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OPTIMIZATION PROBLEMS IN DYNAMIC SYSTEMS+

T. Glad

ABSTRACT

A method for optimizing dynamic systems with respect to
parameters has been included in an interactive simulation
program, There is no restriction to a special class of
systems or criteria. The numerical method is based on a
Quasi-Newton method, which uses a combination of Lagrange

multipliers and a penalty function to handle constraints.
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Intreoduction.

The problem of designing control systems.

The general control problem is described in fig. 1.

S = systemn

controller e

Fig. 1

The system can be influenced by an input u, and infor-
mation about it is given by the output y. The system
is also influenced by disturbances v coming from:its
environment. The problem then consists of finding a
controller which acts on the information y to produce
a control u in such a way that the behaviocur of the

system is "good" despite the disturbances v.

Typically the system could be described by differential

equations

x(t) = F(x(t), ult), v(t), t)

y(t) g(x(t), ult), v(t), t




The disturbance v might be a stochastic process or a
time function of a certain type, e.g. a step function

or a ramp.

Classical design techniques are often limited to lin-
ear systems and many of them are not systematic i.e.
they require the designer to make arbitrary choices at
some stage of the design process. A powerful way of
making the design procedure systematic is to formulate
a mathematical criterion which measures how good the
system is. The input u should then be chosen to mini-
mize this criterion. A typical optimization problem
could be of the form

T

minimize J = [ L{x,u,t)dt + F(x(T))
o

where x is given by

X = f(x,u,t) x(0) = Xq

under the constraints
p(x(T)) = ©
glu) £ 0

There are several problems involved in this approcach,
Since an analytic solution can only be found in special
cases, one must rely on numerical techniques. There

are several algorithms for solving the above problem
numerically. These algorithms, however, give as a solu-
tion the open-loop control program u(t) for a given
value of X,. What is usually desired to find is a feed-
back solution u = k{(x) which gives the optimum value of
J for all starting points. This can only be done in




special cases. Two of these are linear systems with a
quadratic loss function and no constraints, and the
minimum time problem with bounded input which gives a

"bang-bang" solution.

Even when the feedback law k(x) can be found there

might be problems. The function k(x) can be very com-
plicated making it difficult teo implement it (this is
often the case for bang-bang problems). Furthermore

the feedback law u = k(x) usually depends on all com-
ponents of the state vector x. If these are not directly
measurable (i.e. ¥y = x), they have to be reconstructed
from y. For a linear system this can be done using a
Kalman filter, but i1f there are many states it means

that the controller will be quite complicated.

A different approach, which avoids these disadvantages,
is to specify a control law u = k(y,p) of a given struc-
ture. All freedom within this structure lies in the
parameter vector p. This vector has to be chosen to
minimize the given criterion, which results in a finite
dimensional optimization problem possibly with constraints.
In the following chapters a program which can solve this

problem interactively is described.

The optimization program as a part of a simulation

program.

To solve the optimization problem it is necessary or de-
sirable to do things that are normally done by simulation
programs: soclve a system of differential and difference
equations and plot the results for different values of the
parameters., It is then natural to try to introduce the
optimization method into an already existing simulation

program. There is at the Division of Automatic Control a




program package called SIMNON for interactive simulation
of nonlinear systems, [1]. In SIMNON a system consisting
of interconnected continous time and discrete time sub-
systems can be simulated interactively and the result
plotted on a display. The subsystems are described in a
special language and can easily be changed from one simu-
lation to an other. It is also possible to include sub-
systems described in FORTRAN. The connections between
different subsystems are described in a special connecting

systam,

To perform the optimization a starting value of the para-
meter vector p, which is to be varied in the optimization,
is given. The system is then simulated for this value,
and the criterion and the constraints are evaluated. The
optimization routine then has to use this information to
decide on a new value of the parameter vector and the pro-
cess is repeated. The situation can be described by fig.
2.

1.
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Fig. 2

Then criterion J and the constraint vector g are connected

from the system to the optimizer while the output of the




optimizer is the vector p, which is an input to the sys-
tem: The system can consist of a number of subsystems

as shown in figure 3. The connections between these sub-
systems, as well as connections needed to form J and g
from outputs of the subsystems, are made in the connect-
ing system. At each sampling point of the optimizer it

uses the values of J and g to compute the next value of
p. If the criterion or constraints depend explicitly on

the parameter vector p, a vector Pg> containing delayed

values of p, is used.
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The optimization routine.

From the previous reasoning it follows that this routine
should be able to perform the minimization of a function
under equality and inequality constraints. The routine
should be based on the values of the criterion and the
constraints and not require their derivatives to be cal-
culated explicitly. In many cases it is possible to in-
clude the computation of derivatives in the system where

J and g; are computed. Since it means much more work

for the user when writing down the systems, it has however

been avoided.
Let the criterion be J(p) and the constraints g:(p) = 0
i =1,...,k and g;(p) £ 0, i =k+1,...,m. The algorithm

can then be described as follows,

The function

[ X 1 2 1 2
F(p,r) = J(p) + R {(cgi(p) + ﬁxi) - ghg } o+
i=1
1 M 1, 2 1, 2
+ P '_2 {(Cgi(p) + 'gli)_l_ - 'L'{:')\i }
1=k+1

is formedT.

This function is minimized for a fixed value of ) using
an unconstrained minimization routine. Then A 1s updated

according to the formula

Ai P o= Ai + 2cgi if 1= 1,...,k and

Ag = max(Ai+2cgi, 0)y if 1 = k+1,...m_

T(c oy - cgy + A if cg; + Ay 3 0
Bithily =

0 otherwise




The theory behind this algorithm can be found in [ 2],

{3], and only a short account is given here.

It is assumed that the optimum, p*, is a Kuhn-Tucker

point, i.e. there exists a vector

such that

Lp(p*,k¥) =0

gi(p*) = 0
gi(P*) g 0
Ai z 0

Ay g5 (p*¥) = 0
where

m
L{p,x) = J(p) + z

1=1

A¥ = (A1*,...,Am*)T

= 1,004k

= k+1,..,.,m

= k+1, i1

= k+1,...,m
Aigi(p)

It is also assumed that the optimum is nonsingular, i.e.

for all vectors y such that

(gi)p(p*)y

and

(gi)p(p*)y

it follows that
yT L _(p*,x®¥)y > 0,
PP

This means that L

PP
which lie along the active constraints.

11}
D
H

0 all ie[k+1,.

e o sm] with gi(p*) = 0

is positive definite in all directions

To ensure that the

second derivative shown below is continuous at p* it is also




assumed that A, > 0 for all 1i€[k+1,...,m] with g; (p*¥)=0
(this condition is called strict complementarity). It
then follows that

k
_ 1 *
Fo(p¥,2%) = J (p*) + 2 i§1(cgi(p*) + A *)(g5) (p*) +
m 1
+ 2 __z (cgi(p*) + §Ai*)+(gi)p(P*) = Lp(p*,A*) = 0
1L=k+1
X T
r ¥ A%y = ¥ O0¥) + 2 {(g. . +
pp(p JA*) Lpp(p SA¥) 2 c gl)p (gl)p
n T
+ 2 T elg.) ~(g.)
izk+1 1P 71'P
. =6
1

Since it is possible to prove that Ppp(p*,l*) is posi-
tive definite if ¢ is chosen large enough, it follows
that F(p,A*) has an unconstrained local minimum at p*.
The updating formula for A will ensure that x =+ A% 1if

¢ is large enough. The user can give the initial value
of e, which can be increased by the algorithm if the
convergence is too slow. In this way convergence can be
obtained even if some of the conditions on the minimum
stated above are not true. (The convergence might be

glow in this case;)

The unconstrained minimization of the function F(p,x)

is performed by the subroutine NUFLE1, which is a Quasi-
Newton algorithm using difference approximations of the
derivatives. It is based on the algorithm VA10A

[4]. At the start of each iteration the algorithm has
available a point p, a matrix B, which approximates the
second derivative, and a vector z, which contains the
difference approximations of the gradient. A search

direction s is then calculated from Bs = -z and an




approximate minimum along the line (p+as, o > 0) gives
the new value of p. A new vector z is computed from
dlfference approximations and B is updated in such a
way that B Ap = Az, where B is the new value of B.

In the original version of NUFLE1 the calculation of the
function value is done by a subroutine which is called
for every new value of p. This means that the optimi-
zation algorithm controls the calculation of the func-
tion. In order to use the algorithm in the simulation
program SIMNON one must do the opposite., TEach time the
system has been simulated and the criterion computed

the optimization program must be called to produce the
next value of the parameter vector p. In order to change
as little as possible in the subroutine the following
modification has been made. Each call statement to the
subroutine which computes function values is replaced

by a RETURN. An integer variable is set to indicate

from where the return was made, making it possible to con-

tinue the minimization at the right point in NUFLE1.

The outer loop of the minimization, i,e. the updating of
A, is done in a subroutine OPTA, which is written as a
discrete time FORTRAN system in SIMNON. The basic struc-
ture of OPTA is given in Fig. 4.

There are four different entry points A, B, C and D. When
the command SYST is given, OPTA is entered at A where the
inputs, outputs, variables, etc., which have to be avail-
able for SIMNON, are defined. OPTA is also entered at B
where the parameters of the optimization voutine are given
initial values. These parameters are listed in table 1,
together with the values they are given. The user can
change these values with the command PAR. When the com-
mand SIMU is given, OPTA is entered at C where the minimi-

zation is initialized. During the optimization OPTA is




S — CALL INITV(.s.)
B Initialize internal
PP g;t_,:;', o - - -
parameters of OPTA
Initialize the
C e N . . . . .
) optimization routine
B

i

N o o o AT AT M i A ot o B o S 8 SR P e AT

- Compute F(p, A)

Call the unconstrained

minimization routine

i

L e e e N

{NUFLE1)
Unconstrained minimi- ne o

zation finished ?

: N

wyes

Update Lagrange multipliers

w!f

[

Increase ¢ if necessary

Make ready for simulation of

system for new value of p

hemsrg e e e

S

RETURN o }

Fig. Y4
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entered at D at each sampling point. To start with, p
is given the values PI1,...,PIn supplied by the user.
The system is simulated with these values of the para-
meters for a time interval of length TINC and OPTA is
then entered. The inputs LOSS[OPTA] and CONi[OPTA] now
contain the values of the c¢riterion and constraints,
These values are used in NUFLE1 to calculate a new value
of p which forms the output vector P1,...Pn of OPTA., The
states of all the simulated systems are reset and the

procedure is repeated.

When NUFLE71 has found an unconstrained minimum, the
Lagrange multipliers A are adjusted and a new uncon-
strained minimization is started. Constraint satisfac-
tion is judged by the test quantity TEST which is defined

as
TEST = max(]gql,...,lgkl,|min(Ak+1,-gk+1)[,...,|min(xm,-gm)|)

If TEST = 0 at a point where F(x,A) has a local mini-
mum, it follows from the Kuhn-Tucker conditions that this
point is a local minimum to the constrained problem. The
algorithm is stopped when TEST is less than the parameter
DELTA which can be set by the user., If TEST does not
decrease-fast enough, the parameter ¢ is increased. During
the first part of the minimization NUFLE1 calculates the
gradients by taking forward differences of the function
values. When the minimum is almost reached, it starts
using central differences. This is shown by the variable
IDIFF, which is 1 for forward differences and ?2 for cen-

tral differences.

How to use the program.

The system to be optimized is given as a collection of
SIMNON systems as described in [1]. The parameters which
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are to be varied by the optimization routine should be
declared as inputs and the information needed to calculate
the constraints and criterion as outputs or states., In the
connecting system they are tied together with the optimi-
zation routine OPTA. The criterion J is the input LOSS of
OPTA and the constraint vector g corresponds to the inputs
CON1,CON2,.. of OPTA. Observe that the sign of J should be
chosen for J to be minimized. The constraints must be of
the form gl=0,g2:0,..,gsz,gk+150,..,gmfo , i1.e. the
equality constraints are placed first. The connecting system
will then have the structure of fig.5 (yl,y2,.. are
outputs or states of the systems systl,syst?2,...).

CONNECTING SYSTEM CONN

‘Internal connections

LOSS[OPTA] =

CON1[OPTA] = functions of PD1[OPTAl,..,PDn[OPTA],
yllsystll,y2[systil,..,yllsyst2],..

CONm[ OPTA] =

pllsystl] = P1[OPTA]

p2fsystl] = P2[OPTA]

plisyst2] = Pi{OPTAl

END

fig. 5
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PD1,PD2,.. are delayed values of P1,P2,.. and are used
instead of P1,P2,.. when LOSS or CON1,CON2,.. depend
explicitly on p. In fig. 5 it is assumed that yl,v2,..
depend on pl,p2,.. only via the differential or difference
equations and not explicitly. If an ocutput of a system
depends directly on a component of P then the correspending

component of PD has to be introduced into the system.

The number of parameters in p and the number of constraints
are set by the cocmmands

SET NVAR:n and SET NCONS:m

Then the command

SYST systl syst? ... OPTA CONN

is given.,

When this is done the user can set the initial values of
the components of p, which lie in the vector PI, with the
command INIT. The internal parameters of OPTA can be set
using the command PAR. These parameters are listed in table
1 together with their default values., The response of the
system can be plotted in the usual way during optimization.
If some variables are to be plotted against time, a straight-
forward plcot would give all the c¢urves for different values
of the parameter vector after each other (fig.6). Often it
is more convenient to plot them all from the same starting
point as shown in fig. 7 so that they can be compared

directly.

Fig. 6
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Fig. 7

The easiest way to accomplish this is to make the plot
against an extra state variable T, with the differential
equation DT = 1. Since T will be reset together with the
other states, the desired result is obtained. Finally,
the command SIMU will start the optimization which will
continue until either the minimization is finished or

the time interval specified in SIMU has elapsed.

The results of the minimization are printed on line printer
(if PRIN $# 0 ), Also the minimization can be interrupted
at any point with the data switches 0 and 1. All internal
variables, parameters, states etc. can then be displayed
using the command DISP. The meaning of the variables in
OPTA which are displayed is.giVenTin table 2. The optimi-
zation can be restarted with SITMU-CONT,

For a detailed description of available commands in SIMNON

see [11.
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Table 1

Internal parameters in OPTA

(numbers within parantheses are default values)

XMI XM2 ...

LAM] LAM?

DEN

TINC

HH

EPS

PRIN

EVMAX

(1 1 ..) Scaling factors, see HH and EPS
(0 0 ..) Lagrange multipliers, initial values

(-0.5) Controls initial step at the first
linear minimization; should give an estimate
of the likely reductioniin function value, Af;
there are two possibilities:

DFN>0 DFN itself is an estimate of Af

DFN<D ABS(DFN)*f is taken as an estimate of Af

(1) Length of sampling interval of OPTA

(0.005) Step length for calculation of the
gradient by differences; the step length for

each component Pi is XMieHH

(0.01) Stopping criterion for uhconstrained
minimization - is satisfied when the change in

each component Pi is less than XMie EPS

(1) Controls printout on line printer;
every ABS(PRIN):th iteration is printed; if
PRIN<O only fumction values are printed; if
PRIN>0 also P and the gradient are printed;
if PRIN=0 there is no printout

(10000) Maximum number of function evaluations




CEQ

DELTA

RESET

DARK

MCDE

16.

(0) Number of equality constraints

(1) Constant used in the modified funetion

see page 6; only used for constrained problems

(0.01) Stopping criterion for constrained
minimization - satisfied when TEST (see page 10)
is less than DELTA

(1) The states are reset to their initial
values 1f RESET>0

(1) There is no trace on the display at the
sampling points of OPTA if DARK>0

(1) Controls the initialization of the

approximation of the second derivative, H

MODE=1 H is set equal to the identity matrix
initially

MODE=3 the H-matrix from the previocus minimi-

zation is used
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Table 2
Explanation of variables etc. in OPTA shown under
the command DISP

STATE
PD1 PD2,.. Value of parameter vector at previous
sampling point
INIT
PI1 PI2... Initial value of parameters
NEW
PDN1 PDNZ.. Same as Pl P2...
INPUT
CON1 CON2.. Present values of the constraints
LOSS Present value of the criterion to be
minimizaed
OUTPUT
P1 P2... Present values of the parameters
TSAMP
TS Next sampling point of OPTA
PAR see table 1
VAR

RT Number of evaluations of the system




VAR cont’d
GR1 GR2...

IND

IDIFF

FVAL

TEST

18.

Latest calculated gradient

Indicates what part of OPTA is going to be

executed next

If IDIFT=1 forward differences are used in
the calculation of the gradient while if
IDIFF=2 central differences are used -

Function value at previous sampling point

Convergence test quantity, see page 10
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5. Examples.

1. The following system is given

ww;@_m;.Kp_ >

s+l

The purpose of the controller containing the parameters K
and Kd is to keep X,as small as possible despite the distur-
bance v. It is assumed that v(t) is an impulse disturbance.

This is equivalent to setting xl(D)zl. The criterion is

T
szxg dt
o
It is alsc assumed that the total control effort is limited.
T
- 2 _ £ -
g= ju- dt Ugsm © 0 U= 0.5
o)

Below are given the system IMP and connecting system CONN

needed for this problem.




CONTINUOUS SYSTEM [MP
STATE X1 X2 2 W T
DR DXL DX2 DZ DW DT
FNPUT KD KP

QUTPUT Y

GUTPUT
YeX2

DYNAMICS
Us=KD#X1~KP®X2
NXi==-X1+U
DXz2=X1i

NZ=y#U
DWw=X2x2X2

Di=t.

END

CONNECTING SYSTEM CONN

WTtin
LOSSTOPTAI=WT*WH[ 1P}
UL IMI.5
CONLTIOPTAY=Z211HPY=ULIM

KDOIMPI=PLIOPTAYL
KPTIMPI=P2I0PTAL

END

To do the optimization the following commands are given.

=3ET HNPAR:2

>, HCONS: |

=SYST I#P OPTA COHH
=ITHIT Xield

>, FIl:2

>, PI2:2

>PAR TINC: 1@
=PRI 5

=PLOT Y CONI (T)
*AXES H & 18 Vv -
=SIFU 2 12886 )

20.




21.

At the beginning of the optimization the curves of fig. 8
are displayed. Fig. @ shows the result at the end of the
optimization., In fig. 10 the printout on the line printer
is given. Fig. 11 shows the values of states, outputs etc.

of the systems at the end of the optimization.

Remark: If T=ee the problem can be solved analytically and

2
1 Kd +K

J TR FIK ETTHTI+K
d p

- 005
d

The solution is Kd=0.8165 Kp=l.lﬂ98
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