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1. INTRODUCTION.

The control theory for linear time invariant multivariable
systems has developed very rapidly during the last two de-
cades. This development has proceeded essentially along
two lines which correspond to different ways to regard a
linear system: from the point of view of internal system
descriptions, the state space approach, or from the point
of view of external system descriptions, the transfer func-
tion approach. There is a considerable conceptual and com-
putational difference between the two approaches, which in
the same problem can lead to quite different representa-
tions of the solution. Consider for instance the optimal
filtering problem as formulated by Wiener [23] and Kalman
[13]. In this thesis the emphasis is on the state space
approach. The transfer function is, however, also used to
gain insight into the problems and to interprete the re-

"sults.

What are the desirable properties of a multivariable con-
trol éystem? This question cannot be answered in a straight-
forward way since the control objectives obviously must de-~
pend on the specific system. It is, however, still possible
to give a basic set of properties which are common to a
large class of systems. These objectives can be summarized
in terms of the following demands on the controlled system:
(a) satisfactory disturbance rejection, (b) satisfactory
tracking ability and (c¢) satisfactory insensitivity and se-
curity. For a more detailed discussion on this topic the
reader is referred to Mac Farlane [14]. The specifications

(a) - (¢) can be reduced to two basic control problems.

o The regulator problem: Find a control which makes the

system insensitive to disturbance inputs and parameter

changes.



o The servo problem: Find a control which makes the sys-

tem react in a desired way to command inputs.

A large part of existing multivariable control theory
treats various aspects of these problems. The regulator
and servo problems can be formulated as optimal control
problems, either in a deterministic frame-work, see e.g.
[1, 8], or in a stochastic frame-work [2]. The regulator
problem is the underlying problem in eigenvalue shifting
techniques [5, 7, 8, 20, 22, 28]. Different aspects of
the algebraic regulator problem are considered in [4, 9,12,
28, 30]). Model matching [18, 19, 25] and noninteraction
control [11, 16, 17, 21, 26, 27] give different solutions
to the servo problem. The main contribution of the trans-
fer function approach is perhaps the extension of the
well-known results of Bode and Nyquist to include also
multivariable systems. A fairly complete description of

these results can be found in [14, 20].

Design Philosophy.

Control systems can be designed analytically or heuristi-
cally. In the analytic approach, the control is obtained
as a solution to a mathematical problem where the design
objectives have been reformulated in precise mathemati-
cal terms. Optimal control theory and to some extent al-
gebraic state space theory fall within this cathegory.

In the heuristic approach, on the other hand, the control
is designed stepwise starting with an initial guess which
is successively improved by use of dynamical characteris-
tics, physical insight and simulations. Design techniques
based upon extended Nyquist criteria and some state space
techniques use the heuristic approach. In the analytic

approach it is often difficult to capture all requirements




in precise mathematical criteria. It is also difficult
to introduce constraints on the complexity of the con-
trol. In the heuristic approach, on the other hand, it
is difficult to judge if a better control system could
have been obtained by a different structure. Of course,
there is no clear distinction between the two approaches
and both may be needed at different stages of the de-
sign. No matter what approach is used, the computational
burden in the multivariable case needs computer aided
design techniques. Such techniques have been worked out
both in the frequency domain, see e.g. [3, 15], and in

‘the time domain, see e.g. [10, 24].

In this thesis a, design philosophy which lies somewhere
in between the heuristic and the analytic approach is
adopted. The analytic approach is used to analyze the
structural properties of the system and to arrive at a
configuration which admits an ideal servo and an optimal
reguiator. The heuristic approach is used to reduce this
ideal control system into a form which is in agreement
with a set of practicality constraints, mainly on the
complexity of the control system. With this approach it
is clearly possible to evaluate how much is lost at each
step of simplification and consequently to make approp-~

riate design trade-offs.

In most actual designs the regulator and servo problems
occur simultaneously. In this thesis a basic control con-
figuration which considers the combined servo and regu-
lator problem is presented. The inverse system is used

to achieve the ideal servo as a static relation between
the reference inputs and the controlled outputs. In this
idealized situation the only task of the regulator is to
recognize deviations due to disturbance inputs and para-
meter changes (i.e. not reference changes). This approach

leads to a conceptual separation between the two problems



which is valuable for the design. The ideal servo is on-
ly theoretically achievable and a trade-off must be accep-
ted in the actual design; This trade-off can be done in
two ways: (a) by approximating the inverse or (b) by spe-
cifying a model for the desired input-output behaviour.
Case (b) is in fact a solution to the model matching prob-
lem, but in contrary to [18, 19, 25] the feedback is not
used to match the model, but rather to obtain a regulation
around the trajectory defined by the model.

The Servo Problem.

The inverse system plays an important role in the solution
to the servo problem. A system can, however, have several
inverses with different properties. It is then important
to clearly understand the differences between various sys-
tem inverses. For this purpose, the minimal system inverse
is introduced as a left or right inverse of minimal dyna-
mical order. Such inverses are not satisfactorily explained
in existing state space theory, even if some upper bounds
are obtained in [21]. In this thesis a minimal inverse is
constructed by means of a sequence of basic operations on
the original system, using some geometric concepts intro-
duced by Wonham and Morse [27]. It turns out that a mini-
mal system inverse has one particularly desirable proper-
ty: its characteristic polynomial divides the characteris-
tic polynomial of -an arbitrary inverse. Another interes=
ting feature is the following: the state of a minimal in-
verse is identical to a part of the state of the original
system. Both these facts can be utilized in the combined

servo and regulafor problem.

Another notion which has not been clearly explained in

state space theory is the concept of zeros. The poles and




zeros have shown to be a valuable design aid in the
single input-output case, and it could be expected that

this is so also in the multivariable case.

The minimal inverse gives us, however, a tool for a pro-
per state space definition of zeros. In fact, the zeros,
here denoted the invariant zeros, have a simple inter-
pretation in state space terminology in terms of the
spectrum associated with a certain invariant subspace.
Although the inverse system is used as starting point,
the final definition of zeros will be valid also for non-

invertible systems.

What does the invariant zeros tell us about the structu-
ral properties of the system? To answer this question a
more detailed analysis is performed. It is shown that the
invariant zeros have some properties which can be conjec-
tured from the single input-output case, namely: (a) in-
variance under state feedback and duality, (b) under cer-
tain invertibility conditions uncontrollable and unobserv-
able modes occur as "common factors" between the invariant

zeros and the poles (i.e. the eigenvalues of A in x=Ax+Bu).

The only way to change the invariant zeros is thus to
change the input-output structure of the system. There-
fore, we give criteria how to choose additional controls
or measurements in the system in order to avoid a certain

kind of zeros, e.g. all zeros in the right half-plane.

In the basic control configuration described above, re-
ference values for the available outputs must be fed into
the regulator; These reference values correspond to an
idealized situation where the model is exact and no dis-
turbances influence the system. The nominal track is ge-
nerated in two ways: (a) by a reduced order state space
model and (b) by properties from the inverse. The regula-

tor is supposed to act whenever deviations from these no-



minal values are discovered.

A difficulty which can occur in the servo problem is the
problem of unstable inverses. Systems with unstable in-
verses are called nonminimum phase in classical termino-
logy. In this case the exact inverse, which generates
unbounded inputs, must be replaced by a neighbouring
stable system from which the design can be done. Two app-
roaches to solve this problem are given, which both uti-
lize stabilizing feedback on the inverse system: (a) a
heuristic approach and (b) an optimal approach which uses

minimum energy stabilization.

The Regulator Problem.

A regulator which has been frequently used in actual de--
sign is the PI regulator. Such regulators are designed

to remove steady state deviations in the outputs due to
disturbances which are constant or slowly varying. The
notion of PI regulator is generalized to the multivari-
able case. The major results are (a) solvability condi-
tions and (b) a design algorithm. In the design algorithm,
a proportional and integral controller is designed step-
wise allowing for the freedom to choose the "proportional"
and "integral" parts independently. Moreover, the result-
ing controller contains a small number of integrators.

If p denotes the number of controlled outputs and r the
number of disturbance inputs, the number of integrators

is always less than min(p,r).

We also face a problem which has a strong practical imp-
lication. In many actual systems there is a desire to
restrict the complexity of the feedback structure, e.g.
due to constraints in the measured signals or informa-

tion exchange. This means that only output or restricted




output feedback is allowed, where each output variable

is permitted to be connected to a subset of the inputs,

In this thesis, the restricted feedback problem is at-
tacked in two steps: (a) a state feedback regulator is
designed under the hypothesis of a completely free feed-
back structure, (b) the state feedback regulator is fit-
ted into a regulator with a constrained feedback struc-
ture using successive weightings on a dominant eigen-
space. We thus utilize the fact that there are straight-
forward and rapid methods to find satisfactory state
feedback regulators even for fairly large systems, e.g.
using linear quadratic control theory [1] or modal con-
trol [22].

As a design principle, the procedure above is in line
with the overall design philosophy of the thesis. By
comparison with the performance of the initially designed
state feedback regulator, it is possible to determine the
trade-off which is caused by the constraints in the feed-
back structure and to change the structure if the de-

crease in the performance is too large.

Organization of the Material.

The thesis is organized in the following way:

In Chapter 2 a basic control canfiguration for the regu-
lator and servo problems is introduced and analyzed. The
concept of minimal system inverse, which plays a crucial
role in this configuration, is the topic of Chapter 3. A
state space theory for poles and zeros is developed in
Chapter 4. In Chapter 5 we return to the servo problem

and analyze two subproblems, reference values and non-



minimum phase systems, in more detail. The multivari-
able version of the PI controller is resolved in Chap-
ter 6. Finally, a heuristic method to consider practi-

cality constraints is developed in Chapter 7.

Summing up, the following aspects of the multivariable

control problem arethus treated in this thesis.

o A basic control configuration for regulators and

servos: Chapter 2.
o Structural and algebraic concepts: Chapters 3 and 4.
o Dynamical characteristics: Chapter 4.
o The servo problem: Chapters 2 and 5.
o The regulator problem: Chapters 2, 6 and 7.

o Practicality constraints: Chapter 7.

All the chapters are supplied with local appendices and

references which appear at the end of each chapter.
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2. A CONTROL SYSTEM CONFIGURATION.

A multivariable control system shall in many situations
serve both as a regulator and a servo. The specifications
can, however, be quite different or even contradictionary
in the two cases which can rise difficulties in the de-
sign. The combined servo and regulator problem for multi-
variable systems does not seem to be exhaustively treated
in the control literature. An accurate servo is often
tied to high feedback gains in the feedback loops [21].

In model matching theory [3, 4, 5] the feedback is used
rather to match the model than to achieve efficient regu-
lation with respect to disturbances. Optimal model fol-
lowing in the asymptotic linear quadratic sense [1] re-

quires a linear model of the command input.

In this chapter a basic control system configuration is
suggested which makes a conceptual separation between the
two problems. This configuration admits an ideal servo
and ‘an optimal regulator and is intended to serve as a
starting point for the design. Different aspects on the
regulator and servo are discussed in this context. The
discussion starts with the single input-output case just
to indicate some of’the crucial points before the more
general multivariable case is considered. A more detailed

algebraic analysis is performed in Chapters 3 and 5.

17



2.1. The Single Input-Output Case.

Consider a conventional control scheme as in Fig. 2.1.

Disturbance

¥o@-2o Re) [Ue| Gyls) |

Fig. 2.1 - A conventional control loop.

The control system in Fig. 2.1 recognizes disturbances
and reference changes in the same way, i.e. as a devia-
tion in the control error e(t). This expresses a very
simple control principle which only needs a fairly rough
model of the process and its environment. However, con-
flicts between different design goals may arise in such

a structure. Some examples are:

0 An optimal setting of the regulator parameters with
respect to disturbances may cause bad responses to

reference inputs. Conversely, a regulator with sa-

tisfactory reference responses may have poor distur-

bance rejection.

0 For security reasons large stability margins may be
required. This may lead to slow responses for refe-

rence inputs.

0 Additional measured signals are not readily included
in the control loop, unless the system has some spe-
cial structure (e.g. cascaded subsystems) and physi-

cal insight is exploited.

18



Some of these difficulties can be avoided if a somewhat
more complex system configuration with a feedback and a

feedforward structure is used, see Fig. 2.2.

g(s) Disturbance

R(s)

Go(S) y

Fig, 2.2 - A conventional control loop with feedforward

from the reference input.

The control systems in Fig. 2.1 and Fig. 2.2 react in
the same way to disturbance inputs, but the responses
for reference inputs are different. Consider the trans-

fer function relating the reference and the output:

(2.1)

y(s) Go(s)é(s) -1
= 41 +
yr(s) 1+ GO(S)R(S)

If G(s) equals the inverse of the process, i.e.

-1

é(s) = GO

(s) (2.2)
we have in a sense achieved the ideal servo since the
transfer function between the reference and the output
becomes unity irrespective of the choice of regulator

R(s). In this case the regulator is not influenced by




reference changes and does not become active until the
system is driven away from its nominal values, e.g. due
to disturbances or inaccuracies in system description.
The behaviour is thus the opposite of the conventional
control loop in Fig. 2.1, where the reference change is

handled by the regulator alone.

The regulating ability can also be seen in the following
way. Assume G(s) differs from the actual inverse by an
amount AG(s). The transfer function between the reference

and the control error becomes then

e(s) GO(S)Aé(s)
. (2.3)
yr(s) 1 + R(S)GO(S)

If the gain in the regulator R(s) is high, we conclude

that the servo system is insensitive to changes in G(s).

The appearance of the inverse G51(s) in (2.2) creates
some prcblems. In any practical application we must in
'some way avoid the pure differentiators appearing in the
inverse. One way to do this is to "approximate” the in-
verse with some other transfer function é(s) such that
the effect on the control error is small, i.e. such that
the transfer function (2.3) is small over some relevant

frequency interval. The conventional control loop in
?ig. 2.1 can be considered as such an approximation with
G(s) = 0.

Another problem, which may be a more serious one, is the
problem of unstable inverses. A more detailed analysis of
such inverses are performed in Chapter 5. Let us just note
here that systems with unstable inverses are called non-

minimum phase in classical terminology.

The discussion above is illustrated by a simple example.




Example 2.1. Consider the system shown in Fig.2.3.

-
o I
—-—d

Fig. 2.3 - A first order system with process dis-

turbance v and mesurement disturbance w.

The disturbances w and v are assumed to be independent
white noise processes with covariances rWS(T) and PVG(T)

respectively. Assume first that a control of the form
u = - K(z-y,) (2.4)
is used. The gain K is chosen to minimize the criterion
- o 32
J = E(y yr,)

in steady state operation. If rv/rw = 32, it can be shown

that the minimum is obtained for

However, the response to reference inputs is rather slow
for this value on K as is shown in Fig. 2.5. In order to

get a better response we can take a control of the form

u = - K(z-y, ) + é(S)yr

If G(s) equals the inverse of the process, i.e. G(s) =

= 2(s+1), the transfer function between the reference

and the output becomes unity irrespective of the value



verse is "approximated" as is indicated in the asymp-

totic Bode diagram below.

4 Vlog|c| .

Fig. 2.4 - Asymptotic Bode diagram.

.open loop system

————— exact inverse

-+-+- approximated inverse

The choice of breaking point wo o= 1/t in Fig. 2.4 de~
pends on how fast signals the system can track with rea-

listic amplitudes of the control signal. The frequency

w_ can be interpreted as the upper limit. The approxima-

ted inverse becomes

. 2(s+1)
(1+18)

é(s)

Using this approximation of the inverse, the control be-

comes

(2.5)

The step responses for the control laws (2.4%) and (2.5)

are compared in Fig. 2.5. The breaking point in Fig. 2.4

is assumed to be 1 = 1/5.




1 t‘Esec]

Fig. 2.5 - Responses to a unit step in Yoo
I. Control law (2.u4).
II. Control law (2.5).

2.2. The Multivariable Case.

The basic control principles for single input-output
systems discussed above are also applicable to multi-
variable systems. Consider the system shown in Fig.
2.6,

Disturbance

|z
Fig. 2.6 - Open loop multivariable system.

u is the m-vector of control inputs, y the p-vector of
controlled outputs and z the gq-vector of measured out-
puts. The controlled outputs may coincide with the mea-
sured outputs, although it is not necessary in the se-
quel. Moreover, let S denote the input-output operator
of this system relating u and vy and assume for simpli-
city that the initial state is zero.




Both the servo and the regulator problems can be app-
roached using the same principles as were applied in the
single input-output case. Let S"1 be a right inverse of
the operator S, i.e. »

sst o1

A solution to the servo problem is given by
u, = S Y (2.8)
This input can be regarded as the ideal servo since the

operator relating the reference and the output becomes

the identity. If (2.6) is applied to the system in Fig.

2.6, nominal values z , on the available outputs are ob-
tained. A disturbance input or a parameter change in

the system then causes a deviation in z from its nomi-
nal track. In order to make the servo system insensitive
to disturbances and parameter changes, & regulating part
AU is added to (2.4) which recognizes such deviations.

Hence

u = u_ + Au
r

u, * R(zr—z)

where R is an arbitrary dynamic operator. The com-

bined regulator and servo system is shown in Fig. 2.7.




ur

_y_r___’ 5-1 Disturbance

Fig. 2.7 - A basic control system configuration for re-

gulators and servos for multivariable systems.

At this stage it is not obvious that z  is given by Yy

T
as is indicated in Fig. 2.7. This point is clearified in

Chapter 5. For a linear system with state x

x = AxX + Bu

z = Hx

controlled by state feedback and a state estimator, of

conventional type, the control system becomes

u = u_ +
T Au

u, + Lax

3
~

AX = AA;( + BAu + K(ZP-Z+CA)A<)

where u,, is given by the inverse 8_1.



The inverse S—1 will often contain pure differentiators.
In this sense, the basic control configuration in Fig.
2.7 is only theoretically achievable. This problem can
be overcome in two different ways:

0o The inverse is "approximated" by another system é,
which contains no pure differentiators. Such an app-
roximation can either be valid for a certain fre-
quency interval (in a frequency domain description)
or for a certain class of inputs (e.g. stationary
responses for step and/or ramp inputs). Compare with
the arguments of Example 2.1.

0 The desired output Yy is described by a model

Sm as is shown in Fig. 2.8.

S m Yr S"I u Disturbance

Fig. 2.8 - The basic control system configuration with

reference model Sm and command input v.

The model should be chosen so that the composite
system S_1Sm contains no pure differentiators. This
will be the case if the model is compatible with
the process dynamics in the sense that no more is
required from the model than can be achieved by the

process with say bounded inputs.




The preceding discussion suggests a two-step design for
regulator and servo systems. In the first step a regu-
lator is designed such that the closed loop system has
satisfactory disturbance rejection and insensitivity.

In the second step reference signals are introduced in-
to the system according to the principles presented a-
bove, in such a way that the closed loop system including
the regulator responds satisfactorily to command inputs.
This conceptuai "separation'" between the regulator and

servo problems is valuable at the design stage.

Finally we notice that some problems of importance re-

main to be solved:

0 The problem of nonunique inverses. A given system
may have several right inverses, some of which are
stable while others are not, cf. a discussion in

[31.

o A given system may have no stable inverse. It is
then impossible to use the structure in Fig. 2.7
since unbounded inputs u, will occur. How shall the

basic configuration be changed to cover this case?

0 The nominal values z,, on the measured outputs should
be available to the regulator. A simple (but impor-
tant) special case is z = y where z,6 equal the des-
ired output y,. How is z, obtained if z $oy?

Remark 1. For discrete time systems the pure differentia-
tors in the inverse 8_1 are replaced by forward shift
operators. This means that u, needs future values on Vo
to.be realized. In actual process design the implication
is-that a change of operation point must be preplanned
some time-steps ahead, which is often a realistic assump-
tion at least for large operation changes. If such pre-
planned action is not permitted, some of the schemes gi-

ven above for continuous time systems must be used.




Remark 2. The control scheme in Fig. 2.8 is a solution

to the model matching problem. In contrary to [3, 4, 5],
where the feedback is used to match the model, the feed-
back is present to achieve regulation around the trajec-

tory defined by the model.

Remark 3. Observe that the model S in Fig. 2.8 may be
nonlinear. In fact, nonlinear models for the output be-
haviour during transfer between different operating
points are desirable in many cases, e.g. in order to
restrict the amplitudes in the controlled variables and

its derivatives.

Let us illustrate the discussion by some simple examples:

Example 2.2. Consider the first order system described
in Example 2.1. Instead of approximating the inverse, the

reference is generated from a model.

q_(s)
Yp = Gm(s)v - I v
pm(s)

where v is the command input. The control becomes thus

_ _ -1
u = Kopt(y V) * Go(s) Yy

= - Kopt(y-Gm(s) v,) + 2(s+1)6 (s)v

The pure differentiators- are avoided if deg(qm(s)) 3
< deg(pm(s))—1. With this control, the system behaves
as the model under reference changes, while maintaining

its optimal disturbance rejection properties. ‘®




Example 2.3. The problem of nonunique inverses is il-
lustrated by the following system

-2 1 0 0 0
x=[=1 0 1|x+ -1 -1lu
-1 0 0 12

y=[1 0 0]x

The transfer function for this system is

1 - s 2 - s
3 2 3

G(s) = 5
s 4+ 28 + s + 1 s” + 28 + s + 1

Two different right inverses of G(s) are given by

53 + 282 + s + 1 0

Gy (s) = T-s G,(s) =

which are both unstable. An inverse with nice properties

exists, however:

~ -1
Gg(s) = (sa+232+s+1)
1

The implication is that a multivariable system can be
easy to control even if each individual loop has nonmi-

nimum phase properties. B
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3. MINIMAL SYSTEM INVERSES.

The inverse system plays an important role in linear
system theory. One reason being that the properties of
the inverse tell much about the original system such
as tracking ability and stabilizability. Many control
and estimation problems are consequently closely rela-
ted to system inversion. A few examples are decoupling
{3, 9, 10, 14, 18], model matching [7, 8, 19] and feed-
forward control. It has also been shown that systems
with unstable inverses can be very difficult to control
[11]1. In this thesis, the inverse system is of impor-
tance for the servo problem as was described in Chapter
2.

The inversion problem consists in fact of two different
subproblems, left and right inversion. Left invertibili-
ty is sometimes called input functional observability

and right invertibility output functional controllabili-

ty, see e.g. [12].

For linear time invariant systems with zero initial
state, the inversion problem can be treated completely
algebraically using the transfer function of the system,
The problem then becomes a problem of inverting a mat-
rix of rational functions. This can be done, Forney [4],
for instance using the invariant factor theorem. An al-
gorithmic approach has recently been described by Wang

and Davison [171].

Silverman [13] and Silverman and Payne [14] have deve-
loped a quité different inversion theory using state
space terminology. The inverse system is constructed by
means of an algorithm, the structure algorithm, from
which some properties can be extracted. Related work
has been done by Sain and Massey [12]. Quite recently,

Wonham and Morse [10] have given necessary and suffi-.

T e -




cient conditions for left invertibility in terms of a

certain invariant subspace.

We introduce the concept of minimal system inverse as
an inverse system having the least dynamical order.
Such inverses are in the frequency domain obtained as

a consequence of the invariant factor theorem [4, 17],

where the order is defined by the McMillan degree. Here, the

problem is treated in a state space terminology, where
upper bounds of order previously have been given in
(13, 14].

Unlike Silverman and Payne [13, 141, we do not hinge
our results on the properties of a specific algorithm,
but rather on a set of geometric concepts introduced
by Wonham and Morse [10]. We utilize a sequence of ba-
sic operations on the original system which leads to a
structure from which the inverse syétem is obtadined al-

most directly.

Minimal left inverses are constructed for systems with
unknown and known (zero) initial states and minimal
right inverses for zero initial states. The dynamical
order of a minimal inverse equals the order of a cer-
tain invariant subspace. The same invariant subspace

also determines its characteristic polynomial.

The characteristic polynomial for the minimal system
inverse is shown to be unique in the sense that it di-
vides the characteristic polynomial for an arbitrary
inverse. Thus, the minimal system inverse extracts the
stability properties from all other inverses and pro-
vides a solution to the problem of nonﬁnique inverses
mentioned in Section 2.2 in connection with the servo
problem. It also leads to a proper definition of the
concept of zeros in the multivariable case. This will

be further discussed in Chapter 4.




3.1. Preliminaries.

Notations.

The Euclidian n-dimensional vector space over the real
numbers is written Rn, and over the complex numbers .
Seript letters V, !, X denote linear subspaces and ca-
pital letters A, B, C denote linear maps (matrices).
For summation of linear subspaces we will use the sym-
bol +, and for the direct sum e. The range space of a
linear map B is denoted {B}, or sometimes by the corre-
sponding script letter B. The null space of B is writ-
ten ker(B). A matrix V is said to be a basis matrix for

V if the columns of V are linearly independent and span
V.

Assume A: R" » R" is a linear map and V < R" a subspace.
The subspaces AV = {x er" | Az = X, z € V} and A_1V =

= {x € rRM | Ax € V} denote the image and inverse image
respectively of ! under A. A subspace | satisfying AV <
c V is said to be A-invariant. If ¢ is A-invariant and
V is a basis matrix for ¢, the restriction of A to V,

AV, is defined by AV = VA and A = Aly, cf. [19].

If v, and v, are two independent subspaces, i.e. V1 n
n V2 = 0, we define the projection onto V1 along V2 as
a map P such that Px, = x, for all x; € V1 and Px, = 0
for all x, € V2.

Let A: R™ » R™ and B: R® > R™ be a pair of linear maps.
The controllable subspace for the pair (A,B) is written
{AIB} and is defined by

(AIB} =B + AB + ... + A" 13

A subspace V is said to be (A,B)-invariant if (A+BLIV <

<V for some linear map L. A controllability subspace R

Q9




is any subspace satisfying R = {A + BL|P n R} for some
linear map L. A more detailed discussion on these con-
cepts can be found in [10, 18] and below where a geo-

metric interpretation is given,

System description.

The control system of interest is described by the dif-

ferential equation

x = Ax + Bu x(to) = Xq (3.1a)

Cx (3.1b)

y

where x € R" is the vector of states, u € R™ is the vec-
tor of inputs and y € RP is the vector of outputs. Here,

A, B and C are linear time invariant maps (matrices).

For convenience, a system of the form (3.1) is denoted
S(A,B,C).

Some basic geometric concepts.

The geometric concepts (A,B)-invariant and controllabi-
lity subspaces were introduced in control theory essen;
tially to provide a well-posed formulation and solution
to the decoupling problem, Wonham and Morse [10, 18].
These concepts have shown to give valuable insight to
different problems dealing with structure of linear sys-
tems, e.g. the algebraic regulator problem as formulated
by Wonham, Bhattacharyya and Pearson [2] and the model
matching problem discussed by Morse [8]. Here, the same
concepts will be used to explain properties of inverse

systems.

4



The concepts A-invariant, (A,B)-invariant and controlla-
bility subspaces, which are defined algebraically above,
can be given a simple interpretation in terms of a ba-
sic control problem. It is felt that the algebraic treat-
ment of the inversion problem later can be more easily
understood with this interpretation in mind. Consider a
subspace y < R” and a linear time-invariant system S(A,
B,C).

Fig. 3.1 - A geometric illustration of a basic control

problem.

As is indicated in Fig. 3.1, the task is to keep the
state trajectory x(t) within the given subspace V. Three

different versions of this problem are considered below.
Consider first the uncontrolled version of (3.1), i.e.

X = Ax x(to) = Xg

The state trajectory remains within the given subspace

¥ if and only 'if the velocity vector x does not point
out - of V for any point of time. Since X is an arbitrary

vector in V, x(t) belongs to V if and only ‘if

AV <.y (3.2)



i.e. if and only if the subspace is A-invariant.

Let us now proceed to the controlled version. The sys-

tem is then described by

X = Ax + Bu x(t0)= X

In this case we have the additional freedom to choose
the control vector u. As above, we must force the velo-
city vector to remain within V, i.e. there must exist

vectors vy € IV and u € R™ such that
vy = Av + Bu

for all v € V. We can express this condition in an al-

ternative way. The subspace V must satisfy

AV «c V + B (3.3)
Moreover, (3.3) is satisfied if and only if [1, 10, 18]
(A+BLOV = V

for some linear map L, i.e. if and only if the subspace V
is (A,B)-invariant. Assume now that D is a given sub-
space. It can be shown [1, 18] that there exists a unique
maximal (A,B)~-invariant subspace VM contained in p, i.e.
0 5 VM 5V where v is any (A,B)-invariant subspaces con-
tained in P. This maximal subspace can be obtained by

the following sequence [18]

V. =7 (3.4)

<
[1}

Don AT W, 4 48) i21,2, «o.sn

n
<
o]
g

4% +B)

i-1




Let k be the first integer such that Vk+1 = Vk’ then
VM = Vk' This sequence converges after at most v steps

where v = dim(D).

The third version of the control problem in Fig. 3.1

is the following. Consider the system
x = Ax + Bu x(tg) =0
with the control

u = Lx + Gv

Under what conditions do there exist linear maps L and

G such that the éubspace controllable from the input v
is exactly V? It can be shown, {10, 18], that this prob-
lem can be solved if and only if the subspace V is a

controllability subspace, i.e.
{(A+BL 1 R n V} =V (3.5)

for some linear map L. It is fairly easy to show that
a controllability subspace is also an (A,B)-invariant
subspace [10, 181. As was the case for (A,B)-invariant
subspaces, there is a unique maximal controllability
subspace RM contained in a given subspace P. The sub-
space RM can be constructed as [10]

M M

R..= {A+BL | B n V} (3.86)

where vM is the maximal (A,B)-invariant subspace con-
tained in P and L is a map such that (a+BlyVM e WM, A1-

ternatively, R is produced by the sequence [10]

SO =0



+R) i=1,2, ..., n (3.7)

A computational algorithm for the sequence (3.4) can be

found in Appendix 3B.

Example 3.1. Consider a linear time invariant system

.

X = Ax + Bu x(to) eV

Cx

«
1"

where V is a subspace satisfying

V < ker(C)

Case 1. V is A-invariant. According to the discussion
above the state trajectory will remain within V for

u = 0. Since V < ker(C) we have thus

y(t) = Cx(t) = 0 t ozt

V is thus an unobservable subspace to the pair (C,A)
and the unobservable modes equal the eigenvalues of

the matrix representing the mapping AlV.

Case 2. V is (A,B)-invariant. In this case there is a

-

linear map L such that V is (A+BL)-invariant. According
to Case 1 this means that V is an unobservable subspace
to the pair (C,A+BL), i.e. unobservability is introduced

into the system with a control of the form u = Lx.



Case 3. V is a controllability subspace. According to
the discussion above there exist linear maps L and G
such that the subspace controllable from v in u = Lx +

+ Gv is exactly V. Since V < ker(C) this means that

y(t) = Cx(t) = 0

for all possible choices of the input v. B

3.2. The Inversion Problem.

Definitions.
The solution of (3.1) is

A(‘t—‘to)

t
y(t) = Ce Xg * / ce®(t"8)py(s)as
t
0

which is written formally as
y = S(xq,u) = Syx, + Syu (3.8)

The expression (3.8) can thus be regarded as an input-
output map for the system S(A,B,C) parametrized by the
initial state Xg- For our purpose, the initial state

will be of minor importance and is therefore set equal

to zero. The system is then simply described by

Where u € U, vy € Y. The input space U and the output
space Y consist of all real-valued piecewise continuous
m-vector and p-vector functions respectively, defined

on [to,w). S, is a linear operator which maps U onto
Y1 < Y,




An inverse to the operator S, can either be applied on
the left hand side or the right hand side. An illustra-
tion of the difference between left and right inverses

is given in Fig. 3.2.

e S y 5‘1 U

(a) 5—1 S=|

X___’ 54 u B S jL____

(b) ss-1=

Fig. 3.2 - An illustration of (a) left inverses and

(b) right inverses.

Note the change in consequtive order between the block

diagrams and the algebraic expressions in Fig. 3.2.

In the left inversion problem, the intention is to re-
construct the inputs from the available outputs, or

more precisely.

Definition 3.1 (Left inverse). A left inverse to the

system S(A,B,C) is any linear operator S such that

Sy = 8S4u = u (3.9)
for all input-output pairs (u,y) € UxY. B

Remark 1. In Section 3.3 we will alsoc consider the

case of unknown initial states. In this case the inverse

S shall satisfy SS; = 0 and SS, = I.




Remark 2. The case of known initial states can be handled
in the same way as the case of zero initial states, cf.
Remark 10.

Without loosing generality, it can be assumed that a left

inverse is of the form
w = Aw + Ny(p)y w(ty) = 0 (3.10)
u = Cw + Nz(p)y

where N1(p) and N2(p) are polynomial matrices and p =

= d/dt. It can be shown [15] that any system with a ra-
tional transfer function can be transformed into the

form (3.10) by a sequence of equivalence operations. This
representation of the left inverse is assumed in the
sequel. The concept of minimal left inverse can now be

concisely defined.

Definition 3.2 (Minimal left inverse). A minimal left

inverse of S(A,B,C) is any operator S of the form (3.10)
such that condition (3.9) is satisfied and w in (3.10)

is of minimal dimension. |

The ‘corresponding right inversion problem, i.e. to find
an input u to the system which produces an arbitrary
output y. is of more direct interest in many control
problems. Such an input is produced by the right in-
verse operating on y,. In order to avoid differentiabi-
lity problems it is assumed that the desired output Y
belongs to the space

Y. = {all functions Vi Ro- RP  such that yp(t) = 0 for

t <ty and y, € CT(-=,=)}



where ¢?(-w,=) denotes the space of n times differentiable

functions on (=w,=).

Definition 3.3 (Right inverse). A pight inverse to the

system S(A,B,C) is any operator S such that
Yy c $,8(y,) (3.11)
for all vy, € Yr' a

Without loosing genmerality it can be assumed that the

right inverse is of the form
w = Aw + By, w(ty) = 0 (3.12)

u, = N1(p)w + Nz(p)yr

where Ny (p) and N (p) are polynomial matrices and p =

= d/dt. A minimal rlght inverse is then defined by

Definition 3.4 (Minimal right 1nverse) A minimal right

inverse of S(A,B,C) is any operator S of the form (3.12)
such that condition (3.11) is satisfied and w in (3.12)

is of minimal dimension. B

The benefit of using different representations (3. 10) and
(3.12) for left and right inverses will be evident from the

discussion on duality below.




Duality.

The left and right inversion problems are dual problems
[12]. This is easily verified using transform theory.
Assume that a left inverse S to the system S(AT,CT,BT)

is given by

e
I

= AW + N1(p)y
u = Cw + Nz(p)y
Since é is a left inverse it follows that

1

1 T) =T

(CesT-A)" "N, (s) + N, (s)) (BT(s1-aT) e

Taking transposes we obtain

(ces-a>""8) (i, () T(s1-AT)™TCT + w ()Y = 1

It thus follows that

W= Alw o+ 6Ty0

_ T T
uy = N1(p) w o+ Nz(p) Yo

is a right inverse to the system S(A,B,C). For zero
initial state, a right inverse for S(A,B,C) can be con-
T CT BT)

2 9
and vice versa. For notational convenience the system
S(AT, CT, BT) will be denoted the dual system in the se-

quel. Note, however, that in order to have duality in the

structed from a left inverse of the system S(A

strict mathematical sense, a minus sign should be inser-
ted before AT.



Geometric interpretation.

Before dealing with the inversion problem in more de-
tail, let us first give an interpretation of the prob-
lem in terms of the geometric concepts discussed in
Section 3.2. Consider the system S(A,B,C)

X

= Ax + Bu X(to) = Xg
y = Cx
and its left inverse
W o= Aw + N, (p)y w(ty) = wy
u = Cw + N2(p)y

Assume there exists an input u = ug and a subspace V
such that the output y is kept zero for Xy € V. Since
y(t) =.0 and the left inverse is supposed to reconstruct

the input, we have

w = Aw W(to) = Wy

n
(@]
[
=

uo(t)

which can be written as

3 ai‘t
uo(t) = Hi(t)e
i=1




where oy, i=1,2, ..., 4, are the eigenvalues of A. We
find that the input ug, given above contains information
of the dynamical properties of the inverse system. In
particular we find that do is bounded if all the eigen-
values o, have negative real parts, i.e. if the left in-
verse is stable. The problem of finding a left inverse
to a given system is thus closely related to the problem
of finding an input to the system such that the output

is identically zero over an interval of time. Problems -
of this type were discussed in Example 3.1 and is illust-
rated in Fig. 3.3.

Fig. 3.3 - A geometric illustration of the problem to
keep the output zero.

The maximal (A,B)-invariant subspace yM contained in

ker(C) will be of particular importance in this context.




3.3. Minimal Left Inverses.

We will first consider systems with arbitrary unknown
initial state. Left inversion is in this case possible
only under rather restrictive conditions, and the pe-
sults are therefore of fairly limited practical inte-
rest. Naturally, the class of invertible systems is
much larger when the initial state is known to be zero.
The results obtained in the case of unknown initial
state are, however, needed when the more interesting
case of zero initial state is considered. A fairly de-
tailed analysis of the minimal left inverse, particu-
larly its stability properties, is performed in this
case.

It is assumed that

i) the system S(A,B,C) is completely observable

ii) ker(B) = 0

The first assumption is introduced merely for conveni-
ence. If it is not satisfied, the results below are
applied to the observable subsystem. The second assump-

tion is a necessary condition for the system to be left

invertible.

Systems with unknown initial states.

Consider the system S(A,B,C) and assume that the initial
state is arbitrary and unknown. The left inverse shall
reproduce the input irrespective of the initial state.
We can express this in terms of the following conditions
on the inverse é, ¢f. Remark 1 and (3.8).




SSO =0 SS1 = I (3.13)

Introduce V! as the maximal (A,B)-invariant subspace con-
tained in ker(C). The following lemma will be needed in

the proof of the theorem below.

Lemma 3.1. If VM = 0 there are maps N, : rRP R", i = g,
1, ..., n, such that
th i
] N.CA™ =1
. i n
1=0
n .
7 N.cAT X = g K=1,2, eo.sn &
. i
i=k
A proof of the lemma is given in Appendix 3A.
Remark 3. The matrices Ni’ i=0,1, ..., n, can be

constructed in the following way. Introduce block matri-
ces.Q and R such that

c 0 0 .. 0
q = CA CB ¢ . 0
e R = |CAB CB ... 0 (3.14)

ca™ B ,..... cB

The condition vM - 0 guarantees that there exists a mat-
rix N such that NQ = I and NR = 0. Then N = [NO, Nis oo
NI =

The minimal left inverse in the case of arbitrary unknown

initial states is characterized in the following theorem.

A



Theorem 3.1. Assume the system S(A,B,C) is completely

observable. There exists a left inverse with the proper-
ty (3.13) if and only if v o= o, Moreover, if AL

there is a polynomial matrix N(p) such that for all (u,y) €
€ UxY and all Xq

b
n

N(p)y t € (toaw)
(3.15)
B(pI-AIN(D)y

o
1

where p = d/dt and B is a left inverse of B.

Proof. First assume that there is an operator S with the
property (3.13) and oM 4 0. Let Ly be a map such that

(A+BLM)VM = v and consider the input uy = Lyx with x4 €

€ UM. Then

x = (A+BLy)x x(ty) = xq

y = Cx (3.16)
u, = LMx

Since X4 e v ang (A+BLM)VM c VM it follows that x(t) €

€ VM and thus y(t) = 0 for t » t,. The input u, is not
identically zero for all Xq € VM, since this would im-
ply that LMVM = 0 and ker(C) 2 VM > (A+BL)VM = AVM and
the observability assumption is contradicted. The same
output is, however, produced by Xg = 0 and u, = 0, and
it will be impossible to distinguish between the inputs
uy and u, by observing the output and left invertibili-

ty in the sense of (3.13) fails.

Conversely, assume VM = 0. By successive differentia-
tion of y in (3.1) we have using Lemma 3.7 and the sub-

stitution




t

t
x(t) = A x(s)ds + B[ u(s)ds + x,

Ny = NCx = NCA [ x(s)ds + N.CB [ u(s)ds + N Cxq =

N CA [ x(s)ds + N_Cx,

Nny = NnCAx
Ny e Ny o= N cAx o+ N Cx = (N CA®+N__.CA) [ x(s)ds +
n n n n n n
+ (N CAB+N__,CB) [ u(s)ds + (N CA+N__,Clxy =
= (N _CAPHN__.CA) [ x(s)ds + (N CA#N _ C)xg
Ny 2w v s ancatan L omx

Proceeding recursively in this way we have after n steps

ne~13
=
by
o
~
1"

o i
) N.CA™x
1 i21

and adding Ngy = NyCx to either side

n (1) n .
] Nyt = ] N.cATx = x (3.17)

where Lemma 3.7 has been used once more. The last ex-
pression can be written in operator form as N(ply = X
with N(p) = Ng + Nyp + ...t ann. From (3.1) we have
(pI-A)x = Bu. Substitute x = N(p)y and multiply from

~

left by B, where B is a left inverse of B. We obtain

A O



B(pI-AIN(DP)Y = u (3.18)

The last relation holds for all Xq and a left inverse
in the sense of (3.13) exists. The second statement in

the theorem is also proven by (3.17) and (3.18)., B

Remark 4. The inverse operator S = é(pI—A)N(p) is ob=-
viously in the required minimal form since w in the re-
presentation (3.10) has zero dimension. The construction
of the operator N(p) can be done as is outlined in Re-

mark 3.

Remark 4'. Since the input u is permitted to be piece-
wise continous, x is differentiable almost everywhere.
In those points where x is not differentiable, we may use

the convention that x equals its left limit.

Remark 5. For controllable and observable systems with
one input and output, the condition WM o2 o is equivalent
to the condition that the transfer function has no zeros.
The necessary and sufficient conditions for left inver-
tibility in the case of unknown initial state is thus

rather restrictive.

Systems with zero initial state.

For zero initial states,the input-output operators of
S(A,B,C) and its controllable and observable subsystem
are the same. Therefore it is no restriction to assume
the system is completely controllable and observable.
This property is assumed in the sequel. In this case
the inverse shall satisfy éS = I, which can be com-

pared with (3.13).

1

1f vM is the maximal (A,B)-invariant subspace contained
in ker(C), a necessary and sufficient condition for the
system to be left invertible in the case of zero initial

state is given by [10]




M o8

1]
o

i)
(3.19)

1]
(o]

ii) ker(B)

where B denotes the range space of B. The second condi-

tion is here satisfied by assumption.

To construct the minimal inverse it will be convenient

to first make the transformation

(T,L)

S(A,B,C) =+ s(T7

(A+BL)T, 77

B, CT) = S(A,B,C) (3.20)
with suitable T and L. This transformation is achieved
by a state feedback u = Lx + ug followed by a coordinate

transformation v = T 'x.

Let Ly be a map such that (A+BLM)(/M < VM. From the in-
vertibility condition (3.19) it can be seen that the
whole space can be factorized into independent subspa-
ces as R" = X @ R o VM, where X is any extension space.
Introduce

Ty = [X B V] (3.21)
where i, B and VM are basis matrices for Q,B and VM
respectively. Consider now the transformation (3.20)

with (TM,LM). Since VM is (A+BLM)—invariant and con-

tained in ker(C) the transformed system is of the form

&1 A11
= + ug v(to) = 0 (3.22a)

(3.22b)



where v, and v, are given by x = [% Blv, + Vyv,. Some

properties of the system (3.22) are given below.
Lemma -3.2. Consider the system (3.22). There exists a
polynomial matrix N(p) such that

(3.23)

ug 81(pI—A11)N(p)y

where é1 is a left inverse of E1 and p = d/4dt. ®A
Lemma 3.3. The pair (EMQ’AZZ) is completely observable. H
Proofs of these lemmas can be found in Appendix 3A.

Remark 6. The coefficient matrices in the operator
N(p) = Ny + Nyp + ... +# quq
mark 3 applied to the subsystem S(A11’EV61)'

are constructed as in Re-

With these notations the following theorems may now be
stated characterizing the minimal inverse for systems

with zero initial states.

Theorem 3.2. Denote the characteristic polynomial of

Ay, Dy aM(s). Let S be an arbitrary left inverse of
S(A,B,C) with x5 = 0 and let ¢(s) be the characteris-

tic polynomial of A in the representation (3.10). Then

ay(s) divides als).




Proof. Let x4 € VM. Since the system S(A,B,C) is complete-
ly controllable, there exists an input uy € U such that
x(t1) = x, for some fixed point of time t, > tge Consider

then the input

u1(t) ty s t o<ty
u(t) =
LMx(t) t oz oty
with Ly as in (3.22). Obviously u € U. For t >ty

the solution of S(A,B,C) becomes

X = (A+BLM)X x(t1)= X4
y = Cx
u = LMx

Consider now the transformation v = Ti1x with Ty as in
(3.21). The transformed system is described by (3.22)
with uy = 0 and subject to the initial condition v(t1)T =
= [0y v2(t1)T] since x(t,) € VM. Thus for t 3 t
Azz(t“t1)

u(t) = LM2e v2(t1); y(t) =0

However, u is also produced as the output of any left in-

verse S with y as input.
Since y(t) = 0 for t z t,; we have from (3.10)

~ 4"
. A(t-t1) " A(t—t1)m
u(t) = Ce w(t1) = Ce w(t1)

NNy ~oon
where (C,A) denotes the observable subsystem of (C,A).




It is easy to show that the characteristic polynomial

" .
a(s) of A divides a(S) Since Vo (t ) is an arbitrary v-
vector where v = dlm(V Xx(t ) is arbltrary in UM] we have

derived the following relation between A22 and K

L By temt) K(t—t1)w

LMZe = Ce (3.24)
Y]

for some matrix W. Introduce the observability matrices

- s
Lo C
- - ny
0 - LyoBoos 0 - CA
1 . 2
= zn-1 ~vn=1
LioBos {CA

n
where n 2 max(dim(Azz), dim(A)). A successive differentia-

tion of (3.24) gives

By, (t=t ) ACt-t,),
Qe = Qe W : (3.25)

According to Lemma 3.3, the pair (iM2’A22) is completely
observable, i.e. rank(Q1 = v, Setting t = t1 in (3.25)

we have Q1 = Q, W and it follows that rank(W) = y. Since
the palr (& A) 1s completely observable Q, has a left
inverse Q2 and Q Q1 = w Another differentiation of (3.25)
gives with t = t1

- V")
Qifgy = QAW
.Multiply from left by 62

Vo v
WA22 = AW




From the last expression we conclude that f = {W} is A—
invariant and 522 = K:w. Thus aM(s) divides g(s). Since
%(s) divides &(s), the theorem follows trivially. B

Remark 7. The theorem above gives a lower bound on the
dynamical order of any inverse S of the form (3.10). This

bound equals deg(aM(s)] = dim(UM)-

Theorem 3.3. Assume the system S(A,B,C) is left invertible.
With notations as above a minimal inverse of dynamical or-

der v = dim(VM) is given by

w o= Ayow + Ny(ply w(ty) = 0

(3.26)
u = iMQW + Ny(ply
where
N1(p) = A21N(p)

(3.27)
N,(p) = (imn + Bq(pI—A11))N(p)

and N(p) is given by Lemma 3.2 and B1 is a left inverse

of B1.

Proof. Notice first that it follows from Theorem 3.2 that
the dynamical order vy of any inverse must satisfy Vg 3

3 dim(VM). Let u € U be an arbitrary input and define ug
by uy = u - LMX. Make the transformation (3.20) with
(TM,LM). From (3.22)

1 B1
+ ug v(to) = 0 (3.28a)
V2 KO



y = Cyvy

u = LM,]V1 + L Vs + U

M2 0

(3.28b)

The input-output operator for this system equals the in-

put-output operator for the system S(A11,E1,51) by neg-

lecting the unobservable part. From Lemma 3.2
N(ply = vy

B1(pI—A11)N(p)y = ug

where N(p) is a polynomial matrix and p = d/dt.

(3.28)
u = LM1V1 + LM2V2 + Uy
= Dypvy, + (Tyy + Bq(pI-A11))N(p)y

where v, satisfies

v2(t0) =0

Using

(3.29)

(3.30)

Then (3.29) and (3.30) obviously constitutes a left in-

verse for S(A,B,C). &

The characteristic polynomial of the minimal left inverse

satisfies a uniqueness condition.

Corollary 3.1. The characteristic polynomial of a minimal

left inverse is unique and divides the characteristic po-

lynomial of any other left inverse.




Proof. Follows directly from Theorem 3.2 and Theorem 3.3

and the uniqueness of the subspace VM. 2|

Remark 8. The minimal left inverse is constructed by a

sequence of operations on the original system S(A,B,C):

0 Apply feedback of the form u = Lyx + ug .

o Change coordinates in the state space v = TM x where
Ty is given by (3.21). These two steps coincide with
the system transformation (3.20) with (TM,LM). The

structure (3.22) is obtained.

0 Find a polynomial operator N(p) such that v, = N(ply
in the system (3.22).

Once these steps have been performed, a minimal left in-
verse is obtained almost immediately by substitution in-
to (3.26) and (3.27).

Remark 9. Note that v in (3.28) is directly related to
the state x of the original system S(A,B,C) by the trans-
formation x = Tyv- This means that the state of the in-
verse (3.26) coincides with a part of the state of the

original system.

Remark 10. From the preceding remark it also follows that
the case of known initial state Xq is handled in the same
way as zero initial state. The only difference is that
v(to) = 0 in (3.28) is replaced by v(ty) = T&qx(to). The
minimal left inverse is then given an initial value w(to)
which equals the last part of the partition v(tO)T =

J o T T
= v et vt



Example 3.2. Consider a System S(A,B.C) with

1 0 -1

The transfer function of the system is

(52 -8 =2
= _ 5~ ¢

S° + 28 - 1

To construct a minimal Jlerft inverse we first fing the
maximal (A,B)-invariant subspace -1 contained in ker(cy,
Using the Sequence (3.4) we have

UO = ker(C) = {-1
1

1 0 - 1'11.1”
V1=ker(C)nA'1(VO+B)- =13 N 1 0 0 -1 10/}
1 0 1 0 1 o”

1 -1 0 1

= 4=1} 1 03 = {-1

1 3 1 [1

Since V1 = UO the sequence has converged and



The system is left invertible since VM N B = 0 and the
dynamical order of a minimal inverse becomes dim(Vl) = 1
according to Theorem 3.3. A map LM such that (A+BLM)VM -

c VM is found as described in Appendix 3B, i.e.

11"
[vy, B1"= [-1 o =[2..79:3...%:°
1o 1 0.5 -0.5

where (-)+ denotes the pseudo inverse [6, 16]. Then

Ly =-[1 0.5 -0.5]A = [-0.5 2.5 =-1]

The matrix TM in (3.21) is chosen as

o 1
Ty = [X B vl=1[1 0o -1
0 0 1

Next the system transformation (3.20) with GM,LM) is per-

formed

1 1 © 0 0
-1 _|-0.5 -0.5 ' 0 -1 |
Ty (A+BLWITy = | "7 ot . Ty B = o
1 0 ¢ -1 0
-1 1 10 : ]
T, = : LT, = [2.5 -0.5 : -u
M 0 1 % o0 MM

The blocks A11, A21, A22, B1, C1, LM1
identified by comparison with (3.22). The operator N(p)

and LM2 can now be

in Theorem 3.3 is constructed according to Remark 6, i.e,



-1 1
: 0 1
¢, e ..
Q= |25, - -1.5  =1.5
o ~0.5  -0.5
¢,A2, e L.
-0.75  -0.75
-0.25  -0.25
0 0 0}
0 0 0 0 0 0
R = |CyB, 0 of = |’ 0 0
e T 1 0 0
CiA4By  C4By 0 -1, ] 0
0. 1 0

o U

A matrix N such that NQ = I and NR = 0 is given by

The operator N(p) thus becomes

i -1 1
N(p) =ZNip =
0 1

All the steps are now performed, and a substitution in-

to (3.26) gives a minimal left inverse of the system:
W= - 1w + [-1 1]y
u = - 4w+ [-3 p+3]y

where p = d/dt. The transfer function of the minimal in-

verse 1is




1 - 3s 52 + 4s - 1

1 + s 1 + s

é(s) =

It is easily verified that é(s)G(s) = 1. We observe that
the computational steps above include only operations of
linear algebra, which can be performed by standard com-

puter programs. @

3.4. Minimal Right Inverses.

The duality between the left and right inversion problems
discussed in Section 3.2 implies that the results for
left inverses in Section 3.3 are applicable to right in-
verses via duality. A minimal right inverse for S(A,B,C)
is thus directly obtained from a minimal left inverse for
saT,cT,B).

However, to be able to identify the set of operations
which lead up to a minimal right inverse, we proceed through
the steps of the preceding section applied to the system
S(AT,CT,BT), but the intermediate results are interpreted
as operations on the original system S(A,B,C). It is as-
sumed that the system S(A,B,C) is completely controllable
and observable and ker(CT) = 0.



Systems with Zero Initial State.

Consider the system S(A,B,C) with zero initial state:

x = Ax + Bu x(to) =0
y = Cx

The intention is to find an operator S with representa-

tion (3.12) such that if the input u = éyr is applied

to the system, the output equals the specified function

Yy € Yr' In addition é shall be a minimal inverse accor-

ding to Definition 3.4.

Let us first establish a necessary and sufficient con-
dition for the existence of a right inverse 5, Using the
fact that S(A,B,C) is right invertible if and only if
s¢aT,cT,8T) is left invertible, the condition (3.19) can
be applied. Let Vg be the maximal (AT,CT)— invariant sub-
space contained in ker(BT) and let L& be a map such that
(A+L§C)TV¥ c V%. The necessary and sufficient conditions
for right invertibility in the case of zero initial state

are:

iy vy =0
(3.31)
ii) ker(cT) = 0

These conditions imply that the whole space can be fac-

torized into independent subspaces X, {CT} and V% as

RY = X @ {CT} @ Vf (3.32)
where X is any extension space. Introduce %T, CT and

° T
(V&)T as basis matrices for X, {C”} and Vﬁ respectively.

From the independence in (3.32) it follows that the mat-

rix




X
T* = |C (3.33)
v

is nonsingular. Observe that Tﬁ and the factorization of

R" correspond to (3.21) in the case of left inverses.
A right inverse of minimal dynamical order can be con-
structed as follows. Rewrite the system (3.1) in the fol-

lowing way:

x = Ax + Bu + Lg(Cx—y)

1"

(A+L;c)x + Bu - Lyy (3.34)
y = Cx

A change of coordinates in the state space v = T&x gives

C L mk * *=1 * kg ok
Vo= TM(A+LMC)TM v o+ TMBu TMLMy

(3.35)
y = CT§_1V

The transformed system will have a convenient block struc-
ture, which can be seen directly from duality by consider-
ing the dual of (3.35) and the block structure in (3.22).

Thus
. Y x 3 Tk
(V1J B A V1J {311 (LM1]
R = _ + u - —x Yy
vy 0 Ayollvy 0 Lyp
(3.38)

- V1

y= (&, O
Vo

where the subvectors L and v, are related to the state x

~n



as
X
V.1 = '(':' X
- * '
V2 = VMX

The system (3.36) can be written

o= Tk

vq = Agqvq * Agpvg ¥ Byu LY (3.37a)
- . 3 T

Gy = Bygvy = LYy (3.37b)
y = Cyvy (3.37¢)

The following lemmas follow by duality from Lemma 3.2
and Lemma 3.3.

Lemma 3.4. The pair (AZZ’ i&z) is controllable. ®m

Lemma 3.5. There exists a polynomial matrix N(p) such
that the systems

vy o= Bpgvg o+ ByNGY b < %
y = Cyvy

and

Wy o= Aygwg by

y = Cyw,y

are input-output equivalent for zero initial state. 8




Remark 11. To construct the operator

N(p) = ] N
i

Ef,ﬁ?). The coeffi-
, cf. Remark 6. ®

apply Remark 3 to the system S(A$1’
cient matrices are given by NI = NE
Let

- _% T
u = N(p)( A12V2+LM1y+uO) (3.38)
in (3.37) where N(p) is given by Lemma 3.5. According to
Lemma 3.5 the system (3.37) then becomes input-output

equivalent to the following system

) - — —— ) —* — _ —-*
wq = Agquy t (FAvotLigyrug) + AL, - Lygy

= AWy ug (3.39a)
y o= 61w1
Let Y, € Y, be a specified function and choose
ug (pI—A11)C1yr (3.39b)

where 61 is a right inverse of 61. By substitution into
(3.38) it follows by simple calculations that y = Ve
Thus, (3.37b), (3.38) and (3.39b) constitute a right in-
verse. This inverse will also be of minimal dynamical

order.

Summarizing we have:



Corollary 3.2. Assume the system S(A,B,C) is right inver-

tible. With notations as above a minimal right inverse of

dynamical order v = dim(Vf) is given by

w o= A,.w - LX

22 M2 p
(3.40a)
u, = Nq(p)w + Nz(p)yr,
where
N1(p> = - N(p)A12
(3.40Db)

N,(p) = N(p) (L, + (pT-A,,)C,)

where N(p) is given by Lemma 3.5 and 61 is a right in-

verse of 61. B
The uniqueness of the inverse spectrum, i.e. the spect-

rum of the matrix AQZ in (3.40a), follows by duality

from Corollary 3.1.

Corollary 3.3. The characteristic polynomial of a mini-

mal right inverse is unique and divides the characteris-

tic polynomial for all other right inverses. B

Remark 12. Corollaries 3.7 and 3.3 express an important
property of minimal system inverses: the uniqueness of
its spectrum. We are thus guaranteed that the minimal
inverse is stable if there exists any stable inverse.

The minimal inverse thus provides a solution to the prob-

lem of nonunique inverses mentioned in Section 2.3.




Remark 13. The uniqueness property does not include the
polynomial operators N, (p) and N (p) in Theorem 3.3 and
Corollary 3.2. It can be shown that two minimal inverses

can have different input-output relations.

Remark 14. In analogy with left inversion, a minimal right
inverse is constructed by a sequence of basic operations

on the original system:

0 Add and subtract LMy from the right-hand side of
(3.1a)

0 Transform the system by v = MX where TM is given
by (3.33)., The structure (3. 37) is obtained.

0 Find an operator N(p) with the property described
in Lemma 3.5,

Remark 15. Note that the state of the minimal right in-
verse is related to the state of the original system as

w o= VMx

Example 3.3. Consider the same system as in Example 2.3,
i.e. the system S(A,B,C) with

-2 1 0 0 0
A= |-1 09 1 B = |-1 - C=1[1 0 0]
-1 0 o0 102

The computational details have already been demonstrated
in Example 3. 2 and are therefore not repeated here, The
maximal (A C ) invariant subspace vf contained in ker(B )

is given by



Thus Vﬁ n {CT} = 0 and the éystem is right invertible.
Moreover, a minimal right inverse has zero dynamical or-
der according to Corollary 3.2. Since V% = 0, the trans-

formation v = Tgx needs not to be performed. The polyno-

mial matrix N(p) in Corocllary 3.2 is found as described

in Remark 10 with A11 = A, §1 = B and 61 = C. Thus
-2 -2 -1 -1 0 0
N(p) = + P
11 1 0o 0o 0

A substitution into (3.40) gives a minimal right inverse

of the system:

[
1

N(p)(pI-A)éyr

—pz—up—7

1]
<

p+h

The minimal right inverse consists in this case of pure

. . . . . M.
differentiators since the dimension of V* is zero. @

An alternative Ppepresentation of minimal right inverses.

In some applications it is preferable to use other rep-
resentations of the minimal right inverse than (3.40).
It is shown below that the model

Aw + éy

=
n

(3.41)

ol
i

= Ny(plw + Nz(p)y




which is used in Corollary 3.2, easily can be expressedA

in the alternative form

Aw + By

.
W

(3.42)

=
n

Cw + N(ply
The latter form is more convenient to handle for instance
in the basic control configuration shown in Fig. 2.8,

since the pure differentiators appear in a single term.

Let N,(p) be described by

11

11 ~—10
=
o

’_l

N1(p) =
1

By successive differentiations of w in (3.41) it is easi-
‘ly shown that

q .

- Al

N, (plw = {_Z Nin
1=0

w o+ N, A By
120 {k=I+1

Q""I { q Ak_i_1,\

The intermediate calculations are tedious but straight-
forward. Thus the model (3.41) is replaced by the model
(3.42) if

(3.43)

N(p) = NZ(p) + N1'(p)
where

qi'] CZl N
N!(p) = N, A
! 120 |k=Ts1 1K

k—1—1ﬁ pl



3.5. Characterization of an Arbitrary Minimal Inverse.

Besides from the propertles of its spectrum, cf. Corol-
ary 3.1 and 3.3, & minimal inverse is generally not
unique. There is one exception, namely systems with the
same number of inputs and outputs. In this case the in-
put-output relation of the minimal inverse 1s unique
since the system is described by a square transfer func-
tion matrix, which by necessity must have a unique in-
verse. This is, however, not true for systems with
different numbers of inputs and outputs. Consider for

instance the simple example

Two left inverses of this system are given by

]
~~
[}
St
[}

[0.5(s+1) 0.25(s+2)1]

@
~
03]
~
n

[s+1 0]

These inverses are both minimal, but they have different
input-output relations. In many cases, €.f. in the servo
problem in Chapter 2, it is desirable to have a descrip-
tion of all minimal inverses to a given system in order
to select a suitable inverse. Such a description is given

below.

Let us first introduce some notations. With A11, §1 and

SRR




defined as in (3.22), introduce the following

block matrices

¢, 0 0 . 0
C, A C.B 0 ev. D

0, - 1711 R - _1_1 o (3.u8)
: c.A B, C,B, . 0

c. A% .
B 5 ......... C.B

Moreover, to any polynomial matrix L(p) = LO+L1p+...+Llpl

. . . n )
we define a corresponding matrix L as

[a¥
L = [LO Ly e Lg] (3.46)

Consider the system S(A,B,C) and let two arbitrary

minimal left inverses to this system be described by

Wy = Agwy + N1(p)y w1(t0) =0
(3.u47)
u = Cyw, + M1(p)y
and
Woz AW, + NQ(p)y w2(t0) = 0 (3.u8)

u = Cow, + Mz(p)y
where N1(p), Nz(p), M1(p) and Mz(p) are polynomial

matrices and p = d/dt. The following theorem gives a
general relation between two minimal left inverses to

the same sysfem.



Theorem 3.4. Assume that the systems (3.47) and (3.48)
are two minimal left inverses to the system S(A,B,C).
There exist a nonsingular matrix T and a polynomial

matrix M{p) such that
wy = Tw, + M(p)y p = d/dt (3.49)

Moreover, by this transformation the system (3.48) becomes

wy o= Agw, 4 N1(p)y

A (3.50)
u = Chw, + (M1(p) + Lip))y
where
L(p) = M, (p) = M (P) - C M(p) (3.51)
and
to, = @ TR, = 0 (3.52)

Conversely, any system of the form (3.50) with T sat-
isfying (3.52) is a minimal left inverse to the system
S(A,B,C).

In order to prove the theorem some constructional steps
are needed. These steps are given in the form of lemmas

below. Proofs of these lemmas can be found in Appendix 3B.

Lemma 3.6. There exists a nonsingular matrix T such that

N -1 ~
TA,T ' = A,

~ -1 ~

C,T'' =C, m




Lemma 3.7. There exist a polynomial matrix M(p) and

a matrix K such that

(pI = A M(p) + TN, (p) = N,(p) + K m

Proof of Theorem 3.4. The proof will be performed for

.the corresponding discrete time case, i.e. S(A,B,C)

denotes

x{(t+1) = Ax(t) + Bu(t) x(to) =0

y(t) = Cx(t)

Cf. the arguments of Remark 17. In the discrete time
case,all the time derivatives above are replaced by

the shift operator q.

Consider the matrix T in Lemma 3.6. It follows immediately

that by Wy = Twz, (3.48) becomes

+

qQ, = Agw TNQ(q)y w3(to) =0

u = C,w, + M2(q)y

Tt is assumed in the sequel that the initial state is
zero . Moreover if

W, = oW, o+ M(qly = Tw, + M{q)y (3.53)

L 2

with M(q) as in Lemma 3.7, we have

i

qw, quy + qM(q)y

~

A,]w3 + TNQ(q)y + gqM(aq)y

1]



2 A1wu + ((qI—A1)M(q) + TNQ(q))y
= A,]wu + (Nq(q) + Ky (3.54a)
u = C1Wu + (M2(q) - CqMGQ))y (3,54b)

where the second last equality follows from Lemma 3.7.

Subtract (3.47) from (3.54) and let Aw = w,, = W

m 1

gAaw = A1Aw + Ky

(3.55)
Au = C Aw + L(qQ)y = 0
where
L(q) = M,(q) - C M(q) = M, (q) (3.56)

The input y to (3.55) is the output of S(A,B,C). Redefine
the input of S(A,B,C) as

uO =y - LMx

with L, as in (3.22). Moreover, change coordinates
in the state space as v = T_1x with T,, given by (3.21).

M M
Then S(A,B,C) becomes as in (3.22), i.e.

qv, = AMV1 + B1u0
qv, = A22v2 + A21v1 (3.57)
y = Cqvy

Y 0
Introduce vectors Yo and u, as

|




y(t) uo(t)
y(t+1) u, (t+1)
Vot = Go() = °
Yo b . Y - .
y(t+o) 'uo(t+c)

Then from (3.57)

N ~
g © ch1 t R U1

where Qc and RO are defined as in (3.45), Thus with 1.
given by (3..46)

N
L(q)y = tyl = t0£v1 + tRluQ_1 2 = deg(L(p)) (3.58)
Then from (3.55), (3.57) and (3.58)
vy i A11 0 v, B1
= n + UO
Aw kG, A,) |aw 0
(3.59)
~ Ny
0=au= (Yo, ¢ [v1 + TR L,

Assume first that K51 # 0 in (3.59). Since (511,§1) is
a controllable pair (this follows from the fact that the
original system S(A,R,C) is controllable), there is a

sequence uofto), uo(t0+1), ey uo(t1-1) followed by all

zeros such that v1(t1) = 0 and Aw(t1) + 0, where t, 2 tO + n.
Since the sequence is followed by all zeros, i.e. uo(t) =0
for t > t1, we also have 32_1(t) =0 for t > tq. Thus

from (3.,59)

Aw(t+1) = A1Aw Aw(tq) = W




~

Since (C1,A y is an observable pair, cf. Lemma 3.2 and
Lemma 3.6, it follows that Aw(t ) = 0 which is a con-
tradiction. Thus KC1 = 0, and 51nce the rows of C1 are

linearly independent, X = 0. Then from (3.55)
L(q)y = O

and using (3.58)

Y] Y
to,v, + IR, 4 = 0
Now, u (t ), u (t +1), ey uo(t -1) can be chosen so that
v1(t1) 1s an arbltrary vector. Moreover, g 1(t ) can be
chosen arbitrarily since it consists of the sequence
uO(t1)’ uo(t1+1)’ ,,,,uo(t1+2_4)' We must thus have
v N .
rQ, = 0 LR, = 0 (3.60)

Then (3.49) and (3.50) follow from (3.53) and (3.54%)
since K = 0. (3.52) follows from (3.60). This completes
the first part of the proof. The converse statement
follows fprom the fact that (3.52) implies that L(q)y = O.
Since (3.47) is a minimal left inverse to the system

S(A,B,C), then (3.50) is also a minimal inverse. @

Remark 16. Note that the transfer function of the minimal

left inverse changesif L(p) in (3.50) changes.

Remark 17. Since we are only concerned with triple of

linear maps, it is immaterial if the continous or the discrete
time case is considered. See [12] for more arguments on this
point. The main reason why the discrete time system is used

here, is that the arguments of the proof become more illuminant.
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The following characterization of all possible minimal left

inverses to a given system follows directly from Theorem
3.4,

Corollary 3.4. Consider the specific minimal left inverse
of S(A,B,C) derived in Theorem 3.3, i.e.

w o= A22w + N1(p)y
(3.81)

u = Ly,w + Nz(p)y
Any other minimal left inverse to the same system is

input-output equivalent to a system of the form

.

w o= A22w + Nq(p)y

(3.62)
u = LM2w + (Nz(p) + LipNy
where L{p) is a polynomial matrix such that
to, = 0 trR, = 0 2 = dep(L(p)) (3.63)

Conversely, any system of the form (3.62) with L satis~-

fying (3.63) is a minimal left inverse to the system
S(A,B,C). B

Remark 18. Note that we may add an arbitrarv polynomial
K(p) with the property corresponding to (3.63) to the
polynomial Nq(p) in (3.62)

Remark 19, The corresponding results for right invertible
systems are easily obtained using the duality. Since this

extension is straightforward, it is omitted here.



3.6, A Generalization.

It is sometimes desirable to invert systems of more ge-
neral types than (3.1), e.g. systems described by the

following differential equation

Xx = Ax + Bu x(to) =0
(3.6Yy)

y Cx + D(plu p = é%
where A, B and C are linear time invariant maps as be-
fore and D(p) = D0 + qu + ...+ quq is a polynomial

operator with constant coefficient.

Due to the term D(p), the transfer function G(s) of (3.64)
contains elements where the degree of the numerator is
greater or equal to the degree of the denominator. In or-
der to obtain a model of the original form (3.1), we
instead consider the problem of inverting a system whose

transfer function is

_ 1
GE(S) -FG(S) (3.65)

The inverse is

q+1.-1

G;(s) z G

s (s) (3.66)

which determines the inverse to our original system.
The integrators in (3.@5) can be introduced in two ways

in a state space representation..If they are introduced

at the input side, i.e.




Ug
g = ¥

the following system is obtained

A B v.s 0 0
0 0 I 0 0
Ap = feviiiiian, Bp = |- (3.87)
0 0 vuvnn. I
0 0 +vuune .0
¢g = [C Dy D, Dq]

On the other hand, if we introduce the integrators at

the output side, i.e.

(q+1)
ypl =y
U.E=L1
we have
A 0 . 0 B
U o I 0 _|p
Ap = Bp = |0 (3.68)
0 0 I 0 D
q.
Cp = [o . 0 1]

It is easily verified that (3.67) is completely controll-
able and (3.68) completely observable. A minimal inverse
is constructed in the usual way for the extended system
S(AE,BE,CE). An inverse for the original system is ob-
tained by the relation (3.66).



Conjecture. The inverse which is constructed according

to rules above is a minimal inverse.

The procedure above is formal and not quite satisfacto-
rily from a theoretical viewpoint. Minimal inverses for
systems of the form (3.64) can probably be constructed
similar to minimal inverses for the system (3.1). To do
this it is necessary to consider a generalized version
of the "zeroing-the-output" problem mentioned in Example
3.1. Since we are primarily interested in systems of the
form (3.1), this problem is not pursued further in this

thesis.
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APPENDIX 3A - Proof of Lemmas.

Proof of Lemma 3.1.

Show first that vM - g implies that {Q} n {R} = 0 where
{*} denotes the range space and R and Q are the following

block matrices

o 0 0 e, 0
on CB 0 e, 0
Q= |. R = [CAB CB vvvvunn.. 0 (A.1)
N
CA ca™ s L. CAB  CB

Assume that {Q} n {R} * 0. There exist vectors x and rT =

= [r?; rgg e rz] such that Qx = Rr, i.e. using (A.1)
Cx = 0
CAx - CBr1 =0
cA’x - CABr, - CBr, = 0 (A.2)
Introduce vy = X and Vigq T Avi - Bri, 1= 1,2,...,n0.
The sequence (A.2) then becomes Cvi =0, 1 =1,2,...,
n+1. Since Av, = v, + Br., we can write in subspace no-
i i+1 i
tations
A{vi} c {vi+1} + B {vi} < ker(C) (A.3)

where B denotes the range space of B. Now define a se-

quence of subspaces Uk’ k =20,1,2,...4n, by

n-k+1
.Z {vy}

V. =
‘ 1

k
i



n-k+1 n-k+1
AV, = .Z Afv,} < _Z {Vi+1} *+Be V4 *+B (A.4)
i=1 i=1
Vk < ker(C)

We then have a sequence of subspaces satisfying 0 # Vn <
V. .4 .V, < ker(C). Since V  is nonzero and ker(C)
has dimension at most n-1 it follows that Vj z Vj+1 for

some j. Then from (A.4)

AU . c I

541 + By V. < ker(C)

J+1 j+1

Thus v . 0 and {Q} n {R} = 0 by contradiction. However,
by the observability assumption, dim({Q}) = n and the

columns qg, Qps ++vs Ay of Q is a basis for {Q}. More-
over, let Wy wé, cees Wy be a basis for {R}. Since

{Q} n {R}= 0 from above, the vectors Qqs Qps =vvs Qp

Wis Wos «ony W are linearly independent. This implies
that there is a map N: Rp(n+1) +~ R such that Nqi = e,
where e is the i:th unit vector, and ij = 0, For this
map we have NQ = I_ and NR = 0. Partion N = [N0 I\ P Nn]

compatibly with the blocks in Q and R. An evaluation of
the matrix products NQ = In and NR = 0 give the sums in

the lemma. g




Proof of Lemma 3.2.

Let V? be the maximal (511,E1)—invariant contained in
ker(C1). By the maximal property of VM it follows that
VI:]/I:O,

Consider then the system (3.22). Since the initial state
V(to) = 0, the input-output operator of (3.22) becomes

equal to the input-output operator for the subsystem

S(A11,E1,C1) by neglecting the unobservable part, i.e.

The lemma then follows directly from Theorem 3.1. &

Proof of Lemma 3.3.

If the pair (iMZ’AQZ) is not completely observable there
k M2)' If
W is a basis matrix for @ this implies that A22W = WQ for
some matrix Q and EMQW = 0. Introduce A = T;,I1(A+BLM)TM

=T T . : =
and W = [0; W ]. From the special block form of A shown
in (3.22) it immediately follows that AW = WQ. Consider

then V = TMW. By some simple manipulations

is an Azz—invariant subspace ! contained in ker(L

il

(A+BL\ )V = AV + BL,T W

MEM AV + BLMZW = AV

n

=

Z
1

(A+BL )V " T = VQ

Thus AV = VQ and V = {V} is A-invariant. Moreover by the
form of T, (3.21) and W, V = Ty = VW and thus V < v,

Since ! c ker(C) this implies that V is an A-invariant

contained in ker(C) and the observability assumption is

contradicted. =




Proof of Lemma 3.4.

Follows directly from Lemma 3.2 using the duality. m

Proof of Lemma 3.5.

This lemma follows from Lemma 3.3 by the duality.
Since a direct proof is of interest in a later context,

one is given here.

Apply Lemma 3.1 to the system S(A$1,E$,§$). Since VE = 0
there are matrices Ni’ i=1,2,...,r11 , such that

n, i

¥y A7.B,N. =1 (A.5)
sTg 1P

and

4

x = zi-k= _ _

- C1A11 B1Ni =0 k=1, 2, o0, n, (A.6)
1=k

where n, is the dimension of A11. Let

g
N(p) = Ny + NP+ oovn Nn1p

Consider the system

vy = A, v, + B1N(p)u1

Apply a sequence of transformations. Consider first

_ _ 5 (n,-1)
9y T vy T ByNp ug

Sl




+

where the last equality follows from (A.B)., Next set

_ _ (% - (n,-2)
92 7 Y (B1Nn1-T A14 B, Nn1)u1 !

In the same way as above we have

9 = Ayt (BN + BiNgp ¢ L+ BN S
- =2 = n, -2
¥ (BwNn1—2 A1181Nn1—1 ¥ A1131Nn1—1)p T Dy
¥ = Cdy
After n, steps we have
. _ _ o n,_
n = A11qn1+ (BylNg + AyByN, + ovn + B 1Nn1)u1
- A1ﬂqn1+ 4
y = C1qn1

where the second last equality follows from (A.5).

Moreover, since qQ, =W

1 1

Wy = v, M(p)u1 (A.7)

where the coefficient matrices in M(p) are

n1—1 1 n, (A.8)



Proof of Lemma 3.6.

For convenience set A = A1 and C. = Cq. Using the same
approach as in the proof of Theorem 3.2, cf. (3.24),

we have

Ay (t-t,) . A(t—t1)

LMZe = Ce W (A.9)

Let v be the order of a minimal left inverse and introduce

the following block matrices

Ly, c
LyoAy ) CA
Q = Q =
S av=i
= zy- CA
Fm2f22

By successive differentiation of (A.9) we have

A (t-t,) ACt-t,)
0 22 17 Qe Ty

Since minimal left inverses are observable, cf. Lemma 3.2,

Q1 has a left inverse Q1. Hence

A (t-t,) - ACt-t,)
2 1
e ? "= 0,0 W (A.10)

Setting t = t1, we thus have I = Q1Q2W. Let T = Q1Q2 and
T_1 = W. By another differentiation of (A.10), it follows

that




A.. = TAT (A.11)

Finally from (A.3) with t = t,

I—_: = CT (A.'IQ)

There are thus two nonsingular matrices T1 and T2 such

that (A.1) and (A2 are satisfied for (C1,A1) and

(CQ’AZ) respectively. From this fact the lemma follows
directly. ®




Proof of Lemma 3.7.

Set

R(p) :HTNQ(p) - N1(p)

we shall thus choose M(p) such that
(pI = AM(P) + R(p) = K

where K is a constant matrix. Let & = deg(R(p)) and

set
M(p) = M, + M,p + + M p2-1
D (" 4P cees 01
R(p) = R, + R,p + . + R p2
0 1 e L
Expanding the lefthand side
(R + M pY + (R, . + M, _, =AM )pi_1+
% g=1"P -1 g-2 17 8-1
+ (R1 + My - A1M1/)p + (RO - AqMO) = K
Now select
Moq =7 Ry
Ml = A1Mi+1 Ri 12 047y veeyd-2

Then KX = RO - A1MO and the Lemmma is proven. B




APPENDIX 3B - Algorithms.

The purpose of this Appendix is to translate some of the

geometric concepts introduced in Chapter 3 into algorithms
suitable for computational purposes. It is not claimed
that these algorithms are the most efficient, but they

are simple and straightforward to apply. Most of the al-
gorithms hinge on a basic algorithm which is simply an
orthogonalization procedure which can be performed in ma-

ny ways. The effectiveness of the remaining algorithms

depends on the effectiveness of this basic algorithm.

B.1. A Basic Algorithm.

Let

be a basis matrix for a linear subspace R and let P be
an orthogonal projection onto Rt . The purpose is to ex-

tend the basis R by some vectors from
[vy v, oo vl

to form a basis for the subspace spanned by the joint co-
lumns of Vy and R, i.e. for the subspace VO + R, Denote
this extension basis by V, and let n, be its dimension.
Moreover, the orthogonal projection onto (VO+R)l is de-

noted by P1.

Consider now an arbitrary algorithm which produces P1,
Vq, n, given PO’ VO' The outcome of such an algorithm is

written formally as

(Py,V,5nq) = T(Py,V0) (B.1)



where T denotes the algorithm.

There are many possible ways to construct such an algo-
rithm. One is described below.

Project all the vectors V onto Rl, i.e. calculate

i 0’1 (B.2)

If U; < &, where € is a small number, the vector Vs is
deleted as a candidate to the extension basis. Let io be
the integer which maximizes the quantity ¢;. The first

member of the extension basis is given by Vige Calculate

the projection onto (R@{vio})l by the updating formula

=Py = e (B.3)

Next, the remaining vectors are projected onto4(Re{Vi0})l
by

s§1) = P(1)sq
i i

The procedure is then repeated from (B.2) and gives the
second vector Vi of the extension basis. The procedure
is stopped when either o; < e for all i or no vectors
remain to be tested.

s e Tt




Remark 1. Note that the vector which has the largest
"angle" to the previously selected vectors is chosen
in each step. To obtain an accurate projection, it has
turned out to be favourable to replace P(k) by (P(k)

. P(k-1))T(') in each iteration.

B.2. (A,B)-Invariant Subspaces.

The feedback matrix.

Assume that V is an (A,B)-invariant subspace., Find a mat-
rix L such that

(A+BLYV < V (B.u)

The subspace V satisfies also (3.3)

AVl =V + B
i.e
AV = [v B]s (B.5)

has a solution S. This solution can always be written as

.i..
s = [v B] AV (B.6)
where (+)' denotes the pseudoinverse (6, 16). Partition
[v )" - [ (B.7)
Q

compatibly with the matrices V and B. Evaluating the mat-

rix products in (B.5) we have



[v 8][v B AV

AV

Qy
[v B] 2, AV

il

VQ AV + BQ,AV
which can be written as

(A-BQQA)V = V(Q1AV)

l.e.
L = - QZA (B.8)
(A+BL) IV = Q1AV (B.9)

Maximal subspaces.

The maximal (A,B)=-invariant subspace vt contained in a
given subspace U is produced by the sequence (3.4).

Taking orthogonal complements we have

e

Vy =D

N T L
Vi = Vi, v A (Vi—1+B)

A translation of this sequence into an algorithm is gi-
ven beldw using (B.1). Let D be a basis matrix for D
and I the unit matrix.

40

Perform (QO,-,nO) = T(I,D) and calculate PO = I - QO'

o
27, Perform (Si,-,ci) = T(Qi,B). If o, = 0 go to T
otherwise go to 3°,




T
3. Perform (Pi+1"’ni+1) = T(Pi,A Si) and calculate

Qipr = 17 Piyqe
otherwise to 2°.

- : - o}
If N;uq = 0or i+l = ny go to 47,

4~, Perform (PM,VM,nm) = T(I,Qi). We have
VM = basis matrix for UM
Py = orthogonal projection onto yp M

dimension of VM

=
1t

Remark 2. To verify that the algorithm above produces a
basis matrix for the maximal (A,B)-invariant subspace, use

the following facts:

o P, is the orthogonal projection onto Vi.
0 Q is the orthogonal projection onto Vi.
0 Si is the orthogonal projection onto (Vi+B)l.

Remark 3. Note that x € WM oif and only if Pyx = 0. For
computational purposes, use the quantity Il Pyx W7 x

for testing of zero.

Remark 4. In this chapter the maximal (A,B)-invariant
subspace contained in ker(C) is of particular importance.
A basis matrix for ker(C) is obtained by the following
two steps

(Pyse»r) = T(1,cT)

Ce,N, ) = T(I,PO)

Alternatively, the first step above can be replaced by






4. POLES AND ZEROS.

The poles and zeros of the transfer function play an im-
portant role in classical systems theory. They constitute
a small set of dynamical characteristics, which determine
the behaviour of the system under control. For single in-
put single output systems, the transfer function is a ra-
tional function and the poles and zeros are easily defined
as the zeros of the numerator and denominator polynomials.
Several attempts have been made to extend these concepts
to multivariable systems. The most successful approach
seems to be that of [10, 11, 12, 13], which use the Smith-
McMillan form of the transfer function matrix. Alternative
ways to define zeros for multivariable systems have also

been reported [1, 6].

The lack of a proper equivalence of the concept of zeros
has been regarded as a considerable drawback of state
space synthesis [7]. It is obvious that the inverse sys-
tem must be the key concept behind such an equivalence,
but unfortunately a given system may have several (right
or left) inverses, some of which are stable while others
are not. Compare with a discussion in [8] on this point.
Therefore, earlier inversion theory [14, 15, 16] cannot
be used since the redundant dynamics is not clearly ex-

plained.

In this chapter we present a state space definition of
zeros based upon the notion of minimal system inverse in-
troduced in Chapter 3 and the uniqueness of its spectrum.
It turns out that the zeros can be expressed in simple
terms from a set of basic geometric concepts associated
with the state space description of the system. A certain
polynomial, the inverse characteristic polynomial (ch.p),
is introduced, and the zeros of this polynomial are called

the invariant zeros of the system. The invariant zeros



equal the spectrum of the minimal system inverse for
(left or right) invertible systems. However, since the
inverse ch.p. is properly defined also for noninvertible
systems, the definition can be used for an arbitrary 1li-

near time invariant multivariable system.

It is shown that the invariant zeros have some proper-
ties which could be conjectured from the single input-
output case, namely (a) the invariant zeros are invari-
ant under state feedback, and (b) the invariant zeros
for S(A,B,C) and S(AT,CT,BT) are the same. New results
are obtained in the area of controllability and observa-
bility of multivariable systems using a state space ana-
logy of '"pole-zero cancellations" in the transfer func-

tion approach.

How do the invariant zeros change if the input and out-
put vectors are changed? This problem may be considered
as a "zero assignment" problem where the goal is to avoid
a certain kind of zerocs, e.g. all zeros in the right half
Plane. It is shown how this problem can be solved by se-
lecting new controls and measurements in the systems.
This.problem has, of course, no analogy for single input

single output systems.

It is felt that the poles and zeros as defined here could
be a valuable aid at an initial stage of the design, for
instance to select a suitable feedback structure or to
choose an appropriate number of controls and measurements
in a multivariable system. The results of this chapter
will probably also provide an interesting link between
the geometric state space theory and certain frequency

domain results due to Rosenbrock [13].




4.1. Definition of the Invariant Zeros.

In Chapter 3, the spectrum of minimal system inverses
was characterized in different ways for left and right
invertible system. As is shown below, it is possible to
give a unified description in terms of a certain invari-
ant polynomial, the inverse ch.p. This polynomial is de-
fined using the geometric concepts due to Wonham and

Morse [9, 18], which were introduced in Section 3.2,

Preliminary discussion.

Before considering the general case let us briefly re-

turn to the single input single output case. The trans-

fer function of S(A,B,C) becomes for m = p = 1

6(s) = c(sI-a)"'p = 282 (1)
p(s)

where q(s) and p(s) are relatively prime polynomials with
~deg(p(s)) > deg(q(s)). According to classical control
theory the zeros of the system are the zeros of the nu-
merator polynomial q(s), or equivalently the spectrum of

the inverse system

a(s)”t - RLs) (4.2)
q(s)

A similar construction can be made for multivariable sys-
tems using the Smith-McMillan form of G(s). See e.g. [13].

Introduce the following concepts associated with the

state space description S(A,B,C):



Definition 4.1. The subspaces VM and RM are the (unique)

maximal (A,B)-invariant and controllability subspace re-
spectively contained in ker(C). Associated with M is
the feedback class L' = {LI(a+3L)W" < v}, ®

The corresponding concepts for the dual system S(AT,CT,BT)

are also introduced.

M

Definition 4.2. The subspaces UE and R, are the maximal

(AT,CT)-invariant and controllability subspace respec-
tively contained in ker(BT). Associated with Vﬁ is the
feedback class Ef = {L*I(A+L*C)TV§ c V%}. B

Note that the controllability subspace in Def. 4.2 is
taken with respect to the pair (AT,CT). The existence
and uniqueness of such maximal subspaces with respect
to a given subspace are shown in [18]. Using the concepts
above, the spectrum of the minimal system inverse is de-

scribed by, cf. Corollaries 3.1 and 3.3,

the spectrum of (A+BL)|VM where L € EM for left in-

vertible systems, (4.3a)

the gpectrum of (A+L*C)TIV¥ where L, € EE for
right invertible systems, (4.3b)

where complete controllability and observability of the
system is assumed. The spectra (4.3a) and (4.3b) are
unique in the sense that they are subsets of the spect-
rum of an arbitrary left and right inverse respective-
ly. The intention is to describe the spectra (4.3) by
the zeros of a single polynomial. For this purpose we

need some connections between dual systems.




Remark 1. The subspace notion RM in Definitions 4.1 and
4.2 should not be mixed up with R™ which denotes the or-
dinary m-dimensional Euclidian space over the real num-
bers. The use of the script letter R to denote controlla-

bility subspaces is more or less standard, cf. [9].

Relations between dual systems.

Congider the systems S(A,B,C) and S(AT,CT,BT) and the as-
sociated subspaces introduced in Definitions 4.1 and 4,2,
The following formulas for RM ana Rg give an alternative

to (3.6) and (3.7).

Theorem 4.1. The subspaces RM ana RE are given by

M= vt a bt
Y= v a wtht

The following lemma is needed in the proof of this theo-
rem.

Lemma 4.1. Let D <« R" be an arbitrary subspace. The fol-

lowing identity is valid

M M

[B + A(D N ker(C))| n Vv (B + A(D n uM)) nv' m

(Proof in Appendix U4LA)



Proof of Theorem 4.1. The subspace V% is produced by app-

lying the following sequence, cf. (3.4)

_ N

VO = R

vy = kerBD 0 DT v s =120
- yM

v, = M

For notational convenience theAsequence is started with
UO = R™, but since v, = ker(BT) the sequence (4.4) is
identical to (3.u4). Taking orthogonal complements of (u4,u4):

Lo

VO'D

Lo L
Vi =B + A(VI_4 n ker(O))
4 _ ML
vl ot

and taking intersections with VM:

L Mo
VO nv:s =0
L Mo L M
Ve n V= = [B + AV, 0 ker(C))] nv
(4.5)
. L M M
= (B tAWy_ NV )] nv
L M o_ M M, L
von vt = vt n W)

where the second last equality follows from Lemma 4.1

with D = Vi_1. Let S; & Vé n v, Substituting 8, into
(4.5), the sequence becomes identical to a sequence con-
verging toward RM, (3.7), and thus S, = RM = VM n (Vf)l.

The formula for Rf is obtained by symmetry. B@




A second relation concerns a certain invariant polyno-
mial. To describe this polynomial some properties of in-

variant subspaces are used:

" 5 R™ is a linear map with ch.p.

Lemma 4.2. Assume A : R
d(s). Let Ui’ i=1,2,3,4, be A-invariant subspaces and

di(s) the ch.p. of AIVi.
(i) d1(s) divides dz(s) if V1 = V2.

(i1) V7 is AT-invariant and d(s) = d,(s)d,(s) with d,(s)
being the ch.p. for ATlv#.

(iii) if V1 = V2 + V§ and VH = V2 n V3’ d1(s) = d2(s) .
. ds(s) where dz(s) divides dz(s) and is defined
by the factorization d,(s) = aQ(S)dq(s). B

(Proof in Appendix U4A)
First make the observation that EM is also a feedback

class for RM in the sense that (A+BL)RM < RM for a1
L ¢ L' Then let L € LM and introduce

d (s) = ch.p. for (A+BL) V" (4.6a)
d_(s) = ch.p. for (A+BL)IR" (4.6D)
and analogously for the dual system with L, € Lf

a¥(s) = ch.p. for (A+L,O) VY (4.7a)
d*(s) = ch.p. for (A+L,C)TIRY (4.7b)

pM

since RM < vM by the maximality of , it follows from

Lemma 4.2(1) that d,(s) divides d,(s). By the same argu-




ments, d, (s) divides 4 (s), and we have for some unique
polynomlals d, (s) and d (s)

dv(S) = dr(s)dz(s) (4,.8a)

*( ; * *s)
d,(s dr(s)dz(s (4.8b)
The polynomials dz(s) and d:(s) are related in the fol-

lowing way.

Theorem 4.2. The polynomlal d (s} is invariant for all

L € EM and d,(s) = d (s).

M and Ly € Lg and introduce A = A 4+ BL +
M

Proof. Let L € L
+ L,C. Since (A+BL)VY < "M < ken(C) and (A+L, & Ve ol c
c ker(BT) by construction, we have for arbitrary x € V

and v € V*

Agx = (A+BL+L,C)x = (A+BL)x € y™

Av = (arBL+L, O v = (arL, )Ty € vl

Thus

aglv™ = carsy M AT = arn o0 (4.9)

and d,, (s) and d (s) both divide the ch p. 4 (s) of Aqy

Hence for some polynomlals d(s) and a* (s)
dg(s) = dv(s)d(s)-= d,(s)d (s)d(s)
= d(s)a"(s) = dl(s)ar(s)a"(s) (4.10)

* *
where (4.8) has been used. Since dr(s) and dv(s) are ch.p.




for AEIR% and Aglvg respectively by (4.9), we have using
Lemma 4.2(ii) in connection with (4.10)

d:(s)d*(s) = ch.p. for Aol(Rg)l (4.11)

d*(s) = ch.p. for Aol(VI\,:f)'L (4.12)

From Theorem 4.1

RIHE = M it /Mo M

VM 1

n ( (4.13)

>

by taking orthogonal complements of the formula for Rg.

Applying Lemma 4.2(iii) to (4.13) in connection with (u4.8)

and (4.12) with V = (Rf)L, V2 = VM, V3 = (Vr,:f)‘L and V4 =
- pM
*
d,(s)d"(s) = ch.p. for Ajl(R}: (4. 14)
*
A comparison with (4.11) shows that d,(s) = d,(s). Since

this identity holds for arbitrary L € EM and L, € Eg,

the polynomial dz(s) must be invariant for all L € LM. &

The inverse characteristic polynomial.

It is now possible to describe the spectra (4.3a) and
(4.3b), characterizing the spectrum of a minimal left
and right system inverse respectively by the zeros of
a single polynomial; Assume the system S(A,B,C) is com-
pletely observable and controllable. .

Theorem 4.3. The spectra (4.3) coincide with the zeros
of the polynomial dZ(s) defined by the factorization
(4.8) for (left or right) invertible systems.



Proof. For left invertible systems, the thecrem is an
immediate consequence of the invertibility assumption

v 0B = 0, cf. (3.19). From (3.6) it follows that R' =

= 0 and dr<5) defined by (4.6b) equals unity. Thus dv(s) =
= dz(s) from (4.8) and the theorem is proven for left in-
vertible systems. The dual system S(AT,CT,BT) is left in-
vertible if S(A,B,C) is right invertible [12]. By the

same arguments as above we obtain d:(s) = d:(s), and

*
using Theorem 4.2, d (s) = dz(s). ]

The theorem above alsoc holds for systems which are not
completely controllable and observable,_if dz(s) is re-
placed by the corresponding polynomial dz(s) for the
controllable and observable subsystem S(A,B,C) in a ca-
nonical representation of S(A,B,C). Moreover, the fol-

lowing relation can be shown
dz(s) = az(s)q(s)

where the zeros of g(s) coincide with uncontrollable or
unobservable modes. Using terminology from transform
theory, g(s) can be interpreted as a "common factor"
which cancel out in forming the transfer function of
the system.

From Theorem 4.3 and the preceding discussion, we see
that the zeros of dz(s) can be introduced as the zeros
of the system if it is left or right invertible. How-
ever, since the polynomial d,(s) is well defined for ar-
bitrary systems S(A,B,C), the following definition is

taken to be valid in general.




Definition 4.3. Consider an arbitrary linear time invari-
ant system S(A B,C) and let d,(s) and d_(s) be the ch.p.
of (A+BL)|V and (A+BL)!R respectlvely where L € LM. The
inverse ch.p. dz(s) is the unique polynomial defined by

the factorization d,(s) a dv(s)/dr(s). The zeros 7 = {zq,
22”"’Zq} of this polynomial are introduced as the inva-
riant zeros of the system. H

Note that the inverse ch.p. is well defined for arbitrary
linear time invariant multivariable systems, although the
‘interpretations are restricted to (left or right) inver-

tible systems in this thesis.

Remark 2. Algorithms for the calculation of the invariant

zZeros are given in Appendix 3B.

A simple interpretation.

If we consider the special case of left invertible systems

we see from Theorem 4.3 that the inverse ch.p. is
M
dz(s) = d,(s) = ch.p. for (A+BL)IV
where y is the maximal (A,B)-invariant subspace contained

in ker(C) and L € EM. Using Example 3.1 we can thus inter-

pret VM as an unobservable subspace to the system

e
it

(A+BL)x + Bug
y = Cx

In fact, by its maximality, M is the maximal unobservable



subspace that can be achieved by state feedback. More-
over, the invariant zeros are the unobservable modes as-
sociated with VM, i.e. to the pair (C,A+BL).

This fact leads us to a simple connection with the trans-
fer function for single input single output systems. The
transfer function of S(A,B,C) is

G(s) = C(sI-A) 'p o 282
p(s)

It is also well known that q(s) is invariant under state
feedback

Gu(s) = C(sI-A-BL) 'B = 4{8)
p*(s)

where p¥(s) can be arbitrarily specified by a proper
choice of L. In order to achieve maximal unobservability,
we choose L such that q(s) is completely cancelled out,

i.e. such that p*(s) = q(s)p,(s). For this choice of L:

Ge(s) = C(sI-A-BL) '8 = —4(8) 1

q(s)p1(s) i p1(s)

The zeros of q(s) are then unobservable modes to the pair
(C,A+BL), i.e. g(s) equals the inverse ch.p. according to
the discussion above.




Example 4.1. Consider a system S(A,B,C) with

12
s+1 s+3
.G(s) =
(I
s+1 s+1

and has been used by Rosenbrock [10] to illustrate non-
minimum phase behaviour of multivariable systems. For

this system we have using the sequence (3.Y4)

1
VO = ker(C) = {-1
-1
1 -1 0 0 1 1 0
_ -1 _ ~ -
V1 = VO n A (V0+B) = 1+ N 0 -1 0 1 0 1
=1 0 0 =-1/3 1 0 2

-1
-1

Since VO = V1 we have




Moreover, since vMaB = 0, we have from (3.5)
RM=O
It then follows from Definition 4.3

d (s) = d (s) = ch.p. (a+BL) (VM

where L € EM. An appropriate feedback matrix L and a mat-
rix representation for (A+BL)|VM can be calculated as is
shown in Appendix 3B, cf. (B.8) and (B.9). Thus

M BT = |- 0 1] =2l e |

-1 0 2 0 -1 1 Q)
and

1 2 -3
L = - QA =

2 0 -1 3

(a+BL) VM = Q AV, = 1

1M
Thus dz(s) = 5 + 1 and the invariant zeros become
z = {1.0}

which is in agreement with [10]. Note that the calcula-

tions ‘only include standard operations of linear algebra. @




4,2. Invariance Properties.

Returning to the classical single input-output case for

a moment, we recall that the numerator polynomial q(s)

in (4.1) is invariant under state feedback. From (4.1)

it is also evident that the system S(A,B,C) and its dual
S(AT,CT,BT) have the same set of zeros by taking a formal
transpose of G(s). These fundamental properties are also

true in the multivariable case using Definition 4.3.

Theorem 4.4. The invariant zeros are invariant under state
feedback in the sense that S(A,B,C) and S(A+BL,B,C) have

the same set of zeros for all linear maps L.

Proof. This i1s an immediate consequence of the construc-
tion of the polynomial dz(s). If L, € EM has been used for
the system S(A,B,C) to construct dz(s), take L, = L, - L

1 0
for the system S(A+BL,B,C). m

T

Theorem 4.5, The system S(A,B,C) and its dual S(AT,CT,B )

have the same set of invariant zeros.

Proof. Follows directly from the definition and Theorem
4.2. m

Remark 3 Theorem 4.4 can be interpreted in the following
way: an unsatisfactory input-output behaviour due to non-

minimum phase cannot be improved by applying feedback.



4.3. Controllability and Observability.

In single input single output theory it is well known
that cancellations between the numerator and denominator

polynomials of the transfer function G(s) correspond to

unobservable and uncontrollable modes of the system
S(A,B,C). A state space interpretation of the same fact
is given below in terms of the invariant zeros and the
‘eigenvalues of A.

The concepts of mode controllability and mode observabi-

lity as an alternative to the ordinary controllability

and observability concepts are discussed in [2, 17]. Con-
sider a canonical decomposition of the system due to Kal-
man [5]. By a suitable state transformation, the system
can be brought to the following form

{

Apqp Bqp Bqg Agy B,
0 A, 0 A B
A - 22 2u L
0 0 Ay, Ay 0
0 0 0 Ay 0
(4.15)
¢ = [o Cy O cz] §

From this form, the following sets of modes can be iden-
tified: !

o uncontrollable modes as the eigenvalues of A33
and Auq,

o unobservable modes as the eigenvalues of A11 and
Aggo

0 unobservable - uncontrollable modes as the eigen-

values of A33.




Note that an unobservable and uncontrollable mode A does
not need to be unobservable - uncontrollable, since A can
be an eigenvalue of both Ay and A,y without being an ei-

genvalue of‘A33.
In this context we need geometric definitions of the mode

concepts above. Let n denote the order of the system.

Definition 4.4. A complex number A is an unobservable
mode to the system S(A,B,C) iff ker(iI-A) N ker(C) % 0. B

Definition 4.5. A complex number A is an uncontrollable
mode to the system S(A,B,C)iff “{AI-A} + B # ¢, g

Definition 4.6. A complex number A is an uncontrollable -
- unobservable mode to the system S(A,B,C) iff ker(AI-A) N
N ker(C) & {AI-A} + B, &

The validity of the definitions above is fairly easy to
show. The reader is referred to Appendix 4B for a more
detailed analysis. Note that Definition 4.5 implies that
(A,B) being a controllable pair is equivalent to the mat-
rix [sI—A,B] having full rank for all complex numbers s,
The latter definition has been used by Rosenbrock [12]

as a definition of controllability in a frequency domain

context.,

Introduce the following polynomial corresponding to the

poles of the transfer function

dA<S) = det(sI-A)



Below we give a series of results which show that uncon-
trollable and unobservable modes in the system S(A,B,C)
occur as common elements between the poles and the inva-
riant zeros, i.e. as common zeros of the polynomials
dz(s) and dA(S)' This fact corresponds to "cancellations”

in the transfer function approach.
For uncontrollable - unobservable modes according to De-

finition 4.6 the following can be shown.

Theorem 4.6, If A 1is an uncontrollable -~ unobservable

mode, then A is a zero of both dA(S) and dz(s).

In the proof of this theorem the following lemma is needed.
A proof of the lemma can be found in Appendix UuA,
Lemma 4.3. If there is a nonzero vector x € ¢ such that

i) x e M
i1)  x ¢ R

iii) (A-AI)x = 0

then ) is a zero of the inverse ch.p. dz(s). ]

Proof of Theorem 4.6, Introduce the subspaces

<<
"

ker(xI-A) N ker(C)

W, = {AI-A} + B

Since A is an uncontrollable - unobservable mode according

to Definition 4.6, there exists a nonzero vector x such




that

x € VA3 x € WA; (A-2I)x =0 (4.16)
Since VA is A-invariant, it follows by the maximality

of VM that

v, et (4.17)
Moreover, since

wh = ker(x"1-8)T n ker(8T)

we have by the same arguments

vy < vy

i.e.

w, = {Vf}l ) {Vl\,f}l n vM oo RM (4.18)

where the last equality follows from Theorem 4.1. Thus
from (4.16), (4.17) and (4.18)

x ¢ v
x € rM

(A-2I)x = 0

The theorem then follows by Lemma 4%.3. ®

In order to obtain the corresponding results for unob-

servable or uncontrollable modes, it is necessary to in-
troduce certain invertibility conditions. It is not true
in general that unobservable or uncontrollable modes oc-

cur as "common factors'" between dA(S) and dz(s) for non-



invertible system. This will be illustrated by an example

later.

For unobservable modes we have

Theorem 4.7, Assume the system S(A,B,C) is left invertible.
If » € ¢ is an unobservable mode then ) is a zero of both
dz(s) and dA(S)'

Proof. By Definition 4.4 it follows that ker(AI-A) # 0.
This implies there is a nonzero vector x € ¢" such that
(AI-A)x = 0, i.e. X is an eigenvalue of A and thus dx(l) =
= 0. To prove that‘dz(k) = 0 introduce the subspace VA

Vy = ker(AI-A) N ker(C)

This subspace satisfies ker(C) o VA # 0 since XA is an un-
observable mode. Let VA = [v1 Vo ees v ] pe a basis mat-
rix for VA‘ Since vy € ker(2I-A), we have Avi = AV Thus
VA is A-invariant and the ch.p. of AIUA becomes (s-1)%,
By the maximal property of Mg follows that VA S VM,
and we may write v - VA e U for some extension space V.
Let P be a projection onto ¥ along VA and consider the

map L, = LP with L € LM,

(A+BL1)X = (A+BLP)x = Ax € VA V x € VA

which implies that (A+BL1)IVA = AlVA,
(A+BL1)IVA becomes (s-1)4. Moreover, L

and the ch.p. of

1 € EM since

(A+BL1)VM = (A+BLP)(V, o V) = (A+BL)V + AV,

The subspaces ™ ana VA are thus both (A+BL,)-invariant.




Since VA < VM, it follows by Lemma 4.2(i) that the ch.p.

of (A+BLy)IV, divides the ch.p. of (A+BL,) 10" By the in-

vertibility assumption, RM = 0, and
a,(s) = d,(s) = ch.p. for (A+BL1)iUM

Thus (s-2)% divides dz(s), and dz(x) = 0. |

The corresponding result for uncontrollable modes are now
easily obtained by applying Theorem 4.7 to the system
sal,cT,Bh.

Corollary 4.1. Assume the system S(A,B,C) is right inver-
tible. If » € ¢ is an uncontrollable mode then ) 1s a ze-
ro of both dz(s) and dx(s).

Proof. First note that X is an unobservable mode to the

system S(AT CT T) Since S(A,B,C) is right invertible,

S(AT CT T) is left invertible. Applying Theorem 4.7 we
conclude that » is a zero of both d (s) and d (s), where
d *(s) is the inverse ch.p. for S(A C B ). Slnce d, *(s) =
= d (s) according to Theorem 4.2, the corollary follows

dlrectly &

Unlike the single input-output case, a common pole and
zero do not necessarily correspond to an uncontrollable
or unobservable mode in the multivariable case. This can

be seen from the following trivial example




f s+12 0
(s+2)
G(s) =
0 s+22
(s+1)

However, for single input-output systems the following

can be shown:

Corollary 4.2. Assume the system S(A,B,C) has a single

input and output and is invertible. The system is com-
pletely controllable and observable if and only if dz(s)

and dA(S) have no zeros in common.

Proof. (if) Follows directly from Theorem 4.6 and Corol-
-lary 4.1, using the fact that the system is both left

and right invertible.

(only if) Assume there is a complex number A such that
da,(x) = dk(x) = 0. We intend to show that the system can-
not be both controllable and observable under this as-
sumption. Since A is an eigenvalue of A, there is a non-
zero vector x such that (AI-A)x = 0. Moreover, since
dZ(A) = 0 and by the invertibility assumption RM . 0,

there is a nonzero vector v € UM such that (AI-A-BL)v =

"

0 with L € EM. Assume first that v = ox for some scalar
o. Then

€ ker(AI-A) n vM < ker(AI-A) N ker(C)

<

implying that the complex number A is an unobservable
mode. Assume instead that v # ax. Let P be a projection

onto v along x and consider L1 = LP. We have

(XI-A—BL1)X = (AI-A-BLP)x = (AI-A)x = 0




(AI—A-BL1)V = (AI-A-BLP)v = (AI-A-BL)v = 0

Since x % av, this implies that ker(AI—A—BL1) and there-
by also ker(f&-A—BL1)T has dimension at least 2. Thus
ker((A*I—A—BL1)T) N ker(BT) # 0 since ker(BT) has dimen-
sion n-1. The orthogonal complement of this condition is
{AI-A—BL1} + B s @n, and X is an uncontrollable mode to
the pair (A+BL,,B). Since the dimension of the uncontroll-
able subspace is unaffected by feedback, the pair (A,B) is
not completely controllable. @

Remark 4. We have used the fact that a system S(A,B,C) is
completely observable and controllable if and only if it
has no uncontrollable or uncbservable mode. This has been

proven elsewhere, cf. [2, 16].

Note that the invertibility assumptions are essential in
Theorem 4.7 and its corollaries. This is illustrated by

a simple example.

Example 4,2. Consider two systems 81(A1,B1,C1) and 82(A2,
BZ’C) with

Ay = B = c=[1 -1]
0 -1 1

and
-1 0 O 1

Ay = |0 -1 0 B = |1 c=1[1 -1 1]
0 0 -2 1

The systems are described in block diagram form in Fig.
b.1.



Fig. 4.1 - Block diagrams for the systems S1 and 52'

Their respective transfer functions are G1(s) = 0 and
GZ(S) = 1/(s+2), i.e. 82 is invertidble while S1 is not.
It is easily verified that both systems contain an un-
controllable and unobservable mode in -1.0. This mode
is, however, not uncontrollable - unobservable. Intro-
duce a small perturbation e of the pole in the upper
block in both systems. The perturbed systems have the
transfer functions:
G,](s) - € GZ(S) _ eg(s+2) + (s+1)(s+1+e)
(s+1)(s+1+¢g) (s+2)(s+1)(s+1+¢€)

Letting ¢ > 03 we see that cancellations will occur in
6,(s) but not in 6,(s). This is completely in agreement
with Theorem 4.7 and its corollaries since s, is inver-
tible and 81 is not. Calculating the invariant zeros in
a state space representation of S, and S, we obtain the

same result.

Z, = 8 (empty space) Z, = {-1.0, -1.0} &




4.4, Extension of Control and Measurement.

The invariant zeros have many properties in common with
the ordinary set of zeros and the interpretations are

in many cases similar. However, since the invariant ze-
ros are a concept relating a group of inputs to a group
of outputs, they also have properties that do not appear
in the single input-output case. In fact, the invariant
zeros are available for design purposes in the sense that
adding new inputs and outputs to the system will change

the inverse ch.p.

Let us first introduce a precise algebraic criterion for
the somewhat loose statement "adding new inputs and out-

puts'.

Definition 4.7. A system S(A,B,Ce) is said to be an out-
put extension of S(A,B,C) if ker(Ce) c ker(C), @

and in the same way:

Definition 4.8. A system S(A,Be,C) is said to be an in-
put extension of S(A,B,C) if Be >R. B

Further interpretations of these criteria will be given
later. Let it suffice to be mentioned here that Defini-
tion 4.7 corresponds to increasing the number of measure
variables and Definition 4.8 to adding control variables.
For notational convenience let VZ, RZ and LZ be the con-
cepts corresponding to Definition 4.1 for a system with

an extended input or output vector.



Theorem 4.8. Let S(A,B,C) be a left invertible system
with inverse ch.p. dZ(S). The inverse ch.p. di(s) of

any output extension S(A,B,Ce) divides dz(s).

Proof. Since ker(C ) < ker(C) by assumptlon, it follows
that VM = M from the max1mallty of VM. Thus VM =V o VM
for some extension space V Let P1 be a projection onto

V along UZ and P, a projection onto Ve along V. The map
L1 = LP1 + LePQ, where L € LM and Le € EZ, belongs to

both the classes Lg and EM since

M Mo
(A+BL{IVS = (A+BLP +BL_P )V =

. Mo M M
= (A+BL_P,)V = (A+BLV] < V]

and

: M M.y _
(A+BL1)V = (A+BLP1+BLeP2)(VeeV) =

- 7 M

= (A+BLP1+BLeP2)V + (A+BLP1+BLeP2)Ve <
0 M M Mo M

c (A+BL)V + (A+BLe)Ve = Vs (e =y

where the properties of the projections P, and P, have
been used. Since VM c VM, the ch.p. d (s) of (A+BL, )IVM
divides the ch.p. d (s) of (A+BL )!VM, cf. Lemma u.2.
However, dz(s) = dv(s) and dz(s) = dv(s) by the inverti-
bility assumption. Thus ai(s) divides dz(s). ]

Remark 5. If the system S(A,B,C) is left (right) inver-
tible, it follows trivially that any output (input) ex-

tension is also left (right) invertible.



The corresponding result for input extension is now

easily obtained via the system S(AT T BT)

Corollary 4.3. Let S(A,B,C) be a right invertible sys-

tem with inverse ch.p. d,(s). The inverse ch.p. di(s)

for any input extension S(A,Be,C) divides dz(s).

Proof. Plrst notice that B > B is equivalent to ker(B )
< ker(B ) by taking orthogonal complements. Applying
Theorem 4.8 to the systems S(AT T BT) and S(AT T,BT)

and using Theorem 4.2, the corollary follows directly. g

In order to interpret the results above, let us consgi-
der a specific design problem. Assume that S(A,B,C) is
a (left and right) invertible system with an equal num-
ber of inputs and outputs, i.e. m = p. Assume also that
the system has an inverse ch.p. 4 (s) with some zeros
in the right half-plane, i.e. the system is dlfflcult
to control [10]. If some additional outputs y = Cx are
selected, a new system S(A,B, C ) is obtained with out-

put vector y [y ¥T] and

Since ker(Ce) c ker(C), the new system is an output ex-
tension of the original one and Theorem 4.8 can be app-
lied. The inverse ch.p. d;(s) for the new system is thus
related to d,(s) as

S
d,(s) = d_(s)q(s)

for some polynomial q(s). With a proper output extension



the right half-plane zeros of dz(s) are contained amongst
the zeros of q(s), i.e. the system S(A,B,Ce)Ais minimum
phase. Observe that Yo = X gives ker(Ce) = 0 and thus
di(s) = 1, implying that the right half-plane zeros can

always be avoided by sufficient extension.

It is also possible to apply the reverse of the procedure
above, i.e. to extend the control vector of S(A,B,C) gi-
ving S(A,Be,C) with Be > B. Analogously to the case of
output extension, some additional inputs can be selected
such that the right half-plane zeros of dZ(S) are avoided.
Practically, there are more severe restrictions on pos-
sible extensions of control than measurement in most app-

lications.

In the view of the discussion above, it would be desir-
able to have explicit criteria on suitable input and out-
put extensions in order to avoid a predefined set of ze-
ros. Let S(A,B,C) be a system whose inverse ch.p. is fac-
torized into relatively prime polynomials as dz(s) =

= d;(s)d;(s). This factorization corresponds to a parti-

tion of the invariant zeros Z into two disjoint sets:

7 = + + +, - - -
T V%95 By eee Zyh Zgs Zo e B

where z;, z; <.+ Zg are considered undesirable. For in-
stance, the complex numbers zl may be all the invariant
zeros in the right half-plane. Criteria on suitable in-

put and output extensions are given below.

Theorem Y4.9. Assume S(A,B,C) is a left invertible sys- _
tem with inverse ch.p. d_(s) = d;(s)d;(s) and with d;(s)
and d;(s) being relatively prime. The inverse ch.p. di(s)
of an output extension S(A,B,Ce) divides d;(s) if and on-

ly if for any L € LM




ker(ziI—A—BL) n ker(Ce) =0

for all disjoint zeros z; of d;(s).

Proof. First note that di(s) divides dz(s) = d;(s)d;(s)
by Theorem 4.8.

(if) We intend to show that d (s) in fact divides a' (s),
i.e. d (z ) # 0 for all zeros zi of d_(s). Assume
then that dz(zi) = 0 for some zero zi. Since both the

systems are left invertible we have

d_(s) = ch.p. for (A+BL) V" where L € LM

e B M M

d,(s) = ch.p. for (A+BL.)IV_ where L € Lo

If de(zf) = 0, there is a nonzero vector x; € V such

that (A+BL )x = xlz; By the maximal property of VM

VM < VM, and thus x; € VM, wpite VM - Vi ® {x;} for

some extension space Vi' Let Pi be a projection onto

{x;} along Vi and ﬁi a projection onto Vi along {Xi}- The

= 5 M .
map L1 = LePi + LPi,belongs to L since

M = _
(A+BL1)V = (A+BLePi+BLPi)(Vi®{xi}) =

(A+BL)Vi + (A+BL ) {x;}c
VM + {xi} [ VM

Moreover,

(A+BL1)xi = (A+BLePi+BLPi)Xi = (A+BLe)xi T X324 (4.18)

Consider now an arbitrary L € &M. Since the system is left




M

invertible, V" n B = 0. Let P be a projection onto R

along UM. Using the fact that (A+BL)x; € v we have

[}
n

P(A+BL)Xi = PAxi + BLXi

0 = P(A+BL1)Xi = PAXi + BL1Xi
A subtraction gives Bin = BLWXi’ which implies that

Lxg = Lyx, since ker(B) = 0 by our initial assumption.
Thus from (4.19)

(A+BL)xi = (A+BL1)Xi = zgXs

Implying that for any L € EM

0 % x. € ker(z:I-A-BL) n V! « ker(z]I-A-BL) nker(C_)
i i e i e

which is a contradiction. Thus di(s) divides d;(s).

(only if) Conversely, assume there exists a nonzero vec-
tor v, such that v, € ker(z.I-A-BL) N ker(C ). Then v. €
i i i e i

€ VZ since VZ is maximal with respect to ker(Ce). Fac-
M
e

torize VZ as ¥V =
onto {v.,} along Ui and Fi a projection onto Ui along

{vi} ® Vi and let Pi be a projection

- M
{Vi}- The map L, = LPi + LePi’ where L_ € Ee’ belongs

to LM since
-
M_ - -
(A+BL1)Ve S (A+BLPi+BLePi)({vi}eVi)
= (A+BL){vi} + (A+BLe)Vi

v

Mo
c {v;} + Ve =V,

Moreover,

(A+BL1)Vi = (A+BL)Vi = viz—




since v, € ker(z;I—A—BL) The system S(A,B, Co ) is left
invertible, and thus z; is a zero of dZ(s) ThlS implies
that d (s) does not divide d (s) since d (z ) # 0 (the
polynomlals d (s) and d (s) are assumed to be relative-
1y prlme). The theorem is thereby proven by contradic-

tion. @

The same result for control extension is given in the co-

rollary below.

Corollary 4.4. Assume S(A,B,C) is a right invertible sys-

tem with inverse ch.p. d_(s) = d+(s)d-(s) and with d+(s)
and d (s) being relatlvely prime. The. 1nverse ch.p. de(s)
of any input extension S(A,B ,C) divides d (s) 1if and

only if for any L, € éﬁ

(2,1 = A - L,C} + B, = ¢" (4.20)

for all disjoint zeros z£ of d;(s).

Proof. Observe that {z3I - A - C1 + F = ¢" is equiva-
lent to ker(ziI -aT-cT T) N ke r(B ) =0 by taking ortho—
gonal complements. Apply Theorem 4.3 to the system S(A

CT,BT) and use Theorem 4.2. B

Remark 6., Observe that the conditions given in Theorem
4.9 and its corollary can easily be expressed in matrix
terms. For instance, concerning output extension, let

L € EM and calculate all the eigenvectors Vis Voo ves Vq
of A + BL corresponding to a certain invariant zero z

(z~ is ah eigenvalue of A + BL according to Definition
4.3). An output extension y_ = C_x avoids z  if and only

if
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c v. # 0 iz 1, 2, «0+s 4

Exactly the same calculations occur in the case of in-

put extension. B

Theorem 4.9 is illustrated by an example.

Example 4.3. Consider a system S(A,B,C)

-4 -3 -1 1
x = | 1 o Olx + \0lu
0 1 0 0

y=[ o -1]

For this system

Since RM = 0, the system igs left invertible, and in that
case the invariant zeros 7 equal the eigenvalues of
(A+BL)IVM Computatlonally 7 can be obtained as the ei-
genvalues of v (A+BL)VM, where VM ig a basis matrix for

VM and (- ) denotes the pseud01nverse. In this case

0
(A+BL)\VM = |0 1 1 0 0l10 1] =
0



Thus dz(s) = s? - 1 and Z = {1,-1}. As a comparison,

the transfer function of the system is

2

G(s) = 5 s - 1
s™ + s + 3s + 1
The system is thus nonminimum phase. Let d;(s) =s + 1
~and d;(s) = s - 1. The intention is to select an addi-

tional output ; = (cy cy c3)x such that the extended
system S(A,B,Ce) with

y 1 0 -1
ye = 0] F Cex = X
\% cy Cy sy
avoids the right half-plane zero z = 1. The eigenvec-
tor of A + BL corresponding to the eigenvalue z = 1 is
1
v.= |1
1
Using the remark above we see that the zero z = 1 is

avoided if and only if Cev # 0, i.e. if and only if

1
(c1 <, 03) 11 % 0 B
1



4.6, A Design Example.

The subspace notations used in this chapter can be trans-
formed to matrix operations suitable for computations as
is indicated in Appendix 3B of Chapter 3. In the examples
below a computer program is utilized which calculates the
invariant zeros given a state space description S(A,B,C)
of the system. A specific process, a drum boiler, is ana-
lysed from an input-output view using the concepts of
poles and zeros as defined above. This analysis clearly
indicates that a multivariable viewpoint is needed in or-
der to clearly understand the dynamical behaviour of this
system.

A drum boiler.

Different types of models for a drum boiler are thorough-
ly described in [4]. Here we will use a fifth order model
from [3]«

The linearized equations for a boiler around a certain

operating point can be written as

x = Ax + Bu + Gv
y = Cx
where the state variables are

x4 = drum pressure (bar)

x, = drum liquid level (m)

X5 = drum liquid temperature (°cy
x, = riser wall temperature (°cH

xg = steam quality (%)




The control variables are

heat flow to the risers (kJ/s)
feedwater flow (kg/s)

s

et
and the disturbances are

v = load charges (bar)

Numerical values for A, B, C and G for a power station
boiler with a maximum steam flow of about 350 t/h are
calculated in [3]. The drum pressure is 140 bar and the

operating point is 90% full load. From [3] we have

-0.129 0.000 0.396x107 "  0.250x1077  0.191x107
0.320x10°2  0.000 -0.779x10°%  0.122x107° -0.621
A= | 0.718x107"  0.000 -0.100 0.887x107° -0.385x10"
0.411x10""  0.000  0.000 -0.822x107"  0.000
0.361x1073  0.000 0.350x107"  0.426x107" -0.7u3x107"
0.000 0.139x1072 0.995x1071)
0.000 0.359x10" ~0.318x1072
B = | 0.000 -0.989x10"° @ = |-0.232x107"
0.2u3x10""  0.000 0.000
0.000 -0.53ux10"° ~0.381x107°
1 0 0 0 0
C =
0 1 0 0 0

where the output variables, drum level and drum pressure
denote the main controlled variables. These are also the

variables which usually are measured in the system.




In the boiler case, it is known that nonminimum phase

behaviour appears between different pairs of input and
output variables [4]." As we shall see, this does not
mean that the process is nonminimum phase in a multiva-

riable sense.
The open-loop poles, i.e. the eigenvalues of A, are
A = {0.000, -0.060+j.0.017, -0.086, -0.18}

The invariant zeros can be calculated for different com-
binations of inputs and outputs. If u, and x, are consi-
dered as input and output respectively, the following

set of invariant zeros are obtained
zq = {0.000, ~-0.070, =-0.106}

Note that there is a common pole and zero at the origin,
implying that A = 0.000 is an uncontrollable or unobserv-

able mode for this input-output pair, cf. Corollary 4.2.

If we instead consider uy as input and X, as output, the

invariant zeros become

Z, = {0.022, -0.096, -0.689}
As can be seen, there is a right half-plane zero implying
nonminimum phase in this single loop. The invariant zeros
associated with the multivariable system with (x1,x2) as

output and (u1,u2) as input are, however,

zy = (-0.065, -0.368}
i.e. the system is minimum phase in a multivariable sense.
Thus, the properties of a multivariable system need not

to coincide with the properties of its single loops. A




minimum phase appears between individual input and out-

put variables.

Assume an additional measurement is selected, for in-
stance drum liquid temperature x,. The invariant zeros
associated with the outputs (x1,x2,x3) and the inputs

(u1,u2) are

z, = @ (empty space)
i.e. the system has no zeros. Since we have made an out-
put extension of the system, this is completely in agree-

ment with Theorem 4.8.

The pole-zero configuration for the boiler in the case
of measurement of drum level and drum pressure is shown
in Fig. 4.2. In the single input-output case no trouble
could be expected in controlling a system with such a
pole-zero configuration. In fact, it is shown in Chapter
7 that this system can be controlled satisfactorily only

using available measurement, i.e. by output feedback.

alm

+0.10

X Re
0 Me—0p
X

0
X

-010

Fig. 4.2 - Pole-zeroc configuration for a boiler using
measurement of drum level and drum pressure.

X = pole, o = zero.
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APPENDIX YA - Proofs of Lemmas.

Proof of Lemma 4.1.

Introduce
Wy = [B + A n ker(c))J n v (A.1a)
w, = @ + A(D n VM)] n v (A.1b)

Since VM ker(C) by definition it follows that P n
N ker(c) 50 n V™ Thus p n kercc) =0 n v e § for

some extension space  and

0 avtso (A.2)
otherwise the independence assumption in the factoriza-
tion above is contradicted. The subspace W1 can then be
written

w, =(8 + a@ o v 4 aly o oM (A.3)

Comparing (A.3) and (A.1b) we conclude that Wy = W,

Assume then there is a vector O1 * 2, € W1 and Z4 ¢

9
From (A.3)
z, = b, + Av, + AV ; 2, € V', b, e B
1 1 1 ? 1 ? 1 e
M ~ ~
vy €00V, v gV (A.4)
Observe that v # 0, otherwise z, € 0, and the initial
assumption on Z is contradicted. Since vy € yM and
A(/M c VM + B, we have
Av, = z, + D z, ¢ M, b, e R (A.5)
1 2 2 2 ’ 2 - ' :

I o=




A substitution of (A.5) into (A.u4) gives AV = z24 = 2,
_b -

- b1 - b2 = z + b where z = “z4 - 2, € VM and b =

- b, € B. Consider then the subspace v o= vl

R 1
® {v} (v does

not belong to v according to (A.2)). We obtain i

s M

Al = A v Ay e i B s v g

vM i B <V + B

and V is (A,B)~invariant. Moreover, v € ker(C) by assump-
tion and thus V < ker(C). Since V = VM, the maximal pro-
perty of VM s contradicted and there is no vector 2,

with the property above. Thus W1 = wz. B

Proof of Lemma 4.2.

The proof of (i) and (ii) are straightforward. Only (iii)

will be proven here.

3 = V3 ® V2 n V3 for some

Write V, = V2 ® V2 n V3 and V
extension spaces 02 and V3' Since V, = V2 n V3 we have

also V1 z V2 + V3 = V2 ® Vu ® V3. Introduce the corre-
sponding basis matrices:
Vp = [V ] Vg = [Vy V] Vyo= [V vy V]

Since V2 and VH are A-invariant:

AV, = [AV, AV,] = [AV, V,A,,] = [V, V] (A.86)

A21 A22

where Ay, = AlV, and thus d,(s) = det(sI-A,,). Using
(A.6) and the fact that V3 is also A-invariant



A O 0
av, = [av, AV, Av.] = [V, Vv, VillA, Ay, Ay
0 0 Ay,

Since [V, Vy] is a basis matrix for Vg4 it follows that
d,(s) = d,(s)d,(s). ®

Proof of Lemma 4.3.

lLet x be a vector such that

x € UM; x € RM; (A-AI)x = O

M

and let L € L. Since RM = VM

, we can then write

M 2 v e (x) e RM (A.7)

for some extension space V. Let P be a projection onto
V e RM along {x} and define L1 = LP. Then L1 € EM since

(a+BL VM (A+BLP) (VeR™) + (A+BLP) {x}

arsV? ¢ A[x)

n

cvy (x3 = v

M
Moreover,
(A+BL1)X = Ax = XX (A.8)

Introduce a basis matrix for yM according to (A.7) as

VM = [V,X,RM]




Since VM, x and RM are all (A+BL1)—invariant, we have

using (A.8)
(A+BL,)Vy = (A+BL1)[V',X,RM]
Agy 000
= |[V,x,Ryl 1A,y A0
Ay 0 Ay

Thus from Definition 4.3, dZ(s) = (s—k)det(sI—A11). B




APPENDIX 4B - Mode Controllability and Mode Observability.

Definition 4.4 (Unobservable modes)

A is an unobservable mode to the system S(A,B,C) if

ker(AI-A) N ker(C) + 0

i.e. if there exists a nonzero vector w such that

(AI-Adw

n
o

Cw

i
o

Since w is a right eigenvector to A, the validity of

the definition is clear. @

Definition 4.5 (Uncontrollable modes)

A is an uncontrollable mode to the system if
{AI-A} + B + C"

i.e. if

((AI-A} + B)' # 0

This condition implies that A i1s uncontrollable if there

exists a nonzero vector v such that
v¥(AI-A) = 0

v¥B = 0




Since v is a left eigenvector to A, the validity of the

definition is clear. @&

Definition 4.6 (Uncontrollable - unobservable modes)

A is an uncontrollable - unobservable mode if

ker(AI-A) N ker(C) ¢ {AI-A} + B & (A.9)
Note first that it follows that

ker(AI-A) N ker(C) # 0

{AI-A} + B # ¢"

implying that A must be an uncontrollable and unobserv-

able mode. It then remains to show that A is in fact an

eigenvalue to Agg in the canonical decomposition (4.15).

The condition (A.9) is satisfied if there is a nonzero

vector w such that
w € ker(AI-A) N ker(C)
w &€ {AI-A} + B

or alternatively if there are nonzero vectors v and W
such that

w € ker(AI-A) N ker(C)
)J.

v € ({AI-A} + B

v¥y = 1




Note that w and v satisfy
(AI-Adw = 03 Cw = 0
(A.10)

v¥(AI-A) = 0 v*B = 0

Consider now the system S(A,B,C) and the transformation
z = Tx with

T = [Q,w]

where Q is a basis matrix for v}, The inverse must be
of the form

ok

where P is a basis matrix for {w}l. This follows by the

fact that T_1T = I,

Using (A.10), we have

From this form, the validity of the definition is clear. @




5. THE SERVO PROBLEM.

In Chapter 2 the combined regulator and servo problem
was discussed in fairly general terms. The control sys-
tem configuration in Fig. 2.7 was suggested as a start-
ing point for the design in this class of problems. In
this configuration the inverse system is used to achieve
the ideal servo as an identity mapping between the com-
mand inputs and the controlled outputs. The problem of
nonunique inverses for multivariable systems with a dif-
ferent number of inputs and outputs was solved in Chap-
ter 3 by the minimal right inverse and the properties

of its spectrum.
Consider the following linear system model

x = Ax + Bu

Cx (5.1)

«
1]

z = Hx

where distinction has been made between the controlled
outputs y and the measured outputs z. In Chanter 2, the
control system was assumed to consist of a servo part

u, and a regulating part Au according to

u=u, o+ su= Sy + R(z-2) (5.2)

where 8—1 is a right inverse of S(A,B,C) and R a dyna-
mical system. This chapter will be devoted to a more de-

tailed analysis of the servo problem as expressed by
(5.2). '

Reference values z, of the measured variables must be
generated and fed into the regulator. The reference va=-
lues correspond to an idealized situation with no model

error and no disturbances. Two ways to generate z, will

145




be described below.

The second problem considered is that of unstable inver-
ses. Note that if the minimal right inverse is unstable,
there is no stable inverse to the System. Such systems
are called nonminimum phase in classical terminology and
are known to be difficult to control, see e.g, [B]. This
property is very apparent in the control system (5.2).
If the inverse 8—1 is unstable, the reference input u,
will be unbounded and consequently the control collap-
8es. In this case the exact unstable inverse must be app-
roximated by a neighbouring stable system. It is shown
how such "approximative" inverses can be obtained using

internal stabilizing feedback on the inverse system.

5.1. Reference Values.

The problem of reference values is a trivial one if the
measured variables z form a subset of the controlled va-
riables y, i.e. when ker(H) > ker(C) in (5.1). Here the
situation when this ig not the case will be analyzed.

One way to attack this kind of problems is to introduce
Post compensators in order to make the system square. In
this context frequency domain techniques have been used,
see e.g. [1, 1], However, using the post compensator app-
roach it is not quite clear which variables are controlled
in the servo sense. In this section the problem will be app-
roached according to the principles suggested by (5.2),

Applying the veference input U, to (5.1) one gets

_ _ =1
X _ = Axr + Bur = Axr + BS Yo

v = er (5.3)

N
n

pr




which defines the reference values Zoye The problem is

thus to generate z,, given u and Yot

Reference values generated by state space model.

The formulation of the problem above is identical to the
problem treated in observer theory, see e.g. [3], even
if it is here given another interpretation. Using the
standard observer approach, an insensitive reconstruc-

tion of z,, is obtained by the following model.

b
n

" Axr + Bu, + K(yr—er) = (A“KC)XP + Bu, + Ky

Hx
T

r (5.4)

N
"

where K should be chosen so that the matrix A-KChas all
its eigenvalues in the open left half-plane Re(s) x 0.
If the model (5.4) is used to generate z,, an auxiliary
system of the same dynamical order as the original sys-
tem is needed. The order of the model, however, can be
reduced by standard techniques [3], if the fact that the
reference output Yy is already known is utilized. In
this case a reduced order observer of order n-p, where

p is the number of controlled outputs, will be sufficient.
Note that the auxiliary dynamics is not a part of the
feedback loop, but is used to generate the desired tra-
jectory under reference changes. The control system con-
figuration in Fig. 2.7 with z,, generated by an observer

is shown in Fig. 5.1.
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Fig 5.1 - A control system configuration for regulators

and servos with the reference values z, gener-

ated by a state space model.

Reference values generated by the inverse system.

It is also possible to use properties of the minimal
right inverse 8_1 in order to obtain z,. This way of
reconstructing z, is more satisfactory since no auxili-

ary dynamics is needed. The reconstruction will contain




pure differentiators, but the total number is always
less than the number of pure differentiators in the in-
verse itself. This means that the final order of the
servo part only depends on the approximations or the
model for the desired input-output behaviour. This
question has been discussed in more detail in Section
2.2,

Consider the specific inverse which is used to generate
the reference input u, in (5.2). Assume that this in-
verse is a minimal right inverse constructed according

to the rules described in Section 3.4,

Consider the steps (3.34 - 39). In these steps diffe-
rent operations are made upon the original system which
leaves its state, which in this case is X unaltered
up to (3.38). Thus from (3.35736)

where T§ is defined by (3.33). If v, and v, can be gene-
rated, the reference value of the state is known. By
comparing (3.40a) and (3.37), it is immediately clear
that, cf Remark 15,

v, = state of the minimal right inverse (3.40a)
It remains to reconstruct v,. Apply u, to (3.39),
Wy = C1yr

It is then necessary to relate v, and w,. This was done
in the proof of Lemma 3.5 in Appendix 3A, cf. (A.7) and

(A.8) with n, = q. Thus




~

vy = C1yr + M(p)u1

(5.5)

and Ni are the coefficient matrices in N(p). Summarizing,

the reference value X, is generated by

v
%=1 L
X, = TM (5.6)
Vo
where
v, = M(plu, + c v .
! T (5.7)

1]

v, state of the minimal right inverse

The control system configuration with reference values

generated from the inverse is shown in Fig. 5.2.

Finally a simple example is given to illustrate the ideas

above.,
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Fig 6.2 - A control system configuration for regulators

and servos with the reference values 2,

gene-

rated using the state of the inverse system.

Example 5.1. Consider

0 1 0 1
x=1-2 0 1lx+ |-1
1 0 0 -2

y=[1 0o o0]x

Ofu
-1

(5.8)

The desired responses for command inputs are assumed to

be described by the nonlinear model shown in Fig. 5.3.

This model implies that the system should respond as




K/(s+K) for moderate changes in the command input. The
nonlinear term guarantees that the time derivatives of
the output y never exceed a certain value. Moreover,

the system is assumed to be controlled by a state feed-

back regulator.

The control system thus has the form

U= ou, o+ Au = S_qsmv + L{x_-x)

where L is a state feedback matrix and v denotes the

command input. The model Sh is nonlinear

x_ = fm(xm,v)
(5.9)

The purpose is to generate the reference input u, and

the reference value x, as is indicated above.

A minimal right inverse of (5.8) is constructed as de-

scribed in Section 3. 3. Using the same terminology as

in Section 3.3, we have

1
M
V* = {-1

1

If the system is transformed by v = Tgx where

the structure (3.37) is obtained, i.e,




. 1 0 -1 0 3

v, = v, + u - y
Tl o) ! 11 0

Vo = 7V, ¥ by

The polynomial operator N(p) becomes

N(p) =

The minimal system inverse is then obtained by substi-

tution into (3.40), i.e.

W= - oW+ by

If the model (5.9) for y, is applied, the following dy-

namical equations for the reference input u, are obtained

W o= - w + 4x
m
X, = fm(xm,v)
1 =3} |w 0
u, = +
-1 3 Xm, f(xm,v)
Yo = X,




The reference values X, On the state are obtained by

mere substitution into (5.5-7). Thus

. 0
Ve F C1yr N 1 *m
v, =W
and
X
m
o =T
Xy, = TM v = |0
wex,

Note that no pure differentiators occeur in this case
since the degree of N(p) is zero.

Summing up, the control system which satisfies the de-

sired goals is given by the second order system

U w4 Lx,mx)

T
where
W = -y o+ me
X, = fm(xm,v)
1 -3]iw 0

u_ o= +
T

-1 3 X f(xm,v)

*n
Xp = 0

W=X




Yr

El,

Fig. 5.3 - Model for desired input-output behaviour

in Example 5.1.

e

Fig, 5.4 - Auxiliary servo system needed to generate
u, and x, in Example 5.1.




With this control system, the system behaves as the
model S for command inputs with state feedback regula-
tion around the desired trajectory X

The auxiliary system needed to generate x, and u, is

shown in Fig. 5.4~-@

5.2. Systems with Unstable Inverses.

Right invertible systems with any invariant zeros in
the right half-plane according to Definition 4.3 have
no stable right inverse. This follows directly from
Theorem 4.3 and the uniqueness of the spectrum of a mi-
nimal right inverse, cf. Corcllary 3.3. Unstable inver-
ses are unacceptable in the control system (5.2). The

servo part u, is given by
u_ =S 'y (5.10)
or more precisely, using the representation (3.12)

W o= Aw o+ éyr
(5.11)

u, = N1(p)w + Nz(p)yr

If the right inverse is unstable, i.e. 1f the matrix

A has some eigenvalues in the right half-plane, the
servo part u, will be unbounded unless the desired out-
put y, has some very special form. It is thus necessa-
ry to replace the exact inverse by a suitable stable

approximate S in (5.10).




A class of stable approximative inverses.

The discussion above implies that it is impossible to
generate the desired output exactly. Trade-off must thus
be accepted. The desiredﬂoutput Vo must be replaced by

a neighbouring function y, which can be produced by a

bounded input u,. Consider the choice
Yy = Lw + Gy, (5.12)

where w denotes the state of the minimal right inverse.
To obtain the corresponding reference input &r’ §r is
applied to the right inverse (5.11) giving

w = (A+BL)w + ééyr
(5.13)

4, = (Ny(p) + Ny(p)L)w + Ny(p)By,

Since (A,é) always is a controllable pair for minimal
right inverses, cf. Lemma 3.4, it is possible to stabi-
lize the inverse by an appropriate feedback matrix L.
gdte also that the system (5.13) has Y @s input and
u, as output. If S denotes the input-output operator
for the system (5.13), it thus follows that

(5.14)

Since the purpose is to choose L and ¢ in (5.12)

such that §r is a neighbouring function of Yo it is
plausible to regard the system S as a stable approx-
imation of the exact inverse S_q. The approximative

inverse is illustrated in Fig. 5.5,

By different choices of stabilizing L and G in (5.12)

it is generated




Approximative Inverse S _

l A

Yr | i} Yr 5;4

| |
| |
| " |
|

| ]

Fig. 5.5 - An illustration of stable approximative in-
verses obtained by internal stabilization

on the exact inverse.

yr e ur

Disturbance
V| W ~
e \Zngy o R WO s |t
Z

Fig. 5.6 - A control system configuration for regulators

and servos using a stable approximative inverse.

Néte that v 1is an available signal, cf. Fig.



(1) a class of neighbouring functions §r (5.12) to a
desired output Y+ All y , within this class are
such that they can be produced by a stable refe-
rence input u,.

(ii) a class of stable approximations (5.13) to the

exact right inverse.

The stable approximation (5.13) should replace the exact
inverse in the control system (5.2). The corresponding
reference values z_ are generated exactly as in (5.7) if

T .
v, is replaced by §r = Lw + Gy_.

The total control system with a stable approximative in-
verse i1s shown in Figa 5.6. The following natural ques-
tion arises: Is there a "best" choice of approximate
within the class described above? This question is dis-

cussed below.

Minimum energy stabilization.

In order to perform-a more detailed analysis on the
problem of finding a "best" stable approximation to a
given inverse, it is necessary to restrict the possible
choices of Ve Let the desired output Yy be described
by a linear model of the form

X_ = Amx xm(O) = X

(5.15)

<
n

(@]

s

A large class of important cases are included in (5.15),
e.g. step functions or ramp functions into a linear mo-

del. Note that the initial state of the model must be
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chosen so that the output y, is enough differentiable

at the initial point t = 0. The reason is, of course,

that y,, is differentiated when applied to the inverse,

Let y. be the desired output and write the neighbouring

function Y, as

=y o+ Ay (5.18)

Since it is desirable that Y is "near" the desired out-
put Ypo We should obviously select Yy, SO that Ay is
small over the whole time interval. Introduce the cri-

terion

T T

[ ay7Q,aydt Q, >0 (5.17)
0

Consider now Gr which is produced by the right inverse
with Y @s input. Taking the model (5.15) into account,

the following set of equations are obtained from (5.171)

w o= AW + Bmem + By (5.18a)
X o= AXD (5.18b)
u, = Nq(p)w + Nz(p)yr (5.18¢c)

where A is unstable since the minimal right inverse is

assumed to be unstable.

Let w, be defined by

1

W, = W+ Px (5.19)
m

where P is a solution of




PAm - AP + BCm =0 (5.187)

The existence of a solution to this linear matrix equa-
tion is guaranteed if the eigenvalues of Am and A are
disjoint, [2] p. 225. This is therefore assumed for con-

venience. The transformed system has the form

Wy = Aw, + BAy wy(0) = PXmO (5.20a)
X, ® Amxm xm(O) = X0 (5.20b)
u, = N1(p)w1 + Nz(p)yr - Nj(p)me (5.20c)

where Ay 1is to be chosen so that the unstable modes of
A do not influence U, It is then adequate to consider

~

wy = Aw, + Bay w,(0) = me(O) (5.21)

Note that Ay is formally an input signal to (5.21). The
problém of choosing the "best'" Ay which minimizes the
‘eriterion (5.17) simultaneously stabilizing (5.21) is
thus‘equivalent to the problem of finding a control
which stabilizes a given system with minimum control
energy. This problem is treated in detail in-[5]. There

it is shown that there exists a specific Lyp such that

Ay = Lyp¥, (5.22)

minimizes (5.17) within the class of all stabilizing
feedback controls to (5.21). It is described in [5] how
Lyp can be calcul?ted by forming the Euler matrix. The
"best" choice of Yy is thus

yr = yr + Ay = LMEw + yP + LMEPXm (5.23)
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where the last equality follows from (5.19). Can this

Yo be produced by a realizable Gr? Observe that §r in
(5.23) contains a feedforward term from the state of

the model. This means that §r is not necessarily dif-
ferentiable at the initial point t = 0 even if this is
the case for the desired outpﬁt Vo This faect is illust-
rated in Fig. 5.7, where it is assumed that the system

is initially at rest.

Fig. 5.7 - Possible shape of ¥, and §r for a certain

cholice of xm(O).

If §r is as described in Fig. 5.7 the corresponding
reference input u,, given by (5.18c¢) contains dirac pul-
ses at t = 0. It can thus be concluded that the "opti-
mal" solution (5.23) is not realizable in general. A
heuristic solution can, however, be given based upon

the following two facts.

0 The feedback part Lye in (5.23) depends only on A,
B and QZ’ i.e. only on the inverse and the crite-
rion. The stabili=zing feedback LME on the inverse

1s thus independent of the model for Vo,




o In the servo problem, the steady state behaviour
is often of 1mportance It is thus plausible to
require that y, coincides with the desired output

y, at least in steady state.

The discussion above leads to the following heuristic
choice of vy,

~

Yy = Dyp" * Gy, (5.24%)

where G is to be chosen so that Vp = In in steady state.

The latter specification gives

& =71+ L..A B (5.25)

where it has been assumed that the inverse does not con-
tain an eigenvalue at the origin. In fact, it can be
seen from (5.199 and (5.23), that (5.24) and (5.25) are

the optimal solutions for the model

i.e. when the desired output is a step.

Besides from the interpretations above, the heuristic
choice has the advantage of only being dependent on the
inverse. The corresponding stable approximation SME of
the exact inverse becomes
.o nn - A=
W o= (A+BLME)w + B(I+LMEA B)Y,,

(5.26)
~ _ I
u, = (Nq(p) + N2(p)LME)w + NZ(p)(I+LMEA By,
The feedback matrix LME has an interesting effect on the
eigenvalues of A. Assume that spectrum of the minimal

right inverse, i.e. the eigenvalues of A, are
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_ + + + - -
Z = {z1, Zoy eees Zgh Zqs v Zr}

where z; and z; denote the eigenvalues in the left and
right half-plane respectively. The eigenvalues of A+BlLyr.
then becomes [5]

7 = 127 25y -z -z
z 10 v Zg3 4o mers TP

The unstable modes z; of A are thus reflected in the ima-
ginary axis while the stable modes of A remain unchanged,
cf. Fig. 5.8.

ﬂﬂrn
-
X o Re
A Sl =K B

X

Fig. 5.8 - T1lustration of how modes of the inverse
system change under minimal energy stabi-

lization.




A frequency domain interpretation.

Let S(A,B,C) be a system with one input and one output.
If the system is nonminimum phase, its transfer func-

tion can be written

*(s)q (s)
G(s) = 22829 1S/ (5.27)

p(s)

where the zeros of q+(s) and q (s) lie in the left and

right half-plane respectively. The inverse system

¢ sy = ——RLsl (5.28)
q (s)q (s) ;

is unstable in this case. What is the "best" stable app-
roximate éME(s) of G—1(S)? The choice (5.26) implies

that the steady state gain of the inverse is preserved
while the unstable modes are reflected in the imaginary
axis as illustrated in Fig. 5.8. This is achieved by an
internal stabilizing state feedback on the inverse. There-

fore p(s) in (5.28) remains unchanged. Thus

2 (s)
Gyo(s) = —B282 (5.29)
ME q+(s)q—(_s)

is the approximative inverse obtained by (5.26). The

system GME(S) is the exact inverse of

+ _ .
a(s) - (s) (-s) (5.30)

p(s)

The system (5.30) is the minimum phase system correspon-
ding to (5.27). Thus for single input single output non-
minimum phase systems, the "best" stable abpproximation of

the exact inverse is obtained by inverting the correspon-




ding minimum phase system. The combined servo and regu-

lator system is thus given by

u = GME(S)yr + R(zr—z)

The trade-off, i.e. the difference between the desired

output and the "best" neighbouring output, becomes

Ay, = Yp = Yy = {G(S)GME(S) - 1}yr =

.—(S) _1‘yr‘:
q (-s)

(g (s) =~ a (-8))
q (-s)

r

(5.31)

Observe that this disscussion refers to the special choice

(5.24) and (5.25) which is "optimal" only in the case when

the desired output is a step.

The section is concluded by two examples.

Example 5.2. Consider the system

G(s) = K(a-8)
p(s)

The stable approximative inverse (5.30) is

. (s)
Gypn(s) = 2282
ME K(a+s)

The trade-off becomes according to (5.31)

bY =y, -y, = - Ve

From this expression an interesting conclusion can be




made. The trade-off is larger, the nearer the imaginary

axis the right half-plane zero is situated. For two sys-
tems with pole-zero configurations as shown in Fig. 5.9,

the system (a) is more difficult to control than system

(b) in the servo sense. Note that A in (5.25) does not
exIst if a=0. This is due to the fact that the actual output
is always zero in steady state for bounded inputs if =0,

(a) (b)

| Tlm Tlm

K
)

X
)
J
N

Fig. 5.3 - Pole-zero configurations discussed in Example 5.2,
o zeros

X poles ®
Example 5.3. Consider a system S(A,B,C) with

A = 0 -1 0 B = |0 1 C = (5.32)
0

G(s) =



It has been shown that this system is difficult to con-
trol, see Rosenbrock [6]. The invariant zeros for the

system are, cf. Example 4.1,
z = {1.0}
The system is thus nonminimum phase in the multivariable

sense and therefore the minimal right inverse is unstable.

A minimal right inverse of the system is

e
1l

wo+ [-4 4]y

2 -5-p 6+2p
u = W o+ v
=2 5+p ~-5-p

The inverse can be constructed as shown 1in Section 3.4.

(5.33)

Since the computational details have already been de-

monstrated in earlier examples, they are omitted here.

Introduce the criterion
i sy aydt
0

by =V, = Y,

The minimum energy stabilizing feedback matrix to the

system (5.33) is given by

0.25
L H (5.34a)
ME -0.25
and G (5.25)




~ 1 0 0.25 0 1
G = + R I [—-‘L; L{»] = (5.34b)
0 1 -0.25 1 0

The stable approximative inverse SuE (5.26) becomes
then

wo= - w+ [u —u]yr
(5.35)
N 1 =3p-3 6+2p -5-p 3+2p -2-p
u = - W + y = Y
v 2pe2 -5-p . 5+p) T |-3-p 3+p| T

where the reduction procedure in (3.43) has been used
in the last equality. Note that the approximative in-
verse contains no dynamics. This is due to the fact
that a feedback has been applied on the inverse sys-
tem which reflects the zero in -1 onto +1. Since the
original system contains a pole in +1, there has thus
occurred a "cancellation'. The trade-off, i.e. the dif-

ference between y, and Vo becomes
Ay = Yy = Yp = Lypw + (G-Dy

Using transfer functions (5.34) gives

- .S _5_
s+1 s+1
Ay(s) = Yy (5.36)
S - 5
s+1 s+1

Assume that the input—output‘behaviour is described by

a decoupled model of the form
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S+
Vp = v (5.37)

S+B

The control system with a state feedback regulator L

becomes

L+ LOx,mx) (5.38)

By some straightforward calculations which has been de-

monstrated in earlier examples, it follows that

. -1 4 -4 0 0}
W W
[. } = 0 -a 0 { ] + o 0fv (5.39a)
*m 0 0 -8 *n 0 8
{
R 0 3-2a B=21|W 20 -8B
u, = + v (5.39b)
0 =-3+a 3-8 X -a B8
X 0.25 2 -1 w\
" = |-0.5 -1 1 'x (5.39¢)
0 -2 2 m

which gives the complete control system. The state feed-
back regulator is calculated by linear quadratic control

theory in this case

The responses for the open loop system is shown in Fig.5.10
a-b and the corresponding responses for the closed lcop

svstem in Fig.5.10 c-d, where the trade-off is indicated.




{a) &
0.25 -
l: A‘ ‘MA‘ )'
Ve tBed
=025 ~
(b) &
0.25
5‘ N A_I“A‘\ﬁ >
% o t (Bed
-0.25
{c)
1.0 —
t[s:c]
(d)
10 Model yo RN ST
2
I : T B >
Model y; . 1 [se¢]

Fig. 5.10 - Responses for the system in Example 5.3
with added process disturbance.
(a) Open-loop system u=0
(b) Open-loop system u=0
(¢) Closed-loop system with unit step on Ve

(d) Closed-loop system with unit step on Vo,



A disturbance ° has been added to the system in order to

demonstrate that the controlled system might have good

disturbance rejection, even if the responses for command

inputs are slow due to nonminimum phase properties. Since

the regulator and servo parts are "separated" by (5.38),

the regulation efficiency for disturbances in the system

depends only on the choice of L in (5.38). @
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6. REGULATION IN THE PRESENCE OF CONSTANT DISTURBANCES.

In the design of control systems for industrial proces-
ses there is often inadequate knowledge of the distur;
bances in the process. This can be partially overcome

at a design stage, by designing the controllers so that
accurate control is -achieved for the most relevant fre-
quencies. Many real process disturbances contain consi-
derable constant or slowly varying components. To ensure
accurate steady-state operation in such cases, it will
be necessary to supplement the controllers with some in-
tegral action, removing steady-state errors. Unlike the
single input-output case, however, the insertion of in-
tegrations in the feedback loop can be done in several

alternative ways in the multivariable case.

In this chapter a complete theory will be presented for
output regulation to zero in the presence of step distur-
bances with a known input space. Simple necessary and
éufficient conditions are given, that ensure no steady-
state errors and stability of the regulated system. A
simple design scheme for such regulatofs is discussed,
where the "proportional" and "integral" parts can be de-
signed separately. The design scheme also exploits the
freedom in the choice of integrators in the system. The
developed theory shows, that the feedback and feedforward
problem can be treated within one framework with similar
computations. The proposed design scheme also has the ad-
vantage of producing & small number of integrators, in a

sense the minimal number.

Similar problems have recently been considered in [2, 10]
and [12]. In [12] a solution is given to the asymptotic
"zeroing the output” problem in a geometric framework.
The actual design problem is, however, not discussed. In

[10] the system is assumed to be reduced to a certain mi-



nimal form. Necessary and sufficient conditions are then
given in terms of the reduced system. In this chapter the
solvability conditions are expressed in the actual system
matrices and appear as natural steps in the design proce-
dure. Our approach will also, in most cases, result in a
control with a less number of integrators, especially if
the number of disturbance sources are few in comparison
wWwith the number of controlled variables. This is not mere-
ly an academic gquestion, since each introduced integrator
will cause additional phase retardation, thus making the

system harder to stabilize.

This chapter should also be viewed in relation to estima-
tion theory and classical PI control. The classical app-
roach is to integfate\the whole output vector. Of course,
this is the only solution if the disturbance sources and
thereby their input spaces are cbmpletely unknown. How-
ever, the system may be difficult to stabilize or even
unstabilizable. Solvability conditions for this kind of

control are given in [2, 4, 13].

Estimation theory in connection with feedforward control
can also be used [3, 101. In [1, 6, 7] the problem has
been considered as an extension of ordinary linear quad-

ratic control theory.

The chapter is organized as follows. In Section 6.1 the
regulation problem is consicely formulated. Sclvability
conditions and a constructive algorithm are given in Sec-
tion 6.2. In Section 6.3 the feedforward and integral
feedback problem is discussed. A design example concludes

the chapter.




6.1. System Description and Problem Formulation.

Consider a linear time invariant system in state space

form

X = Ax + Bu + Gv
(6.1)
y = Cx + Du + Fv

where x denotes the n-vector of states, u the m-vector

of control inputs, v the r-vector of disturbance inputs
and y the p-vector of controlled outputs. A, B, G, C, D,
and F are assumed to be constant matrices of compatible
dimensions. Moreover, it will be assumed that the dis-
turbances v are constant but unknown. Thus v can be de-

scribed by

<o
L1
[an]

v(0) = vy (6.2)

Therutput regulation problem is then to find a control
u that may depend on x such that the following two con-

ditions are satisfied:

1° y(t) - 0 when t » » for all possible unknown values
on v.
2° The closed loop system is asymptotic stable.

Of course, these are not the only desired properties of
a regulator system. This question will be further dis-
cussed in connection with the design problem in Section
6.3.

In controlling the system (6.1) complete state feedback
will be used. Assuming the system is observable, this
can be overcome in the usual way by attaching a state

estimator to the measured outputs [5, 9]. If a simpler



control system is desired, the reduction technique of
the next chapter may be used, avoiding the estimator sys-

tem.

6.2. Output Regulation.

In this section some simple necessary and sufficient con-
ditions are given that guarantee output regulation to ze-
ro in the presence of step disturbances and stability of

the regulated system. These conditions are stated in some
different ways, to shed additional light on the problem.

The relation between the feedback and feedforward problem
will be clearly explained and a constructive algorithm is

given.

An introductory lemma.

Before considering the main problem described in the pre-
vious section, let us analyse the corresponding feedfor-
ward problem. Assume that the disturbances v are measured.

Find a control of the form
u = Lx - Nv (6.3)

where L and G are matrices of appropriate dimensions,
such that the specifications 1© and 2° in Section 6.1
are satisfied. Apply the control (6.3) to (6.1) and let
+ » w, Since the time derivates become zero in steady-

state, we have

0 = (A+BL)XS - BNv + Gv
(6.4)
Vg (C+DL)XS - DNv + Fv




where the subscript s denotes the steady state value.

Solving (6.4) for Yg» We obtain

1 1

vg = ((C+DL)(A+BL)” 'B - D)Nv - ((C+DL)(A+BL) G - F)v
The output shall be zero in steady irrespective of the
constant disturbance v. There must thus be a matrix N

in (6.3) such that

1 1

((C+DL)(A+BL) 'B - D)N = (C+DL)(A+BL) G - F (6.5)
A question which then naturally arises is the following.
Does the existence of a matrix N 'which satisfies (6.5)
depend on the specific choice of stabilizing L in (6.3)?
That this is not so is stated in the following introduc-

tory lemma.

Lemma 6.1. Assume there exists a pair (2,,N,) such that

1 1

[(C+DR,)(A+BQ,) 'B - DIN, = (C+DR,)(A+B,) '@ - F (6.6)
Then to every @ such that det(A+BQ) # 0 there exists an
N such that the pair (q,N) also satisfies (6.6). @

From this lemma we see that the question whether the
equation (6.5) has a solution or not does not depend on
the choice of feedback matrix L in (6.3). This is an im-
portant fact in the design problem, since it means that
the feedback term L and the feedforward term N can be de-

signed separately.
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Necessary and sufficient conditions.

Introduce matrices Mu and MV as

M (C+DQ)(A+BQ) B - D

u

(1

(C+Da) (A+BQ) TG - F

=
I

where 9 is any matrix such that det(A+Bq) 4 0.

Interpretations of the matrices M, and Mv are given in
the discussion on the feedforward problem above. The
matrix @ is introduced only to cover the case when the
open system already contains an integrator. If the mat-
rix A contains no eigenvalue at the origin, for instanc
if the open loop system is asymptotic stable, then we
could select o = 0.

Necessary and sufficient conditions for the existence
of a stable feedback control which removes the steady

state errors are given in the following theorem.

Theorem 6.1. Consider the disturbed system (6.1). There

exists a control u which only depends on x such that

1° y(t) -+ 0 when t > = for all unknown constant value
on v,
2°  the closed loop system is asymptotic stable,

if and only if the pair (A,B) is stabilizable and there

is a matrix N such that

MuN =M (6.



Proof. (only if) From condition 2° it immediately fol-
lows that the pair (A,B) must be stabilizable. Let u,
be any control such that conditions 1° and 2° are sa-

tisfied. Write

U.*"—'QX"W*

where @ is chosen such that det(A+BQ) * 0. The closed

loop system becomes

X = (A+BQ)x - Bwy + Gv (6.9a)

(C+D)x - Dwy + v (6.9b)

<
n

Since the closed loop system is asymptotic stable with

control u, it follows that

where the subscript s indicates the steady state value

(t + =), Thus solving yg from (6.9)

(C+Da) (A+B2) 'Bw, - Dw, - (C+Da)(A+B@) 'Gv + Fv =

1}

Vs

i
=
=

*

1
=
<

N
o

The last equality is satisfied for all v € R' only if

{Mu} > {MV} {*} range space

or equivalently only if there is a matrix N such that

and necessity is clear.



(if) Sufficiency is shown by.construction. Since (A,B)

is a stabilizable pair there is an 2 such that the spect-
rum of A+BR, lies in the open half-plane Re(s) < 0. Thus
det(A+BQO) +' 0 and according to Lemma 6.1 a matrix Ny can
be found such that

-1 -1
[(C+Day)(A+BRg) B - DINg = (C+Doy) (A+BRy) 6 - F

From (6.4) with @ = 2

MuNO = Mv (6.10)

Let q = rank(MV) < p. Then there is a nonsingular pxp

matrix W such that

P PM
Q 0

Let M be an arbitrary gxq matrix with its spectrum in
Re(s) < 0. It is then claimed that the following cont-

q rows
(6.11)

P-4 rows

rol satisfies the conditions 1° and 2° of the theorem

t
u = Lgx + Ly | Py(oldo (6.12)
with
- - -r
Ly = = Ng(PM) "M (6.13a)
_ _ -1
Ly = 9 L,P(C+DQy) (A+BRy) (6.13b)

where (+) T denotes a right inverse.

The right inverse exists in this case since PM has full

row rank by construction (6.11). Introduce




t
z = [ Py(o)do

Then z = PCx + PDu + PFv and the closed loop system be-

comes
X A+BLO BL1 X
z P(C+DLy)  PDL, )|z
X
y = (C+DL, DL) + Fv
Z

Applying the transformation

bl I 0 b'e
n
z! K I Z
q
with
K = - P(C+DQO>(A+BQO)_

we obtain using (6.10) and (6.13)

X A+BQ0 BL1 X
z! 0 M|z
: X
y = (C+D2,  DL,) y

Fv

PF+KG

(6.14)

(6.15)

and 2° is certainly true since the spectra of A+BQ0 and

M lie in the open half-plane Re(s) < 0.



To prove 1° we will just calculate the steady state

value yg ©f y from (6.15). First notice that

PF + KG = - P(C+DQO)(A+BQO)—1G + PF = - PM,

Since v is constant, is = 0 and éé = 0. Solving xg and
zé from (6.15) we obtain
xg = (- (Aa+Be )" '6 - (a+Ba) 'BL M TPy Jv

S 0 0 1 v

-1
1 -
Zg = M PMVV

Thus

<
n

1 -
(C+DQO)XS + DL1zS + Fv =

1 1

- - -1
(- (C+Day)(A+Bag) G - (C+Day)(A+Ba,y)” 'BL,M PM,, +

+ DL1M—1PM + Flv =
v

1

i

(—MuL1M PMV-MV)V

Substitute L1 (6.133) and use (6.10)

I ';r' =
(Muho(PMv) PM,, - M Jv =

b
"n

(M (PM)"TPM_ - M v
v v v v
Consider then Wy, where W is given by (6.11)
_ -r . . - -
Py = P(MV(PMV) PM,, Mv)v = (PM-PM_)v = 0

and




- -r _ -
Qyg = Q(MV(PMV) PM,, Mv)v =
-— -r — —
= Qu,[(PM ) 7TPM, - I]v = 0
Thus WyS = 0 and since W is nonsingular Vg 0. &

Remark 1. The condition (6.5) is equivalent to

M, = M} (6.16)

One way to test (6.8) and (6.15) is the following. Com-
pute

- _ t
S =1 'MuMu

where M; is the pseudoinverse of Mu [8, 11]. Then P is
the orthogonal projection onto {Mu}l. The conditions
(6.8) or (6.16) are then satisfied if and only if

A reasonable test quantity for computational purposes is

RN
oo sl
EN

1
2

where || + || denotes a matrix norm, e.g. |[[M|| = (tr(MMT))

If solutions to (6.8) exist, one is given by

_ wt
N = Mqu B

From the discussion on the corresponding feedforward prob-

lem above, cf. with (6.5) and Lemma 6.1, the following




corollary follows directly.

Corollary 6.1. The feedback problem can be solved if and

only if the feedforward problem can be solved. @

Step responses.

Theorem 6.1 can also be expressed in terms of step res-
ponses to the system (6.1). Let u = Lx + u be a stabi-
lizing control to (6.1). If the system already is asymp-
totic stable this step may be omitted. The closed loop

system becomes

W
1]

(A+BL)x + Buy + Gv
(6.17)

y = (C+DL)x + Du0 + Fv
Let Y = [yl yi yﬁ] denote the steady state res-
ponses of (6.17) for m linearly independent step inputs
U = [ué ug ces ug] and v = 0. Similarly, let ¥ _ = [yl
y3 . yz] denote the steady state responses for r 1i-
nearly independent disturbance inputs V = [v1 v2 e
r
vi].

Corollary 6.2. There is a control u which only depends

on x such that the conditions 1° and 2° of Theorem 6.1
are satisfied if and only if there is a matrix W such
that

Yuw =Y (6.18)




Remark 3. Note that Corollary 6.2 gives a possibility to
test the solvability condition in Theorem 6.1 by perform-
ing experiments on the system, without knowing the exact
model.

A constructive algorithm.

Finally the construction problem is considered. The suf-
ficiency part of the proof of Theorem 6.1 in fact gives

an algorithm for constructing a control of the form

t

u = Lgx + L, | Py(oddo (6.19)

This algorithm will always produce a solution if one
exists. The algorithm is summarized in the form of a

theorem.

Theorem 6.2. If there exists any control u such that con-
ditions 1° and 2° of Theorem 6.1 are satisfied, it can
always be taken to be of the form (6.19) where LO’ L1

and P are constructed as follows:

1°  Choose Q, to stabilize A+BRg.
o) . _
2 Determlne’N such that MuN = Mv where Mu and MV are
given by (8.7) with @ = Q4.
3° Let q = rank(Mv). Find a gxp matrix P such that
rank(PMv) = q.
u° Choose 2, to stabilize PMVQ1.
5° Finally
L1 = - NQ1
~ _ -1
Ly = 9 L1P(C+DQO)(A+BQO)
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and the closed loop eigenvalues equal the joint spectra

of the matrices A+B§zO and PMVQ1.

Proof. Replace (PM, ) "M by 2, in (6.13a). The proof then
follows the proof of Theorem 6.1. @

Remark 4. Notice that the number of introduced integra-
tors equals g = rank M, s min(p,r) where p = number of
controlled output and r = number of disturbance inputs.
In fact the developed theory results in a design scheme
that in a sense compounds classical PI control and esti-
mation theory in connection with feedforward control in-
to one simple algorithm, always giving a compensator

with equal or lower dynamical order than any of these.

6.3. The Design Problem,.

In' this section we will use the results from the previous
section to discuss the integral-feedback and feedforward
design problem. In doing so the disturbance vector could
be separated into two subvectors vT = [v? vg] where vy
is assumed to be measured and v, is not. However, Corol-
lary 6.1 and Theorem 6.2 show that the two problems can
be handled by the same algorithm. Therefore, we will not
separate between measured and non-measured disturbance
inputs, but just indicate the extra computétions that are

needed for integral-feedback control.



Feedback and feedforward designs.

We will follow the algorithm given in Theorem 6.2 and
outline how a practicél design could be made based upon
this algorithm. In some of the steps below somewhat heu-
ristic arguments will be used. These are, however, veri-
fied by the design example in the next section.

1° First find an 2 such that A+BQO is asymptotic
stable. In this step the "proportional" action in
the controller is designed, and the spectrum of
A+B§2O will essentially determine the regulation
efficiency in the presence of disturbances of
white noise character. The ordinary steady state
linear quadratic control law may be a good choice

for QO'

Calculate

N _.1 .
(C+DQO)(A+BQO) B - D

=
|

(6.20)

(C+DQO)(A+BQO)_1G - F

=
t

and solve for N

MN=M (6.21)

If the last equation cannot be solved, then the
problem cannot be solved in its original statement,
i.e. output regulation to zero cannot be achieved
(Theorem 6.1). The natural approach is then to
solve (6.21) in a least square sense, i.e. to mi-
nimize |[M N - M_||. The minimum will be given by

t

N = Mqu (6.22)




e

where MZ stands for the pseudoinverse of Mu' Effi-
cient computational algorithms for such inverses
exist, see [8] or [11]. If feedforward control is
desired the design is now complete and the control

becomes
u = Qox - Nv

If integral-feedback control is desired proceed to

the next step.

Select a gqxp matrix P such that rank{PMuN} = q,
where q = rank{MuN}. In this step a maximal number
of independent vectors from the row space of MuN

is selected. This selection then determines P,

Since P will determine the set of integrated out-
puts, the freedom in the selection above can be

used so that the most "essential output variables
are integrated. Thus, if vy is considered to be the
most essential output variable, one can start the
selection above with the{j:th row in_MuN. Notice
that the number of integrators becomes q = rank{MuN}=
= rank{Mv} ¢ min{p,r) where p is the number of con-
trolled variables and r is the number of disturbance

inputs.

Choose g, to stabilize (PMuN)Q1. For instance let

Q4 = (PMuN)TM where M has some desired spectrum. In
this step the "integral" action in the controller

is designed in the sense that the spectrum of M es-
sentially will determine the setting times for the step
disturbances.

The integral-feedback control becomes

t
u = Lgx + L, [ Py(o)do (6.23)



where P is given above- and

L1 = - NQ1 (6.24)

’ -1 ,
LO =9, - L1P(C+DQO)(A+BQO) (6.25)

6.4. A Desi n Example.
———=—551gn Example

To illustrate the results of the chapter, we will pep-
form the calculations for a specific bProcess, a boiler,
For this bPurpose a conversative design and simulation
pProgram, SYNPAC, has been used, which has been developed
at the Division of Automatic Control in Lung,

X = Ax + By + Gv

y = Cx
Where the State variableg are

X4 = drum pressure (bar)

X9 = drum liquid level (m)

X3 = drum liquid temperature (%¢)
X, = riser walj temperature (°¢)

Xg = steam quality (%)
The control variables are

Uy = heat flow to the risers (kd/s)

Up = feed water flow (kg/s)



and the disturbances are
v(t) = load changes (bar)

Numerical values of A, B, C and G for a power station
boiler with a maximum steam flow of about 350 t/h are
calculated in [3] and are shown in Section 4.6. The drum
pressure 1s 140 bar. The operating point is 80% full

load. The .intention is to find a control law of the form

t
u = Lgx + L, [ Py(s)ds (6.26)

such that the steady state deviations in y due to step
changes in the load v are removed. Following the design

scheme in Section 6.3 we have:

1° A state feedback u = Qg% is found such that the re-
gulation efficiency is satisfactory for disturban-
ces of white noise character. This is done by 1li-
near quadratic control theory in this case. An app-
ropriate steady state linear quadratic control law
is given by [3]
~0.668x10" -0.418x10° -0.135x10% -0.137x10%  0.175x107
Q. =
0 1 3 4
~0.803x10 -0.908x10" -0.486 -0.,816 0.431x10
(6.27)
2° Calculate Mu and Mv' Since D = 0 and F = 0 we have

~0.448x10"%  -0.205x10""

- U
Mu = C(A+BQO) B =

20.390x10°°  -0.921x107°



-0.766

- “1a -
MV = C(A+BQO) G =

0.106x107

Since MuN = Mv can be solved, the conditions in

Theorem 6.1 ‘are satisfied and

0.99ux10"

-O.157x102

Calculate rank{MV} = 1., Find an 1x3 matrix P such
that PM = PM N has -rank one. Any matrix P :[p1 p2]
such that

-0.766
[p1 p23 £ 0
0.106x10" "

will work. Take for instance P = [-0.766 0.106x10 ' 1.

We have PMuN = PMV = 0.586. A 1x1 (scalar) matrix
91 shall be selected so that O.586><Q1 equals some

prescribed eigenvalue A, i.e.
24 = 2/0.5886

This eigenvalue determines the setting time for the

step disturbance.
The control is given by (6.26) where

~0.994x10"

L1 = - N@, = X/0.586

O.138x102




_ _ =1
LO = QO L1PC(A+BQO) =

-0.668x10" -0.418x10% -0.135x10% -0.137x10% 0.175x107
~0.803x10"  -0.908x10° -0.1486 -0.816 0.431x10"
( 0.99ux10"
- 1/0.586 .
-0.157x102
. (0557107 -0.631x102 0.197x107 0.137x107 0.321x10%)

The eigenvalues of the enlarged system are the eigen-
values of A+Bay and . Simulations (Fig. 6.1) have
been made for two values of A, -0.02 and -0.10, where
the first value corresponds to a slow absorption of
the step disturbance and the second to a faster. The
control law (6.26) is compared with the proportional
control u = 2,x with 2, as in (6.27). The effect of
different choices of ) is clearly illustrated in Fig.
6.1,
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Fig. 6.1 - Time responses for a drum boiler with a load
change of 1 bar.
I ... control.law (6.26)
ITI .. control law (6.25) with 2 = -0.02
III .. control law (6.25) with 2 = -0.10
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APPENDIX 6A - Proof of Lemma 6.1.

Rewrite (6.5) in the following way:

(]
"

where

Moreover let

N =

and

=
"

where

<
"

a
t

Then from (A.3), (A.4) and (A.7)

U - Uy

((C+DRy) (A+Ba ) 1B - D)Ny - (C+DQy)(A+BQy)

CXg + DUy + F

- (a+Ba,) 1 (G-BN,)

2,(A+Ba,)”  (G-BN,) - N,

Ny + (24-0) (A+B24) (G-BN4)

((c+DR)(A+B@)  'B - D)N - (C+D)(A+BQ)~

CX+ DU + F

- (a+Ba)” T (G-BN)

- aca+B) " T(G-BN) - N

OX = N - 94Xy + Ny =

OX - (24-0) (A+B4) " (G-BNx) - 24Xx

QX+ (Qu=0)X4 = 24Xy = Q(X-Xy)

(A1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)



where the third equality follows from (A.2). Moreover
from (A.2) and (A.6)

o
"

(A+BQy )X, + G - BN, = AX, + BU, + G

O
"

(A+B2)X + G - BN = AX + BU + G

Taking differences between the last two expressions we

obtain

0 = A(X-X,) + B(U-U,)

and using (A.8)

(A+BR)(X-X,) = 0

Since A+BQ is nonsingular it follows that X = X, and
from (A.8) U = U,. Then comparing (A.1) and (A.5) we

see that W = 0 and the pair (Q,N) where N is given by
(A.4) satisfies (6.6). m




7. A DESIGN SCHEME FOR INCOMPLETE STATE OR OUTPUT
FEEDBACK.

The concept of state feedback plays an important role
in existing control theory for linear systems. Linear
quadratic control theory [1] and pole assignment theo-
ry [20, 21] are two well-known examples. Unfortunately
the whole state vector is, however, rarely available
for measurement. Even if it was available a state feed-
back control would sometimes result in far too complex
control systems. The standard way to bypass these dif-
ficulties is to measure only a limited set of outputs
‘and reconstruct the complete'state vector using a Kal-
man filter [2] or an observer [14]. The result is, how-
ever, still somewhat unsatisfactory since the recon-
struction by itself might produce high order dynamics

in the control function.

These facts justify the demands for simpler or subopti-
mal control policies. Practical constraints on the feed-
back system must be considered. A limited number of mea-
surements is one obvious constraint. In large systems
consisting of several coupled subprocesses, such as
power systems, there may be a desire to control the sys-
tem with local feedbacks on the different processes, e-
ventually with the addition of a small number of inter-
connections. There are, however, no rational ways to de-
sign such hierarchical control schemes. Another example
is diagonally controlled systems where the design philo-
sophy i1s the classical one with each input variable con-

trolling a single output variable.

A few methods exist to treat problems of these types.
The use of dynamic feedback [4, 3, 17] has the same
disadvantages as the observer approach above, i.e. the

control may be unnecessarily complex. The problem can



also be tackled by direct optimization [117 12,

13, 16]. However, this technique does not seem to be
practical when applied to large systems. A special ver-
sion of modal control [5, 20] has also been used in this
class of problems. Quite recently frequency domain me-
thods have been developed which extend the classical Ny-
quist criteria to multivariable systems. A survey of
these results can be found in [15, 19]. These criteria
seem, however, to be difficult to use for large systems
with several inputs and outputs. There is one consider-
able difference between the approach in this chapter and
the frequency domain techniques. In this chapter we start
with an "optimal” solution which is made suboptimal by
imposing constraints in the control structure. In the
frequency domain approach one attempts to successively
improve the solution from an initial guess by varying

the gains and the structure of the control.

In this chapter a state feedback control is used as the
starting point. This is quite a realistic assumption,
since there are straightforward methods to find such con-
trollers even for fairly large systems. See for instance
[1]1 ana [20]. The step taken is then to Fit this control
into another "similar'" control with a predefined struc-
ture. The idea behind this fit is to make it as accurate
as possible on the eigenspace corresponding to a domi-
nant set of eigenvalues to the closed loop system. It is
illustrated by examples that satisfactory controllers
may be obtained in this way after a few iterations. It
should be noticed that the method does not depend on how
the state feedback controller is obtained. The reduction
technique is thus applicable to any method that results

in a linear feedback from the state.

Notice that this reduction procedure is a rational way

of designing hierarchical control systems. Sometimes it




is not possible to control the system satisfactorily by
output feedback only. In such cases the reduction scheme
can be used to find controllers of PD types, where the
derivative term will give additional information about
the state of the system and thus make the system easier

to stabilize.

Numerical examples are included to illustrate different
aspects of the scheme. In a more full scale example, a
drum boiler, it is shown that the feedback from all five
states can be replaced by the feedback from two measured
outputs. In this case it is possible to avoid the Kalman
filter, proposed for the reconstruction of the state,
without any significant decrease in performance. Another
example, a three-machine power system, which is consi-
dered in [3], shows that the design scheme is also app-

licable to fairly large systems.

In large systems the computational effort is of importance.
The major computational burden in this case lies on an
initial eigenvalue - eigenvector calculation, which cor-
responds to approximately gn’ operations. An additional
eigenvalue calculation may have to be done to check if

the reduced control law has an acceptablé degree of sta-
bility.

This method could be an effective tool for the design of

multivariable controllers in an interactive mode.



Statement of the problem.

Consider a linear time invariant system in state space
form

X = Ax + Bu (7.1)

where x is the n-vector of states and u is the m-vector
of control inputs. A and B are real-valued matrices of
compatible dimensions. Moreover, assume that g state
feedback controller

u = Lx + v (7.2)

where v is some external input and L an mxn matrix, is
found such that the system (7.1) with the controller
(7.2) has the desired properties,

In controlling the system (7.1) we will set certain
constraints on the feedback system. The intention is
then to "reduce" the control law (7.2) such that these
constraints are satisfied. Two specific types of con-
straints will be considered corresponding to different
degrees of complexity in the control function, of. [11].
These definitiong should cover a large variety of prac-
tical constraints that might be imposed on the struc-
ture of a feedback system.

In order to simplify the notations we will use stars
(*) to indicate broperties associated with the reduced

control laws,

The simplest kind of constraint is to permit output feed-
back. Let y = Cx denote the output of (7.1) where ¢ is a
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7.1. Preliminaries.

Statement of the problem.

Consider a linear time invariant system in state space

form
x = Ax + Bu (7.1)

where x is the n-vector of states and u is the m-vector
of control inputs. A and B are real-valued matrices of
compatible dimensions. Moreover, assume that a state

feedback controller
u = Lx + v (7.2)

where v is some external input and L an mxn matrix, is
found such that the system (7.1) with the controller
(7.2) has the desired properties.

In controlling the system (7.71) we will set certain
constraints on the feedback system. The intention is
then to "reduce" the control law (7.2) such that these
constraints are satisfied. Two specific types of con-
straints will be considered corresponding to different
degrees of complexity in the control function, cf. [1117.
These definitions should cover a large variety of prac-
tical constraints that might be imposed on the struc-

ture of a feedback system.

In order to simplify the notations we will use stars
(*) to indicate properties associated with the reduced

control laws.

The simplest kind of constraint is to permit output feed-

back. Let y = Cx denote the output of (7.1) where C is a




real rxn matrix. A control of the form

u = K*Cx + v (7.3)

will be referred as a control with a single constrained

feedback structure.

A more complex structure is obtained if the i:th input

component vector is restricted to be a function of cer-

tain specified outputs. Let y; = Cix, i=1,2, ..., 9,

denote g sets of output variables to (7.1) where C; is
. T T T T

an r;xn matrix. Moreover, let u~ = [u] LIS uq] be a

partition of the control vector into an appropriate set

of g subvectors. A control of the form

z K:Cix + vy i =1, 2, «v., q (7.4)

j=1
1

will be referred as a control with a multiple constrained

feedback structure. It is easily verified that local as

well as hierarchical types of control systems are inclu-
ded in this formulation. Notice that the control (7.3)
is a special case of (7.4) with q = 1. An illustration

of the two concepts is given in Fig. 7.1 and Fig. 7.2.

A common way to do the kind of reductions considered here
is to simply neglect those entries of the state feedback

matrix that are "small" in comparison with the others.

There are, however, several difficulties involved in such
a procedure, and it requires frequently a fairly deep un-
derstanding of the process dynamics. Moreover, there is
no rational way to "compensate" the remaining entries for
the approximations made. The approach of this paper will
instead be to construct a certain subspace of the state
space where the reduction is made. In this way the "com-
pensating" problem is avoided and converted to the prob-

lem of finding the appropriate subspace.



> - Process >

Controller je—

Fig. 7.1 - A system controlled via single constrained

feedback structure.

Subprocess

i 2
23 lzl'
<
Local Local
controller controller
1 2

Fig. 7.2 - Two coupled systems controlled via multiple

constrained feedback structure, where

y? = [z? zg zg] and yg = [z? zg zg] in (7.4).




Invariant eigenspaces.

Let A be an arbitrary nxn matrix and let A = {Aq, Ao

NN Ap} be a given subset of eigenvalues to A.

Assume that A is a symmetric set, i.e. if X € A then al-
so A € A, where the bar indicates complex conjugation.
First consider the case when A is cyclic, i.e. there are
n linearly independent eigenvectors to A. Then an inva-
riant subspace is simply obtained from the eigenvectors

aqs @gs nees Ay corresponding to A, i.e.
Q = [a1 ay v ap] (7.5)
is a basis matrix for the eigenspace.

If A is non-cyclic the concept of generalized eigenvec-

tors is introduced. Let A; be an eigenvalue of multipli-
. . . 1 2
city o; > 1. The generalized eigenvectors R R

agi corresponding to A; are then defined as the nontri-

vial solutions of

1t
(o]

N1
(A-AiI)ai

1
o
-
-
n
™~
-
w
Q

k
(A—AiI)ai

The basis for the eigenspace is then constructed accor-
ding to the following rule. If ai is selected, then a?,
k=1, 2, ..., %=1, must also be selected as members of
the basis if an invariant subspace is to be obtained.
In this way an invariant eigenspace can be constructed

corresponding to any set of eigenvalues to A.

Finally, observe that since Ao 1s assumed to be a symmet-
ric set and A is assumed to be real, a real basis for

the eigenspace is obtained by taking




Q = [ay a, ... a3 Ré{aé+1} Im{ag, 1} Refa , o}...] (7.6)

e um t e
where aqs Ay, » &g are assumed to b eal and agyqo

ag 400 . ap are assumed to be complex. For any pair.
A, A belonging to A then choose Re{a}, Im{a} as members
of the basis where a is the eigenvector corresponding
to A. In this way complex arithmetic is avoided in the
sequel, and is only needed in the eigenvector calcula-

tion.

Pseudo inverses.

Let M be an arbitrary real matrix. The pseudo inverse
14
M

tions:

of M is then defined by the following four condi-

1wt out o2 ot

2° MMM =w

3° My is symmetric

4© MM s symmetric

It is shown in [18] that MT is uniquely defined by these

conditions. Numerical algorithms exist to find such in-

verses, see for instance [10].

The pseudo inverse has some nice properties in minimi-

zation on inner product spaces. Consider thevequation_
Mx = y

which shall be solved for x. Then Xg = M+y has the fol-

lowing properties:




Xy minimizes ||[Mx - y || where || .

| denotes the

ordinary euclidian quadratic norm,

2° amongst the possible candidates for the minimum

of [[Mx -y ||, Xy is the one that minimizes || x IE

7.2. Control Approximation.

Assume that a state feedback control is given. This con-
trol is then replaced with a "similar" control with a
predefined feedback structure. It is shown that this

can be done in such a way that a certain number of ei-
genvalues remain invariant (mode preservation). Since
there is an upper bound on the number of invariant ei-
genvalues a different reduction is also given which mi-
nimizes a weighted shift of the éigenvalues (mode weight-
ing). Controls of derivative types and other dynamic com-

pensators will be considered at the end of the section.

Mode preservation.

Consider the system (7.1) with the control (7.2). The

closed loop system becomes
x = (A+BL)X + Bv (7.7)
We will attempt to replace the control (7.2) with a si-

milar control of the multiple constrained form (7.4).

For this control the closed loop system becomes

q
o *
X = (A + iz1 B;KiC; Ix + Bv (7.8)




where B = [B1 By v Bq] is a partition of the input
matrix compatible with the partition of the control
vector in (7.4). Moreover, the reduced control law
shall be selected so that some dominant properties of

(7.7) are preserved in (7.8).

Partition the state feedback matrix as

where Li is m; xn. Then if Kici = Li have solutions K;
for 1 =1, 2, ..., q, the exact and the reduced con-
trol laws would be identical. However, such solutions
Parély exist, and therefore approximations must be made.
The following theorem describes one rational way to do

such approximations.

Theorem 7.1. Let A = {A1,A2,...,Ap} be a symmetric set
of eigenvalues to A+BL and let Q be a real basis mat-

rix for the corresponding eigenspace. Then if
K;C.Q = L;Q (7.9)

have solutions K; for i = 1, 2, ..., q, then A is also

a set of eigenvalues to

q
*
A+ ] B KIC,
i=1

Moreover, if T = [Q Q] where the colums of Q are any
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set of vectors that extend the columns of Q to a basis

in R™ then

0 0
. Ay Ay,
771 (A+BLIT =
0
0 A%
and

0
A11
-1 4 *
T A+ z B.K.C yT =
. itivi
i=1 J
0
where
k% -
ALi = Kici Ll T
Proof. Introduce AO = A+BL and
* 4 ES
Ay = A+ Z ByKICy

From (7.9) we have

q
A+
i=1

H o~ 0

B.Kfc.]w - (A +
1 1 1
1=1

B.

0 E 1 *
Ay * I BjaL;Q
1=1
q
0 2 %A
Agp *+ 1 BiaL;Q
1="

B

1
B, =

B2

1

L.]w = (A+BL)w
)

(7.10)

(7.11)

(7.12)

for any w € {Q}. Since {Q} is A invariant by construc-
tion, it follows from (7.12) that {Q} is also AS inva-



riant and AOQ

vectors that e

Choose T = [Q
v

e ]
V)

We then have

VA_Q
-1 0
T AOT =

0

1 VAZQ

e
T AOT =

0

The set of eigenvalues

then follows +

Moreover, we h

o R
VAGQ = VA,Q +
_ .0

= A12 + V
and in
Soxn
VAOQ = A22 +

the same way

AgQ. Let the columns of é’be any set of
Xxtend the columns of Q to a basis in RD,
Q] and write

0 0
VA4Q (A11 Aty
. { (7.13)
. a 0
74,0 0 AY,
VAXG Al VAXE
0% 11 0@
- (7.11)
N —
VAYG 0 VAZQ

of A$1 equals A. From (7.1y4) it
hat A is also a set of eigenvalues to Ag.

ave

q
* A -
V(.Z BiKiCi - LJQ =
1=1
q . . o a .
L Bi(KYC,-1)Q = A9 + I BjaLYQ
1=1 1i=1




Remark 1. A real basis for the eigenspace can be con-
structed from the eigenvectors as was described in Sec-
tion 7.1, cf. (7.6).

Remark 2. A comparison between the matrices (7.10) and
(7.11) clearly illustrates the kind of approximations
that are made. The upper left block corresponding to
eigenvalues A are identical in both systems. The re-
maining blocks are changed by an amount depending on
ALz, i.e. the difference between the exact and the re-

duced control laws.

Remark 3. The remaining eigenvalues of A+BL are diffe-
rent from those of A+BK™*C. Observe, however, that the
effect of the approximations is' only localized to the
part of A+BL that contains the less dominant modes. The
case when the approximations still cause an unaccept-

able change in the system is covered below.

Remark 4. Theorem 7.1 also yields an algorithm for pole
assignment via output feedback. It has been shown in

[5] that if rank C = r, then a symmetric set of eigen-
values may be "almost" freely assigned. If a state feed-
back matrix L has been found so that r eigenvalues to

the closed loop system take some prescribed values The-
orem 7.1 may be used to find a corresponding output feed-

back matrix (assuming (7.9) is solvable).



Mode weighting.

The condition that (7.9) shall be solvable for K; gives
an upper bound on the number of eigenvalues that can be
held fixed. This bound mostly equals r;, i.e. the number
of measured variables, One trivial exception is C = L,
where K = I preserves all the eigenvalues. It may, how-
ever, still happen that some of the remaining eigenvalues
‘move to undesired locations in the complex plane. The so-
lution to this problem is to include a larger number of

eigenvalues looking for least square solutions of (7.9).
- Introduce the matrix norm

1/2
M) = (oo’

valid for an arbitrary real matrix M.
Consider first the case when there is more than one so-

lution to (7.9). Let Rys 1215 2, vuuy q, be nonsingu-

lar r.xr, matrices. Then one solution is given by

* -1 t5-1
Ki = LiQ(Ri CiQ) Ri (7.15)

Moreover, this solution is the one that minimizes the
norm HKi R; ||s i.e. a solution with small feedback
gains is selected. The matrices Ri are used to scale

the output variables.

Consider now the opposite case when there is no solu-

tion of (7.9). We may then attempt to minimize the norm
. C.Q - L.
Il (%;¢;Q - L; QW | (7.16)

where W is a nonsingular pxp matrix. In fact the minimum




is obtained by taking

* _ +
Ki = LiQW(CiQW)

Now remember the special choice of basis that is made in
(7.6), i.e.

Q = [a1 a, .+ ags Refa_ 4} Imfag 4} Refag ) ...  (7.17)
where ap is the eigenvector corresponding to Xk’ If we
choose W = diag(w1, Wos +ees wp) where Wy # 0, (7.16)
may be rewritten as

2 > 2 2
[| (K;C;Q-L; QW |[© = k§1 wk[KiCiak - Liay| (7.18)

From the last expression we see that a successive in-
crease in W, causes a successive better fit of the ei-
genvalue Ak in the closed loop system, cf. Theorem 7.1.
In this way W may be interpreted as a weighting matrix
for the eigenvalues we desire to hold fixed. This point

is further clearified by examples later.

Finally we observe that (7.15) and (7.16) may be com-
bined to

_ -1 to-1
Ki = LiQW(R; C,QW) R; (7.19)



Proportional and derivative control.

In some cases acceptable degree of stability cannot be

achieved by output feedback only. The classical way to

bypass this difficulty is to include derivatives of the
outputs in the feedback loop.

We will now permit a control of the form

u = K:y + X3Py (7.

where P is a given mxr matrix and y = Cx. Only the
single constrained case will be considered. The exten-
sion to the multiple constrained case is straightfor-
ward. In classical control terms the control (7.20) is
of PD-type. The derivative term will set some con-
straints on the quality of the measured signals, espe-
cially the presence of high frequency noise. This kind
of control has, however, turned out to be successful

in many applications.

By some simple manipulations the control (7.20) is
transformed to the standard form (7.3). Using (7.1) we

have

%

u = Kfy + KXPCx = K3

» Cx + K§Pc(Ax+Bu)

Assuming I -~ K;PCB is invertible the last expression

may be solved for u

* =1 %
(I—KQPCB) K1

o
1

Cx + (I-K3PCB)™'KPCAx

K

1

Cx + kZPCAx (7.

20)

21)




Now defining a new output vector y as

C.

X (7.22)
PCA

The equation (7.21) can then be rewritten as
u = [K1. KQ]CX = KCx (7.23)
The previous results can now be used to find an appro-

priate K. The feedback gains in (7.20) are then calcu-
lated as

*® ek ’
K} = (I-KIPCBIK, (7.24)
K* = K. (I+PCBK.)" (7.25)
2 2 2 :

The benefit of fhis kind of control is apparent from
(7.22) and (7.23). By having a larger portion of the
state available we are also,in view of the reduction
technique above, able to keep a larger number of ei-
genvalues fixed. Moreover, if rank {é} = n then the

reduced and the exact control laws become identical.

Compensators.

The derivative term above is one example of a dynamic
compensator which is introduced to improve the feed-
back properties of the system. More general types of
such compensators are sometimes desired. It is shown
below that dynamic compensators are easily introduced

into the design scheme described above.




Let SC be a dynamic system cascaded with the original

system as is shown in Fig. 7.3.

Compensator
u
— S Sc
y (8

Fig. 7.3 - A system with dynamic compensation.

As before, we assume that the control, which is to be

approximated;is a state feedback control on the origi-

nal system,i.e.

u = Lx (7.26ﬁ

Let the dynamics of S, be described by

(7.27)

The total system, including both the systems S and SC

cascaded as shown in Fig. 7.3, becomes

.
5
|
E
.



X A 0 X B
= + u
x BC A ||x 0
ol c c c L
(7.28)
y C 0 X
Ve DcC CC X
The state feedback control (7.26) can be written
X
u=[L 0] (7.29)
X
c

The purpose is now to approximate u with another control
“only using feedback from the available outputs which are
y and Var We have thus arrived at the same problem for-
mulation as above. The difference is that, by the com-
pensator outputs y the number of available outputs
have increased and consequently more eigenvalues can be
held fixed.

How shall then the compensator be chosen? In state space
terminology, a compensator is introduced to bring more
information about the state of the system. From above we

see that the system closed by state feedback is

A+BL 0

i.e. the eigenvalues of the enlarged system equals the
eigenvalues of A+BL and the eigenvalues of the compens-
tor Ac' The eigenvalues of AC will not remain fixed

during the approximation and should therefore be chosen




[Jyouey

far into the left half-plane. A reasonable choice of
compensator is to cascadde "important" output variables
with systems of the form s/(s+a) where ¢ is large enough.
Another possibility is to choose Sc as a low order state
estimator obtained from a reduced model of the system S,

Examgles.

Finally we will give some examples to illustrate the
ideas of this section. A more farreaching example is

considered in the next section.

1 2 1 0
X = X + u
_1 1 O 1)
-5 -1
u = X + v
2 -5

The closed loop system becomes

-4 1 1 0
X = X + \%

1 -y 0 1
and the closed koop eigenvalues equal A1 = -3 and AZ =
= -5. Assume we shall hold Ay = -8 fixed. The eigenvec-

tor corresponding to A1 is

Assume we permit a control of the form




This control is then of the muliple constrained typ (7.4).

The feedback structure becomes

uy = k1(1 0)x + vy
u, = k2(0 1% + v,
Solving (7.9) for i = 1,2 we have

j2q ATLTE
becomes vy = -3 and vy = -4, B
Example 7.2.
0 0 1 0
X = |0 1Tix +.10 Ofu
1 0 1 1
1 2 0
y = X
0 1 1




()

=

The closed loop system is

-2 -1 -1 10
x=10 0 x4+ |0 olv
0 -2 =2 1 1
The eigenvalues of A+BL are A 5 = -1+3 and Ay =
b

Assume we permit a feedback of the form

First we attempt to keep the eigenvalues 2 =

1,2
fixed. The corresponding eigenvectors are
0 0.5 0 0.5
a; = [-0.5| + j|-0.5 a, = [-0.5] - j|-0.5
1 0- 1 0

The basis matrix Q for the eigenspace is thensel

according to (7.8) as

0 0.5
Q= |-0.5 -0.5
1 0

Solving (7.9) for K we have

0.87 0.33
*k
KI =
-0.33 =-1.867

-2,

~1+3

ected




and the eigenvalues of A+BK;C are vy , = ~-1+3 as desired
3

and vg = 1.33. The third mode has become unstable and

therefore we include also this mode looking for least

square solutions according to (7.18) and (7.19),

The eigenvector corresponding to Ay = -2 is
1

as = 0
0

The basis matrix for the eigenspace then becomes

0 0.5 1
Q = |-0.5 -0.5 0
1 0 0

We choose the weighting matrix W as W = diag(1,1,0.1),
where a relatively small weight has been laid on Age

Using (7.19) we now have

K
I -0.32 -1.66

[o.su 0.32]

* =

and the closed loop eigenvalues are Vi o, = ~0.995:0.998]
3

and 1.28. The weight on the third mode was obviously too

small. Take instead W = diag(1,1,0.8). We then obtain

« -0.30 -0.15
K =
TLI 0.15 =-1.42
The closed loop eigenvalues are now Viop = -0.57£1.147
3
and v, = -0.73, which is considered to be satisfactory

in this case. The solution was obtained after a few ite-
rations by successively altering the weighting factors.

In the general case there is no guarantee that a satis-




T

factory solution can be obtained. However, if a satig-
factory solution is difficult to obtain by altering the

- weighting factors, this indicates that the system is

difficult to control with the prescribed feedback struyc-
ture., @

7.3. A Design Example.

A computer program for control reduction has been writ-
ten based upon Theorem 7.1 and the least Square solution
(7.19). This program has been used to find simple con-
trol strategies for a boiler. The starting point is here
a linear quadratic control law, which ig used to fit a
certain feedback structure. By simulations we show that
a reduction can be made without any significant decrease
in performance. In fact, the responses of the reduced
control system are very similar to the responses of the
system controlled by complete state feedback,

The linearized equations for a boiler around a certain
Operating point can be written

X = AX + Bu + Gv
y = Cx

where the state variables are

X4 = drum pressure (bar)

Xy = drum level (m)

X4 = drum liquid temperature (°C)
X, = riser wall temperature (°¢)

X5 = steam quality




The control variables are

uy heat flow to the risers (kJ/s)

u, feedwater flow (kg/s)

and the disturbances are
v(t) = load changes

Numerical values of A, B, C and G for a power station
boiler with a maximum steam flow of about 350 t/h are
calculated in [8] and are shown in Section 4.6. The
drum pressure is 140 bar. The operating point is 90% of
full load.

A state feedback matrix can be calculated using linear
quadratic theory. In [8] it is shown that the following

feedback matrix gives satisfactory responses.

-0.668x10" -0.418x10% -0.136x10% -0.137x10%  0.175x107

L = (7.30)
-0.803x107 -0.908x10° -0.486 -0.815 0.431x10"

The intention is now to replace the control u = Lx with

a simpler control using only output feedback, i.e.
u =K'y = K*Cx

where K* shall be properly chosen. In Section 4.6 the
boiler was analysed from an input-output point of view
using the poles and zeros of the system. It was shown
that the system has a favourable pole-zero configuration,
cf. Fig. 4.2. Therefore it can be expected that the boi-
ler can be satisfactorily controlled by oﬁtput feedback.




The eigenvalues of A+BL are

1

Ap = -0.490x10"

-1 . -1
Ay o = =0.755x10” '43.0.511x10
2,3
A, . = =0.14143+0.170x10 "
4,5 P13+ 0.

and they are shown in Fig. 7.h4a.

First we attempt to include only the three eigenvalues
A1’2,3 of A+BL having the least yeal part. Somewhat ar-
bitrarily we choose the corresponding weights as W =

= diag(1,1,1). Using (7.19) we have

0.92u4x10%  —0.3u7x108

(7.31)

H %

2 _g.827x10°

0.403x10
The eigenvalues of A+BK$C are shown in Fig. 7.4b. We ob-
serve that the relative damping of the neglected pair
AH,S = -0.141£0.017 has decreased in the reduced control
system. In order to increase the damping we include al-
50 AM,S in the solution and choose the weighting factors
as W = diag(1,1,1,0.2,0.2), where smaller weights have
been laid on 2 . The least square solution (7.19) be-

4,5
comes now

0.569x10°  -0.286x10°
Kip = 1 3 (7.32)
0.870x10 ~0.601x10

and the eigenvalues of A+BK;IC are as shown in Fig. 7.Hc.
As can be seen the damping of the second complex pair
has increased, but at the expense that the rightmost ei-

genvalue has moved somewhat nearer the imaginary axis. A




further iteration with W = diag(1,1,1,0.5,0.5) gives

~0.265x10"%  -0.263x10°
K;II = (7.33)
~0.167x10"  -0.528x10°

The corresponding eigenvalue configuration is shown in
Fig. 7.44d.

Simulations show that K;I is the most satisfactory choice
in this case. The output feedback matrix can be compared
with the corresponding elements in the state feedback
matrix (7.30) (the two leftmost columns). As can be seen
the feedback gains are slightly less in K;I’ but of the
same magnitude. However, the relations between the indi-
vidual feedback gains differ considerably. This is due

to the fact that compensations have been made in K;I for

the remaining columns in L.

In Fig. 7.5-6 the system is simulated with control laws
(7.30) and (7.32). Fig. 7.5 shows the responses for an
initial condition in drum level of 0.02 m and Fig. 7.6
the same responses for an initial condition in drum
pressure of 1 bar. As can be seen the difference between
the exact and the reduced control laws is astonishingly
small, indicating that a control only using feedback from

the measured variables will be sufficient in this case.




{a) &1ms {c) ®Ims
4 10107 + 107!
X X X
X Res Res
4 3% & } 3%
X .10 ~1x10
X X X
(b) N ®Ims (d) Im s
+ 1107 + w10
X X
L Re: X Res
w0 x-u‘m-' "
X X
X

Fig. 7.4 - The pole configurations for the exact and the

reduced control laws.

(a) exact control law (7.30)

(b) reduced control law (7.31)
(¢) reduced control law (7.32)
(d) reduced control law (7.33)
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5 - Responses for an initial condition in drum
level of 0.02 m.
exact control law

reduced control law
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Fig. 7.6 - Responses for an initial condition in drum
pressure of 1.0 bar.
——————— exact control law

reduced control law
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