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1. Introduction

In modern robust control design it is desirable to model both the dynamics
and uncertainty of each component. This often results in aggregated models
that have high state order and complicated uncertainty descriptions. These
models may be difficult to analyze and the subsequent controller design,
based on these models, may be both difficult and time consuming. The
resulting controller usually also becomes complex and may therefore be
expensive and difficult to implement.

For these reasons there is a need to develop methods to analyze the
importance of each uncertainty component as well as each state so that
unnecessarily complex models can be avoided. In many situations, such
as in controller design, the required accuracy of the meodel is different at
different frequencies. It is therefore desirable to do the analysis frequency
by frequency.

For linear time-invariant models without uncertainty there are well-
known order reduction methods. Two of these methods are balanced trun-
cation, see [12, 18] and singular perturbation approximation, see [7, 11, 6],
which have associated error bounds, see [5, 9, 1, 10]. The balanced trun-
cation method has been generalized to models with norm-bounded uncer-
tainty, see [15, 4, 3] and recently to a more general class of uncertainty
descriptions as well as nonlinearities, [14, 2].

In this report we develop, based on the results in [14, 2], frequency
dependent error bounds for uncertain linear time-invariant models. The
report is organized as follows. We start, in Section 2, by describing the mod-
eling framework and stating the problem. In Section 3 we consider model
truncation and present the associated frequency dependent error bounds.
An application example is then given in Section 4. Model comparison as
well as model reduction using a general reduction method is deseribed in
Section 5. A numerical example is given in Section 6. Section 7 discusses
some properties of the error bounds. Numerical calculation of the error
bounds are described in Section 8 and we conclude the report in Section 9.

2. Preliminaries

In this section we describe the modeling framework and state the problem.
The results are developed for the continuous time case even though similar
results also hold in discrete time.

2.1 Model description
The modeling framework considered in thig report, is commonly used in
modern robustness analysis and control design, see e.g. the book [16]. The
interconnection of a pair (A, M) is defined according to the relations

x= Az

and




M

Figure 1 Feedback interconnection representing a model with uncertainty.

as illustrated in Figure 1.

We will usually assume, for stability and well-posedness reasons, that
A and M are stable proper transfer matrices and that at least one of them
is strictly proper. The transfer matrix A is used o represent uncertain
dynamics as well as known dynamics considered for simplification while
M represents the remaining part of the model.

The transfer matrix A is also assumed to have a block diagonal struc-
ture A = diag(Ay,...,A,), where each of the blocks satisfy a constraint,
e.g. a norm bound or some other quadratic constraint. These quadratic
constraints can also be used to describe uncertain dynamics.

The signals in the interconnection are the input u € L, [0, co), the out-
put ¥ € L2,[0, c0) and the internal signals z € L% [0, c0) and x € LE,[0, 0o).
The space L, [0,00) is the space of functions that are square integrable
over any finite time.

The transfer mairix M is partitioned consistently with the signal di-
mensions as

1)

=g ol

¢ D

The input-output mapping of the interconnection in Figure 1 is then defined
by the Redheffer star product

y={(AxMu=(D+CAI —AA)"1B)u.

EXAMPLE 1—UNCERTAIN SPRING CONSTANT
A mass and spring system can be described using the equation

mé+dé +kE=F

where £ is the position, F an external force, m the mass, d the damping
and £ the spring constant. Assume that the spring constant is known with
only 10% accuracy. This may be written as

k= ko(1+0.15)

where kg is the nominal spring constant and & a real unknown congtant
satisfying |8| < 1. The equation then becomes

mé + dé + kol = F —0.1koSE.




The described model, with input F and output &, can be written on stan-
dard form using

1 —0.1kg 1
Msl= —5——7——
) ms? +ds + ko [—0.1k0 1] ’
A =4,

2.2 Problem formulation

The problem considered in this report is to analyze the importance of the
different blocks in A for different frequencies. We would in particular like
to compare the original model with one where some of the blocks in A have
been truncated, simplified or in some other way changed. These results
can then be used for model comparison, mode} simplification and model
reduction.

The problem will be solved by finding upper bounds on the error,

e=y—%= (A*MW&*M)&,
or more precisely the norm
|[(A*M-ﬂ,&*M)(iw)||,

between the two compared models. The norm (gain) of a transfer matrix
is defined by the maximum singular value as

GGo)|| = o(G(iw)).
Note that the norm is frequency dependent.

2.3 Quadratic constraints

We use quadratic constraints as a general framework to deseribe uncertain
dynamics as well as known dynamics considered for simplification. This
framework includes a number of well-known constraints such as passivity
and norm bounds.

We say that the matrix A satisfies the quadratic constraint defined by
the hermitian matrix II if

HEAR

The matrix I1 will be ealled a multiplier.
The following two properties are useful.

¢ Assume that A satisfies the quadratic constraints defined by the mul-
tipliers I1y,...,11,. Then A also satisfies the quadratic constraint de-
fined by

n
II= Z a'kl"[k
k=1

forevery o, >0,k =1,...,n.




o Assume that A has a block diagonal structure,
A= diag(Al, ey Ai‘):

and that A, satisfies the quadratic constraints defined by I, for
k=1,.,.,r. Then A satisfies the quadratic constraint defined by

1T = daug(Hy,... ,I1,),

where
[ My 0 | Hiag 0 ]
0 I 0 T
daug(l’[l, ceey H,.) = r(11) r(12) ;
I121) 0 | My 0
L 0 . _ HI‘(21) 0 Hr(22) |
and

1, = [Hk(n) Hkuz)]
Hpe1y gesy

Examples of multipliers are given next.

ExamMpLE 2—MULTIPLIERS
¢ Let A(i@w) be any unity norm bounded transfer matrix. Then A(iw)
satisfies all quadratic constraints defined by

RS

where x(@) > 0.

¢ Let A(iw) == 61, where & is a real scalar satisfying |6] < 1, then A(iw}
satisfies all quadratic constrains defined by

[X(ico) Y(ia))}
Y(iw) —-X(iow)

where X (i) = X (iw)* > 0 and Y(iw) + Y(iw)* = 0.
O

It will be shown later that the multipliers I1(i®) play a fundamental role
when we compute bounds on the error between two models.

The same A satisfies the quadratic constraints defined by many differ-
ent multipliers I1. The particular choice of multiplier will influence the
error bounds, In order to obtain less conservative error bounds it is there-
fore important to choose the multiplier II resulting in the lowest error
bound. Restricting the set of multipliers beforehand may therefore result
in more conservative errvor bounds than necessary.




ExXAMPLE 3--QUADRATIC CONSTRAINTS FOR AN INTEGRATOR
Assume that A(s) = 1/s. Then A(iw) satisfies the quadratic constraint
defined by

: 0 (o)
)= | e "o )
where x{w) > 0 is a real-valued function, Multipliers of this form de-
fine quadratic constraints that are satisfied for any positive real transfer
function. Thus, restricting the multiplier to have this form, may lead to
conservative error bounds, since the error bounds will hold not only if A is
an integrator but also if A is any positive real transfer function. O

3. Model truncation

In this section we present frequency dependent upper bounds on the error
when parts of the model is truncated. This is a special case of the more
general results presented in Section 5.

A
v 0 Ay
| AL—4| L
Ay Az B
1 Az B Ap By F
Ag1 Ags Bg c. D
Y=, Cy D[~ U y— M1 — U

Figure 2 Model truncation.

Model truncation is illustrated in Figure 2. We assume, without loss of
generality, that the model is partitioned in such a way that the lower blocks
of A and the corresponding part of M should be truncated. We partition
the model consistently as

Ay Ap B
Ay O
M= 1[Ay Agp Bsj, A= o Al
Ci, €y D L

where

Arr =diag(A1,...,A;),
A =diag(Apiy,..., Ar).

The truncated model is then given by

A [ 11 1},

= AmA.
c, D v




We assumed above that the parts to be truncated were specified before-
hand. This is not always the case. Instead we can make this specification
based on positive real-valued functions o (@) that we assign to each of the
blocks in A, as illustrated in Figure 8. Each function o (@) gives a mea-
sure on the importance of the corresponding block A at each frequency.
When the model is truncated then the error at each frequency, is bounded
by two times the sum of the o,-functions corresponding to the truncated
blocks. This is stated in the following theorem, which follows from the more
general result presented later in Theorem 2.

THEOREM 1

Assume that A and M are stable proper transfer matrices and at least
one of them is strictly proper. Let II;(i@), for 2 = 1,...,r, be bounded
measurable functions taking hermitian values. Assume for all @ € R that

o TAL(iw), for kE=1,...,r, and all 7 € [0,1] satisfies the quadratic
constraint defined by I, (iw)

. Hk(n)(ia)) >0, fork=7F41,...,r

If there exist real valued functions o1(®),..., o, (@) > 0 such that

A(iw) B(ico)]<[0 0},

[A(icu) B (iw)
I 0 (U

I 0 rdaug(m(im),. (i) [
[A(ia))

A(iw)
1 I

r daug(c?ll(im),... , o 11,{(iw)) { } + C(iw)*C(iw) < 0,

for all @ € [0, 0], then both the original and truncated model are stable
and

A« M — Ax M)(io)|| < 20:,1(0) + - + 20 (@).

£

The frequency dependent error bounds are given in terms of nonunique
o-functions, which are found by solving the two inequalities numerically,
see Section 8. No restrictions on the type of realization (such as in balanced
truncation) are needed. '

The theorem is applicable to uncertain models since it is sufficient that
A and A belong to the set described by the quadratic constraints. It is, thus,
not necessary to know the specific transfer matrix A.

An example is given in the next section to illustrate the use of the
theorem,

4. Application example

In this section we consider simplification of an uncertain model of the
flexible servo in Figure 3. First we give a nominal model, then we extend
this model to include an uncertain spring constant. The importance of the
uncertainty description is analyzed.




k1 ko

dy ds d3

Figure 3 A flexible servo,

4.1 Nominal model
A simple model of the servo in Figure 3 is given by the following equations

J11 = —ki(¢1 — ¢2) — diw1 + R
Jowg = k1(p1 — P2) — ka(¢2 — ¢3) — daw2
cfafbs = ka(p2 — ¢3) — dsws

$1=w1
@2 = g
¢3 = w3
y=keun

where @, denotes angular velocity and ¢; the corresponding angle. The
system output is the voltage y representing the angular velocity of the
first mass. We assume that the parameters are

J1 = 50- 10 kgm?

Jp = 20- 106 kgm?

J3 = 55- 107 kgm®

dy = dg = d3 = 30 - 107 Nm/rad/s
k1 = ko = 400-10~% Nm/rad

By = 251072 Nm/V

ky =01 V/rad/s.

Introducing the state vector

I =lo1 wy ws ¢1—¢s ¢2—os]

results in the state space model,

—dy/J1 0 0 —kifd1 0 Ryl
0 —dy/Jg 0 kifda —ka/ds 0
U = 0 0 —dg/J3 g kofds v+ 0 u
1 -1 0 0 0 0
0 1 -1 0 0 0 |

y = [km O 0 0 0] [ 2
This model may be written in a more compact way as
0= Av + Bu
vy = Cuo.

The Bode diagram for the model is given in Figure 4. We see that there are
resonances at 9 rad/s and 22 rad/s and notches at 6 rad/s and 21 rad/s.




Magnitude

Phase [deg]

g

_10?04 I .....;;o 410
Frequency [rad’s]

Figure 4 Bode diagram for the flexible serve. There is one resonance at 9 rad/s
and one at 22 rad/s.

4.2 Unceriain spring constant

We assume that the spring constant %; is known with only 10% accuracy.
This uncertain spring constant %, is modeled as

]_31 =k1(1+0.16;)

where |8;] < 1 and %; is the nominal spring constant. Using this description
we find that

v=Av+A[0 0 0 1 0}98,-01-[0 0 0 1 OJuv+Bu
and get the model (A, M) where A = §;, and
A B]

Mm[c D

with
A=01-[0 0 01 OJ(sI—A)1A[0 0 o 1 0]
B=01-[0 0 0 1 0](sI-A)'B
C=C(I—AytA[0 0 0 1 o}
D = C(sI —A)'B.

4.3 Error bounds

We are interested in analyzing in what frequency ranges the nominal model
is a sufficient description of the uncertain model. We will therefore calculate
error bounds that measure the difference between the nominal model and

the uncertain model.
The uncertainty is represented by a unity norm bounded real scalar d;.

Such a scalar satisfies any quadratic constraint defined by

xw)  y(io) ]

y(io)” —ax{w)

N(iw) = [




where x{w) > 0 is real and Re y{(iw) = 0. Applying Theorem 1 using this
multiplier and numerical optimization, see Section 8, we find the upper
bound 20 (@), shown in Figure 5 with a solid line. The best possible upper
bound (the exact error can not be determined since the original model is
uncertain) is shown with a dashed line. We see that the obtained upper

;;)° @ A[rad/s} 10’ A ”10

Figure § This figzure shows upper bounds on the error when the uncertainty in
the spring constant % is neglected. The solid line shows the error bound obtained
using our method while the dashed line shows the best possible upper bound,

bound is close to the best possible upper bound. Analytical expressions
for both upper bounds in this example will be obtained analytically in
Theorem 4.

The upper bounds show that the error is large close to the resonance
and notch frequencies, This is intuitively reasonable since the resonances
and notches move when the spring constant is changed, resulting in large
differences in amplification near the resonance and noich frequences.

The obtained information can be used to help us to decide if the un-
certainty should be considered in the design of a controller, Let & denote
the nominal transfer function of the system and let &, denote the transfer
function of the controller. Assume that the closed loop model is stable. Let
G + AG denote the transfer function of the true system, then stability is
preserved for the true closed loop system if

1G. (i) G(i@) + 1] > |AG(io) - Geo(im)|

or equivalently if

1.
1+ GGo)G.(i0)| =

‘Aﬁ(ia;) ’ ' G(io)G. (i)
272}

This means that stability is preserved if the gain of the nominal closed loop
model is small at frequencies where the relative error of the model is large
and vice versa. Based on the relative ervor bound shown in Figure 6, we
conclude that stability is preserved if the closed loop model has a bandwidth
less than about 5 rad/s. This means that the uncertainty in the spring
constant k¢, from a stability point of view, may be neglected, in this case,
when we make the design.

10
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Figure 6 Upper bound on the relative error when the uncertainty in the spring
constant k; is neglected. It is seen that the uncertainty description is important

close to resonances and notches.

Note that we have only considered stability, Similar arguments can be
used if we in addition would like fo preserve some performance specifica-

tions.

5. Model comparison and simplification

In this section we describe model comparison and how it can be used for
model simplification and model reduction. A special case of these results

are truncation, which we described in Section 3.

Ay 0 Ag O
1o AL 1o Ag
A Agp By | Ay Ayp By |
Az Ags By Apy Agp By
¢, Co D - |l b

Figure 7 The two models that we compare.

5.1 Model comparison

Consider comparison of two models that are identical except for some of the
blocks in A, see Figure 7. We assume, without loss of generality, that the
upper blocks in A, denoted Ay = diag{A;,..., Az}, are identical while the

lower blocks denoted Ay, =: diag(As;q,...,A,) and Ap = diag(fx,ﬂ.ﬂ, el ,A,),

11




respectively, not are identical. We partition the two models consistently as

Ay A B
11 Ais 1 Ay 0 X Ay 0
Ci, Cy D L E

To compare the two models we assign positive real-valued functions op(®)
to each of the blocks in A, as illustrated in Figure 8. Each function o3(w)
gives a measure on the importance of the corresponding block Ay,

A ol
1 | owl@)

Y
.
El

]
'A,.
P

- M

Figure 8 Each block A, has an associated function ¢ (@) that measure the im-
portance of the block at each frequency.

The error between the two models, is bounded by two times the sum of
the op-functions corresponding to the nonidentical blocks. Note, that the
op-functions will depend on the selection of a set containing both A, and
ﬁk, see Figure 9.

Figure 9 Both the block Az and ﬁk must belong to the same set described by a
quadratic constraint.

5.2 Model simplification and reduction

The described comparison of models may be used for model simplification,
The second model is in this case considered as a simplification of the first
model. To chooge which of the blocks in A to simplify, we may look at the
o,-functions since they indicate for which of the blocks in A gimplification
is cheapest. The simplification is then done by replacing Az, with a fixed
transfer matrix Ay, with the same block structure as Ay. We choose the
replacing transfer matrix to be frequency independent to avoid unnecessary
dynamics, and choose it close to Ay, to obtain a simplified model close to
the original model. The last statement is motivated by the following result,
which shows that the error between the two models is small if A and A are
close to each other.

12




Assume that (A, M) is stable. Then for every € > 0 there exist a & > 0
such that

l[AxM—AxM|| <&  when |la—A| < 8.
This follows since
A+M—AxM = CA(I —AA)'B — CA(I —AA)'B

is a continuous function of the matrix elements, and no singularities occur
thanks to the stability assumption.

After the described simplification, an upper bound on the error is found
by summing the oj-functions corresponding to the blocks that have been
replaced.

The spatial dimension of the simplified model may be reduced. This
follows by observing that

Ag 0 N
“ M=A 3
|: 0 AL:| * U*M, ( )
where
~ Ay By A1 ~ ~ vt
M= + Ap{I — AgeA A Bs }.
( c, D ) ( c, { 22AL) ( 21 2)

This is illustrated in Figure 10. Note that it is crucial for this reduction
that Ay is a fixed transfer matrix, and not a set of transfer matrices, so
that # becomes a fixed transfer matrix. In some cases it is in addition
useful to have M frequency independent. To maintain this property after
the reduction, we use a frequency independent Ay,

Ay O
0 L&L

Y

Y
=S
o

A

A

Figure 10 Model reduction. A fixed transfer matrix Ar, may be captured in M.
The new model {Ay, M) will then have a lower, i.e. reduced, spatial dimension.

EXAMPLE 4—TRUNCATION
Choosing the fixed matrix Ay, = 0 results in a reduced model with

" A B
M:[ 11 1]_
¢, D

This model is simply a truncation of the original model. This was the special
case considered in Section 3. [

13




5.3 Error bounds

We now present the frequency dependent error bounds associated with
model comparison and simplification.

THEOREM 2
Assume that M is a stable proper (strictly proper) transfer matrix and
that we have two stable strictly proper (proper) block diagonal transfer
function matrices

A frusacd d_iag(Al, vy Ar),

A = djag(Al, o A, Af—kl’ v A?)
Let M,(iw), for k =1,...,r, be bounded measurable functions taking her-
mitian values. Assume for all @ € R and all 7 € [0,1] that

o TAL(im), for £ =1,...,r, satisfies the quadratic constraint defined by

(i)
. ’rt&k(ia)), for 2 =7+1,...,r, satisfies the quadratic constraint defined
by Hk(w))
If there exist real-valued functions c1{@),... ,o.(®w} > 0 such that
Aliw) B(iw)]” ) ) A(iw) B(iw)] [0 O
Il R |
[ 7 0 ] daug(11; (iw), +im)} [ 7 0 }<[0 I]
i p @
w .
[ (;a))] daug(c?T1(io),. .. , o211, (iw)) [ (; )} + Cliow)'Cliw) <0
()

for all @ € [0, cc]. Then hoth (A, M) and (A, M) are stable and
A x M — Ax M)(io)f} < 207.1(@) + - + 20,-(o).

Let (Ay, M) be the reduced order model obtained using the reduction for-
mula {3} then

HA M — Ay x M) (io)| < 20:1(@) + - + 20-(@).

Remark 1 Model truncation corresponds to A, = 0. The only constraint
on the multiplier I, in this case is Ilg7) > 0. This condition is found in
Theorem 1.

Remark 2 How to compute op-functions satisfying these inequalities is
described in Section 8. Note that the o,-functions not are unique.

Remark 3 We describe A using guadratic constraints. It is therefore not
necessary to know the specific transfer matrix A. This makes the result
applicable to models where A is uncertain. One must then find a quadratic
constraint that is satisfied for all A in the uncertainty set.

Remark 4 The assumptions on A, A and M to be stable and proper may be
replaced with the assumption that both the original and truncated mod-
els are stable, Then it is also sufficient that Aku&k satisfy the quadratic
constraint for 7 = 1 and not for all ¢ € [0, 1]. The strict inequalities may
in addition be replaced by non-strict inequalities. This version of the as-
sumptions is useful when e.g. A is unstable, for example when A contains
integrators.

14




Proof We start by proving stability. This proof is only given for the model
(A, M) since the proof for (A, M) is identical.

We will consider the model where A is replaced with 7 A and show that
this model is stable for 7 = 1. Stability means that all the poles are in the
open left half plane. This holds for v = 0 since both A and M are stable. If
no pole crosses the imaginary axis as we let 7 increase from zero to one,
then the model (A, M) will be stable. It therefore remains to check that
there are no imaginary poles for any value on 7 € [0,1}, i.e,

det(I — A(iw)tA(iw)) #0, @ €{0,00], 7 €[0,1].
This holds if
[ I A(ia))]

TA(iw) I

is invertible, i.e. the columns are linearly independent. If we assume that
they are linearly dependent then

A I
[I}w1=[m]wz, w1 # 0,z # 0.

This implies that

AT LAY, [T [ ]
Y1l 11T %2 A A |2

which is a contradiction since

]«

17 I
TA TA
This proves stability.

We now prove the error bounds for the case with # =1 and r = 2. The
ease with # = r = 1 is almost identical, but less pedagogical. We partition
the matrix M as

and

Aoy Age B
Ci Co D

A Ap By
M=

Since we have two models (A, M) and (A, M) we also have two feedback
interconnections and also two sets of signals. We introduce the following
nofation for the laplace transformed signals:

21 X1 Z %1
y u ¥ u

e

15




We assume that the initial conditions are zero. This is realistic since the
two models are stable. Note that the input signal u is the same for both
models.

Multiplying the inequality (4) with the vector (x1 4+ £1, x9 + %2, 2u) from
the right and its complex conjugate from the left, and adding this to the
inequality obtained by multiplying the inequality (5) with the column vee-
tor o5 (%1 — &1, %2 — £2) from the right and its complex conjugate from the
left, we then get by noting that z—2 = A(x —2), y— ¥ = C(x—£) and using
some matrix manipulations, the following inequality

0 > [Zl+ﬁ1]*nl [z1+§1]

x1+ & X1+ %1
-~ E3 A
_ zZ1—21 21 —21
+0%0'22[ . | M1 .
X1 — %y x1 — %1

zo ¥ z 25717 2
w222 ve ] m)

X9 X0 X9 o
+03 2%y — 9% — 4ful?

The first and second term are nonnegative since Ay = Ay satisfies the
quadratic constraint defined by ITy and

x1 + %1 = Arz1 + 21).

The third and fourth term are nonnegative since Ay and Ag both satisfy
the quadratic constraint defined by Ils. This completes the proof for the
case F+1=r=2,

More generally one can generate a sequence of new models by replacing
Ay, ... ,Ap 1 one at a time. At each step, the above argument can be used
and the fotal error bound becomes

(v — $)(i@)| < 2(or(@) + - + ora(@))ulio)].

6. Numerical example

In this section we give an example where we illustrate both the use of other
reduction methods than truncation and the importance of not restricting
the set of multipliers more than necessary. We also indicate the advantage
of not having to restrict the type of realization to e.g. a balanced realization.

Gi(s) Ga(s)

G3 (S)

Figure 11 The model in the example.
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Consider the model in Figure 11 where the transfer functions are

1
Gk(S) = m, k= 1,2,3.

The time constants are 71 = 1, 72 = 0.1 and 73 = 0.01. We may think
of the transfer functions as representing components in a larger intercon-
nected system. Assume that we are inferested in knowing how large the
error, at different frequencies, would be if we neglect the high frequency
dynamics for some of the transfer functions i.e. assumes that G, (iw) =~ 1.
We may think of this as replacing an electrical component by a wire. The
defined problem can not be studied using the results in Section 3 where
only truncation corresponding to the approximation G;{iw) ~ 0 is studied.
Neither could singular perturbation approximation of the corresponding
balanced realization be used since we have to keep the structure of the
interconnected system.

To be able to apply the results in this report we rewrite the model on
the form (A, M). We let A contain the transfer functions considered for
simplification and M the remaining part of the model. For example if we
consider simplification of G2 and G35 then

A = diag(8s, 83) = diag(Ga(s), Gs(s))

and
0 0 & (S)
M(s)= {0 0 1
11 0

To simplify the dynamics corresponding to G; we use 5‘k == ék =1 in
the reduction formula (3).

We will now consider two cases. In the first case we describe the transfer
functions as known transfer functions and in the second case we describe
them as unity norm-bounded fransfer functions.

In the first case, the multiplier T1; describing the transfer function Gy,
should satisfy both

[Gkéw)rnk(iw) [Gk(lica)] =

and

) [ !] 2o

The first constraint corresponds to the original transfer function and the
second to the simplified transfer function. These constraints on the multi-
pliers are necessary and sufficient.

We now consider simplification of one of the transfer functions at a
time. Using numerical ealculations, see Section 8, we find the o-functions
in Figure 12, The corresponding error bounds 20, are in these cases equal
to the exact error, The exact error has in this simple case been calculated as
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the difference between the transfer functions corresponding to the original
and simplified models.

It is easy to understand why the error curves have the form shown in
Figure 12. The approximation (Fa(s) ~ 1 is accurate at low frequencies
where G3(s) = 1 but not at higher frequencies where G5(s) ~ 0. The same
idea can be used to understand why the curves for o1(®w) and oy(@) are
small at low frequencies. At high frequencies, however, the small values
are explained by the low-pass character of the transfer functions in the
series connection.

(4]

10

0

10 ?

10

@ [1;d/ 8]

Figure 12 The o;-functions corresponding to the dynamics in Gy (s). If the dy-
npamics in Gy(s) is neglected then the approximation error will be bounded by
205 (@).

In the second case we deseribe the transfer function Gj using the mul-
tiplier

) x{w) 0
Mifie) = [ 0 mx(w)]
where x{w) > 0 is a real valued function. This multiplier defines quadratic
constraints satisfied by any unity norm-bounded transfer funetion and is,
thus, a conservative description of our transfer function. Note that the sim-
plified transfer function é; = Gj = 1, also satisfies the quadratic constraint
defined by this multiplier.

Using this multiplier when considering simplification of one block at the
time we obtain the o-functions in Figure 13. Comparing with Figure 12 we
see that the o-fanctions in Figure 13 give more conservative error bounds.
This shows that it is imporfant to allow as much freedom in the multiplier
IT as possible, in order to obtain good error bounds.

We now return to the more accurate deseription and let A contain both
the transfer functions Gy and G3 at the same time. Using the two step
procedure, described in Section 8 we find the o-functions in Figure 14.
These o-functions have higher values and thus result in more conservative
error bounds when we consider simplification of one transfer function at the
time, than the previously obtained. One possible reason for getting higher
values is that the suboptimal two-step algorithm not necessarily give us
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SIN [oX]

" o radys]

2

15 10 10

Figure 183 The o;-functions corresponding to the dynamics in Gy (s), when a more
conservative description is used.

10° . T T T T

~ 1 1

10! 1c° I(If 10° 10
@ [rad/s}

Figure 14 The g-functions corresponding to the dynamics in Gs(s) and Gz(s),
regpectively. If the dynamics in both these transfer functions are neglected then
the approximation error will be bounded by 2(ca(®@) + ga(@)).

the the best possible solutfion to the inequalities in Theorem 2, as it does
in the one-block case. An other reason is that the ¢, values are expected to
increase with the number of blecks in A when there is an interdependence
between the blocks. This will be motivated in Section 7.3.

Finally we let A contain all the transfer functions at the same time.
The suboptimal o-functions are in this case shown in Figure 15. We see
that the o-functions in thig case have even higher values,

The conclusions from this example are that it is important to describe
the transfer function A as accurately as possible, i.e. use as much free-
dom as possible when the multipliers II; are chosen. Also one should only
include in A the dynamics that are intended to be simplified. If these rec-
ommendations are violated the error bounds may be more conservative
than necessary. On the other hand, if these recommendations are followed
the method gives good error bounds for this example.
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10 10* 10* 10°

o frad/s]

Figure 15 The o-functions corresponding to the dynamies in G1(s), Gy{s) and
G3(s), respectively. If the dynamics in all these transfer functions are neglected

then the approximation error will be beunded by 2(oy{®) + go(w} + Ts(@)).

7. Some properties of the error bounds

In this section we obtain some properties of the error bounds associated
with Theorem 2, It is shown that small error bounds can be found if A
and A are close to each other, It is also shown that the error bounds are
optimal, in some cases, when A only contains one block, but that we expect
the error bounds to become conservative as the number of blocks increases.

7.1 Small error bounds for small errors

The following theorem shows that we for any stable model (A, M) can
make Z, and thus the error bound, arbitrary small by restricting A to be
sufficiently close to A. This does in addition imply that the exact error is
small when A and A are close to each other, which was shown by a direct

proof in Section 5.

THEOREM 3
Given any
A B
c D] ’
A = diag(A1,....A),
% =diag(oily,, ..., 000, ) >0,

|

such that I — AA is invertible, there exist £ > 0 and 4 > 0 such that

1=-3 [f] [A —I]+Ag? [é g] ,

satisfies the conditions

17" I A
I ~| I |.12>0, when |A—-A|<e
A A
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N A

I 0 I 0 6 I
[EA ) 11 2A +C*C <0 5
Z E * ( )
Proof See Appendix. O

Note that the invertibility condition holds if (A, M) is stable.

7.2 An optimality result

The error bounds obtainable using Theorem 2 are in some cases optimal,
i.e. equal to the best possible upper bound. The best upper bound is defined
as the worst possible error at each frequency. This means that there for
each frequency exist values of A(iw) and A(iw) such that the error is equal
to the best possible upper bound.

The following theorem gives the best possible upper bound when A is a
norm bounded real scalar.

THEOREM 4 A
Let A and A be real scalars such that [A| <1 and [A] <1, then
2|C|-|B]
A JaoTArpamay =T
sup [[AxM —AxM| =
e T Al>1
[Tm A}
and
OL 7] [ReA| <1
A - 2)2 2’ — 4+
sup  JAxM —AxM| = l\é(ll IBIIRBAI )2 + (Im A)
A€[—1,1},A=0 )
[ImA|’ [Re A| > 1.
Proof See Appendix. -

The theorem below shows, for the same case, the obtainable error bound
using Theorem 2, - S S T T .

THEOREM 5 )
Let A and A be real scalars with JA| <1 and |A| < 1, then they satisfy any

quadratic constraint defined by

x i
= [ Y } :
—iy —x
where x > 0 is real and y is real. There exist a TT with the above structure,
satisfying inequalities (4) and (5), if and only if

2|C|-|B|
Vil ragmar ST
[ImA|’ '
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Proof See Appendix. O

Based on these theorems we conclude that the error bounds obtainable
using Theorem 2 are optimal when A and A are assumed to be any norm
bounded real scalars. Similar results have also been obtained when A and
A are positive real scalars.

7.3 Some indications of conservatism

We have seen above that the error bounds obtainable using Theorem 2 are
optimal in some one block cases. If the number of blocks increases, however,
this optimality property is not expected to be preserved. We present two
reasons that indicate this.

If there is an inter-dependence between the blocks in A then this is not
taken into account by the method. This indicates that the error bounds in
this case may be conservative. A priori applied coordinate transformations
may therefore be valuable in order to obtain less conservative error bounds,
but do at the same time change the structure of the model. This change of
coordinates may be undesirable, for example if the elements in A have a
physical interpretation.

The second reason is that the o, values are expected to increase with the
number of blocks in A, since each oj-value should be used to calculate more
than one upper bound. If we simplify one block then o} is used in the error
bound 20, which must hold independent of how many blocks there are in
A. We therefore do not expect 0, to decrease with the namber of blocks in
A. On the other hand if we increase the number of blocks in A then the
function ¢, should be used to calculate more and more upper bounds, The
op-values may then have to be increased. The following example illustrates
the idea.

EXAMPLE B
Consider the function

f(81, 62, 83) = (81 — 82)(61 — 83),

defined for |§;| < 1. Think of each §;, as a transfer function and the function
f as the input-output relation of a model. Assume that the nominal model
is given by G(&) = f(8,6,6) = 0 and consider the following three simplified
models, ' '

Ga(8) = £(8,62,8) = 0,

G3(8) = F(6,8,63) = 0,

Go3(8) = F(5, 62, 83) = (8 — 82)(8 — b3).

We see that replacing only one of the transfer functions d2 and 85 does not

resulf in any input-output error. If we on the other hand replace both 5
and &3 then the error satisfies

|G~ Gag| = |Gas| < 4,
where the bound is reached for 52 =05 =—8 = +1.

This shows that the error when we replace more than one component
of a model may be larger than the sum of the errors for replacing one
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component, This indicates that it may be necessary to increase the value
on o, when the number of blocks considered for replacement is increased.
O

8. Numerical computation

In this section we describe numerical computation of scalars o;(®w) satis-
fying the inequalities in Theorem 2. The computations are described for
a given frequency @, and must thus be repeated for each frequency of
interest.

Introduce the matrices

Z(w) = diag(oi1(o)M,,,...,o (@), ) > 0,
N(iw) = daug(lli(iw),...,0.(iw)).

The inequalities in Theorem 2 may then be written as

[A(za)) B(Lm)] M(iw) [A(zco) B(aco)]<[0 0} ’
I 0 I 0 0 I
Ali)* [Z23(w 0 Aliw o

[ (I )} [ (() ) 22(@)] (iw) [ (I )} + Ciw)* C{iw) < 0.

The scalars o,(@) satisfying these inequalities are not unique. This
makes is necessary to introduce an optimization criteria. Since the values
of op(®w) should be small, in order to obtain low error bounds, one may
choose fo minimize the trace of .

There are many matrices I1{iw) defining quadratic constraints satis-
fied by both A(iw) and A(i@), and which thus could be used. Assume that
we select one of these a priori, then the inequalities become linear ma-
trix inequalities in Z?(@). A £(®) with minimal trace can then be found
numerically using for example the LMI control toolbox, [8].

The obtainable values on (@), and thus the error bound, depend
strongly on the choice of TI(iw). The above described approach does there-
- fore in general not seem reasonable. Instead we allow 1I{i®) to belong to
a set described by linear matrix inequalities and minimize the trace of
Z(®) not only w.r¢ Z(m) > 0 but also w.nt. II(iw). The obtained problem is
in general non-convex and difficult to solve, The following suboptimal two
step algorithm is therefore proposed.

Step I Let Zy(w) be an initial guess for £(®). Find an allowable I1(i®)
that minimizes y(®) under the constraints

O [ 4t <

[A(;a)) B(;a;)rn(im) [A(;a)) B(;w)]<[8 ?]

(@) [
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Step 2 Let II(iw) be the solution obtained in Step 1. Find Z(w) that
minimizes tr Z{w)? under the constraint

PUTTS to

} (i) [A(;w) } + C*(i0)C (i) < 0,

Note that this algorithm may end up in local minimas, The initial choice
Yo(w) may therefore be important. In the case where A{iw) only contains
one block, it is easy to verify that the algorithm will result in the best
possible value on ¢, (This does, however, not necessarily mean that we
find the best possible error bound.)

The algorithm may be modified. 1t is e.g. possible to use different weights
for different blocks instead of minimizing the trace. It is also possible to use
the algorithm for iteration, Then X(w) obtained in Step 2 replaces Zy{®) in
Step 1 when a new iteration begins, When the computations are done for
frequencies close to each other it may be possible the increase the efficiency
by choosing the initial guess Xy close to a previously calculated X.

9, Conclusions

In this report we have derived upper bounds on the error between two
uncertain linear time-invariant models, The results can be used to analyze
the importance of different components of a model and for model reduction.

The obtained error bounds are frequency dependent which is an impor-
tant feature in many applications such as controller design where different
frequencies have different importance.

Appendix - Proofs of error bound properties

This appendix contains the proofs of the results in Section 7,

Proof of Theorem 3

Consider the multiplier I defined in the theorem. The first condition holds
since

1 m” m =—(a-4y@a-A)+

The second condition is first shown for £ = 0. The multiplier IT does in
this case satisfy inequality (4) for any 4 > 0 since

5 ol 2l

_ [—A(I —AA(I —AA)  A(I — AAYAB ]

A(AB)*(I—AA)  —A(AB)*AB —1I
=
—A(I —~AAP(I —AA) 0O
[ ) _I] <o,
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where the last equivalence follows using the Schur complement

—A{ABY*AB — I + A(AB)*(I — AA)
AT —AAY (I —AA)Y YA — AAYAB = —I.
The inequality (5) for any given £ > 0 is satisfied by the multiplier I

(when & = 0) if A is chosen sufficiently large. This follows by the following
arguments.

z =
= —(AA—I)'ZAZ(AA —I) + C*C.

HESES

Since X > 0 and AA — I has full rank we see that we can make the expres-
sion negative by choosing A sufficiently large.

We have so far shown that for any X, no matter how small, our I,
with £ = 0 and 2 chosen sufficiently large, defines a quadratic constraint
satisfied by A = A and it also satisfies inequalities (4) and (5). This shows
that the error bound can be made arbitrary small when the compared
models are equal.

Finally, since the expressions in the two inequalities (4) and (5) are
continuous in the matrix elements it follows that sufficiently small changes
in I1 do not affect the negative definiteness of the inequalities. Thus, the
inequalities will be satisfied for a sufficiently small £ > 0.

Proof of Theorem 4
It holds that

[Ax M —Ax M| = [CB|y/f(A,A)

where

2

~

A—a
(1—AA)(1— AA)
_ (A A)?

T [(1-AReA)? + (AImAR|[(1 —AReA)? + (ATmA)?]’

F(AA) =

The maximum of this funetion should be found. First consider local maxi-
mas. It holds that

O o o o o 1—AReA—AReA+AAJAPR =0
aA SA

inn which case
1
/= (ImA)2

1,|A} <€ 1 can be found precisely when
=0 when |Re A| > 1.

Local maximas in the set [A|

<
|A| > 1, and in the set |A| < 1,A
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In addition to local maximas we must also consider points on the bound-

ary. Since the partial derivatives of f with respect to A and A are zero
simultaneously it is sufficient to consider corners on the boundary. Other

candidates show up as local maximas. The corner points are
FL1) = f(-1,-1) =
4
1,-1)=f(-1,1) = .

and
1

L0 = A Re ) + (fmA)?
1
f(=1.0) = (1+¥ReA) + (ImA)2’

respectively. This completes the proof.

Proof of Theorem 5
First introduce the notation

. 1 JA]2 ~ ImA

and

)2 a2 \/(1—|A|2)2+4|ImA|2

Inequality (4) can then, by noting that ReiyA* = y Im A, and using Schur
complements, be rewritten as follows

ol [ 21T o)=L i

B* —iy
NSS4
[A*xA—iyA+iyA*—x A*xB——in} <0
B*xA + iyB* B*xB -1
—
(JAR — D)z +2y - ImA—}—TJW( 2IAPR + 5% +2xy-ImA) <0
[Bl2x—1 <O.
—
(x —x0)% + (v —y0)2 < R?
[BPx—1 <0
—

(x —x0)® + (¥ ~ y0)? < R%,

The last equivalence follows since it holds that

— AP+ V- [APE+4AR 1
" x R < e
rx<axp+ L4 < 2|B|2 |B|2
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as soon as the circle constraint is satisfied.
Inequality (5) is given by

X iy i| {A
—iy —-x| |1
=

1
[A® 1}[ }+FC*C<O

1
(JA — 1)z + 2y Im A + &—2;|C|2 <0

=

IC? .
W < xpx + Yoy
To allow ¢ to become small we should find the supremum of the function
f{x,¥) = x0x + yoy under the circle constraint as well as the constraint
x > 0. Since f is linear in x and y it follows that the supremum is found
on the boundary. On the circle, parameterized as

a = xg -+ R cos ¢, y=uy0+ Rsing,
it holds that
Flx, ¥) = xox + yoy = R? 4+ Rag cos ¢ + Rypsing.

The extremas are found when

Yo
tan¢ = poos
This corresponds to two possibilities (x, y) = (0,0) and (x, ) = (2x0,2y0)
with function values 0 and 2R2, respectively. The maximum when x5 > 0
will therefore be 2R2. If xp < 0 then the maximum will be obtained at
the intersection of the circle and the line x = (. The maximum of the
intersection points is at (¥, y) = (0, 2y0) where f = 2y7. This completes the
proof.

References

[1] U. AL-SAGGAF and G. FRANKLIN. “An error bound for a discrete reduced
order model of a linear multivariable system.” IEEE Transactions on
Automatic Control, 32:9, pp. 815-819, September 1987,

[2] L. ANDERSSON and C. BECK. “Model comparison and simplification.” In
35th IEEE CDC Proceedings, Kobe, Japan, 1996,

[3] C.BECK. Model Reduction and Minimality for Uncertain Systems. PhD
thesis, California Institute of Technology., 1996.

[4] C. BECK, J. DoYLE, and K. GLOVER. “Model reduction of multdimen-
sional and uncertain systems.” IEEE Transaction on Automatic Con-
trol, 41:10, pp. 1466-1477, 1996.

[5] D. Enns. Model Reduction for Control System Design. PhD thesis,
Stanford University, 1984.

27




[6] K. FERNANDO and H. NICHOLSON. “Singular perturbational model

reduction in the frequency domain.” IEEFE Transactions on Automatic
Control, 27, pp. 969-970, 1982.

[7] K. FERNANDO and H. NICHOLSON. “Singular perturbational model

reduction of balanced systems.” IEEEK Transactions on Automatic
Control, 27, pp. 466-468, 1982,

[8] G. GAHINET, A. NEMIROVSKI, A. LAUB, and M, CmiLAaLl. LMI Control
Toolbox. The Math Works Inc., 1995.

[9] K. GLOVER. “All optimal hankel-norm approximations of linear mul-
tivariable systems and their L*-error bounds,.” Int. J. Control, 39,
pp. 1115-1193, 1984.

[10] D. HiNrICHSEN and A. PRITCHARD. “An improved error estimate for
reduced order models of discrete-time systems.” IEEE trans. on
Automatic Control, 35, pp. 317-320, 1990,

[11] Y. Liv and B. D. O, ANDERSON. “Singular perturbation approximation
of balanced systems.” Int. Journal of Control, 50, pp. 1379-1405, 1989.

[12] B. MOORE. “Principal component analysis in linear systems: Controlla-
bility, observability and model reduction.” IEEE Trans. on Automatic
Control, 26, pp. 17-32, 1981,

[13] L. PErNEBO and L. SILVERMAN. “Model reduction via balanced state
space representations.” IFEE Trans. on Automatic Control 27:2,
pp. 382-387, 1982.

[14] A. RaNTZER. “Error bounds for nonlinear model truncation.” Presented
at Bernoulli Workshop, Groningen, 1995.

[15] W. WANG, J. DoYLE, C. BECK, and K. GLOVER. “Model reduction of LFT
systems.” In 80th CDC Proceedings, 1991.

[16] K. Znou, J. DovLE, and K. GLOVER. Robust and Optimal Control,
Prentice-Hall, 1996.

28







