{i}	0.86
$3d^4({}^{3}\mathrm{H})4p \; {}^{4}\mathrm{H}^{o'}_{13/2}$	$3d^4({}^{3}\mathrm{H})4s \; {}^{4}\mathrm{H}_{13/2}$	33638.67	1.951	1.787	2.003			2.0	1.5	1.5^{i}	5.1
$3d^4({}^{3}\mathrm{H})4p \; {}^{4}\mathrm{H}^{o}_{11/2}$	$3d^4({}^{3}\mathrm{H})4s \; {}^{4}\mathrm{H}_{11/2}$	33550.22	1.851	1.672	1.804			1.9	1.6	1.7^i	5.1
$3d^4({}^{3}\mathrm{H})4p \; {}^{4}\mathrm{H}^{o'}_{9/2}$	$3d^4({}^{3}\mathrm{H})4s {}^{4}\mathrm{H}_{9/2}$	33487.47	1.720	1.600	2.207			2.3	1.7	1.8^{i}	3.6
$3d^4({}^{3}\mathrm{H})4p \; {}^{4}\mathrm{H}_{7/2}^{o'}$	$3d^4({}^{3}\mathrm{H})4s \; {}^{4}\mathrm{H}_{7/2}$	33444.12	1.741	1.602	2.186			2.3	0.52	0.55^{i}	6.1
$3d^4({}^{3}\mathrm{H})4p \; {}^{4}\mathrm{G}^{o'}_{9/2}$	$3d^4({}^{3}\mathrm{H})4s {}^{4}\mathrm{H}_{9/2}$	37134.48	0.100	0.186	0.183		0.13(7)				
$3d^4({}^3\mathrm{F})4p \; {}^4\mathrm{F}^o_{5/2}$	$3d^4(^{1}\text{D})4s \ ^{2}\text{D}_{5/2}$	21281.50	0.011	0.006	0.007	0.046(9)			0.0492		
^a Baasen & Uvlin	vs (1997)										

 b Kurucz (1988)

^cWujec and Weniger (1981)

^dGoly and Weniger (1980)

^eMusielok (1975)

 f Warner (1967) (Calculated)

^gWarner (1967) (Experimental)

 h Corliss and Bozman (1962)

^{*i*}Upper limit

Fig. 4. Comparison between $\log (gf)$ -values from this experimental study and semi-empirical values from Raasen & Uylings (1997). The difference between the two values for each line is plotted as a function of line strength.

lines that are strong features in stellar spectra. For the majority of the Cr II transitions in this paper, the experimental transition probabilities agree with the semi-empirical calculations within the uncertainty of the measurements. In particular, we note that the semi-empirical orthogonal operator calculations of Raasen & Uylings (1997) have a one standard deviation difference to our experimental log gf values of 0.21. However, the semi-empirical Cowan code calculations of Kurucz (1988) have a one standard deviation difference to our experimental log gf values of 0.61. In addition, different semi-empirical calculations produce different term labels for the energy levels because of the large amount of level mixing. We suggested that further theoretical calculations for Cr II would benefit studies of this ion.

Acknowledgements. JG and SM are very grateful for the warm hospitality shown by the staff at Lund Observatory. Financial support from the Swedish Research Council (VR), a Linnaeus grant to the Lund Laser Centre and the Knut and Alice Wallenberg Foundation, is gratefully acknowledged. RBW acknowledges a Euopean Commision Marie Curie Intra-European fellowship.

References

- Andrievsky, S. M., Kovtyukh, V. V. & Usenko, A. 1994, A&A, 281, 465
- Babel, J. &Lanz, T. 1992, A&A, 263, 232
- Bergeson, S. D. & Lawler, J. E. 1993, ApJ, 408, 382
- Bergström, H., Faris, H., Hallstadius, G. W., Lundberg, H., Persson, A. & Wahlström, C. G. 1988, Z. Phys. D 8, 17
- Corliss, C. H. & Bozman, W. R. 1962, Nat. Bur. Std. Monograph, 53
 Dimitrijević, M. S., Ryabchikova, T., Simić, Popović, L. C. & Dačić
 M. 2007, A&A, 469, 681
- Engman, B., Gaupp, A., Curtis, L. J. & Martinsson, I. 1975, Phys. Scr., 12, 220
- Goly, A. & Weniger, S. 1980, J. Quant. Spectrosc. Radiat. Transfer, 24, 335
- Gonzalez, A. M., Ortiz, M. & Campos, J. 1994, Can. J. Phys., 72, 57 Kurucz, R. L. 1988, Trans. IAU, XXB, M. McNally, ed., (Dordrecht: Kluwer), 168
- Lai, D. K., Bolte, M., Johnson, J. A., Lucatello, S., Heger, A. & Woosley, S. E. 2008, ApJ, 681, 1524
- López-García, Z., Adelman, Saul J. & Pintado, O. I. 2001, A&A, 367, 859
- Luke, T. M. 1988, J. Phys. B, 21, 4049
- McWilliam, A., Preston, G. W., Sneden, C. & Searle, L. 1995, AJ, 109, 2757
- Merrill, P. W. 1951, ApJ, 114, 37
- Musielok, J. & Wujec, T. 1979, A&A Suppl., 38, 119
- Nave, G., Sansonetti, C. J. & Griesmann, U. 1997, Optical Society of America Technical Digest, 3, 38
- Nilsson, H., Ljung, G., Lundberg, H. & Nielsen, K. E. 2006, A&A, 445, 1165
- Pinnington, E. H., Lutz, H. O. & Carriaveao, G. W. 1973, Nucl. instrum. Methods, 110, 55
- Pinnington, E. H. et al. 1993, Can. J. Phys., 71, 470
- Raasen, A. J. J. & Uylings, P. H. M. 1997, unpublished data available at: ftp://ftp.wins.uva.nl/pub/orth/chromium
- Ralchenko, Yu., Kramida, A.E., Reader, J., and NIST ASD Team (2009). NIST Atomic Spectra Database (version 3.1.5), [Online]. Available: http://physics.nist.gov/asd3 [2009, October 12]. National Institute of Standards and Technology, Gaithersburg, MD.
- Rice, J. B. & Wehlau, W. H. 1994, A&A, 291, 825
- Schade, W., Mundt, B. & Helbig, V. 1990, Phys. Rev. A, 42, 3
- Shevchenko, V. S. 1994, Astron. Zh., 71, 572
- Sikström, C. M., Nilsson, H., Litzén, U., Blom, A. & Lundberg, H. 2002, J. Quant. Spectrosc. Radiat. Transfer, 74, 355
- Sobeck, J. S., Lawler, J. E. & Sneden, C. 2007, ApJ, 667, 1267
- Spreger, R., Schelm, B., Kock, M., Neger, T. & Ulbel, M. 1994, J. Quant. Spectrosc. Radiat. Transfer, 51, 779
- Wallace, L. & Hinkle, K. 2009, ApJ, 700, 720
- Warner, B. 1967, Memoirs Roy. Astron. Soc., 70, 165

- Wujec, T. & Weniger, S. 1981, J. Quant. Spectrosc. Radiat. Transfer, 25, 167
- Zu, H. L., Svanberg, S., Quinet, P., Garnir, H. P., and Biémont É 2003, J. Phys. B: At. Mol. Opt. Phys. 36 4773
 Öberg, K. J. 2007, Eur. Phys. J. D, 41, 25

Table 2. Observed transitions, experimental BFs and A-values presented along with calculated BFs using the orthogonal operatorapproach (Raasen & Uylings 1997)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Unnen	Lowen	-	1		DE	Δ	Unc
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Opper	Lower	(-1)	λ_{air}		$\frac{DF}{m}$	$A_{(107 - 1)}$	(07)
$ \begin{aligned} & 3d^2(^2\Pi) 4p^-\Pi_{3/2}^* & 3d^2(^2\Pi) 4s^-\Pi_{1/2}^* & 2921.760 & 3421.613 & 0.002 & 0.004 & 0.06 & 20 \\ & 3d^2(^2\Pi) 4s^+\Pi_{1/2}^* & 30336.36 & 2951.425 & 0.042 & 0.089 & 0.99 & 14 \\ & 3d^2(^3\Pi) 4s^+\Pi_{1/2}^* & 3388.064 & 2950.679 & 0.007 & 0.001 & 0.16 & 32 \\ & 3d^5^2\Pi_{1/2}^* & 33880.64 & 2950.679 & 0.007 & 0.001 & 0.16 & 32 \\ & & & & & & & & & & & & & & & & & & $	level	level	(cm ¹)	(A)	Exp.	I neory a	(10' s ')	(%)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3d^{4}(^{3}\mathrm{H})4p \ ^{4}\mathrm{H}_{13/2}^{o}$	$3d^{4}(^{3}\mathrm{H})4s^{-2}\mathrm{H}_{11/2}$	29217.60	3421.613	0.002	0.004	0.06	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^4({}^3\mathrm{G})4s \ {}^4\mathrm{G}_{11/2}$	30336.36	3295.425	0.042	0.089	0.99	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^4({}^{3}\mathrm{H})4s \; {}^{4}\mathrm{H}_{13/2}$	33638.67	2971.902	0.819	0.771	19.50	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{5} {}^{2}I_{13/2}$	33880.64	2950.679	0.007	0.001	0.16	32
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$3d^{5} {}^{4}\mathrm{G}_{11/2}$	43518.41	2297.171	0.125	0.135	2.97	14
$ \begin{split} 3d^4(^3\mathrm{H})4p\ ^{4}\mathrm{H}_{11/2}^{o} & 3d^4(^3\mathrm{H})4s\ ^{2}\mathrm{H}_{9/2}^{o} & 3221.59 & 0.002 & 0.001 & 0.04 & 76 \\ 3d^4(^3\mathrm{G})4s\ ^{4}\mathrm{G}_{9/2}^{o} & 30229.75 & 3307.047 & 0.041 & 0.083 & 0.99 & 14 \\ 3d^5\ ^{4}\mathrm{F}_{9/2}^{o} & 30294.42 & 3225.456 & 0.002 & 0.004 & 0.04 & 16 \\ 3d^4(^3\mathrm{H})4s\ ^{4}\mathrm{F}_{9/2}^{o} & 32629.36 & 3063.834 & 0.011 & 0.008 & 0.27 & 14 \\ 3d^4(^3\mathrm{H})4s\ ^{4}\mathrm{H}_{11/2}^{o} & 33550.22 & 2979.737 & 0.780 & 0.736 & 18.56 & 7 \\ 3d^5\ ^{4}\mathrm{G}_{9/2}^{o} & 43329.42 & 3207.191 & 0.112 & 0.120 & 2.66 & 14 \\ 3d^4(^3\mathrm{H})4s\ ^{4}\mathrm{H}_{11/2}^{o} & 33550.22 & 2979.737 & 0.780 & 0.009 & 0.21 & 16 \\ 8csidual & & & & & & & & & & & & & & & & & & &$		Residual			0.002			
$ \begin{array}{c} 3d^4(^3{\rm G})4s^4{\rm G}_{9/2} & 30154.56 & 3315.294 & 0.002 & 0.005 & 0.05 & 14 \\ 3d^5(^4{\rm G})4s^4{\rm G}_{9/2} & 30229.75 & 3307.047 & 0.041 & 0.083 & 0.99 & 14 \\ 3d^5(^4{\rm F})4s^4{\rm F}_{9/2} & 32094.24 & 3225.56 & 0.002 & 0.004 & 0.04 & 16 \\ 3d^4(^3{\rm F})4s^4{\rm H}_{3/2} & 33456.86 & 2988.052 & 0.038 & 0.034 & 0.90 & 14 \\ 3d^4(^3{\rm H})4s^4{\rm H}_{11/2} & 33350.22 & 2977.37 & 0.780 & 0.736 & 18.56 & 7 \\ 3d^5(^4{\rm G}_{9/2} & 43329.42 & 2307.191 & 0.112 & 0.120 & 2.66 & 14 \\ 3d^5(^3{\rm G})4s^4{\rm G}_{7/2} & 33085.59 & 2306.809 & 0.009 & 0.009 & 0.21 & 16 \\ Residual & & & & 0.004 \\ \end{array} $	$3d^4({}^{3}\mathrm{H})4p {}^{4}\mathrm{H}^{o}_{11/2}$	$3d^4({}^{3}\mathrm{H})4s {}^{2}\mathrm{H}_{9/2}$	29217.80	3421.591	0.002	0.001	0.04	76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	() 1 11/2	$3d^4({}^3G)4s {}^4G_{11/2}$	30154 56	$3315\ 294$	0.002	0.005	0.05	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^4({}^3\mathrm{G})4s {}^4\mathrm{G}_{01/2}$	30229 75	3307.047	0.041	0.083	0.00	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^5 {}^{4}\text{F}_{2}$	30004 42	3225 456	0.041	0.000	0.03	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{4}(3F)/a^{4}F$	32620 26	3063 834	0.002	0.004	0.04	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3a (\Gamma)48 \Gamma_{9/2}$ 2d4(3II)404II	32029.30 324E6.96	2002.024	0.011	0.008	0.27	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$5a^{-}(^{\circ}\Pi)4s^{-}\Pi_{13/2}$	33430.80	2988.002	0.058	0.034	0.90	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{-}(^{\circ}\mathrm{H})4s^{-1}\mathrm{H}_{11/2}$	33550.22	2979.737	0.780	0.736	18.56	(
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{5-4}G_{9/2}$	43329.42	2307.191	0.112	0.120	2.66	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{5}$ $^{4}G_{11/2}$	43336.59	2306.809	0.009	0.009	0.21	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Residual			0.004			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3d^4({}^{3}\mathrm{H})4p \; {}^{4}\mathrm{H}^o_{9/2}$	$3d^4({}^3G)4s \ {}^4G_{9/2}$	30087.32	3322.704	0.004	0.008	0.09	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	$3d^4({}^3\mathrm{G})4s \; {}^4\mathrm{G}_{7/2}$	30185.16	3311.933	0.042	0.083	0.95	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{5} 4F_{7/2}$	30869.55	3238.504	0.003	0.005	0.07	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^4({}^3\mathrm{F})4s {}^4\mathrm{F}_{7/2}$	32537.67	3072.469	0.013	0.010	0.29	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^4(^{3}\text{H})4s \ ^4\text{H}_{11/2}$	33407.78	2992.442	0.057	0.054	1.29	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^4(^{3}\text{H})4s \ ^{4}\text{H}_{0/2}$	33487 47	2985 321	0 761	0 704	17 29	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^5 \ {}^4C_{0}$	43186.07	2314 802	0.101	0.013	0.20	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^5 4C$	43188.45	2314.002 2314.722	0.010	0.015	0.23	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{3a}{Residual}$	43188.45	2014.722	$0.101 \\ 0.008$	0.110	2.20	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3d^{4}(^{3}\mathrm{H}) 4m 4\mathrm{H}^{0}$	$2d^{5} 2C$	27228 26	3658 160	0.014	0.000	0.33	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$5a (11)4p 11_{7/2}$	$3u G_{9/2}$	21328.30	0000.100	0.014	0.000	0.00	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{-}({}^{\circ}G)4s^{-}G_{7/2}$	30079.75	3323.539	0.003	0.008	0.08	22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{4}({}^{3}\text{G})4s {}^{4}\text{G}_{5/2}$	30182.87	3312.184	0.045	0.088	1.02	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{4}({}^{3}\mathrm{F})4s {}^{4}\mathrm{F}_{5/2}$	32483.54	3077.588	0.009	0.005	0.20	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^4({}^{3}\mathrm{H})4s {}^{4}\mathrm{H}_{9/2}$	33382.07	2994.747	0.056	0.051	1.27	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^4({}^{3}\mathrm{H})4s \; {}^{4}\mathrm{H}_{7/2}$	33444.12	2989.190	0.766	0.709	17.40	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{5}$ ${}^{4}\mathrm{G}_{7/2}$	43083.05	2320.386	0.011	0.012	0.26	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{5}$ ${}^{4}\mathrm{G}_{5/2}$	43088.79	2320.077	0.101	0.118	2.29	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Residual			0.009			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3d^4(a\ {}^3F)4p\ {}^4F^o_{3/2}$	$3d^4(^1S)4s \ ^2S_{1/2}$	26655.36	3750.525	0.009	0.009	0.22	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0/2	$3d^{5} {}^{2}F_{5/2}$	27328.42	3658.160	0.031	0.005	0.79	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^4({}^{3}\text{F})4s^2\text{F}_{5/2}$	31501.25	3173.559	0.031	0.038	0.80	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^4({}^{3}\text{P})4s {}^{2}\text{P}_{2/2}$	31714 54	3152 215	0 493	0 464	12.63	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^4(^{3}P)4s^{2}P_{1/2}$	32411.20	3084 458	0.160 0.067	0.065	1 72	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{5} {}^{2}D$	35710.56	2708 762	0.001	0.000	2.70	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$5a D_{5/2}$ $2d^{4}(3F) 4d^{4}F$	25052.00	2790.102	0.100	0.130	2.10	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3a (T)48 T_{5/2}$ 2d4(3E)4c 4E	35955.09 25097 56	2780.381	0.020	0.050	0.72	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$5a^{-}(^{\circ}\Gamma)4s^{-}\Gamma_{3/2}$	30987.00	2777.920	0.027	0.031	0.09	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3a^{-}(^{\circ}r)4s^{-}r_{5/2}$	30205.99	2/01.15/	0.014	0.019	0.57	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{\circ} P_{1/2}$	45246.70	2209.417	0.021	0.019	0.55	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{5} + P_{5/2}$	45247.91	2209.358	0.020	0.018	0.50	19
Residual 0.087		$3d^{5-4}{ m G}_{5/2}$	46558.37	2147.165	0.068	0.054	1.73	13
		Residual			0.087			
$3d^4(a\ {}^3F)4p\ {}^4F^o_{5/2}$ $3d^4({}^1D)4s\ {}^2D_{5/2}$ 21281.50 4697.602 0.005 0.003 0.13 30	$3d^4(a\ {}^3F)4p\ {}^4F^o_{5/2}$	$3d^4({}^1\text{D})4s \; {}^2\text{D}_{5/2}$	21281.50	4697.602	0.005	0.003	0.13	30
$^{\circ}$	0/2	$3d^4({}^3D)4s {}^2D_{5/2}$	24114.12	4145.780	0.029	0.022	0.77	12
$3d^{5'2}F_{7/2}$ 27135.04 3684.223 0.041 0.025 1.12 12		$3d^{5} ^{2}F_{7/2}$	27135.04	3684.223	0.041	0.025	1.12	12

Gurell et al.: The FERRUM project: laboratory-measured transition probabilities for Cr II, Online Material p 2

Table 2. continued.

Upper	Lower	σ	λ_{air}		BF	А	Unc
level	level	(cm^{-1})	(Å)	Exp	Theory a	$(10^7 \mathrm{s}^{-1})$	(%)
	$3d^{5/2}$ Fr/2	27270.08	3665.979	0.062	0.002	1.69	12
	$3d^4({}^{1}\text{G})4s {}^{2}\text{G}_{7/2}$	27328.36	3658.160	0.031	0.012	0.82	12
	$3d^4({}^{3}\text{F})4s {}^{2}\text{F}_{7/2}$	31404.56	3183.330	0.042	0.221	1.13	12
	$3d^4({}^{3}\text{F})4s {}^{2}\text{F}_{5/2}$	31442.88	3179.450	0.003	0.020	0.08	17
	$3d^4({}^{3}\text{P})4s {}^{2}\text{P}_{2/2}$	31656.18	3158.027	0.101	0.061	2.73	12
	$3d^4({}^3\text{G})4s {}^4\text{G}_{7/2}$	33491.04	2985.002	0.008	0.013	0.23	67
	$3d^{5}{}^{2}\mathrm{F}_{5/2}$	34408.71	2905.390	0.018	0.013	0.47	39
	$3d^{5} {}^{2}D_{5/2}$	35661.19	2803.343	0.097	0.005	2.61	12
	$3d^4({}^3\mathrm{F})4s {}^4\mathrm{F}_{7/2}$	35843.49	2789.084	0.029	0.043	0.77	14
	$3d^4({}^3\mathrm{F})4s {}^4\mathrm{F}_{5/2}$	35894.74	2785.102	0.032	0.038	0.85	15
	$3d^4({}^3\mathrm{F})4s {}^4\mathrm{F}_{3/2}$	35929.18	2782.432	0.027	0.034	0.73	15
	$3d^4({}^{3}\mathrm{P})4s {}^{4}\mathrm{P}_{5/2}$	36147.63	2765.616	0.175	0.172	4.72	12
	$3d^4({}^{3}\mathrm{P})4s {}^{4}\mathrm{P}_{3/2}$	36704.65	2723.644	0.024^{1}	0.024	0.53	12
	$3d^{5}{}^{4}D_{7/2}$	41978.40	2381.451	0.010	0.012	0.26	59
	$3d^{5} {}^{4}P_{3/2}$	45187.88	2212.293	0.008	0.004	0.21	28
	$3d^{5} {}^{4}P_{5/2}$	45189.56	2212.211	0.034	0.020	0.92	18
	$3d^{5} {}^{4}G_{7/2}$	46494.27	2150.126	0.118	0.081	3.19	12
	$3d^4({}^5\mathrm{D})4s {}^6\mathrm{D}_{7/2}$	46988.03	2127.530	0.042	0.021	1.13	22
	Residual	10000000		0.072	0.021	1110	
$3d^4(a\ {}^3{\rm F})4p\ {}^4{\rm F}^o_{7/2}$	$3d^4({}^3G)4s \ {}^4G_{9/2}$	33774.50	2959.949	0.027	0.024	0.94	13
,	$3d^4({}^3\mathrm{G})4s \; {}^4\mathrm{G}_{7/2}$	33872.35	2951.398	0.020	0.018	0.69	16
	$3d^{54}F_{7/2}$	34556.79	2892.939	0.100	0.105	3.45	10
	$3d^4({}^3\mathrm{F})4s \; {}^4\mathrm{F}_{9/2}$	36174.11	2763.592	0.047	0.073	1.62	10
	$3d^4({}^3\mathrm{F})4s \; {}^4\mathrm{F}_{7/2}$	36224.86	2759.719	0.188	0.275	6.48	9
	$3d^4({}^3\mathrm{F})4s \; {}^4\mathrm{F}_{5/2}$	36276.09	2755.822	0.016	0.028	0.56	13
	$3d^4(^{3}P)4s \ ^{4}P_{5/2}$	36528.98	2736.743	0.004	0.007	0.15	32
	$3d^4(^{3}\text{H})4s \ ^4\text{H}_{9/2}$	37174.66	2689.206	0.093	0.127	3.20	10
	$3d^4({}^{3}\mathrm{H})4s \; {}^{4}\mathrm{H}_{7/2}$	37236.70	2684.726	0.008	0.009	0.27	16
	$3d^{5}$ $^{4}D_{5/2}$	42346.73	2360.736	0.005	0.007	0.16	22
	$3d^{5}$ ${}^{4}\mathrm{G}_{9/2}$	46874.16	2132.698	0.115	0.091	3.95	10
	$3d^{5}$ ${}^{4}\mathrm{G}_{7/2}$	46875.64	2132.631	0.274	0.165	9.45	8
	$3d^4(^5D)4s$ $^6D_{5/2}$	47595.59	2100.368	0.069	0.037	2.38	13
	Residual			0.034			
$3d^4(a\ {}^3\mathrm{F})4p\ {}^4\mathrm{F}^o_{9/2}$	$3d^4(^{3}\text{D})4s \ ^4\text{D}_{7/2}$	29179.00	3426.140	0.002	0.003	0.07	22
	$3d^4(^{3}\mathrm{H})4s~^{2}\mathrm{H}_{11/2}$	32635.58	3063.250	0.006	0.005	0.19	26
	$3d^4({}^3G)4s \ {}^4G_{9/2}$	33829.60	2955.127	0.010	0.011	0.36	24
	$3d^{5} {}^{4}\mathrm{F}_{9/2}$	34594.28	2889.804	0.139	0.150	4.79	10
	$3d^4({}^3{ m F})4s \; {}^4{ m F}_{9/2}$	36229.20	2759.389	0.292	0.419	10.07	9
	$3d^4({}^3\mathrm{F})4s \; {}^4\mathrm{F}_{7/2}$	36279.96	2755.528	0.027	0.044	0.94	11
	$3d^4(^{3}\mathrm{H})4s \ ^{4}\mathrm{H}_{11/2}$	37150.07	2690.986	0.029	0.032	1.00	11
	$3d^{5}$ ${}^{4}\mathrm{G}_{9/2}$	46929.24	2130.195	0.118	0.064	4.08	14
	$3d^{5}$ ${}^{4}\mathrm{G}_{11/2}$	46936.43	2129.869	0.271	0.187	9.35	9
	$3d^4({}^5\mathrm{D})4s \ {}^6\mathrm{D}_{7/2}$ Residual	47424.51	2107.946	$\begin{array}{c} 0.073 \\ 0.032 \end{array}$	0.053	2.53	12
$2d^{4}(a^{3}\mathbf{H}) 4 = 4Co$	$2d^{4}(3C)/2 = 4C$	22026 02	2046 720	0.026	0 020	1 20	21
$3u (a^{-11})4p^{-}G_{5/2}^{-}$	$5u (^{-}G)4s (^{-}G_{5/2})$	00920.02	2940.129	0.000	0.038	1.99	91 19
	$3d^{\circ} F_{3/2}$	34499.28	2897.762	0.094	0.067	3.60	12
	$3d^{-}(^{\circ}F)4s^{-}F_{3/2}$	30201.11	2756.960	0.061	0.044	2.34	11
	$3d^{4}(^{3}\text{H})4s^{4}\text{H}_{7/2}$	37187.26	2688.294	0.310	0.452	11.92	10
	$3d^{\circ}$ "G _{7/2}	46826.20	2134.883	0.093	0.045	3.57	12
	$3d$ $G_{5/2}$	46831.93	2134.622	0.373	0.321	14.34	9
	Residual			0.034			

¹ Based on theoretical A-value from Ref.[1]

Gurell et al.: The FERRUM project: laboratory-measured transition probabilities for CrII, Onlin	ne Material p &	3
---	-----------------	---

Table 2. continued.

Upper	Lower	σ	λ_{rir}		BF	A	Unc
level	level	(cm^{-1})	(\mathring{A})	Evn	$Theory^a$	$(10^7 {\rm s}^{-1})$	(%)
$\frac{10001}{3d^4(a^{-3}H)4n^{-4}G^{o}}$	$\frac{3d^4(^1\text{D})}{4s^2\text{D}_{z/z}}$	$\frac{21603.17}{21603.17}$	4627 654	$\frac{1}{0.005}$	0.000	$\frac{(10 \ 3)}{0.21}$	$\frac{(70)}{23}$
$5a (a 11) + p + G_{7/2}$	$2 d^{4}(3C) 4 d^{4}C$	21000.11	2056 607	0.000	0.000	0.21	17
	3u (G)48 G _{7/2} $2J^5 4E$	33012.00	2930.007	0.017	0.018	0.00	10
	$5a^{-}$ $\Gamma_{5/2}$ $2a^{5}$ 4 Γ	04470.00 24407.16	2099.400	0.084	0.085	0.22	12
	$5a^{-}\Gamma_{7/2}$ $2a^{5}2\Gamma$	34497.10 24720-42	2091.940	0.010	0.000	0.38	31
	$5a^{-}$ $F_{5/2}$	34730.42	2010.410	0.025	0.015	0.94	20 44
	$3a^{\circ} D_{5/2}$	35982.90	2118.218	0.007	0.008	0.25	44
	$3d^{-}({}^{6}F)4s^{-}F_{9/2}$	30114.43	2768.159	0.014	0.014	0.55	15
	$3d^{-}(^{\circ}F)4s^{-}F_{7/2}$	30105.19	2764.273	0.038	0.030	1.47	11
	$3d^{-}(^{3}F)4s^{-}F_{5/2}$	36216.44	2760.361	0.090	0.114	3.46	10
	$3d^{-}(^{3}\text{H})4s^{-1}\text{H}_{9/2}$	37114.99	2693.530	0.168	0.317	6.47	10
	$3d^{+}(^{3}\text{H})4s^{-}\text{H}_{7/2}$	37177.03	2689.035	0.021	0.036	0.80	12
	$3d^{5} + G_{9/2}$	46814.49	2135.417	0.262	0.156	10.06	9
	$3d^{5}$ ${}^{4}G_{7/2}$	46816.06	2135.345	0.228	0.179	8.76	9
	$3d^{5}$ ${}^{4}G_{5/2}$	46821.68	2135.089	0.024	0.018	0.91	19
	Residual			0.009			
$3d^4(a^{3}H)4n {}^4G^o$	$3d^4({}^3\mathrm{G})4s {}^4\mathrm{G}_{0/2}$	33734 32	$2963\ 474$	0.019	0.019	0.71	22
ou (u 11) 1p 0.9/2	$3d^5 4 F_{10}$	34516 61	2806 307	0.001	0.001	3 51	11
	$3a \Gamma_{7/2}$ $3d^{4}(3F)/a 4F$	34510.01	2090.301	0.031 0.075	0.091	0.01 0.87	11
	$3a (\Gamma)48 \Gamma_{7/2}$ $3d^4(3H)4a 4H$	30184.09 37054.78	2607.007	0.075	0.094 0.374	2.87	10
	$3a (11)48 11_{11/2}$ $2d4(3\mathbf{U})4a 4\mathbf{U}$	97194.10 97194.40	2097.907	0.240	0.374	9.42	10
	$3u (11)43 11_{9/2}$ 2d5 4C	16022 00	2092.110	0.020 0.272	0.047	14.26	0
	$5a^{*}$ G _{9/2} 2 J5 4 C	40000.90	2134.028 2124.460	0.373	0.270	14.50	9 19
	$5a^{*}$ G _{7/2} 2 J ⁵ 4 C	40833.47	2134.400 2124.201	0.030 0.199	0.025	1.30	15
	$3a^*$ G _{11/2}	40841.10	2134.201	0.122	0.068	4.08	11
	Residual			0.014			
$3d^4(a^{3}H)4p \ {}^{4}G^{o}_{11/2}$	$3d^4({}^{3}\mathrm{H})4s {}^{2}\mathrm{H}_{9/2}$	32738.14	3053.653	0.009	0.004	0.34	19
() 1 11/2	$3d^4({}^3G)4s {}^4G_{11/2}$	33674 95	2968 700	0.019	0.015	0.70	26
	$3d^5 {}^{4}\text{F}_{0/2}$	34514 88	2896 452	0.010	0.096	3.56	11
	$3d^4({}^{3}\mathrm{F})4s {}^{4}\mathrm{F}_{0}$	36149 73	2765 456	0.050 0.071	0.097	2.64	12
	$3d^4(^{3}\text{H})4s^{4}\text{H}_{10/2}$	36977 23	2703.100 2703.565	0.011	0.389	8.85	11
	$3d^4(^{3}\text{H})4s^{4}\text{H}_{11/2}$	37070 59	2696 756	0.200	0.000	0.75	12
	$3d^{5} {}^{2}$ L	37210.20	2685 988	0.020	0.002	0.19	14
	$3d^{5} \frac{4}{4}C_{2}$	<i>46840 77</i>	2000.900	0.000	0.002	0.15	20
	$3d^5 \ {}^4C_{11}$	46856.96	2133.003 2133.482	0.020	0.010	18.83	20 11
	Residual	40000.00	2100.402	0.006	0.040	10.00	11
	1000000000			0.000			
$3d^4(a \ {}^3F)4p \ {}^2D^o_{3/2}$	$3d^4({}^{3}\text{D})4s {}^{2}\text{D}_{3/2}$	24392.68	4098.434	0.006	0.006	0.19	27
,	$3d^{5}$ $^{2}\mathrm{F}_{5/2}$	27637.24	3617.274	0.015	0.010	0.48	17
	$3d^4({}^3\mathrm{F})4s \; {}^2\mathrm{F}_{5/2}$	31810.11	3142.745	0.050	0.049	1.62	13
	$3d^4(^{3}P)4s \ ^{2}P_{3/2}$	32023.39	3121.812	0.055	0.054	1.76	13
	$3d^{5}$ ${}^{4}\mathrm{F}_{5/2}$	34524.32	2895.660	0.021	0.025	0.69	21
	$3d^{5} {}^{4}\mathrm{F}_{3/2}$	34534.58	2894.800	0.107	0.107	3.44	13
	$3d^4({}^3\mathrm{F})4s \; {}^4\mathrm{F}_{5/2}$	36261.96	2756.896	0.062	0.083	1.99	13
	$3d^4({}^3\mathrm{F})4s \; {}^4\mathrm{F}_{3/2}$	36296.41	2754.280	0.248	0.366	7.99	12
	$3d^{54}G_{5/2}$	46867.22	2133.015	0.337	0.215	10.87	11
	$3d^4({}^{5}\mathrm{D})4s {}^{6}\mathrm{D}_{1/2}$	47851.04	2089.154	0.048	0.033	1.53	33
	Residual			0.052			
$3d^{4}(3 F) 4m 2 D^{0}$	$3d^{4}(3D)/a^{2}D$	94480 14	4082 201	0.003	0.006	0.10	20
$D_{4}(a + p) + p = D_{5/2}$	245 2F	24409.14 97510.06	2622.491	0.000	0.000	0.10	04 01
	$3u^{-1}r_{7/2}$	21010.00 21770 FO	0000.998 0145 760	0.008	0.007	0.20	41 19
	$3u^{-}(^{\circ}\Gamma)4S^{-}\Gamma_{7/2}$ $2u^{4}(3D)4 = 2D$	31779.38	3143.703 2191.059	0.042	0.000	1.30	13 17
	$3u^{-}(^{-}\Gamma)4s^{-}\Gamma_{3/2}$	32031.19 22065 00	5121.052 2051.052	0.021	0.028	0.07	17
	$3a^{-}(^{\circ}G)4s^{-}G_{7/2}$	33805.99	2901.953	0.022	0.019	0.71	20
	$3a^{\circ}$ $F_{5/2}$	34532.14	2895.004	0.092	0.094	2.98	12

 2 Based on theoretical A-value from Ref.[1]

Gurell et al.: The FERRUM project: laboratory-measured transition probabilities for Cr II, Online Material p 4

Table 2. continued.

Upper	Lower	σ	λ_{air}		BF	A	Unc
level	level	$({\rm cm}^{-1})$	(Å)	Exp.	Theory ^{a}	$(10^7 \mathrm{s}^{-1})$	(%)
	$3d^{5-2}\mathrm{F}_{5/2}$	34783.80	2874.058	0.029	0.008	0.92	17
	$3d^4({}^3\mathrm{F})\dot{4}s \; {}^4\mathrm{F}_{7/2}$	36218.51	2760.204	0.072	0.099	2.32	12
	$3d^4({}^3{ m F})4s \ {}^4{ m F}_{5/2}$	36269.76	2756.303	0.199	0.298	6.42	11
	$3d^4({}^3\mathrm{F})4s \; {}^4\mathrm{F}_{3/2}$	36304.20	2753.688	0.042	0.075	1.34	13
	$3d^4(^{3}\text{H})4s \ ^{4}\text{H}_{7/2}$	37230.35	2685.183	0.017	0.008	0.55	15
	$3d^{5} {}^{4}\mathrm{G}_{7/2}$	46869.29	2132.920	0.233	0.186	7.51	11
	$3d^{5}$ ${}^{4}\mathrm{G}_{5/2}$	46875.02	2132.659	0.109	0.041	3.50	13
	$3d^4({}^5\mathrm{D})4s {}^6\mathrm{D}_{3/2}$	47755.83	2093.320	0.044	0.010	1.42	21
	Residual			0.068			

 $^a{\rm Raasen}$ & Uylings (1997) $^b{\rm Based}$ on theoretical A-value from Raasen & Uylings (1997)

λ_{vac}	σ	E_{lower}		$\log gf$	
(Å)	(cm^{-1})	(cm^{-1})	This study	\mathbf{K}^{a}	$R\&U^b$
$\overline{2089.819}$	47851.04	11961.81	-1.396	-1.649	-1.59
2093.985	47755.83	12032.58	-1.252	-1.527	-1.95
$2101\ 035$	47595 59	12147 82	-0.899	-1.078	-1.16
2101.000	47424 51	12303.86	-0.746	_0.906	_0.01
2100.014	46088.03	12303.86	1 216	0.300 0.170	1.70
2120.202	40900.00	12303.80	-1.310	-2.172	-1.70
2129.009	40930.43	20512.10	-0.109	-0.091	-0.30
2150.195	40929.24	20519.55	-2.211	-0.330	-0.82
2133.304	46875.64	20517.83	-0.288	-2.465	-0.50
2133.332	46875.02	20512.06	-0.843	-2.234	-1.31
2133.372	46874.16	20519.33	-0.666	-0.201	-0.76
2133.593	46869.29	20517.83	-0.512	-0.577	-0.64
2133.687	46867.22	20512.06	-0.528	-0.682	-0.76
2134.155	46856.96	20512.10	+0.188	+0.190	+0.05
2134.482	46849.77	20519.33	-1.105	-1.097	-1.24
2134.875	46841.16	20512.10	-0.495	-1.410	-0.73
2135.134	46835.47	20517.83	-1.027	-0.942	-1.17
2135.202	46833.98	20519.33	-0.008	+0.094	-0.13
2135.295	46831.93	20512.06	-0.231	-0.091	-0.28
2135.557	46826.20	20517.83	-0.835	-1.268	-1.14
2135.763	46821.68	20512.06	-1.303	-1.047	-1.41
2136.019	46816.06	20517.83	-0.319	-0.005	-0.42
2136.091	46814.49	20519.33	-0.259	-1.329	-0.48
2147.841	46558.37	20512.06	-1.319	-1.010	-1.48
2150 126	46494 28	20517.83	-0.713	-0.877	-1.10
22100.120 2210047	45247 91	21822.52	-1.833	-1.890	-1.93
2210.011	45246 70	21823.84	-1.795	-2.353	-1.00
2210.100	45189 56	21020.04 21822.52	-1.750	-1.840	-1.68
2212.000	45187.88	21824.02	-2.021	-3.826	_2 3/
2212.909 2207.870	43518 40	20512 10	-0.483	-0.341	2.04 _0.46
2291.019	43316.40	20512.10 20512.10	1 604	1.607	1.70
2307.319	43330.39	20512.10	-1.094	-1.097	-1.70
2307.901	43329.42	20019.00	-0.394 0.726	-0.443	-0.38
2010.404	43100.43	20017.00	-0.730	-0.340	-0.08
2310.013	43100.97	20019.00	-1.030	-1.009	-1.02
2320.789	43088.79	20512.00	-0.830	-0.031	-0.70
2321.099	43083.03	20017.83		-1.709	-1.70
2382.178	41978.40	25033.70	-1.853	-2.462	-1.83
2685.523	37236.70	30156.79	-1.627	-2.209	-1.57
2685.981	37230.35	30156.79	-1.450	-2.133	-1.80
2686.785	37219.20	30149.83	-1.612	-1.588	-2.02
2689.093	37187.26	30156.79	-0.111	+0.115	+0.07
2689.833	37177.03	30156.79	-1.159	-0.841	-0.91
2690.004	37174.66	30218.81	-0.556	-1.473	-0.41
2691.785	37150.07	30298.51	-0.936	-1.726	-0.92
2692.915	37134.48	30218.81	-0.962	-0.701	-0.69
2694.329	37114.99	30218.81	-0.249	+0.193	+0.03
2697.556	37070.59	30298.51	-1.005	-0.795	-0.79
2698.707	37054.78	30298.51	+0.012	+0.276	+0.21
2704.367	36977.23	30391.83	+0.066	+0.344	+0.31
2724.450	36704.65	30307.44	-1.451^{3}	-2.952	-1.42
2737.552	36528.98	30864.46	-1.872	-1.572	-1.69
2754.502	36304.20	31082.94	-1.038	-0.787	-0.82
$2755\ 093$	36296 41	31082.94	-0.439	-0.310	-0.30
$2756\ 343$	36279.96	31168 58	-0.945	-0.382	-0.76
$2756\ 637$	36276.09	31117 39	-1.289	-0.412	-1.05
2757 118	36260 76	31117 20	_0 358	_0.912	_0.22
2757.110	36261 06	31117 20	_1 049	_0.250	_0.22
2101.111 9757 775	36261.30	31089 04	_0.706	_1 169	_0.94
2760.204	362201.11	31910 25	± 0.190	± 0.260	± 0.92

Table 3. Line list and experimental $\log (gf)$ -values together with calculated values from the literature.

 $^{-3}$ Unresolved blend with the line 70398.87_{11/2}\mbox{-}33694.15_{11/2}

Table 3. continued.

	σ	F_{1}	1	og af	
\bigwedge_{vac}	(-1)	L_{lower}	<u> </u>	$\frac{\log g_j}{V^a}$	DOID
(A)	(cm ⁻)	(cm -)	I his study	h ^a	R&U
2760.534	36224.87	31168.58	-0.228	-0.015	-0.05
2761.019	36218.51	31168.58	-0.798	-0.765	-0.69
2761.177	36216.44	31117.39	-0.499	-1.141	-0.39
2761.973	36205.00	30864.46	-1.775	-4.440	-1.72
2763.600	36184.69	31168.58	-0.483	-0.710	-0.37
2764.408	36174.11	31219.35	-0.829	-0.414	-0.63
2765.090	36165.19	31168.58	-0.870	-0.951	-0.97
2766.272	36149.73	31219.35	-0.440	-0.294	-0.28
2766.433	36147.63	30864.46	-0.468	-0.997	-0.55
2768 976	36114 43	31219.35	-1.299	-1.876	-1.73
2778 740	35987 53	31082.94	-1.494	-0.886	-1.78
2770.008	35082.00	31350.00	-1 634	-1.635	-1.20
2779.030	25052.30	91100.00	1.054	1.000	1.04
2701.401	25020.10	2102204	-1.470	-1.280	-1.40
2103.203	35929.18	51062.94	-1.274	-1.010	-1.20
2785.923	35894.74	31117.39	-1.204	-0.885	-1.20
2789.907	35843.49	31168.58	-1.246	-0.670	-1.15
2799.587	35719.56	31350.90	-0.897	-0.877	-0.85
2804.169	35661.19	31350.90	-0.714	-0.581	-0.85
2874.902	34783.80	32603.40	-1.164	-2.739	-1.73
2879.320	34730.42	32603.40	-1.027	-2.233	-1.30
2890.651	34594.28	32854.31	-0.195	-0.302	-0.19
2893.787	34556.79	32836.68	-0.461	-0.585	-0.43
2895.648	34534.58	32844.76	-0.762	-0.920	-0.79
2895.853	34532.14	32854.95	-0.649	-0.895	-0.68
2896.509	34524.32	32854.95	-1.462	-1.546	-1.42
2897.156	34516.61	32836.68	-0.355	-0.427	-0.34
2897.301	34514.88	32854.31	-0.270^{4}	-0.219	-0.24
2898.611	34499.28	32844.76	-0.565	-0.724	-0.70
2898 789	34497.16	32836 68	-1 417	-1.112	-1.62
2900 330	34478 83	3285495	-0.489	-0.623	-0.49
2906 241	34408 71	32603 40	-1.423	-1.594	-1.62
2947 590	33926.02	33417 99	-0.960	-0.841	-0.92
2051 5/1	33880.61	301/0.83	-1531	-2.310	-2.50
2052 260	33872 35	33591 11	-1.130	-3.016	-1.18
2952.200	33865.00	33521.11 33521.11	-1.159 1.959	-5.010 2.162	-1.10
2952.815	22820 60	22612 04	-1.202	-2.103	-1.00
2900.992	33029.00	22501 0.94	-1.302	-2.009	-1.29
2957.470	33812.08	33021.11	-1.104	-0.790	-1.14
2900.814	33774.30	33018.94	-1.004	-1.535	-1.00
2964.340	33734.32	33618.94	-1.028	-0.776	-1.01
2969.566	33674.95	33694.15	-0.958	-0.918	-1.02
2972.769	33638.67	30391.83	+0.558	+0.559	+0.52
2980.606	33550.22	30298.51	+0.472	+0.465	+0.43
2985.873	33491.04	33521.11	-1.722	-1.625	-1.63
2986.192	33487.47	30218.81	+0.364	+0.368	+0.33
2988.923	33456.86	30391.83	-0.840	-0.800	-0.90
2990.062	33444.12	30156.79	+0.271	+0.273	+0.23
2993.315	33407.78	30298.51	-0.760	-0.690	-0.78
2995.620	33382.07	30218.81	-0.864	-0.825	-0.91
3054.541	32738.14	34630.95	-1.240	-2.370	-1.54
3064.422	32635.58	34812.95	-1.536	-1.584	-1.65
3064.725	32629.36	31219.35	-1.337	-1.737	-1.50
3073.361	32537.67	31168.58	-1.393	-1.756	-1.51
3078.483	32483.54	31117.39	-1.633	-2.185	-1.86
3085.354	32411.20	34659.32	-1.009	-2.756	-1.09
3121 957	32031 19	35355 89	-1.234	-0.827	-1.32
3122 717	32023 39	35355.89	-0.988	-1.198	-1.02
3143 655	31810 11	35569.20	-1.017	_0 789	-1.02
3146.675	31779 58	35607 50	-0.919	-0.471	-0.84
		30001.00	0.010	····	0.01

 $^{-4}$ Unresolved blend with the line 74743.28_{13/2}-40228.33_{11/2}

Table 3. continued.

λ_{vac}	σ	E_{lower}]	$\log gf$	
(Å)	$({\rm cm}^{-1})$	$({\rm cm}^{-1})$	This study	\mathbf{K}^{a}	$R\&U^b$
3153.128	31714.54	35355.89	-0.123	-0.559	-0.21
3158.941	31656.18	35355.89	-0.590	-0.956	-0.89
3174.477	31501.25	35569.20	-1.317	-0.561	-1.29
3180.370	31442.88	35569.20	-2.119	-1.357	-2.48
3184.251	31404.56	35607.50	-0.965	-0.380	-0.32
3226.387	30994.42	32854.31	-2.126	-1.933	-1.75
3239.439	30869.55	32836.68	-1.966	-1.942	-1.76
3296.375	30336.36	33694.15	-0.648	-0.285	-0.33
3307.999	30229.75	33618.94	-0.712	-0.368	-0.43
3312.887	30185.16	33521.11	-0.808	-0.447	-0.51
3313.137	30182.87	33417.99	-0.874	-0.523	-0.58
3316.248	30154.56	33694.15	-1.984	-1.695	-1.67
3323.660	30087.32	33618.94	-1.821	-1.542	-1.54
3324.495	30079.75	33521.11	-1.988	-1.624	-1.63
3422.572	29217.80	34630.95	-2.081	-2.041	-2.22
3422.595	29217.60	34812.95	-1.863	-1.467	-1.65
3427.122	29179.00	38269.59	-1.856	-1.658	-1.71
3618.306	27637.24	32603.40	-1.423	-1.288	-1.62
3635.034	27510.06	32355.68	-1.508	-1.008	-1.64
3659.202	27328.36	36272.54	-1.199^{c}	-4.526	-4.54
3659.202	27328.36	32603.40	-1.199^{c}	-1.142	-2.04
3659.202	27328.36	39683.75	-1.199^{c}	-2.305	-1.45
3667.023	27270.08	32603.40	-0.670	-2.327	-2.37
3685.271	27135.04	32355.68	-0.844	-0.946	-1.15
3751.591	26655.36	40415.09	-1.724	-2.537	-1.77
4083.443	24489.14	42897.99	-1.816	-1.234	-1.58
4099.591	24392.68	42986.62	-1.713	-1.470	-1.75
4146.948	24114.12	42897.99	-0.902	-1.164	-1.11
4628.950	21603.17	45730.58	-1.269	-4.682	-4.74
4698.916	21281.50	45730.58	-1.584	-1.619	-1.91

^a Kurucz (1988)
^b Raasen & Uylings (1997)
^c Use of the theoretical values are encouraged due to line blending.