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Abstract

This thesis deals with methods for handling resource constraints in em-
bedded control systems and real-time computing systems. By dynamic
feedback-based resource scheduling it is possible to achieve adaptability
and increased performance for these systems.
A feedback scheduling strategy is presented, which uses feedback from

plant states to distribute computing resources optimally among a set of
controller tasks. Linear-quadratic controllers are analyzed, and expres-
sions relating the expected cost to the sampling period and the plant state
are derived and used for on-line sample-rate adjustments.
A flexible implementation of model predictive control (MPC) tasks is

described. A termination criterion is derived that, unlike traditional MPC,
takes the effects of computational delay into account in the optimization. A
scheduling scheme is also described, where the MPC cost functions being
minimized are used as dynamic task priorities for a set of MPC tasks.
A method for optimizing the use of computational resources in a multi-

camera-based positioning system is studied. The covariance of the estima-
tion error is minimized, while meeting computation time constraints.
A novel predictor for delay control in server systems is introduced. The

predictor uses instantaneous measurements of queue length and arrival
times and is continuously updated as new requests arrive according to a
receding horizon principle. The predictor is evaluated in simulation and
by experiments on an Apache web server.
The MATLAB/Simulink-based simulator TrueTime is presented. True-

Time is a codesign tool that facilitates simulation of distributed real-time
control systems. TrueTime also supports simulation of wireless communi-
cation and resource constraints associated with wireless sensor/actuator
networks.
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Preface

Motivation

Embedded microcomputers have become an integral part of most mod-
ern engineering applications, and real-time control systems constitute an
important subclass of these embedded systems. One prominent example
is automotive systems, which contain many embedded ECUs (electronic
control units) used for various feedback control tasks, including engine
performance control, anti-lock braking, active stability control, exhaust
emission reduction, and cruise control.
Modern applications have strong requirements on resource optimiza-

tion, since reduced time-to-market and low manufacturing costs often are
decisive factors in the development process. As a consequence, processing
power often remains constant over long periods of time, while the pro-
cessing cost is constantly reduced. At the same time, the systems grow
continuously more complex and an increasing amount of functionality is
added to meet customer demands on performance. In addition, there is
a strong trend to use commercially available information technology and
commercial-off-the-shelf components also for embedded systems.
The resource constraints associated with embedded systems, combined

with non-optimized software components used for their implementation,
introduce non-determinism in the real-time system. For control systems
this is of particular concern, since timing variations induced by the imple-
mentation degrade the control performance. Adding to the non-determin-
ism is the fact that many embedded control systems are implemented
using distributed architectures, where the sensors, actuators, and control
functionality are located on different nodes in a communication network.
In highly safety-critical applications, such as nuclear power plants or

fly-by-wire systems, the main objective in the software design is to max-
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Preface

imize the determinism in order to guarantee predictable behavior. This
motivates the use of static design methodologies, including static cyclic
scheduling and time-triggered communication. For the majority of control
systems, however, the drawbacks of using a static design outweigh the
benefits. While the static techniques increase the predictability and al-
low for off-line guarantees, they are less resource-efficient and limit the
possibilities for dynamic modifications.
Applications of real-time computing have also gradually evolved from

closed embedded systems to complex, distributed, heterogeneous plat-
forms operating in unpredictable poorly modeled environments, such as
the Internet. One example in this category is modern web servers, for
which load and resource capacities are very difficult to predict. The use of
control-based approaches for modeling, analysis, and design is a promising
foundation to handle this uncertainty and obtain performance guarantees
for these systems.
The work in this thesis deals with methods to optimize performance

of control systems implemented on resource-constrained platforms and
methods to cope with uncertainties in real-time computing systems.
For resource-constrained embedded control systems, codesign of the

control and the real-time system is key. This makes it possible for con-
straints from the target platform to be taken into consideration in the con-
troller design and also allows for implementation techniques and schedul-
ing schemes tailored towards control systems to be developed.
One promising approach is to use feedback for resource allocation. By

treating the control performance as a quality-of-service parameter that
should be maximized, resources may be dynamically allocated to the con-
troller tasks based on measurements of actual resource consumption. As
opposed to the static design methodologies, this approach promises higher
control performance under given resource constraints and the possibility
to dynamically adapt to changing load conditions. The available resources
can be used more efficiently, allowing the use of cheaper hardware or the
addition of new functionality in existing products.
Integrated control and real-time system design requires simulation

tools tailored for these systems. Few tools exist that merge controller de-
sign and dynamic-system simulation with simulation of implementation
issues, such as real-time scheduling and network communication. To rem-
edy this situation, a tool that facilitates real-time control system develop-
ment within the MATLAB/Simulink framework has been developed.
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Contributions of the Thesis

Contributions of the Thesis

The thesis consists of two introductory chapters and six papers. This sec-
tion describes the contents of the introductory chapters and the contribu-
tion of each paper.

Chapter 1 – Background

The background chapter is outlined as follows. Section 1.1 treats issues
related to control system implementation, including the basics of sampled-
data control, real-time scheduling and communication, and controller tim-
ing. Motivated by these issues, Section 1.2 discusses various approaches to
codesign of real-time control systems. The concept of feedback scheduling
is introduced in Section 1.3. The main objective of feedback scheduling
is to optimize the overall performance of control loops implemented in
resource-constrained systems. Details are given in Papers I–III. An intro-
duction to control of server systems is given in Section 1.4, delay control
of web server requests being the topic of Paper IV. Finally, Section 1.5
gives an introduction to simulation tools for control and computer sys-
tems. The TrueTime simulator is introduced and two examples are given
to illustrate the tool. The TrueTime simulator is the topic of Papers V
and VI, and has also been used for evaluation of the methods proposed in
Papers I–IV.

Chapter 2 – Feedback Scheduling for Cooperative Robots

This chapter describes a larger feedback scheduling scenario, which has
been developed as a demonstrator within a national research program.
The application consists of two cooperating industrial robots balancing a
ball on a beam attached to the end-effectors of the robots. The example
is intended to demonstrate the application of feedback scheduling in a
complex setup and how it can be simulated using the TrueTime simulator.
The feedback scheduler modifies the sampling periods of the robot joint

controller tasks based on measurements of actual resource consumption
and mode changes. A heuristic feedback scheduling extension is described,
which incorporates the fact that the robot joint control loops are coupled,
i.e., that the performance of each individual joint is more or less important
for the overall performance of the robot.

13



Preface

Paper I

Henriksson, D. and A. Cervin (2005): “Optimal on-line sampling period
assignment for real-time control tasks based on plant state informa-
tion.” In Proceedings of the Joint 44th IEEE Conference on Decision
and Control and European Control Conference (CDC-ECC’05). Seville,
Spain.

A feedback scheduling strategy is presented, which uses feedback from
plant states to distribute computing resources optimally among a set of
controller tasks.

Contributions Linear-quadratic controllers are analyzed, and expres-
sions relating the expected cost to the sampling period and the plant state
are derived and used for on-line sample-rate adjustments. In the case of
minimum-variance control of multiple integrator processes, an exact ex-
pression for the optimal sampling periods is obtained. In the general case,
the cost functions are linearized to facilitate on-line optimization. The ap-
proach is exemplified on a set of controllers for first-order systems.
The paper was developed in close collaboration with Anton Cervin.

Paper II

Henriksson, D. and J. Åkesson (2004): “Flexible implementation of model
predictive control using sub-optimal solutions.” Technical Report ISRN
LUTFD2/TFRT--7610--SE. Department of Automatic Control, Lund
Institute of Technology, Sweden.

A flexible approach to real-time implementation and scheduling of model
predictive controllers is presented.

Contributions The control signal in model predictive control (MPC) is
computed by on-line optimization of a cost function in every sample. The
iterative nature of the control algorithm allows for a trade-off between
computational delay and the quality of the obtained control signal. The
trade-off is quantified by a delay-dependent termination criterion render-
ing a sub-optimal, yet stabilizing, MPC formulation. Unlike traditional
MPC, the effects of computational delay are taken into consideration in
the optimization. A dynamic scheduling policy based on the MPC cost
functions is also described.
This paper represents joint work with Johan Åkesson. Åkesson pro-

vided the tools used for implementation and analysis of the MPC con-
troller. Henriksson conducted the real-time simulations, using the True-
Time simulator. The delay compensation and dynamic scheduling schemes
were developed in close collaboration between the authors.
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Contributions of the Thesis

Related Publications The paper is an extension of the following con-
ference papers

Henriksson, D., A. Cervin, J. Åkesson, and K.-E. Årzén (2002): “Feedback
scheduling of model predictive controllers.” In Proceedings of the
8th IEEE Real-Time and Embedded Technology and Applications
Symposium. San Jose, CA, USA.

Henriksson, D., A. Cervin, J. Åkesson, and K.-E. Årzén (2002): “On
dynamic real-time scheduling of model predictive controllers.” In
Proceedings of the 41st IEEE Conference on Decision and Control.
Las Vegas, NV, USA.

Paper III

Henriksson, D. and T. Olsson (2004): “Maximizing the use of computa-
tional resources in multi-camera feedback control.” In Proceedings of
the 10th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2004). Toronto, Canada.

A method for optimizing the use of computational resources in a multi-
camera-based positioning system is presented.

Contributions The proposed method exploits the trade-off in a track-
ing algorithm between computing time and the accuracy of the produced
position/orientation estimates. A simplified equation for the covariance of
the estimation error is calculated and an efficient algorithm for selection
of a suitable subset of the available cameras is presented. The suggested
strategy is compared with heuristic algorithms and evaluated in simula-
tions capturing the real-time properties of the tracking algorithm and the
effects of the timing on the performance of vision-based control systems.
This paper represents joint work with Tomas Olsson. Olsson has de-

veloped the tracking algorithm and provided the tools used for simulation
of the vision system. Henriksson connected the vision simulation to the
TrueTime tool to conduct the real-time simulations. The resource alloca-
tion strategy and the paper were developed in close collaboration between
the authors.
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Paper IV

Henriksson, D., Y. Lu, and T. Abdelzaher (2004): “Improved prediction
for web server delay control.” In Proceedings of the 16th Euromicro
Conference on Real-Time Systems (ECRTS 04). Catania, Sicily, Italy.

A delay predictor for QoS control in web servers is presented.

Contributions Prediction using queuing theory applies only to long-
term averages and is therefore insensitive to sudden load changes. In-
stead, the proposed predictor uses instantaneous measurements of ar-
rival times and queue length to predict future delays of the requests in
the server. The proposed strategy is evaluated in simulation and by ex-
periments on an Apache web server. It is shown that the new predictor
performs better than previous approaches based on queuing theory.
This paper represents joint work with Ying Lu and Tarek Abdelza-

her and was performed during a research stay at University of Virginia.
Abdelzaher and Henriksson developed the delay predictor. Henriksson
conducted the simulations, whereas Lu conducted the experiments on the
real test-bed. The paper was written in close collaboration between all
authors.

Related Publications

Abdelzaher, T., Y. Lu, R. Zhang, and D. Henriksson (2004): “Practical
application of control theory to web services.” In Proceedings of the
American Control Conference. Boston, MA, USA.

Paper V

Henriksson, D., A. Cervin, and K.-E. Årzén (2003): “TrueTime: Real-time
control system simulation with MATLAB/Simulink.” In Proceedings
of the Nordic MATLAB Conference. Copenhagen, Denmark.

The codesign tool TrueTime, for simulation of distributed real-time control
systems, is presented.

Contributions The simulator is based on MATLAB/Simulink and al-
lows for co-simulation of controller task execution in real-time kernels,
network communication, and continuous-time plant dynamics.
The simulator represents joint work with Anton Cervin and has been

designed in close collaboration between the authors. Henriksson has im-
plemented the major parts of the TrueTime real-time kernel block, where-
as Cervin has implemented the major parts of the network block. The pub-
lications have been written in close collaboration between the authors.
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Related Publications

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén (2003):
“How does control timing affect performance?” IEEE Control Systems
Magazine, 23:3, pp. 16–30.

Henriksson, D., A. Cervin, and K.-E. Årzén (2002): “TrueTime: Simula-
tion of control loops under shared computer resources.” In Proceedings
of the 15th IFAC World Congress on Automatic Control. Barcelona,
Spain.

Henriksson, D. and A. Cervin (2003): “TrueTime 1.1—Reference manual.”
Technical Report ISRN LUTFD2/TFRT--7605--SE. Department of
Automatic Control, Lund Institute of Technology, Sweden.

Henriksson, D., O. Redell, J. El-Khoury, M. Törngren, and K.-E. Årzén
(2005): “Tools for real-time control systems co-design—a survey.”
Technical Report ISRN LUTFD2/TFRT--7612--SE. Department of
Automatic Control, Lund Institute of Technology, Sweden.

Paper VI

Andersson, M., D. Henriksson, A. Cervin, and K.-E. Årzén (2005):
“Simulation of wireless networked control systems.” In Proceedings of
the Joint 44th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC’05). Seville, Spain.

Extensions to the TrueTime tool aimed at wireless networked control sys-
tems are presented.

Contributions Support for simulation of wireless communication pro-
tocols and propagation of radio signals is added together with new means
to simulate battery-powered nodes and local clocks. The additions open
up a wide range of new application types for simulation, such as teams
of collaborating or competing mobile robots interacting with their envi-
ronment. Another example could be sensor networks with mobile or sta-
tionary nodes communicating via wireless ad-hoc networks and, through
a gateway node, to back-end servers using wired networks.
The implementation of the new TrueTime features has been performed

by Martin Andersson. The simulation models and the paper were devel-
oped in close collaboration between all authors.
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1

Background

1.1 Issues in Control System Implementation

The advances in microelectronics, and the increasing speed of microproces-
sors during the last 30 years, have led to a situation where today almost all
control algorithms are realized by computers. The computer-based control
systems usually rely on modern real-time technologies for their imple-
mentation, including real-time operating systems and kernels, real-time
programming languages, and real-time communication networks. How-
ever, the rapid evolution of electronics has led to a situation where im-
plementation issues, such as real-time scheduling, are often dismissed as
non-problems.
In the early days of computer control, implementation issues related

to the computing hardware were well-known problems among control en-
gineers [Hanselmann, 1987]. Memory was scarce and the computational
performance and accuracy were limited. This forced the system designers
to have a tight coupling between the control design on one hand, and its
real-time implementation on the other.
For embedded control systems, the resource constraints are still pre-

sent. Today, these constraints mainly stem from economic considerations
and increased complexity. Tight product demands require the hardware
cost proportion to be minimized. At the same time, the evolution of soft-
ware makes it possible to realize more and more control-related function-
ality in different products. Hence, resource scheduling and its effect on
performance is an important issue for embedded control systems.
Networked solutions in control system implementation are also becom-

ing more and more common. Introduction of distributed sensing, actua-
tion, and control computation has a lot of advantages, such as increased
computational power, reduced cabling costs, and improved data integrity.
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Background

A-DD-A
Controller

Algorithm

Process SensorActuator
y(t)u(t)

u(k) y(k)

Figure 1.1 Schematic diagram of a computer-controlled system.

On the other hand, networking also increases system complexity and in-
troduces the communication bandwidth as yet another shared resource.
Resource constraints can also occur in more non-traditional applications,
such as wireless distributed systems, where power and communication
channel constraints affect the control system design.
In the control community today, timing effects caused by the comput-

ing and hardware platform are generally not taken into account in the
controller design. The basic assumptions made in the control community
do not hold when implemented in resource-constrained systems, resulting
in timing non-determinism and degraded control performance.
This section briefly introduces concepts of computer-based control and

reviews implementation-related issues, including real-time scheduling
and schedulability analysis, real-time communication, and controller tim-
ing variations and their effect on the control system performance.

Traditional Sampled-Data Control

The basic structure of a computer-based control system is shown in Fig-
ure 1.1. The physical process under control is associated with a number
of sensors and actuators used by the controller. The controller execution
consists of three distinct operations executed in sequence: reading of the
sensors (A-D conversion), control signal computation, and delivery of the
control action (D-A conversion).
In the implementation, these operations are triggered by events, with

the predominant event trigger being system time. The continuous process
output, y(t), is most often sampled at regular time intervals and converted
to digital form, y(k), by an A-D converter. The control algorithm reads the
sampled process output and computes a control signal, u(k), that is con-
verted back to analog form, u(t), by a D-A converter. The D-A conversion
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is usually performed by keeping the output constant between conversions,
so called zero-order hold.
In the ideal situation, the input and output operations (the A-D and

D-A conversions) are periodic and perfectly synchronized, corresponding
to fixed sampling intervals and a constant input-output delay. This is re-
ferred to as conventional sampling. However, many other types of sampling
exist and can be analyzed from a control performance perspective. Exam-
ples include multi-rate sampling, multi-order sampling, non-synchronous
sampling, and random sampling [Kalman and Bertram, 1959]. Due to re-
source constraints and implementation effects, most control systems are
actually randomly sampled.
The control algorithm is often designed using sampled-data control

methods, e.g., [Åström and Wittenmark, 1997], with various degrees of
complexity. Common for all design methods, however, is that they assume
conventional sampling at equidistant time intervals and zero or constant
latency between the sampling and control signal actuation.
The sampling time is chosen in relation to the dynamics of the con-

trolled process and the required bandwidth of the closed-loop system. One
rule-of-thumb [Åström and Wittenmark, 1997] for sampling period selec-
tion in a digital control system is

0.2 ≤ ω bh ≤ 0.6, (1.1)

where h is the sampling interval and ω b is the bandwidth of the closed-
loop system.
Periodic control loops are usually implemented on top of a real-time

operating system (RTOS) or using a real-time kernel that gives support
for task decomposition and provides real-time primitives. The standard
implementation of a control task is given by the pseudo code in Listing 1.1.

Listing 1.1 A standard implementation of a periodic control loop.

t = currentTime();

LOOP

Read Inputs;

Calculate Control;

Write Outputs;

Update Internal States;

t = t + h;

waitUntil(t);

END
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The reading of inputs and writing of output signals normally corre-
spond to direct calls to external A-D and D-A conversion interfaces. How-
ever, it is also possible to have the sampling and actuation being per-
formed by dedicated tasks or interrupt handlers, in which case buffers
are used to communicate the values. In the case of a networked control
system the reading and writing of signals may also involve communication
with other nodes in the network. To minimize the input-output delay, the
control algorithm is often divided into two parts (CalculateOutput and
UpdateState), where the first part computes the control signal based on
current measurements and previous states. The second part then updates
the internal states of the controller for the next sample.

Real-Time Scheduling

Traditional real-time scheduling theory is concerned with the problem of,
given a set of tasks, finding an execution order that guarantees that all
tasks meet their timing constraints. Real-time scheduling algorithms fall
in two basic categories: static and dynamic scheduling.
Static scheduling [Locke, 1992; Xu and Parnas, 2000] is an off-line

approach, where an optimized execution order is determined once and
for all before the system is commissioned. This execution order is then
repeated cyclically at run-time. The main benefit of this approach is that
it is easy to analyze and thereby guarantee all timing requirements. The
main drawback is that the cyclic schedules may be very long and difficult
to derive. They also need to be re-calculated every time changes are made
to the real-time system.
In dynamic scheduling schemes, the decision of which task to run is

taken at run-time. The standard and still most commonly used dynamic
scheduling schemes were presented in the seminal paper [Liu and Lay-
land, 1973]. The schedulability theory is based on a hard real-time task
model, with all tasks being periodic and where each task, i, is character-
ized by the following parameters

• a fixed period, Ti,

• a hard deadline, Di, and

• a fixed and known worst-case execution time (WCET), Ci.

Fixed-Priority Scheduling. Fixed-priority preemptive scheduling is
the most common scheduling mechanism and is supported by all major
commercial real-time operating systems. In this approach, each task is
assigned a fixed priority value. During run-time, the ready task with the
highest priority gets access to the CPU. If a task with lower priority is
currently running, this task is preempted by the higher-priority task.
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For control tasks it is natural to assume that the relative deadlines, Di,
of the tasks are equal to their periods, Ti. In this case, the most common
priority assignment is the rate-monotonic assignment, where priorities are
assigned according to the periods of the tasks. The shorter the period, the
higher the priority. It is shown in [Liu and Layland, 1973] that this is an
optimal scheduling policy, i.e., if the task set is not schedulable using rate-
monotonic assignment it is not schedulable using any other fixed-priority
assignment.
Assuming a set of n tasks, the following utilization constraint gives

a sufficient condition for schedulability using the rate-monotonic priority
assignment:

U =
n
∑

i=1

Ci

Ti
≤ n(21/n − 1). (1.2)

In the more general case where Di ≤ Ti, deadline-monotonic priority as-
signment is optimal [Leung and Whitehead, 1982]. Here the priorities are
assigned according to the relative deadlines of the tasks.
For any fixed-priority assignment, an exact schedulability analysis can

be performed by computing the worst-case response time of each task
[Joseph and Pandya, 1986].

Earliest-Deadline-First Scheduling. Under fixed-priority scheduling
the priorities of the tasks are static and do not change during run-time.
An alternative approach is earliest-deadline-first (EDF) scheduling, which
uses a dynamic priority assignment based on the absolute deadlines of the
tasks. At any point in time, the task with the shortest remaining time to
its deadline will get access to the CPU.
EDF is more resource-efficient than rate-monotonic scheduling. A nec-

essary and sufficient condition for schedulability (given Di = Ti) is that
the utilization factor is below one:

U =
n
∑

i=1

Ci

Ti
≤ 1. (1.3)

A benefit of deadline-based scheduling over priority-based scheduling is
that it is usually more intuitive to assign deadlines to tasks than to as-
sign priorities. To assign priorities, global information about the relative
importance of all tasks in the system is needed, which is not required to
assign deadlines.
One drawback of EDF is that it offers no guarantees at all during

overload, in which case all tasks may miss their deadlines. For hard real-
time systems this can be fatal. However, the result of a permanent overload
situation under EDF, is that the effective periods of all the tasks are scaled
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in a fair manner [Cervin et al., 2002]. For reasonable overloads, this will
for many control systems still give acceptable performance.

Schedulability Analysis for Aperiodic Tasks. In many applications,
the assumption of only periodic tasks does not hold. An important example
is web server systems, which handle large volumes of aperiodically arriv-
ing requests. Individual requests are often associated with specific dead-
lines related to their quality-of-service (QoS) requirements. Motivated by
this, the derivation of schedulability bounds for aperiodic tasks has been
an active research area during recent years.
Schedulability bounds for aperiodic tasks were first presented in [Ab-

delzaher and Lu, 2001]. The bounds are based on a measure called syn-
thetic utilization, Uζ (t), defined as

Uζ (t) =
∑

i∈V ζ (t)

Ci

Di
, (1.4)

where Vζ (t) is the set of current tasks at time t, i.e., tasks that have
arrived but whose deadlines have yet to expire.
It can be proved that deadline-monotonic scheduling is an optimal pol-

icy for priority scheduling of aperiodic tasks. Using this assignment and
assuming n tasks, all tasks will meet their deadlines if, ∀t,

Uζ (t) < 1
2
+ 1
2n
, for n < 3

Uζ (t) < 1

1+
√

1
2(1− 1

n−1)
, for n ≥ 3

(1.5)

Real-Time Communication

Communication networks can be divided in two main categories with very
different characteristics: data networks and control networks. Data net-
works, such as Internet, shuffle large data packets with high irregularity,
high data rate, and low real-time requirements. Control networks, on the
other hand, instead send small packets regularly and with tight real-time
constraints.
Network communication introduces delays in the control system be-

tween the sensor, controller, and actuator nodes. Delays occur both in the
nodes, due to processing and queuing delays, and between nodes, due to
contention and transmission times. Collisions and resendings cause non-
deterministic communication delays, which depend on the chosen network
protocol.
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Three main types of medium access control (MAC) protocols used in
control networks can be identified: random access with retransmission of
collided packets, random access that uses priorities to avoid collisions, and
time-division multiplexing. For a review and comparison of protocols from
all these categories, see, e.g., [Lian et al., 2005].
Ethernet is the prime example in the first category and the dominat-

ing technology for local area networks, mainly because it is cheap, well
supported and can provide bit rates in the order of Gbits/second. Ether-
net, however, provides no real-time guarantees and collisions and random
back-off may give long and unpredictable delays. Switched Ethernet net-
works can be used to exploit the advantages of ordinary Ethernet, while at
the same time provide reliable communication with predictable real-time
behavior [Martinsson, 2002].
Random access with priorities is used in the Controller Area Network

(CAN), which has been adopted as one of the standards for real-time
communication in the car industry.
Time-division multiplexing protocols include the time-triggered pro-

tocol (TTP) and token-passing protocols. These protocols are based on
static communication schedules and are characterized by a high level of
predictability. On the other hand, the protocols are inflexible and the
schedules are hard to maintain and modify. Two recently emerging pro-
tocols in the vehicle industry, which aim at combining the time-driven
and event-driven communication architectures, are FlexRay [The FlexRay
Consortium, 2005] and TTCAN [CAN in Automation, 2005].

Wireless Sensor/Actuator Networks. A new class of communication
networks that has emerged during the last years is wireless sensor/actua-
tor networks. In such networks, a collection of small nodes are distributed
in an area and designed to achieve a common goal. The individual nodes
consist of tiny inexpensive computers that communicate with each other
and back-end servers using wireless transmissions and interact with their
environment through on-board sensors and actuators.
A common characteristic of these networks is that they usually have

severe resource constraints. In addition to resource constraints on CPU
speed, memory, and communication bandwidth, the nodes also have hard
constraints on the energy consumption. The nodes are battery-driven and,
in many applications, placed in remote or hostile regions, which makes
recharging of the batteries impossible.
These networks have so far mainly been passive, information-gathering

networks. Typical applications consist of surveillance and monitoring sys-
tems, and military applications, such as target tracking. In these ap-
plications, control techniques can be used to control the performance of
the sensor network itself. This includes trade-offs between conflicting ob-
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jectives, such as time constraints, power consumption, and information-
gathering capabilities. Another option is to close control loops over the
sensor/actuator network, which gives rise to other requirements than
the ones adopted in normal sensor network design. Matching power con-
straints against the real-time constraints imposed by closed-loop control
is a challenging problem.
Another issue in sensor/actuator networks is the choice of MAC layer

protocol for the wireless communication. Two frequently used MAC layer
protocols for wireless networks are the IEEE 802.11 WLAN [IEEE, 1999]
and IEEE 802.15.4 ZigBee [The ZigBee Alliance, 2004]. While WLAN has a
high bit rate, it lacks support for energy conservation. ZigBee, on the other
hand, is a standardized protocol aimed at sensor networks that conserves
energy by, e.g., avoiding idle listening. This is achieved by sacrificing the
real-time performance.
Communication protocols designed specifically for sensor/actuator net-

works are thus desirable. Successful design of sensor/actuator networks
also requires controllers and control design methods that are aware of the
properties of the communication links.
Another class of systems that relies on cooperation using wireless com-

munication is mobile ad-hoc networks (MANETs). One example is cooper-
ating mobile robots, such as the teams competing in the annual RoboCup
competition [The RoboCup Federation, 2004]. The resource constraints in
terms of computing, networking, and power are usually less strict for these
systems.

Temporal Non-Determinism

Computer-based control theory is based on idealized assumptions about
periodic sampling and constant control delays. However, for reasons out-
lined above, this can seldom be achieved by the practical implementation,
especially in resource-constrained systems.
Depending on the scheduling algorithm, the tasks experience different

timing characteristics as a result of interference from other tasks through
preemption. Another source of temporal non-determinism is blocking when
waiting for common resources. Further, the execution times of the control
tasks may be data-dependent or vary due to hardware features such as
caches. On the distributed level, the communication gives rise to delays
that can be more or less deterministic depending on the communication
protocol.
The resulting timing between the reading of the inputs and the gen-

eration of the outputs is crucial for the performance of the controlled
system. The timing variations introduced by the computer system may
lead to substantial performance degradation. The basic timing variations
experienced by control tasks are depicted in Figure 1.2. The solid verti-
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Figure 1.2 Timing non-determinism in periodic control loops (adopted from
[Cervin, 2003]). Sampling latency, Ls, input-output latency, Lio, and variations (jit-
ter) in these parameters degrade the overall performance.

cal arrows represent the periodic release times of the controller task. The
time instants for the A-D and D-A conversions are depicted by transparent
arrows and circles, respectively, cf. Figure 1.1.

Input-Output Latency. The delay between the sampling of the mea-
surement signal and the output of the control signal is called the input-
output latency, denoted Lio in Figure 1.2. Input-output latency is primarily
caused by preemption from higher-priority tasks, communication delays,
and by the execution time of the control algorithm itself. Separation of the
control algorithm into CalculateOutput and UpdateState parts, as shown
in Listing 1.1, can be used to reduce the input-output latency.

Jitter. The periodic task that implements the control algorithm is re-
leased at equidistant time instants, 0, h, 2h, . . ., where h is the sampling
interval of the controller. However, the scheduling may cause the actual
start of the task to be delayed some time. This time is known as the
sampling latency of the task, denoted Ls in Figure 1.2. Variations in the
sampling latency is called sampling jitter. Sampling jitter will also cause
jitter in the actual sampling period.
Another type of jitter is variations in the input-output latency, called

input-output jitter. This may, e.g., be caused by variations in the execu-
tion time of the control algorithm. For simple controllers such as PID-
controllers these variations are negligible, whereas more advanced algo-
rithms may have very large execution time variations.

Effects of Temporal Non-Determinism. The effects of temporal non-
determinism on control performance are often quite hard to analyze. Al-
ready the mapping from the real-time scheduling and communication pro-
tocols to the resulting timing properties of the control tasks is complicated.
The input-output latency can be modelled as a time delay at the input

of the plant, and has the same effect on the closed-loop system as a process
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delay. If not handled properly, the input-output latency may compromise
the overall system stability. Performance and stability criteria for systems
with time-varying delays are presented in [Lincoln, 2003].
Sampling jitter also has a negative effect on the control performance,

which is more profound for slowly sampled systems and systems with a
small phase margin. In that case, even small variations in the sampling
period may cause instability. An early work analyzing the effects of ran-
dom delays and random sampling in optimal control is [Davidson, 1973].
In most cases, a shorter but varying latency is better with respect to

control performance than a longer, but constant, latency. This is usually
true even if the latency is compensated for in the controller design.

1.2 Codesign of Real-Time Control Systems

Many of the assumptions made in the control and real-time scheduling
communities are either too restrictive or too idealized to describe the ac-
tual behavior of resource-constrained real-time control systems.
The hard real-time task model used in the real-time scheduling com-

munity does not capture the special requirements of control tasks. While it
might be true that most hard real-time systems are control systems, most
control systems are not hard real-time systems. For almost all controllers,
single missed deadlines are not critical for the system performance or sys-
tem stability.
On the other hand, the assumptions made in computer-based control

theory do not consider the effects of the actual implementation of the con-
troller as a task in a real-time system. The timing variations introduced
by the computer system are crucial for the performance of the control
system and must be taken into account at design time.
Consequently, one realizes that the development of real-time control

systems under resource constraints is essentially a codesign problem. For
optimal use of limited computing resources and for optimal control per-
formance, the controller design and the software design need to be inte-
grated. A definition of the control and scheduling codesign problem may
be stated as [Cervin, 2003]:

Given a set of processes to be controlled and a computer with
limited computational resources, design a set of controllers and
schedule them as real-time tasks such that the overall control
performance is optimized.
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To facilitate this development, new ways of thinking are required both
from the control and computer science perspectives. Codesign of controllers
and their real-time implementation can, thus, be covered by the terms
implementation-aware control and control-aware implementation.

Implementation-Aware Control

Implementation-aware control aims at developing methods that take im-
plementation issues and limited resources into account during the con-
troller design. This includes both synthesis techniques that compensate
for timing variations and analysis techniques that can be used to verify
the robustness against implementation effects.

Compensating Controllers. Timing non-determinism induced by the
implementation platform may be compensated for either off-line, based on
knowledge of the timing variations, or on-line, based on measurements of
the actual variations.
Compensation for time-varying delays in distributed systems is treated

in [Nilsson et al., 1998]. Models of network delays are studied and analyzed
and compensating controllers are developed. This work is based on time-
stamping of packets, which means that the length of past time delays
between controller and actuator and between sensor and controller are
known to the controller.

Temporal Robustness. Robustness against parameter variations and
structured uncertainties has been an active research area during recent
years and a number of design methods for robust control have been devel-
oped [Zhou and Doyle, 1998]. However, theory for handling uncertainties
related to the implementation is not nearly as well developed.
By temporal robustness is meant robustness against timing variations,

e.g., how much sampling and input-output jitter that can be tolerated
before losing stability. Such information can then be used to verify that
the performance of a chosen computing and communication platform is
sufficient for the control applications.
Robustness against constant input-output latency is covered by the

classical phase and delay margins. [Cervin et al., 2004] exploits stability
results in [Lincoln, 2003] to develop the jitter margin, an extension of the
classical delay margin to the case of time-varying delays. The results do
not cover sampling jitter, however. Approximate models for linear systems
with sampling jitter are treated in [Boje, 2005].
The Jitterbug tool [Lincoln and Cervin, 2002] can be used to perform

stochastic control performance analysis under various timing conditions.
Robustness to input-output delay, sampling jitter, output jitter, lost sam-
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ples, period overruns, and aborted computations can be evaluated in terms
of both performance and stability.

Control-Aware Implementation

Approaches to control-aware implementation include hardware solutions,
models of computation, real-time scheduling algorithms, and implementa-
tion techniques tailored to the special needs of control systems. This can
be approached using either static techniques, which aim at maximizing
the determinism, or by dynamic techniques, where timing variations are
compensated for on-line.

Maximization of Determinism. The temporal non-determinism can
be minimized by certain choices of implementation techniques and plat-
forms. These include time-driven architectures such as TTA [Kopetz, 1997]
and synchronous programming languages such as Esterel, Lustre, and
Signal [Halbwachs, 1993]. The embedded systems programming model
Giotto [Henzinger et al., 2001] combines time-triggered I/O with dynamic
real-time scheduling of the computations. These techniques have the ben-
efit that they minimize, or even remove, the jitter and keep the input-
output latency constant. This simplifies controller design and analysis as
well as the verification process for safety-critical applications.
The controllers may also be implemented to remove the jitter by per-

forming the sampling operation in a dedicated high-priority task, and by
always delaying the output to the end of the period. This will introduce
a constant one-sample delay in the system, which then can be compen-
sated for in the controller design. However, as shown in [Cervin, 2003],
the compensation may only recover part of the loss introduced by the ex-
tra input-output latency. Therefore, designing and compensating for the
worst-case input-output latency may not always be a viable option.
One approach to prevent scheduling-induced input-output delay and

jitter could also be to use non-preemptive scheduling. With the increasing
speed of modern computers it can be argued that the relative execution
times of different tasks will become smaller and smaller, thus making this
approach realistic also from a schedulability point-of-view.

Task Models and Dynamic Scheduling for Control Tasks. In the
hard real-time task model it is assumed that it is imperative for system
correctness that all tasks complete before their deadlines, and that miss-
ing single deadlines may have catastrophic consequences for the controlled
system. On the other hand, in the soft real-time task model any number
of deadlines may be missed without being considered a failure.
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However, control system can in most cases neither be said to be hard
nor soft. A more fitting term used to describe real-time control tasks is
adaptive [Bouyssounouse and Sifakis, 2005]. A real-time task is said to be
adaptive if missing one or more deadlines does not jeopardize the correct
system behavior, but only causes a performance degradation. Taking this
approach to modeling control tasks allows the control performance to be
viewed as a quality-of-service measure, quality-of-control (QoC).
Other task models that can be suitable for control systems are subtask

models and the imprecise task model. The subtask model is motivated by
the natural division of a standard control algorithm in a CalculateOut-
put and an UpdateState part. Several subtask scheduling models have
been proposed in the real-time scheduling community. A control-oriented
approach is taken in [Cervin, 1999], where by scheduling the Calculate-
Output and UpdateState parts separately, the input-output latency can
be minimized, thus, improving performance. Similar ideas are presented
in [Balbastre et al., 2004], where subtask scheduling is used to minimize
jitter. The imprecise task model for control tasks is treated in Section 1.3.
The aperiodic task model may also be considered in the case of event-based
sampling for control systems.
The concept of server-based scheduling has recently gained much in-

terest in the real-time scheduling community. The constant bandwidth
server (CBS) [Abeni and Buttazzo, 1998] conceptually divides the CPU
into a number of virtual sub-CPUs with given capacities. The CBS then
guarantees that tasks running in the virtual CPUs never consume more
than the alloted capacity. The control server, an extension of CBS tailored
for control tasks, is presented in [Cervin, 2003]. A control server creates
the abstraction of a control task with a specified period and a fixed input-
output latency shorter than the period. The control server model is well
suited for codesign in that the single parameter linking the scheduling
design and the controller design is the task utilization factor.
Another approach to dynamically compensate for timing variations in

order to optimize control performance, is by means of feedback in the real-
time system—feedback scheduling. Feedback scheduling is an approach to
achieve flexibility in the run-time scheduling of control tasks. The objec-
tive is to optimize the control performance for control loops under resource
constraints. In feedback scheduling, the available resources are scheduled
dynamically based on measurements of actual timing variations and con-
trol performance. An introduction to the feedback scheduling concept will
be given next.
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Feedback
scheduler Tasks Resources

Feedforward

Feedback

Figure 1.3 A general feedback scheduling system. The scheduler adjusts the tasks’
demands based on feedback from the current use of critical resources. The tasks may
also inform the scheduler that they are about to consume more resources (feedfor-
ward).

1.3 Feedback Scheduling

A characteristic property of feedback is that it can be used to reduce the
effects of disturbances and to deal with uncertainties. The idea of feed-
back scheduling is to use feedback to master uncertainty with respect to
resource scheduling, such as variations in task execution times. A general
feedback scheduling system is shown in Figure 1.3. The idea is to feed back
the actual use of critical resources to the scheduler and to continuously
adjust the tasks’ demands of resources according to the current situation.
The reactive feedback may also be combined with proactive feedforward,
for instance, task admission control schemes and corrections due to task
mode changes.
Feedback scheduling is not suitable for tasks of truly hard nature, since

transient system overloads will cause some tasks to miss deadlines before
corrections are taken based on the feedback. Instead, feedback scheduling
is primarily intended for tasks of soft or adaptive nature. As described
above, most control applications fit into this category of tasks.
Feedback scheduling is closely related to quality-of-service approaches

for soft real-time activities, such as multimedia applications. Some efforts
have actually been made to treat the control performance as a quality-of-
service parameter, and to specify reasonable ranges for the performance
metrics, including rise times, overshoots, and steady-state variances [Ryu
and Hong, 1998]. In this framework, the on-line resource negotiation can
then, e.g., be specified using contracts [Eker and Blomdell, 2000] relating
the control performance to the available resources. Quality-of-control ap-
proaches based on quadratic cost functions related to time-varying delays
and periods is the topic of [Sanfridsson, 2004].
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Another example is [Abdelzaher et al., 2000], which considers quality-
of-service negotiation in flight control systems. Here task periods and
deadlines are treated as negotiable parameters between tasks in the sys-
tem, allowing graceful quality-of-service degradation under conditions
where traditional schedulability analysis fails.

Feedback Scheduling of CPU Resources

A feedback-based scheduling algorithm called Feedback Control EDF (FC-
EDF) is presented in [Stankovic et al., 1999; Lu et al., 1999]. The ob-
jective is to regulate the deadline miss-ratio for a set of tasks using a
PID-controller that applies changes to the CPU utilization of the tasks.
The approach is extended in [Lu et al., 2000; Lu et al., 2002] to control
the CPU utilization instead of the deadline miss-ratio and to improve the
transient performance.
An adaptive rate control mechanism based on an elastic task model is

presented in [Buttazzo et al., 1998]. The task period adjustment is based
on elasticity coefficients, ei, related to the utilization factors of the tasks.
The utilization of each task is conceptually viewed as the length of a spring
with rigidity coefficient, 1/ei.
Feedback can also be used in connection with reservation-based sche-

duling implemented using task servers, such as the constant bandwidth
server. [Abeni et al., 2002] develops a mathematical model of a reservation-
based scheduler and uses it to design a PI-controller that dynamically
assigns bandwidths to a set of constant bandwidth servers. Stochastic
control of reservations is the topic of [Cucinotta et al., 2004], where the
scheme is also evaluated in an implementation in a Linux kernel. A
hybrid-control approach to adaptive reservations is presented in [Palopoli
et al., 2003].
Other feedback-scheduled resources than the CPU time may also be

considered, such as network bandwidth or memory allocation. An ap-
proach to achieve adaptive garbage collection (GC) and incorporate GC
scheduling into a general feedback scheduling framework is presented in
[Gestegård Robertz, 2003].

Feedback Scheduling of Control Tasks

Some control algorithms are associated with highly varying execution
times. Examples include model predictive controllers and controllers that
switch between different modes. For these control schemes, the execution
time variations are inherent in the algorithms. Other sources to variations
may be data-dependencies or specific hardware features.
Varying execution times make traditional task scheduling infeasible.

Algorithms such as rate-monotonic and earliest-deadline-first are both
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open-loop scheduling algorithms, in the sense that the schedulability re-
sults are obtained off-line, assuming complete knowledge of the task pa-
rameters.
Since the execution time may vary significantly, the main limitation

lies in the assumption of known execution time bounds for all tasks. A
design based on worst-case times will likely become far too pessimistic
and lead to severe under-utilization of the computer resources. For control
tasks this means slower sampling and decreased performance. In reality
the execution time bounds are also very difficult to obtain.
The main difference between feedback scheduling of control tasks and

feedback scheduling of CPU resources in general is the connection to con-
trol performance. For feedback scheduling of control systems, the available
resources should be distributed to optimize the global control performance,
while still meeting the schedulability constraints in the system.

Actuators and Sensors. There are two main ways to control the CPU
demand of control tasks: by manipulating the task periods, or, for a certain
class of controller algorithms, by manipulating the execution times.
Task period manipulation is well suited for most controllers, such as

standard PID and state-feedback controllers. For these controllers the
CPU utilization is controlled by changing the sampling interval within
an allowable range. For algorithms of iterative nature it may be possible
to abort after an arbitrary number of iterations. This gives the possibil-
ity to manipulate the execution time and to do a trade-off between CPU
consumption and the quality of the computed control signal.
Sensors used in the feedback scheduling framework typically consist

of execution measurements. However, feedback from the actual control
performance could also be used in the scheduling decisions.

Task Period Modifications

Dynamic resource allocation by means of task period rescaling has been
explored in several papers. [Beccari et al., 1999] considers modulation of
sampling rates for robot systems. A range of admissible rates is identified
for each task, and different rate-monotonic schemes are presented and
evaluated. [Shin and Meissner, 1999] studies resource adaptation in mul-
tiprocessor systems. Reallocation of control tasks and on-line adjustment
of sampling rates are used to optimize a quadratic performance index
related to the global control performance. A feedback scheduled system
manipulating sampling intervals can be viewed as a special case of a hy-
brid control system. An interesting example is given in [Schinkel et al.,
2002], which considers switching between two linear quadratic (LQ) con-
trollers designed with different sampling intervals. Although both closed-
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loop systems are stable, it is shown that a special switching sequence
between the systems leads to instability.

Constrained Optimization Approaches. The approach of constrained
optimization for task period selection was first proposed in [Seto et al.,
1996]. A performance index, J, expressed as a function of the sampling
period, h, was used as basis for the optimization. The problem was intro-
duced as follows:

min
h1... hn

n
∑

i=1
Ji(hi),

subj. to
n
∑

i=1

Ci

hi
≤ Usp.

(1.6)

An optimal feedback scheduling strategy based on this formulation for
sampling period adjustments of LQ controllers was presented in [Eker
et al., 2000; Cervin, 2003]. Cost functions relating the stationary cost to
the sampling interval were developed and analyzed. It was also shown
that simple linear,

Ji(hi) = α i + γ ihi, (1.7)
or quadratic,

Ji(hi) = α i + β ih
2
i , (1.8)

functions could be used as approximations of how the true cost functions
depend on the sampling intervals, hi. Here, α i, β i, and γ i are constants.
Based on these approximate functions, explicit solutions to the optimiza-
tion problem (1.6) can be derived.
It was also stated in [Cervin, 2003] that the assumptions of linear

or quadratic cost functions yield simple calculations of the optimal sam-
pling periods to be used on-line by the feedback scheduler. In both cases,
linear proportional rescaling of the nominal sampling periods is optimal.
All periods are changed by the same factor: (γ i/Ci)1/2 for the linear case
and (β i/Ci)1/3 for the quadratic case. This is a nice property, since it is
fast and easy to implement. It also preserves the rate-monotonic order-
ing among the control tasks, which avoids priority changes of the tasks
during run-time. It should, however, be noted that this simple rescaling
only works when new tasks enter or leave the system, or if the utilization
set-point, Usp, changes. If, on the other hand, the execution time of a task
changes, the nominal periods and the proportionality constants need to
be recomputed.
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Figure 1.4 Scheduling based on plant states. Deviations in the state cause the
corresponding control loop to be sampled faster.

Feedback from Control Performance. The approach in [Eker et al.,
2000; Cervin, 2003] is based on stationary, i.e, infinite-horizon, cost func-
tions, and therefore does not exploit any feedback from the current control
performance. Plant disturbances do not affect the dynamic resource allo-
cation. Ideally, the scheduler decisions should also contain feedback from
the actual control performance and not only resource consumption.
An approach to dynamic resource allocation based on plant state feed-

back is presented in [Martí et al., 2004]. The suggested state-dependent
cost functions are, however, not based on control-theoretic arguments.
Paper I formulates and analyzes state-dependent cost functions for the

case of LQ controllers. The cost functions are based on a finite-horizon
control formulation. The current states of the processes at the invocation
of the feedback scheduler enter the cost functions and may, hence, affect
the resource allocation. The idea is illustrated in Figure 1.4. The basic
observation is that control loops running in stationarity can be given less
resources, i.e., can be sampled slower, than a process in a transient phase.
The feedback scheduler is running as a periodic activity with period Tfbs.
In this formulation, the cost functions transform from being functions of
only the sampling period, i.e.,

Ji(hi) ( α i + β ih
k
i , (1.9)

to also depend on the state, xi, and the feedback scheduler period, Tfbs,

Ji(xi,hi,Tfbs) ( α i(xi,Tfbs) + β i(xi,Tfbs)hki . (1.10)
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Figure 1.5 Scheduling of imprecise computations is based on a task model where
each task can be divided into two parts: a mandatory part and an optional part.
The optional part may be aborted to meet scheduling constraints or to improve
performance.

Execution Time Modifications

For certain classes of control algorithms, an alternative to sampling period
adjustments is manipulation of the actual execution time of the control
computation. These types of algorithms are generally referred to as any-
time algorithms or imprecise computation algorithms.
The main characteristic of anytime algorithms is that they always gen-

erate a result, but with a quality level that increases with the execution
time. This means that there is a trade-off to consider between the compu-
tational time and the result generated by the algorithm.
The task model for scheduling of imprecise computations [Liu et al.,

1991; Liu et al., 1994] assumes that all tasks can be divided into two sub-
tasks, a mandatory subtask and an optional subtask, see Figure 1.5. An
imprecise result may be returned by the algorithm as long as the manda-
tory subtask has completed. In [Liu et al., 1991], imprecise calculation
methods are categorized into three main types: sieve function methods,
multiple-version methods, and milestone methods.
Sieve functions constitute optional computation steps that may be skip-

ped to save processing time. An example of a sieve function for control
algorithms is the updating of the estimated parameters in an adaptive
controller. Multiple-version methods exploit several versions of the algo-
rithm, with different processing times and result quality.
Milestone methods are based on monotone algorithms, ensuring that

the quality of intermediate results increases monotonically with time. This
type of algorithms can be found in many application areas, including nu-
merical optimization, estimation, and prediction. Scheduling of monotone
imprecise tasks is treated in [Chung et al., 1990]. In this scheme, each
mandatory subtask is scheduled to complete before the deadline of the
task, and the optional parts refine the results produced by the tasks.
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Figure 1.6 Imprecise computation model for model predictive control tasks. The
mandatory part (M) consists of finding a feasible initial solution and iterating the
QP-solver until the stability requirement is fulfilled. The additional QP-iterations
constitute the optional part and may be skipped.

Application to Model Predictive Control. An example of a control
methodology that fits the milestone method very well is model predictive
control (MPC), which is the topic of Paper II. This control strategy is
based on on-line minimization of a quadratic cost function in every sample,
subject to constraints on control signals and controlled variables. In the
MPC formulation used in Paper II, the optimization problem is solved by
an iterative quadratic-programming (QP) solver that guarantees that the
value of the cost function is reduced in each step of the algorithm.
The mandatory part of the control algorithm consists of finding an

initial solution that fulfills the constraints of the QP-problem and iterating
the solver until the solution guarantees closed-loop stability. The optional
part consists of the remaining QP-iterations that further reduce the cost.
These iterations may be skipped if computing time is scarce.
Figure 1.6 illustrates a situation with two MPC tasks running con-

currently. A dynamic scheduling strategy schedules the mandatory parts
using distinct high priorities and the optional parts of the tasks using the
cost functions as dynamic task priorities. By always executing the task
with the highest cost first, the aim is to achieve as small global cost as
possible before the optional parts are terminated.

Anytime Sensing. Paper III treats another aspect of anytime algo-
rithms in control systems. In many vision-based algorithm it is possible
to do a trade-off between the tracking accuracy and the computational
effort, treating the vision-feedback algorithm as an anytime sensor.
More specifically, the tracking algorithm used in Paper III measures

the image error as the distance (in the normal direction) from a number
of edge detection points to the real edge. By choosing the number of edge
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detection points, it is possible to influence both the estimation accuracy
and the computational burden of the algorithm.
The setup analyzed in Paper III consists of multiple cameras used to

track the position and orientation of a moving object. To increase the size
of the tracking region, the cameras have different settings and distances
to the target. This avoids the very large variations in execution time that
may result if the target is lost and the image search has to be extended.
By using multiple standard digital cameras it is also possible to achieve
high positioning accuracy at a fairly low cost.
It is assumed that the image pre-processing and the execution of the

tracking algorithm is performed by a single central computer. The total
time to obtain sensor data in each sample is a function of both the number
of cameras used and the total number of edge detection points distributed
between the different camera images.
The resource allocation is performed in camera space and consists of

finding an optimal subset of the available cameras in each sample. The
aim is to minimize the estimation covariance by a proper choice of active
cameras and a distribution of the edge detection points between these
cameras. The minimization is subject to constraints on the total execution
time of the image processing and the tracking algorithm.
The anytime nature of the tracking algorithm can also be used for dy-

namic scheduling of several vision-based control tasks to optimize control
performance under resource constraints. This would require models relat-
ing the latency and the estimation accuracy to the control performance.

1.4 Control of Server Systems

In feedback scheduling for control tasks, the performance metrics used
for dynamic resource allocation are related to controlled physical plants.
However, feedback mechanisms can also be applied to control the internal
performance of software applications.
Inspired mainly by the growth of Internet, the use of feedback control

theory has emerged as a promising foundation for performance control
in large, complex software applications, such as web servers. These typi-
cally operate under very unpredictable and poorly modeled load conditions.
Managing this uncertainty by means of control theory has proved to be
successful in order to provide quality-of-service guarantees for these sys-
tems [Hellerstein et al., 2004; Robertsson et al., 2004; Robertsson et al.,
2003; Abdelzaher et al., 2003; Sha et al., 2002].
The use of feedback in computer systems is not a new concept. One ex-

ample is the flow and congestion control mechanisms used by the trans-
mission control protocol (TCP), which were introduced in the 1970s to
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solve the congestive failures that had brought down the network. This
was an early testament to the effectiveness of feedback control in highly
dynamic, decentralized environments. Although feedback has been ap-
plied to software systems for a long time, many of these efforts have been
ad-hoc, without any real connections to traditional control theory.
The use of control theory to achieve quality-of-service guarantees in

modern web server applications presents a number of new challenges com-
pared to control of ordinary physical plants. Server systems are character-
ized by highly stochastic and nonlinear behavior. Response times increase
exponentially for heavy loads and there are both input and output satura-
tions present. The parameters of the stochastic processes may also change
abruptly.
One central question is whether to use time- or event-based sampling.

Server systems are by nature event-based, with requests entering and
leaving the system at any time. In certain situations, however, differential
(or difference) equations may be used to accurately describe the systems.
The stochastic nature of the systems requires averaging of the mea-

surements used by the feedback controller. Usually, the servers themselves
have quite simple dynamics, and most of the dynamics in these systems is
introduced by the filters used for signal processing. The stochastics also
make accurate prediction and model-based feedforward more important
than for standard control systems. With good prediction, it is seldom nec-
essary to use sophisticated feedback controllers.
A variety of actuators may be used by the controller. Basically, there

are two main ways to influence the server load: by either changing the
arrival rate or changing the service rate. These actuators may also be used
in combination. Manipulation of the arrival rate is typically achieved by
admission control, whereas the service rate may be influenced in a number
of ways depending of the nature of the server.
A final challenge is the evaluation of the control performance. Which

is most important, transient or steady-state behavior? Also, the concept
of stability is not straightforward to define for server systems.
Issues related to control of computer systems are treated in [Heller-

stein et al., 2004]. A number of example applications are given, including
a Lotus e-mail server, an Apache web server, and an overloaded router.

Queuing Models for Server Control

A schematic picture of a web server is shown in Figure 1.7. A client request
queue stores incoming requests, from which requests are subsequently de-
queued and served by server worker threads. The worker threads are put
in different queues, such as the CPU ready queue or I/O access queues,
during the processing of the requests. Thus, web-server control can largely
be viewed as complex queue management, characterized by a high level
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Request
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Scheduler
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Resource

Access
I/O Queue
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Client Request
Queue
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Figure 1.7 Simplified model of a web server (adopted from [Abdelzaher et al.,
2003]). Requests are served by worker threads, which are put in different queues,
such as the CPU ready queue or I/O access queues, during the processing of the
requests.

of uncertainty. The stochastic nature of the queues in the server systems
makes traditional dynamic-system modelling and control theory insuffi-
cient. Instead, the incoming traffic and the service times can be modeled
by stochastic processes, and described and analyzed using queuing theory
[Kleinrock, 1975].

Nonlinear Flow Models for Admission Control. The work in [Robert-
sson et al., 2003] is based on a nonlinear flow model known as Tipper’s
model [Agnew, 1976; Tipper and Sundareshan, 1990; Sharma and Tipper,
1993; Wang et al., 1996]. This model relates the steady-state behavior of
the queue length, x, to the average arrival rate, λ , and service rate, µ, for
a single server queue. It is shown that the following relation holds:

ẋ = λ − µG(x(t)), (1.11)

where the function G(x(t)) depends on the statistical properties of the
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Figure 1.8 Block diagram for combined feedforward/feedback delay control
(adopted from [Sha et al., 2002]).

queuing system. For example, for an M/M/1 system, we have

G(x(t)) = x(t)
x(t) + 1, (1.12)

and for an M/G/1 system the expression becomes

G(x(t)) = x(t) + 1−
√

x2(t) + 2C2x(t) + 1
1− C2 , (1.13)

where C2 is the squared coefficient of the variance of the service time
distribution.
The model (1.11) can be linearized around a chosen operating point

x = x0, rendering a first-order linear system with the fraction of the
arriving requests as input (admission control).
The nonlinear flow model works well for heavy load situations where

the fluid models well approximate the true behavior of the queues in the
system.

Queuing-Model-Based Delay Control. A different approach that also
exploits models from queuing theory is presented in [Sha et al., 2002].
Here, the queuing model is used to provide a feedforward action accord-
ing to the controller structure shown in Figure 1.8. In this setup, the
manipulated variable is the service rate, which can be changed in dif-
ferent ways, e.g., by allocation of server threads or, for high-performance
servers, by dynamic voltage scaling [Bohrer et al., 2002; Sharma et al.,
2003].
The idea is to use the feedforward predictor to bring the average delays

experienced by the requests close to a desired value, Dr. For the example
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of an M/M/1 queue, again, the average delay of the requests in the system
can be expressed as

D = 1
µ − λ

, (1.14)

where λ is the arrival rate, and µ is the service rate. This equation can
then be used to solve for the feedforward term, µ f f , that corresponds to
the given delay set-point, Dr,

µ f f =
1
Dr
+ λ . (1.15)

Since the feedforward predictor moves the system close to the desired
delay, a linear P or PI-controller can be used locally to suppress transient
errors or errors due to modeling inaccuracies.

Non-Conventional Queuing Theory

The use of traditional queuing theory to model the behavior of web server
systems has two main drawbacks. The first is that queuing-theoretic mod-
els only relate to the steady-state behavior of the queues, i.e., the long-
term averages. Internet traffic, however, is generally very bursty and
changes abruptly.
The second drawback is that queuing theory makes certain restrictive

assumptions about the arrival and service processes of the system, which
are often poorly matched by reality. In real server queues, the statistic na-
ture of the traffic may show considerable variations, and standard Poisson
processes do not capture this behavior. Instead, the Pareto distribution has
been reported to fit measurements of real web traffic well [Crovella and
Bestavros, 1997]. This distribution has typically a long tail, and shows
self-similar and long range-dependent characteristics.
Paper IV presents an improved predictor scheme, that makes no as-

sumptions about the statistical properties of the incoming traffic load and
the service times. Instead, it predicts future delays as a function of instan-
taneous measurements of the situation in the server queue. This includes
current queue length and the arrival times of the queued requests, which
are assumed to be recorded for use in the prediction.
Figure 1.9 shows a geometric picture used to derive the predictor equa-

tion. The horizontal axis shows the evolution of time, and the vertical axis
shows the cumulative number of arrivals and departures of requests. Each
horizontal two-coloured block in the figure represents one request and is
divided in queuing time and processing time. The vertical distance in the
shaded area at any point in time (for example the distance CB at time
tnow) represents the actual queue length.
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Figure 1.9 Server queuing and processing delay over time.

For the situation in the figure it can be noted that the line from the
origin to point B gives the average arrival rate of the ten first requests.
Similarly, the line between the origin and point C represents the average
service rate of these requests up until time tnow. Since the arrival rate
exceeds the service rate, it can be seen that the delays experienced by the
requests build up.
The idea is to select the service rate to achieve a desired average delay

of the requests in the system, taking into account their average queuing
delay up until tnow. Geometrically, this means modifying the slope of the
line CE to obtain a desired area of the quadrangle CEBF.
The predictor equation is derived for the requests currently in the

system, assuming no more arrivals during the prediction horizon. How-
ever, the prediction is repeated as requests depart in a manner similar to
the receding horizon principle used in model predictive control. This way
sudden variations in the arrival pattern are taken care of continuously,
allowing a more rapid response than standard queuing-theoretic models.
The results presented in Paper IV are concerned with absolute delay

control by manipulation of the service rate of incoming requests. Note,
however, that the predictor could also easily be used in a scheme to adjust
the arrival rate using admission control. In that case one would instead
change the slope of the arrival curve, under the assumption that the ser-
vice rate is constant.
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Figure 1.10 The complex relationships between control system performance and
computer system design parameters make co-simulation tools important.

1.5 Simulation of Control and Computer Systems

Most control and implementation codesign problems can be stated as con-
strained optimization problems. One definition of the control and schedul-
ing codesign problem was given in Section 1.2, focusing on optimization
of control performance subject to given computational resources. An alter-
native definition could be stated as

Given a set of systems to be controlled and control performance
specifications for these, choose an implementation platform
and decide the allocation of control tasks, and their schedul-
ing, such that the overall production cost is minimized while
guaranteeing the specified control performance.

This formulation instead focuses on minimizing the hardware cost sub-
ject to constraints on the achieved control performance.
A major challenge in solving both types of codesign optimization prob-

lems is that the relationships between the involved parameters are non-
linear and difficult to formulate. Figure 1.10 illustrates this. The mapping
from implementation parameters, such as task periods, deadlines and pri-
orities, to the resulting timing parameters in terms of jitter and latencies
is often hard to derive and analyze. The same holds for the relation be-
tween the jitter and latencies and the resulting control performance as
discussed earlier.
Consequently, to aid in the codesign, development of computer-based

tools for integrated simulation, analysis, and synthesis of real-time con-
trol systems is important. The tools should be able to deal with both the
relation between implementation and timing parameters and the effects
of the timing parameters on the control performance.
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Existing Tools

The main simulation tool used for control system design and simulation is
MATLAB/Simulink [The Mathworks, 2001b]. During recent years, Model-
ica [Tiller, 2001] has emerged as a strong alternative to MATLAB/Simu-
link for physical modeling and simulation. However, neither of these sim-
ulation environments have sufficient support for simulation of real-time
implementation issues. Real-Time Workshop [The Mathworks, 2001a] for
MATLAB allows prototyping and implementation of real-time control sys-
tems, but has no support for simulation of shared CPU resources or com-
munication networks.
In the real-time research community, a number of prototype tools have

been developed for schedule simulation, timing analysis and schedule gen-
eration. Examples include PERTS/DRTSS [Storch and Liu, 1996] and
STRESS [Audsley et al., 1994]. These tools are typically used to prove
feasibility of task sets and to perform co-simulation of task execution and
hardware architecture and kernels. The simulations do not capture the
effects of the scheduling on the performance of the applications imple-
mented by the various tasks.
In recent years, a few co-simulation tools have emerged, which aim at

integrated modeling and design of control systems with their real-time
implementation. While these tools use different approaches and levels of
abstractions, they all aim at bridging the gap between the domains of
control and computer system design.
Some of the tools are specifically tailored towards control and real-time

codesign, whereas for others, the real-time control systems simulation is
just one part of a larger framework. The abstraction levels range from a
very high level of abstraction of the computer system in terms of time-
varying delays and jitter, to detailed architectural models, which actually
mimic the operation of for example an RTOS. These codesign tools are
briefly summarized below. See [Henriksson et al., 2005] for an extensive
survey of the tools.

AIDA. The Aida toolset [Redell et al., 2004] is an environment for model-
based design and analysis of real-time control systems, which allows anal-
ysis of implementation effects on control performance and timing analysis
of the real-time design. The toolset consists of a modelling environment,
Aidasign, which interfaces with MATLAB/Simulink, and a response time
analysis tool, Aidalyze.
The real-time system design starts with the translation of the Simulink

model to a data-flow diagram (DFD) in Aidasign. The timing aspects of
the controller, such as sampling periods and delays, then constitute re-
quirements on the real-time system design. Another fundamental model
in Aida is the hardware structure diagram (HSD), where the hardware
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architecture, in terms of processors and their interconnections via com-
munication links, is designed. In the HSD, the functions and data flows
in the associated data-flow diagrams are mapped to processors and com-
munication links, respectively. Based on the two fundamental models and
the mapping between them, a real-time implementation is designed.

XILO. XILO (X-in-the-loop simulation) is a toolset built upon MAT-
LAB/Simulink, developed to support detailed architectural design of dis-
tributed real-time control systems [El-Khoury and Törngren, 2001]. XILO
consists of a number of libraries that let a designer configure a distributed
computer control system and to allocate and partition the functionality as
desired. Along with the basic toolset, an additional library that supports
fault-injection in terms of bit-flips in all types of blocks, signals and con-
stants has been developed [Norberg and Törngren, 2003]. Some of the
basic mechanisms of XILO have been reused in the Aida toolset. The tool
is entirely graphical and currently limited to the scheduling policies and
network protocols provided by the tool libraries.

Ptolemy II. Ptolemy II is the third generation of software produced
within the Ptolemy project [Hylands et al., 2003]. Ptolemy II supports het-
erogeneous, hierarchical modeling, simulation, and design of concurrent
systems, especially embedded systems. The focus is on complex systems
mixing various technologies and operations. Simulation models are con-
structed under models of computation that govern the interaction of the
components in the model. Different models of computation are used for
modeling different types of systems. The timed multitasking (TM) model
of computation [Liu and Lee, 2003] is intended to support deterministic
design of concurrent real-time software. This makes it possible to model
fixed-priority scheduling of tasks with constant execution times.

RTSIM. RTSIM [Casile et al., 1998] was originally developed as a pure
real-time scheduling tool, but has since then been extended [Palopoli et al.,
2000; Palopoli et al., 2002] with a numerical module, based on the math-
ematical library OCTAVE [Eaton, 1998], for continuous plant simulation.
The tool consists of a collection of C++ libraries allowing the user to spec-
ify a set of plants, the functional controller behavior, the implementation
architecture, and a mapping of functional behavior onto the architectural
components.
The simulation produces results related both to the real-time perfor-

mance and the control performance. This includes the generation of exe-
cution traces, real-time statistics (e.g., delays and jitter), and control per-
formance metrics such as time responses and quadratic costs. The tool,
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however, currently lacks a graphical plant modeling environment, and so
far its network simulation capabilities are limited.

Orccad and Syndex. Orccad [Simon and Girault, 2001] is a CAD sys-
tem and approach aimed at the development of robotic systems from high-
level specifications down to the implementation details. It deals with hy-
brid systems, where continuous-time aspects related to control laws must
be merged with discrete-time aspects related to control switches and ex-
ception handling.
The Syndex tool supports rapid prototyping of reactive data-driven

algorithms implemented on distributed heterogeneous hardware architec-
tures [Pernet and Sorel, 2003; Lavarenne et al., 1991]. Syndex lets the user
specify both the algorithm and the distributed hardware in a graphical
environment, and then automates the mapping and scheduling of func-
tions and communications on the processors and communication buses.
During the mapping and scheduling process, the hardware architecture
can be refined to better match the algorithm needs. When a sufficiently
good solution has been found, Syndex generates executable code that can
be downloaded to the target hardware.

Other Commercial Tools. Apart from an increasing interest in the
academic communities, there are also strong industrial needs for tools
supporting integrated development. Existing commercial tools, see, e.g.,
[dSPACE, 2004; ETAS, 2004; National Instruments, 2004], provide a broad
range of capabilities, including support for:

• system modeling and design where, e.g., effects due to constant or
varying delays can be investigated in simulation,

• rapid control prototyping (RCP), allowing control designs to be pro-
totyped using general purpose controller hardware,

• code generation from control system models,

• RTOS configuration and integration within the design models,

• analysis of quantization effects in, e.g., fixed-point implementations,

• testing of models, generated code, and final implementations, and

• calibration of target systems, e.g., over CAN.

The use of code generation has increased significantly over the last few
years in the vehicle industry. For example, Volvo Car Corporation is using
Simulink models in the design of power train controllers, including simu-
lation and rapid prototyping. Code generated from the models is used in

48



1.5 Simulation of Control and Computer Systems

the final product [Lygner, 2002]. Here, the code generator design environ-
ment acts as an interface between control designers and implementation
engineers.

The TrueTime Simulator

Papers V and VI present TrueTime, which is a MATLAB/Simulink-based
simulation tool that facilitates integrated simulation of the temporal be-
havior of multitasking real-time kernels. TrueTime also makes it possible
to simulate various models of communication network protocols and their
influence on networked control loops. The kernel and network simulation
is integrated with the standard dynamic-system simulation support pro-
vided by Simulink. Furthermore, TrueTime has recently been extended
to support simulation of wireless network protocols, energy consumption,
and local clocks with offsets and drifts, allowing full simulation of net-
worked embedded systems interacting with their environment. The True-
Time development has been ongoing since 1999, and an early version of
the simulator was presented in [Eker and Cervin, 1999].

TrueTime Usage. The main use of TrueTime is for simultaneous sim-
ulation of all aspects of distributed real-time control applications. By co-
simulation of continuous process dynamics, task execution in real-time
kernels, and network communication, it is possible to evaluate the perfor-
mance of control loops subject to the constraints of the target system.
In a typical scenario, a controller design has been performed (without

considering implementation constraints) and is about to be implemented
on the target system. In this case, TrueTime can be used to evaluate
different real-time implementations, and the effects of CPU and network
scheduling, task attributes, etc., on the control performance. For a given
implementation architecture, TrueTime may also be used to obtain tempo-
ral statistics that can be used as constraints in the design of the controller.
In the ideal scenario, however, the controller and architectural designs

are performed at the same time. Here, TrueTime provides a convenient
framework for integrated control and real-time design. TrueTime may be
used in all stages of the development process, from the early stages and
system specifications, during the actual system construction, and finally
for testing and validation.
However, TrueTime is currently used more as an experimental plat-

form than as a development tool. This includes research on flexible ap-
proaches to real-time implementation and scheduling of controller tasks
and design of networked control systems. Using TrueTime, it is straight-
forward to simulate feedback scheduling algorithms and compensating
controllers. TrueTime also simplifies simulation of event-triggered sys-
tems, such as, e.g., combustion engine controllers.
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Listing 1.2 Example of a TrueTime code function. The code is divided in segments
with associated execution times. This way the user can choose to simulate the code
with an arbitrary time granularity.

function [exectime,data] = myController(segment,data)

switch segment,

case 1,

data.y = ttAnalogIn(1);

data = calculateOutput(data);

exectime = 0.002;

case 2,

ttAnalogOut(1,data.u);

data = updateState(data);

exectime = 0.003;

case 3,

exectime = -1; % finished

end

Level of Abstraction. The TrueTime tool implements a real-time ker-
nel very similar to the kernels found in commercial real-time systems. It
contains a ready queue and a time queue for tasks, supports task syn-
chronization and resource access using events and monitors, and provides
a number of real-time primitives that may be called from the task code.
The main difference between the TrueTime kernel and ordinary real-time
kernels and RTOSs is the execution of task code. Whereas real kernels
and RTOSs execute statements, TrueTime code is simulated on a time
granularity that is chosen by the user.
An example of a TrueTime code function is given in Listing 1.2. The

user code is divided in segments, where the code of each segment is exe-
cuted instantaneously during simulation. The code can interact with other
tasks and with the environment at the beginning of each code segment,
e.g., using ttAnalogIn and ttAnalogOut primitives. This execution model
makes it possible to model input-output latencies, blocking when access-
ing shared resources, etc. Technically it would, for instance, be possible
to simulate very fine-grained details occurring at the machine instruction
level, such as race conditions. However, that would require a large number
of code segments.
The code function returns the execution time of the executed segment,

and the next segment is not called before the task has been running for the
time associated with the previous segment. This means that preemption
by higher-priority activities and interrupts may cause the actual delay
between the execution of segments to be longer than the execution time.
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In the same way that code execution is not modelled by execution of
individual statements, the network transmissions are not modelled on bit
level. Rather, only the interactions between nodes relevant for the timing
behavior of the transmissions are modelled. That includes pre- and post-
processing delays, collision detection and collision avoidance mechanisms,
and probabilities of lost packets. Transmission times are determined by
the bit rate and the size of the message.

Educational and Industrial Use. TrueTime is available for free down-
load1, and has attracted a number of academic and industrial users dur-
ing recent years. As an example, TrueTime is currently used for real-time
systems education in three of the major Swedish technical universities.
The Embedded Systems Institute in the Netherlands has used True-

Time to build a multi-disciplinary system-level model of an OCE printer
[van den Bosch and van de Waal, 2005]. The model and analysis focused
on trade-offs between timing and power consumption. In [Hooman et al.,
2004], TrueTime is combined with the UML-based CASE tool Rose Real-
Time, for evaluation of tool coupling for model-based simulation.
Bosch has used TrueTime to examine the impacts of new time-triggered

communication protocols on distributed vehicle control system dynamics
[Albert et al., 2005]. For this purpose, TrueTime was extended to incor-
porate the TTCAN and FlexRay communication protocols.

TrueTime Examples

The TrueTime introduction is here concluded with two examples on how
the tool can be used for co-simulation of continuous-time dynamics and
implementation-related issues. The examples are intended to illustrate
the broad number of areas in which TrueTime can be used.

Test Case Generation. [Nilsson and Henriksson, 2005] presents an
add-on, Flextime, to the TrueTime simulator, aimed at supporting au-
tomated analysis and mutation-based test case generation for flexible
real-time control systems. Mutation operators are used to systematically
transform original task set specifications, which are then evaluated using
TrueTime. Both timeliness failures for hard tasks, and control perfor-
mance failures for adaptive tasks are considered.
Figure 1.11 gives an overview of how Flextime is used together with

other tools to perform automated test case generation. As seen in the
figure, a task set specification is supplied as input to mutation operators,
and the mutated task set specifications are used as input to Flextime. The
simulation traces are fed through a genetic algorithm, which searches for
arrival patterns and combinations of task parameters that lead to failures.
1TrueTime is available for download at http://www.control.lth.se/user/dan/truetime
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Figure 1.11 Flextime tool usage.

Flextime adapts TrueTime to do efficient simulation of Timed Au-
tomata with Tasks (TAT) system models [Nordström et al., 1999]. Within
TAT, Timed Automata (TA) [Alur and Dill, 1994] are used for specifying
activation patterns of tasks, i.e., the points in time when a task is re-
quested for execution. Each task is described as a quadruple (c, d, SEM ,
PREC), where c is the required execution time and d is the relative dead-
line of the task. SEM specifies lock and unlock times of semaphores used
by the task, and PREC specifies precedence constraints between the task
and other tasks.
Flextime also extends TrueTime to support structured parametriza-

tion of simulations in terms of tasks and the parameters described above.
Furthermore, TrueTime is extended with more advanced resource access
protocols, such as the immediate priority inheritance protocol [Sha et al.,
1990], and the stack resource protocol [Baker, 1991] under EDF.
Flextime was used to simulate a real-time system with fixed priorities

and shared resources under the immediate priority inheritance protocol.
The task set consisted of three adaptive periodic tasks implementing flex-
ible controllers for balancing three inverted pendulums. Further, the sys-
tem had four sporadic real-time tasks with hard deadlines, assumed to
implement logic for responding to frequent but irregular events, for ex-
ample, external interrupts or network messages. The system also had two
resources that must be shared with mutual exclusion between tasks.
The study showed that mutation operators for testing of timeliness

also can be used to produce mutants that cause control failures in flex-
ible control systems. The Flextime tool makes it possible to use existing
mutation-based testing criteria while exploiting the TrueTime ability to
interact with continuous-time Simulink blocks modeling the environment.
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Figure 1.12 Wireless distributed control of an inverted pendulum on a cart. The
cart is moving along a pre-specified trajectory in an area of nine symmetrically
distributed controller nodes. In the left figure a switch between node 5 and node 6
takes place. In the right figure the cart enters an area without coverage.

Control over Wireless Network. The second example is intended to
give an example of the wireless simulation capabilities of TrueTime. The
simulation scenario treats an inverted pendulum on a cart moving around
in an area of distributed nodes (controllers). Each node consists of a small
computer (TrueTime kernel) and communicates using radio. The cart it-
self is also modeled as a wireless node, augmented with continuous-time
dynamics of the pendulum and the cart.
The linearized model of the pendulum and the cart is given by

d2θ

dt2
= θ + u,

d2x

dt2
= 10u,

(1.16)

where θ is the pendulum angle and x is the cart’s one-dimensional posi-
tion. The cart is assumed to be moving along a line, i.e., no dynamics for
its orientation are included. The control law is of state feedback type and
assumes full state measurements,

u = −l1θ − l2θ̇ − l3(x − xr) − l4 ẋ. (1.17)

The cart should move along a predefined trajectory according to Fig-
ure 1.12. The control loop is closed over the wireless network, with the
cart sending periodic samples to the closest controller node. The controller
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Figure 1.13 Communication schedule showing the transmissions of node 1 (the
cart), node 5 and node 6. The sampling period of the control loop is 100 ms and
ping messages are sent every 500 ms. A switch between node 5 and node 6 occurs
at time t = 17.5.

node computes the control signal and sends it back to the cart, where it is
actuated. The controller nodes periodically send out ping signals, telling
the cart where they are located. The cart, knowing its own position, then
decides which controller is the closest one.
The simulation was animated using MATLAB graphics and Figure 1.12

shows two interesting situations as the cart is moving along the path. The
circles around the nodes show the distance at which the transmitted signal
is no longer possible to detect (receiver signal threshold).
In the left figure, the cart is about to switch between controller 5

and controller 6. This can be seen in the closeup of the communication
schedule in Figure 1.13. Here it seen that the ping messages are sent
with a period of 500 ms, whereas the sampling period of the control loop
is 100 ms. During the switching phase, the controller may, thus, lose up
to five samples before it detects that it should switch to another controller
node. Various types of hand-over techniques could be used to avoid this
problem. Another problem related to the switching is the propagation of
states between the controller nodes. In the case of observer-based control,
the current state estimate should ideally be kept updated in all nodes.
As can be seen in Figure 1.12, the distributed controllers do not have

full coverage of the area in which the cart is moving. In the right part
of the figure the cart is entering one such area. The resulting control
performance and control signal are shown in Figure 1.14.
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Figure 1.14 Control signal, u, and pendulum angle, θ , as the cart moves along
the path shown in Figure 1.12. At around t = 25, the cart enters a region without
wireless coverage, and the pendulum falls down.

Figure 1.15 The Telos B mote is a low power wireless module, equipped with an 8
MHz Texas Instruments MSP430 microcontroller with 10 kByte RAM and 48 kByte
Flash memory.

The presented scenario has also been investigated in a real setup.
A three-wheeled robot (the RBbot) with an inverted pendulum was con-
structed and equipped with a Moteiv Telos B mote for sensing, local con-
trol, and wireless communication [Moteiv, 2005], see Figures 1.15 and
1.16. Successful remote control was implemented, where the robot moved
around in a network of Telos B motes, over which the control loops were
closed. Vision feedback was used for localization. The Telos B motes use
the IEEE 802.15.4 ZigBee standard for the communication, a protocol that
is also available for simulation in TrueTime.
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Figure 1.16 The RBbot is an inverted pendulum on a three-wheeled cart equipped
with a Telos B mote for sensing, local control and communication with other nodes in
a controller network. Constructed by Rolf Braun and Anders Blomdell, Department
of Automatic Control, Lund.
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2

Feedback Scheduling for

Cooperative Robots

2.1 Introduction

This chapter describes dynamic resource allocation for a set of controller
tasks in a cooperative robot application. The scenario has been developed
as a demonstrator within a national research program, and is intended to
show the application of feedback scheduling in a complex setup and how
it can be simulated using the TrueTime simulator.
The robot setup is taken from the Robotics Laboratory at the Depart-

ment of Automatic Control in Lund, and consists of two ABB industrial
robot manipulators of type IRB6 and IRB2000, with the Open Robot Con-
trol System Architecture [Nilsson, 1996]. The IRB6 and IRB2000 robots
have five and six degrees of freedom, respectively. The IRB2000 is also
equipped with a six-degrees-of-freedom force/torque sensor.
The robots cooperate in a ball-and-beam scenario, see Figure 2.1, where

a beam is held between the end-effectors of the robots. The objective is
to control the angle of the beam in order to balance and position the ball
along the beam. In the most advanced scenario, this should be done while
moving the beam along pre-specified trajectories.
The controller structure consists of a ball balancing controller, a con-

tact force controller, and the individual robot joint controllers. The ball
balancing controller computes a desired beam angle based on vision mea-
surements of the ball position. The desired beam angle is translated to
robot joint angle references, taking into account the constraints of the
beam between the robots and restricted joint velocities. The force con-
troller then modifies the joint references based on force feedback.
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Figure 2.1 The cooperative ball-and-beam robot task.

The scenario is divided in three modes of operation with varying re-
source requirements. A feedback scheduler is designed, which modifies
the sampling periods of the joint controller tasks based on measurements
of actual resource consumption and feedforward from mode changes. The
velocity Jacobian is used to dynamically incorporate the coupling between
the joint control loops in the scheduling decision process.

2.2 The Robot Systems

The IRB2000 robot is shown to the right in Figure 2.2, and consists of
seven links connected by three cylindrical and three revolute joints. Joint
one turns the robot around its base, whereas joints two and three move
the lower and upper arms, respectively. Joint four turns the wrist unit,
and joint five bends the wrist around is centre. A force sensor is mounted
at the wrist of the robot between the end-effector and joint six, which is
a revolute joint at the tip of the wrist. The force sensor measures forces
in the x-, y-, and z-directions as well as the corresponding torques.
The IRB6 robot, Figure 2.2 left, has a simpler structure than the

IRB2000 robot, and consists of six links connected by five joints. Joint
one turns the robot around its base, and joints two and three move the

58



2.3 Design

Figure 2.2 The IRB6 industrial robot (left) and the IRB2000 industrial robot
(right) with wrist-mounted force/torque sensor.

lower and upper arms. Joint four turns and joint five bends the wrist unit.
IRB6 only has five degrees of freedom and can, thus, not reach all points
in the workspace with arbitrary orientation.
The positions of the robots relative to each other in the lab are shown

in Figure 2.3. IRB2000 is located 1.15 meters in the x-direction and −2.15
meters in the y-direction of the coordinate frame of IRB6. It is also rotated
π/4 radians around the z-axis.
A master and slave configuration is used for the robots, in which the

master commands the trajectory to be followed and the slave follows using
force control. The IRB2000 robot is chosen as slave, since it is equipped
with a force sensor to enable the force feedback-based modifications of the
trajectories commanded by the master robot. IRB2000 also has a much
larger workspace since it has six degrees of freedom. The robots will be
referred to as master and slave in the sequel.

2.3 Design

The ball-and-beam application is simulated in MATLAB/Simulink using
the TrueTime simulator, and visualized using Java3D graphics, see Fig-
ure 2.3. The visualization environment is developed at the Department of
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Figure 2.3 The cooperative robot task visualized using Java 3D graphics.

Computer Science, Lund University [Haage, 2004], and is written using
the Eclipse platform [Eclipse Foundation, 2005]. The robot visualization
tool contains Java classes for the robots and their kinematics. The simu-
lated robot trajectories are communicated from MATLAB to the Java3D
visualization program over TCP/IP.
In the simulation it is assumed that the ball position can be directly

measured. In the real setup this will be achieved using camera feedback.
It is further assumed that the beam is held by spherical joints at the end-
points, to avoid the beam breaking due to shear forces. This is incorporated
in the force model used for simulation.

Controller Structure

The controller structure of the master robot simply consists of the individ-
ual joint controllers that are fed with references corresponding to certain
trajectories. The slave robot, on the other hand, has a more advanced con-
troller structure, since this robot is responsible for both controlling the
beam angle and complying to the movements using force control. The con-
troller structure for the slave robot is depicted in Figure 2.4, and consists
of three cascaded controller components: the ball position controller, the
force controller, and the individual joint controllers.
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Figure 2.4 Controller structure for the slave robot.

Ball Position Control. The ball position controller is a PID-controller
that uses measurements of the ball position along the beam. The output
of the controller is the desired angle of the beam, which is fed through a
rate limiter to constrain the speed of the robot.
To obtain the desired beam angle, the joint reference angles of the robot

need to be modified according to the transformation shown in Figure 2.5.
Seen in the coordinate frame of the end-effector, the beam movement cor-
responds to translations in the y- and z-directions, and a rotation about
the x-axis. The translations are given (see Figure 2.5) as

∆y= l ⋅ sin θ ,

∆z = l − l ⋅ cos θ ,
(2.1)

where l is the length of the beam and θ is the desired beam angle. The
transformation from the horizontal beam position to the position corre-
sponding to the angle θ (see Figure 2.5) is denoted Pθ

h and is given by

Pθ
h = T(0,∆y,∆z) ⋅ Rx(θ) , (2.2)

where the rotation and translation matrices are given by

Rx(θ) =



























1 0 0 0

0 cos θ −sin θ 0

0 sin θ cos θ 0

0 0 0 1



























T(0,∆y,∆z) =



























1 0 0 0

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1



























The resulting transformation matrix is translated to joint reference
angles using the inverse kinematics for the slave robot.
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l

∆y
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θ

Figure 2.5 Moving the beam an angle, θ , from the horizontal position corresponds
to translations, ∆y and ∆z, in the y- and z-directions, and a rotation, θ , about the
x-axis.

Force Control. Due to the joint dynamics and disturbances there are
always small deviations between the true joint angles and the desired
joint angles as computed by the ball controller. These deviations result in
forces along the beam. To control the compression/tension in the beam,
the joint reference angles are therefore modified by a force controller based
on measurements of the contact forces at the IRB2000 end-effector.
The force control scheme is direct force control, which aims at obtaining

specified reference forces and torques along the different dimensions. The
force controller is a PI-controller acting on the difference between the
desired and measured forces. The output of the controller is a modification
of the robot trajectory in Cartesian coordinates, which is then converted to
joint space to obtain modified references for the joint control loops. Design
and evaluation of various force control schemes for the cooperative robot
task have been investigated in [Chong, 2005].

Joint Control. The individual joint controllers are cascaded PD and PI
loops for the position and velocity control, respectively. In the simulations,
the dynamics of the robot joints are modeled as second order systems,

q̈i + Di q̇i = ki τ i , (2.3)

where τ i is the input torque and qi is the angle of joint i. The parameter
Di represents the damping in the joint, and the flexibility in the gear box
is neglected. The controllers are designed to give a critically damped re-
sponse of the closed-loop system, with a time-constant around 0.1 seconds.
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Task Decomposition. In the simulation of the cooperative robot appli-
cation it is assumed that both the master and slave joint control loops are
implemented on the same CPU, together with the ball position controller
and the force controller. Consequently, a total of 13 tasks are used, with
one task for each joint controller (five for IRB6 and six for IRB2000), one
force control task, and one task for the ball position control.
The sampling interval of the ball position control loop is restricted by

the camera frame rate, which typically lies around 20–30 Hz. The sam-
pling rate was chosen to 20 Hz, and the force controller was designed with
the same sampling rate. A nominal sampling rate of 200 Hz was chosen for
the joint controllers, which is sufficient for the closed-loop dynamics de-
scribed above. In the real robotics lab, however, these loops run at 4 kHz,
mainly to improve the disturbance rejection and to deliver references to
the current loops of the AC-motors.

Scenarios

The application is divided in three different scenarios (modes), each with
different resource requirements in terms of active real-time tasks.

1. In the first scenario, the objective is simply to position the ball along
the beam. To obtain a desired angle of the beam only the slave robot
is used, treating the master robot simply as a beam-end fixture.

2. In the second scenario, the objective is to move the beam along a
trajectory, ignoring the ball position. In this case all robot joint con-
trollers are switched on, and the ball position controller is switched
off.

3. In the third scenario, the objective is to position the ball along the
beam and move the beam along a trajectory simultaneously. In this
scenario all controllers are switched on.

The Feedback Scheduler

The objective of the feedback scheduler is to adjust the sampling periods
of tasks in the system, such that the overall control performance is maxi-
mized, while meeting constraints on the system utilization. The standard
formulation of this problem, Equation (1.6), in general assumes that the
individual cost functions, Ji(hi), are only related to the performance of
control loop i. However, for coupled control tasks, such as the joint control
loops of the slave robot, another dimension is added to the resource alloca-
tion problem. The control performance should be evaluated in terms of the
overall robot behavior, and in this case the individual joints may be more
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or less important. To cope with this, the following weighted formulation
of the feedback scheduling problem will be used,

min
h1... hn

n
∑

i=1
wiVi(hi),

subj. to
n
∑

i=1

Ci

hi
≤ Usp,

(2.4)

where the weight factors, wi, reflect the relative importance of each joint
control loop. The cost functions are here denoted Vi to avoid confusing
them with the velocity Jacobian, J, introduced below.
No state dependencies are included in the cost functions, since the

results from Paper I are not directly applicable to the cascaded PD/PI-
controllers used for the joint control. Linear approximations,

Vi(hi) ( α i + γ ihi, (2.5)

of the infinite-horizon cost functions are used, whereby the closed-form
solution to the optimization problem (1.6) is given as [Cervin, 2003]:

1
h⋆i
= f ⋆i =

( γ i
Ci

)1/2 Usp
∑n
j=1(Cjγ j)1/2

. (2.6)

For the weighted problem (2.4), we instead get

1
h⋆i
= f ⋆i =

( γ̃ i
Ci

)1/2 Usp
∑n
j=1(Cjγ̃ j)1/2

, (2.7)

where γ̃ i = wiγ i.

Choosing the Weights — The Velocity Jacobian. The velocity Jaco-
bian is used to map joint velocities to the linear and angular velocities of
the end-effector. The relation is expressed as









v

ω







 = Jq̇ =








Jv

Jω







 q̇, (2.8)

where J is the velocity Jacobian, v is the linear velocity, and ω is the
angular velocity. The velocity Jacobian is a function, J = J(q), of the
joint angles, and changes as the robot moves.
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The velocity Jacobian can also be used to approximately express the
relation between small changes in the joint angles, ∆q, and small changes
in the Cartesian space translation and rotation, ∆T and ∆R,









∆T

∆R







 =








Jv

Jω







 ∆q. (2.9)

For the overall robot performance it is more relevant to minimize a per-
formance criterion related to ∆T and ∆R, rather than the joint angle
deviations, ∆q. Using the notation

∆T =



















∆tx

∆ty

∆tz



















, ∆R =



















∆rx

∆ry

∆rz



















, (2.10)

a reasonable cost function could be defined as

V̄ = E
{∫ Nh

0

(

∆t2x + ∆t2y + ∆t2z + ρ2 ⋅ (∆r2x + ∆r2y + ∆r2z)
)

dt

}

, (2.11)

where ρ2 is a scale factor expressing the relation between translation and
rotation errors. Using the velocity Jacobian, the cost function (2.11) can
be given as a function of the joint angle deviations, ∆q. We obtain

V̄ = E
{∫ Nh

0

(









∆T

ρ ⋅ ∆R









T 







∆T

ρ ⋅ ∆R









)

dt

}

= E
{∫ Nh

0

(

∆qT








Jv

ρ ⋅ Jω









T 







Jv

ρ ⋅ Jω







 ∆q
)

dt

}

.

(2.12)

Based on this equation, a heuristic choice of the weights, wi, in Equa-
tion (2.4), may be to use the diagonal elements of the matrix

J̄ =








Jv

ρ ⋅ Jω









T 







Jv

ρ ⋅ Jω







 . (2.13)

The weights change dynamically as the robot moves, affecting the optimal
sampling periods computed on-line by the feedback scheduler using (2.7).
The Jacobian can be pre-computed for a range of position/orientation
points and stored in a look-up table. Since some force control schemes
use the velocity Jacobian, another possibility would be to communicate
the matrix between the force control task and the feedback scheduler.
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2.4 Simulation Results

The simulation model is shown in Figure 2.6 and consists of a TrueTime
controller node, the robot dynamics, and simulation models for the contact
forces and the ball position.
The contact force model is a spring-damper model adopted from [Chong,

2005] and is given as

Fx = Kx ⋅ ∆x + Dx ⋅ ∆ ẋ,

Fy = Ky ⋅ ∆y+ Dy ⋅ ∆ ẏ,

Fz = Kz ⋅ ∆z+ Dz ⋅ ∆ ż,

Mx = Kγ ⋅ ∆γ ,

My = Kβ ⋅ ∆β ,

Mz = Kα ⋅ ∆α .

(2.14)

The deviations in Cartesian position, ∆x, ∆y, and ∆z, and the deviations
in roll/pitch/yaw angles, ∆γ , ∆β , and ∆α , are determined by expressing
the position and orientation of the master robot end-effector in the coor-
dinate frame of the end-effector of the slave robot. This transformation is
performed assuming a beam of length 1000 mm between the end-effectors
and a relative orientation between the robots as expressed by

R =



















0 0 −1
1 0 0

0 −1 0



















. (2.15)

The spring and damping constants are chosen to model a flexible beam.
In the simulations they are chosen as

Kx = Ky = Kz = 4 N/mm,
Dx = Dy = Dz = 0.1 Ns/mm.

(2.16)

To model the spherical joints at the end-effectors, the spring constants,
Kγ , Kβ , and Kα , for the moment equations are chosen as zero.
The robot joint angles are transformed to Cartesian coordinates, which

are used to compute the beam angle. The transfer function from beam
angle, in degrees, to the ball position, in meters, is given by

Gθ→p =
−0.055
s2

. (2.17)

A 30 second simulation is performed, starting in mode 1, switching
to mode 2 at t = 10, and to mode 3 at t = 20. In modes 1 and 3, the
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Figure 2.7 Results from an ideal simulation.

Ideal Simulation

Figure 2.7 shows the results of an ideal simulation, where the execution
times of all tasks are set to zero. The first plot shows the ball position and
reference and the second plot shows the beam angle. The next two plots
show the joint angles of the two robots. The last plot shows the force in
the z-direction of the force sensor, i.e., along the beam.

Open-Loop Scheduling

In the next simulation, the simulated execution time for the joint con-
troller tasks is set to Cjoint = 400 µs. The ball and force controllers are
more advanced and contain coordinate transformations and forward and
inverse kinematics computations. These loops are modelled with a ten
times longer execution time, Cball, f orce = 4 ms. The tasks are scheduled us-
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Figure 2.8 Results using rate-monotonic scheduling. The system becomes over-
loaded in modes 2 and 3 with utilization close to and over 100 percent. The deteri-
orated control performance is clearly seen in, e.g., the plot of the ball position.

ing rate-monotonic scheduling, which gives the joint control tasks higher
priority than the ball position and force control tasks.
Figure 2.8 shows the results of this simulation, with the bottom plot

showing the system utilization increasing by each mode change. In mode
1, the joint controllers of the slave robot and the ball and force controllers
are active, giving a utilization of

U = 6 ⋅
0.0004
0.005

+ 2 ⋅
0.004
0.05

= 0.64. (2.18)

The utilization increases to 0.96 in mode 2 and to 1.04 in mode 3. As a
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consequence, the control loops miss deadlines and experience long delays.
The deteriorated control performance is clearly seen in the plots of the
ball position and beam angle. The ball position and force controllers have
the lowest priority and suffer the most due to the overload.
Based on knowledge of the execution times, a worst-case design could

have been used to compute the sampling periods. According to Equa-
tion (1.2) for n = 13 tasks, the utilization bound for guaranteed schedu-
lability becomes 0.71. Assuming unmodified periods of the ball and force
control tasks, this corresponds to a sampling period for the joint controller
tasks of h = 0.008. This unnecessarily long sampling interval would, on
the other hand, result in a utilization of only 0.46 in mode 1.

Feedback Scheduling

In a third simulation, a feedback scheduling task is introduced, running
with a period of 200 ms. The feedback scheduler has highest priority,
whereas the application tasks are again scheduled using rate-monotonic
scheduling. The utilization set-point for the feedback scheduler is chosen
to 0.8. The results from this simulation are shown in Figure 2.9. It can be
seen that the feedback scheduler keeps the utilization level around the set-
point except for transient overloads during the mode changes. By increas-
ing the sampling periods of the joint controller tasks, the performance of
the ball control is improved significantly. The reduced performance of the
joint control is seen as somewhat increased force signal oscillations.
Figure 2.10 shows the sampling periods of the slave robot joint con-

trollers as functions of time. The sampling periods increase by each mode
change but also vary slowly within each mode as the position and orien-
tation of the robot change. For the initial robot configuration shown in
Figure 2.3, we have (for ρ = 600)

J̄

J̄11
=















































1.00 −0.075 0.014 −0.15 0.50 0.00

−0.075 0.66 −0.43 0.052 −0.059 0.00

0.014 −0.43 1.56 −0.10 −0.10 0.41

−0.15 0.052 −0.10 0.48 0.00 0.22

0.50 −0.059 −0.10 0.00 0.49 0.00

0.00 0.00 0.41 0.22 0.00 0.47















































, (2.19)

which gives an indication of the relative importance of the individual joint
control loops for the overall cost defined by (2.11). The effect of the dy-
namic weighting is seen in Figure 2.10, where the fastest sampled task in
each mode corresponds to the controller for joint three. It should, however,
be noted that the matrix also contains some non-negligible off-diagonal
elements, which are neglected in this heuristic choice of weights.
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Figure 2.9 Results using feedback scheduling. The feedback scheduler regulates
the utilization to the set-point of 80 percent.

Finally, a 20 second simulation is run to quantify the performance
of the modified feedback scheduling strategy. The simulation is run in
mode 3 and with the reference for the ball position set to zero, i.e., at
the center of the beam. The beam trajectory and the task execution times
are the same as in the previous simulations. The cost function (2.11) is
used to evaluate the performance of the modified feedback scheduling
strategy compared to the standard feedback scheduling formulation. Two
simulations are run, one using equal weights of the cost functions, and
one using dynamic weights based on the velocity Jacobian. Evaluations of
the cost function (2.11) for the two cases are given in Figure 2.11.
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2.5 Summary

2.5 Summary

This chapter has demonstrated the co-simulation capabilities of True-
Time, with complex cascaded control algorithms implemented as several
tasks on a single CPU interacting with the dynamics of the robots and
the dynamic models of the ball position and contact force. The example
can be further extended to also simulate the network communication be-
tween sensor, controller, and actuator nodes that exist in the real robotics
lab. The real-time networking solution in the lab is based on switched
Ethernet.
The chapter also described a heuristic extension to the standard con-

strained optimization problem formulation, Equation (1.6), for optimal
sampling period selection. In the modified approach, the cost functions
were weighted dynamically to incorporate the relative importance of each
loop for the overall performance of the robot. The dynamic weights were
based on the velocity Jacobian, which relates incremental changes in the
end-effector position and orientation to incremental changes of the indi-
vidual joint angles.
The open robot architecture in the robotics lab is based on Linux RTAI

[The RTAI Project, 2004], a hard real-time Linux kernel extension. To
be able to test the simulated resource allocation schemes, a prototype
feedback scheduler has been implemented for RTAI as a student project
[Schmid and Knutsson, 2004]. The implementation focuses on limited
modifications to the RTAI core. The only functionality that is implemented
in RTAI code is measurements of the periodic runtime of the tasks.
The feedback scheduler module consists of a periodic task, which in

each invocation uses the task execution time measurements to compute
the current CPU load. The task periods are then recalculated based on the
CPU load using linear rescaling. Incorporation of more advanced feedback
scheduling schemes is straightforward.
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3

Future Work

Resource-constrained embedded control and computing systems is an ac-
tive research area, and the work presented in this thesis can be extended
in several directions. A few suggestions for possible extensions and open
questions are given below.

Feedback Scheduling

The basic feedback scheduling optimization formulation could be extended
to also include more involved combinations of tasks. One example would
be to combine control tasks of anytime nature with ordinary control tasks
where the control performance decreases monotonically with the input-
output latency and sampling interval. In this case it is not trivial how
to assign the computation resources. It could also be possible to directly
control timing parameters such as delays and jitter.
The approach to feedback scheduling based on plant states could be

improved by introducing more realistic process/noise descriptions and cost
functions. Deviations in the state due to, e.g., reference changes with im-
perfect plant models, could be modeled using non-stationary noise pro-
cesses. This would allow the plant state to have a larger impact on the
scheduling decisions.
More general feedback scheduling structures could be developed, such

as, e.g., hierarchical or cascaded structures. In these schemes, a global
controller could be used to assign dynamic reservations to a set of vir-
tual sub-CPUs, and local feedback schedulers are designed to enforce the
utilization constraints of the sub-CPUs.
A further possibility includes a direct approach to feedback scheduling,

where the scheduling decisions are made based on instantaneous cost
functions for the different control tasks. What is the best way to design
the cost functions and how should the resulting event-based system be
analyzed?
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Implementation Techniques for MPC

The work on scheduling of MPC tasks may be extended in a number of
ways. One question is what happens if the task has not been terminated
at the deadline. Is it then better to abort and output the control signal or
to continue the optimization into next sample. Another extreme is when
there is no execution time available at all. In this case it may be possi-
ble to use the previous solution sequence shifted one step. The stability
issue of MPC under time-varying delays and using sub-optimal solutions
is another challenging area.

Web Server Control

Model predictive control has also been suggested as a promising approach
for control of web server systems. This requires accurate models of the
behavior of the server systems. For high load, flow models work well,
whereas medium load and rapidly changing traffic is more challenging.
In many situations it may also be required to combine event- and time-
based approaches. Another important area for control of computer systems
is to provide RTOS and middle-ware support to aid in the development.
Finally, the predictor presented in this thesis should be extended to also
treat the admission control case.

Wireless Sensor/Actuator Networks

Wireless sensor/actuator networks is an emerging area containing many
challenging control and real-time problems, mainly motivated by the se-
vere resource constraints in these systems. Issues in this area include,
development of specially tailored communication protocols, control of net-
work bandwidth, and communication-aware control design. Almost all ap-
plications within this field are wireless sensor networks, designed merely
for information gathering. It remains to be seen whether a killer applica-
tion for wireless sensor and actuator networks will be found.

TrueTime Extensions

The TrueTime kernel could be extended and be made more realistic. Cur-
rently it is possible to simulate context switch overhead, but the kernel
model could also include interrupt latencies and execution times asso-
ciated with the various real-time primitives. One major limitation with
TrueTime is the question of how to assign the execution times of tasks.
One possibility would be to integrate TrueTime with available compiler
and execution time analysis tools. Support for code generation and the pos-
sibility to import production code, e.g. using the POSIX standard, should
also be added.
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