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THE IDENTIFICATION OF LINEAR SHIP STEERING DYNAMICS
USING MAXTMUM LIKELIHOOD PARAMETER ESTIMATION

by

1) 2)

K J Astrém ', N H Norrbine), C Kéllstrﬁmj), L Bystrdm

1. BYNOPSIS

The project design for steering qualities of a new ship as well as the
prediction and control of its behaviour when at sea may all be based on
records of the motions of scale models or previous ships, or even on
the observation of the particular ship in the immediate past. In recent
years nev technigues of stochastic system identification have appeared
as alternatives to the deterministic methods hitherto applied to the

analysis of free-sailing experiments.

The present report covers the initial results of co-operation on ship
steering problems between the Swedish State Shipbuilding Experimental
Tank (SSPA) and the Lund Institute of Technologyrﬂépartment of Automatic
Control (LTH), where the theory of the maximum likelihood parameter

estimation has earlier been developed for a variety of dynamic processes,

The role of system identification within ship steering anaiysis is dis-
cussed, the kinematics of ships are high-lighted and the mathematical
nedels for the ship dynamics are reformulated. The system identification
complex is introduced with special emphasis on parameter identifiability
.and estimation, and on the reguirements to be placed on input-output

models.

A general program packsage developed for the computation of the maximum
likelihood estimate of the parameters of either a continuous or a dis-
crete model is described. A special subroutine containing three diffe-

rent types of ship models is included.

1) Lund Institute of Technology'Department of Automatic Control
2) Swedish State Shipbuilding Experimental Tank



A program for calculating the sway velocity from heading and Decca
coordinates is put forth to use the special information from manceuv-

ring tests.

Finglly several examples of estimations of the hydrodynamical co-
efficients and the components of the second order transfer function,

relating the yaw rate to the rudder angle, are given,



2. SHIP KINEMATICS AND SHIP DYNAMICS

This chapter will discuss the steering and manoeuvring characteristics

of ships and the way "models" are used as an aid to understanding.

2.1 Mathematical Models, Scale Models, and Ships

Ship model ﬁasins routinely test "scale models" prior to the building

of a ship of new design, mostly for propulsive performance only; less
frequently these models are used to support the prediction of manoeuv-
ring qualities, Whenever available the results Trom scale model manoeuv-
ring tests should therefore be analyzed not only with a view to predict
the behaviour of the particular ship prototype but to add to the col-
lected and much-needed kﬁowledge of manoeuvring characteristics relasted

to hull geometry.

Shipyards run a number of delivery or acceptance trisls with every new
ship; at least one ship of each class will be subject to some manoeuv-
ring trials. There arc several recommendstions and codes for manoceuv-
ring trial programmes., The Manoeuvrability Committee of the Internatio-
nal Towing Tank Conference is at present revieqing a new ITTC code,
vhich. will pay proper attention to the needs of ship officers who will
héndle the ship as well as to those of the analyst, who ﬁill correlate
the results with pre-trial predictions and, again, extract as much as

possible of general information from the data.

Ship trials are too expensive and time is often too short for adequate-
information to be obtained. Steering tests that can be performed in the
course of a routine passage are strongly desifed. Such tests may also

be used to acquire supplementary information on the characteristics in

shallow water areas, etc,

The prediction, analysis and correlation of manoeuvring performance,
and the transformation and storage of informabion on manoceuvring cha-

racteristics are possible only be reference to the equations of motion



for or the "mathematical model" of the ship-and-screw-and-rudder system.
Together with telemotor system and steering engine this first-mentioned

system forms the forward leg of the steered ship loop.

The ultimate information asked for by the naval architect or control.

engineer is the numeric value of each of the individual coefficients

- appearing in the mathematical model chosen. The method to find these

coefficients from the analysis of experiments is "parameter identifi-
cation", As will be seen in the next chapter the probsbilistic identi-
fication theory has the potentizl of deriving the model structure as

well, vhich motivates the term "system identification".

As far as ﬁossible the same model structure should be used in experi-
ment analysis and prediction synthesis, This structure must be soundly
based on the dynamics of the ship. Depending on the type of experiment
available and on the completeness and accuracy of the data there will
still be a need for mathematical models of varying complexity, with
and without non-linear elements, In first-order or approximate models
the coefficients to be identified are generally of a composite form,
built up from combinations of the original coefficients in the "com-
plete" equations of motion, {See below.) Such models have been widely
used in the deterministic identification of ship characteristics by
"equation error” type methods - Nomoto (1960}, Norrbin (1965) - and by
the phase-plane analysis techﬁique - of Bech and Wagner Smitt (1969).

The diagram in Fig 2.1 has been compiled to indicate the role of para-
meter identification in ship manceuvring applications. A s?ecial note

on scale-model-to-ship predictions is pertinent to the subject.

2.2 A Note on Scale Model Experiments and Data Extrapolation

Scale model experiments may be divided in two principally different
groups, one including force measurements on constrained or "captive"
models, the other including tests with free-sailing self-propelled

models that are manned or remotely controlled, or auto-piloted.
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The principle of the Planar Motion Mechanism (PMM) was introduced by
Gertler and Goodman (1960} for force measurements on submerged models,
vhich were oscillated in well-defined motions in the vertical plane.

It has since then been widely adopted at tests with surface ship models;
ef Strgm-Tejsen & Chislett (1966),

The free-sailing scale model technique is often used to supply direct
ansvers to special steering problems. The scale model (moving in obedi-
ence of the Froude law) may be said to be a programmed anglogue com~
puter, furnishing the model structure of the dynamics ~ unknown to the
experimenter - as well as the computer faeility. In common with the
ship trial as discussed below this problem-orientated free—model tech-—

nigue has two main drawbacks:

t. The solution of a new manoeuvre problem requires a complete new

experiment,

2, New results for a modified configuration or load condition cannot

be uniquely interpreted as to their causes,

In sddition the scale model may suffer from scaling-law divergences
(scale effects), mainly due to screw and rudder loadings being affected
by a viscous boundary layer that is "too thick" and a viscous resistance
that is "too large", During the tests an auxiliary air screw is some-
times used to supply a friction force allowance, bub this artifice will
introduce other discrepancies. Also, the dynamics of the propulsion
engine will have characteristics which are different from those of the

ship.

3. There is no proper way to enter corrections for scale effects into
the free-model "computer program", but only to apply empirical cor-

rection factors to the over-all or finsl results,

A typical correction of this kind may be, say, an empirically motivated

7.5 per cent deduction of model steady turning diameter - cf Burcher



(1972): much larger corrections could well be necessary in the transient

stage, however,

In contrast to the free-sailing technique the alternative captive scale
model technique - with subsequent computer predictions of full scale
behaviour — deoes accept the proper corrections for the scale effects,
applied to individual "coefficients" in the equations of motion. These
corrections are based on the continuous model/ship correlastion as well
as on detailed studies of model flow phenomena, which lalier add to &

special "block" of knowledge.

Obviousl& the access to a suitable method of parameter identification
will greatly enhance the premises of model/ship correlation, and so

the Tree-sailing model technigue will gain a new potential as an alter-
native to tﬁe captive model testing. (Again, more or less the same
method of identification may eventually be applied to improve the ex-

traction of data from PMM foree measurements! )

2,3 A Look at the Kinematics

Before discussing different mathematical models it is worth while %o

look for guidance from the kinematics of typical ships, manoeuvring in
s horizontal plane as shown in Fig 2.2, One of these ships is a dynami-
cally unstable full-form tanker, the other a dynamically stable narrow-

beam destroyer,

A ship is said to be dynamieally stable on straight course or in a turn
of constant curvature if, upon a small disturbance from its steady mo-
tion, it soon resumes that seme motion along a slightly shifted path,

without any correcting rudder being applied.

A ship which is dynamically unstable on a straight course will enter a
spiral turn, however small the disturbence met, and it will end up mov-
ing in a circle of certain radius, in which it will now be stable with

zero rudder,



Fig 2.2 Coordinate systems and symbols

in surface ship kinematics



The "classical" acceptance trial manoeuvre to be performed with a new
ship is the "hard-over turning circle", which is in effect a kind of
step response test applied to an over—damped higher-order non—linear
element, From the nautieal point of view the resulit is expressed in
terms of minimum “reach", "advance" and "tactical diameter" at maximum
helm &8, which may be compared with handbook values. The old figures
st111l hold true, the tactical diameter being typically 3.5 ship lengths
for the tanker snd T ship lengths for the destroyer al high speed, as
illustrated in Fig 2.3, If, thus, modern technology has not changed
these handbook values very much it mainly veflects the fact that ship
operators have not specified any new requirements, but alsc that the
turning characteristics are largely inherent in the main proportions of

the type of ship considered,

The differences between the two ships become even more cbvious if tran-—
sient be compared to transient and steady turning to steady turning., The
time histories of the turning manoceuvres are shown in Fig 2.4, also in-
cluding a so called "pull-out", in which the rudder is simply returned

to midship,

Based on ship lengths travelled the "reach" of the tanker is roughly
twice as large as that of the destroyer, indicating a larger effective
"time constant", For further reference this time constant of the equi-

valent first-order system will be denoted by Té.

Whereas the final turning circles in Fig 2,3 are about the same, the
non-dimensional constant turning parth curvature L/RC (or yaw rate @é)
is also much larger for the tanker than for the destroyer; this indi-
cates a higher effective gain, Ké = &é/ﬁc, which may be attributed to

a smaller effective yaw-damping moment experienced by the tanker hull.
In Fig 2.5 the non-dimensional yaw rate obtained from the turning
manoeuvre is plotted in a diagram of steady-state characteristics
&é(ﬁc). The curves shown are the loci derived from turning circles at
several helm angles, and in particular from the special trial manoceuvre

known as the "reversed spiral". (Wagner Smitt (1967).) The full drawn
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branches of the spiral loci represent stable steady-state conditions,
vhereas the dotted centre branch is the unstable equilibrium condition,

which is characteristic for the dynamically unstable ship.

Surely, the handling of a ship is not just turning kinematics, but it
involves steering on a straight course as well as repeated changes of
heading in falrways or congested areas, ebtc, ete; at best, it is basea

on an understanding of the dynamics of the ship.

A good helmsman or auto-pilot will steer a large unstable tanker on a
straight course almost as well as if it were stable. The diagram in
Fig 2.6 shows a time history of the &(6) locus during a simulator test,
plotted on top of the spiral characteristies. In fact it will be poss-
ible to control the ship with small helm, well inside the width of the
loop, if it is observed that the yaw rate should never be allowed to
develop too much before checking rudder be applied; for checking the

rudder must be moved over to the opposite side of the dotted curve.

Special trial manoeuvres {such as the zig-zag test by Kraemer (1934))
have been devised to describe the controllability and response of &
ship in a relative menner, as compared with other ships or as predicted
from ship model basin experiments with a free-sailing scale model. The
standard or Kempf zig-zag test procedures - using 10° opposite helm
execute at 10° change from initial heading, or 20° helm at 20° change
of heading - both result in oscillations of almost the same "period",
which for different ship types may vary within a range from 6 to 1k
ship lengths, The "dynamic gain", i e the ratio of double amplitude of
yaw rate to that of helm angle, should reflect the inertia in the mo-
tion, but the results are obscured by the influence of non-linear damp-
ing. The muititude of eXplicit data collected along these lines has
again failed to add very much of useful informetion on the dynamics of

different types of ships.

13
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2.4 The Mathematiecsl Models

In applications to ship motion studies in general the ship may be re-~
garded as a rigid body with six degrees of freedom, i e three transla-
tions and three rotations, The following relates to the analysis of the
motion proper in response 1o the control actustions achieved at the

rudder and screw,

The ship moves in the interface between two fluids and the gereration
of waves and vortices are real world facts, since long well-known to

be the possible sources of "memory effects" in the dynamics. A functio-
nal approach to the handling of such effects within s linear theory has
been presented by Bishop, Burcher and Price {1973). In the application
of ordinsgry differential equations the equivaient approach would re-
quire coefficients which vary with the reduced frequency, w' = w+L/V.
A well-documented experience of calm-water ship manoceuvring analysis
has shown that this frequency-dependence may usﬁally bs ignored in fa-
vour of a gquasi-steady low-freguency theory, which more readily accepts

the unavoidable complications due to non—linear hydrodynamics.

The formal equations of motion are conveniently written down in Euler
form, with reference to body axes in s right-handed system where x is
positive forward and y positive to starboard, The same convention in-
fers that a stern rudder for lateral manceuvring will produce a posi-
tive {starboard] yawing moment Whén switched in negative (starboard)

direction, (Cf Fig 2.2.)

For the purpose of this study the problem will be greatly simplified

in that the discussion is confined to motions in the horizontal plane
only, and in that the influence of heeling in a turn is ignored. Mostly
this heeling is small in itself, and in other cases the coupling effect
on sway and yaw has been shown to remain small, The turning of a ship
is initiated by rudder control but the subsequent motion is largely
governed by the bydrodynamic forces due to drift or side-slip. This is

in clear contrast to the case of an aircraft, where sigde-slip is to be



kept as small as possible, whereas the horizontal turn is achieved by
proper banking, In'comparison with the airecraft steering problem,
again, the ship problem is complicated by the dominating influence of
added inertias and large-value damping non-linearities.

Referring to Fig 2.2 the steering manoceuvre will be described by three
second order differential equations for the linear translations u and
v and the yaw rate r = %%—= @. The heading angle Y may indicate the
attitude in relation to a datum line in the x¢yo plane of the space
frame or in relation to the approach direction prior to a certain
menoeuvre, From a knowledge of the initial positicn ship track and
heading are obtained by integration over time t, or over the distance

tf o= IK%E in ship lengths sailed., Thus

t
xg(t) = {(u cost — v sinldt

t
yolt) = {(u simp +v cospldt , {(2.,1)
pt) = Shat

The drift velocity v is related to the side-slip angle B = ~ arc sin:z,
and therefore the position of the ship may alternatively be calculated

as

" .
x0{t) = .g V cos(y - Blat
(2.2)

st,
volt) = { V sin(yp -Blat

The derivation and application of the Fuler equations to the ship
manoeuvring problem may be found in papers by Davidson & Schiff (19L46),
Norrbin {1960) and Abkowitz {1964). More or less "complete" non-

16
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linear models have been put forth by Abkowitz (1964}, by Eda & Crane
(1965) and by Norrbin (19701},

As the parameter identification procedure presented in the Tollowing
chapters will treat the linear problem only, the equations of motion
pertinent to the present task are written in the form of eq (2.3) on
the next page, The mass ilnertias proper, displayed in the left side
members, have been complemented by those parts of the hydrodynamic

L3

forees, which are usually named "added masses", and which will mean -

as already pointed out - a substantial increase of virtual inertias.

The first position in each of the right side members ig reserved for
control forces, Which at constant speed and screw loading (or constant
speed u and revs n) may be taken as proportional to helm angle §, (If
the rudder is not within the influence of the screw race the rudder

force is of course not & function of screw loading.)

The right side members in second and third positions are approxima-
tions to damping forces in steady sway or yaw, and they include pure
mass forces as well as the contributions‘due to hydrodynamiecs. If the
forward speed u is fairly constant the four terms may obviously be con-
sidered as linear. I speed variation is handled separately their
linearization is still valid in terms of side-slip and path curvature.
Their coefficients will alsc appear in the analytical condition for

dynamic stability on & straight course.

The mass forces in positions (4) and (5) should be included in the
formal linear model although they are mostly small enough to be ig-

nored,

All terms in the positions (5}, (6) and (7) are non-linear. The non-
linear "residuals" indicated in the last column positions are compli-
cated functions of the hydrodynamic state of motion, and they will be
required in the proper description or simulation of "tight" or radical

manoeuvres, As an example, the lateral force due to side-slip no longer
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increases in proportion to the drift .velocity v but much faster, due to

the additional contribution of cross~flow viscous drag.

It should be especially observed that the force balance along the x-axis
is completely non-linear, The added "resistance" in a turn is dominated
by the fore-and-aft component of a Ycentripetal force", in whieh the mass
force is strengthened by a force of hydrodynémic nature, (The centripetal
acceleration is usually written as V®/R, where the momentancous radius is
given by R = V/&. The acceleration thus has x and y components egual to

w) and v respectively,)

The diagrams in Figs 2.7 and 2.8 illustrate typical records of helm
manoeuvre and speed and heading response (top} as well as "linear" and
"non-linear" contributions to the sway and yaw eccelerations in simu-
lated 100/100 and 200/20O zig-zag btests with a container ship. Whereas
the linear analysis may possibly have some justification when applied
to the 10°/10° test it is guite clear that this is no longer true in
the case of the 20°/20° test.

If, thus, even the 10°/10° zig-zag test is far frém a linear manceuvre
it would be tempting to revert to an analysis of the routine course-
keeping record. Unfortunately, now, such records often display the very-
léw—frequency limit eyele type steering associated with non-linear ele-
ments as shown in Fig 2,6; the non-linear element may be represented by
the ship hydrodynamics, the steering engine, or the helmsman's mode of
control, A forced bang-bang type small-helm control executed at random
intervals will prodﬁce a nearly straight course and a response record
covering a wide frequency spectrum, however, and it will be seen to
furnish an adequate input for linear analysis. (The response frequencies
nov considered may still be said to be "low" with respect to the hydro-

dynamic frequency effects mentioned earlier,)



Fig 2.7 Linear and non

~1linear contributions to sway and yaw accelerations in

the mathematical modelling of a 100/100 zig-zag manoeuvre with a twin-—

screw contalner ship



Lineont |-\

00—

(AL
}
Fig 2

8 Linear and non-linear contributions to sway and yaw accelerations in

the mathematical modelling of a 20°/20° zig-zag manoceuvre with a twin-

screw container ship



2.5 The Linear Model

From the above it follows that the linearized model will include pertur-—
bations in sway and yaw only, i1 e, the Y- and N-equations. That does not
mean that speed loss must necessarily be ignored, but 1t can be handled

separately. In general the forces involved are all proportional to speed
sguared or roughly, in normal steering manoceuvres, to forvard speed

squared, u?,

It is convenient to introduce non-dimensional coefficients Lo charac—
terize the ship geometry in the dynsmics, The "bis" system - Norrbin
(1970) -~ is particularly handy in more general cases; here all forces
are related to the displacement force of the ship, linear accelerations
are related to the amcceleration of gravity, and the speed is given by
the Froude number, In dimension-true equations the non-dimensionzl co-—
efficients (or "derivatives") appear together with multiplication fac-—

tors in povers of ship length L,

On the next page the Y~ and N-equations (2.4) are presented in this way.
The formal forms appear at top and bottom, and the equations may be re-
duced as indicated in the way of the arrows. The example shown refers to
g single screw tanker, where the rudder force is taken to be proportic-—

%, i e to RPM squared, The asymmetric

nal to rudder angle § and to n
lateral foree, which is an effect of the single-screw sction, is like-
wise taken to be proportional to n®. When speed and RPM variations are
moderate the rudder force will vary with 6 only, and thelasymmetric force
will be balanced by a small residuval helm §y. In the absence of outer

disturbances 8¢9 = ~— 17 may be a typical mean helm value on a straight

~ course,

2,6 Outer Disturbances in the Linear Model

A record of heading angles and helm positions in a ship experiment will
exhibit the influence of water currents and wind loadings. Referring to

Fig 2.9 it will be observed that a steady current will not be sensed by

22
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the ship hull; it must of course by corrected for, by heading upstream,
when siming for a certain position, The effects of the steady wind, on
the other hand, must be balanced by water forces through a combination

of side-slip and correcting helm,

A typical diagram to show the variztion of lateral force and yawing
moment due to a "reilative" wind of given angle Yg off the bow of a
modern tanker is reproduced in Fig 2.10, from van Berlekom, Tri#girdh

and Dellhag (197h}.

During manoeuvres in a true wind of constant velocity and direction the
magnitude as well as the direction of the relative wind will change
with the heading of the ship, and the force and moment will be compli-
cated functions of this heading; especially it may be seen that the
lateral centre of wind pressure may move rapidly as the ship turns
through certain angles. It is important to remember that the ship is

no weathercock, however, and that its tendency to Juff into or bear
away from the wind always depends on the combination of wind and water

forces,

Within the application to the linear analysis the wind force and moment

may be assumed to vary proportionally to the change of heading, so that

¥ o= Yf + Y$1p and N" = N: + NWIP. In approach to head-on wind
yY = g¥ = 0 vwhereas Y$ and N; have finite negative values., In a (rela-
) 0 i

tive) beam wind YE:& 0, but here the three other coefficients have
finite values. The constants corresponding to the initial average wind
load will not be distinguished from the residual rudder load; thus, say

W W
T = YD - YGGQ and Fz = NO - NG(SU.

Tn the real world the true wind fluctuates in "stirength" and direction
in a way which is known to be influericed by the special meteorological
conditions prevailing. Trial codes usually'stipulate that ship perfor-
mence tests are not to be run in wind conditions above 3 Bft, in which
case the fluctustions just mentioned may be described as the effect of

a homogeneous isotropic turbulence. The time histories included in



e — — e
- /-“*t/,f»ﬂc.l:f"f -
v

The homogeneous cross—current case: The ship is drifting with the mass

of water with no hydrodynamic side-siip (8 = 0) or correcting helm.

wind

The beam-wind case: Helm angle § and side-slip B are both adjusted to make

the ship proceed in force and moment balance. The forcc Y and the corres—

v

ponding yaw moment vary with magnitude VB and direction Y of relative

wind as examplified in Fig 2.10.

Fig 2.9 "Drift" due to cross—current and due to beam—wind in sailing along

a straight path over ground
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Fig 2,10 Example of wind force components measured on the

model of a large tanker

The non-dimensionzl coefficients are based on product of
relative wind stagnation pressure and refereunce ares L2,

(From ven Berlekom, Trigirdh and Dellhag (197L))
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Fig 2.11 will then be fairly typical of the variation of wind veloci-
ties close above a flal surface such as a wide field or the open sea,
In view of the long time constants seen to characterize the lateral

ship response it is reasonable to assume that the varistions of wingd

force and moment are mainly realizabtions of white noise,

2.7 The Linear Model Continued

If v, v (= i) and ¥ are considered as three state variables, and if the
expressions of the last Section are added to eq (2.4}, then the linear

eguations may be written in metrix form as

- . T o - Wil - . - r

- - Y, S |
m Yﬁ me > Ot v YV lr mu Yw v YG 38
- . . . - mux N p
me, =N wk? -N. OffE LA ¢ MylT|* N 6+ |Fsf (2.5)
L 0 -0 uld) Lo 1 04ty (0] L0

In the next Chapter this equation will appear (eq (3.1)) with the co-
efficients in suitable matrix notation, and formal expressions will be
derived for the transfer functions, eq (3.3), {3.5), (3.7) and (3.8),

the two latter for the case of no wind load.

Whereas the control function 6(%) may itself include e heading reference
the open ship-and-screw-and-rudder loop has no inherent preference for
any one heading. The characteristic equation s{s® + a;s + a,) = 0 thus

. has one root equal to zero, and it may be shown that the two other rocts
normally are real. By conventionlthe root to the right on the real axis
is denoted s; = - T:I. The appropriate transfer function from helm to

heading may read

Gi(s) =G, = K(1+Tss) : (2.6)

WS s{T{Tss% + (T} +Ty)s +1}

with accepted symbols following Nomoto (1957). The same time constants
T: and T will appear in the transfer function from helm to sway velo-

city:
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require additional information. This latter is even more obvious for

the unstable ship.

In terms of "stability derivatives" the analytical criterion for dyna-
mic stability on a straight course may be written as an unequality of

two lever arms,

mXG - Nur Nuv

- = —_ pd
.-, — Y 0 {2.10)}

ur uv

The physical interpretation of this criterion is that in the nmotion ini-
tiated by a disturbance the yaw damping moment and the sway damping force
will tend to stop the yawing. The linearization may in a similar way be
epplied to the ship in a turn of given radius and with a side-slip ¥ O,
and it will then be seen that the stability in the turn is increased

over that on a straight course. It was seen earlier in this chapter that
the unstable ship was in fact inherently stable in a certain turn to

port or sbarboard.

2.8 Approximations with Added Non-Linearities

I+ was seen sbove that the validity of the linear relations is limited

to moderate amplitudes. In particular @C = KGC fails to describe the
steady state characteristics as derived from spiral tests with marginally
stable or unstable ships, and diagrams as in Fig 2.5 suggest that the
linear relation be replaced by an expression with a cubic or abs-—square
term, such as '

.f. -~ K 1 e! = K& (2.11
v - <kl 1, . )
As a Tirst approximation to the non-linear problem these equilibrium con-

ditions may be introduced into the steering equations, which correspond

to the transfer functions (2.8) or (2.6); Norrbin (1963, 1965).



In the eguation
Tra + (T + T M+ b~ k[P = k(8 +1ad), (2.12)

the presence of an explicit abs-square term may be argued for with
reference to the domiﬁaiing role of viscous cross-flow resistance and
to the fact that the phase difference between yaw and sway remains
fairiy constent during the course of low-fregquency manceuvres. Thus

the equation may be especially useful in standard zig-zag test analysis,

and in the analysis of small deviatioms from a pure turning circle.

Bech & Smitt (1969) generalized the non-linear assumption by use of
an unknown function H(Y) to be derived by curve fitting to the reversed
spiral results, and they also put forth a convenient way to find the

time constants from graphical asnalysis of the zig-zag test phase plot
of ().

In the context of the present work an equation such as {2.12) will be
suggested for predictions of non-linear manceuvres on the basis of

linear ¢haracteristics, that have been obtained through the parameter
identification procedure to be described next, It is antieipated that
similar procedures will be developed in a future for a direct evalua-
tion of the most significant non-linear contributions to the original

equations of motion, (2.3].



3. SYSTEM IDENTIFICATION

Mathematical models for the motion of the ship in the horisontal
plane were given in the previous chapter. The problem of de-
termining the‘pérameters of the models from observed motions

of the ship will now be discussed. It is assumed that an expe-
riment is performed by changing the rudder in some way, and

that the resulting metion is obsérved{ It will first be inves~
tigated if the parameters of the models can be determined from

such an experiment.

3.1 Pavameter Identifiability.

4 model is called parameter identifiable if its parameters can
be determined from input/output data obtained under certain
experimental conditions. The identifiability of the models
(2.5) and (2.6) will now be explored. WNeglecting the distur-
bances and assuming that the velocity component u is consiant,
the linearized equations of motion contains 14 parameters m, X,
ks u, and 10 hydrodynaﬁic derivatives. The transfer func-
tion (2.6) relating heading or yaw rate to the rudder is charac~
terizeé by four parameters, and the transfer function relating
sway veloeity to rudder by two additional parameters. Since the
input/output data is uniquely characterized by the transfer func-
tions, it is clear from this simple argument that six parzmeter
combinationscan be determined if both sway velocity and heading
angle are measured, but that only four parameter combinations

can be obtained if the heading only is measured.

3.2 State Equations,

To investigate the parameter combinations that can be determined

further, a state space model is introduced by solving v, r and

L3
¢ from the equations of motion. This gives



v 211 . 319 B3V b1y £
d = N
rri bl N R Y ayq T 4 b21 § + fz {3.1)
0 !
] 1 0 ..I.") 0 ] LOJ

where f1 and f2 are the linearized windforces and

) ’ — Y e i + r-_!"' -
311 al2 bl1 m Yv Yr+th Xv 'Yr muo Y

]

. 2 : -
21 *Nv+mx mkzz"Nf N N _-mx_.u N

21 22 G

(3.2}

The pavameters a4 and a23 depend on the windforces; they

will vanish if there are no disturbances.

- The transfer function relating heading angle to rudder is

given by

b,s + b
¢ (s) = L | (3.3)
1 93 + a 32 + a,s + a
1 2 3

where the parameters are related by

81 7781 T %22

2 7 T12%1 T f11%22 T %23 A

8y =mayaa, + a11é23 . | (3.8
by = by

by = b T by

The.transfer function relating sway velocity to rudder is given
by '

2 )
c.5 + c,8 + C .
Gp(8) = ey o (3.5)

s _+ als + azs + 33 B




where ay, 8, and a, are given by (3.4) and

¢y = by
Cy = magobyy * ay,byy ' (3.6)
C3 = "ayqbyy * Ay3byg

Notice that if the effects of wind are neglected, then the

transfer functions G1 and G2 are reduced to

b,s + b L
6, (8) = —iemnt (3.7)
1 s(sz+a s+a, )
1772
c 8 + ¢
G, (s) = — 2 (3.8)
2 (52+a sta,)
1 2
In the presence of wind the transfer function G

1 will thus-

not contain a pure integration.

The state equation (3.1) contains 8 paramefers, Since the
transfer function Gl-relating heading angle to rudder is de-
scribed by 5 parameters only, namely a1y a9, 24, b1 and b2,
it is clear that the parameters of the state model can not be
- ~determined from an experiment where only the heading is ‘
measured. The paraﬁeter combinations that can be determined
are given by (3.4). Notice in particular that the parameter
by is identifiable. However, if the sway velocity is also
measured, then the transfer function G2 can also be determined.
“This gives 3 additional parameters) Cys Cy and Cg- To analyse
the identifiability of the parameters of the state model it
must ‘then be investigated if the parameters of the state model
can be determined from the equations (3.4) and (3.6). 'Tﬁese

equations can be solved if there are no pole zero cancellations.



3:3 Parameter Estimation.

Having discussed the problem of identifiability, the parameter
estimation problem will now be discussed. Bofh the estimation
of parameters in a state model and the estimation of the para-
meters of a transfer function model can be formulated as a prob-
lem of determining the parameters in the stochastic differential

equation
dx = Axdt + Budt + dw - (3.9

It is assumed that the initial state is a gaussian vector with
mean value m and covariance RO and that {w(t), 0 ¢t ¢ =} is

a Wiener process with incremental covariance Rldt which is
assumed independent of the initial state. Assume that an in-
put signal has been applied to the system and. that the output
hasbeen observed at discrete times tO’ tl,...,tg with a measur-—

ing device which can be characterized by

y(tk) = Cx(tk) + Du(tk) + e(tk) _ D (3.10)

k = 0,1,‘nn,N

The measuremént errors {e(tk)} are assumed to be independent
and gaussian with zero mean and covariance Ry. It is further-
more assumed that the wmeasurement errors are independent of

Py

fw(t), 0 ¢t < »} and of the initial state.

The model (3.10) imﬁlies that the measuring instruments are
such that they give an output signal which is the instanta-
neous value of a linear combination of the state variables.

The errors of measurements taken at different times are inde-
pendent. The eguation (3.10) is a good model when the sensor
dynamics is considerably faster than the system dynamics and
the measurement errors are so small that it is not reasonable
to éverage measurement signals over intervals comparable to the

T

36
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sanpling intervals.

In the particular case of ship dynamics the model (3.10) is
reasonable because the shortest time constant of interest and
the sampling interval is about 5 - 60 s. All sensors have
dynamics with time constantsshorter than 1 s, and the measure-
ment errors are about 0.1° in heading, 0.020/5 in yaw rate and

0.01 m/s in velocity.

3.4 Problem Statement,

Itis thus assumed that an identifiable model (3.9)yv(3.10) is
given and the problem is to determine the identifiable parame-
ters from observed input-output pairs. The parameters will

be determined using the maximum likelihood method.

3.5 The Likelihood Function.

To obtain the likelihood functiom, i.e. the joint probability
density of the observed outputs assuming all parameters known,

we introduce

my(to) |

y(t15 _
Ytk -1 E : (3.11)
y(e, )

t
i.e. a vector consisting of all outputs observed up to and in-

cluding time Eyr

Assume that the probability distribution of yi, has a density
P(Ytk)‘ It then follows from the definition of conditional

probabilities that .



p(y, ) ='p(%(t.)ly' ply. ) (3.12)
"k K tk—l) k-1

Repeated use of this formula gives the following formula for

the 1likelihood function

L= el ) - p(§(tk)1ytkml)P<?(tk—l)lytk“;)"'

N

. p(?(tl)[y(t09 p(?(to)) (3.13)

£

The likelihood function can thus be conveniently written as

a product of conditional densities.

In the particular case of a model described by (3.9) and
(3.10) all random variables are gaussian and the conditional
density is also gaussian. The logarithm of the likelihood

function can then be written as

N
- log L = %— I log det R{tk) +
k=0
N
1 T -1 .
+ = I e {t,)R “(t,)e(t.) + const (3.1&)
2 k k k
k=0
where
e(ty) = y(t) -yl 0 (3.15)

and y(tkltkml) denotes the conditional mean of y(tk)'given

Yepop 2nd R(tk) the conditional covariance. We have
y(tgh_l) = Cm + Du(ty) ' : ~ (3.16)
Also notice that {s(tk); k = 0,...,N} are the innovations

of the output process. The conditional mean y(tk]tk~1) and

the conditional covariance R(tk) are easily determined re-

cursively through the Kalman-Bucy filtering theory. See e.g.

38



Astrém (1970). We have
) - = o 3
y(tkltk_l) Cx(tkltk_l) + Du(e)

;(tk[tk) = ;(tkltk_l) + Rt )elr)

d -~ B ~ . -

S ox(ele) = ax(ele) + Bu(t) t, € £ <6,

) i T T.~1 :

K(t, ) = P(tkltkml)C [R, + CP(tkitk_l)C ] _ (3.17)
Pl e = ple e, ) - K@ydopty )

§-P(t]t ) = AP(t|t )+ P(tlt )AT + R £, £t gt

dt k K X 1 kS5 F kel

T
R(t,) = R, + CP(t, |t _)C

The computation of the likelihood functionm is thus easily
done recursively. A description of the program LISPID, which’

performs the calculations, is given in the next chapter.

3.6 ‘InputrOufput Models.

If we are only interested in an input-output model, the para-
meter estimation can be simplified significantly if the pava-

meters of the pulse transfer function model
y(t) + a,y(t=1)+. . +a y(t-n) = bju(t-1)+...+b_u(t-n) +
+ e(t) + cle(t"1)+...+cne(t-n)

are determined directly, as was described in Astrdm and Bohlin

{1965). An interactive program IDPAC, which performs this, is

-~

described in Gustavsson et al (1973).
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4. PARAMETER ESTIMATION PROGRAM LISPID

A program package for LInear System Parameter IDentifi-~
cation (LISPID) has been developed for the computer
UNIVAC 1108. All programs with the exception of two
small subroutines, have been coded in Fortran. Sev-
eral subroutines from the Program Library of the Div-
ision of Automatic Control have also been incorporated
with LISPID. The program package is an implementation
of the computation of the maximum likelihood estimate
described in Chapter 3. - '

4.1  Subroutine Structure.

The program package LISPID consists of 52 subroutines,
but only the most important are described here. The
total number of Fortran stétements, including comments,
is 9 200. A simplified subroutine structure is showq
in Fig. 4.1. The program heads of somé of the sﬁb~
routines are given in Appendix C.

MAIN - The user must supply the main program where data
and parameters are organized as described in the sub-~
routine LISPID., It is necessary to make a call to the
subroutine DATEXP. A call to the subroutine IOLISP

may facilitate the reading of parameters.

LISPID - All administration is performed in this subroutine.

. After the parAmeter'estimation,;data can be analysed,

printed and plotted according to the user's desire.

POWBRE, NUFLET ~ Two different algorithms to minimize
the loss function, which is obtained ffcm the parameter
estimation. The choice between the two algorithms is
controlled by the user. ‘

L0



DATEXP K (MAIN) [—=— - IOLISP |
| I |
LISPID
. . 4
IPOWBRE NUFLET
S (SYSTY [k T
P~ I e
[SGAIN le_-—~! L— — 2l cospy |
N R S

SINT

" Fig. 4.1, Simplified subroutine structure of LISPID.
The main program MAIN and the subroutine
SYST must be supplied by the user. IOLISP,
SGAIN and COSDY are auxiliary subroutines,
which are not necessary to call.

SYST~ The dependence of the parameters, which are to
be estimated, has to be supplied by the user in this
subroutine. The wvalue of the loss function, which is
connected with a_special set of parameter values, is
obtained by calls to the subroutine SINT. For special

cases, calls to the auxiliary suerutines SGAIN and.
COSDY can be made. A

Ly



STNT- This subroutine transforms continuous system and
covariance matrices to discrete form, iterates system
equations over data and computes values of the loss

function.

DATEXP - A subroutine to compute index values and expand
the data wvector.

TOLISP - An auxiliary subroutine to read parameters from

card reader and print them on line printer.

SGAIN - This auxiliary subroutine can be called by sub-
routine SYST to compute the discrete, stationary filter

gain.

COSDY - An auxiliary subroutine to be called from the
subroutine SYST if the time lag between the discontinuity
of the inputs and the measurement of the outputs is to

be determined.

4.2 General Models.

It is possible to handle éwo different kinds of measurements
in LISPID. If the parameter MEAS is put equal to zero by
the user, it is assumed that instantaneous measurements

have been made, and if MEAS is put egual to one, integra-

ting measurements are assumed.

The type of linear model to be used in LISPID is controlled
by the parameter ISYS. A positive value of ISYS means a con-
tinous model, and a negative value means a discrete model.
The parameters, whichare to be estimated, are dollected in
a vector 8. It is assumed in the following models that w
and ¢ are Wiener processes and that %_and g are gaﬁssian

processes.



If only measurement noise is assumed,put ISYS equal to 1

or -1.
I8Ys = 1, MEAS = (:
(—3-5 = A(o)x(t) + B(e)ult)
at
, A (4.1)
() = E(o)x(t,) + Blorule,) + 8(t)
k=0,1,...,8
I8YS = 1, . MEAS = 1:
[§§ = A{0)x(t) + B{e)u(t)
ac
dz = C(0)x(t)at + D(6)ult)dt + de (4.2)
Y1 - |
ylt) = I dz k=0,1,...8
: t
k
ISYS = -1, MEAS = 0:
o’ o
x{t } = A(0)x{t,.) + B{o)ult,)
k+1 k k (4.3)

ylt) = Eo)x(e) * Bloluley) + ()

k=0,1...,N
If measurement noise and state noise modelled by a gein

matrix ﬁ(e) are assumed, put ISYS equal to 2 or -2.



ISYS = 2, MEAS = 0:

dg = A{e)x(t)dt + B(o)u(t)dt + dw

(4.4}

Y(tk) = 8(e)x(tk) -+ ﬁ(e)u(tk) } g(tk)

k = O,l;.n-;N

This model is then transformed by LISPID (see Chapter 3
and Astrém (1970)): |

x(tk

it

w) = BOIx (e + Bloyate) + X(oye(e

k’_

y ) = E(Ox(t) + Dlo)ulty) + eft,) (4.5)

k=v0'l'oce'N

ISYS = 2, MEAS = 1:

dx Afe)x({t)dt + B(8Yu(t)dlt + dw

az

it

c(e)x(t)dt + D{8)u(t)dt + de (4.6}

k+1

Y(tk) = dZ : k = Oll.rosnrN

Y t

This model is also transformed into model (4.5) by LISPID.

ISYS = -2, MEAS = 0:

See (4.5)

Put ISYS equal to 3 or -3 if measurement noise and state

noise modelled by covariance matrices are assumed.

L



IsYS = 3, MEAS = 0:

AN

ax = A{0)x(t)dt + B(e)u(lt)dt + dw

vyt = Eo)x(t) + Blouly) + Sty)

w has incremental covariance Rl(e)dt (4.7)

élty) € N(0, K,(0)) K = 0,1,....H

ISYS = 3, MEAS = 1:

dx

1

A(0)x{(t)dt + B(e)u(t)dt + dw.

dz

c{e)x(t)dt + D(8Yu(t)dt +‘de

i
y(t,) = f - a=z k= 0,1,...,N (4.8)
t : -

k

w and e have incremental covariances

. Rl(e)dt and Rz(e)dt, resp. The cross

covariance is Rlz(e)dt°

.

I5¥Ss = -3, MEAS = 0:°

x{ty ) = ﬁ(ﬂ)x(tk) + %(eju(tk) + %(tk)
vt ) = (oyx(ry) + Blelulry) + (ty)
‘ : - (4.9)

v
wit,) € N(O, ﬁl(e)) k f 0,1,...,N

1. .
| Stt,) € n(o, Ky (0))

A statistical test of the residuals to check if the values

are suitably small can be performed by putting ISYS equal



to 4 or —4. The same model as if ISYS is equal to 3 or

-3 is then used.

It is alsco possible to let the initial state and, if
ISYS is egual to 3 or -3, the initial covariance matrix
of state estimate errors depend on the parameter vector
8.

If 1I8YS is equal to 1, -1, 2 or -2, a simplified loss
function Vl(e) is used (see Astrdm and Eykhoff (1971)):

e ()6 (1)) O (4.10)

The negative 1pgarithm of the likelihood function, di-
vided by N+1, is used as loss function if ISYS is equal
to 3, -3, 4 or ~4, cf. (3.14).

N log I, 1 N ~
Vz(s) il e PAGERY) kiovlog det R(tk) + .
- (4.11)
g -1
T et (5 )R T )e(ty) + (Ml)ng log 2n
k=0 : ¥

where n, is the number of measurement signals. In this
case the loss function Vlte) is computed too,” but is not

used for the estimation.

If the sampling interval is not constant,; the user must
put the parameter ISAMP equal to 3. ISAMP equal to 1
means constant sampling interval, and ISAMP egual to 2
means constant sampling interval but that some measure-
ments are missing.

To obtain the maximum likelihood estimates of the parame-

ters, l.e. a model which performs, in a certain sense,

LG
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the one-step prediction as well as possible, put the para-
meters NPRED1 and NPREDZ equal to 1. A model which pre-
dicts an arbitrary number of time steps ahead can be
obtained by giving NPRED1 and NPRED2 other values.

If the sampling interval is constant, or if possibly some
nmeasurements are missing (ISAMP = 1 or 2), and the sys-
tem and the covariance matrices are time-invariant, the
medels (4.7), (4.8) and (4.%8), when ISYS is equal to 3

or -3, can be reduced to the model (4.5) by calling the
gubroutine SGAIN from the subroutine SYST. This will

save a lot of computing time.

4.3 Ship Models.

A special subroutine SHIP to be used as the subroutine
8YST of the program package LISPID has been developed. The

program head is given in Appendix C.
Parameters of three different ship models can be estimated.
- The choice of the model is controlled by the parameter

IMOD.

Model 1 (IMOD=l ; cf. (2,5) and (4.7)):

) . -
L 1, - 1 1, -
Ls L—ze ollazl={ L 6. Lo 6, © r{t) .dt-a»
v2 3 2 4 TtV v Vg Y30
K 0 1{1{ay S | 0 v (t)
Gy 894 %13
w6 e . SUE=T) | g¢ 4+ aw
1711 Y12 14 1
- O 'O L = ]




vy (t) ¢y Ly,
vz(tk) g —Lzu?
v(tk) = |4y 0
L\b(tk) 0 0
¢ 85
. ¢ 616 G(tknr)
0 615 Ul
0 617
LO 0

1/a

w 'is a Wiener process with incremental covariance

R1 dt, where

s

[oygl

L.

| \legglioggl sin o,y 0
Ry = M\J[elsllelgl sin 04

[919! . 0

o 0

-l

. ’ . n,
The measurement errors {e(tk)} are assumed to be inde-

pendent and gaussian with zero mean and covariance R2,

where
EPPL 0
B, = |0 P9
. 0
c .
L

.
0

lo)s]
0

0

021 |
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Thé initial state is given by

- - - -t
v(ty) 8,579%,
- — o 6
rle )l = 1% Pag

_w(to{x ,ul 627-=

and the initial covariance matrix of_state estimate errors

is
- -
0,61 033 %32
Plty) = | 651 Joygl 033
032 033 19301 |

The time lag v is computed as
1 = T|sin 834|
where T is the sampling interval.

Ul is an artificial input signal which consists of only
ones to make it possiblé to estimate the bias on state
equations and measurements. 64 and elo'are parameters

to describe the wind influence during the experiment (see
Chaptexr 3). oq and a. are conversion factors from degrees
to radians and from m/s to knots, respectively. The dimen-
sions of inputs, states and measurements are shown in
Table 4.1.

L9



) deg

Ul -

v m/s

T rad/s

v rad

vy knots

Vo knots
knots

r deg/s

1] deg

Table 4.1 Dimensions of inputs, states and measurements.

Notice that it is posgsible to estimate onlyva subset of
the 34 parameters of the model. The other parameters

caﬁ be given arbitrary fixed values. It is not necessary
to have measured all the five output signals of the model,
but attention has to be paid to the identifiability dis-
cussion of Chapter 3. Notice that it is not possible to

use vl and v at the same time.

Hydrodynamic derivatives normalized by use of either the .
"prime" system or the "bis" system can be estimated in
model 1. If the values of the four derivatives 8yr 855

65 and 6, are given in the "prime" system, all cther deri-
vative estimates are obtained in the "prime". system, and

-analogous for the "bis" system.

Model 2 (IMOD = 2; cf. (4.7}}):

=~ T r— . - - T
- -E _ -
dv T Bl 1 0f [vit)
. v2
dx,1 = |- ;igz 0 1 (%, (8) ) at +
3
A
dx 4 373 . 0 0} | x5(%)
L J L R



i ; -
o —V— 4] 6
T %4 7
+ u E_?i o a § (k=) dt + dw
2 5 8 Ul
L
4
v
@, —= O 8
] 36 9
vit,)
) k j §{t, -1) oL
vity) = lay, 0 0} xy(e)l+ |0 elOJ K + 8(t)
) Ul
3]
k = Ofl’ll‘"q
- - bulg
| .
lo441 “911l [0, sin 8, 15
Ry = q 81118751 sin 8y, |0y, %16
®1s 016 1913‘
R, = oyl
™ - [~ ' -1
V(to) 018/62
2yt = 19
x5 (t) | %20 |
‘921‘ 24 Oo5
P(t ) =1 0,4 le,, €6
®os ®26 o,5]

51



The states Xy and X4 are linear combinations of the ori-
ginal states v, r and ¥, and they have the diwmensions of
m/52 resp. m/sB. The transfer function relating the sway

velocity v to the rudder angle, measured in radians, is

- diven by
2 3 4
v 2 ., V- v
-}:J- 945 h Lz 858 -+ L3 86
Gz(s) = 5 3 {4.12)
2 4+ ¥ g 6?65+ Vg
L 1 12728 T T3 03

or, if the wind parameters 63 and 86 are equal to zero,

2 i/
v Vv
L %% T3 % K (1 + sT, ) |
. v v
G?(S) =5 T 5 = {4.13)
- 8 + = 8.8 + V {1+sT.) {1+s7,)
L 71 —= B 1. 2
2 2 _

The two transfer functions can be compared to (3.5} and
.(318)0

Model 3 (IMOD = 3; cf. (4.7}):

. nl e N - ™ =

. v
dxl 0 . D -3 83 xl(t)
L
. v v -
ar | =11 - ¥ oy -39 ¥(t) |at +
av jo 1 0 P(E)
3
v
“1 73 % b6 -
§(t~-1) '
- : dt + dw
- Ul
t, —= & 8
1 LZ 4 7
0 0_




ey
r(e)| |o 1/a, o || LK
= _ r(tk) +
el )1 o 0 ey 1l _
k 1
¥ (k)
0 6 §(t, ~7)
+ 8 k + g(tk)
0 0| Ul
kK =0,1,...,¥
. | | . |
l6g] V]egl o4l sin 014
—y
Ry = WUI89|]810| sin 04, ]Glol
0 | 0
a | L -
| log,] -\J|612} [013] sin 8y,
faTd
K, = 1
Vl8121[813| sin 014 1013[
- ‘ - I~ -, 7
Xy (ty) 045
r(t,) = @38,
w(to) alel7
[o1g] 821 ®22
Plt,) = 951 [0y, %23
992 893 18,01
T = T |sin 0
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The state X4 is a linear combination of the original

states v, T and §, and it has the dimension of 1/s2.

The transfer functiqn relating ¢ to & is given by

2 3
v N A
2% 3%
Gl(s) = 5 3 (4.14)
s’ + Y g 57 s + ooy
. L” L
or, if the wind parameter 63 is equal to zero,
EE 8,8 + YE 8
: 7,2 4 L3 5 K(1+sT3)
Gl(s) = - 5 = - (4.15)
sis? + Lo.s + L. g,] S(1+sT)) (1+sTy)
L 1 L2 2 .

cf. (2.6), (3:3) and (3.7).

The transfer function reléting r to ¢ is  obtained by

multiplying (4.14) or (4.15) by s, eg.

K(14ST3}

'(1+sTl)(1+sT

G(s) =

) {4.16)
2
Nomoto's first order model can be identified, using model
3, by giving the wind parameter 83 and the parameters 82

and 65 the fixed value zero. Following transfer function,
relating ¥ to §, will ‘then be obtained: '

V2
. 12 %4 X R
G(s) = 7 = (4.17)
s +'f 81 1l + sT : ’
. . s

A summary of the three ship models, which are described

in this section, is also given in Appendix B.



4,4 Numerical Aspects,

The maximum of the likelihood function is found by an
optimization routine., It is, however, extremely tedious
to compute the gradient analytically, so only optimiza-
tion techniques using the values of the loss function

have been tried.,

Two different.algorithms have proved to be the most
.suitable for this kind of problems. 1In the first one,
subroutine NUFLET, the gradient is computed numerically
using finite differences. Then a guasi~-newton method

is applied to find the optimum (see Fletcher (1972)).
The other algorithm, subroutine POWBRE, does not use
~numerical gradients, but gets information about the loss

function by a special search pattern (see Brent (1973)).

The "actual computations are far from straightforward,
and although as fast a computer as UNIVAC 1108 is used,
the exeontion times often become rather long, especially

when a loF of data points are used.
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5, PROGRAM DECCON FOR CALCULATION OF THE SWAY VELOCITY FROM DECCA
COORDINATES

From a Decca-recording of, say, a manoeuyring test the heading of the
ship and the Decca coordinates are available, The Decca coordinates,
given in zones and lanes, are usually recorded by a series of discrete
photographs, taken at a rate of about 0.05 Hz., As the pointers of the
decometer are moving all the time such a recording is, however, less
convenient, A more accurate recording can be obtained, e g by photo-
graphing the decometers at a steady higher rate or sampling and re-

cording on paper tape by means of a datalogger.
In this part a method will be described, by which the Decca coordinates
are transformed into a convenient set of orthogonal coordinates and

further used to furnish the sway velocity of the ship during a manoeuvre.

5.1 The Decca Navigator System

A brief description of the Decca Navigator System follows below. For

further details see Decca {1965},

The wireless direction finding system of Decca Navigator that is used
in conjunction with ship navigation is based upon phase comparison.
Suppose that there are two radio transmitters, M and S, synchronously

transmitting continuous waves of the length A, See Tig 5.1

Fig 5.1



Fig 5.2

The phase shift at a point P is 360{hg —hi )/ degrees. IT P is on the
centre normal of MS then the phase shift is zero. At a point a little
aside of the centre normal (to the left or to the right) hg-~-hy is
equal. to A and thus the phase shift is 3600. The locus of all the
points where the phase shift is 3600, is by definition a hyperbola with
its focal points at M and S respectively. A little further aside there
is another hyperbola, where the phase shift is 7200. In this vay a
whole set of hyperbolas is composed. See Fig 5.2.

The srea between two consecutive hyperbolas is called a lane and the
distance between the hyperbolas the width of the lane., The phase shift
of & certain point P can be measured by means of a decometer with the

accuracy of about 0,01 lanes,

Thus if the phase shift of a position is determined in two systems of

hyperbolas of the type described above, the position may be determined.

2T



A Decca Chain consists of a Head Transmitter, the Master and three
Slave Stations, which are denoted by the coclours Red, Green and Purple,
By using three groups of curves it is possible to avoid unfavourable

angles between the hyperbolas in the area considered,

In the description above it has been assumed that all the transmitiers
are working at the same frequency. This is, however, impossible in
practice., Therefore the transmitters are working at different frequen-
cies in the proportions 3:4:5, In the receivers the Master and Slave
frequencies are multiplied to the same frequency before the phase com-

parition,

5.2 Computation of Decca Coordinates at a Point

Suppose the Master, see Fig 5.2, is at M and a Slave at S then the

Decca coordinate at P is given by, see Decca (1949)

_ velocity of propagation
vhere d frequency of phase comparition
MS = Distance from Master to Slave
MP = " H & " point in question
Gp = n " Slave " 1 1" "

Now L is the so called "Numerical Lane Number" and represents the

total number of lanes in the pattern counted to the point P from the
extension of the line joining the Slave to the Master. The Decca lines
are conventionally divided into groups of 24 Red, 18 Green or 30 Purple
lanes called "Zones" and these Zones are denoted by letters advancing
progressively from the Master end of the base line from A to J and

then repeating.
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Moreover the numbering of the lanes within each Zone is from

0 to 23 on the Red Pattern
30 to 47 on the Green Pattern
50 to 79 on the Purple Patbern

starting in each case at the Master end of the Zone.

The conversion of the conventional lane numbering to the "Numerical

Lane Number" is explained by the following example:

Tf the Red Lane Number is e g D12,3h then L = 3 x 2k + 12,34 = 84,34

lanes.

5.3 Conversion from Decca Coordinates to Cartesian Coordinates
The principle underlying the conversion of hyperbolic to Cartesian
coordinates is the linear relationship that exists between the x-

coordinate, see Fig 5.3, and the distance from the Master to the point

in quéstion. (Cf the Decca report on the Omnitrac system, )

Trisngle MPP; gives

y2 = n? ~ x? (5.2)
And triangle P3PS

y? = hi ~ (a1 - x)? ' ' (5.3)
At P the decometer value D is

D=he - hy +a) (5.4)

Py 1s defined by

Py :lD - ay = h!} ~ hi . (5:5)



60

P
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S

hy

L

e

¥ —'v——-—uj_ S

//
al
\‘Urx

Y
Fig 5.3
Thus
p?
=F1, ay _ 1
x a1 hyg + 5 5o (5~6)

Suppose the coordinaﬁes of the point P are required in an arbitrary co-
ordinate system {X, Y} with the Master at the origin. Set up two auxiti-
ary coordinate systems (Xj, Y;) and {Xa2, Y»), the positive axes of which
go along the baseline to the Slaves 8; and S8», Fig 5.4, The coordinates
of 81 and Sz in the (X, Y) system are (ui1, vy} and (us, v2). Applying
the above principles to these auxiliary systems and using the "rotation
of axes" formula gives two linear equations in x and y, which can be

solved in terms of hy as



o
P ({xy)
4 ¥
Y, y
Fig 5.h

azvz - a2V1
2

Pz‘\fz - P2V1
1 2
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x = %E%%_;_Eigfz' h°.+ 2(u1vz-ju2v1) " 2(uivz - usvy) (5.7)

;= Pouy_~ Pyus | by 4 afu; - a?uz _ P§u1 - Piuz (5.8)
u1va - u2vi S2(mve ~uevy)  2(uwive —uzvi) :

Moreover there is the relation

x2 + g2 = n? (5.9)
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This glves two solutions for hg, where one is the correct one and the
other is either negative or gives an intersectional point far away from

the area considered and can therefore be rejected,

5,4 Choice of System of Coordinates

The earth surface may be transformed into two dimensions by a number of

transformations, In this case the Mercator Transformation has been used,

Tt should be noticed that when using the heading of the ship in such a
two dimensional system of coordinates the meridian convergence has to

be taken into account, That is if the direction of e g the y—axis at the
Master is to the geographical north and if the area considered is far
aside of the Master, along the x-axis, then the difference between the
direction of the y-axis and that to the geographical north is not neg-
ligible, "

Fig 5.5 exemplifies the Cartesian coordinates of a ship during a zig-zag

test,

5.2 Calculation of the Sway Veloeity

In Fig 5.6 the system of axes in space is Ooxgye, that fixed in the ship
is Oxy. The point of reference O lies st the distance Lpp[E forward of

A P of the ship. The sway velocity v can now be derived as

v = Jo cos(P-o) ~ %q sin(P~ig) ' {5.10)

The derivatives are to be estimated by means of some curve fitting

method, e g as
£'(xo) = (f(xg ~2h)/12 ~ 2f(xp ~h]/3 + 2f(xq +h}/3 - £lx, +2n)12)/n  (5.11)

This gives, however, rather irregular values of v, see Fig 5.7.
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Fig 5.6 Definition of system of axes in space, ete

As the ship movements during for instance a wig-zag test are fairly
regular it is suitable to apply some kind of smoothing of the (¢, ¥

coordinates, before calculating the sway velocity,

In the process of smeothing, the smoothed value is obtained from obser-~
vations in the immediate neighbourhocd of the point, rather than from
the whole set of cbservations as in the standard leesst square methods,
see e g Guest (1970). Fig 5.8 shows the sway velocity, plotted in Fig

5.7, smoothed by means of Spencer's i5-point formula,
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6. THE ATLANTIC SONG EXPERIMENT

The Atlantic Song is a freighter of the Wallenius' lines. It
is 197 m long, it weighs 15 000 tons and has a maximum speed
of 2} knots. The experiment was made on Sunday, December 21,
1969 off the west coast of Denmark at latitude N 54°17” and
longitude E 4°51".  The course was 217°. The wind was abouﬁ
8 Beaufort (17-20 m/s fresh gale) and the wave height 3.54 m.
The sight was poor due to a heavy snowfall. The ship had a

luffing tendency, and a windgust forced a pert yaw. The im-

pact of the waves on the bow induced sudden starboard yaws. The

experiment, which lasted for about half an hour, was performed bf
two students, Mr., Ekwall and Mr. Fdvardsson. The speed was

18.5 knots in the beginning of the experiment and was reduced

to 18 knots at the end of the experiment due to the rudder mo-
tions. In the experiment the rudder angle was perturbed, and

the yaw angle was observed. Mri Fkwall was the coordinator du-
ring the experiment. He was standing on the bridge together with
the captain, Mr. Tdrnsjs. Mr. Edvardsson was at the rudderservo
in the machine room. A sampling interval of 15 s was chosen
based on a priori knowledge, At each sampliﬁg event Mr. Ekwall
read the yaw angle from the gyro compass. He also ordered a rud-
der angle change to be performed b& the helméman Mr. Brand and

a reading of the rudder angle to be done by Mr. Edvardsson., The
régults were recorded in a table, The inpuf was chosen as two
perioas of a PRBS signal with a length of 64 sampling intervals.
The peak to peak variation was about 10°. The signal was changed

somewhat to keep a reasonable course.

The input output data recorded are shown in Fig 6.1. The data
have partly been analysed before. See Astrom and Killstrém (1972)
and {1973). To achieve comﬁatibility with the other experiments
new calculations have been performed using the new estimation pro-

grams.,
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Fig. 6,1, The Atlantic Song experiment, input rudder angle, output

heading (measurements dots, model full line) and residusls. The

mean values are subtracted and the output is shifted one sampling
interval.



As a first attempt to analyse the data the discrete time model
y(t) + aly(t-—l)+,..+any(t—n) = blu(t—1)+...+bnu(tnn) +
+ Ale(e) + cle(t“l)+...+cne(t~n)] (6.1)

was firet fitted to the data by the maximum likelihood method.

The program IDPAC was used. Repeating the jdentification for
different values of n the following loss functiens were obteined:
V.= 668.4, Vo = 294.5 and Vy = 286.9., An attempt to determine
the order by a F-test gives the test quantities F(122) = 50.4 -
and F(2+3) = 1,0, This indicates that a second order model is
appropriate. An application of Akaikes information criterion (zee
Akaike (1972)) gives the minimum, AIC = 560.5, for a second order
model. The model is given below

~1.64 + 0.05

[ ol -

&1 = ,.\ : l
2 -0.7 " —_

2, = 0.66 * 0.05 : : . = a
, = =0.11 # 0.03 (2-2)(2-0.60)

i . ‘ - \

9 = 0,19 * 0.04 A/{ ,;AF)\\'G/J‘)“"A)&

1 = ~=0,75 £ 0.10 \ SLN g ,
¢, = 0,06 £ 0,10 '
V = 294.5 o :
AXC = 560.5 o : (6.2)

If initial values also are estimated, a second order model is ob-
tained as well. This model has the loss function v = 274.54 apnd an
AIC = 555.7, which indicates .that initial values should be esti-
mated. The model parameters are not significantly different from

the values given above.

In Fig 6,1 are shown the input, the measured output, the model out~
put and the residuals of the second order model with estimated
initial values. The residuals are far from normal. Fig 6.1 shows
that the residuals have very large values at times close to 1 250

and 1 600, These large residuals can be traced to bad data.
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To avoid any difficulties by trying to replace the bad data points
by interpolation or other fudging of the data, only the portiom

0-1 200 of the data will be used in the following. Notice, how—
ever, that a straightforward ML estimation of the parameters of the
discrete time model (6.1), which is very inexpensive to run, is

very useful in order to check the measured data.

The following results are thus hased on the first 80 input/output
pairs. Initial states were estimated because this gave a signifi-
cant reductibn of the loss function and of the AIC. It was attempted
to remove both levels and trends from the data. There were no sig-
nificant changes in the parameters of the second order models ob-

tained. The following second order model was obtained.

a; = ~1.60 % 0.03

a, = 0.61 * 0.03

b, = ~0.161 * 0.014

by = ~0.285 * 0.016

¢; = =0.37 + 0.14

cy = ~0.20 £ 0.11 A '

V= 17.96 : : (6.3)
AIC = 178.9 : ‘

Notice the significant reduction in loss function as compared with

(6.2).

There were some difficulties in estimating a third order model. The
algorithm had difficulties to converge, and the parameter c¢q had to be
fiwed to obtain a well-conditioned information matrix, After some

attempts the following model was obtained

a; = ~1.05 * 0.05 ¢, = 0.18 & 0.13

a, = ~0.34 = 0.07 ¢y = ~-0.,18 * (.13

ag = 0.41 & 0.04 YV = 15.88

by = ~0.15 # 0.01 AIC = 175.1

b, = -0.38 * 0.01 : ' .

by = -0.13 £ 0.02 : : _ (6.4)
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A comparison with the model (6.3) gives a test value of F = 3.01.
Using the F-test it is thus guestionable if the model (6.4) is
preferable. Akaike's test indicates that the model (6.4) 1s bet-
ter than the model (6.3). The zeros of the polynomials A(z) for
the mwodel are 0.95, 0.71 and -0.61. The zeros of the polynomial
B are ~0.4 and -2.0. The corresponding zeros for the model (6.3)
are 0.97, 0.63 and ~1.8 for the A and B polynomial respectively.
The zerc -0.61 of the polynomial 4, which is approximatively can-
celled by the zerd -0.4 of the polynomial B, corresponds to a

model of the type

z(t+1) =AO.6z(t) + e(t)

This is typical for a case when round off noise occurs. Fig. 6.2
shows the covariances of the residuals and the cross covariances
between the input avnd the residuals. The graphs indicate that the
second order model is acceptable, but that the residuals are whiter

for the third order wodel.



Fig. 6.2. Correlations of residuals and cross correlations of input

and residuals for, from top to bottom, lst, 2nd and 3rd order models.



To summarize, it is thus difficult te distinguish between. the
second and the third order model. The major imprevement by go-
ing to a third order model is that the quantization of the
heading angle is modelled. Since this is not-our major concern,
the second order model is accepted. DMNotice that the polynomial
A(z) of the model (6.3) has a zero very close to z = 1, This

is expected because the wodel should ideally contain an integra-
tor. Compare Chapter 3. The deviation is due to the effects of
winds dnd waves that were also discussed in Chapters 2 and 3. The
straightforward fitting of a model (6.1) thus gives a model of
the Womotc type with a time constant of 29.4 s and a gain of
-0.055 1/s. If a model of higher ovder is attempted, a pole on
the negative real axis is obtained. This is an attempt to model
round off errors, which ocecur due to the quantization of the data.
Compare with Fig. 6.2 where the covariances of the second order
model indicate an oscillatory behaviour with period 2, which is

not present in the third order model.

To get some feeling for the consequences of the model uncertain-
ties Monte Carlo simulations have been performed. A sequence of

models have thus been drawn from the distribution of the estima—

ted parameters, and the model responses have been computed. The

outputs of such a simulation are shown in Fig. 6.3 and the pulse

responses in Fig. 6.4 and Fig. 6.5.

20

- 30 l : . ' , .
0 . 500 | L I000

Fig., 6.3. Monte Carlo simulations of the output of the model

(6.3), Notice that the levels in the data are removed.



Fig. 6.4, Monte Carlo simulations of impulse responses of the

model (6.3).

0.5

. Bl : - I
00 . 200

Fig. 6.5. Initial part of the curves in Fig., 6.4,

Th



The fact that the models in Fig. 6.3 are all on the same side of
the measurements is natural because of the wind bias and the low
frequency nature of the disturbances. TFor a physical model the
impulse vesponses in Fig. 6.4 should all level off at a constant
value., The fact that all the curves go to zero is due to the
effects of wind as discussed in Chapter 3. The large spread is
thus understandable. Notice, however, in Pig. 6.4 that the ini-
tial part of the inpulse responses of the simulated modeis are

g1l similar.

The first 80 input/output pairs of the Atlantic Song experiment

have also been used to estimate the parameters of the model 3
(see Appendix B) by the program LISPID. Both a second order and
2 third order transfer function (cf.(&.lé)} were estimated. The
result of the jdentification of the second order model is shown
in Fig. 6.6. The obtained gain and time constant, when the wind
influence is eliminated, are given in Table 6,1, whare also the
"result from IDPAC is shown. The third ordeyr model obtained is

given in Table 6.2, where the wind influence is eliminated too.

From Fyrom

LISPID IDPAC

1 . - . :
K- -1.62 ~1.14

[

T_ 1.49 1.42

K 1/s -0.078 ~0.055
Ts s 30.9 29.4
3 s 12.1 ' 15.0

(fixed value)

Table 6,1, Result of identification of a second order model {(see

model 3, Appendix B) to the first 80 data points of the Atlantic
Stng experiment, The values of the transfer function parameters
(cf, (4.17)) are given normalized ("prime" system) and non-

normalized.



K ~2.38
‘ .

T1 8.32
1

TZ 1.11
T

T3 : 4,63}

K ils ~0.115

Tl g 172.3

T2 8 22.9

T3 s 895.5

T s 12.0

Table 6.2. Result of identification of a third order model (see

model 3, Appendix B) to the first 80 data points of the Atlantic
Song experiment. The values of the transfer function parameters
(cf. (4.15)) are given normalized ("prime" system) and non-

normalized,

The result of a F-test shows distinctly that a second order model
is appropriate to the data. Akaike's information criterion gives

the same result.

The results thus show that the data from the experiment can be
modelled well by a cecond order model. There are very good agree-
ments between the results obtained when fitting a discrete time

model and when fitting a continuous time model. The decrease in

loss function obtained when increasing the order of the continuous

time model is very insignificant. The corresponding improvement
in the discrete time model is more significant. The improvement
corresponﬁs to a more accurate modeling of the round off errors.
This indicates that if the experiments are performed using heading
information only, it is important to have a good resolution of the

measurement of heading angle.

-
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7. THE BORE T EXPERIMENT

The Bore I was delivered in the spring of 1973 by Wéartsiléd's Turku Ship-
yard for the Silja Line. She has an Lpp of 115,7 m, a displacenent of

8 700 tons and a maximum speed of 22 knots,

The weather conditions during the experiment, carried out in October
19Tk, were good, During the experiment, which lasted about 15 minutes,
the speed was about 18 knots. The rudder sngle, the input signal, was
chosen as a PRBS signal with a length of 64 sampling intervals. The peak-
to-peak amplitude was sbout 10 degrees, Rudler angle snd yaw rate vere
analogously recorded on a tape recorder. Thus having recorded that input-
output pair, the static gain constant K and the time constants T, Tp and
Ty of the transfer Function Gi{s), representing the rudder angle-yaw rate

reletion are identifiable, Gi(s) can be interpreted as

K{1+sTy)
(1 +sT1)61-2ST2) (7.1)

Gi(s) =
(See also model 3, Appendix B, and eq {2.6)).

As the Lime constant T3 was expected to be something between 10 and 20

seconds the analogous signals were sampled at g rate of 1 Hz.
7.1 Results

The constants of the transfer function (7.1) were estimated to

=
it

;0.0T ils
Ty = 23,3 =
Ty = 2.3 S
Ty = 3.8 s

11



1

Normalizing in the "Prime" system gives

K' = ~0,9
T = 1,9
1
! = 0,2
2
T = 0,3

The results of the parameter estimation are illustrated in Fig 7.1, which =

shows the input-~output records {rudder engle and yaw rate), the model

output, the model error and the residuals,

It has been suggested by Nomoto that the transfer function (7.1) of &
stable ship should be approximated by

Gals) = —Em (7.2)

(cr (4,17) ang Chapter 2)

By means of a least square method K and T were estimated to

= ~0,07 1/s
T = 15,6 5
K' = -0,8
T = 1,k

The two transfer functions Gi(s) of second order and G(s) of first
order are plotted in Pig 7.2. As seen from Fig 7.2 the two transfer
funchtions are in accordance with each other within a smell range of

frequencies around w' = 1,1,
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8. THE A K FERNSTROM EXPERIMENT

The A K Fernstrdm, & tanker built by Oresunds Shipyard in Malmd, has an
LPP of 2kl m, a beam of 39 m and her volume displacement is 120 000 m®.
The test, a zig-zag test, was performed in connection with the delivery

trials by Decca-Havigator AR, Gothenburg,

The weather conditicns during the test were fairly good, with a wind of
2 m/s and sea state 1, At the beginning of the test the ship was not
guite steady on speed and course, nominally given as 16 knots and 135
degrees, respectively. During the test the initial speed dropped to 13
knots because of rudder movements. The average speed was therefore nob
more than 14,2 knots. During the test heading, rudder angle and Deccs
cbordinates were recorded. The sway velocity was then calculated from

heading and Decca coordinates,
8.1 Results

First of all an attempt was made to estimate the stabic gain constant X
gnd the time constants Ti, T2 snd Tz of the transfer function Gi(s)
representing the rudder-yaw rate relstion, without using the sway velo-

city. Gi(s) can be interpreted as

_ K(1+sTs)
Gils) = (1+sTi)FlisTZj (8.1)

{See also model 3, Appendix B)

The constants were estimated to

Non—normalized Normalized
T 373.8 s 11,2
T, b3 5 0.1

Tz 20,3 s 0.6



The results of the estimation are shown in Fig 8.1,
ffhe constants K and T in the first—order transfer function Gz{s}, where
62(5) = 52 (8.2)

were estimsted Lo

Non-normalized " Normalized
48,3 s hoh

The two transfer functions are plotted in Fig 8.2, On comparison it is
obvious that the transfer function (8.2) is a good approximation only

within a small range of frequencies,

Using the sway velocity, in this case calculated from Decca coordinates,
cf Chapter 5, some of the components of the equations of motion are iden-
tifiable. As an initial estimate, results from PMM tests of models of

other ships of similar proportions have been used,

A second estimation of the components was made with the sway velocity

smoothed by means of Spencer's 15ﬂpoint formula,

The results of the first estimation are illustrated in Fig 8.3 and Fig
8.4 and the results of the second estimation, where the sway velocity

is smocthed, are showu in Fig 8.5 and Fig 8.6.

The estimation of the components of the eguations of motion {see model 1,
Appendix B) are tabulated in Tabie 8.1. It should be noticed that the first
four components are approximated from FMM tests of other ship models and

that no further estimation is made.

The corresponding components of the transfer function (8,1) are:
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Initial estimate © Iinal estimate
Non-normalized Normalized Hon-normalized HNormalized
K 0,1 1/s 3.8 1.5 1/s k9,0
Ty -304.4k s -9.1 -3470.0 s -103.8
Ty 13.h4 s 0.h 25.5 5 0.8
Tz 33.h 8 1.0 55.8 s 1.7

and with v smoothed

Tnitial estimate Final estlmate
Non—-normalized Normalized Hon-—normalized Normalized
X 0.1 1/s 3.8 0.h5 1/s 15.2
Ty ~30k.4 s -9.1 ~tih2. b s ~-34.2
Ty  13.4 5 0.4 25.8 5 0.8

Ty 33.L S 1.0 63.5 8 1.9

In contrast to the estimation of K, Ty, Tz and Ty without using the sway
velocity K is positive and T1 is negative, i e the ship is unstable, It
thus appears that more information than only heading and rudder angle is
needed when the components of the transfer function 8.2 are to be esti-
mated. During a zig-zag test, however, the non-linear forces are stabiliz-
ing and a linear analysis will therefore give a more stable ship than

really is the case.

Table 8.1 shows that the estimation of YS and N§ was successful, however,
the rest of the components seem too small. The reason for this may be
that the non-linear effects are in evidence during a 100/10O zlg—zag

test.

There is no crucial difference between the results of the two estimations,
i e it is possible to perform the estimation with the sway velocity un-—
smoothed. Consequently it is not convenient for this purpose to smooth the
sway velocity, as in doing so the results of the estimation might be in-

fluenced incorrectly.
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g, THE SEA SPLENNDOUR EXPERIMENT .

The Sea Splendour is a tanker built for the Salén group by Kockums

Mekaniska VerkstadsAB in Malmd, Sweden. It is 329 m long, has a

_beam of 52 m and weighs 255 000 tons. The cargo capacity is

339 000 m3, and the maximum speed is 16 knots.

The experiments were performed on Sunday, June 4, 1972, porth of
Stavanger, Norway. The course was 140° and the wind was blowing
on starhoardwith a speed of about 10 m/s. The tanker had a bal~-
last corresponding to 50% of the full capacity.  The forward
draﬁght was about 10 m, and the aft draught was about 13 m during

the experiment.

_The captain of the ship was Mr. Andersson, and the experiment was

carried out by two engineers from Kockums, Mr. J. Eriksson and

Mr. N, E. Thorell. During the experiment, which lasted for about

50 minutes, the speed was between 15.5 and 16,0 knots. 1In the

middle of the experiment the course was changed with 20°. The sanp-
ling interval was 30 s. The input signal was chosen as a PRBES

signal, but it was necessary to make a lot of manual changes to

avoid large deviations from the desired course. At every sample
instant the process computer measured rudder deflection, course,

yaw rate, forward velocity, bow and stern sway velocities, and printed
them on a typewriter. The course was measured by a Sperry gyro com~
pass, the yaw'rate by a rate gEYTO manufactured by AR ATEW, Sweden,

and the velocities by a doppler log, type Ametek Straza. The input~
output data obtained during the experiment is shown in Fig. 9.1, Eight

consecutive readings weve missed during the experiment.

Attempts to estimate the parameters of the model 1, (see Appendix B),
failed when all data points were used. This was probably due to non-
linear effects during the course change in the middle of the experi-

ment, Therefore, the experiment was divided into two parts, one

before the yaw and one after. The parameters of the model 1 were then

.
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Fig. 9.1. Results of identification of the model 1 (see Appendix
B) to the second part of the Sea Splendour data.
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The dashed lines are model outputs.



estimated using the second part of the data set,

The model

obtained was also simulated with the rudder angles from the first

part of the data set as input signal.

tification and the simulation are shown in Fig. 9.1.

Results of both the iden-

The para-

meter values obtained from the identification are given in Tables

9.1, 9.2 and 9.3.

The values of the acceleration derivatives and

the initial estimates of the other derivatives are adjusted values

from model tests with a similar tanker,

ok

"prime" system  (mass unit %-L ); "Bis System"
R g —
¥ - it

T, Yo . 0.0156 1-Ye 1.70

by, 1 H_ vy 1t
m!xG Er C X Yr
Py, t . N, t
Jm % Nv 0 % Ne
Y owyet VLAt ]

Iz Nr 0.000963 kzz hr 0.105
Initial es~ Final es- Initial es-|{Final eg~
timates timates cimates timates

¥

F - - 7 i1 - b -

lvt ' 0.0113 0.0146 Yo 1.23 1.59

Y -m -0.00482 ~0.00565 YUF”-l -0.525 ~-0.616

N_ -0.00183 ~0.00168 N "l -p.200 ~0.183
Vo ‘ . uv *

Nr -T X ~0.00238 -0.00115 Nur”_XG” ~0.260 -0.175

Yg 0.00181 0.00183 || Ly =
2y ] 2 "cc 6§ 0.197 0.199

Ng ~0.00086 -0.00060 || 1 "
E‘N ~-0.094 ~0.065

cc &

Table 9.1. Estimated hydrodynamic derivatives from identification

of the model 1 (see Appendix B) to the second part of the Sea

Splendour data.



Initial es- Final es-
timates timates

‘ ]
K. -0.72 -1.63

i
K Q.47 - Q.76
v N

1
Tl 2.30 3.87
TZ' 0.36 0.54

- T
b

T3 1.03 0.7¢
. 1]
T 0.21 0.32
v
K 1{s ~-0.018 =0.040
K m/s 3.8 6.2

v
T1 s g2.5 155.6
Tz s 14.6 21.5
T3 s 41.5 31.9
Tv s 8.3 12.9

e e et 2

transfer function parameters (cf. (4.13} and (4.15)) computed from

initial and final estimates in Table 9.1.
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. -2
Wind 69 4.
parameters -2

610 7.
) -2

613 lf
-4

614 1.

A - - "‘1
Bias B]S ~ knots 8.
parameters ) -1

816 knots 8.
6 deg/ ~5 ~h
17 -aee/s 4 o ]
R (1,1) 3.3:10 %
. -2
Rl(i,z) 1.
Covariance Rl(2,2) 5. -3
matrices ﬁz(l,l) (knots)é 1. =7
§2(2,2) (knots)2 1. -3
-5
¥, (3,3) (deg/s)? 1,010
B, (4,4)  (deg)” 1.01072
(fixed wvalue)
6 " knots ~5.3¢107"
‘s 25
Tnitial w?
state 826 deg/e 4,410
627 .. deg 121.0
Time lag T s 6.2
Teble 9.3. Parameter values from identification of the model 1

(see Appendix B) to the second part of the Sea Splendour data.

Experiments have also been carried out on two sister ships of the

Sea Splendour, viz, the Sea Scout and the Sea
of the first tanker was about 10 m during the

the other, the Sea Swift, was fully leaded, i.

about 20 m.
lysed.

These experiments, however, have

Swift, The draught
experiments; while
e, the draught was

not yet been ana-
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10. THE USS COMPASS ISLAND EXPERIMENRT

The USS Compéss Island is & converted merchant ship of the Mariner
class. The length between the perpendiculars is 160.93 m, and the
beam is 23.16 m. The forward draught was 6.86 m and the aft draught
was 8.08 m during the experiment, i.e. a mean draught of 7.47 m
and a displacement of 16 650 m3. "The approach speed was 10 knots,
but the speed was descreased to 8,5-9.0 knots during the experi-

- ment, which was a 20°%/20° zig-zag test performed in calm sea. The
experiment is described in HMorse and Price (1961), where more in-
formation is availlable. Recorded rudder angles, sway velociﬁies,
vaw rates and heading angles are shown in Fig. 10.1. The sampling
interval is 6 s, but gome measurements are missing. The experi-

ment lasted for about 10 minutes,

The values of the acceleration derivatives and the initial estimates
of the other derivatives are obtained from the planér notion mecha-
nism tests performed by the Hydro- and Aerodynamics Laboratory

(UyA), Denmark. The tests are described ia Chislett and Sirdm=Tejsen
(1965). The numerical wvalues of the hydrodynamic derivatives are
corrected to %6 = 0. It should be pointed out that HyA:s model tests
were performed at a speed corresponding to 15 knots. Results of

other model tests of Mariner class vessels are summarized in Comstock

{1967) and Motora (1972).

The first attempt was to estimate the parameters of the modél 2 (see
Appendix B) and determine the transfer function (4.13) relating the
sway velocity to the rudder angle. The measurements of the yaw

rates and the heading angles were then not used. The result is given

in Table 10.1.



Hyh:s model Identified
model
B t
b4 2.01 0.98
v
i
T1 5.70 1.75
1
T2 0.37 0.55
H
T 0,22 0.18
v
- K n/s 9.0 4.4
v
T, 5 204.0 62.6
12 8 13.3 19.5
T s 7.8 6.6
v
T 5 - 5.4

B) to the USS Compass Island data from 20°/20° zig-zag test. The
values of the transfer function parameters {cf. (4.13)) are given

. normalized ("prime" system) and non-normalized.

The pafameters of the model 1 (see Appendix B) have also been esti-
“mated. The sﬁay velocity, the yvaw rate and the heading angle were
then used as output signals from the model. ﬁesults of ‘the iden~
tification are shown in Fig. 10.1. The parameter values obtained

are given in Tables 10.2, 10.3 and 10.4.

The speed dependence Qf'the hydrodynamic derivatives of a 180 000
dwt tanker have been investigated by model tests at HyA (see Smitt
and Chislett (1973)), If it is assumed that these results are
ap?licabletto th? USS Compass Island, the absolute values of Yv"
G of HyA:s model (see Table 10.2) should be de-

creased with about 57 to be adapted to the speed 8.5-9.0 knots.

1
R gand N -m x
v r
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"Prime" system

{mass unit %'LS)

"Bis" system

=

m =Y 0.01546 1-%+" 1.935
t t
m %, Yo 0.00026 xG”~Y£” 0.033
1 1
m X, "UG 0.00012 XG"“NG" 0.015
1] 3
I =~Ne 0.00083 [ ML - 0,104
Zz r zz ¥
Initial es-| Final eg- Initial es~|Final estirates
timates timates timates
(HyA:s mo- (HyA:S mo-
del} del)
T
Y -0.01160 -0.00883 Sy ~1.452 ~1.105
v uv
§ ]
Yr —m =-0.00526 ~0.,00446 Yur""l ~0.658 ~-0.558
: A
N -0,00291 ~0.00003 N " -0, 364 ~0. 004
v uv
T 1
N ~-mx ~-0.00184 -0.,00103 N Yy M -0,230 ~0,129
G ur G :
¥
y 0.00278 0.00435 Ly v 0.348 0.544
é 2 Tce &
H
i ~0.00133 ~0.00104 1 NoOME ~0.166 -(.130
4. 2 cec

. Table 10.2. Estimated hydrodynamic derivatives from identification

of the model 1 (see Appendix B) to the USS Compass Island data from
20°/20° zig-zag Lest,



Inttial estimates

{HyA:s model)

Final estimates

et

transfer function parameters (ef. (4.13) and (4.15)) computed from

K ~3.90 -1.04
1]
4 2.01 1.02
v
1 1
T, 5.70 1.70
1
T, 0.37 0.84
1
Ty 0.89 1.78
1
i3 0.22 0.43
v
K 1/s -0.109 ~-0.02¢9
¥ m/s 9.0 4.6
V
T, s 204.0 60.6
T, s 13.3 30.1
Ty s 31.8 63.6
T, s 7.8 15.2

. initial and final estimates in Table 10.2,



-3
| 813 -3.2+10
Blas 1y ~1.3:107°

14
parameters
815 knots 3.2
-2
- 1
81y deg/s 73g_ 10
—b
Rl(l,l) 5.9+10
R;(1,2) '—3.5e1_0"’6
1 Covariance R1(2,2) 1 6=10“5
matrices " 5 -4
Rz(l,l) (knots)” - 4.2¢10
R,(3,3)  (deg/s)” 7.7-107°
R, (4.4) (deg)? 1.0:1072
. {fixed value)
625 knects -3.7
Initial 6,6 deg/s 5,610 2
state S
s ]
827 deg 5.4+10
Time lag T 8 5.3

Table 10.4. Parameter values from identification of the model 1

(see Appendix B) to the USS Compass Island data from 20°/20°

zig-zag test.

Typical plots of N versus v and N versus ¥, adopted from Comstock
(1%67), are shown in Fig. 10.2 and 10.3. The nonlinear regions
of these plots are probably reached during the 2001200 zig-zag
test. This observation, together with the earlier discusse? speed

dependence, may explain the differences of the values of Nv angd
] ' 1

N -mx, in Table 10.2.
T G

i0s3
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Ny, negative
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relationship.



11, CONCTUSIOHNS

To furnish meaningful results it is necessary that steering tests with
seale models or ships are analyzed wilth respect to numerical values of
the coefficients of the equations of motion. It is also desirable %o
have access to a stochastic method of analysis, which can be applied

to experiments involving Temall motions”, 1 e to true linear manceuvres,
which can be performed in routine service, butb which may then also

suffer from & Tairly large noise-to-signal ratio.

Tt has been attempted here to apply the maximen likelihood technigue of
syslem igentification to determine lincar ship dynamics. A special com-
puter software system has been written to carry out the identification:

A flexible system identification package (I.TSPID) has been developed and
set up for terminal use at the computing centre at the University of Lund.
This has proved to be a very versatile way of communication between SSPA
and LTH. A method for converting Decca coordinates to sway velocities

(DECCON) has also been developed.
The method has been applied to tests on several ships, 1 e

o A large freighter, the Atlantic Song
0 A passenger ferry, the Bore I
o Two tankers, the A K Fernstrdm and the Sea Splendour

o A Mariner class ship, the Uss Compass Island

Calculations have been performed on two widely different types of experi-

ments

o Standard type zig-zag lests (10°/10° and 20°/20%)

o Specially designed experiments with PRBS rudder motion

The experimental conditlons varied significantly. In some cases the in—

put signal was introduced manually, in other cases the whole experiment



106

was computer controlled, The measurements madc vere also varied over
& large range Trom "manval” reading of rudder and heading angle only
to computer controlled sensing of rudder angle, heading angle, yaw
rate and sway velocities. Direct measurement of sway velocity by dopp-
ler sonar and estimates of sway velocity by the use of the DECCOH

progrsm have been sttempted.

& theoretical study has confirmed that the transfer function relset-
ing heading to rudder angle can be determined by measurements of
these two variables only. However, if the hydrodynamic derivatives
are desired, then it is necessary to have 1) a priori knowledge or
estimate of the accelerstion derivatives and 2} information on the

sway velocity.

The results indicate clearly that stochastic system identification
technigues provide a powerful tool for determining linear ship dyna-
mies. Thus, e g, the results from the Allentic Song experiment show
that for a stable ship with a dominaling time constant of about 30 s
the second order transfer function - corresponding to the "first-order
theory" — can be determined Trom an experiment with a duration of 20
minutes (40 time constants) even under adverse weather conditions. It
is known, of course, that this transfer function can alternatively be
obtained from a zig-zag test by the use of a deterministic method, but

that approach will be more sensitive to weather conditions.

From the Sea Splendour experiment, where a proper PRBS rudder moticn vas
used, there is good agreemenl between the a priori estimates based on
model tests for a similar tanker and the results of the system identifi-
cation. The agreement is not so good when a zig-zag test is used. The
resuit of the identification of the USS Compass Island data from a
200/20O zig-zag test shows thst particularly the derivatives N; and H;

are badly underestimated, probably due to non-linear effects. The sane
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tendency, but not so distinet, can he seen from the result of an identi-

fication applied to the A K Fernstrom 100/10O data.

Again the results indicate that more accurate estimates can be obtained
if an experiment with PRBS rudder motion is used in the place of a stan—
dard zig-zag test. The zig-rag test has its own value as & comparative
test, of course. IT a zig-zag test has to be used for the identification
purpose the 10°/10° test is to be preferred to the 20°/20° test; e

50/50 test would be even better, Unfortunately the standard 2ig-28g
tests do not usually cover as long a +ime as could be desired for this

"kind of analysis.

One problem met with when using & PRBS as input signal ig thet of large
deviations from the desired course, which are often obtained if adjust-
ments of the rudder angle are not made. This problem can be solved,
however, ﬂy a Teedback Trom the heading error to the rudder angle added
to the PRES signal. (Identification of closed loop systems is treated in
Gustavsson et al (197k).)

Vithin the limited scope of this study there was no possibility to

mske special tests using proper experimentzl design and appropriate
measurements, but existing equipment had to be used. A careful analysis
of the data also shows effecis due 10 imperfect measurement, such as
gquantizaticn etc. in‘spite of this, the results obtained are quite pro-
mising. In more recent experinents improvements have been made in the
data recording. It has not been possible to analyse these new experiments

within the limited scope of the project.

During the course of this projéct very good and efficient working rela-
tions have been established between SSPA and LTH, which will now be further
exploited, There are severnl areas which appear Lo be interesting and

vorthvhile continuations:




o Investigation of methods for identificetion of non-linear syslems,
o Investigaticn of efficient experimental procedures.
0 Design of proper eQuipmenL for measurement and dala analysis.

o Comparison of results of model tests and tests of full scale ships.

The calculations performed so far give evidence to the fact that the non-

linear effects must be considered. in most cases. Nen-linear effects are

. . C . . 0 .
clearly noticeable in the zig-zag experiments and in the 20 turn covered

by the Sea Splendour experiment. Although the non-linear terms are im-
portant in many problems of design and prediction the non-linear analysis
is in general very difficult. Hopefully, however, special methods can be

used for the particular eguatious describing the ship dynamics.

The measurements are the key factor for ibe results. It is therefore ex-
tremely important to give specifications of proper measuring eguipment.
If ihe methods presented here are to be used in a routine manner it is
highly desirsble to have portable box of eguipment with proper wmeasuring
instruments and & computer with appropriate soltware, designed so that

it can easily be used onboard any ship.

o
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APPENDIX A

LIST OF SYMBOLS

I

117

Akaike's information criterion
System matrices

Transformed system matrices

Wind load coefficients {(cf Fig 2.10)
Decometer value

Wind and asymmetry force and moument
Transfer functions

Non-linear function in steady-state @(6) charac-

teristics

Mass moment of inertia sbout z—axis (also denoted

IZ)

Static gain (spec in yaw eguation; K, = "effective" XK)
Static gain in swey equation

Filter gain matrix

Transformed filter galn matrix

Numerical lene number
Length of.ship (L = Lpp)

Distance from centre of mass to the forward doppler

log transmitter

Distance from centre of mass to the aft doppler log

transmitter

Likelihood function

Number of sampling events minus one
Yawing moment around z-axis

Covariance matrix of state estimate errors

Radius of turning path {Rc’ do in constant turn)



Rﬂa Ri, Riz, Ra

Ty, T»
Ty
T
3V
u1
V, Vi, V2, V3
v

V\d
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Covariance matrices
Transformed covariance matrices
Sampling interval

Time const (spec T = Ty + Ty + Ty T =

"effective" T)

Time constants in ship response

Time constants of rudder motion in yaw equation
Do in sway equation

Ar?ificial input signal consisting of only ones
Loss funcbions

Ship speed

Wind speed (Vg = relative vwind speed)

Hydrodynamic forces along %~ and y-axes

Distance hetween Master and Slave

i=1,..., n Coefficients of transfer functions or

pulse transfer functions

i=1,2 j=1,2,3 Coefficients of state space

modsl
Noise

Transformed nolse

" Normolized forms of ¥y and Fa

Acceleration of gravity
Distance from a point to the Master
Distance from a point to the Slave

. p . + 1 =
Bad}us of gyration in yaw (LZZ kZZ/L)
Mass of ship

Rate of revs of propeiler; r.p.s. = RPM/60



P Probability density

r Angular velocity of yaw; spec © = |

s - Variable of Lapliace transforms

t Coordinate of time

o : Diserete times (k = 0, 1,..., N)

u, v Forwerd and latersal speed of ship through water

u Input

V1 Sway velocity of bow

vo o Sway velocity of stern

X, ¥, % Coordinates of system Tixed in body

Xpas ¥0a Z0 Coordinates of space Frame

X . State vector

' State estimate

Xn x-coordinate of centre of gravily

Yy Output

§ FEstimated ocutput

ytk Vector consisting of all outputs observed up to and
including tk

7 ' Output

0 ~ Parameter vector

Bi Elements of parameter vector

X Reference angle

o Conversion factor from degrees to radians

Gz 7 Conversion factor from ﬁ/s to knots

B Angle of drift.of side-slip; B = - arctan E

Y Wind infliow angle (YR = relative wind angle)



8 Rudder angle

£ Innovations or residuals

K Factor in non-linear steady-state @(ﬁ) characteris—
tics

A Wave length

T Time lag

P Heading angle, or heading anéle deviation

Yo Reference angle

w Angular frequency (m' = wL/V, reduced frequency )

A dot above a variable stands for derivation with respect to time.
Partial derivabives of forces and moments are designated by the proper

subscript attached to the force or moment symbol.

i



APPENDIX B

SHIP MODELS IN LISPID

A sunmary of the three ship models, which are described in Section

4.3, is given in this Appendix.

todel 1.
L &) I:‘.i g
20 2
Log L
N RN
0 0
ay 819
~ey 899 999
0
— ‘-i e~ -
vy () )
v{tk) = a2
r(tk) 0
vit) 0
A % 1L

A 1
ol lav T 0
Tl | A
0 Y ¢y
3
ey |0
-
%13
14
0
Ly 0
=L2a2 0
0 0
l/'oel 0
0 l/al

§{t-1)

dt +

G(tk)‘1
x{t)
i)

vy
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0 615
0 %161 ;-
& (1)
+ |0 915 k + 3(tk)
U
0 617 :
0 0
k= 0,1,...,N
B N -q
01g] 016110191 sin 5

0
lo o] 0 | 0
§2 _ 0 |922] 0
‘ 0 0 1923{
0 0 0
r(t,) = oy B
biE) op 927
] L
LPYY 831 32
P(t) = 831 |929| 033
83 833 o5l
L N

© 1
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Model 2.
L C e - .
- vV ) e V2 T
av " el 1 0O J(‘t"-) oy 7 84 87
2 v § (1)
V - T
dXZ =}~ '—'2"52 0 1 Xz(t) at+ Ot-i- =5 85 88 St b Gw
L L oL
3 4 - .
v , Ve
Gy | |- Lzey 0 0 | x50 o Y5 0 G
|y 117 RRe? |
: . G(tk) ‘ S(t}{—T;EI
vit) = o, 0 0Ipo(yd| * [0 83p)| yy J +8(8)
XB(H() . -
L=0,1,...,8
| o, | T s m
31 [0, 118y,] sin ey, 0yg
-"__—-__7 s :
Ry = V[elllleR' sin 84, |812[ 03¢
®15 ®16 ] [8]_3]
R, = [og4]
V(to) 8}.8 /GZ
X80 =1 839
x3(t) 820
18,1 824 ®5
P(t,) = ©24 65,1 ®26
i b5 %96 093]
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Model 3.
- -y — 3 - = = 73 -—y
vo .3 v
ax 0 0 — o= ®, (t) ty —= O 8
1 LB 1 1 L3 5 3]
2 72 8 {11)
> = - Y - y,... = oL i }_._ S+ -
dr |=10 - 50, 5 6,1 [T(E) jdbr o) S50, 6 At4aw
L L
| ) Ul
f@h 0 1 o | l¥ ] o 0 |
- Xl(t}') . ).L.
r{t) 0 1/ o |~ 7 ¢ 0g 6(’('},‘"[
% ! i) || R

v (tk)ﬁ 0 0 1/0'.:L v (t);) 0 & Ul

ko=0,1...N

YT T .
[, \“69”610[ sin 8y, O
E -
1 e - ‘
V|69|l610| sin 8y, oy 0
| 0 0 0
B r’” . t . ]
y ' loy,] [8y,l10051  sin by
2= _
o5l 10451 sin 63, log5]
u R
— : - _— -
%y (&) 815
rt) | = Loy 8y
Lﬂ’(to) .—al 617-‘
6,8l 921 9221
Pl = | a1 EIT Y
®22 093 930l




o t"\(’%ﬂ(‘}ﬁﬁﬁﬂﬁ("ﬂﬁﬂﬁﬁ'f‘-ﬂﬂﬂ()ﬁﬁﬁﬁﬂﬁﬁﬂﬂﬁﬂﬁﬁﬁﬁﬂﬁﬁﬁﬂc")ﬁﬁﬁﬂ@ﬂﬁ OO OO0O00

SYS

PPENDT
PPENDIX C 190

~ PROGRAM HEADS
SUBRUUTINE LISPID(SYSTsTris TERR)

aDNILISTRATION SULARRUWUTILE FUR LINEAR SYSTEM PARAMFTER
10Ei 1 IFICATION.

AUTHURY €. KALLSTROM 1973-09-12.

KEVIsEUr Ce KALLSTRUM 1974=03-1S,

KEVISEDe Te C£SSChO 1974-0U=17,

Te A SUBROUUTINE XXX {UITHsNTH VLOSS i DUMLi DU T ICONT Y IER) »
aH1Cly COMPUTES THe LGSS VL0SS FOR THE PAR&METER VECTOR TH oOfF
DINENSION ixTrHe THIS SULROUTINE THIZ uSER MU>T SUPPLY. FROM
LISPID XxX 1S ALGAYS CaLLLD wiTH TCONT=0ruwITH ONE EXCFPTIOM:
IMMELIATELY AFTFR THE MIMIMIZING AxX IS CALLED ONCE WITH
ICuliT=aw1e THIS COULD bE UsED TC SAvE THE FINAL PARAMETER
VECTURs  PUT 2ERZJ IN XXX IF . :
THeE COMPUTATIUNSG ARE OAu PUT 1IERS~1 TO TERMINATFE THE
MINILGTZTING, .
PAKAMRETER VECTOR UF DIMENSION MTHe AT INPUT COHTAINIMNG
ESTIMATED mINLFUA POLT. AT RETURN COHTAINING COMPUTED
MIisIMUA POINT fIF LODOP GTe O AND LFE IFERR IS RETURNED €£QUAL
10 0. :

Re= EKnCR PARAMETER: ALWAYS PRINTED IF oNE. 0 @
I.E.f’\ﬁ 0 IF UK« .
iRzl IF nNTH AND/OR LOOP hkS At ILLEGAL VALUE.
1ExRz2 IF UNE OR MORE vARIAKLES OF THE COmMON BLOCKS /DATA/
Allu /SYSPAR/ navE ILLtwal. VALUES.
1ERR=3 IF TROUnLES TO PLOT CURVES (NPLOT MUST BY EQUAL TO 1.
NO PLOTTING In 1HITIATCD.
IERR=z4 IF THE SadMe TRUJRLES AS FOh IERRZ 3:RUT THE PLOTTING
1S STARTED.
1ErR=S IF IER IN THE €CALL OF XX 15 RETURKEDR ez,
IERRZO IF THE COMPUTATLIONHS OF GRADIENT & alkD SECOND CFRIVATIVE
MATRIX V2 HAVE FAILED:s OR IF ve IS SIGULAR,
1ERR=7 IF uOTH IEaR=5S AMO IFRK=6s

DESCHRIPTION OF ThE COMMOG BLOCKS:

/SYSHARS

CMUST BE ASSIGNED VALUES 3Y THE USER.

tiP =
17~

sy

MEA

ISA

MUMBER OF SAMPLE EVENTS (aAX 2009+10IN 2}«
PUT 1Tl IF THE TIMES FOR ThnE SAMPLE EVENTS ARE SUPPLIED IN
/DnTh/  ELSE PUY 1T20. ,

Lo UESCRISES THE SYSTEM HODEL 70 RE ULED. co.
ISTS 6Ty B MEAGES A COdTINUOUS MOLELISYS LT. 0 MEANS A
DISCRETE MUNEs
IS15=1ir~1 ¢ QLY GEASUREMENT ~OISES
1S1S22r=2 § MEASURCHMELT HNOISE2AND 5TATE NulSE MODELLED RY
Fila GALM AR, . ‘
1SISTS3e=3 5 MOCASUREMENT AnD STATE [WOISE MODFLLEN RY COVARIANCE
MATRICES Rler{niz) AND A2«
1S15ode=d 3 An [275=3¢=3 pUT THE FbDEL IS ONLY SINULATEDN AND S
THe RESIUUALS ARE TESTEND AGATLINST CrnilsSa.

Se PUT HMERSTZO IF 1431 ANTAGELSUS MEASURCMENTSPUT MEASz1 IF
INIEGRAT I HMEASUREMENRTS.

I¥ MEASTY P THE VALUE YuS(Llex) IN JuATA/Z MUST BE THE
INIEGRATED VALULY srOM TIMEL TO TIML2¢AND 50 CObls

PP=UEsCRInES THE SASPLE InTurval. ‘

[Sr¥pP=l 2 CahlinTalil SavPLE INTERVAL.
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1SMP=2 1 CORSTANT SAMPLE INTERVAL, BUY SUME MEASUREMENTS
ARE MISSINw. 4T #“UST BE QUaL TO 1e ' )
1SAMPSS t VARIABLE SAMPLE InTeRVAL. THE PARAMETFR IT MUST BF
EQual TO L IF ISYs «GTe O

TSARP=SAPLE IWTERVAL Tu BE USED IF. IT=U PUT TSAMPE=1. TO INNICATE
THaT THE SAMPLE IxTERVAL wUsST BE CUMPUTFD FROM TIM IN /DATA/
NPREDL-

NPRED2=TnE LOSS FUIILTIC. VALUE 1S OBTAINED AS A MFAN VALUF oF LOSSF
GHUN PRECICTINHG WPREDLeLPREULTLY o s niPREG2 STFPS AHEAD
HPREOL (MAY PREFDas 41N i) JPEENS: (N0 MAx:MIN NMPREDLY.

PUT KLPREDLZNRPRENZZL TO OE{AIN MaXLlft-UM LIKELIHOON ESTIMATES.
faR= LUsSBER OF STATES (MaX 20rrilie L) :
MU= KURBER OF INPUT S1GHALS (mAX 20:MIN GYe

PUT wWUZ0 IF ) T #PUT sleNal 1% APPLIED.

NY = NUWBER OF MEASURE@ENY STGNALS (MAX 20MIN 1}

e TH= HURBER OF PARAMETERS 1w ThaE OPTIAILATION.

MOMAT-VELTOR OF DIMLLSION 6 JESCRIGING ThE SYSTEM AND COVARTANCE
MATRICES. PUT nNOSaT(1)Z0 LR HO RPELSE PUT NOMATILIEL

PUl pomAT(2Y=U IF NO Ce EuSE PUT WRUMAT (221,

PUT WOMAT{3)20 IF NO O ELSE PUT NURAT (3121,

PUT wOeiaTi&YI=O IF NO Rl ELSE Pl L.04aT(8Y=1

PUT OAATIHY=0 IF HO w12« ELSE PUT WOMATIS)I=E .

PU1 WOMAT(e)=0 IF NO Rés clSE PUT LOMAT(OI=1.

/DATH/ AND ZINDEX/ . .

/GATe/ CUNSISTS OF vECTOUR V It wHICH THE MEASUREMENTS
cSYSIEM MATRICES alu RESULTIMG OUTPUIS ARE STORED N
COLSLCUTIVE OURDER. ITHE KELATIVE ADDRESSES Or THE NIFFERFNT
VECTURS aAnD MATRICE> OF /DATA/ ARE STORLD I JINDEX/Z '
SUBRLUT THE DATEAP wiLlL COMPUTE THE PARAMETERS OF /INDEX/
FROM /SYSPARZ AND CnEATE THE WECESSanY AREA wEFDED IN
JDATA/« A CALL UF OaTEXP MUST Bz MALE (PREFERABLY I THF
MAIN PROGRAM) HLFORL ANYTHING CAM 3E STORFD IN /DATAS .

THE URLANIZATION OF /DATAZ 3

ULie (WPl < [hPUL SIGHALS

YHS (P Y ) =g ASUREMENTS .

TIim{nP) «TIMNES FOR SAMPLE EVENTS (1F 17T=1)

YREOD AP P INY) =GUTPUT FROM UETERMINISTIC MOUEL
ERKMUD (WP Y)Y «MONnEL ERRORS

FPSLiPINY) =rRESIulaLS L

IEPSNPY =i uTEWER VECTUR DESCRIGIMG THY RESINUALS

ERS{1)=0 IF Uk leE. TAE RESIDUAL AT TIMEL HAS CONTRIKRUTEN T
Tre LO5SS FUNCTIOM.
IEFS(1)=1 1F ThE ESIGUAL AT TIMEL HAS NOT CONTRIRUTEN TO TH
LS FURNCTIONS .
1ErS(1)=2 IF sEsluval TOO LaRGE WHEN TESTING AGATNST CHIS®,
(O.LY USED whoti InYSxmur=H), C
1EFS{1)=3 1IF 1mF COVARIANCE MATRIX OF RESILDUALS IS SINGULAR
BHEN COMPUTING THe CONTRIoUTION TU THE LOSS FUNEGTION IN '
SUAHROUTIRE KAkixaile
A(NX:NA):H(NK:NU)rClNthA)rU(NYfNU)FHL(NX;HA)sRLZ(ﬁXrNY)r
K2 T 1Y) r AR X2 e Y) PO Ciaaetin) o XU(NX) = SYSTeM ALD
COVARIANLE AATRICES rINITIAL ERROR COGVARIANCE MATRIX
ARD 1L TLAL STATE .
ADUNATRAY 1D CNX 7 EaU) 1 oee r AKDCHIX oYY 1P INX# XD 2 X{NX) -USED
AS TeTerRiAL STORAGE (MALGLY I SINT) :
uH(u;;hY)rPPU(HA:NXJ:DELTAH(NYrNY)!nPD(HYrNY)-RHY(NY:MY):
VEGtHs TR P v2 G TH G THDY =USED AS STURAGE ANu WORK
AKKAYS IN DIFFERENT PARTS OF TRE PRUURAM.

THE USER MUST SUPPLY THE VALUES OF UINeYRS »{TIid).,
THE SYSTEM ARND COVARIANCE MATRICES ArBr, . AK AND P0OrXO
MUST ALSU bBE ASHLIGNED ValUEs THAT MAY DEPFHU ON THE
PAKACETER VECTOr TH. THr NEPELDENCE NUST BE SUPPLYED
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LN SUBROUTINE XXX (UR IN A ROUTINE CALLED BY XXX,

ThHE wELATIVE ADLRFSS OF A MATRIYX IM /DATA/Z 15 GIVFR BY

A POMNGER I ZIaLEX/ W1TH ThE SANME NalE AS THFE MATRIX
BUT #REFIXED WITh Las THIS POINIER POUINTS TU THE ceELL In
v BErOxE THE £InST CELL JF iHE MATRIX (OR VECTORY .

FX. CuVARIANCE mMATRLIX R12 viAs ADDRESS IxRLle+1i IN V.
MATRICES ARE STORED CoLUsN~wISE IN Ve

BY UsIhG THE URaVvAC FORTrRAN v FACILITY nNFFINF PROCEBURFS

IT Is FOSSIBLE Tu RLFER T0O MATRLCES anD VECIORS OF

/DATA/ AS IF THEY WelE DECLARED IN A DIMENSLION STATEMENT .

A LEFInE STATERONT MUST APFEAR AFFORE THE FLRST EXECUTABLF
STATEMENT GF A PROGRAM. & :

EXs MaTRIX kiz

DEFInE R1IZ(Ie )=V (IRRL2HHXFJ~NASFID

CRIZ{LAYEFX(LY
[
APZRLZ2(313)

EXCEFTION: DEFINE PrOCEQURE MAMLS RMUST HOT nPPEAR AS
CORMiL ARGUMENTS It SURROUTINE CALLS »THUS!
CALL SubB{V{IXRIZ+1}eNXelll}

FOR. FURTHER INFORMATION SEE: UNIVAC 1100 FORTRAN V
MArUal, 1P =2

Ise/
COMNTRINS RESULT> FRUM THE CuMPUTATIONS. ;
VLOSl“ULUSlzutT(bUM{EPS4EPST§)fNVLoslf ALWAYS COMPUTED USEN AS
STHNUARD LOSS IF iuYSSie=li21r-2, -
LVLOS T =NUMnEn OF COnTRIMUIIONS T3 VLGS,
VLUbd”VLuSEZ”LQG(L(Tth}B/HVLOSZ SOLLY CUMPUTED AND USED AS STANDARD
LOSS IF ISYST3s=314di=4,
WvLouSZ=Nubli.er OF COnTRIGUTIUNS TO V9LOS2 e
VLOSS=UBEATwED MINIMUM LUSS. .
VLOSUT =06 Tl LOSS aHEN S1-ULATING THE DETERMINISTIC MODEL ¢
o= GRaUIENT vECTUR OF DIeENS 0 NTHe .
STuEv-vELTUR UF DIMELSIuN 1 CONTALNING ESTIMATED
STalNUARKD DEVIATIUNS. |
16651Gr s e e NVLDT 1 JNTERBAL VaRIARLES.

FLISCON/
THE vARIABLES HAVF STANDARD vaLUES ASSIGNED bBY A cALL OF
SUBLRUUTINE LISGAT roUT 16FSc vALUES CAN BF UVFRRIILED BY THF HSFH.
LOOP= MURBER UF CALLS- Tu THL «llImIZING WLGORITRM (vQ MAXGMIN =13,
PUI LOGP=0 FOR SIaULATUH vl Y. PUT LOOP=—1 TO PRINT AnD/OR
PLUT DATA 1t AUATa/ e Lu THIS CAGSZ GhLY THE
FOLLUAING 1MPUT RaGUFESTS MUST HAVE VALUES (LOOP yNPRT{3) +NPLOT
P rITr1SAMP e NUFHY AND TIXMeUTHYHS QN JATe/ o STARDARDSL
WPRI= vELTUR OF DIRELSIuN 3. PUT LPRICLIY=1L TO PuINT SYSTEM AND
COvARInliCE MATHICe> FUl ThE InITIAL PARAMr TFR VFCTORIFLSE PUT
sPrlil)lzue PUT PrI(2)Z) 10 PRINT SYSTeEM wiin COVARIANCE
MALRICES FUR ThF FLJIAL PARAGETFR VECTOR» LST PUT LPRI{2)=0.
PUT wWPrRILSIZ1 1D PRINT HiPUY SIGHALS s dEASURFMENTS 1 MONFL
CuiPUTS rHODEL ERKORS Al RESIDUALS YELSE PUT (IPRI(31=0.
STAMUARDY 1eirl . ‘ : T
WPLUT=PUL 1PLOTZL TG PLOT CURVES ON FLOTTERFLSE PUT NPLOT=0.
STANLARD VU : o
1TRAIUNLY UstEo IF 1SYS=1le2 AND HEASH0. PUT ITRANZ1 TO SAMPLE THE
MATRICES A AND A oY SusrfUTINRE TRAGS INSTeAD OF SUBROUTINE
- COsA. STANUARLE e . )
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BMAX= MAXIMUM NUMBER OF TERMS USED 1 SULROUTINE TRANSSTANDARD: w00,
EPST= TEST GUANTITY LSEL 1IN sUBQuTILE TRANS, STAMDARNDD L.E<G6,
CPSne TEST QUAKTITY LSEL I SUSR0UTLNHE KALMANSTANDARAY 1.E-9,
CHISG=0nLY USFu IF 257Y53dy=4 ,TEST LUANTITY USEL IN SUBROUTINE KAl MAN
TO TEST IF RESIDUAL TOU LaRGESTANLARD, 6.0,
IMIf= LDECIGES WHICH BINIMIZIGG ALGORITAN TO RE USED.
1MiNZY NUFLET (STaDARD)
IMIINZz2 POwnRE
UFHeHZr sae enM{H0) = PaRAMETER VALUES FOR NUFLET
DISTe eo pIPRIN =PARAMETERS FOR POWUWRE
D= WUsBER OF COLUMNSG Prr PAPLR #IDTH wHEN PRINTING VECTORS AnD
MATRICES BY SupnROLTINE PRI STalvwaRD: Be .
IF= IFZ0 MeAMS FOntaT 6le.8 whEn PRINTING VFCTORS AND MATRICES mY
SUbRLUTINE #MPrRI IFzl  MEAKRS FORYAT E16.8.5TAMNDARDE O _
IPLUT=IPLOT=0 MEANS OR0UaNARY PLUT WAEN PLOTTING THE IMPUT STGNALS BY
SUBROUTIRE RITa: [PLOT=Y mEals HISTOGRAM FLOT:.STARDARD: 1.
ITEAT=1Te X135y MEANS LO TEXT dnEw PLOTTIRG CUAVES »I1TEXTz1l FFANS
STANUARD TEAT e STunDARDE L.
1IY~ 11Y¥Y=1 olFANS THAT oOTH WFASURESFRTS aAND MOUEL QUTPUTS ARFE
PLCTTEW TN ThHE SA«E DLaGRAM, LIYZU MEANS THAT OnLY MODEL
QUTPUTS ARE PLUTTED. STaMUARDS 1. ]
S X LEGGTrE OF X=AXIS IN Chi WHeoN PLOTTING CURVES (NO MAY:MIN 2.1}
STaNuUARD: 166 -
SY= LENGTH OF Y=AXIS 1N CM WHEN PLOTTING CURVES (MIN 2.). TOTaL
wloTn OGF ThiE PLOT IN Y-DIKECTION 1S ALwAYS (3%SY + 4} G
STaNuUAKD! b ' o ]
IDH=  10rZ0 wEANS THAT 1HE STEP LERNGTHS wWHEN COWPUTING 6 AND V2 RY
SURRLUT LRE G6RASD ARE CHOSEN AS HoxTH INH=1 MZANS THAT THf
STP LendGTrHS HUST BE SUPPULIED IN veCTOR Dhic STANDARD: 0.
riH= SE“_ HUUV&.- STHNDAF\U: UlOls
D= SEE A30VE. IF INd=s0 b COMTAINS ThiE COMPUTFD STEP LENGTHS.
TACC= IaLCnl BEARS THAT 6 AL V& ARe COMPUTED W1TH ACCURACY
ORLO{DNhF=2)y 1ACC=Z2 MEANS ACCURATY ORDO(DH=20) .
IACC=Z0 WEAIS HO CuMPUTATIUN OF 6 ArD V2 +«a3TaNoaARD:D.
PLOTCIO NUTHING PRULTIL OR PLOITED IM KLSLIS
11 HEST QUARNTITIEDS PRINTED
12 LHCORRELATIWVNG PRINTED
13 LHCORRELATIVNG rPLOTTED
Y1243
STanuARD: 2 _ :
HOL-  BULBER OF TIME LALS (maAX HS0eMIl 0) STANDARD: L0
IhU=  INIEGER. VECTOR OF OIMEWSION 20, PUI Inutily=i IF INPUT
1 45 7O BE USED #nEd COMPUTING CRUSS CORRELATIONS:ELSF PUT
1NU(I):UI N
InY=  LHIEGER VECTOK OF DIMELSION 20 .« PULT Iny{ndz=1 IF OUTPUT
1 1S TV BE USED Liv RESLIS ¢ELSF PUT INY(I)=0.
STANUVARD VALULES OF LINU AnlD tNYSirltecelrl

i"OTE 1¢ THE PLOTTI{.S CAl ALSO BE CORTROLLED BY THF COMMON BLOCK
/RITFIo/ UESCRIED 4N SUsROUTINE RITA.

KOTE 2: THE EXTERNAL SYMAQLS PLCOMIPLISEG AnD RESSEG ARF
RAMES OF PROGRaM SEGNMENTS TriaT ARF LOADED INTO MATH STORAGE
bY ReGUEST 0F LIsPIu fUSiNG THE ROUTIHNE LOD>EG

SUBRUVUTINES KEQUIREL
(SYS1)
SINT
SAMP
- COSa
HORA
. - - EXP AN
== TRANS
v e oo 2 NORM
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L1SY 126
RALMAN
NORM
DESYM
SOLvS
1.05
NORM
DESYM
MPRI
SYSPRI
MI-RY
BHUFLET
{SYST) )
POwEnE (WITH SUBROUIINES)
{5YST) :
LIPLuY
Seb
ReTA
AXEL
COTL LN

{SYST)
[vOHM
SYMTix
E1GS
RESLLS
ReSPLLT
ReST
CSGFT
FING
DESYHM ) T
SOLVS - S
LODSLEG : ' -

DIMEWSION TH(l)JNOLU(Q)tEVﬂL(QO}rINTU(i)
LOGIuAL ILLCO

COMMUN/SYSPAR/MNP: ITr ISYSIMEAS: ISAMP: TSAMP s NPRENDL s NPREDZ
FRX U LY e NTHANOMAT (o)

COMMUN/DATA/V (1}

COMMUNA THRDEX/ IXTYMSr LAT Lins IXYMOD  IXERMD s IXFPS s IXIEPS»IXA IXBe
¢1X§:1XU!IXKlt1XH12’&XR2:1XAA!lXFOrIkﬂDFIXADfIXRD?IXCD:
FIXUDFIARLD LARIZD: IARZD e LXAKD» IAP IAAs IXRRr LXPPD:

LIXUL IR IARPOD  IXetaY 1 o XV L IXVE b NXZ e NY2p NXNY e HANU P NYNU

COMMU“fLISP/VLOSl;HVLJSlFVLUSEPNVLOSEPVLOSSFVLOSOTIG(QG)r
=STODEV (B0 r TABS I IMa s ICOS b s WOMIS 2 0 i OTRAN () s NRRs NVLDTL

COMMUN/LISCOI/LGOPR PRI L) eildPLOT s TTRANFNMAX EPST i FPSK e CRISO : TMTIN
LUF e nZ rEPZ e MUDNE r b XFine IPRINT s AM(SOY r DISTrSCALY s TERPS NGTPy TLLLC
¥IPHInt Ll IF e IPLOT e s TEXT» DIT e SXo SY P ILHeHHe Dt {U0) e TACC e NPLOTC s NOL s
BINUC2Q)Y e INYL20) e ICHR P LDLAL r LDUME ¢ RLUML e RDUMZ

DEFINE IEPS{IIZINTVIIXIERPSHI)

GEFILE TIM(TI v {IxTiM+1)

DEF LE YeS{Lrd) SV I L AYNSHAPEJ=NP+T)
GEFIWE Yuoull e J) v il aYMOU+kP2g-naP+1)
UDEFIWE ePS{Lrd) 2y ( IACPS+P®*J= P+ 1)
DEFIGE VI(Ird)sv{TavI+NTAxJd=NTH+I)
DEFInE COVILe )2V IIADLTRENYSJ=NY+T)
DEFIGE fREY (I NSV {TARNY Y EJI=NY+T)



~

DEFIuE RPULIrdI=VH LARPDHieY ¥d=inY+1 )

CLEFIAE RR(Ird) = L IXRRENYES=NY+ 1

FQUIVALENCE (INT¥:V)

EXTERNAL PLCOMPLTSEG: RESSEG
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SUBROUTINE SINT(N?IHErNSTOPfINIT:IV:VLGSﬁ:IERﬁ)

SUBRQUTINE TO BE USED FOR LIMEAR SYSTEF PARAMETER
IDENTIFICATION TOGETHER WITH SURRCUTINE LISPID. ,
THE SUBROUTINE CAN PERFORM ONE OR MORE OF FOLLCWING TASKS:

ie TRANSFORMATION OF CONTIRUOUS SYSTEM AND COVARIANCE
MATRICES TO DISCRETE MATRICES

2e ITERATION OF THE DISCREVE
SYSTEM EQUATIONS )

3¢ ITERATION OF THE DISCRETE KALMAN BUCY FILTERING
EQUATIONS

Y PRECICTTON '

5o COMPUTATION OF LOSS FUNCTION

AUTHORrs C+ KALLSTROM 1973-06~26,
REVISED: To ESSEBO 1974-00=17.

NTIME= COUNTER FOR MEASUREMENT EVERTS (MAX NPy MIN 1)
RETURNED CONTAINING THE VALUE OF NSTOP (IF IERR=0).
NSTOP= (NO MAY» MIN NTIME)
THE EQUATIONS ARE ITERATED FROM NTIME TO MIN(NSTOP:NP).
NSTOP 1S NOT CHANGED IN SINT

INIY- PUT INIT=31 AT THE FIRST CALL OF SINT 7O INITIALIZE:
THEHN PUT INIT=0.

1y= CONTROLS THE REJECTING OF MEASUREMENTS AND THE UPDATING CF
LOSS FUNCTIONS (MAX U, MIN 0). :
PUT 1V=0 IF NO REJECTING OF MEASUREMENTS,
PUY 1V=1 TO REJECT THE MEASURENMENTS NTIME TO $TOP.
PUT IVz2 TO REJECT MEASUREMENTS REACHED BY PREDICTION
FROM NTIME TO NSTOP.
PUT IVz3 IF BOTH IVsl AND IvzZ2,
PUT TVz4 TO COMPUTE THE FINAL LOSS:

RETURNED IN VLOSS.OMNLY THE ARGUMENTS VLOSS AND IERR ARFE
USED,

VLOSS=  RETURNED LOSS WHEN TvV=dy,

IF ISYS=is =1, 2y =2, VLOSS=(RET(SUMIEPS:*EPST)) ) /N

WHERE N IS THE KNUMEBER OF CONTRIBUTIONS,

IF ISYSz=3s =3r b =8y  VLOSS==LOG(L(TH/RY )/ N

IERR= ERRCR PARAMETER, '

IERR==1 IF THE COVARIANCE MATRIX IS SINGULAR WHEN
COMPUTING VLGOSS. QHLY USED WHEN Ivz=t AND ISYS=
ir=1¢2 OR =2, VLOSS CONTAINS A ROUGH ESTIPATE
OF THE REAL LOSS.

IERR=0 IF OK.

IERRz1 IF IV HAS AN ILLEGAL VALUE,

IERR=2 1F NTIME AND/OR NSTOP HAVE ILLEGAL VALUES.

TERR=3 IF A SaAMPLIKNG INTERVAL IS NONPOSITIVE.

IERR=4 IF NO CORNVERGENCE IN TRANS
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(GIVE NMAY A LARGER VALUE OR INCREASE Epgty, 179
TERR=5 ITERATION IS TERMINATED CUE TO REFERENCE OF
“EASUREMENTS BEYOND INDEX NP

NOTE 1: THE SYSTEM MATRICES AsRecorR2rAK IN /DATA/S ARE
NEVER CRANGED BUT THEY ARE TRANSFERRED TO MATRICES ADrBD:s s
CAKD ACCORDING TO PARARETER 1SAMP ¢AMD IT IS THESE

MATRICES THAT ARE USED FOR THE ITERATICKS ARD PREDICTION,
YHE INITIAL STATES X0 AND PO ARE ONLY TRANSFERED TO X ARD P
WHEN INIT=L,

NOTE 43 THE COMMON BLOCKS ARE DESCRIBED IN SUBROUTINE
LISPID (THE COMMOMN BLOCK /KALi/ IS DEGCRIBED IN KALMANG

SUBROUTINES REQUIRED
SAMP
COSA
NORM
EXPAN
TRANS
NORH
LISY
KALMAN
NORHM
DESYH
GOLVS
LOS
NORM
DESYM

DKHENSION'U(20):Y(EO)sXPD(ED)rU?D(EDBeYPD(ED)tINTVii}

COHMONfSYSPﬁRiNP:IT:ISYS!HEﬁS&ISAMPfTﬁﬁMPrNPREDlrNPRED2s
eNXFNUs NY s NTHINOMAT (6}

COMMON/DATA/VLLY

CQ”MON/INDEX/IXYNS;iXTIHeIXYVODriXERMD:IXEPS#IXIEPS;EXA!IXB:
$IXC91XDEIXR1;IXRi2riXR25iXﬁK1IXPD:IXXQFIXAD!?XBD!IXCD#
*IXDD:IXRRO:IXRlEDrEXRZCIIXAKD:IXP:IXX:IXRR;IXPPD;
$IXDLTR11XRPDrIXRNY:IXVlvIXVZ:NXR:NYB!NXNY:NXNUrNYNU

CONHON/LISPXVLOSI’NVL051;ULGSE;MVLOS2fVLOSXrVLOSDTrG(QG}r
*STDEV{QO)sIABSISsIM2¢IC05;NL:NOM{6)rNOTRAN(G)rNRR;NVLDTl

‘CONNON/LESCGN/LOOPrNPRI(3);NPLOTrITR&N;NNAX;EPST?EPSK:CHISG:IHTﬁ
tDFN:HZrEPZ:”ODELHAXFN:IPRIhTsXH(SO):DIST:SCALX:TEPS:NSTP’ILLC;
#IPRIHPINDPIFpIPLOTrETEXTrIIY:SX:STleH;HHtDH{QU);IACC:NPLOTC:NCL
$INU(20)!INY(20]!ICHKrLDUMleLDUN2fRDUML:RDUH2

CONMON/KALLY YHODD(20):EL{20) :DUML(20)2R(20:20) : AKT(20,20)
«TESTCELTAV

EQUIVALENCE (INTVeV)

DEFINE IEPS{II=INTV(IXIEPSHI)
DEFINE TIM(I)=y(IATIM+I)

DEFINE UIN(IsJ)=V{HP*J=NP+T1}
DEFINE YMNS (T p )V EIXYNS NP R J=NP+T)
DEFIHE EPS(I¢d)=V(IXEPSENPxJ=NP+I}
DEFINE X(IDav(IXX+l)

DEFIKNE XD(I):V(IXXO%I}

NEFINE RPD(IrJ)=V{IXRPDHNY®J=NY+I}



A
.

YD IR IR OO

SURROGUTINE DATEXFP

SURPOUTINE FOB LISPID TO cOMPUTE PARAMETERS FOR /INDEX/S AND
EYPAND PROGRAY SIZE FOR /DAYA/

AUTHOD, T, ESSERD 1074=06mi7:
HOTE: DATEXH SBﬁULD RE COLLED TM THE HATIH PBAGRAM ARS8 SOOH AS
VALUES (AND REEORE ANYTHINRG I8 STORED tH JBATAS 34 :

SURROUTINE REQUIRED
BMEORE

COMMON /SYSPAR/ND  TT,1SYS MEAS, TSAMP , TSAMP HDREDT (HPBEDZ,

EHX  HU,HY ¢ NTH NOMAT (69

COMMON/DATAZY (1)

COMMONINDEY JIXYME  IXNTIM  IXYMOD INERMD , INFPS, IXTEPS, IXA,TXB,

EIHC TXD, INRT, TYRTZ,IXR? TR, IX0O, Y¥YXNO TYAD,YXBR, TXPD,
FIZOD, TXRID, TXRIQD  TXR2ZO, TXAYN  TYP [N, IXRP, IXPPD,
CIYDLTR, IXRPD, TUPHY , IXVI T¥V2 , HY2  HY2  NXNY NXNU,HYRU

DATAE HAXCOR/ZAQHO/

130
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SUBROUTINL IDLISPLTHs IRe [P}

SUBROUTINE TO REAL DATA FROYM CaRD READER FOR LINEAR SYSTEH
PARA“uiLﬁ IGERTIFLCATIUN AND/OR PRINT DATA ON LINE PRINTER.

CAUTHOR: Co KALLSTKOM 13740215,

REVISED:r (o KALLSIROM 1974-03-18,
REVISED: Te EnSESY 1274=04=17.

Tr= PARAMETER VECTOR OF DIMENSION NTH FOR LISPID.

IR PUT IRzZu YIF NO RoADING
PUT IRZL TO READ Da¥TA FRuM CARD READER. IF IRzl ZER0S ARE
YOoVED TY AspelrDeR1IeRL2eR2y AR X0 AND 2D OF QiMJQ 3.0CH
7S5Y54 AnD TU PAR OF COMMON @LOCK /ZCOMSY/ BEFORE THZ RIADIN
PARAMETER VarttesS ARe ALSO MOvED FROHA PAR TO’ rr1 AND vOLD 1S
PUT cQUAL Tu 1.E10. :

I Fe PUT IPzU IF NO PRINTING.
PUT IP=L T0 PRINT DATA.
PUT IP=¢ TO PRINT THg SAME DATA AS FOR IPZL +s3UT IF ISYE=R
DR <2 AT SuSROUTINE SGAIN 1S CALLED IN SYST TO COWMPUYTE TH
DISLRETE r531ATIONARY FILTER SALM AKX OR LF ISYSz=He=dsl OR -
S0Me MORE DrTA I5 PRINTEDe

DATA TO Br, REaD IF IR=1S

NPAR (12)
NTH {123
PAR(L) ({L20610)
PAR(NPAR) {(£20.10)
1THIDY {12}

* L 4
ITH{NTH} (12}
SCAL (1) (£20.10})
SCAL(NTH) (£20.10)
1MIN (123

1F IMINKD 2 PARAMETERS wlLL BE REAQQ

IMINz=1 (NUrLLT)

EPZ (£20.10)
IMIN=-2 (PO#BRL}
D15Y {(£20.10)
TePS (22u.10)
LOoP (1)
NPRI(1) (12}
NPRI(2) (L23
NPRI(3) (12}
NPLOT- {12}
NP (15}
1Y {12}
ISYS iz}
MR AS (12)
1SAMP (12}
1SAMP (£20.10}
KPRIDL {12}
NPREDZ (12}
MA (123
NU tral
NY {12)
NOMAT (1) (123

[ (=0
NOMAT (B) (12}
LACC {12}
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G

La

HH (20103
NPLOTC (12}
NOL (12)
15 (£20.10}
EPSI (£E20:10}
NiCaL Li%}
1CHK (12)
1CR - f1al

LF 3CcR=z0 O MORE UATA wllb BE REAU.
1F ICRZL sFOLLOAING DATA will aAlsS0 BE RE{‘L}E

NMAY (151}
iPSsT {E20.:.10)
EPSK {(£20.10}
cHISE {eela10)
1PLOT {12)
ITEXT (12}
1LY (re:
Si (E20.10)
sY (£20.10)

ATTENTION: IT IS ONLY SENSIBLE TO CALL IOLISP wWlITd IPz=2 (IF
LISPID EARLIEZR IS CALLED AT LZAST ONCE.

SUBROUTINL REQUIRLD
MPRI

DIMENSION THLL)

. (OHiON/bePAR/\PILT!ISYD:a;ASt15A%9;35AWP:N9RL31FVP Epe

hthU;N\!NTH!ﬁO“A](ﬁ)
CQM%ON/QATA/V(l?

CDh%OMfINuaX/I)\ﬂaaIX?l%:IXY“SQPlK RMO s IXEPS IXIEPSIXAIXDy

#1&Cf1x1:1A%lrxAnl¢fIXRrr;f {rLIAPO IXXNQs IXAD s IXBIs LXACD
EIRUD P IYRLL e IX1200 TXR20L 2 LALAD JXP 2 IXX IXARy IXPP Ot
I XOLTR1 IARPD Y tXRN1 r IXV L IXV2INKD, NY&rqxﬂY NXNU s NYNU

’OM“OQ/LIDCOQ/LOOPfNﬁqé(o)r\PLuTrlTﬂﬁﬂtV“AXf&PvT PIPSY CHISA IMIN,
EDFINIHZ PSP r MOUZ e MAXFNr IPRINT r X (50) e DIST e SCALY  TEPSINSTP e ILLE Y
EIPRIN:INOsIFeiPLOL s ITEAT ¢ LY eSarSY e 10 AR 0G0 s LACCH VHLJTC;H)Ls
23NUC20Y r LY (201 2 ICHA A LUUML r LOUMZ ROUML e RDUME

COMMON/COMSY/PARISOY s NPARe ITHI{RO) P SCALCUHT) s TS:?PSI NKALPVYOLD.
HIERRSY

COMMON/KALL/DUIMML(E0) ,RCOV(20:20) » AKT {20520 ¢ DUNMR(2)
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GUBRDIITINE SGATHUIYE ;EPNENKAL, [ERIEUE) 123
SUBPOUTIHE 70 nE USED FOR LIHEAR SYRTEM PaRAMETER INERTIFICATION
70 SAMPLE SYSTEH ANG COVAPLENCE WATPICES (TF ISYS AT, 0) AND

YO COMBUYE THE RIGCREYE, SYRTIONARY FILTER GALN AKe

AUTHOR, C. WALLSTROM 19740715,

REVISFED, To ESSFBO 1974<0b4s1éb,

T8 w SAMPLING §RTFRVAL {NnY UREL IF T8YS (LY. 03,
EPST = TEST DUANTITY, TRE ITERATIONS ARE TEPMINATED WHEM
HOPM B ETIoP{T=130/H0PMID(TY) LFs FB51,
NE AL o MAXTHUM PUMRER OF YTERATIONS TO BE ONHE (NO MAX,™IN 23,
1ERROR « FRPQOY? PARAMETER,
tERrROR=0 TF OR, )
1EpROReT IF TS 1S NOHPASEYIVE, .
TERRORa? [F HO EONVERGFHEE TH TRANS,
FEpRNped TE NN cOMVERGENCE WHEN THR KALYAN BUCY
FYLTERTHEG EQUATINHNE APF ITERATED,

NOTE 41 FOLLOWING VARTABLES APE USED (RUT NOY CHANGRED) FH THE
SHARRAUTIHE

EOMMON BLOCY /JSYSPAR/ITSBYE, MEAR, NY NY MOMAT

COMMON BLOCK fopTA/Y hsC,R1,RI2,R2,PO(ACCORNING TN VECTOR NOFATY
COMMON PLOCK /LISCONF: NMAX,EPST,EPSK '

NOTE D¢ FOLLOWIHG YATRIEES OF THE COMMON ainfk /DATA/ ARE USER
“RS STPRAGE [N THE SUBROUTIHE: AD,CD«RIbD,RIZDRIDAKD,P

NOTE %3¢ IF JERROR=0 ,THE cOMPUYED STATVION&eY FILTER GAIM 18 STORED
IN AKX GF YHE COMMON RLOCY /PAYA/. IF TgPRORa3 ,THE LAST COMPUTED
(NOT STAYIOMARYY FILTER Gal¥ 15 STORED 1IN RX,

HOTE &g ADDITIGNAL TNFORMAYIOMN CAN BE QBTAIMED EROM THE COMMON
BLOCK [FRGA/

NOYE §3 COMMOM BRLOCK /TRAMSS7 (WHICH T& SWARED WIVH
SURROUTINE TRANS CONTAINS WORE ARRAYS,

SNAROUTIHNES REQUIRED
TRAMS
HORHM
EALHAN
HORM
BESYH
S6LYS
HOPH

quHGNISYSﬁﬁRIQPeTT;TSYS;HE#S,fggﬁp;quHp,uuﬁEDﬂ,NPPEQ?,
TN, NU, NY  NYH HOMAT(6)

COMMOU/DATAIV (Y

COMMON/ THEEY/ TXYHS IXTTIH, 1XYMA0  IXERMD  IXEPS IXTERS, TXA, 1XB;
*Irc,TSD,IXRi,!x@ﬁ?,Ixa?;trar.Txpﬁ;zxxﬁ,vtau,IXSh,zxca,
CIXND, [XPID, TYPAD, IXRIZD THAYD, TYD  T¥X, TXPP, TXPPN,

FI¥DLTR, TXRPA, IXNONY  IXVE, IXV2 (N2 HYZ, NYNY NYNU YN

CG”HOH/LISCOUILOOP,NPRTfij,HSLQT,nggu’yuﬁx‘ppg?,ppqgicu;gntfgfn;
EDEN W7, EPZ, MONE MAXEN, IPOTIRT, Y2500, 0T8T SCALY, TEPS, NRTDILLE,
EIDRIN, IFD, 1F, IDLOY, ITEXT, 1TY, SX, SY, 108, B, nH A0 (TACC HOLOTC  HOL,

SINUEEA), THY(20), TEHE, LOUMY , LDIMD (RDUNY , 20OUN2

COMMON/TRANSD /DUME (1600 ,81¢4N0Y
COMMONZKALYZDUMHT (4600 (AKT(20,20);0UuM2(2)

CGMHGNISGA/NHTaféﬁ,NOKALfﬁ),XFALf?03,YKAL{?ﬁﬁ,EPSngigﬁ,YK

DEEINE AE(T,J)mV{TXARHY®JeNXeT)
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SUBROUTINE COSDTiArBPFIPGRMIFGAME?NXlNUrTSAMPrTAUrIA?

GURBROUTINE TO TRAKSFORM A CONTINUQUS LIPEAR SYSTEM DX/pT=A#AL{T) +
BxU(T) 16 A DISCRcTE SYSTEM YAT+TSANMPISFISXAT) 4+ GAMIxLIT) +
GAMZH#ULT+TAUY ¢ wHERE U IS A PIECEWISE CORSTANT COLTROL VaARIALE
DISCONTINUGUS AT YTHE TIFES KeTSAMP+TAU s=05lecfeanc

AUTHORs Ceo KALLSTROM 1974-03=-01.

S CONTLINUOUS SYSTEM FATRIX OF ORLCER NA¥KX sNOT DESTROYED
= CONT LMNUOUS SYSTEM MATRIX OF ORCER NA#NU ¢eINCT DESTROYED .
WOT REFEREMCED IF KNUZ0.
FL= COMPULIED UISCRETE SYSTEM MATRIX OF ORDER NX#hXe
GAi= COMPJIED CISCRETE SYSTEM MATRIX OF ORKLDER KNAshU
ROT USED IF LU=0. :
GAMZ= COwMPULTED CISCKETE SYSTEM MATRIX OF ORDER NX=NU
0T LSED 1F :U=0.
NX= WURBER OF STATES (MAX 20 fHKIN 1)
NU-= KUMBER OF INPUTS (FAX 20 ¢MIN 0}«
FUT Uzl IF NO Be .
TSARPeSAMPLING INTERVAL (NO MAX fHIKN Oede
TaL=  1IME LAG BEIPAEEN THE SAMPLING EVENT AND WEXT DISCONTINUITY
OF U (1D MAX sKhO MIN)e KOT USEC IF hUZO0.
LA DIMENSION PARANMETER UOF ArBeF1sGANY AND GAKZ.

NOTEY IF TAU CE. TSAVP rGAML CONTAINS TRE CRUOINARY
DISCHETE SYSTEHM MATRIX GAMMA AND Gak2 CUNTALKS ZERQSs
1R TAU LEe Ue 1GANI CCNTAINS ZEROS ALD GAMZ CONTALNS .
THE URCGILARY UISCRETE SYSTEM MATRIX GAMMA.

SUBKRCUT IRE REQUIRED
COLA
MURHM
EAPAN

DIMENSION ALTAr Y eBLIARLY P FICIACL) ¢ GARI(TARL) eGANCITIAIL)
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OO anOOOOOO0O0OONO0OOnOO000 CONONLOOnHaOG0 00000

T ONPAR= NUMLER UF PRRAMETERS (MAX GO»MIN 2) e NTH “UST

SUBROUTING SHIP(Tre NTHLrVLDOSS DUMLy DUM2 ¢ TOUM JCONT e LER)

SUBROUTING TO sUPPLY A PARAMETER DF PLNDQHT SHIP MODZL AND TO
COMPUTE A LOSs FUnCTION YALUE.

AUTHIR: (¢ KALLSTROM 1970-02=13, .
REVISEDr e KanlkSTROM 1974-03~0%,
REVISEDr e ExbEde 1274y=yi=16,

TH= PARAME TR Vo CTUR Or DIMENSION NTHE
NTHl= NUMsER OF FARAMCTERS (mpX H0rMIN 2)9
NTHL IS EwUAL TO wiH I /SYSPARS o
VELDSS=0MqruTEw LOs5 FURCTION VALUE.
DURML, DJIMZr DU~ DUMMY ARGUMENTS. '
JOCONT~CONIROLe Tre COMPJITATION OF LOSS FUNCTION AND DERIVATIVES.
IN 2U3RUUTING SHLP IT 15 OpLy POSSIZLE. T2 CoMPUTZ LUSS
FUNLTION VALUZ: 50 ICONT MustY Bg EGdAL TO 0 #rhEN SJzROJTINE
SAIP IS (ALGZD T COMPJTE LUSS FUNCTION,
ICONTZ=0 Wik CAUSE THE PARAMETER VLCTOR Q@ TO BE
PRINTED 0N LOSIC AL UnIT Yo
IER~ fRRur PaARAMTERT
Ier=0 IF OKe.
JIERr==1 IF ExRROR IN SHIP

COMmMON BLUCK /COMRY/: '
Q@ PARAMIZTER VeCTOR OF BIMENSION NPARe VECTOR THULI)/ZSCalLLI)
15 n PART Or VECTOR &
BE sloe NPAR
1Tr~" IWTLoZR VECIOR OF DIMENSION NTH CONTAINING 14T INDICES OF
THL PARAMZITeRS OF vECTOR Qf FOR wAlQH THE MINIMIZATION
SCAL= 5CALING VvECIOR OF DIMENSION NTH. TH{IX=2C¢I1)sScal{ld).
SCan () »UST NOT 52 ZQUAL To 0.
15- SAMPLE tnTEIRVALY ONLY UngD IN SJ3I0UTINE SSHAIN {F I5YS=2.
ePSI= TZ51 wJdanTIiYr O4LY JUSED IN SUBROJTINDT 355AIN UF IST>m2.
Naale MAALMIM qUMBEZR QF JTERAT OnSe ONLY JSZD IV
SUGKOUT LINT oGALN IF I8YS522 (NO MAXIMIN 2)e :
Vor)= PJT vOLu INITIaALLY Z3UAL TO A LARSE POSITIVZ VALUE (E.45,
1o8+100 e wreN 2ULRCGUTING SHIP I3 CALLID «THIZ (0SS FUNCTION
VALUL Voo53 I5 STORZY IN VoLore IF TrZ COWSPJTATION 1z 3U2CES
Fdoew ¢ 2052 V005 1S PUT Eaual TO Lu«=VOLD aAND THE VALUZ IS
THow REDTORZD IN YOULDS
IERRSY=LHRRIR PaRAscTon;
TERRSYZU IF DA '
IERKSY=L 1F THe COMPUTATLON OF VLOSS HAS FAILED. -
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COMMON BuuCh /SHPAS
YSes TOTAL Ve OCLTY OF THZ SniP IN MAY o
S SHEP LExsTH TN M.

SLle  DISTANCD IN ¥ FRoM THE CoNTRE OF MASS TO THI FORWARD
Q0PPLER LOG TRANSWITTER. ONLY USED LF
Si2=  DISTANCE IN M FRUM THE CoNTRE OF MASS TO THZ AFT DOPPLER

LOG TRASMITTER. OnLY USLZD IF IMOD
IMOD= CONIROLS WHaT SHIP MODEL TO 35 JUSID
IMOL=L MOUDEC COMNYTAINING HYORDDYNAMLID JERIVATIVES (34 PARAM.)
PuSoedli wUlPJTS: SaAY VZLICLTY OF ROweSTEZRY AND
CENTRE OF WASS: YAWRATE aND) HEADING.
ITMO0uz2 MudEl To ooTIviATe THE TRANSFLZR FJUNCTION FROY RUDHER
TO SnaY VZLOCLITY OF CINTRE OF MASS (27 PaRAM_TEZRS:
Wal.Y POSSionuE QJTPUT: SaAY VILDCITY OF CENTRao 0F M
IMOL=3 mODEL TO e5TIYATE Thd TRANSFoR FUNTTION FROM RJUDDHER
T Yae RalE (28 PARAMETERS) e POSSI3LE QUIPUT::
Yan rATE AND HEADLING.
IYe INTLGER vECIOR OF DIMENS1ON B

5
LF IM0021 AND IY(Lizg.
2
& ANY IY{E)ZJ)E s

PUT LY(L)=1 )F Trmi SeAY vELOCITY OF BOW 15 ONZ QUTPUT:

ELSe PUT IY(ir=g -
CPRUT Lyi2)=L IF TrE
ELSe PUT IY(2)=0 .
PJT IYto)=) IF TR

SWAY VELOCITY OF

SwAY VELOCITY OF

}

P

>TERN IS ONE OJIPUT,

s

CENTRE OF MASS 15 ONE

QUTPUT s floe PUT IYL(3}30G . .
PUT IYG4)=1 IF TrE YAw RATE IS ONI QUTPUT: ELSE PUT IY(wdz=p,.
PUT 1Y (0)z1 IF Thi A2ADInG IS OnNE QUTRUTe ELSZ PJT LY(S)=0
LPAR= PUT LPARZY 1F THD PARAMLTER VECTOR SHOJLDY 35 SAVED
IF tHz COMPUTATIVH: ARE RUNNENG OJT OF TIME szLSE
PUT LPARZ0. ’
YaX TiMe IN M5 LoFT IN ThrE JOB THAT wILL NOT TERMINATE
THE OPTIMIZING (4F LPAR=1). '

i

M5Le

NOTEZ 11 IF ISY5=2 OR =gy THE SUBROJTINE SSAIN IS CALLED Tu €OMPUTE
IHE DISCReTEr STATIONAKY FILTLY GAIN AKe

NOTE 27 CTu¥MOn BLUCK /TRAND2/ wHICH IS SHARED wiTy
SUpRUUTIne TRANS sCONTHINDS WOHA ARARAYS -

SUBROUTING REwJIRED
Cos0Y
COSA
WORM
e X P AN
SGAIN
TRANS
WM
AAL AN
NORM
wESY
SOLVS
NOR
SINT (alTH 5U3x0UTINES)

DIMINSION TH(L) tNaTR(E)

COMMON/SYSPAR/NP 1T e LSYS e M ASr 1 5aMPr TSAMP s NPRED L NPREDS s
FuAride NY r s noMATLD)

COMMON/JATA/VIL)
COMMONZ I EX/ LY Mo e IXT LM LXYMULr IXZRMD e IXEPS s IXIEPSr IXA+ IXBr

FLACe IXDr LARLr aaR It IXRer ITXAK 2 APU e IXX0Ur IXAD P IA3D P IXCDY
*AhuaﬁIXR¢urIXmlaorIXRZurLXAKDr1XP!IXXrIXHKrIXPPQr
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‘$1XULTR=IXﬁPQr&XRNYplXVl#lxvgrNKEFNYBFNXNYfNKNJFMYNU

gQMwQN/LADCUMXLOQPFNPRi(3}pwPLo?{gTRANsVMAXFEPST}gPsﬁrcaza@;zqzﬂf
*DFNfHZrEpﬁrHQU;PWHKFJrAPRENTFAM(bUBrDISTs;CALX;TEPSfﬂSTPflLLC;
*iQNINfINQFLFPlPLOI:lfEATrlinix?SYrZDﬂrﬁﬁ73%€%D3elACCeN?LUTCfNSL;

*iNU{aO)PENY(EU)fILHKPLQJMlFLDJM&FR:UMLPRDQM&

COMMON/ TRANS2/51(%00) » ,UM3(1600) : :
g@ﬁHON!COmSwatuageNPAK:LTH{QD}egcAL£40)sTSsEpsisNKAL;VOLQrEERRSY
COMMON /SHP/VoeSLeSLLrSL2E MO0 1Y (5) ¢ LPAR ¢ MSL

DEFINE ACir Iy (T AA+NY=J=NX+1)
UEFINE 3l d)=y (EaBsnNsJonxeI)
JEFINE Clor )2y (L ACHNY £ JdeNY 1)
pEF NS DQlLr N (IADENY s d=NY 1)
JEFINE Rl rd)sVIAXR2+ WY HJeNT+1)
DEFINE RLGLr D) aVOLXRE X xd=NX4])
VEFINE XOUL)=VIIXAGH])

DEFINE POLI U=V (L XP O+ yX s d=NK 4] )
uEl INE Bgtird);V(LX63+NX*deX+13



