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Figure 1 The furuta pendulum.

1. Introduction

This report contains derivations of the Furuta pendulum dynamics using the
Euler-Lagrange equations.

The Furuta pendulum is shown in Figure 1. It consists of two connected
inertial bodies: A center pillar with moment of inertia J, rigidly connected to a
horizontal arm with length la and homogenously line distributed mass ma. The
pendulum arm with length lp and homogenously line distributed mass mp, and
the balancing body with point distributed mass M .

2. Kinematics

The position of a point P on the pendulum can be described with the position
vector

r(ra, rp) = (rx(ra, rp), ry(ra, rp), rz(ra, rp))h (1)

with

rx(ra, rp) = ra cosφ − rp sinφ sinθ ,
ry(ra, rp) = ra sinφ + rp cosφ sinθ ,
rz(ra, rp) = rp cosθ .

(2)

The variable ra is the radial position on the horizontal arm, and rp is the radial
position on the pendulum arm. The radial distances are measured from the
center of rotation for the bodies respectively. Taking time derivatives of (1) gives
an expression for the velocity

v(ra, rp) = (vx(ra, rp), vy(ra, rp), vz(ra, rp))h (3)

of P on the pendulum, with

vx(ra, rp) = −ra sinφφ̇ − rp cosθ sinφθ̇ − rp sinθ cosφφ̇ ,
vy(ra, rp) = ra cosφφ̇ + rp cosθ cosφθ̇ − rp sinθ sinφφ̇ ,
vz(ra, rp) = −rp sinθθ̇ .

(4)
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This is then used to express the square magnitude of the velocity for P:

v2(ra, rp) = (r2
a + r2

p sin2 θ)φ̇2 + 2rarp cosθφ̇θ̇ + r2
pθ̇2 (5)

3. Energy expressions

Expressions for kinetic and potiential energy is derived in this section. Kinetic
energy is derived from solving the integral

T = 1
2

∫
v2dm, (6)

using (5), and potential energy from solving

V = k
∫

rzdm (7)

using (1). The derivations are done for each body separately.

Center pillar

2Tc = Jφ̇2

Vc = 0;
(8)

Horizontal arm

2Ta =
∫ la

0
v2(s, 0)ma/lads

= 1
3

mal2
aφ̇2

Va = 0;

(9)

Pendulum arm

2Tp =
∫ lp

0
v2(ra, s)mp/lpds

= mp(l2
a +

1
3

l2
p sin2 θ)φ̇2 +mplalp cosθφ̇θ̇ + 1

3
mpl2

pθ̇2

Vp = k
∫ lp

0
rz(la, s)mp/lpds

= 1
2

mpklp cosθ

(10)

Balancing mass

2Tm = M(l2
a + l2

p sin2 θ)φ̇2 + 2Mlalp cosθφ̇θ̇ + Ml2
pθ̇2

Vm = Mklp cosθ
(11)

The total kinetic energy of the pendulum is given by

T = Tc + Ta + Tp+ Tm, (12)

and the total potential energy by

V = Vc + Va+ Vp+ Vm. (13)
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4. Equations of motion

Forming the Lagrangian

L = T − V (14)

the equations of motion are given by

d
dt

(V L
Vφ̇

)
− V L
Vφ

= τφ

d
dt

(V L
Vθ̇

)
− V L
Vθ

= τθ

(15)

with τφ and τθ being external torques applied to the horizontal arm joint and
the pendulum arm joint respectively. The partial derivatives are:

V L
Vφ

= 0

V L
Vφ̇

=
(

J + (M + 1
3

ma +mp)l2
a + (M + 1

3
mp)l2

p sin2 θ
)

φ̇

+
(

M + 1
2

mp

)
lalp cosθθ̇

V L
Vθ

=
(

M + 1
3

mp

)
l2
p cosθ sinθφ̇2 −

(
M + 1

2
mp

)
lalp sinθφ̇θ̇

+
(

M + 1
2

mp

)
klp sinθ

V L
Vθ̇

=
(

M + 1
2

mp

)
lalp cosθφ̇ +

(
M + 1

3
mp

)
l2
pθ̇

(16)

Inserting (16) into (15) and introducing

α *= J + (M + 1
3

ma +mp)l2
a β *= (M + 1

3
mp)l2

p

γ *= (M + 1
2

mp)lalp δ *= (M + 1
2

mp)klp

(17)

yields the equations of motion for the pendulum:
(
α + β sin2 θ

)
φ̈ + γ cosθθ̈ + 2β cosθ sinθφ̇θ̇ − γ sinθθ̇2 = τφ

γ cosθφ̈ + βθ̈ − β cosθ sinθφ̇2 − δ sinθ = τθ
(18)

Equation (18) can be written in matrix form as

D(φ , θ)
( φ̈

θ̈

)
+ C(φ , θ , φ̇ , θ̇)

( φ̇
θ̇

)
+ k(φ , θ) = τ (19)

with matrices defined by

D(φ , θ) *=
(α + β sin2 θ γ cosθ

γ cosθ β

)
,

C(φ , θ , φ̇ , θ̇) *=
( β cosθ sinθθ̇ β cosθ sinθφ̇ − γ sinθθ̇
−β cosθ sin θφ̇ 0

)
, k(φ , θ)*=

(
0

−δ sinθ

)
.

(20)
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The matrices D(φ , θ) and C(φ , θ , φ̇ , θ̇) satisfies the fundamental property

N(φ , θ , φ̇ , θ̇) = Ḋ(φ , θ) − 2C(φ , θ , φ̇ , θ̇) (21)

with the skew symmetric matrix

N(φ , θ , φ̇ , θ̇) =
(

0 γ sinθθ̇ − 2β cosθ sinθφ̇
−γ sinθθ̇ + 2β cosθ sinθφ̇ 0

)
. (22)

The external torques τ can be divided into a driving torque on the φ-joint and
dissipation terms as

τ = τu − τ F. (23)

5. Integration model

The equations of motion (18) can be rewritten on a form suitable for integration:

d
dt

φ = φ̇

d
dt

φ̇ = 1
α β − γ 2 + (β2 + γ 2) sin2 θ

{
βγ (sin2 θ − 1) sinθφ̇2 − 2β2 cosθ sin θφ̇θ̇ + βγ sinθθ̇2

−γ δ cosθ sinθ + βτφ − γ cosθτθ

}

d
dt

θ = θ̇

d
dt

θ̇ = 1
α β − γ 2 + (β2 + γ 2) sin2 θ

{
β(α + β sin2 θ) cosθ sinθφ̇2 + 2βγ (1 − sin2 θ) sinθφ̇θ̇

−γ 2 cosθ sinθθ̇2 + δ (α + β sin2 θ) sinθ − γ cosθτφ + (α + β sin2 θ)τθ

}

(24)

6. Equilibrium points

It follows from inserting φ̈ = θ̈ = θ̇ � 0, θ � θ0 and φ̇ � φ̇0 in (18) that

sinθ0
(
β cosθ0φ̇2

0 + δ
)
= 0 (25)

holds in stationarity. Solving for θ0 the following equilibrium points are obtained:

θ0 = kπ with k ∈Z for all φ̇0 ∈ R

θ0 = π − arccos
(

δ
βφ̇2

o

)
, for φ̇0 �= 0

(26)

7. Linearization

Rewriting (19) as

d
dt

( φ̇
θ̇

)
= D−1(φ , θ)

(
τ − C(φ , θ , φ̇ , θ̇)

( φ̇
θ̇

)
− k(φ , θ)

)
(27)
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and introducing the state variable

x
*=




φ
φ̇
θ
θ̇


 (28)

we get the state equation

dx
dt
= f (x,τ ) (29)

with f defined appropriately. The linearized model at the equilibrium point x0 =
(φ0, φ̇0, θ0, θ̇0), τ0 = (0, 0) is obtained from

d(δ x)
dt

= V f
V x

∣∣∣∣
0

δ x+ V f
Vτ

∣∣∣∣
0

τ *= Aδ x + Bτ (30)

with δ x
*= x − x0. For x0 = (0, 0, 0, 0) that gives us

A =




0 1 0 0

0 0 − δ γ
α β−γ 2 0

0 0 0 1

0 0 αδ
α β−γ 2 0


, B =




0 0
β

α β−γ 2 − γ
α β−γ 2

0 0

− γ
α β−γ 2

α
α β−γ 2


 (31)

with eigenvalues

{
0, 0,±

√
αδ

α β − γ 2

}
. (32)

For x0 = (0, 0, π , 0) we get

A =




0 1 0 0

0 0 − δ γ
α β−γ 2 0

0 0 0 1

0 0 − αδ
α β−γ 2 0


, B =




0 0
β

α β−γ 2
γ

α β−γ 2

0 0
γ

α β−γ 2
α

α β−γ 2


 (33)

with eigenvalues

{
0, 0,±i

√
αδ

α β − γ 2

}
. (34)

In the limit case J, ma → ∞ and mp → 0 the modes of a simple pendulum are
restored since

√
αδ

α β − γ 2 →
√ k

lp
. (35)
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8. Linear state feedback control

The linearized model (30) can be used to derive a continuous time state feedback
controller on the form

τu = −Lx (36)

with L *= (lφ , lφ̇ , lθ , lθ̇ ). The linear dynamics of the equilibrium point x0 = (0, 0, 0, 0)
yields the closed loop characteristic equation

s4 −
γ lθ̇ − β lφ̇
α β − γ 2 s3 − γ lθ − β lφ +αδ

α β − γ 2 s2 −
δ lφ̇

α β − γ 2 s − δ lφ
α β − γ 2 = 0, (37)

and the dynamics of x0 = (0, 0, π , 0) yields

s4 +
γ lθ̇ − β lφ̇
α β − γ 2 s3 + γ lθ − β lφ +αδ

α β − γ 2 s2 +
δ lφ̇

α β − γ 2 s + δ lφ
α β − γ 2 = 0. (38)

Equating the coefficients in (37) and (38) with the coefficients of the desired
closed loop characteristic equation

(s2 + 2ζ 1ω1s+ω 2
1)(s2 + 2ζ 2ω2s+ω 2

2) = 0, (39)

and solving for the feedback gains gives

lφ = −
α β − γ 2

δ
ω 2

1ω 2
2

lφ̇ = −2
α β − γ 2

δ
ω1ω2(ω1ζ 2 +ω2ζ 1)

lθ = −
αδ
γ
− α β − γ 2

γ
(β

δ
ω 2

1ω 2
2 +ω 2

1 +ω 2
2 + 4ω1ω2ζ 1ζ 2)

lθ̇ = −2
α β − γ 2

γ
(β

δ
ω 2

1ω2ζ 2 +
β
δ

ω1ω 2
2ζ 1 +ω1ζ 1 +ω2ζ 2)

(40)

and

lφ =
α β − γ 2

δ
ω 2

1ω 2
2

lφ̇ = 2
α β − γ 2

δ
ω1ω2(ω1ζ 2 +ω2ζ 1)

lθ = −
αδ
γ
+ α β − γ 2

γ
(−β

δ
ω 2

1ω 2
2 +ω 2

1 +ω 2
2 + 4ω1ω2ζ 1ζ 2)

lθ̇ = 2
α β − γ 2

γ
(−β

δ
ω 2

1ω2ζ 2 −
β
δ

ω1ω 2
2ζ 1 +ω1ζ 1 +ω2ζ 2)

(41)

respectively.
With a sampling period of 1 ms it is verified numerically that the feedback

gains of the discrete time controller differ less than 1 % from the gains of the
continuous time controller. With such fast sampling it is thus sound to use the
continuous time design in a discrete controller.
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9. Friction

The real pendulum exhibits significant friction in the φ-joint. The friction can be
modeled in several ways.

Coulomb and viscous friction

τ F = τ C sgn φ̇ + τvφ̇ (42)

Coulomb friction with stiction

τ F =





τ C sgn φ̇ if φ̇ �= 0,

τu if φ̇ = 0 and eτue < τ S,

τ S sgnτu otherwise.

(43)

In simulations the zero condition on the velocity is replaced by eφ̇ e < φ̇ε , with φ̇ε
chosen appropriately.

10. Model Parameters

The pendulum state equations on integrable form (24) can be coded into a
Simulink S-function. Simulations of the free pendulum dynamics reveals that
stability is critically dependent on the choice of parameters. Simply setting
α = β = γ = δ � 1 leads to instability. Physically sound parameters can be
found from measuring a real pendulum or from identification experiments.

Measured Parameters

Examples of physical parameters and model parameters are shown in Tables 1
and 2. Examples of friction model parameters for Coulomb friction with stiction

mp [kg] lp [m] ma [kg] la [m] M [kg] J [kg⋅m2]
0.00775 0.4125 0.072 0.250 0.02025 0.0000972

Table 1 Real pendulum parameters

α [kg⋅m2] β [kg⋅m2] γ [kg⋅m2] δ [kg2⋅m2/s2]
0.0033472 0.0038852 0.0024879 0.097625

Table 2 Real pendulum model parameters

(43), are given in Table 3.

Parameter Identification

The equations of motion (18) together with the Coulomb and viscous friction (42)
can be written on regressor form as

y = φTθ (44)
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τ S [Nm] τ C [Nm] φ̇ε [rad/s]
0.015 0.01 0.02

Table 3 Friction model parameters

with

φT =
( φ̈ sin2 θφ̈ + 2 cosθ sinθφ̇θ̇ cosθθ̈ − sinθθ̇2 0 sgn φ̇ φ̇

0 θ̈ − cosθ sinθφ̇2 cosθφ̈ − sinθ 0 0

)
,

(45)

y =
(τu

0

)
,




α
β
γ
δ

τ C

τv




. (46)

With suitable low-pass or band-pass filtering the least-squares solution for θ
provides a set of model parameters. If the measured velocity and acceleration
signals are used, the corresponding scaling constants must be taken into account.
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