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OPTIMAL CONTROL OF MARKOV PROCESSES WITH INCOMPLETE STATE-
INFORMATION II -~ THE CONVEXITY OF THE LOSSFUNCTION

by K. J Astrém

1. Introduction

A nonlinear adaptive control problem was discussed in El].

It was shown that by quantisizing time and statespace the pro-
blem could be reduced to a variational problem for a Markov
chain with incomplete state-information. To solve the varia-

tional problem we introduced a hyperstate or an information

state consisting of a vector w(t) such that wi(t) is the con-
ditional probability that the Markov process is in state 1
given all measured variables up to time t. We choose the

statespace S5 as the subset of Rn defined by
S = {x; x. 2 0}
i

After introducing the lossfunction V: S > Rqs it was shown
in [l] that the variational problem could be reduced to the

solution of the following functional equation

V(W) = mix {(g,w) + ? ][Ajw]] Vil (Ajw/llAjw|[)}
VN(w) = max (g,w) , W & S (1.1)
u

where Aj is the linear transformation defined by

(Ajw)i = 2 A35 Pgi Vg (1.2)

Il = ¢ |x,]

The notation is that of [1]. The i:th component of the vec-
tor g denotes the instantaneous gain achieved by being in
state i at time t and choosing the control variable u. P is
the transition matrix of the Markov chain and Q is the obser-

vation matrix defined in [11, qij thus denotes the probability
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that the measuring equipment denotes the process as being

in the j:th state when it actually is in state i. The ma-
trices P and Q as well as the vector g depend on u and t.

As P and Q are probability matrices having nonnegative ele-
ments it follows that Aj maps S into S. In [l] 1t was as-
sumed that Q does not depend on u. All results of [l] will,
however, also be valid when Q depends on u. Equation (1.1)
admits an analytical solution only in very specific cases.
The equation can, however, always be solved numerically. In
the example 1 of [l] we found that V was convex in w and in
example 2 of [1] where the maximum operation of (1.1) was
substituted by a minimum operation, we found that V was con-
cave in w. In this paper we will establish that this obser-
vation is true in general. Apart from being an amusing curio-
sity the result is useful for establishing convergence pro-
perties as well as for the simplification of numerical algo-

rithms.

2. Main result

Before giving the main theorem we will establish some simple

properties of convex functions. We have

Lemma 1

Let fl(x) and fz(x) be convex functions. The function

f(x) = max {fl(x), fz(x)} (2.1)

is then also convex.

Proof

We first show that

max {a+b, c+d} < max {a,c} + max {b,d} (2.2)
Consider four separate cases:

1. If a > cand b > d, the right member becomes atb.
Further a+b > c*+d and the result holds.

2. If a > c and b < d, the right member becomes atd.

Further atb < at+d and c+d < atd.




3. If a ¢ ¢c and b > d, the right member becomes btc.

Further a+b < btc and c+d < b+c.

b, If a x

Further atb <

c and b ¢ d, the right member becomes ctd.

ctd and the result also holds.

Now let 0 < A < 1 - A, Consider the value of the

function f defined by (2.1) for the argument ix + uy. We have

1 and u =

flaxtuy) = max{fl(kx+uy), f2(xx+uy)}

7N

max{xfl(x) + ufl(y), Afz(x) + ufz(y)}

N

max{xfl(x), Afz(x)} + max{ufl(y), ufz(y)}

1

A max{fl(x), fz(x)} + max{fl(x), fz(x)}

(k) +ou £(y) (2.3)

where the first inequality follows from fl and f, being con-
vex, the second from equation (2.2) and the last two equali-
ties from A and p being nonnegative and equation (2.1). The

result 1s then established.

We have further
Lemma 2

S - R1 be convex and let A be a linear

transformation which maps S into S. The function f: § - Ry

defined by

Let the function g:

f(x) = ||Ax]|]| g(Ax/ | |Ax]|]), X & S (2.4)
is then also convex.
Proof
Let 0 ¢ A ¢ 1l and pw = 1 - ), take x € S and y & S, then
Flaxtuy) = | |2Ax + pAy|| g( MAX * uhy
| [2Ax + wAy]]
- Ax Ay
= | 1xax + way|] g0y g ) (2.5)
| [Ax] | [ Ay ]

where




| ax] | o= —u LAyl (2.6)

AL =
| [Aax + uAy| ] | [2Ax + wAyl]|

1

As X and p are nonnegative and A maps S into S, Mx &€ S,
My € S, MAx + pAy € S. For two elements of u and v of S we

have ||u+v|| = ||ull + ||v]| hence

A =1

1t

Now using the convexity of g we find

G —BE% LAYy g e (B g (Y (2.7

1 1
| [Ax] | | [ay]] | [ax] | | 1Ayl
Combining (2.5), (2.6) and (2.7) we find
FOxctuy) € A [Ax] ]+ g(—EX— ) & ullay|| - g(—2L—)
| [Ax]] [ [Ay] ]

= x f(x) + u f(y)

and the result is established.

We can now state the main result.

Theorem

Let Aj be mappings from S into S the functions Vt = 35 - Ry

defined recursively by (1.1) are then convex,.

Proof

The linear function (g,w) is convex. By repeated application
of Lemma 1 we now find that VN(W) is convex. Now consider
Vy_1(w). It follows from Lemma 2 that VN(Ajw/IIAjw!I)||Ajw[|
is convex. As a sum of convex functions is convex we find
that both terms within the brackets of the right member of
(1.1) are convex. Application of Lemma 1 now shows that
VN~1(W) is convex. Now proceeding by induction we can show
that all functions Vt(W) are convex, and the theorem is pro-

ven.




Remark
We can show in a completely analogous way that the solu-
tions Vt(W) of the equation

Ve () = min {(g,w) + ? ]]Ajw\l Vi (Ajw/\[Ajwil)}

VN(W) = min (g,w)
u

are concave. Compare [lw fig. 2.
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