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Smoothing for discrete time systems using operator factorization

Per Hagander

Abstract

Linear discrete time systems can be described using operators instead
of difference equations. For finite time interval the operators could

also be interpreted as large three dimensional matrices.

The covariances for a stochastic system are easily expressed in this
notation giving a neat solution to the smoothing problem by use of
the projection thecrem:

; = R Rﬁqy

XYy

Tt is then shown how Ry is triangularized by the Riccati equation so
that the estimate can be obtained from adjoint forward and backward

difference equations.




1. Introduction

The two approaches to linear estimation problems, the Wiener filter
using covariance functions and the Kalman filter directly using
difference or differential equations can be unified by use of the

Riccati equation.

In [ 2] #the continuous time linear control and estimation problems were
analyzed using operators in,fuﬁction spaces. The same technique is
applicable in the discrete time case. This is here demonstrated on
the smoothing problem. The projection theorem gives an equation in
covariance operators from which the difference equations are obtained
by operator factorization using the discrete Riccati equation. The
resolvent identity searched for by Kailath and Trost [ 3] is thus pre-

sented.

Althodugh the discrete time problems are conceptually simpler than
for conmtinuous time, the algebra is somewhat more involved. The one
step ahead predictor plays the role of the filter estimate and the
operator factorization contains a special direct term as well as the

forward and backward terms.




2. Operator notation

Consider the discrete time system

x(t+1) = ¢(t+1, ©)x(t) + v(t)

x(t ) = x
o o)

with the solution

t=1
x(t) = ¢(t,t I)x_ + 1 ¢(t,stDv(s)
oo
s=t
e}
where
t~1
T 9 (k+1,k)
k=g
o(t,s) = | I
0

(2.1)

The state of (2.1) at time t can be regarded as the value x(t) of

a function x on {to’to+1""’t1}' The difference equation (2.1) can

now be formulated using operators in a space X of such functions:

X = gx o+ Lv
with

n
g: R+ X

L: X+ X




Define in X the scalar product

t

. = 1 x?(t)xz(t)

giving the adjoint of L:

1

s=t+1

t
i X > X3z=0%, z(t) = 3
Define also the restrictions
T o X-RY ¢ Txo=x(t)
o’ ) o) o)
T X RY T,%x = x{(t,)
1 1 1

Some useful properties of these operators are now listed:

e} T L
o}

Tog

0

o g*-= TO(¢TL* + 1)

where ¢Tis regarded as a diagonal operator in X:

q: X>X:z=agx, z(t) = x(t+1)

giving

¢T(s,t+1)x(s)

L (the identity)

7 1 X+ Xz = ¢TX, z(t) = ¢T(t+1,t)x(t)

L has no inverse, but introduce the forward shift operator

(2.2)




(g-¢)L = I
and
L(g-¢) = I - gTO (2.3

o  Correspondingly

(- eHL¥ =1

(2.1)
and
I CHLESIPD S nr,
with
n T
h: R > X3 z = ha, z(t) = ¢ (t1+1,t+1)a
%
o h = T1(¢L + 1)
o (g-®)g =20
(@ -¢Dn = 0
o ¢L=qL-1I
A (2.5)

o L¢$ =1qg + gl - 1

¥t - ¥ 4 T, - I

Remark: Note that X could be reparded as a space of matrices with a

trace norm and the operators as three dimensional matrices .
L is then lower triangular, L* upper triangular and ¢ diagonal. L* is

the transpose of L using this interpretation.




3. Linear, stochastic, time discrete systems

The space X can be extended to contain stochastic processes generated

by linear systems driven by white noise. Let v and e of

x(t+1) = ¢x(t) + v(t), x(to) = X
(3.1)
y(t) = ox(t) + e(t)

be zero mean, independent white noise with covariances R,I and R2 (>0),
and let X have zero mean value, covariance Ro and be independent of

v and e. The operators L and g are directly generalized. A new scalar

product

©

) T
= E T x,(0)x,(1)

t=t
o

X, X

172

gives the same adjoints. Notice that the deterministic functions con-

stitute a subspace.

The covariance function, PX(t,S) of x is wellknown

¢ (t,s)R(s) s <t
PX(t,S) = { R(t) g =t
R(t)p" (s,t) s > t

with R(t) from

R(t+1) = oR(T)4. + R (3.2)

1
R(t ) = R
o o




Let R be the operator with.rx(t,s) as kernel. Thus
R, = L4R + R + Ry L¥
Using the shift operator q (3.2) gives

R, = kg | - 0R$T = (q-0IR(Q™'=0T) + ¢R(q™~47) + (g-6)ROT

RT =TR (3.3)
oo o

Now (2.2) - (2.4) and (3:3) give

R = I4R + R + R$'L = (T-gT )R + L6R + (T-gT RO T, + gR g =

X O 0] O

= IR, L™ + gR o* (3.1)
B o8 )

Using the matrix point of view this is obvious from

x = Lv + gx,




4, Smoothing estimate

Now find the best linear estimate x of x using {y(to),...,y(tqﬁ},
best meaning minimal error variance in each component ii(t). This

means find the best linear operator F with

Using the projection theorem F must satisfy

ny = FRY

where R___ and R_ have kernels r_ (t,s) and r (t,s).
Xy y Xy y

But (3.4):
T * ky 1
= e -
ny RX (LR1L + gROg Je

R = gRol + R, = e(LRqL*+ gRog*)eT‘+ R

\% e 2 2

Introduce P by

{P(to) = RO (4.1
P(t+1) = ¢P¢T + R1 - ¢P9T(9P9T + R2)—19P¢T
or
TP=RT
o 0 o
-1 -
R, = qPq ' - oPoL + ¢P9T<ePeT+R2) TopyT =

_ -1 T -
= (g-¢)P(q =¢7) + ¢P(q 1—qu) + (q-¢)P¢T + ¢P9T(6P6T+R2)—16P¢T




so using (2.2) - (2.4) as in section 3
R, = L4P + P + Py L* 4 L¢P6T(6P6T+R2)—16P¢TL*

giving

Ry = [(ePeT+R2)+eL¢PGT] (ePeT+R2>’1 [(6P6T+R2)+8P¢TL*6T]
ny = PGT+P¢TL*8T+L¢P6T(6PGT+R2)_1- [(6P6T+R2)+6P¢TL*9T]
Note that
y = [(ePeT+R2) + 6L¢P6T] u
means the invertible dynamical system
T
x(t+1) = ¢x(t) + ¢Po ult), x(tO) =0
y(t) = ex(t) + (6P8 4R DuCt)
Thus Ry invertible and
- ~1 T % T T, Ty T T
x = R Ry = {P(T+L )[ePs +R,+0P¢ L6 ] (8PO 4R ) +LIFE ]
[ope 4R +6P9 1. 67]~ Ty

2




Now use an identity for inverse dynamical systems analogous to the

one in [1] for the continuous time case:

T 1

1opeT(0poTer +o14pe )™ = [q-paspeT(0PO 4R )TIE] T (spe”(opoT+R, )]
= (q—¢+K6)_1K

with

K = ¢P6T(6P6T+R2)'1 (4.2)

Define ;p = (q—¢ﬂ(e)_1Ky or
xp(t+1) = ¢xp(t)+K(y(t)—exp(t)) = (¢-Ke)xp(t) + Ky(t), xp(to) =0
and vy(t,s) by P(t+1,t) = o(t+1,t) - K(t)e(t)

Thus using (2.5)

T T

~ ~ -1 % sk - -
X = xp + Pq 1L eT [6Pa +R2+6P¢TL eT] 1(epe +R2) [ePeT+R2+eL¢PeT] 1y

but

T, T *T, =1, T T T, T =1 Ty 1T
L% [oPo +R %Py Lo |~ (oPo +R,) = [a '=¢ +6 (sPo +R))™ 0Py | "6

-1
X = xp+Pq 1[q—1—¢T+eTKT] eT[eP6T+R2+eL¢P6T] 1y =
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T]_16T(6P6T+R2)_1 [I—e(q—w)_1K] y

» -1 -1
x_+P -
+Pa [q =v

>A<p+]5>q"1 [q'q—wT]'qu<ePeT

-1 ~
+R2) (y—exp)

Tt is now easily shown that xp(t) is the best one step ahead prediction

x(t]t=1) of x(t)
Surming up:
Theorem: The smoothing estimate of the system (3.71) is given by

x(t|t,) = x(t[t-1) + PCOACE-1) to<t<t,

where

%§<t+1|t> = ox(t]t=1) + K (1) = ox(t]t-1))

x(t |t -1) = 0
o O
gx(t—W) = (ko) A(E) + o' (6P6 4R [y(t)=ex(t] t-1)]

x(tq) =0

and P(t) and K(t) from (4.1) and (4.2) O

~N

Remarks : Tntroduce ¥ = x - x_ and ¥ = y- x !
E—— D P yP e D

1) X_(t+1) = yx = 4 v
(1) xp( +1) ¢xp(t) + Ky (t) ¢xp(t) + Kyp(t)
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Notice that

K = ¢P6T(6§6T+Rz)_1 - (¢—¢P6T(6P6T+R2)_1e)PGTR; - (<1>-1<e)PeTR'2"1
(11) % (t+41)=yx_(1) + wPO RL y(t)
2 P 2
Let P(t,s) be the covariance function of %
y(t,s)P(s) t>s
(iii) P(t,s) = [ P(t) t = s
P(t)wT(s,t) t<s
Now
. -1 _ t-1 _
X (1) = 1 p(t,9)P()0'R, y(s) = T o(t,s)P(s)8 (6Pe +R) 'Y (s)
P s=t 2 s=t P
o o
and
t
At=1) = 1 wT(s,t)eT(ePeT+R2)_1§ (s)
- P
s=t
Note that
Cov[y(t)|x(t)] = R,

, T
cOv[ypct)|x<t)] =6Pe” + R,

Define



Hence

(iv) x(t) = x(t|t,) = %P<t> + PIOA(E-T) =

-1 t

= I 9(t,8)B(S)y () + I P(t)wT(s,t)vm(s) -

s=t g=t
o

£-1 t

= 5 Y(E,8)P(s)y () + I P(t)wT(S,t)vm(s) -

s=t s=t
e}

t-1 t%

= I P(t,s)y (s) + I P(t,s)v (s)

s=t s=t
0

This last formula is the discrete time analog of the adjoint inter-

pretation by Kailath and Frost [3 eq 9 1.

12
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