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1. INTRODUCTION.

In the frequency response method the value of the trans-
fer function of the process for one frequency was deter-
mined from the steady state response to a sinusoidal in-
put. To apply the method it is thus necessary to wait un-
til steady state conditions are obtained. If the values

of the transfer function for several frequencies are re-
guired, it is also necessary to repeat the experiment for
each frequency desired. The basic idea of the transient
response method is instead to determine the dynamics from
the transient response to an input signal. If the input
signal is sufficiently rich in frequencies, the values of
the transfer function for many frequencies can then be de-
termined from one experiment. There are many possible choi-
ces of input signals. The simplest case is when an impulse
is chosen. The cutput is then simply the impulse response
or the weighting function of the process. This particular

method is therefore often called impulse response analysis.

It is clearly a nonparametric method.

Since perfect impulses are not realizable, various appro-
ximations like rectangular, triangular or sinusoidal pul-
ses are often used in practice. It is also possible to use
other input signals like step functions, Jensen's multi-
frequency signal, a pseudorandom binary signal or an ar-=
bitrary signal. When using such inputs much of the simpli-
city of the impulse response method is lost because it is
then necessary to use deconvolution in order to obtain the
impulse response or numerical fourier transformation to ob-

tain the transfer function.

Simplicity and short experimentation time are the major

advantages of the transient response method.

The major drawbacks are that the method is fairly sensi-




tive to disturbances and that there are few synthesis

methods that operate directly on the impulse response.

For these reasons transient response analysis is often
used for diagnostics rather than synthesis. The method

is also frequently used for exploratory studies. Since
the method is nonparametric, it is not necessary to make
any assumptions regarding the magnitude of possible time
delays, the order of the system, etc. The method is there-
fore very valuable in order to obtain the gross characte-
ristic of the dynamics of a system before using more pre-
cise parametric methods which require more a priori as-=
sumptions. Transient response analysis is also useful in
order to obtain guidelines for choice of input signals

and sampling rates for other identification methods.

The chapter is organized as follows. Pulse methods are
discussed in Section 2. This section includes impulse
response analysis, selection of pulse forms and a brief
discussion of numerical Laplace transformation. This is
needed both to compute the transfer function from the
measured impulse response and in order to do the neces-
sary deconvolution when the pulors are not short in com-
parison with the time constants of the system. Applica-
tions to determine dynamics of an aircraft and a heat ex-

changer are also given.

There are many specialized measuring techniques which are
based on impulse response measurements. In particular it
is possible to determine volumes and flows in a system of
interconnected tanks by the so-called Stewart-Hamilton
equation. This approach is described in Section 3. To pro-
vide the necessary background the propagation of a tracer
in a tank system is also investigated. It turns out that
the tracer propagation can be characterized as a linear

dynamical system with nonnegative impulse response, having




a unit area. Such systems are called flow systems. The
special properties of such systems are also explored in
Section 3. The resulting measuring techniques, which are
nonparametric, are discussed together with industrial and

physiological applications.

In Section 4 finally we analyse state models of flow sys~-
tems. This glves parametric models. Possibilities to de-
termine parameters of such models from impulse response
measurements are also explores. This leads to a problem
of parametric identifiability. The applications include

compartment models and pharmacokinetics.




2. PULSE TESTING.

When determining the dynamics of a process using pulse
testing the input signal is chosen as a pulse, i.e. a
signal which is different from zero for a finite time
onlyv. The input and the output are recorded and the pro-

cess dynamics is obtained by analysing these signals.

Impulse Response Analysis.

The simplest case of pulse testing is obtained when the
input is chosen as an impulse or a delta-function. If the
system is at rest at the start of the experiment the out-
put obtained is the impulse response. Impulse response
analysis is thus a direct measurement of the impulse re-

sponse of the process.

It is instructive to see how this scheme fits into the
general problem formulated in Chapter 2. The class of mo-
dels is thus the class of all linear, time invariant sys-
tems characterized by their impulse response. The inputs
are chosen as impulses (6 - functions or distributions).

The criterion could be to minimize
o4 2

vo= [[y(t) -y (t;xg)]7dt (2.1)
0

where ym(t;xo) is the output of the model whose impulse

response is h and whose initial state is Xg-

If the class of models include linear systems with arbit-
rary lmpulse responses, the optimization problem has the

solution




y (t,%5) = y(£) (2.2)

Notice that there is no fitting involved. The impulse re-
sponse is equal to the measured output. The criterion (2.1)
is equal to zero. Errors in the output will directly show
up as errors in the impulse response. The only possibili-

ty to reduce errors is to repeat the experiment.
Also notice that

y (tixg) = h(t) + hylxgit) (2.3)

where h is the impulse response and ho(xo;t) is the free
response of the model when the initial condition is Xg e

For finite dimensional systems we have in particular

hi(t) = Ce" B

At

ho(xO;t) = Ce X

All models such that

h(t) + hy(xgit) = B(t) + n (QO;t) (2.4)

0

Will thus be equivalent in the sense that the equation
(2.1) is satisfied. The identification problem thus will
not have a unique solution unless the experimental con-
ditions are such that the initial state of the process

is zero. This is a very serious restriction. Notice that
it follows from (2.4) that nonzero initial state does not
introduce any new modes. The weighting of the modes will,
however, be influenced by the initial state. In practice
the output can be observed over a finite interval only.
This means that the tail of the impulse response is often

badly estimated.



Nonideal Pulses.

In practice it is seldom possible to introduce a perfect
impulse into a system. It is thus natural to ask how the
result is influenced by inputs which are not perfect im-

pulses. Assuming zero initial conditions the output is

given by
t oo

y(t) = [ h(t=s)u(s)ds = [ h(s)u(t-s)ds = (h*u) (t) (2.5)
-0 0

where h*u denotes the convolution of the functions h and

U,

The estimated impulse response is thus the convolution of

the impulse response and the input. In the particular case

when

% 0 <t < T
u(t) =

0 t > T

The output becomes

h(e) = h(s)ds

Hf
I ~—ot

If the output is taken as an estimate of the impulse re=-
sponse the estimate at time t is thus the mean value of
the correct impulse response over the interval (t-T,t).
For other pulse forms, h is instead a weighted mean of
the true impulse response where the weighting is given
by the actual pulse form. It is thus easy to visualize,
estimate and compute the effect of pulses that are not
perfect. A good rule of thumb is that the pulse width T,
or the support of the pulse, should be chosen so short

that the impulse response does not change significantly




over an interval of length T. To use this rule it is ne-
cessary to know the impulse response at least approxima-
tively. In practice it is therefore necessary to make se-

veral experiments using different pulse widths.

In Fig. 2.1 it is illustrated how the estimated impulse
response is gradually distorted with increasing pulse
width.

A

Estimated Impulse response h

Fig. 2.1 - TIllustrates the distortion of the impulse
response estimate obtained when a rectangular
pulse is used instead of an ideal pulse. The
impulse response of the system is h(t) =
= lOtZeXp - t and the pulse width is 1, 2,

5 and 10s. For a pulse width of 0.ls the dis-

tortion is not noticeable in the graph.



Pulse Forms.

Equation (2.5) holds for any input signal and the impulse
response can thus be determined from the output generated
by an arbitrary input by solving the integral equation

(2.5) with respect to h. Since (2.5) is a convolution

the problem is often referred to as the deconvolution prob-

lem. Assuming that the integral in (2.5) is computed by a

rectangular approximation we find

y(nT) = ) h(kT)u(nT-kT)T
k=0

The impulse response is then obtained from the following

infinite set of algebraical equations

Th (0)u(0)

8
S
I

T[h(0)u(t) + h(t)u(o) ]

r
ot
i

y(2T) = T[h(0)u(2T) + h(T)u(T) + h(2T)u(0) ]

These equations are readily solved recursively. The me-
thod can easily be improved by using better approxima-
tions of the integral. Notice, however, that no matter
which approximation is used the result will be very sen-
sitive to the basic assumption that the output was zero
for t < 0 and that the system was initially at rest. Due
to the structure of the equations an error in y(0) will

propagate to all estimates of h(kT).

The deconvolution problem can also be solved by Laplace

transformation.




Introduce
v(s) = Liv}(s) = [ e Sty (t)at (2.6)
0

The Laplace transform H of the impulse response h is then

given by
L{u}

To determine the impulse response it is thus necessary to
compute the Laplace transforms of the process input and
the process output numerically. The transfer function is
then given by (2.7) and the impulse response 1s obtained
by numerical inversion of the Laplace transform. For con-
trol system design it is often more convenient to work
with the transfer function than to work with the impulse
response and the inverse transform can therefore sometimes
be avoided. Much of the simplicity of the impulse response

method i1s, however, lost.

The selection of pulse shape is a compromise between seve-
ral factors. The important considerations are pulse area
and pulse width. It is desirable to have a large pulse
area to get a good signal to noise ratio. The pulse area
must, however, not be chosen so large that the process is
driven into a nonlinear region. For processes with rate
limitations it is for the same reason important to have

a smooth pulse. Examples of simple pulses which have been
found useful are shown in Fig. 2.2. The magnitudes of the
Laplace transforms of the pulses are also shown in the
same figure. Additional examples are given in the sections
on aircraft pitch dynamics and heat exchanger dynamics.

The input signal must also have proper spectral properties




10.

because the formula (2.7) will give good estimates only
for those frequencies for which the system is excited

by the input signal. Since the impulse has the property
L{6} = 1 it will excite all frequencies equally. The
other pulses shown in Fig. 2.2 have large transforms

for wT < 2m only. Using a rectangular pulse with a width
of 1 s it is not possible to get good estimates of the
transfer function for frequencies above 6 rad/s. The use-
ful frequency range is somewhat extended by choosing a

triangular pulse or a displaced cosine pulse.

If Laplace transforms are computed it is not necessary
to restrict the input to be a pulse. In many cases other
inputs are more efficient. A detailed discussion of the

selection of inputs is given in Chapter 10.

Numerical Calculation of Laplace Transforms.

Laplace transformation was one possibility to solve the
deconvolution problem. Laplace transforms are also re-
quired in order to determine the transfer function from

a measured impulse response. This is required for control
system design because many design methods are based on
knowledge of the transfer function. Numerical calculation
of Laplace transforms will therefore be discussed. Since
the Laplace transform is analytic for Re s > Sy it is suf-
ficient to know the transform in a dense set. The values
for arbitrary arguments can then be obtained through ana-
lytic continuation. Having control applications in mind
it is natural to evaluate the transform for arguments on

the imaginary axis in the s-plane.

Numerical evaluation of Laplace transforms is a badly con-

ditional numerical problem because the Laplace transform
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Rectangle pulse
-
}
T
00 27 4 e
Triangle pulse
| “
‘ T
5 Fi 4 61
Displaced cosine pulse
| ”
1 T
% 2 4 3.4
Sine pulse
,.
T
o8 I & g
Double sine pulse
N
b
% 7 47t [
2
Triple sine pulse \
H
b
) FiG 4 61
Fig. 2.2 — Examples of simple input signals used in pulse

testing. The magnitudes of the Laplace trans-
forms of the pulses are shown to the right of

the pulses.
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ig an unbounded operator in the space of bounded func-
tions. Compare Chapter 2. To compute the transform of
pulse responses obtained from process experiments the

following facts must be considered.

o Choice of integration formula.
o Choice of sampling intervals for discretization.

o Truncation of the integration interval.

It is not our intention to give a detailed discussion of
numerical inversion of Laplace transforms but to give

examples of difficulties that may arise.

Assume that the values of the signal y are available at
equally spaced times 0,T,2T,... . The simplest way to
evaluate the integral (2.6) is to approximate the inte-
grand by a piecewise constant function. This gives the

well-known formula for rectangular approximations

(2.8)

Observing that the integral (2.6) can be evaluated exact-
ly if the function y is a polynomial on each interval

(nT, (n+l)T) more refined formulae can be obtained. If y
is linear over each interval, the following result is ob-

tained.
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Iz(w) = Yo(“) + 2(lﬂc§s*mT) . y(nT)emiwnT
o T n=1
Y, (@) = y(0) “%“ [ (1~cos ©T) - i(wT-sin oT) ] (2.9)

w T

This formula is a special case of a general class of in-
tegration formulae by Filon ( ) for integrals of tri-
gonometric functions. Similar equations can also be de-
rived when the measurements are not equally spaced in

time or if the output is a polynomial.

The fact that function values are available at discrete
times only has striking effects on the transform computed
by (2.7) or (2.9). It follows from (2.8) that

Il(w+ws) = Il(m) W, = 2n/T
The function T is thus periodic with period Wy = 2n /T,
If v(0) = 0 the function I2 will wvanish at W Zws, oo

It is thus clear that the equations (2.8) and (2.9) give
very bad estimates of the Laplace transform for lwl > wS/Z.
This is a consequence of the Shannon sampling theorem which

is stated without prootf.
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Theorem 2.1.

Consider a signal whose fourier transform has the support
(mwo,mo). Let the signal be sampled at arguments with a
constant spacing T. A necessary and sufficient condition
that the signal can be reconstructed from its sampled ver-

sion is that T < ﬁ/wo.

The frequency mS/Z = /T is called the Nyquist frequency.

The effect of sampling is illustrated by the following

example.

Example 2.1,

Consider the function

y(t) = temt

whose graph is shown in Fig. 2.3. To exaggerate the ef-
fects due to sampling the sampling intervals are chosen
as T = 0.2m and T = 0.4nw . See Fig. 2.3. A much shorter

sampling interval would be chosen in practice.

Fig. 2.4 shows the Laplace transform of the function eva-
luated by (2.8) and (2.9) for the two different sampling
intervals. The periodicity of Il is apparent. The superio-
rity of the formula (2.9) is also apparent, as well as the
necessity of selecting the sampling interval properly with
respect to the frequency range of interest. Shannon's samp-
ling theorem gives T < n. Common rules of thumb are oT <

< nw/4 for (2.8) and oT < 3n/4 for (2.9).
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03
720417
02 — T=021
0.1
0
5 0
Fig. 2.3 = Graph of the function y(t) = t exp -t.
1
N /7
s »—Y¥=04 I1R) j’
\ &
05 va
02
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005
002
0.010

Fig. 2.4 - The magnitude of the Fourier transform of the
function t exp - t evaluated by the equations
(5.4) and (5.5) using different sampling inter=-
vals.
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Truncation.

When a pulse response is measured it is never available
for the whole interval (0,«). The infinite series (2.8)
and (2.9) must therefore be truncated. If the process is
stable the pulse response will go to zero and the trunca-
tion interval is chosen so long that the output is neg-
ligible. Some case must, however, be exercised because
it is well-known from the theory of trigonometric series
that truncation may lead to an oscillatory behaviour of
the truncated series. The effect is often referred to as
Gibb's phenomenon. The effects of truncating the series
for the Laplace transforms of the function t emt are il-

lustrated in Fig. 2.5,

Notice that N = 16 corresponds to truncation of the out-
put for t = 5.03. See Fig. 2.4. For N = 32 which corre-
sponds to a truncation at t =~ 10 there is no noticable

effect due to truncation.

Aircraft Pitch Dynamics.

Transient response analysis has been applied to deter-
mine aircraft dynamics since 1948. The method is now a
standard technique used in flight testing. When perform-
ing the experiment the aircraft is flown on straight
course in level flight. It is attempted to do the tests
during nice weather when there are few disturbances from
air turbulence. The trim of the aircraft is adjusted so
that the aircraft is in stationary conditions. A pulse
command is then given and the resulting motion of the
aircraft is observed. The data given in the following
are based on Smith and Triplett (1853).
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0.5

0.2

01

005

00.2

00.
0

Fig. 2.5 = The effect of truncation of the series (2.9)
when evaluating the Laplace transform of the
function y(t) = t exp - t. The sampling inter-

val used was T = 0.1m.

Fig. 2.6 shows the elevator deflection and the correspond-
ing response in pitch rate obtained in one experiment. It
is clear from the figure that the signal to noise ratio

is very high under the given experimental conditions. It
is also clear from Fig. 2.6 that the pulse duration is

not so short that the output can be considered as the im-
pulse response. If nonlinearities are to be avoided it is
not possible to use rudder angles above 10°. There are thus
no margin for increasing the pulse amplitude. Since the
pulse width is about 0.4 s and the pulse is smooth, rea-
sonable estimates of the transfer function can be expected
up to a frequency of about 15 rad/s. If the pulse width is

decreased the signal to noise ratio will also decrease.
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Fig. 2.6 = Elevator deflection and response in pitch
rate obtained in pulse experiment designed

to determine aircraft pitch dynamics.
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To determine the transfer function the input-output sig-
nals shown in Fig. 2.6 were sampled manually at 0.05s in-
tervals. The Laplace transforms were computed using Filon's
formula (2.9). The output was truncated for t = 3.5s. The

transfer function cbtained is shown in Fig. 2.7.

90°

- o)
&)
© ° T~
©
E‘QO°
=« 05 1 2 5 10 20

w Lrad/s]

Fig. 2.7 - Bode diagram of transfer function relating
pitch rate to elevator angle obtained by nu-
merical Laplace transformation of data of
Fig. 2.6.

For control system analysis and design it is convenient
to have analytical expressions for the transfer function.
In the particular case Smith and Triplett (1953) fitted
a rational function to the estimated transfer function.

For the data shown in Fig. 2.7 the following result was



obtained

9.16 + 2.52°

s? + 3.355 + 22.1

G(s) =

The Bode diagram for this transfer function is also shown

in Fig. 2.7.

Heat Exchanger Dynamics.

Transient response analysis has been used extensively to
determine the dynamics of industrial processes. Determi-
nation of heat exchanger dynamics will be discussed as a
typical example. This example is based on Lee and Hougen
(1956) .

A sehematic diagram of the process is shown in Fig. 2.8.

Steam inlet

.

Water inlet

e - —

e o - — — —— — — — —

Fig. 2.8 - A schematic diagram of the heat exchanger

studied by Lees and Hougen.

The heat exchanger is of the tube and shell type. It con-
sists of twenty-two V-shaped copper tubes inclosed in a
shell. Water passes through the tubes and is heated by

steam in the shell. The water inlet temperature was about
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13°C and the outlet temperature about 57°C. The water
flow through the tubes is considered as the input and
the water temperature at the outlet is the process out-

put.

In the experiment a pulse from a specially designed pulse
generator was fed to the valve motor. The valve position
and the outlet temperature were recorded using a two-chan-
nel recorder. A pulse amplitude corresponding to displace-
ment of the valve steam of 1 mm was used. This is only a
fraction of the maximum valve displacement of 16 mm. A re-

cord of the results of one experiment is shown in Fig. 2.9.

c
o
£
§ o S | I I T I | A—
M=) X A
2 E —~
S €
G
[om |
&
L-Jsgr /ﬂ\\
o
E yd
@ 0
0 10 20 30 40
Time (s]
Fig. 2.9 = Results of an impulse response analysis of a

heat exchanger.

Fig. 2.9 shows clearly that the pulse width is so large
that the output is not equal to the impulse response. It

is thus necessary to use deconvolution to obtain the trans-
fer function of the system. To do this the recorded inputs

and outputs were sampled manually.
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About 100 points were used for the temperature curve in
Fig. 2.9, and 60 points were used for the valve position.
The Laplace transform of the input and the output were
computed using the equation (2.9), and the transfer func-
tion was the determined from (2.7). The calculated trans-
fer function is shown in Fig. 2.9. The results of the im-
pulse response measurement were also compared with the re-
sults of a direct measurement of the frequency response
using the techniques discussed in Chapter 3. The results
of these measurements are also shown in Fig. 2.9. Notice
the remarkable good agreement between the results. The
time required to perform the impulse response was signi-
ficantly shorter than the time required to do the frequen-

cy response measurement,

Hougen applied impulse response analysis to many indust-
rial processes and found the method to be easy to use.
The results were generally quite good in the cases where
there were small disturbances, as was the case for the
heat exchanger. The accuracy of the results obtained from
an impulse response measurement will, however, be of 1li-
mited accuracy. This is illustrated by the following

example.

Example 2.2.

Consider a linear system with the transfer function

(s-l-l)2

Assume that the impulse response is measured, and that an
error of a magnitude a is made in determining the level
of the output. Then the estimated transfer function be-

comes



Fig. 2.10 - Bode diagram of the transfer function of the
heat exchanger. The values computed from the

G(s)

The Bode diagram of the estimated transfer function is
It is clear that the estimate is ve-

23,
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2.11 - Bode diagram of the transfer function

Fig.

S

(s+1) 2
for a = 0, 0.01 and 0.05. The graph illustrates
the errors obtained if an error a is made when
determining the transfer function using impulse

response analysis.
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Considering the curves of Fig. 2.9 it is not unreason-
able to have an error in the DC level of the output of
some per cent. Since an error in the level of the out-
put signal is so significant the measured output is usu-
ally "fudged" to ensure that the level is zero before the
Laplace transform is computed. The "fudging" is sometimes

glorified by the name of "closing the output curve®.

Exercises.

1. Show that the lLaplace transforms of the pulses shown

in Fig. 2.2 have the following magnitudes:

Y (i) ]| = 2lgin ©L rectangular pulse
T 2
|Y(iw) | = 8 5 (l - cos 92> triangular pulse
(wT) 2
4r® 2 7|  displaced cosin
1Y (iw) ]| = 5 5—+ —=|sin 2= placed cosine
l4n“= (wT) | T 2 pulse
n2 T half period sin
| Y (iw) | = 5 5— | cos - p sine
| %= (wT) “| 2 pulse
Y (iw) ] = 5 L 5 |sin oT] double sine pulse
= (T) “]
W2 3T
[Y(iw)] = 5 5 cos —= triple sine pulse
|m%=(0T) “| 2
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Assume that the output in an impulse response measure-
ment is measured with an error e(t). Show that the cor-
responding error in the transfer function can be esti-

mated by

|E(iw) | < min(j le (t) |dt,
0

e I

ofo le (t) ]dt]
0

In particular show that the error due to a rectangular

pulse of amplitude a and length T is bounded by
|E(iw) | < min[aT, 2a/w]

Step functions are sometimes used in transient response
analysis. Let y be the measured output. Show that the

estimated transfer function is given by
G(s) = sliy}

Assume that there is an error e in the measured output.
Show that the corresponding error in the transfer func-

tion can be estimated by

(v (o]

|G(iw) | < min[w [ le(t)]at, f Ié(t)[dt}
0 0

In particular if the error is a pulse at area A and

peak a show that the error can be estimated by
|G(iw) | < min[wa, a]
Exact expressions for specific pulse forms are computed

by Unbehauen ( ) . They show good agreement with the

estimate given above.
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3. TANK SYSTEMS - INPUT OUTPUT ANALYSIS.

A collection of tanks connected by pipes is called a tank

system. See Figure 3.1. This section will be devoted to a

study of such systems through impulse response analysis.

Throughout the section it will be assumed that the tank

system is in equilibrium i.

are constant.

e. that the flows and volumes

Fig. 3.1 = Schematic diagram of a tank system.

Tank systems are common in
extensively used as models
systems. It is frequently
flows in the pipes and the

industry. They have also been
for biological and ecological
of interest to determine the

volumes of the tanks. It is

also of significant interest to know if the flow pene-

trates all parts of the tanks and to know the mixing con-=

ditions. Many of these problems can be resolved by impulse

response analysis. The basic idea is very simple. A trace-

able substance, which propagates through the system in the

same way as the fluid, is introduced at some point of the

system. The tracer concentration at another point in the

system is then measured. The key problem is then to analyse

what properties of a tank system that can be found from
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such an experiment. The technique may appear as a very
indirect way to determine volumes and flows at least when
a physical tank system like the one shown in Figure 2.1
is considered. However, in many physiological systems the
tank system is simply used as a mathematical model of the
real system. The tanks and flows are not directly access-
ible and the proposed method is then one of the few tools
available. Flow measurement by impulse response analysis
is in fact a technique that is used daily for flow mea-

surements in many hospitals.

The tracer can be of many different forms. It can be a
colour, which can be followed optically or by eye, it can
be an electrolyte, which can be traced by conductivity
measurements. Radioactive tracers are often very conve=
nient because the flow particles themselves can be tagged
and the tracer can easily be measured externally without

interfering with the system.

To analyse if volumes, flows and mixing conditions in a
tank system can be determined from a tracer experiment it
is necessary to study the propagation of a tracer through
a tank system and to find out how the tracer propagation
is influenced by the properties of the tank system. It
will be shown that the tracer propagation can be described
as a linear time invariant dynamical system. The dynamical
systems describing tracer propagation have, however, some
special properties which motivates that they are given a

special name flow systems. The impulse regsponse of a flow

system is nonnegative which reflects the fact that the
tracer concentration is never negative. Moreover, if the
tanks system is open which means that all tanks are con-
nected to an outlet (possibly indirectly through other

tanks) all tracer will eventually leave the system. The

that the integral of the impulse response is unity.
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Open flow systems will be investigated in this section.
They have many interesting properties which have large-
ly been found in connection with impulse response analy=-
sis of tank systems. The results are widely scattered in
literature. Important contributions are found both in en-
gineering and medical literature. In this section an at-

tempt is made to present a unified approach.

Two simple examples corresponding to a tank with pure
mixing and a tank with pure plug flow are first investi-
gated. It is shown that there are several ways to deter-
mine the volumes and flows of such simple systems from
impulse response measurements. A formal definition of an
open flow system is then given and interconnections of
open flow systems are introduced. The so called Stewart-
Hamilton equation which can be used to determine the to-
tal volume of an open tank system is then derived. The
volume obtained is the part of the volume which partici-

pates in the flow also called the volume of distribution.

Application of impulse response analysis to determine
flows and volumes are then discussed. The section ends
with examples of applications in physiology, industry

and ecology.
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Simple Flow Systems.

Simple examples of flow systems will now be discussed.

Example 3.1 (Ideal mixing).

Consider a tank with volume V and constant inflow and
outflow g (volume flow). See Fig. 3.2, Assume that there
is perfect mixing in the tank and that the fluid is not

compressible,

q.Ci q,c
— V —

Fig. 3.2 - Schematic diagram of a simple flow system with
perfect mixing. The inflow g equals the out-
flow. The concentration of the inflow is cy
and that of the outflow is c.

Let cy be the concentration of a tracer in the inflow and
¢ the tracer concentration in the tank and at the outflow.

A mass balance for the tracer gives

V == = g (¢, =0c) (3.1)

The propagation of the tracer through the system can thus
be described as a linear time invariant dynamical system
(3.1).

The input output relation is
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t oo
c(t) = | h(t-s)cy(s)ds = { c, (t-s)h(s)ds
—cs 0

where the impulse response h is given by

hie) = ( )e I8V (3.2)

The corresponding transfer function is

st

H(s) = [ & "“h(t)dt = (3.3)

O~ 8

1 + sV/q

Example 3.2 (Pure transport or plug flow).

Consider a pipe where there is a pure material transport
with uniform velocity and no mixing. Let the volume of

the tube be V and the flow g. Let cy denote the concent-
ration of some substance in the inlet and ¢ the concent-
ration of the same substance at the outlet. The concent-

rations are related by

c(t) = c; (t-V/q) (3.4)

and the impulse response of the system becomes
h(t) = 6(t=-V/q) (3.5)

where & 1s the Dirac delta function. The transfer func-

tion of the system is

H(s) = emsv/q (3.6)
=]

For a tank with ideal mixing and for a pipe with pure

plug flow we find that the propagation of a tracer through

the system can be described by a linear time invariant dy =




namical system. In both cases the impulse responses of

the systems have the properties

h(t) > 0 (3.7)
Zh(t)dt;H(O) =1 (3.8)
and

;f th(t)dt = - V/gq (3.9)

The equation (3.7) means that the tracer concentration
is never negative and the equation (3.8) implies that
all tracer will finally leave the system. If the impulse
response is measured by injecting a tracer in the inlet
and measuring the tracer concentration in the outlet the
volume to flow ratio V/q can thus be determined from the
equation (3.9) both for an ideal mixing tank and for a

pipe with pure plug flow.

For a tank with perfect mixing the volume to flow ratio

can also be determined from the equation

V/q = h(0) (3.10)

which is obtained by putting t equal to zero in (3.2).
It also follows from (3.2) that

log h{t) = - gqt/V + log(V/q) (3.11)

The ratio V/q can thus also be determined by plotting h
on a semi-logarithmic paper and evaluating the slope.
Notice, however, that the equations (3.10) and (3.11)

are only wvalid for tanks with ideal mixing while the
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equation (3.9) holds both for ideal mixing and for pure

plug flow.

An Axiomatic Approach

After the introductory examples the theory of flow sys-
tems will now be developed systematically. The analysis
will be carried out for systems with one inlet and one
outlet. There are, however, no difficulties to extend
the results to more general situations. In analogy with
the simple examples the systems will be characterized

by their impulse responses. Introduce axiomatically

Definition 3.1.

A single-input single-output time invariant linear sys-

tem is called a flow system if the impulse response has

the property
h(t) > 0 (3.12)

It is called an open flow system if the impulse response

also has the property

[ h(t)dt = 1 (3.13)
0

Interpreting an open flow system as the dynamical system
which describes the propagation of a tracer through a
collection of tanks in flow equilibrium the condition
(3.12) simply implies that the tracer concentration in
the outlet will never be negative. An alternative state-

ment is that the step response of the system is non-de-
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creasing. The condition (3.13) means that all the in-
jected tracers will eventually leave the system, which

motivates the word open.

It follows from the previous examples that the trans-
portation of a substance through a tank with perfect
mixing and a through pipe with pure mass transport with-

out mixing can be described by flow systems.

Notice that the guantity

[ h(t)dt

£

can be interpreted as the probability that a particle

entering the system at time 0 will exit in the interval
(tl,tz)a The impulse response of a flow system can thus
be interpreted as a probability density. It is, there-

fore, also called the residence time distribution or

more correctly the density of the residence time distri-
bution. The properties (3.12) and (3.13) are far reach-
ing. It follows e.g., from (3.13) that a flow system is
always input-output stable. To explore the properties

further we analyse the transfer function H defined by
T -st

H(s) = [ e "“hi{t)dt (3.14)
0

The equation (3.12) implies that

H(0) = [ h(t)dt = 1 (3.15)
0

Furthermore let Re’sz 0 then




H(s) | = 1f e %Fn(tydael < 1e” %% n(e)ae <
0 0
ht)dt = 1 Re s> 0 (3.16)

IA
O §

The magnitude of the transfer function of a flow system
is thus less than or equal to one in the closed right

half plane.

Let Wy be arbitrary real numbers and Xy arbitrary complex

numbers. Then

]I 3% Be-ie) = [ [ ] xx,e k%00t (gyae =
k 2 0 k £

= [(rx, ek (51,012 ) n(t)ae =
0
w , 2

= [ lzx ek h(o)ae 5 o (3.17)
0

It follows from a famous theorem of Bochner (1932) that
the conditions (3.15) and (3.17) also imply (3.12) and
(3.13).

An open flow system can thus also be defined as a linear
time invariant system whose transfer function satisfies
(3.15) and (3.17). This is not done because the condi-
tions (3.12) and (3.13) are much more appealing to phy-

sical intuition.
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Tracer Propagation in Interconnected Tank Systems.

There are several ways to interconnect flow systems. They
can e.g. be connected in series, parallel or in feedback
connections in the same way as ordinary linear systems
are interconnected. More interesting and more useful re-
sults are, however, obtained if the interconnection is
done in a different way. Since flow systems are used to
describe the propagation of a tracer in a tank system we
will first consider different ways to connect tanks to-
gether. Interconnection of flow systems will then be de-
fined by considering the flow systems which describe the

propagation of a tracer in the interconnected tanks.

Tanks can be connected in many different ways. The out-
flow of one tank can be sent to another tank (series con-
nection). A flow can be split up in different parts which
are sent through tanks and again continued (parallel con-
nection). Part of the outflow of a tank can be mixed with
the inflow and sent to the tank again (feedback connec=

tion) .

It seems intuitively clear that if the tracer propagation
in two tanks, Sl and 52, are described by flow systems in
the sense of Definition 3.1. then the propagation of a

tracer in the interconnected tanks is also a flow system.

It will now be shown that this is indeed the case.

By a series connection of two tanks Sl and SZ we mean the

system obtained by letting the outlet of Sl be connected
to the inlet of 5, as illustrated in Fig. 3.3.

Assume that the tracer propagation in Sl and S2 can be
described by flow systems with the transfer functions Hl
and HZ“ Let Cir Cy and ¢ denote the tracer concentrations

at the inlet of Sly the outlet of S1 and the outlet of 82
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Fig. 3.3 - Series connection of the tanks Sy and Sy

respectively. Then
Cl(g) = Hl(s)c.(s)

C(s) = HZ(S)CI(S)

Elimination of Cl gives

C(s) = HZ(S)Hl(S)Ci(S)

and we thus find that the propagation of a tracér in a
series connection of two tanks can be described by a

linear system with the transfer function

HS(S) = HZ(S)Hl(s) (3.18)

To show that the transfer function HS corresponds to a
flawsystem we introduce the corresponding impulse respon-

ses, l.e.
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It is c¢lear that if hl and h2 are nonnegative then hs
is also nonnegative. Furthermore it follows from (3.17)
that

HS(O) = HZ(O)Hl(O) = 1

Taking (3.18) as the definition of a series connecting
of two flow systems it has thus been shown that the se-

ries connection of two flow systems is a flow system.

We will now proceed to other ways of connecting flow sys-

tems. A parallel connection of two tanks is obtained by

splitting the inflow g into two flows o9 and %sq where
0 < oy < 1l and g +toa, = 1. These flows are then taken
as inflows to the tanks Sl and Sy whose outflows are then
combined assuming perfect mixing. The parallel connection

is illustrated in Fig. 3.4,

P B
a1q,Ci { {a1q,C1
Vv
| 1 |
"N Bt
Sk I I T ( NI
. TN
I | T
| y |
(p9, ¢ | 2] :

Fig, 3.4 - Parallel connection of the tanks Sq and Sy
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To analyse the propagation of a tracer through two tanks

Sl and 82

pagation through Sl and 52 can be described by flow sys-

in parallel it is assumed that the tracer pro-

tems with the transfer functions Hl and HZG Let cy denote
the tracer concentration at the inlet and c, and Cy the

tracer concentrations at the outlets of the tanks. Then

Ih

Cl(s) Hl(s)ci(s)

Cy(s) = H,(s)Cy (s)

Since the output flow is obtained by ideal mixing of the
flows mlq and ey with tracer concentrations cq and Coy

the concentration at the outlet becomes

C(s) = oyCy(s) + 0,Cy(s) = [mlﬂl(s) + GZHZ(S)]Ci(s)

The propagation of a tracer through a parallel connection
of two tanks can thus be described by a linear system

with the transfer function

H (s) = alHl(s) + o Hz(s) 0 < «

2 1’

To verify that this is a transfer function of a flow sys-

tem the impulse responses are introduced. Hence

h () = o h

5 1 l(t) + o

ohy (t)

It is clear that if hl and hz satisfy (3.12) and (3.13),
then hp will also satisfy the same equations.

The feedback connection Sf of two tanks Sl and 82 is

illustrated in Fig. 3.5. Let the inflow to 83 be g and
the tracer concentration Cy Furthermore let the propor-

tion a, 0 < & < 1, of the outflow of S, be the inflow to
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Fig. 3.5 - Feedback connection of the systemssl and SZ“
The inflow g is perfectly mixed with the out-
flow of SZ' and the mixture is fed to Sls The
outflow of Sl is split into two streams, one
of which goes to 82 and the other part is the
outflow of Sf.

SZE It is assumed that the outflow of S2 is perfectly
mixed with the system inflow.

If oqy is the flow through S5, a flow balance then gives
(aqi+q) = q

Hence

Let Cy denote the concentration at the outlet of S2 then

C,(s) = H,(s)C(s)




The input to S, is a mix of two flows g and aqg/(l-a),
having concentrations cy and Cy respectively. The con-

centration Cq at the inlet of Sl is thus

C1<S) = (l“a)Ci(S) + aoC, (s)
Furthermore
C(s) = Hy(s)Cy(s) = (l=a)Hy (s)C; (s) + oHy (s)H,(s)C(s)

which gives

(1wa)Hl(s)
C(s) = C. {s)
1 - aHl(s)Hz(s)

The tracer propagation through a feedback connection of
two tanks can thus be described by a linear system with

the transfer function

(1“@)H1(5)
Hf(s) = 0 <a <1 (3.20)
1 - aHl(S)HZ(S)

Assuming that Hl and HZ are transfer functions of flow
systems it will now be shown that Hf is also such a

transfer function. We have

(l“G)Hl(O) 1 -«
Hf(O) = = = ]
1 - aHl(O)HZ(O) 1 - «

Furthermore introduce H = HlHZG Since S] and 82 are flow

systems, it follows from the eguation (3.15) that
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l[H(s)! < 1 for Re s > 0

The series expansion

He(s) = (L-a)By(s)[1 + oH(s) + aCHY (s) + ... ]

thus converges uniformly for o < %, < 1 and Res> 0. The

corresponding impulse response then satisfies

2

he = (1=a)hy*[1 + oh + o“h*h + —

£

where * denotes convolution. Since Sl and S2 are flow
systems, we have hl(t) > 0 and hz(t) > 0, and we find
he(t) > 0.

Summing up we get

Theorem 3.1

Let Sl and S2 be open flow systems with the transfer
functions Hl and Hze The series Ssﬁ parallel SD and feed-
back Sf connections of Sl and 82 whose transfer functions

are defined by

Hy = HyHy (3.18)

Hp = oqHy o+ GZHZ 0 < Op s Oy 2 1, oyt oa, = 1 (3.19)
(lmu)Hl

He = ————"r 0 <o <1 (3.20)
1 - O(HlHZ

are then also ogpen flow systems.

Remark. Notice that the serieg connection of two flow sys=-=

tems 1s identical to the series connection of two linear
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systems. The parallel and feedback connections of flow
systems are, however, not the same as the parallel and

series connection of linear systems.
Using Theorem 3.1 the propagation of a tracer through a

tank system can be studied in the same way as signal pro-

pagation is analysed in an ordinary linear system.

The Stewart-Hamilton Equation.

The analysis of the simple tank systems corresponding to
a tank with ideal mixing in Example 3.1 and to a tank
with pure plug flow in Example 3.2 show that the fol-

lowing equation
J th(t)dt = v/q (3.21)
0

hold in both cases. Compare with the equations (3.2) and
(3.5). Recalling the probabilistic interpretation of the
impulse response h as the residence time distribution

the equation (3.21) simply says that for a tank system
with one inlet and one outlet the ratio of volume to flow

equals the mean residence time. The equation (3.21) was

first used by the physiologists Stewart (1897) and Hamil-
ton (1932) who developed methods to determine the blood
volume of the heart. The equation (3.21) will therefore
be called the Stewart-Hamilton equation. The equation has
been widely used both in biology, physiology and engine=
ering. It has also been misinterpreted and therefore the
cause of much controversy. Conditions for (3.21) will
therefore be discussed in detail. A heuristic argument
can be obtained as follows. Consider an open tank system

with inflow g. The fraction h(t)dt of the particles which




enter the system at time zero will exit in the interval
(t,t+dt) . These particles have traversed the volume dv =
= t+.g. Integrating over all particles now gives (3.21).
The validity of the equation (3.21) can also be shown

formally in many cases. We have the following result:

Theorem 3.2.

Let Sl and 82 be tank systems with one inlet and one out-
let and volumes Vq and Voo Let the tank system 83 be a
series, parallel or feedback connection of Sl and SZQ As=
sume that the Stewart—-Hamilton equation holds for =N and
S, then it also holds for Sy
Proof. Let Hy and H, be the transfer functions which cha-
racterize the tracer propagation in Sq and Szm The diffe-
rent ways to interconnect the systems will be discussed

separately.

First consider a series connection. It follows from Theo=-
rem 3.1 that the tracer propagation in S, then is charac-
terized by the transfer function H3 = HlHZ' The mean re-

sidence time of S3 is then given by

[ thy(t) = - H}

! (0) = - H{(0)H,(0) - Hy(0)H;(0) =

il
<
=t
+
<
]
>~
o]
It
<
(o8]
™~
Q

The third equality follows from the fact that the flows

through Sq and 5, are the same in a series connection.

Now consider a parallel connection. See Fig. 3.2. Since
the flow through Sq is o1 d and that through S2 is o ndy

we get




= Hy (0). = V,y/(ayq) and - Hi(o) = V,/(0,q)

The mean residence time of SBYis given by

é thB(t)dt =

it

J
pas
P

i

11 - 4
alHl(O) aZH

5(0) =

(V1+V,)/a = Va/q

and the result is thus established also for a parallel

connection.

For a feedback connection, Fig. 3.3, the flow through Sl
is q; = q/(l-a) and the flow through S, is ag; = ag/(l-a).

Hence

o

= Hy(0) Vy/aq = (l=a)vl/q

= Hy(0) = Vy/(aq) = (1-x)V,/(aq)

The equation (3.19) gives

2
. ¢ - ¥ - ¥
i (l-a)Hy . (l-o) Hy (aHjH,+oH H,) ~ (1-o) (H{+oH HS)

3 2 B 2

1 - oHyH, (1-oHqH,) (l-aHqH,)
The mean residence time is then given by
¢ e H o ‘1 ¥ a i [,
[ tho(t)dt = - HI(0) = - H! - H! =
3 3 1 2

0 1 -« 1l -«

i

(Vi+Vy) /q = Vy/q

and the proof is now complete.




Remark. Combining Theorem 3.2 with the results of
Example 3.1 and Example 3.2, it is thus found that the
Stewart-Hamilton equation holds for systems which are
obtained by series, parallel or feedback connections of
simple flow systems with pure transport or with ideal

mixing.

The sStewart-Hamilton equation has been derived only for
systems which are open flow systems. Internal recircula-
tions are allowed provided that only a fraction of the
flow is recirculated (& < 1 in Theorem 3.1). All fluid
particles must, however, sooner or later leave the sSys-
tem, or formally the equation (3.12) must hold. This will

not be the case if all the flow is recirculated.

Volume and Flow Measurements.

Impulse response analysis has been applied extensively
in studies of tank systems. Determination of flows and
volumes through impulse response analysis is, in fact,
a standard technique which is widely used in many diffe-

rent fields.

To determine the flow in a tank system with one inlet
and one outlet it is assumed that the tracer is injected
so quickly that it can be regarded as an impulse. The
tracer concentration at the outlet is then proportional
to the impulse response i.e.

gc(t) = Mh(t) (3.22)

where M is the total amount of injected tracer. Since
the integral of the impulse response of an open flow

system is unity we get
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q = ——— (3.23)

Tt is sometimes difficult to measure the concentration
at the outlet in absolute units. This is not important
if the concentration = of the injected tracexr is also
measured. If the injected volume isg VO we have M = CQV

0
and the above equation becomes

. C

q = Vy e (3.24)
[ c(t)dt
0

where Cq and ¢ can be given in relative units.

The determination of the volume of a tank system can be

done from the Stewart-Hamilton eqguation (3.21) which

glves
- M [ tc(t)dt c, | te(t)dt
V=g [ th(t)dt = — =V, —2 ] (3.25)
0 [j c(t)dt] [[ c(t)dt]
0 0

where the second equality is obtained by replacing h by
¢ from (3.22) and using (3.23) to eliminate qg.

Many different methods have been used to evaluate the in-
tegrals appearing in (3.25) graphical techniques, plani-
meters and numerical integration. It has also been attemp-
ted to fit a function to the observed concentration curve
and to determine the integrals of the approximating func-

tion analytically. Some examples are given below.
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Example 3.3.

If the measured concentration curve is approximated by

e + A.e + ...+ Be n (3.26)

the integrals become

(o)

[ c(t)dt = Al/al + Az/a2 + ... + An/an (3.27)
0
< 2 2 n
[ te(t)dt = Al/al + Az/a2 + ve. + An/an (3.28)
0

a

The approximation by a sum of exponentials has the advan-
tage that it will always give a nonnegative function pro-
vided that the coefficients Ai are positive. Notice, how-
ever, that the function (3.26) is not well suited to app-
roximate an oscillatory impulse response. Systems whose
impulse response have the form (3.26) are discussed in
Section 4. The approximation by a sum of exponentials is
often done graphically by plotting the method of "peeling
off the exponentials” which is described in detail in Sec-
tion 4. The approximation by a sum of exponentials is un-
fortunately a very badly conditioned numerical problem as
was already mentioned in Chapter 2. The reason for this is
that the exponential functions are not orthogonal on the
interval (0,«). For this reason it is therefore also at-
tempted to approximate the concentration curve by ortho-

gonal functions.
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Example 3.4.

The Laguerre functions

»n, (ﬁat)k

-at/2

fo~13

fn(t) = /a e
11 k!

are orthonormal on the interval (0,x). It is therefore
straightforward to fit a sum of Laguerre functions to an

observed concentration curve. Since

f £ (t)de =
0

and

é tf (t)dt =

it is also easy to determine the integrals which appear
in (3.25). Notice, however, that the Laguerre functions
are negative for certain arguments. This means that the

approximating function may be negative.

Impulse response analysis is thus a useful method to de-
termine volumes and flows in tank systems. The major dif-

ficulties of the method are

o The evaluation of the integrals [h(t)dt and fth(t)dt
may be difficult. This is particularly true when it
is difficult to measure the reference value of the con-
centration accurately and when the function h decays

slowly.
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o There may be an external recirculation.

o It may not be possible to make the tracer injection
so short that the measured concentration is propor-
tional to the impulse response. It is then necessary
to know the injection function and to apply deconvo-

lution before applying the Stewart—Hamilton equation.

Physiological Applications.

There are many physiological systems which can be modelled
as tank systems. The obvious examples are found in the cir-
culatory system. Other less obvious examples will be dis-
cussed in Section 4. Even if the bloodflow through the

heart varies periodically with the heartbeat the average
conditions can often be described as a tank system in equi-
librium. In the periferal organs there is also a consider-
able filtering so that the flows can be considered as be-
ing constant. It is of considerable interest for the phy-
siologist to know the amounts of blood in different organs
and the blood flow through the organs. The knowledge is use-
ful both for pure scientific reasons and for diagnosis. Im-
pulse response measurements using a tracer is one technique
that can be used for volume and flow measurements. Such mea-
surements are in fact done as routine tests for diagnosis

in many physiological laboratories.

The measurements can be done in many different ways. The
straightforward technique is illustrated in Fig. 3.6. The
tracer is injected into a vessel which supplies an organ
and the tracer concentration is measured in the outlet from

the organ.
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Fig. 3.6 - Illustrates the application of impulse response
analysis to the determination of blood volume
and blood flow.

In many cases the organ may have many inlets and outlets.
To apply the impulse response method it is then necessary
to measure the tracer concentration in all the outlets.

It may then be advantageous to measure the total amount

of tracer in the organ. The rate of change of the total
amount of tracer is then equal to the outflow from the or-

gan. The technique is illustrated in Fig. 3.7.

In a variation of the method described, the tracer is in-
jected continuously until the tracer concentration in the
organ is constant. The tracer injection is then suddenly
interrupted and the total tracer concentration or the tra-
cer concentration in the outlet is measured subsequently.

The curve obtained is called a wash-out curve.

Determination of blood flow through the heart and the vo-
lume of blood in the heart is a typical application of im-
pulse response analysis. An indicator, bromsulphophalein

(BSP), which binds to the blood plasma is used. A fixed



Cerebral
bMOdﬂgg
%
(s

O

Internal carotid
injection Ay

Hepatic
blood flow «—Detector

=V

Fig. 3.7 = Illustrates
method. The
is measured
in the outlet.

52.

Coronary artery

€= injection

\ Detector—s ?loroncry blood

ow

Spleen injection
(portal vein injection)

a variation of the impulse response
total amount of tracer in an organ

instead of the tracer concentration

amount of indicator is injected through a catheter in a

vein. The blood flow in an artery is
tervals and the concentration of the
in a laboratory using photometry. It
sample every second. To take samples

technique is used. The catheter from

sampled at regular in-
tracer is determined
is common to take a
at that rate a clever

the artery is led to

a casset of test tubes which moves at such a rate that the

test tubes pass the catheter outlet once every second. A

typical impulse response is shown in Fig. 3.8. The flow is

(3.21),

Since the indicator binds to the plasma the plasma flow and

determined from eguation and the volume from (3.22).
the plasma volume is obtained primarily. To determine blood
flow and blood volume it is necessary to know the ratio of

plasma in blood.
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Since the blood recirculates through the body there will
be an increase in the impulse response corresponding to
the circulation time. This is clearly seen in Fig. 3.8.
The effect due to recirculation must be eliminated in or-
der to determine the blood flow or the blood volume. This
can be done by approximating the tail by an exponential
or by solving the integral equation which corresponds to

the system with recirculation.

10 1

Time sec

Fig, 3.8 - Impulse response of the heart. The curve shows
the arterial concentration of an indicator

which is injected intravenously.

The difficulty associlated with the recirculation of the
tracer can be avoided by using a gaseous tracer. An example
is illustrated in Fig. 3.9. A radiocactive tracer Krypton 85
was used. The experiment was performed on a dog. The expe-
rimental procedure shown in Fig. 3.7 was used and the total
tracer activity in the heart was measured. Notice that there
is no noticeable effect of recirculation because virtually
all krypton in the blood stream is eliminated when the blood
passes through the lungs. The curve on the right of Fig. 3.9
which shows the logarithm of the activity indicates that the
process can be well described by assuming a single tank with

perfect mixing.
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Fig. 3.8 - Impulse response of the heart of a dog. A tra-
cer Kr85 was injected into the left coronary
artery of the dog. The curve on the left shows
the total activity in the heart muscle and the
curve on the right shows the logarithm of the
total activity. The curves are redrawn from
Wagner (1964).

There are several problems connected with the application
of impulse response measurements to physiological systems.
Blood is composed of many different components which could
propagate differently through the system. It is thus neces-
sary to choose the tracers appropriately to ensure that the
tracers will follow the component of interest. For example,
if the volume of the red blood cells should be determined,
it is necessary to tag red blood cells; and if the plasma

volume is desired, it is necessary to tag the plasma.

Fig. 3.10 shows the impulse response of the liver obtained
5]‘(.‘,r-mlabeled red

blood cells. This tracer stays intravascular. The other

using different tracers. One tracer is

tracer tritium-enriched water (THO) also penetrates the
extracellular fluids freely. The curve illustrates that
different components of blood may have drastically diffe-

rent flow patterns.
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3.10 - Impulse respcnse analysis for the determina-

tion of the volume of the liver using diffe-

rent tracers. Adapted after Goresky (1967).

Industrial Applications.

Many
tank
with
rate

such

industrial processes can be conveniently modelled as
systems. Typical examples are continuous processes

no generation or destruction of material. To illust-
the use of impulse response analysis for analysis of

processes examples of investigation of mixing tanks

and drying drums will be discussed.



Mixing tanks are frequently used in industry for the pur-
pose of eliminating variations in a quality variable. Un-
der the assumption that there is perfect mixing in the
tank, it follows from the analysis of Example 3.1 that a
mixing tank can be considered as a first order, low pass
filter with the time constant T = V/q. Hence the larger
the tank, the more efficient is the smoothing. It has
been found in practice that storage tanks do not neces-
sarily behave according to equation (3.14). Instead it
happens that the mixing is incomplete and also that there

are "pockets" in the tanks where material stays for a long
time. It is possible to find out if such pockets exist by
an impulse response measurement. An evaluation of the vo-
lume V from the Stewart-Hamilton equation and a comparison
of V with the geometric volume gives the possibility to

detect pockets.

As an illustration we will consider an investigation of

a mixing tank in a paper mill. The analysis was made using
82y which has ahalf life of 36 hours.
A solution of about 100 ml NH4Br corresponding to 500 mil-

the radiocactive isotope

licuri was mixed with pulp and used as an input. The tank
volume was about 4000 m3a The measured impulse responses

of tanks when 2 and 4 stirrers were used are shown in Fig.
3.11.

An analysis of the impulse responses gives that the mean
residence time is 3.5 h for the tank with two stirrers and
10.6 h when four stirrers are used. The volume to flow ra-
tio for the tank is 11.7 h, and we can thus conclude that
there are large portions of the tank which are not prene-
trated by the flow when only two stirrers are used, but
that almost the whole tank participates when four stirrers

are in operation. The example clearly illustrates the ef-
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Fig. 3.11 - Impulse responses for a mixing tank in a pa-
per mill when four and two stirrers are used.
The data is kindly provided by AB Isotoptek-

nik.

fectiveness of the impulse response technique for process

analysis.

Apart from detecting pockets it is, of course, also of in-
terest to know 1if the mixing is efficient in the sense
that disturbances are attenuated. It follows from Example
3.1 and Example 3.2 that a tank with ideal mixing and a
tank with pure transport have the same mean residence

time. The mean residence time thus nothing tells about
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the mixing properties of a tank.

The impulse response function itself will, however, com-
pletely characterize the mixing properties. An evaluation
of the transfer function will also clearly show the ex-
tent to which disturbances of different frequencies are

eliminated.

Fig. 3.12 shows a schematic diagram of a mixing tank of
special construction, which is sometimes used in the pulp

and paper industry.

N
S
> 0 b
0O——»
S

Fig. 3.12 - Schematic diagram of a mixing tank of a spe-
cial kind.

Fig. 3.13 shows the results of an impulse response mea-
surement of the tank in Fig. 3.12. Notice the pronounced
oscillatory pattern which is due to the circular flow pat-
tern. Analysis of the frequency response that the mixing
tank will in fact increase the amplitudes of disturbances

with frequencies in the neighbourhood of X Hz.
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Fig. 3.13 - Results of an impulse response analysis of
the flow system shown in Fig. 3.10. This mea-
surement was made on a machine chest at a
paper mill by glass fibres tagged with 24Naﬁ
The glass fibres will propagate through the
system in the same way as the wood fibres in

the paper pulp.
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Drying drums are commonly used in many industrial proces-
ses. It is not easy to derive the dynamics from first
principles and it is therefore necessary to make experi-
ments. In steady state a drying drum is clearly a tank
system. To be able to judge the quality of the product

it is often of interest to know the residence time dis-
tribution. This can be measured by impulse response ana-
lysis. A drum for drying pellets from a granulator in a
fertilizing plant will be discussed as an example. The
drum which is 35 m long and 3.3 m in diameter rotates
with a speed of 2.5 revolutions per minute. The mass

flow through the drum is about 30 kg/s. To measure the
impulse response 10 kg of pellets were coloured. These
pellets were introduced in the pellet stream to the dry-
er. Samples of the pellets from the drum were taken and
the number of coloured pellets in each sample was counted.

A typical result is shown in Figure 3.14.

500

Number of colored pellets

0 | T
10 15 20

Time Lmin]

Fig. 3.14 = Impulse response for a drying drum.



The flow patterns in rivers, streams and lakes can be of
many different forms. Some examples are given in Fig. 3.15.
When analysing eccosystems it is of considerable importance
to know the flow pattern as well as the water volume which
is actually penetrated by the flow (the recipient volume).
By injecting a tracer at the inlet to the lake and measur-
ing the tracer concentration at the outlet the recipient
volume between the point of injection and the observation
point can be determined using the Stewart-Hamilton equation
e.g. in the form (3.25). The shape of the impulse response
will also give valuable information about the mixing pro-

perties.

Vertical section Horisontal section -

5

;Surche stream

Bottom stream

Fig. 3.15 - Examples of flow patterns in a lake.
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Exercises.

Show that a linear, time invariant system with the

transfer function

H(s) = =2 5
(s+Ew) (s"+2gws+w™)

is a flow system.

Show that a linear, time invariant system with the

transfer function

s 4 10
52 + 28 <4+ 10

H(s) = -

cannot be a flow system.

Consider a flow system which corresponds to n tanks
with ideal mixing in series. Show that the transfer
function of the flow system is

and that the impulse response is

(at)®! —at

h(t) = a e
(n-1)!

Furthermore show that

[e=)

[ th(t)dt = n/a
0

(Hint.: Use Theorem 3.1 and Theorem 3.2.)
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Consider a tank whose tracer propagation is given
by the transfer function of Example 1. Assume that
the flow through the system is 1 ms/sa Show that

the volume is given by

g g2
v oo Lt 2
wE

A substance called creatinine is distributed through-
out the blood plasma and in the so~called "intracel-
lular fluid". To determine the volume where the crea-
tinine is distributed a dose of 10 g creatinine was
administered intravenously to a human subject. The
concentration of creatinine in the plasma was subse-
quently measured. After correcting for the creatinine
generated by the human body, it was found that the
concentration of creatinine in the plasma could be

approximated by

C(t) = ne OF 4 pe”Bt

where the following numbers were obtained A = 0,38 g/4;

B =0.18 g/f, o = 1.65 h™% and p = 0.182 h™ LY. Assume

that all creatinine leaves the body through the urine
and that the creatinine concentration in the excre-
tion is the same as in the blood plasma. Determine

the volume of distribution for the creatinine.

It has been mentioned that the Stewart-Hamilton equa-
tion can be used to estimate the volume which parti-
clpates in the flow, but that it does not give any
information on the mixing efficiency. Such informa-
tion can, however, be obtained from the impulse re-

sponse. The integral
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h™ (t)dt

i

i
O 8
[\

is for example proportional to the variance of the
concentration fluctuations if the input concentra-
tion is white noise. The integral I, can thus be
taken as a measure of the mixing efficiency. Show
that 12 = 0.5 for a tank system which corresponds
to a tank with perfect mixing and mean residence

time 1.

Find the impulse response h for a system which mi-

nimizes the integral

h?(t)dt

-

3]

]
O— 8

subject to the constraint
[ th(t)dt = 1
0

(Hint.: min I, = 4/91)

Consider the flow system of Exercise 1. Determine

the integral Iy defined by (*) for the system.

Consider the system discussed in Exercise 3. Show
that

2

- i 1]
h2 (t)dt = a.2 2n+1 . (Zn=1)°

[(n-1) 1%

o §
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The Stewart-Hamilton equation (3.21) is based on
the assumption that an ideal impulse is used. De-
termine the error obtained if the Stewart-Hamilton
equation is used to estimate the volume when the
input is a rectangular pulse with pulse length T.
(Hint.: Use Theorem 3.2.)

Consider a tank system with recirculation according
to Fig. 3.4. Assume that it is desired to measure
the mean residence time in the tank Sl by injecting
a tracer at the inlet to Sl and measuring the con-
centration at the outlet. Determine the error in

the determination of the mean residence time that
occurs if it is not observed that the system has re-

circulation.

Give an analytic expression for a transfer function
which corresponds to the impulse response curve of
Fig. 3.11.

The impulse response h of a flow system can be inter-
preted as a probability density for the residence
time. The corresponding distribution function is de-

fined as
t

H(t) = [ h(s)ds
0

To determine H(t) n labeled particles were injected
and the number K(t) of particles which had left the

system in the interval (0,t) was observed. Show that

PIK(E) < k) = | EN(e)[1 - H(t) Pk



and that

EK(t) =

Var K(t)

nH (t)

= nH(t)[1 - H(t)]

66,




4. TANK SYSTEMS - INTERNAL STRUCTURE.

The analysis of tank systems in the previous section shows
that several properties of the systems can be found from
an impulse response measurement. Tn this section tank sys-—
tems will be explored from a different point of view. The
systems considered will be more specialized than those in
Section 3. It will be assumed that they are composed of
tanks with ideal mixing connected by pipes with negligible
volumes. The analysis is on the other hand more general
because it is not assumed that the systems have one inlet
and one outlet only. The purpose of the analysis is to de-
termine the volumes and the flows from impulse response

measurements.

The representation of a tank system by a graph is first
discussed and tank systems with a special structure are
defined. Analysis of propagation of a tracer through a

tank system then follows. It turns out that the tracer
propagation can be described by a linear time-invariant
dynamical system, if the tank system is in equilibrium ln
the sense that all volumes and flows are constant. The SySs=
tem has special properties which has important consequen-
ces for its dynamical behaviour. In analogy with Section 23
the systems describing tracer propagation are called flow
systems. In this section such systems are first defined
through their state space properties and it is then shown
that they are also flow system in the previously defined
sense. The dynamical properties of flow systems are ex-
plored using state space techniques. The problem of deter-
mining the volumes and flows from impulse response measure-
ments is discussed. This leads to the notion of identifia-
bility. Criteria for identifiability of tank systems having
special topologies are then given. Compartment analysis and

pharmacokinetics are finally given as examples,




Formal Description of Tank Systems.

Consider a system composed of tanks which are connected by
pipes. Let fluid be pumped into the system at points
called sources and let the points where fluid is pumped
out of the system be called sinks. It is assumed that
there is no accumulation of fluid in the system. The

flow into a tank is thus equal to the flow out of a tank.
A tank system can be represented as a directed graph.
Each tank, sink and source is a node in the graph and
the pipes connecting tanks, sinks and sources are repre-
sented by branches. An arrow on the branch indicates the
direétion of the flow. Numbers can be introduced in the
graph to show tank volumes and the magnitudes of the
flows. An example of a graph representation of a flow

system is shown in Fig. 4.1.

Fig. 4.1 = Schematic diagram of a tank system. The tanks
are denoted by circles, the sinks and sources
by dots and the pipes by branches. The arrows
on the branches indicate the direction of the
flow, the numbers on the branches give the flow
rates and the numbers in the circles give the
tank volumes. Sinks and sources can also be re-

presented as tanks with zero volume.
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Tank systems can be characterized in many different ways.
A tank system is called a closed system if it does not
have sinks and sources. An open tank system has sinks

and sources. If it is possible to find a true subset of
tanks which are not connected to any tank not belonging
to the subset, the system is called reducible. A system

which is not reducible is called irreducible.

There are tank systems with certain topologies which are
given special names. A system where the tanks are arranged
in a chain where each tank is only connected to its near-
est neighbours is called a catenary system. The first tank
in the chain is not connected to the last. Catenary sys-=
tems can be either open or closed. Examples of catenary

systems are given in Fig. 4.2.

Fig. 4.2 - Examples of catenary tank systems. The system
A is closed and the system B is open.

A cyclic system is obtained if the first and the last

tank of a catenary system are connected. See Fig. 4.3,
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Fig. 4.3 - A circular tank system.

A system is called mammillary if it consists of a cent-

ral tank surrounded by peripheral tanks which are con-
nected to the central tank but not to each other. An

example of a mammillary system is shown in Fig. 4.4.

Fig. 4.4 - A mammillary tank system,

The classifications given so far only reflect the way in
which the tanks are interconnected. Other classifications
also reflect the numerical values of the flows. A 1is called

system symmetric if the flow between any pairs of tanks



71.

labelled i and j are such that the flow from tank i to

tank j is the same as the flow from tank j to tank i.

It will be shown later that many properties of a flow

system can be found from impulse response measurements.
To trace the flow it is assumed that part of the fluid
can be labelled. The labelled substance is called the

tracer. The tracer can be introduced in many different
ways, by injecting it into a sink or a tank or into se-
veral tanks., Through the flow the tracer is then propa-
gated into different tanks. The tracer propagation will
now be analysed. It will be assumed that there is per-

fect mixing in the tanks. It will also be assumed that

the transit times in the pipes are negligible.

Assume that there are n tanks numbered from one through
n, let the sources be numbered from n+l to £ and the
sinks from £+1 to m. Let qij denote the flow from the
j:th node to the i:th node. The flows are defined as
zero 1f there i1s no pipe connecting two nodes and they

are always nonnegative i.e.

> 0 i+ 3 (4.1)

qij Z

It is assumed that there is no inflow to the sources, i.e.

qij = () i =n+l, ..., £ =1, ..., m (4.2)
This means that in the graph all branches originating at
a source will be directed away from the source. Similar-
ly it is assumed that there is no outflow from a sink,

i.e.
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d.. =0 i=1, o.,m 3 =L+, ..., m (4.3)

The total outflow from the i:th node is defined as ~dyq-

Hence
m m
mqii = .Z_ qji = .Z. qij i=1,2, .., & (4.4)
J&1 J#1

where the last equality follows from the fact that there

is no accumulation of fluid in the tanks.

Let Vi denote the volume of the i:th tank and let cy be
the concentration of the labelled substance of the i:th
node. A mass balance for the labelled substance in the

i:th tank now gives

V, —= = VY q,.c. i=1,2, ..., n (4.5)

The last equality follows from the equation (4.4). Since

all tank volumes are assumed positive, we also get

dec. e
— = Z (qi./Vi)c. i=1, 2, ..., n (4.6)
at  g=1 *J ]

It is assumed that there is ideal mixing of the inflows
at the sinks. The tracer concentration at the i:th sink

is then given by

; .
= |, 93385/ =,

j=1
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The equations (4.6) and (4.7) can be written as

dx = Ax + Bu
dt
(4.11)
y = Cx + Du

which is the standard form for a linear, dynamical sys-
tem. Notice, however, that the matrices A, B, C and D

have the properties

i3 = (4.12)

C, .
13 =

i3

n r
J oa,.+ J b.. =0 i=1,2, ..., n (4.13)

r
cij + ‘; d,. = 1 i=1,2, e., p (4.14)

The equations describing the propagation of a tracer in
a tank system can be interpreted as state equations for
a linear, time invariant dynamical system. The special
properties of the tracer equations are expressed by the
conditions (4.12), (4.13) and (4.14). These conditions
are so far-reaching that they motivate the introduction

of a special notion.
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Definition 4.1.

A flow system is a linear, time invariant dynamical sys-
tem S(A,B,C,D) where the matrices A, B, C, and D have

the properties given by the equations (4.12), (4.13) and
(4.15).

Eigenvalues.

The properties of flow systems will now be analysed. In
particular it will be shown that the Definition 4.1 of
a flow system is compatible with the previous Definition
3.1. Before this can be done it is necessary to analyse

the eigenvalues of the system (4.11).

The eigenvalues of the matrix A in equation (4.11) will
be investigated. It will be shown in general that the
eigenvalues are in the left half rlane for an open flow
system. Closed, irreducible systems may have an isolated
eigenvalue at the origin. Stronger statements about the

eigenvalues will be made for systems with a special topo-

logy.

It is convenient for the analysis to introduce the mat-

rix
o) =‘{qij, i, =1, ..., n}

which is the matrix of flows in the pipes connecting the
tanks. The structure of the graph of a tank system is
reflected in properties of the matrix Q. TIf there is

no flow from tank j to tank i, then qij is zero. For a
reducible system it is always possible to relabel the
tanks in such a way that the tanks in the subset which

are not connected with the rest of the systems are num-
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bered sequentially from i = 1. The matrix Q then has

the block diagonal structure

Q4 0

0o 0,

Since the matrix A is given by

A= v g

where V is the diagonal matrix whose elements are the

tank volumes, i.e.

V = diag{vlr VZ' a6 6 g VvV }

the matrix A also has a block diagonal structure for a
reducible system. The eigenvalues of the matrix A will

first be investigated. We have

Theorem 4.1.

Consider an irreducible tank system. All eigenvalues of
the matrix A of the tracer equations have strictly nega-
tive real parts if the system is open. If the system is

closed, there is also an isolated eigenvalue i = 0.

Proof. It follows from a theorem by Gersgorin that all

eigenvalues of the matrix A are in the union of the sets

See Bellman (1960 p. 106).
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Since aij >0, i # j and bij > 0, it follows from (4.13)
that

D TP

All eigenvalues are thus in the left half plane. If the
system is closed, all inequalities above are reduced to

equalities. Hence

o~ 3
Q
il
o
|_l
Il
l__l
=1

which means that there is an eigenvalue X = 0 correspond-

ing to the left eigenvector

e, = (1 1 ... 1)

Now consider the matrix

B = A + I-m?x("aii) = A <+ kI

The matrix B is a non-negative matrix, i.e. all its ele-
ments are non-negative. It then follows from a theorem

by Frobenius that B has a positive eigenvalue A which is
simple. See Gantmacher (1960 p. 53). All other eigenvalues
are less than or equal to A in magnitude, and all elements
of the corresponding eigenvector are positive. Let e de-

note the eigenvector then

(A+kI)e = e
(4.15)
Ae = (a-k)e

If the system is open, we have
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where there is a strict inequality for at least one i.

The equation (4.15) now gives

n n n
0> ) ) oaL.e. = (A-k) ) e
j=1 i=1 J* =

Since all e, are positive, we thus find that

A < k = max(maii)
and the eigenvalues of the matrix B are then inside or
on the circle [s| < A < k. The eigenvalues of the mat-

rix A are then inside or on the circle
ls = kI < x <k

But this circle is strictly in the left half plane, and

the proof is complete.

Remark. A reducible system can be divided into irredu-
cible subsystems. Applying the theorem to each subsystem
we find that a reducible system has eigenvalues with
strictly negative real parts if all subsystems are con-—
nected to sinks and sources. We also find that the only
eigenvalues with zero real parts are A = 0. If there are
multiple eigenvalues at the origin, they are associated
with different subsystems and thus also different Jordan
blocks. All flow systems are thus stable although not ne-

cessarily asymptotically stable.

The eigenvalues associated with some special tank system

will now be investigated.
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For a symmetric system we have

Theorem 4.2.

Consider a symmetric tank system. The eigenvalues of the
matrix A of the tracer equations are then real and non-

positive.

Proof. It follows from Theorem 4.1 that the eigenvalues
are nonpositive. Since the system is symmetric, it fol-
lows that Q is symmetric. Now let W denote the positive
square root of the diagonal matrix V. Then Q = WZA and

we get

— “1 2wt o wlow )t = wloTyl

it
=
=
z
=
|
=
10
=
|
=
1O
=
{

wiaTwly ™t = wtaTy

li

The matrix Y/\TzTSJA‘fﬂl ig thus symmetric and has real eigen-

values. Since eigenvalues remain invariant under similarity

transformations, the matrix A has also real eigenvalues.
o
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Now consider catenary systems. See Fig. 4.2. Let there
be n tanks in the chain numbered consecutively from 1

to n. The matrix A then has the form

—0q Bl 0
Y —oy By
A = " > " (4.16)
. Yp-1 T%n-1 Pn-l
Yn mcxn

where oy s Bi

the following result.

and Y, are positive, real numbers. We have

Theorem 4.3.

Consider a catenary tank system. Then all the eigenvalues

of the matrix A of the tracer equations are real.

Proof. Introduce

Aoy »Bl 0
-1, vHo, =B,
dk(k) = det ;
0 "By
Yy (k+ak)

Elementary rules for calculation with determinants give

a, () =+ o (4.17)

1

A g (M) = (A+an+l>dk(x> = Yy Py V) k> 1 (4.18)
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where we have defined
dO(A) = ]

The characteristic polynomial of the matrix A is then

equal to d (A).
The theorem will first be proven in the case

Yk+lBk > O k = l, ° o o g n“"l

The polynomial d,(x) does not vanish for any x.
0

If one of the polynomials dk(x) in the sequence do(x),

. dn(x) vanishes we have

o 2
dk+l(x)dk_l(x) = Yk+lBkdkml(X) <0 (4.19)

The polynomials do(x), dl(x), e oy dn(x) thus form a
Sturm sequence. Let V(x) denote the number of variations
in sign of the sequence for a fixed x. The value of V (%)
can only change when one of the functions of the sequence
changes sign. Because of (4.19) the value of V(x) does,

however, not change when d (X)) eue, dnul(x) changes sign.
We thus find that V(b) - V(a) = numper Or sSign changes or

dn(x) in (a,b) since V(+») = 0 and V(=) = n. The function
dn(x) has n sign changes on (=c0,°) ., Because dn(x) is a po-
lynomial of degree n it must thus have m real roots.

To handle the case where Yk+lﬁk vanishes for some value of
k the matrix is simply partitioned into block triangular

form, and the result above 1is applied to each block.
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The eigenvalues of the matrix A for a cyclic tank system

can be both real and complex as shown in the examples be-

low.

Example 4.1.

Consider the closed tank system shown in Fig. 4.5.

Fig. 4.5 = A simple cyclic tank system.

Since all volumes are equal, the matrix A becomes

+1 -1

-1 +1J

The matrix has real eigenvalues since it is symmetric.

The characteristic polynomial is

d(s) = (s41)2 = 1 = s(s+2)



Example 4.2.

Consider the closed tank system shown in Fig.

Fig. 4.6 = A simple cyclic tank system.

Since all volumes equal one, we have

(-1 0 1
A =Q = 1 -1 0

The characteristic polynomial is

als) = (s+1)3 = 1 = s(s2+3s43) =

s(s-1.5+1v372) (s~1.5-1v3/2)

i

which obviously has two complex zeroes.

4

¢4

6.

82,
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Now consider a mammillary system. See Fig. 4.4. Let the
central tank have index i = 1. Since there are no pipes
connecting peripheral tanks to each other, we have qij =0
for 1 *# j and i,j > 1. For a mammilllary system the mat-

rix A thus has the following form

where a is a scalar, b a row vector, ¢ a column vector

and 4 a diagonal matrix. We have the following result.

Theorem 4.4.

Consider mammillary tank system, let the central tank
have index 1. Assume that the flows are such that qjl

qu > 0 for j > 1. Then all eigenvalues of the matrix
A are real. Moreover, if all number qii/vi’ i > 1 are

different, then the eigenvalues of A are separated by

a31/Vy

Proof. To prove that the eigenvalues are real it will
be shown that the matrix A can be transformed to a sym-
metric matrix by similarity transformations. Let the

matrix S be defined by
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This matrix is symmetric if

bU = U'cC

TIf U e.a. is chosen as a diagonal matrix, we get

In the particular case we have
i T 941 171
1= 9 341/ Viel

J
cy will thus vanish simultaneously, and we can thus choose

Because of the assumption q.lqu > 0 the numbers bi and

/bi7ci for indices such that c; # 0
1 otherwise

and we have thus constructed a similarity transformation

which transforms the matrix A to a symmetric matrix.

To prove the second part of the theorem the characteris-

tic equation will be analysed in detail. We have

s-ajq —aq, ee —a,
391 57859

d(s) = det[sI-A] =
“anl 0 s~ann




where it is assumed that the elements are ordered such

that a1 < 8pp < vee <AL < 0
a5 = 4337V
ay4 = d14/Vy
a1 = 941/V;

Eliminate the second element in the first column by add-
ing the second column multiplied by aZl/(Swazz) and pro-
ceed similarly to eliminate all off diagonal elements in
the first column. The characteristic polynomial can then

be written as

? aljajl n
d(s) = |s = a - =L d=l § (s-a,,) =
oy g-a,,|1=2 1i
J3J
n
= f(8) n (S“aii)
i=2

Since all a;; are distinct, d(aii)= aljajl + 0. Furthermore

and we can thus conclude that f must vanish in the in-

tervals (ai+l i+l'aii)‘ Since f(s) - —w as s = =e, there

is also a zero at f(s) in the interval (ww,ann)a Furthexr-

more



where the inequalities follow from the equation (4.13).
The inequalities in the above equation degenerate to
equalities if the system is closed. In such a case the
characteristic equation has a zero at the origin. Other-

wise there is a zero in the interval (a ), and the

nn'o
proof is thus completed.

The Transition Matrix and the Impulse Response.

The transition matrix of a flow system has the following

property.

Theorem 4.4.

The transition matrix of a flow system is a matrix with

nonnegative elements.

Proof. The elements of the transition matrix are obtained

as the solutions of the differential equations

where the initial conditions are such that xi(O) = 0,

i # k and xk(O) = 1, We have
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Since the system is a flow system, all aij with 1 % 3
are nonnegative. When the initial conditions are non-
negative, it thus follows that xi(t) > 0 and the theo-

rem is proven.
=]

The impulse response of an irreducible open flow systen
with one inlet and one outlet, see Fig. 4.7, will now

be analyzed.

n+2

n+i

dn+2 n+1

Fig. 4.7 = Graph of an open flow system with one inlet

and one outlet.

The tracer equations (4.8) give

dc, n

i +1
V, -~ = ‘X g, .C.
Loge 4= 3

Assuming that the system is initially at rest and that

the inflow is chosen as an unit impulse then

n
Vi[ci(m)mci(O)] = »i q 4 cj(t)dt + q,

in+l

o~— 8

-1 (4.19)
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The left hand side vanishes because the system is stable
according to Theorem 4.1. It also follows from the same

theorem that the matrix’{qij; i,j =1, ..., n} has all

its eigenvalues strictly in the left half plane. The above

equation can thus be solved for

the solution is

cj(t)dt = 1

o~ 8

The tracer concentration at the sink is

.Cc. (t)

n
qn+2 n+lcn+l(t) + izl qn+2 i7i

Cppp (E) /Ap12 n42

If the inlet flow is an impulse we thus get

. n
cn+2(t)dt - [qn+2 n+l N izl D42 i}/qn+2 n+2 1
- J

o— §

because the sum of the terms within brackets equals the
total outflow which is D42 ne2”
Similarly multiplication of (4.19) by t and integration

gives
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dc. (=1

oo i _ ‘ _ fe] B
é tVi i;? = g tViCi A é ci(t)dt =
n+1 oo
= ) q,. [ tes(t)dt
j=1 i1 % J
Hence
il oo
-V, = qs. J tes(t)dt
i 521 i3 5 3
and
n n il <o
- ¥ v, =) q,. [ tei(t)dt =
121t 421 4= T o

(o)

n
= - ) q . [ te.(t)dt
j=1 n+l J 0 3

Since the tank system is irreducible and only has one

outlet, the quantity

n
jil D+l 3

equals the total outflow of the tanks, Hence
V = q [ th(t)dt
0

where V denotes the total tank volume and g the total
outflow. It has thus been shown directly that the Stewart-
Hamilton equation holds for the system. Summarizing the

results we get




90.

Theorem 4.5.

Consider an irreducible tank system with one inflow and
one outflow. Let h be the impulse response of the asso-

ciated flow system. Then

where V denotes the sum of all the tank volumes, and g

denotes the total inflow.

Identifiability.

It has been found that the propagation of a tracer through
a tank system can be characterized by a linear, time in-
variant dynamical system which has special properties. The
name "flow system" was given to such dynamical systems.
The properties of flow systems have also been investigated.
The properties of a tank system that can be found from a
tracer experiment will now be explored. The experiments
can be performed in many different ways. A tracer can be
injected into a tank, into a source or into a pipe. The
tracer concentration can be measured in a tank or in a
pipe. In some cases it is also possible to measure the to-
tal tracer concentration in several tanks. There are many

different problems that can be posed, for example
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0 Determine the total number of tanks.
0 Discriminate between two structures.
o Given a structure, determine the flows and the

tank volumes.

A tracer experiment will typically give the impulse re-
sponse or equivalently the transfer function of a flow
system. The possibility to determine the volumes and
flows from a measured impulse response or from a mea-
sured transfer function will now be investigated. This
is a problem of parameter identifiagbility. Since the
mapping relating physical parameters to the coefficients
of the transfer function is nonlinear it is possible to
resolve the identifiability problem in special cases on-
ly. A more general discussion on identifiability is gi-

ven in Chapter X.

Example 4.3.

Consider the tank system whose graph is shown in Fig. 4.8.
Assume that a tracer is injected momentarily into the
first tank and that the tracer concentration is measured
in the same tank. The possibility to determine the tank

volumes V., and V2 and the flows q, and q5 will now be in-

1
vestigated.

Fig. 4.8 - Graph of a simple tank system.
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The tracer equations are .

da.

l-=-m
V) —= = - (qytay)ey tapC, +ap¢y
dt
dc
Vv =2 = gaCy = {,C
2 dt 271 272

With the given experimental conditions the tracer concent-
ration cy of the inflow is zero. If the amount of tracer

injected is M, the initial conditions become

M/V

a
§_ﬂ
=
i

1

The volume V1 can thus be determined from the total a-
mount of tracer M and the initial concentration in tank

number one.

It is easily found that the Laplace transform of the con=

centration in the first tank is given by

M s + g,/V,
Cl(s) = - e 5 =
vy o s® 4 s[(aytay) V) + g, /V, ]+ gga,/ (VV))

Analysing the concentration curve it is possible to de-
termine all coefficients of s in this rational function.
The parameter combinations ql/Vl, qz/v2 and qZ/Vl can
thus be determined. Since V:L was already determined, it
is thus found that all the desired parameters can be de-

termined from the proposed experiment.
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To show that the volumes and the flows cannot always be
determined uniquely the Example 4.3 will be modified
slightly.

Example 4.4.

Consider the system shown in Fig. 4.8. Assume that a tra-
cer experiment is performed as in Example 4.3 by inject-
ing a tracer into tank 1 but that the tracer concentra-
tion in tank 2 is measured. Let the total amount of in-
jected tracer be M. The Laplace transform of the measured

tracer concentration is then

M dp/Vy
Cz(s) = e ) =
vy sT o+ s[aqtay) /vy ay/V, ]+ aa,/ (VV5)
= M ° 2 b
s” + a;s + a,
where

ay = (qp+a,)/Vy + ay/V,
2y = 4195/ (V3 V)
b = q,/(VyV,)

By analysing the measured tracer concentration it is thus
possible to determine the parameters ajr 2y and b. These
coefficients are, however, not sufficient to determine two
flows qq and q5 and two volumes Vl and V2 uniguely. To be

specific the flow q, is uniquely given by

d, = az/b



94,

The other variables are given as a one parameter family

Vl arbitrary pos -

2

q, = a vV, - az/b - bvl

11

Vo = g,/ (bVy)

The variables can also be parametrized as follows

\Y

5 arbitrary positive

<
it

1 = 4/
q, = azvz/a

where o 1s a root of the equation

2 -
o - (alwbvz)a + a, = 0]

Example 4.3 is thus a case where all volumes and flows
can be determined from the proposed experiment while
Example 4.4 shows a situation where the volumes and
flows cannot be determined uniquely. Since investiga-
tions of parametric identifiability reduces to the ana-
lysis of nonlinear algebraic equations it is very little
to be said about the general problem. Some results are,

however, availlable for systems having a special topology.
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The possibility to determine the volumes and the flows
of a catenary system will now be investigated. There are
several different cases to consider. If the system is
open the inflow and the outflow can be arranged in many
different ways as is shown in Fig. 4.9. The tracer expe-
riment can also be performed in many different ways. The
tracer can be injected into the inflow or into a tank.
The concentration of the tracer can be measured in the
outflow or in a tank. If a radiocactive tracer is used it
is also possible to measure the total tracer concentra=

tion in several tanks.

9n n4
qz.‘ nn q
l 942 I q

n-1n

% a2 A k-1~ Tket k 9 n-

%42 n-1n
9
Ay » A k1 % n-
g |
92 Ut K Gn-1n

flo
q U At k- 9% n-1
: o
q
12 q0

-1k 9k ke I-1n

Fig. 4.9 - Examples of open catenary systems having dif-

ferent arrangements of inlets and outlets.
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Assuming that there are n tanks in the system there are
2n parameters to determine in an open system namely n
tank volumes and n flows. For a closed system there are

only n-1 unknown flows.

The analysis boils down to investigating the nonlinear
function which maps the volumes and flows to the parame-
ters of the transfer function obtained in a tracer expe-
riment. The analysis is tedious because many different

cases have to be considered. We have

Theorem 4.6.

Consider a catenary system which is closed, or open with
one inlet and one outlet. Assume that there is a bidirec-
tional flow between all tanks. Let an experiment be per-
formed by injecting a tracer in one end tank and let the
tracer concentration be measured in the same tank. Then
all volumes and flows can be determined if the total a-

mount of injected tracer is known.

Remark 1. The arrangement of the inlet and the outlet

nust be known a priori.

Remark 2. If the tracer is not measured in the tank where

it was injected all volumes and flows cannot be determined.

Remark 3. If the tracer is injected and measured in a tank
which is not an end tank the volumes and flows can in ge-
neral not be determined uniquely. Excluding parameters in
an algebraic variety there are (;:i different sets of vo-
lumes and flows which are consistent with the measurements,
where n is the number of tanks and m the number of tanks

between the inlet and the closest end tank.

The proof of the theorem is given in Appendix A.
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The tracer experiment can also be performed by injecting
the tracer in the inlet and measuring the tracer concentra-
tion in the outlet. Provided that the total amount of in-
jected tracer is known the identifiability conditions in

this case are also given by Theorem 4.6.

The determination of volumes and flows in mammillary tank
systems will now be explored. 1In analogy with catenary
systems there are many different possibilities depending
on the experiment and the arrangement of the inlet and
the outlet. See Fig. 4.10. For the case when a tracer is
injected in one tank and the tracer concentration is mea-

sured in a tank the following result is obtained.

Theorem 4.7.

Consider an irreducible mammillary system which is open
or has one inlet and one outlet. Assume that the position
of the inlet and the outlet are known. Then all volumes
and flows can be determined from a tracer experiment if
the tracer is injected into one tank and the tracer con-
centration is measured in the same tank. If the tracer is
injected into one tank and if the tracer concentration is
measured in another tank, all volumes and flows cannot be

determined uniquely.

Proof. The proof which is straightforward but tedious is

given in Appendix B.

For open flow systems it is natural to analyse the system
by injecting a tracer in the inlet and measuring the tra-

cer concentration in the outlet. The system is identifiable
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Fig. 4.10 - Graphs of mammillary systems having diffe-

rent arrangements of inlets and outlets.
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if the total amount of injected tracer is known and if

the inlet and the outlet are to the same tank.

Compartment Analysis.

Flow systems are frequently used as models for ecological
and physiological processes. In this context they are of-
ten referred to as compartment models. The models arise
when it is attempted to analyse the generation, transpor-
tation and disintegration of a substance in a system. The
fundamental assumption is that there are parts of the sys-
tem, called compartments, where the concentration of the
substance is constant. The transportation of the substance
between the compartments is governed by processes like con-
vection, diffusion, membrane processes and chemical reac-
tions. The transport rate will depend on many factors like
concentration, ion mobility and the nature of the driving
forces. Even if the transport phenomena are very complex,
it may be assumed by the usual linearization assumption
that the massflow rij from compartment j to compartment

i is proportional to the concentration i.e.

L4 =»kijcj' Aij > 0 (4.20)

The parameterslxij are nonnegative since rij and c; are
nonnegative by definition. If the transport is governed

by diffusion only we have

If the concentration of a substance is constant through-

out a compartment we have

c, = Qi/Vi (4.21)
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where Q is the total amount of substance in ths compart-
ment and Vi is the compartment volume. Notice, however,
that the concentration must not necessarily be uniform
throughout a compartment. A compartment may be composed
of parts where the concentrations are different provided
that the exchange of the substance is so rapid that the

concentrations in different parts are always proportional.

Provided that there is neither generation nor destruction
of the substance in a compartment a mass balance for the

substance in the i:th compartment gives

dci
Vi = 1 i373 © ) Ajl €i
dt j#i j#i
Introducing
=T Ay

dci z
V, —= = A, LCL (4.22)
gy 5 3
where
.. > 0 ad . =0 4,23
g2 an ; oy ( )
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rij - rji ='Aij(cj=ci)

which means that the flow is driven by the concentration
gradient (Fick's law). Notice, however, that the assump-
tion (4.20) is much more general. It allows for example
that there is material transport in a direction opposite
to the concentration gradient. Such mechanism may be found
in material transport across a cell membrane. Also notice
that the equation (4.20) cannot be expected to describe
the transport for large concentrations because the mecha-

nisms are most likely nonlinear.

Under the assumption (4.20) the equation (4.22) which de-
scribes the mass transport is thus a flow system in the
sense of Definition 4.1. In particular, the flow system

is symmetric if all mass transport is by diffusion.

Flow systems are thus useful to describe the kinetics of
material transport in a compartment system. In this sense
compartment systems are also analogues of tank systems if
the coefficients xij’ which appear in the linearized ex-
pressions (4.20) for the flow rates, are interpreted as

flows.

In several applications it is of significant interest to
determine the total amounts of substance in the compart-
ments and the transport rates. In steady state these gquan-
tities are constants. Their values can be determined by a
tracer experiment in the same way as the flows and volumes
of a tank system could be determined. It is thus assumed
that the substance (sometimes referred to as mother sub-
stance) is tagged with a tracer and that a small amount

of the tagged substance is introduced in a system in equi-
librium. A mass balance for the tracer in the i:th compart-

ment gives
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0, —= =) r,.a.-a, ) Tr. =) r .a (4.24)
-1 j

where a, is the proportion of tracer in compartment k.
The coefficients rij are positive by definition and riy

is defined by

Provided that there is no destruction or generation of

the substance a mass balance gives

Jr,. =) ry; =0 (4.25)
J

Compartment systems in equilibrium are thus equivalent
to tank systems if compartments, mass of substance in a
compartment Qp and mass transportation rates rij are
identified with tanks, volumes Vk and volume flow rates
qij respectively. Tracer analysis can thus be used to
determine transport rates and the amount of substance

in a compartment in the same way as it was used to de-
termine flows and volumes in tank systems. The technique

has been used extensively in physiology.

Example 4.5,

The metabolism of proteins can be crudely described as

follows. Proteins in the food are broken down into amino
acids in the process of digestion. The amino acids enter
the blood stream and are carried to all parts of the bo-
dy where they are utilized in the cells to synthesize

proteins. Amino acids are also used to produce new cells,
enzymes and hormones. Amino acids which are not used are
deaminized in the liver to form urea. Urea leaves the li-

ver through the blood stream and is excreted by the kid-
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neys in the urine. The urea in the urine is also partly
created from breakdown of proteins in various tissues of
the body. The process can be described by the simplified
compartmental model shown in Fig. 4,11. The model has
three compartments representing amino acids in the body,

urea and protein.

Excretion of urea  Excretion of
amino acids

Fig. 4.11 - Compartmental model representing metabolism
of protein. The compartments 1, 2 and 3 re-

present urea, amino acids and protein resp.

Assuming that the system is in equilibrium it can be at-
tempted to determine the amounts of nitrogen in the com-
partments and the flow rates by tracer analysis. Such ex-
periments have been performed by taking radiocactive nit-
rogen (lSnglycine) orally and measuring the total excre-

tion of lSN.

An analysis of the identifiability conditions show that
the compartment sizes and the flow rates cannot be deter-
mined from such an experiment. The excretion of urea can,
however, be determined by separate methods, and the re-
maining parameters can then be obtained from a tracer ex-

periment. Rittenberg (1951) applied this technique and
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obtained in a particular case the compartment sizes
5.65 g N in urea and 0.61 g N in amino acids. The flow
rates obtained were Ty = 39 g N/day, Tyq = 0, roq +

try, = 11.5 g N/day.

Pharmacokinetics.

Tt has been found empirically that a medical drug given

to a human does not dissolve and spread instantaneously.
The distribution of a drug in the human body can instead
be described by a compartment model. The particular branch
of compartmental analysis devoted to the dynamics of drug

distribution is called pharmacokinetics. A model commonly

used in pharmacokinetics is shown in Fig. 4.12. The model
has three compartments roughly speaking representing the
stomach, the blood including the intracellular fluid and
the tissues. More complicated models are sometimes used.
For example one might distinguish between different tis-

sues.

Fig., 4.12 - A simple pharmacokinetical model which de-
scribes the dynamics of drug propagation in

the human body.
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If the drug is taken through the mouth it first enters

the stomach, compartment S, where it is dissolved. The
drug then diffuses into the blood steam, compartment B.
When the blood passes through the body, there is an ex-
change of drug between the blood and the tissues, compart-
ment T. The drug is removed from the blood by the kidneys,

and it is then exXcreted in the urine.

Standard recipies like to take two tablets every six
hours found in handbooks are sometimes inadequate. For
certain drugs like digitalis the concentration in the bo-
dy is critical. For a prcper treatment it is then impor-
tant to understand the kinetics of drug transport both
qualitatively and quantitatively. The required knowledge
can sometimes be obtained from compartmental analysis and
system identification. The identification experiment is
performed by administering the drug orally (through the
mouth) or in the blood stream and measuring the drug con-

centration in the different compartments.

If v, are the compartment volumes and the transportation
rates are given by (4.20) the drug kinetics is given by
(4.22). In pharmacokinetics it is the custom to use the
total amount of drug in a compartment as independent va-
riables instead of the concentrations. The equation (4.22)

then becomes

in

—t =5 ki’Q' (4.26)
at 377

where

k.. = A../V. 4,27
ij -xlj/ 3 ( )

Notice that if the compartments representing elimination

are also included it follows from (4.25) that
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This implies that

= ei = constant

which means that the total amount of drug in the system

ig constant.

In pharmacokinetics it is customary to use the parame-
ters kij defined by (4.27) instead of Aij' This is of
course not a major issue, but it is useful to know that

transport rates are defined using different parameters.

Example 4.6.

The kinetics of the drug digoxin is taken as an illustra-
tion. To find a model an experiment was performed by in-
jecting the drug into the blood stream and by measuring
the drug concentration in samples of the blood. The re-
sults of such an experiment are shown in Fig. 4.13. A can-
didate for a compartment model is shown in Fig. 4.14. The
model contains five parameters, the compartment volumes

\Y
k3. By analogy with the analysis of tank systems, Theo-

1 and Vs and the transport rate coefficients kl’ k2 and

rem 4.7, it follows that these parameters can be determined
from the given experiment. It will now be shown how this is

done.

Let xq and x, denote the total amounts of the drug in the
blood and tissue compartment respectively. The mass balan-~

ces then give
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le
— = (kl+k2)xl + k2x2
dt
(4.28)
dax 5
—= = k.xX, = k,x,
at 171 272

These equations are sufficient for the analysis to account

for all mass we can also include the equation

which represents the total excretion of the drug.
The corresponding time function is of the form

c(t) = Aemat + Beth

It follows from Theorem 4.3 or Theorem 4.4 that o and B

are real numbers.

The following simple graphical method is commonly used

to analyse physiological data. The measured concentra-
tion is first plotted in semilogarithmic scales as shown
in Fig. 4.13. For large t the curve has an asymptote
whose slope is ~B where 1/B is the smallest time constant.
The intercept of the asymptote gives the parameter B. The
function B exp-Bt is then subtracted from the measured
concentration, and the resulting function is again plot-
ted on semilogarithmic scales. See the crosses in Fig.
4.13. The curve obtained has an asymptote with slope =-qg.
The intercept of the asymptote gives A. In the particular
case we find

-1.03t -0.014t =0t -Bt

c(t) = 14.1e + 1.06e = Ae + Be




lope -0.014

Stope -1.03

O
o
°
9—2 T 1
0 10 20 30
Time [h]
Fig. 4.13 - The concentration of digoxin in the blood

obtained from an impulse test when digoxin
is injected intravenously.

K1
X1 Y ‘ xz
K2
k3
Fig. 4.14 - A simple compartment model which describes

the digoxin kinetics.

108.
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The Laplace transform of this function is

c(s) = A + B =‘(A+B)s + oB + BA

s + « s + B s2 + s(o+B) + «p

Comparing this expression with equation (4.29) gives the

following set of algebraic equations

M

Vi

i
B
+
w

k- k., = ap

These equations can be solved with respect to the para-
meters Vq, kl, k2 and k3 which characterizes the compart-

ment model. We get

M

v =
1 A+ B
K. = oB + @A
2 A + B
k3 = %ﬁ
“2
kl = + B - kz - k3

In the particular case we find
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vy = 2.51
kg = 0.79
ky = 0.085
ky = 0.17

Notice that the parameter k3 can be determined as follows

k3xl(t)dt = k4Vy [ c(r)at

0

=

-

]
O §

The first equation simply says that the total outflow of
the drug equals the injected drug and the second equation
says that the total amount of drug in compartment equals

the concentration times the volume. Hence

T c(eyat
0

This equation is identical to (3.24). The argument used

to derive it can obviously be extended to any compartment
model with a single outlet. It shows that the elimination
rate k3 can be determined without reference to a paramet-

ric model.

If it is assumed that there is no net material transport
between the compartments when the concentrations are the

same the equation (4.28) gives

lxl - k2x2 = klclvl - kzczv = (lelmeVZ) c =

Under the assumption the volume Vo is thus given by



111.

VZ = klvl/V2 = 23.3 ¢

This volume is referred to as the volume of distribution

of the second compartment. In many physiological systems
the volume is a fictitious quantity which does not have

a physical interpretation because it was obtained under

the assumption that the concentrations in the compartments
were the same under equilibrium conditions. As has been
mentioned before the transport mechanisms may very well

be such that the concentrations are different in equilib-
rium. In the particular case the volume is larger than

the volume of the patient this clearly shows that the tran-

sport is not governed by diffusion.

The graphical method used in the example to fit a sum of
exponentials is commonly referred to as "peeling off ex-
ponentials”. The technique can apparently be applied to
fit any number of exponentials. The method is, however,
very sensitive to errors, because the exponentials are
not orthogonal. A typical example was given in Chapter 2.
The method is useful for crude estimates. It should, how-

ever, be used with great care.

In conclusion we find that there are many complicated pro-
cesses that can be approximated by flow systems. To faci-
litate a comparison the table below gives the analogies

between some models that lead to flow systems.
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"Volume" . .. "Flow" State FEquation
Con-
Tank system Volume  Volume flow i (4.5)
centration
Blood f£low v a C
Compartment Volume Mass trpt. Con- (4.22)
model coeffs. (4.20) centration
Pharmacokinetics Y A C
Metabolism Mass Trpt. rates Tracer act. (4.24)
Q r a

Finally it should be emphasized that if the models have
only one outlet the total "volume"” and the outflow can
also be determined using the nonparametric methods de-

scribed in Section 3.
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Exercises.

1. Consider the tank system illustrated by the graph be-
low. ZAssume that a tracer is injected in the first
tank and that the tracer concentration is measured
in the same tank. Determine the tracer concentrations
in both tanks as a function of time. Discuss 1f it is
possible to determine all parameters of the tank sys-

tem and give suitable procedures.

2. Consider the tank system illustrated by the graph be-
low. Determine the impulse response for tracer propa-
gation through the system and analyse if it is pos-
sible to determine all parameters of the system from
a tracer experiment. Discuss alternative methods to

carry out the necessary calculations.

This model has in fact been used to model simple body
functions. The tank 1 represents the blood, the tank
vV, the "intracellular® fluid. The flow ¢, represents
the removal of some substance through the kidneys and
the flow a5 represents the exchange which takes place
between the blood and the "intracellular®” fluid. The
following numbers have been found Vl = 3¢, V2 = 94,

qy = 200 £/min, q, = 0.12 L/min.
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3. Consider the model of Exercise 2. Determine the error
in the determination of d, obtained if the concentra-

tion in Vl is approximated by the dominating mode.

Consider the catenary system shown in Fig. 4. Show
that all volumes and flows can be determined unique-
ly from a tracer experiment where the tracer is in=
jected and measured in tank 2 1if qlV3 * qZVl and that

the parameters cannot be uniquely determined 1if qlV3 =

= dpVy -
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5. SUMMARY.

Transient response analysis is a simple method to deter=-
mine the dynamics of a linear system. The input signal

can often be generated manually. The method is particu-
larly simple if the pulse width can be chosen significant-
ly smaller than the smallest relevant time constant of the
system. The output is then equal to the impulse response
of the system. For wider pulses it is necessary to perform
a deconvolution in order to obtain the impulse response.
This can be done by numerical Laplace transformation. The
major drawback of the transient analysis is that it works
well only when the signal to noise ratio is very high and
that it is necessary that the system is in equilibrium

when the pulse is introduced.

The transfer function of a linear system can thus be de-
termined both by a direct frequency response measurement,
as was discussed in Chapter 3, and by an impulse response
analysis followed by the numerical computation of the La-
place transform. It is then natural to compare these two

approaches.

The impulse response experiment is undoubtedly simpler to
do. It does not require special equipment to generate the
inputs, and the time for testing is short. The disadvan-
tages of the impulse response method is that the determi-
nation of the transfer function is more complicated (nu-
merical Leplace transforms), and the accuracy of the re-
sults are limited. The transfer function can only be de-
termined over a few decades in frequency. There is no pos-
sibility to increase the accuracy, as can be done using
the frequency response method. The impulse response method

ig also much more sensitive to disturbances.
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As a typical example of the trade-offs made when choosing
an identification method we quote from Smith and Triplett
(1953):

"The most direct method for obtaining a frequency re-
sponse of a physical system is to measure the steady-
state response to a sinusoidal input at a number of
different frequencies. While this procedure has often
been used successfully to obtain frequency responses
of aircraft in flight, Campbell et al (1947), it is
not feasible in many cases. This method requires the
installation of equipment to drive the control surfa-
ces in a sine-wave pattern and may involve an exces-
sive amount of flight time, particularly if data are

to be taken at a large number of frequencies.

In general, a more practical method of obtaining a
frequency response is to analyse the transient re-
sponse of the aircraft to an arbitrary deflection of
the control surface (generally a step or a pulse). A
single transient contains the entire frequency spect-
rum and can be obtained in flight in a matter of se-
conds. A transient wave shape may be considered to

be made up of a sum of sinusoidal wave shapes of va-
rious amplitudes and covering the entire frequency
band. Therefore the response of a linear system to a
transient input can be viewed as its response to the
sum of sinusoidal waves contained in the transient in-

put."”

There are, however, many other cases where frequency re-
sponse 1s preferable. For example when the signal to noise
ratio is very low as in Example in Chapter 3 the tran-

sient response method would be useless.

Finally there are many specialized techniques commonly
used in ecology and physiology which are directly based

on the application of impulse response.
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7. NOTES AND REFERENCES.

Transient response analysis has been used in engineering
for a long time. Even before mathematical tools like
transfer functions and impulse responses were used it

was natural to investigate a system by observing its re-
sponse to a step change in the reference value. In this
form step response analysis has been used as long as re-
gulators have been available, i.e. from the end of the
eighteenth century. This is also reflected in the fact
that the specifications for the command following pro-
perties are still given in terms of properties of the
step response. Procedures for adjusting PID regulators
hased on an observed step response are found in the well-
known paper by Ziegler and Nichols (1943). With the ad-
vent of servomechanism theory transient analysis became

a standard tool together with frequency analysis. Tran-
sient analysis was not as commonly used as frequently
analysis because a numerical Laplace transformation was
required to obtain the transfer function from a measured
impulse response. These calculations could not be done
conveniently until digital computers were commonly avail-
able. Transient response analysis was found to be a use-
ful tool to determine aircraft dynamics. It was used for
this purpose as early as 1948. See for example the excel-
lent and survey article by Bollay (1951), the reports
Greenberg (1951) and Shinbrot (1951, 1952) and the papers
by Rea and Walters (1949), Seamans et. al. (1950) and
Smith and Triplett (1953). The example in Section 2 based
on the last reference shows typical results. This parti-
cular application of pulse testing is now a standard me-
thod to analyse flight test data. Pulse testing was also
extensively used to analyse fire control systems during
the Second World War. See Gardner and Ross (1953). These
applications are also reviewed in Draper et.al. (1953).

A discussion of the selection of pulse forms with parti-
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cular emphasis on avoiding saturation and rate satura-

tion is found in Coppedge and Wolf (1954).

Hougen and his coworkers made extensive use of transient
response to determine dynamics of industrial processes.
The transition from military to nonmilitary applications
can be traced to Lees and Hougen (1956). The determina-
tion of heat exchanger dynamics discussed in Section 2
was based on this paper. Methodological problems and ma-
ny applications are discussed in Hougen and Walsh (1961).
This paper also contains many references. Hougen has ob-
tained very good results when using impulse response ana-
lysis to determine the transfer function of industrial
processes. He has also made comparisons with the results
of direct frequency analysis. For processes with small
disturbances Hougen reports very good agreement between
the transfer functions computed from impulse response
measurements and those obtained by direct frequency ana-
lysis. In his writing Hougen is, however, sometimes car-
ried away by his enthusiasm for the pulse testing method
and states accuracies which are neither supported by theo-

ry nor by independent experiments.

A review of the relative merits of frequency response and
transient response for determination of dynamics of indust-
rial processes are given in Ceaglske (1961). The accuracy
of the transfer function obtained from a transient response
analysis is discussed by Unbehauen and Schlegel (1967).

The book by Strobel (1968) also contains much material on
transient response analysis. There are in particular error
estimates and many examples. There is also a careful treat-
ment of the problem of approximating a measured frequency

response by a rational function.
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The possibility to apply impulse response analysis to de-
termine flows and volumes was early recognized by physio-
logists. See e.g. Stewart (1897) where the technique was
introduced under the name indicator-dilution technique.
The method was further developed and extended by Hamilton
et.al. (1932). The so-called Stewart-Hamilton equation is
first given in these publications. The use of impulse re-
sponse analysis to determine volumes and flows is now a
standard method which is used routinely in hospitals. Sur-
veys on determination of blood flow and blood volumes are
given in Meier and Zierler (1954) and Stephenson (1958).
The well-written and critical book by Riggs (1963) also
covers much material on volume and flow determination.
The determination of cardiac output and the blood volume
in the heart is critically reviewed in Dow (1956). Model
studies of this problem have been performed by Kressig
(1971). The blood flow in the brain is more complicated
because there are many inlets and many outlets. Generali-
zations of the Stewart-Hamilton equation to the multiva-
riable case are done by Andersson (1957). His results have
been applied to analyse the blood flow through the brain
by Nylin et.al. (1961l). A significant improvement in the

measuring technique has been made by Hedlund et.al. (1964).

Many papers on the theory, philosophy and the application
of impulse response analysis to determine volumes and
flows are found in the proceedings Kniseley et.al. (1964)
and Bergner et.al. (1968) of symposia sponsored by AEC.

Industrial applications of impulse response analysis to
investigate flow systems grew rapidly with the increased
availability of radio active tracers. These tracers are
very convenient to use because the measurements can be
made without making holes in pipes and tanks for sampling.
A review of applications is given in Danckwertz (1953).

The work with radio active tracers is usually carried out
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by organizations which are closely related to the national
atomic energy organizations. Many applications of impulse
response analysis are found in the symposia on industrial
applications of radio isotopes and related topics which
are organized by the International Atomic Energy Agency
in Vienna. The applications discussed in Section 3 are

based on Ljunggren (1968) and Ryti (1966).

The theory of flow systems is closely related to many
fields of applied mathematics. Since the impulse response
of an open flow system can be interpreted as a probabili=-
ty density, there are obvious connections to probability
theory. The transfer function H is e.g. a characteristic
function. The complete characterization of the transfer
function goes also back to the famous theorem by Bochner
(1932).

Other characterizations are found in Lukacs (1810).

The internal properties of flow systems discussed in Sec-
tion 4 do largely depend on the theory of positive matri-
ces, which were originally developed by Perron and Frobe-
nives. Positive matrices appear in many branches of app-
lied mathematics, e.g. in mathematical economy and proba-
bility theory. Good expositions of the theory are found
in Bellman (1960) and Gantmacher (1960).

Compartment models which are mathematically equivalent to
flow systems were introduced by Widmark (1920) who inves-
tigated the absorbtion and metabolism of alcohol in humans.
Pioneering work in this area was done by Teorell (1937)

who first formulated the compartment models that are now
commonly used in pharmacokinetics. Teorell's original pa-
per is still one of the best introductions to the field
because he has a very good discussion of the basic trans-

port mechanisms and a motivation for the linearization as-
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sumptions. Compartment systems are extensively discussed
in the books Sheppartd (1962) and Atkins (1969). The no-
tions of catenary and mammillary systems were introduced
in Sheppartd and Householder (1951) . They are further per-
sued in Berman and Schoenfeld (1956). The eigenvalues of
catenary and mammillary systems were analysed by Hearon
(1961 and 1963). The identifiability conditions for cate-

nary systems were given by Bellman and Astrém (1970) .

The application of compartmental models to describe the
propagation of drugs in the body is commonly discussed un-
der the name of pharmacokinetics. The work was pioneered
by Widmark and Teorell. The name pharmacokinetics was
coined in Dost (1953). Further expositions are found in
Dost (1968) and Rescigno and Segre (1966). The applica-
tion of pharmacokinetics is now spreading rapidly. Recent
material are found in Raspé& (1970), Wagner (1971), Teorell
et.al. (1974).




APPENDIX A - Proof of Theorem 4.6.

The proof is straightforward but tedious. The basic idea
is to derive the Laplace transform of the measured trans-
fer tracer concentration and to analyse how the parame-
ters of the Laplace transform depend on the flows and vo-
lumes. Two different arrangements of the inlet and the

outlet are considered. See Fig. A.l.

I+ is assumed that the inlet is connected to tank number
k and that the outlet is connected to tank number £. The
numbers k and £ may assume the values 1, 2, ..., n. Let
the tracer be injected into tank j. The tracer propaga-

tion is described by the equation

Ac (A.1)

S lQ-l
& {Q
|
Q
I

where the elements of the tridiagonal matrix A are given

by

=
|

T PR R L]
By = 93 i+1/Vi

Y =9y 3-1/V%

where q, and qqq are interpreted as being zero.

n+1l

A flow balance for the i:th tank gives



( qo i =k
Oy g1 9y Ay g4 T (A.2)
0 i % k
Hence
o, = (2.3)
Bl+Yi i+ k
where
Yy = 0 and Bn = 0

The tracer equation (A.l) thus contains 3n-1 parameters
for open systems and 3n-2 parameters for closed systems.
Since there are n constraints (A.3) among the parameters
the free parameters are 2n-1 and 2n-2 respectively. There
are n volumes and n-1 respectively n-2 flows to be deter-

mined.

Recalling that tracer was injected into tank j. The tra=-

cer equations then become

s+al @Bl cl(s) 0
Y2 stay 7By ¢y (s) 9
. = |m/v.
. :/ 3
"Y1 S+anml _Bnml Cnml(s) 0
Y, s+o<n cn(s) 0

Using Cramer's rule for evaluating determinants it is
straightforward to show that the transfer function for

the concentration in tank i is given by



Ei ° m=1 J i < 3
Vj dn(s)
+ P
a. ,(s)d__.(s)
Ci(s)=ﬂﬂb_fl_ 1 n-=7j i = 3
Vj dn(s)

<
jo]
)

3 n (A.4)

where the polynomials di(s) and d;(s) are defined by

d

g(s) = 1

+ o,
dl(s) = s + O

°

+ _ . - +

dj (s) = (s#ay)dy g (s) = By 3¥ydy 5 (8)

do(s) = 1

dl(S) = s + Qa,

di(S) = (S+an“i+l)di“l(8) - BnmiYn“i+ldi“2(S)

(A.5)
Furthermore

a_(s) = d:(s) = d_(s) (A.6)



The transfer function (A.4) will be of order n only if
there are no common factors in the numerator and the de-
nominator. A necessary and sufficient condition for that

is that all the numbers YZBl’ Y3B2, eeoys Y. B are dif-

Ts), wens 08D

and'{dg(s), dz(s), coey d;(s)} are then Sturm sequences

ferent from zero. The sequences'{dg(s), d

whose elements cannot have common factors. Compare the
proof of Theorem 4,3, The numbers BlYZ’ e ooy Bn=lTn are
all nonzero because it was assumed that there was bidi-

rectional flow between all tanks.

By injecting a tracer in tank j the Laplace transform of
the measured tracer concentration in tank i is a rational

function

J
where the polynomial A(s) has degree n and B(s) has a
degree lower than n. The coefficients of the polynomials
A(s) and B(s) can be determined from the measured da-
ta. The analysis of identifiability is then reduced to
the problem of determining the volumes and the flows from

the coefficients of the polynomials A(s) and B(s).

The coefficients of s™ in A(s) is one. The constant term
of A(s) will according to Theorem 4.1 vanish for closed
system. The transfer function thus contains 2n-1-1i-Jjl
parameters for open systems and 2n-2-li-j| parameters for
closed systems. By a simple count of parameters and equa-
tions it is thus found that the volumes and flows cannot
be determined uniquely unless i = j. A necessary condi-
tion is thus that the tracer is injected and measured in

the same tank.

Assuming i = j we will now proceed to analyse sufficient

conditions. For this purpose two cases will be separated.



It is first assumed that the tracer is injected into an
end tank. By relabelling it can always be assumed that

the tank has number 1. Since

the parameter V; can be determined directly. The polyno-

mial B(s) can then be normalized.

Let the polynomials A(s) and B(s) be given by

A(s)

]

)]
+
Q
w
4
4
@
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(O]
+
o
i3]
+
+
o

B(s)

Notice that it follows from Theorem 4.1 that a, is zero
for a closed system. Division of the polynomial A(s) by

B(s) gives

Als) _ o 4 ag =~ by + C(s) (A.7)
B(s) B(s)
where

c(s) = [(ay=by) = by (a;=by) 1”72 +
+ [(a3..=.b3) = bz(al'ﬂbl)]snm‘B + ce. +

+ [(anwlmbnwl) - bnmz(alubl)]s +



Equation (A.6) gives

dn(s) d__,(s)
—— =5+ o, ~ Y_B e (A.8)

d (s)

n-1

Since the tracer was injected and measured in tank 1 it
follows from (A.5) that
A(s) dn(s)

B(s) dn_l(S)

Equations (A.7) and (A.8) then give

an = a; - bl
Y Bo_q = - [(ay=by) = by(a;=by)]
C(s) = = Yth“lanZ(S)

Proceeding recursively it is thus possible to determine
the parameters a; and the parameter combinations Y, B, ;-
Notice that it follows from the assumption that there

was bidirectional flows between all tanks that YiBi-q * 0
for i = 2, ..., n. Since there was only one inflow one of
the end tanks must be without an inflow. Equation (A.3)
gives Y; = 0 for i =1 and B; = 0 for i = n. It then fol-
lows from (A.3) that By = o4 and Yy = O One of the pa-
rameters Bl and Y, can thus be determined uniquely. The
other parameters are then determined recursively from the

products TiBial°

T+ now remains to determine the flows and the volumes from

the parameters aj;, By and Yy The possibility to do so fol-
lows from the following lemma and the proof is complete.
o



Lemma A.l.

Consider a catenary system with one inflow and one out-
flow. Assume that the parameters Oy v Bi :
and that the volume of the tank where the tracer is in-

and Y; are known,

jected is also known. Then all volumes and flows can be

determined.

Proof. The proof is an explicite construction. Let the
tracer be injected into tank i. The flows associated with

this tank are given by

- = o,V
955 3V
= Y.V
95 5-1 7 735
. . = B.V. D= § A.9

Two cases will be considered separately.

Case a. If there is no inflow and no outflow to tanks with

indices >i it follows the flow balance that
A 141 91414

The volume of tank i+l is then given by

Yip1Viel = =YV

9i41 i Foivd i1

The volume of the tank i+l can then be determined. Equa-=
tion (A.9) then gives the flows associated with this tank.
Proceeding recursively all volumes and flows can thus be
determined for j > i. Analogously it is possible to de-
termine all volumes and flows if there are no inflows and

outflows for tanks with indices <i.



Case b. If the tank where the tracer is injected is bet-

ween the inlet and the outlet say k <1 < £ a flow balance

gives

i1 5 - 5 oi41 T 9o k<ict-l

The volume Vg is then given by
Yi-1Vi-1 T 90 * 9oy 5 T 9o Y viVy
Proceeding recursively we thus find

Vk = eV, + fqo

provided Y # 0 for a flow balance for tank k gives

U = Bk + T + qO/Vk

The flow dg and the volume q, can thus be determined
uniquely. It is then straightforward to determine the

other flows and volumes.

The volume Vi can be determined by

ci(O) = M/Vi

The Laplace transform of the measured concentration can

then be written as

+ -
di_l (S)dﬂ“i(s)

vy A(s) 1 ‘dn(s)

=1
Y




The determinant dn(s) can be written as follows

+ -

+ . N .
d (s) = (S+O(i)di“l(s)dn=‘i(s) - Bileidimz(S)dnmi(s)
+ .

= BiYy4195-7 ()9 59 (8)

Hence
+ =

A(s) = (s+a;)B(s) - BioqYiGin(s)d, _;(s) -

- at_(s)da _,_,(s)

Bi¥i4193-108)9n 5108

B(s)

+ -
dj.p(8)dy s (s)

Given the polynomials A(s) and B(s) the parameter o, can
be determined uniquely. A factorization of the polynomial
B(s) will also give dznl(s) and d;mi(s). This factoriza-
tion is, however, not unique. If m = min(i-1, n=1i) there
are (;ii) different possibilities. Having obtained the
fictors diml(s) and d;_i(s) the polynomials d;wz(s) and
dnwiml(s) and the reals B, Y, and B,v;,; can tEen be de-
termined from ( ) provided that di=l(s) and dnmi(s) are
relatively prime. Since there was bidirectional flow bet-
ween all tanks the numbers Bm and Y, 2re all different
from zero. Proceeding in the same way as was done in case
1 all the coefficients O 7 Bm
mined and the volumes and flows are then obtained from

and Y, can then be deter-

Lemma A.l.



APPENDIX B = Proof of Theorem 4.7.

The proof follows the same lines as the proof of Theorem
4.6, It is straightforward but tedious because many dif-
ferent cases have to be considered. The possible combina-

tions of inlets and outlets are given below.

Case Inlet Outlet
a NO‘ NO
b C C
c C P
d P C
e P P
£ P Pl

In the table C denotes the central tank and P and Pl de-
note peripheral tanks. The graphs of the corresponding

systems are shown in Fig. B.Ll.

The experiment can be arranged in many different ways.

1. The tracer is injected in the central tank and the

tracer concentration is measured in the same tank.

2. The tracer is injected in the central tank and the
tracer concentration is measured in a peripheral

tank.

3. The tracer 1s injected in a peripheral tank and the

tracer concentration is measured in the central tank.

4., The tracer is injected in a peripheral tank and the
tracer concentration is measured in the same periphe-
ral tank.

5. The tracer is injected in a peripheral tank and the
tracer concentration is measured in another periphe-

ral tank.
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Fig. B.l - Graphs of mammillary systems having different

arrangements of inlets and outlets.



Considering all possibilities there are 30 different ca-

ses to consider. The tracer equations can be written as

where

11

1l

App

o
Il

ii

1k

1i

11 12
a1 %22
a31 0
anl 0

“(q/@+qo)/vﬂ
“qi/vi

dy /Vq

(qtag) /Vy

a;/Vq

( n
- L 1) /v,
4
[ i
0 i
“qk/vk

case a, e

case b, ¢, d, £

case a; b, c,

case d, e, I

case a, b, d, e

case ¢, £

i*x1, k, 2

case a, b, ¢, e

case d, £

i+1, k

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)



ayy = 943/V;
qﬂ/vz
am_ =
(q£+q0)/V£

case a, b, d,

case ¢,f

(B.8)

Tt has been assumed that the tanks are numbered in such

a way that the central tank has number 1. Without loss

of generality it can also be assumed that if a tracer is

injected in a peripheral tank it is injected in tank 2.

Laplace transformation of the tracer equations give

STa11 %12
~a,q s=a
maBl 0
“anl 0

where
.M/Vm
ci(O) =

22

23

0

S57a33

Cl(S)
CZ(S)
C3(S)

°
®

Cn(S)

cl(O)

c, (0)

0

(B.10)

where m is the index of the tank where the tracer is in-

jected, if the tracer is injected in the second tank.

To discuss identifiability the different cases will now

be discussed separately.



Tn this case the tracer is injected in the central tank

and the tracer concentration is measured in the same tank.

Solving Cl(s) from (B.10) and (B.1ll) gives

I._J

For an open system there are 2n parameters to be deter-
mined, the wvolumes Vl’ e e oy Vn and the flows Aor Aor ceer
Ay e For a closed system there are 2n-1 parameters to be
determined because dg = 0. From a tracer experiment the
coefficients of the polynomials A(s) and B(s) can be de-~
termined if the total amount of injected tracer is known.
This corresponds to 2n parameters for open systems and

2n-1 parameters for closed systems.

Since

1 B
B(s) = == T (Smaii)
Vl i=2

the parameters a, i=2, ..., n, are uniquely deter-

il
mined from the zeros of B(s). The volume Vl is obtained

from the coefficient of snml in B(s). Furthermore since

n n a8
A(s) = T (s=a,.)|s - a;q - B

2 i=2 s =-a,.
ii

a division of A(s) by B(s) and a partial fraction expan-

sion gives the parameter ajy and the products a1i@517



i =2, «.., n. The equations (B.5) and (B.7) then give

i+ 1, k, £

The parameters a4 and thus also a;q can thus be deter-
mined for i %# 1, k, £. To determine a4 a1k and alﬁ dif-

ferent subcases have to be considered.

Cases la and 1lb. In these cases it follows from the mass

balances for the tanks k and £ that

Ak T T %1k

e T T %12
The parameters alk’ alz)and thus also Q1 7 akl can thus
be determined. It now remains to determine the volumes

and the flows. The volume Vl has already been determined.

The flows qy i=2, ..., n, are then obtained from equa-

tion (B.6) and (B.7), i.e.

\Y i =2, coe; N

43 = 3141

Equations (B.3), (B.4) and (B.5) then give the volumes

Vi = - qi/aii i =2, 0., 1

In case lb it also remains to determine qg. The equation

(C.2) implies



and all physical parameters are thus determined.

Remark. The analysis of case la is somewhat simplified

if it is observed that a flow balance for the central

tank (B.2), (B.7) gives

I o~113
W
I....I
I_J.
i
o

and that a flow balance for a peripheral tank gives

a;y + a5 = 0 i =2, ese, 1

A combination of the egquations above gives

n n
magy = LAy = .Z a14851/255
i=2 i=2
Hence
n a,.a, n
_ _ _ 1i7il 1
A(s) = s ajq .E s -+ X ay5347
i=2 s - a,. i=2 a S=a, .
ii ii ii
n ail
=s|l+ )
i=2 s=’aii

the outflow from a peripheral tank. The equations (B.3)

and (B.8) give

ax1 T 7 kk



and the equations (B.4) and (B.9) give

fe1 T 7 Cee
The parameters aqi and a;q can thus be determined.
The flows q; are then givén by (B.6) and (B.7), i.e.

q; = alivl i =2, ..., n

Equation (C.2) then gives

The volumes are then given by (B.8) and (B.9), i.e.
qi/ail i+ 1, £

Case_ld. In this case there is an inflow to a peripheral

tank and an outflow from the central tank. Egquations (B.4)

and (B.9) give

= - 3

a1 2L

The parameter a,, can then be determined and the flow dp
is then given by (B.7). Egquation (B.2) gives (q0+qk) and
(C.6) then gives ajy which means that a,, can also be de-
termined. The volume’Vk is then given by (B.3) and the

flow q is finally obtained from (B.8).



Case_le. In this case both the inlet and the outlet are

connected to a peripheral tank. Egquations (C.4) and (B.9)

give

8p1 T 7 Gpp

The parameter a,, can then be determined and the flow g
is then given by (B.7). Equation (B.2) gives Iy and 3y
can then be determined from (B.6). The parameter a1 is
then also given and V]< is then obtained from (B.8). The

flow dg is finally determined from (B.2).

Case 1f. In this case the inlet is connected to one peri-

pheral tank and the outlet to another. Equations (B.4)
and (B.9) give

= - a

a1 2L

The parameter arp and thus also the flow q, can thus be
determined using (B.7). The parameter combination qptd)
is then given by (B.2). This gives the volume Vi by (B.3)
and the parameter aqx by (B.6). The parameter a,; can
then be determined from the knowledge of the product
33131 and the flow Ty is then obtained.

The proof of the theorem is now complete in case 1.



In this case the tracer is injected in the central tank

and the tracer concentration is measured in a peripheral
tank. It is assumed that the tanks are numbered in such

a way that the measurement is made in tank n. Equations

(B.10) and (B.ll) give

n=1
a M (s=a..)
c (s) = % " i . _ 1B(s)
n n n a,.a,
vy T (s-a..)|s - a -3 1i7il M A(s)
. ii 11 ,
i=2 i=2 s = a,.

i1

As before the coefficients of the polynomials A(s) and
B(s) can be determined from a tracer experiment if the
total amount M of injected tracer is known. Since the
polynomial B(s) is of degree n-2 the experiments give
2n-1 parameters for open systems and 2n-2 parameters
for closed system. These coefficients are not enough to

determine the n volumes and n flows.

In this case the tracer is injected in a peripheral tank
and the tracer concentration is measured in the central
tank. It is assumed that the tanks are numbered in such

a way that the tracer is injected in tank number n. Equa-
tions (B.10) and (B.ll) give

) (e) = B2

A(s)

where



A(s) = § (s—a. ) s - 2?1484
81 = STai4 ajp < )
=2 i=2 s =-a,,
11
aln n=1
B(s) =—— TI (Smaii)
vV, i=2

Since the polynomial B(s) is of degree n-2 it is not pos-

sible to determine the volumes and flows uniquely.

In this case the tracer is injected into a peripheral tank
and the tracer concentration is measured in the same peri-
pheral tank. Assuming that this tank is given number n

equations (B.1l0) and (B.ll) give

¢, (s) = u BL8)
A(s)
where
n n a..,a,
1
A(s) = T (s-a;;)|s = a;; = ) _Liil
l=2 l=2 g - aii
n-1 n-1 a..a,
B(s) = L T (Smaii) s - ajy - i il
vV, 1=2 i=2 s -a..
1 ii

If the total amount of injected tracer is known the poly-
nomials A(s) and B(s) can be determined from the tracer

experiment. Division of A(s) by B(s) gives



CA(s) _ _ o 1n"nl _
Vl =S 4nn n-1 a,.a -
B(s) s - a _ z 1i7il

11 -
i=2 s -a..
ii
C(s)
=g R e
nn D (s)

The coefficient ann and the polynomials C(s) and D(s) can

thus be determined. Since

Cls) = aj an;

a factorization of C gives a, i=2, «.¢., n-1l. The pro-

ii’

ducts aj;ayq are then obtained from a partial fraction
expansion of D(s). The volumes and flows can then be de-

termined in the same way as in Case 1.

In this case the tracer is injected into one peripheral
tank (¥n) and the tracer concentration is measured in an-
other peripheral tank ($#2). Equations (B.10) and (B.1l1l)

give

c,(s) =M B(s)
Al(s)
where
i=2 i=2 s =-a



B(s) = aja;, . 11/

Since the polynomial B(s) is of degree n-3 it is charac-
terized by n-2 coefficients there are not enough condi-

tions to determine the unknown parameters.
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