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Concentration Bounds for Single Parameter Adaptive Control

Anders Rantzer

Abstract— The purpose of this paper is to analyse transient
dynamics in adaptive control using statistical concentration
bounds. For maximal clarity, the study is limited to a linear
first order system with a single uncertain parameter. Two types
of bounds are given: First we prove probabilistic bounds on the
parameter estimation error as a function of time. In particular,
we prove that the estimation error has finite variance after
three time steps and finite fourth moments after five time steps.
These bounds are independent of how the parameter estimates
are used for feedback. Secondly, we bound the “regret” as
a function of time, i.e. the difference in control performance
between a self-tuning adaptive controller and the best controller
given full knowledge of the plant. The conservatism of the
bounds is investigated through simulation.

I. INTRODUCTION

The history of adaptive control dates back at least to air-

craft autopilot development in the 1950s. Later on, computer

control and system identification lead to a surge of research

activity during the 1970s. Following the landmark paper [2],

a long sequence of contributions to adaptive control theory

derived conditions for convergence, stability, robustness and

performance under various assumptions. For example, [12]

analysed adaptive algorithms using averaging, [7] derived an

algorithm that gives mean square stability with probability

one, while [9] gave conditions for the optimal asymptotic rate

of convergence. On the other hand, conditions that may cause

instability were studied in [6], [11] and [15]. Altogether,

hundreds (maybe thousands) of papers have been written on

adaptive control, followed by numerous textbooks, such as

[3], [8], [13], [16] and [1].

The research activity in adaptive control was declining

in the 1990s, but has recently started to grow again, for

reasons similar to the growth of machine leaning; abundance

of data and computing resources creates an ever-growing

stream of engineering opportunities for adaptation. Also

from the theoretical perspective there are new opportunities.

While the literature during the 1970-90s was focused on

stability and asymptotic performance, new tools for analysis

of the transient behavior have recently emerged. In partic-

ular, statistical theory for tail and concentration bounds has

seen a dramatic development during the last twenty years,

with numerous applications in fields like machine learning,

compressed sensing, network routing and pattern recognition

and is now taught in regular university curriculum. See for

example [14] and [19]. Moreover, the attractivity of the

theory from a controls perspective has grown with recent

extensions to random matrices, as summarized in [18] and

[17].

The author is affiliated with Automatic Control LTH, Lund University,
Box 118, SE-221 00 Lund, Sweden.

The purpose of this paper is to demonstrate how transient

analysis of adaptive controllers can be carried out using

statistical concentration bounds. The analysis is limited to

a scalar system with only one estimated parameter, but, as

explained later, the main arguments have natural generaliza-

tions to vectors and matrices.

After some notation and preliminaries in section II, the

main bounds on parameter estimation errors are proved in

section III. These bounds are then used in section IV to

bound the “regret”, i.e. the difference in control perfor-

mance between a self-tuning adaptive controller and the best

controller given full knowledge of the plant. We conclude

the paper with some comments and ideas for multi-variable

extensions.

II. NOTATION AND PRELIMINARIES

Let P denote probability and E expected value. For a

random variable x > 0, the moments can be computed as

Exp =

∫ ∞

0

P[xp ≥ t]dt.

The probability on the right hand side will in this paper be

estimated using the Chernoff bound

P[x ≥ 0] ≤ inf
θ>0

Eeθx.

A random variable x ∈ R with mean x̄ is said to be sub-

Gaussian with variance proxy ν2 if

E[eθ(x−x̄)] ≤ eθ
2ν2/2

for all θ ∈ R. Some basic properties of sub-Gaussian

variables are:

Proposition 1: Let x and y be independent and sub-

Gaussian with variance proxy ν2x and ν2y respectively. Then

x+ y is sub-Gaussian with variance proxy ν2x + ν2y .

Proposition 2: Let x ∈ R be a zero mean sub-Gaussian

random variable with unit variance proxy. Let y ∈ R be

fixed. Then

E exp
[
θ(x + y)2

]
≤ 1√

1− 2θ
exp

(
θy2

1− 2θ

)

for θ < 1/2.

Proposition 3: Let w1, . . . , wt be i.i.d. sub-Gaussian ran-

dom variables with unit variance proxy and symmetric dis-

tribution around zero. Then

E
[
(w2

1 + · · ·+ w2
t )

p
]
≤ tp(2p− 1)!!

where n!! denotes the product of all odd numbers up to n.

See the Appendix for references and proofs.
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Fig. 1. The upper solid plot is the upper bound 4/(t− 2) for the variance
E(ât − a)2 according to Theorem 4. This bound is valid for all values
of a and all control laws. The second plot (dash-dotted) is the average of
(ât−a)2 over 105 simulations with a = 0 and uk ≡ 0. The third and fourth
plots are averages of (ât − a)2 over 105 simulations with uk = −âkxk

and with a = 1 and a = 2 respectively.

III. FINITE TIME ESTIMATION ERROR BOUNDS

Consider a scalar linear system

xk+1 = axk + uk + wk, x0 = 0 (1)

where the parameter a ∈ R and w0, . . . , wt are inde-

pendent zero mean sub-Gaussian random variables with

variance proxy σ2. The least squares estimate of a given

u0, x0, . . . , ut, xt is then

ât =

∑t−1
k=1(xk+1 − uk)xk∑t−1

k=1 x
2
k

. (2)

Our first result, giving probabilistic bounds on the estimation

error ât − a, can then be stated as follows:

Theorem 4: Define xk and ât according to (1) and (2).

Suppose for every k that uk is a measurable function of

x0, . . . , xk. Define ρ > 0. Then

P
[
|ât − a| > ρ

]
≤ 2

(
1 + ρ2

)−t/2
(3)

E(ât − a)2p ≤ 2p+1p!
(t−2)(t−4)···(t−2p) (4)

for t ≥ 2p+ 1.

Remark 1. Notice that for any given error level ρ > 0, the

probability that the estimation error exceeds ρ will decay at

least as fast as the exponential rate (3), which is independent

of the control law determining uk. As an illustration, we have

in Figure 1 plotted the bound on E(ât − a)2 together with

simulated values of
∑T

t=1(ât − a)2/T .

The following lemma will be useful for the proof of

Theorem 4:

Lemma 5: For t ≥ 1, let w0, . . . , wt be independent zero

mean sub-Gaussian random variables with variance proxy

σ2. Define xk+1 = zk+wk, where z0 = 0 and for k ≥ 1 the

variable zk is a measurable function of w0, . . . , wk−1. Then

E exp

[
ρ

σ2

t∑

k=1

(
wkxk − ρx2

k

)
]
≤ 1

(1 + ρ2)t/2

Proof. For k ≥ 1, define Fk to be the σ-algebra generated

by w0, . . . , wk . Then

E exp

[
ρ

σ2

t∑

k=1

(
wkxk − ρx2

k

) ∣∣∣∣ Ft−1

]

≤ exp

[
ρ

σ2

(
t−1∑

k=1

(
wkxk − ρx2

k

)
− ρ

2
x2
t

)]
(5)

by the definition of wt being sub-Gaussian. Only two terms

in the bracket depend on wt−1, namely wt−1xt−1 and ρ
2x

2
t .

Isolating wt−1 by completion of squares

ρ

σ2

(
wt−1xt−1 −

ρ

2
x2
t

)

=
ρ

σ2
wt−1xt−1 −

ρ2

2σ2
(zt−1 + wt−1)

2

=
x2
t−1

2σ2
− ρzt−1xt−1

σ2
− ρ2

2

(
zt−1

σ
− xt−1

ρσ
+

wt−1

σ

)2

and applying Proposition 2 gives

E

[

exp
( ρ

σ2

(

wt−1xt−1 −
ρ

2
x2
t

))

∣

∣

∣

∣

Ft−2

]

≤
1

√

1 + ρ2
exp

(

x2
t−1

2σ2
−

ρzt−1xt−1

σ2
−

ρ2/2

1 + ρ2

(

zt−1

σ
−

xt−1

ρσ

)2
)

=
1

√

1 + ρ2
exp

(

ρ2x2
t−1

2σ2
−

ρ2

2σ2(1 + ρ2)
(ρxt−1 + zt−1)

2

)

≤
1

√

1 + ρ2
exp

(

ρ2x2
t−1

2σ2

)

.

Repeated use of this argument implies

E exp

[
ρ

σ2

t∑

k=1

(
wkxk − ρx2

k

)
]

≤ E exp

[
ρ

σ2

(
t−1∑

k=1

(
wkxk − ρx2

k

)
− ρ

2
x2
t

)]

≤ 1√
1 + ρ2

E exp

[
ρ

σ2

(
t−2∑

k=1

(
wkxk − ρx2

k

)
− ρ

2
x2
t−1

)]

...

≤ 1

(1 + ρ2)(t−1)/2
E exp

[
− ρ2

2σ2
x2
1

]

≤ (1 + ρ2)−t/2

✷

Proof of Theorem 4. Note that

ât − a =

∑t−1
k=1 wkxk∑t−1
k=1 x

2
k

.



Define zk = axk + uk. Then

P
[
ât − a > ρ

]
= P

[∑t
k=1(wkxk − ρx2

k) > 0
]

≤ E exp
[
ρσ−2∑t

k=1

(
wkxk − ρx2

k

)]

≤
(
1 + ρ2

)−t/2
.

The first inequality is the Chernoff bound and the second is

given by Lemma 5. An identical argument gives the same

upper bound for P
[
a− ât > ρ

]
. Adding the two probabilities

gives (3).

For positive integers p, we get (4) as follows:

E(ât − a)2p =

∫ ∞

0

P
[
|ât − a|2p > yp

]
d(yp)

≤
∫ ∞

0

2

(1 + y)t/2
d(yp)

=

∫ ∞

0

2p(p− 1)yp−2

(t/2− 1)(1 + y)t/2−1
dy

=

∫ ∞

0

2p(p− 1)(p− 2)yp−3

(t/2− 1)(t/2− 2)(1 + y)t/2−2
dy

...

=

∫ ∞

0

2p(p− 1)(p− 2) · · · 2 · 1
(t/2− 1) · · · (t/2− p+ 1)(1 + y)t/2−p+1

dy

=
2p!

(t/2− 1)(t/2− 2) · · · (t/2− p)

✷

IV. A REGRET BOUND FOR SELF-TUNING CONTROL

Combining (1) with the feedback law uk = −âkxk for

k ≥ 2 and vk = 0 gives the closed loop system



x1 = w0, x2 = ax1 + w1

xt+1 =
∑t−1

k=1
wkxk

∑t−1

k=1
x2
k

xt + wt t ≥ 2
(6)

or alternatively




x1 = w0, x2 = ax1 + w1, X0 = Y0 = 0

Xt = Xt−1 + x2
t t ≥ 1

Yt = Yt−1 + xtwt t ≥ 1

Wt = Wt−1 + w2
t t ≥ 1

xt+1 = Yt−1

Xt−1
xt + wt t ≥ 2

(7)

By extending arguments of the previous section, we will now

prove the following decay bound on the state variance.

Theorem 6: Suppose that w0, . . . , wt are independent sub-

Gaussian random variables with unit variance proxy. Let xt

be defined by (6). Then

Ex2
t ≤ 704(t− 2)2

(t− 9)3
+ 1

for t ≥ 2p+ 8 ≥ 10.

Remark 2. Notice that when the parameter a is known, the

optimal controller is uk = −axk, with cost Ex2
t = 1. Hence

the term
704(t−2)2

(t−9)3 gives a bound on the “regret”. (Strictly

speaking, the regret is the accumulated cost degradation up

to time t, but this number would be infinite already at t = 1.)
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Fig. 2. The upper solid plot is the upper bound
704(t−2)2

(t−10)3
for Ex2

t
− 1

versus t. This bound is valid for all values of a and t. The lower plot is the
average of x2

t
− 1 over 105 simulations with a = 1 and uk = −âkxk .

To illustrate the result, Figure 2 plots the upper bound

together with simulated values of
∑T

t=1 x
2
t/T .

Lemma 7: Let {xk}∞k=1 be defined as in Lemma 5. Then

E
[
(x2

1 + · · ·+ x2
t )

−p
]
≤ 2t−p for t = 1, 2, 3 . . .

Proof. Notice that

P

[(
x2
1 + · · ·+ x2

t

)−p
> (y/t)p

]

= P
[
t/y > x2

1 + · · ·+ x2
t

]

≤ min
θ≥0

E exp
[
θ(t/y − x2

1 − · · · − x2
t )
]

≤ min
θ≥0

E exp
[
θ(t/y − x2

1 − · · · − x2
t−1)

]
√
1 + 2θ

...

≤ min
θ≥0

eθt/y

(1 + 2θ)t/2
(8)

=
[
y−1 exp(1− y−1)

]t/2
for y ≥ 1

where the minimum in (8) is attained for θ = (y − 1)/2.

Hence

E
[
(x2

1 + · · ·+ x2
t )

−p
]
· tp

=

∫ ∞

0

P

[(
x2
1 + · · ·+ x2

t

)−p
> (y/t)p

]
d(yp)

≤ 1 +

∫ ∞

1

[
y−1 exp(1 − y−1)

]t/2
d(yp)

≤ 1 +

∫ ∞

1

[
y−1 exp(1 − y−1)

]p+2
d(yp)

= 1 + pep+2

∫ ∞

0

y−3e−(p+2)/ydy

= 1 + p

(
e

p+ 2

)p+2

≤ 2

for t ≥ 2p+ 4 ≥ 6. ✷



Proof of Theorem 6. We will first prove that
∣∣∣∣
xt+1√
Xt

∣∣∣∣ ≤
∣∣∣∣
Yt−1

Xt−1

∣∣∣∣+
∣∣∣∣∣

wt√
Xt−1

∣∣∣∣∣ (9)

|xt+2| ≤
∣∣∣∣
Y 2
t−1

X2
t−1

xt

∣∣∣∣+
∣∣∣∣
Yt−1

Xt−1
wt

∣∣∣∣+
∣∣∣∣
Yt

Xt
wt

∣∣∣∣+ |wt+1|

(10)

for t ≥ 1. Using that â − a = Yt−1/Xt−1, we will now

combine (9) and (10) with Theorem 4 to get the desired

result. The triangle inequality gives

∣∣∣∣
xt+1√
Xt

∣∣∣∣ =

∣∣∣ Yt−1

Xt−1
xt + wt

∣∣∣
√
Xt−1 + x2

t

≤
∣∣∣∣
Yt−1

Xt−1

∣∣∣∣+
∣∣∣∣∣

wt√
Xt−1

∣∣∣∣∣
which proves (9). Similarly

|xt+2| =
∣∣∣∣
Yt

Xt

(
Yt−1

Xt−1
xt + wt

)
+ wt+1

∣∣∣∣

=

∣∣∣∣
(Yt−1 + xtwt)Yt−1

(Xt−1 + x2
t )Xt−1

xt +
Yt

Xt
wt + wt+1

∣∣∣∣

≤
∣∣∣∣
Y 2
t−1

X2
t−1

xt

∣∣∣∣+
∣∣∣∣
Yt−1

Xt−1
wt

∣∣∣∣+
∣∣∣∣
Yt

Xt
wt

∣∣∣∣+ |wt+1|

which proves (10). Using the Cauchy-Schwarz inequality

Y 2
t ≤ XtWt,

together with (9), the first term of (10) can be bounded for

t ≥ 2 as
∣∣∣∣
Y 2
t−1

X2
t−1

xt

∣∣∣∣ ≤
∣∣∣∣∣
Y 2
t−1

X
3/2
t−1

∣∣∣∣∣ ·
∣∣∣∣∣

xt√
Xt−1

∣∣∣∣∣

≤
∣∣∣∣
Yt−1

Xt−1

∣∣∣∣
√
Wt

∣∣∣∣∣
xt√
Xt−1

∣∣∣∣∣

≤
∣∣∣∣
Yt−1

Xt−1

∣∣∣∣
√
Wt

(∣∣∣∣
Yt−2

Xt−2

∣∣∣∣+
∣∣∣∣∣

wt−1√
Xt−2

∣∣∣∣∣

)

The inequality of arithmetic and geometric means then gives
∣∣∣∣
Y 2
t−1

X2
t−1

xt

∣∣∣∣ ≤
2t

3

∣∣∣∣
Y 3
t−1

X3
t−1

∣∣∣∣ +
2W

3/2
t

3t2
+

t

3

∣∣∣∣
Y 3
t−2

X3
t−2

∣∣∣∣+
t

3

|wt−1|3

X
3/2
t−2

.

Injecting this inequality in to (10), squaring, taking expecta-

tion, and applying the bounds of Theorem 4 gives

Ex2
t+2

≤ E

(
4
t2Y 6

t−1

X6
t−1

+
4W 3

t

t4
+ 2

t2Y 6
t−2

X6
t−2

+ 2
t2w6

t−1

X3
t−2

+
Y 2
t−1

X2
t−1

w2
t +

Y 2
t

X2
t

w2
t

)
+ Ew2

t+1

≤ 4t2 · 23+13!

(t− 2)(t− 4)(t− 6)
+

4 · 15
t

+
2t2 · 23+13!

(t− 3)(t− 5)(t− 7)

+
2 · 15 · 2

t
+

4

t− 2
+

4

t− 3
+ 1

≤ 704t2

(t− 7)3
+ 1

which completes the proof. ✷

V. CONCLUSIONS AND EXTENSIONS

The main conclusion of the paper is that the theory of

statistical concentration bounds is a powerful tool for anal-

ysis of adaptive feedback systems. Unlike previous analysis

methods, it makes it possible to prove rigorous bounds on

the behavior of an adaptive system, even after a just small

number of adaptation steps. As expected the bounds come

with a degree of conservatism. However, the qualitative be-

havior of the upper bounds is very similar to the simulations,

which is useful in the context of controller design.

Given, the restrictive nature of the system studied in this

paper, a natural next step is to extend the results to higher

order systems with several parameters. A first minor step

would be to consider systems where the effect of control is

uncertain as in [10], [4]. Analysis of the system

xk+1 = xk + buk, x0 = 0

with the least squares parameter estimate

b̂t =

∑t−1
k=1(xk+1 − xk)uk∑t−1

k=1 u
2
k

.

becomes very similar to Theorem 4 provided that the control

signal has the form uk = zk + wk , where zk is determined

from past data and wk (e.g. the effect of measurement noise)

is independent of the past.

As pointed out earlier, most of the concepts used above

also have matrix counterparts. Hence consider the state

equation xk+1 = Axk + Buk + wk , where wk ∈ R
n is

white noise. Least squares estimation of A and B then gives

the estimation error

[
Ã B̃

]
=

t−1∑

k=1

wk

[
xk

uk

]T (t−1∑

k=1

[
xk

uk

] [
xk

uk

]T)−1

To generalize (3), we need a bound on the probability that

‖
[
Ã B̃

]
‖ > ρ. This inequality can hold only if one of the

two matrices

t−1∑

k=1




[
xk

uk

] [
xk

uk

]T [
xk

uk

]
wT

k

wk

[
xk

uk

]T √
ρ

t−1I




t−1∑

k=1

[
xk

uk

] [
xk

uk

]T
− t−1√

ρ

has a negative eigenvalue. The probability for this can be

bounded using matrix Chernoff bounds [17] in analogy with

the scalar theory of section III.
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APPENDIX: PROOFS AND REFERENCES

An excellent tutorial on probabilistic tail and concentration

bounds is [19], where section 2.1.3 explains Proposition 1

and many related results.

Proof of Proposition 2 The statement is a generalization of

Lemma 1.6 in [5], but the proof is analogous. The identity

1√
2πθ

∫ ∞

−∞
exp

(
λz − λ2

2θ

)
dλ = exp(θz2)

is used twice:

E exp
[
θ(x+ y)2

]

= E
1√
2πθ

∫ ∞

−∞
exp

(
λ(x + y)− λ2

2θ

)
dλ

≤ 1√
2πθ

∫ ∞

−∞
exp

(
λ2

2
+ λy − λ2

2θ

)
dλ

=
1√

1− 2θ
exp

(
θy2

1− 2θ

)

✷

Proof of Proposition 3 The variable w = (w1+ · · ·+wt)/
√
t

is sub-Gaussian with unit variance. Hence

t−p
E(w2

1 + · · ·+ w2
t )

p

= Ew2p

=

∫ ∞

0

P
[
w2 > y

]
d(yp)

=

∫ ∞

0

P [|w| > r] d(r2p)

≤ 2

∫ ∞

0

exp(−r2/2)d(r2p) = (2p− 1)!!

✷


