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Introduction
Since the discovery of protein kinase C (PKC) in 1977 its role in signal transduction has 
been extensively investigated. The PKC family consists of ten isoforms with different re-
quirements for regulation and activation. Depending on the cell type different PKC iso-
forms influence a variety of responses implicated with cancer, e.g. apoptosis, migration 
and differentiation. Tight regulation of PKC is required for correct activation and subcell- 
ular localisation of PKC and phosphorylation of PKC itself is important for maturation 
and activation of the protein. Increased levels of second messengers induce translocation 
of PKC to specific subcellular locations where it gains access to its substrates. An increased 
knowledge of how the different PKC isoforms are regulated is of importance for the devel-
opment of therapies for specific regulation of PKC.

A general aim of this thesis was to investigate how different PKC isoforms can be spe-
cifically regulated. Structures of the PKC molecule were modified to identify motifs that 
can be targeted in order to specifically regulate an isoform. To characterise processes of 
importance for malignancy regulated by specific PKC isoforms, the role of PKC in migra-
tion of neuroblastoma cells was investigated. 
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Background
The PKC family
Protein kinase C isoforms constitute a fam-
ily of serine/threonine kinases that are in-
volved in a large number of cellular proc-
esses. There are 10 mammalian isoforms 
identified and they all share in common an 
amino-terminal membrane targeting regu-
latory domain linked to a carboxyl-termi-
nal catalytic domain [1]. The PKC isoforms 
can be divided into different subfamilies 
depending on structural and regulatory 
properties (Fig 1). The classical PKCs (α, βI, 
βII and γ) are sensitive to Ca2+ and diacylg-
lycerol (DAG) while the novel PKCs (δ, ε, 
η and θ) are insensitive to Ca2+ but can be 
activated by DAG. The atypical PKCs (ζ and 
ι/λ) are neither sensitive to Ca2+ nor DAG 
[2]. All isoforms are encoded by different 
genes except for PKCβI and PKCβII that 
are splice variants of the same gene differ-
ing only in their C-terminal end [3]. 

The second messenger DAG is produced 
when G protein-coupled receptors or ty-
rosine kinase receptors are stimulated and 

activate PLCβ and PLCγ, respectively. This 
results in the hydrolysis of membrane bound 
phosphatidylinositol 4,5-bisphosphate (PIP2) 
yielding the second messengers inositol 1,4,5-
triphosphate (IP3) and DAG. IP3 can, by 
binding to IP3-gated Ca2+-channels, induce 
release of Ca2+ from the endoplasmic reticu-
lum and thereby contribute to the activation 
of classical PKC isoforms [4]. DAG can also 
be produced when phosphatidyl choline (PC) 
is hydrolysed by phospholipase D (PLD) re-
sulting in the formation of phosphatidic acid 
(PA) and choline. PA is suggested to activate 
PKC but it can also be converted to DAG by a 
PA phosphatase [5-7].

The different PKC isoforms show a dis-
tinct pattern of tissue distribution. PKCα, 
PKCβ and PKCδ are ubiquitously expressed 
whereas PKCε is found abundantly in hor-
monal, immune and neuronal cells [8, 9]. 
PKCγ is only expressed in the brain and 
spinal cord while PKCθ is found in T-lym-
phocytes and skeletal muscle [10, 11].
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Structure

The PKC molecule is a single polypeptide 
chain with a molecular weight of 77-87 kDa 
consisting of an N-terminal regulatory do-
main and a C-terminal catalytic domain. 
These can be further subdivided into four 
highly conserved domains (C1-C4), sepa-
rated by five variable domains with low se-
quence homology (V1-V5) [12].

The	regulatory	domain

The pseudosubstrate
The pseudosubstrate is located in the N-
terminus of classical PKCs and C-terminal 
of the C2 domain in the novel PKCs and it 
resembles a PKC substrate, hence the name. 
The amino sequence between residues 19 
and 36 in PKCα mimics a phosphorylation 
site but with an alanine instead of a serine 
at position 25. Mutating this alanine to a 
glutamate reduces the affinity for the active 

site and yields a more active protein [13, 14]. 
In the inactive state, the pseudosubstrate 
binds to the active site and keeps PKC in a 
closed conformation [15]. Upon activation 
PKC translocates to the membrane and the 
binding to the membrane provides energy 
to release the pseudosubstrate from the ac-
tive site [16]. The pseudosubstrate domain 
is highly basic and binding to anionic phos-
pholipids in the membrane stabilises the 
active form of PKC [17].

The C1 domain
The C1 domain is a cystein-rich compact 
structure of about 50 amino acids that is 
present in all PKC isoforms [18, 19]. The 
classical and novel PKCs contain a tandem 
repeat of C1 domains, the C1a and C1b, 
which is sensitive to DAG, while the atypi-
cal PKCs contain a single domain that is not 
sensitive to DAG [20]. Each domain has a 
conserved pattern of cystein and histidine 
residues that coordinate two Zn2+ ions each 

FIGURE 1. Overview of the domain structures of the PKC family.
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[21]. The C1 domain contains two antipar-
allel β sheets that form a hydrophilic groove 
surrounded by hydrophobic residues. DAG 
and phorbol esters bind to this groove and 
cap the top third of the C1 domain provid-
ing a contiguous hydrophobic surface and 
this facilitates penetration into the mem-
brane [22-24]. The middle third of the C1 
domain contains positively charged resi-
dues that can interact with anionic phos-
pholipids in the membrane [22]. 

Early in vitro studies indicate that the 
anionic phospholipid phosphatidylserine 
(PS) is an activator of PKCs [25]. Howev-
er, more recent studies have demonstrated 
that the dependence or selectivity for PS 
in membrane binding and activation var-
ies among the PKC isoforms. It is believed 
that different PS selectivity is in part due to 
differences in the accessibility and DAG af-
finity of the C1 domains. The C1a domain 
of PKCα and PKCδ show high affinity for 
DAG while their C1b domain preferentially 
binds to TPA and these isoforms also show 
high specificity for PS [26-28]. It is believed 
that the C1a domain is tethered to the C2 
domain and that PS is releasing this bind-
ing allowing the protein to penetrate the 
membrane [29-33]. PKCγ and PKCε show 
high affinity for phorbol esters and DAG 
and they both lack PS specificity. This is due 
to less restricted conformation of the C1 
domains and PS is not required to loosen-
ing up a tethering between the C1a domain 
and the protein [34, 35]. Even though both 
classical and novel PKCs respond to DAG, 
novel PKCs have a much higher affinity for 
DAG than classical PKCs which must be 
pretargeted to membranes by Ca2+ to re-
spond to DAG [36, 37]. Newton et al have 
identified a tryptophan in novel PKCs ver-
sus a tyrosine in classical PKCs at residue 
22 in the C1b domain that controls whether 
PKC can respond to DAG alone or requires 

Ca2+ [38] and this might be an explanation 
to the different response pattern.

In addition, there is increasing evidence 
that the C1 domains mediate protein-pro-
tein interactions. The matrix protein fascin 
has been shown to interact with the C1b 
domain of PKCα [39] and two 14-3-3 bind-
ing sites have been identified within the 
C1b domain of PKCγ [40].

The C2 domain
The C2 domain consists of approximately 
130 residues and was originally identified as 
the Ca2+ binding site in the classical PKCs 
[41]. However, novel PKCs also contain a 
C2 domain that binds negatively charged 
phospholipids in a Ca2+-independent man-
ner [42, 43]. The C2 domains are composed 
of an eight-stranded antiparallel β sand-
wich connected by variable loops forming a 
pocket [44]. In the classical PKCs this pock-
et is lined by five conserved aspartate resi-
dues where two or three Ca2+ ions can bind 
and provide docking of PKC to the mem-
brane as well as trigger a change in confor-
mation [45, 46]. In the novel PKCs three 
of the five conserved aspartate residues in 
the classical PKCs are replaced by residues 
Phe36, His85 and Ala87, respectively, and 
this contributes to the insensitivity to Ca2+ 
[47]. Ca2+ acts like a bridge between the 
C2 domain and phospholipid head groups 
in the membrane thereby neutralising the 
negative charge of phospholipids and in-
creasing the affinity for the C2 domain to 
bind anionic membranes [48]. In addition, 
the C2 domain contains a lysine-rich cluster 
located in the β3 and β4 strands forming a 
concave basic surface. Mutating the lysines 
to alanines reduces the need for Ca2+ and 
PS in the activation of PKCα suggesting 
that this part of the C2 domain is involved 
in an intramolecular interaction in the rest-
ing state [49]. The lysine-rich domain has 
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also been shown to be the binding site for 
PIP2 in PKCα and has been suggested to 
contain at least parts of the RACK-binding 
site [50, 51].

The	catalytic	domain

C3 and C4 domains
The catalytic domain consists of the C3 do-
main, with the ATP-binding site, and the C4 
domain that contains the substrate-binding 
site as well as one of three phosphoryla-
tion sites important for activation of PKC 
[1]. The sequence identity of the catalytic 
domain between different PKC isoforms is 
more than 60% [52] and replacement of an 
invariant lysine in the ATP-binding site by 
any other amino acid leads to a catalytically 
inactive kinase [53]. The region surround-
ing the substrate-binding site consists of 
a conserved cluster of acidic residues that 
keeps the basic pseudosubstrate in the active 
site when PKC is in its closed conformation 
[15]. PKC phosphorylates serine/threonine 
residues and the hydrophilic nature of the 
substrate binding site is probably why PKC 
has a high affinity for basic peptides [54]. 
However, selectivity for specific sequences 
is limited suggesting that targeting PKC to 
specific subcellular locations is important 
for substrate specificity [55, 56].

Variable	domains

V1
The function of the V1 domain is not well 
known but there is evidence that this do-
main is involved in subcellular targeting of 
PKC. Deleting the V1 domain from PKCα 
abolishes a second and prolonged phase of 
TPA-induced translocation in GH3BG cells 
[57]. These results are contrasting Oancea 

et al [58] that showed that deleting V1 from 
PKCγ induces a faster translocation upon 
stimulation with TPA. Furthermore, the V1 
domain of atypical PKCs contains a motif 
that can interact with the SH2-interacting 
protein p62 [59].

V3
The V3 domain links the regulatory do-
main to the catalytic domain by a flexible 
hinge that becomes proteolytically labile 
when PKC binds to membranes and change 
conformation [60, 61] generating a consti-
tutively active kinase domain and a func-
tional regulatory domain [62, 63]. It has 
been shown that a sequence within the V3 
domain of PKCα binds specifically to the 
cytoplasmic tail of β1 integrin [64] and a 
three-amino acid motif in the V3 domain 
of PKCα and PKCε is essential for selec-
tive targeting to cell-cell contacts [65]. In a 
number of endocrine cancers a single point 
mutation in the PKCα V3 domain (D294G) 
has been identified [66, 67] and this mutant 
has been shown to be unable to bind tightly 
to membranes and fails to transduce several 
anti-tumourigenic signals [68].

V5
The V5 domain is a segment of about 50-
70 amino acid residues in the C-terminus 
of PKC. Although it contains two highly 
conserved autophosphorylation sites the 
V5 domain is the least conserved domain 
in PKC [2]. The C-terminus of PKC is im-
portant for structural stability of the pro-
tein and it also contributes to subcellular 
localisation as well as being involved in 
interactions with other proteins [69]. The 
V5 domain also serves an important regu-
latory function of PKC depending on the 
phosphorylation of the autophosphoryla-
tion sites. Furthermore, the V5 domain is 
important for catalytic activity. If the last 
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10 amino acids in the C-terminal site are 
removed from PKCα the protein is catalyti-
cally incompetent. 

The V5 domain has an important role in 
the localisation of PKC which is demon-
strated for PKCβI and PKCβII which only 
differ in the V5 domain. These two isoforms 
translocate to distinct subcellular locations 
in the same cell type [71] and are associ-
ated with different physiological functions 
[72-75]. The V5 domain also contains parts 
of the RACK1-binding site and the interac-
tion with RACK1 also contributes to the 
subcellular localisation of PKC [76]. There 
are several reports suggesting interactions 
between the V5 domain and other pro-
teins. PKCα can interact with PICK1 via 
a unique PDZ-binding domain in the V5 
domain and this interaction might localise 
active PKC to the plasma membrane and 
thereby bringing it in proximity with spe-
cific substrates [18]. Furthermore, there is 
a direct interaction between the V5 domain 
of PKCα and syndecan-4, even though it is 
not clear whether this association requires 
autophosphorylation [77]. There are how-
ever examples where autophosphorylation 
determines whether the V5 domain will 
interact with other proteins. PDK1 [78], 
PLD1 [79], Hsp70 [80] and Hsp25 [81] all 
preferentially bind non-phosphorylated 
PKC while there is evidence that 14-3-3 can 
interact with phosphorylated turn motif 
[82].

Maturation and post-
translational modifications
PKC contains three conserved phosphor-
ylation sites, the activation loop, the turn 
motif and the hydrophobic site which are 
critical in the regulation of its function. The 

sites are conserved in classical and novel 
isoforms whereas the atypical PKCs contain 
a glutamate in the hydrophobic site [83]. 
Phosphorylation is a prerequisite step to al-
low activation and substrate phosphoryla-
tion and without these priming phosphor-
ylations the kinase is catalytically inactive 
[84]. Once phosphorylated, PKC is main-
tained in a closed, active conformation but 
because the pseudosubtrate is occupying 
the substrate-binding site the protein is 
functionally suppressed. Upon ligand bind-
ing the pseudosubstrate is released and 
PKC can phosphorylate its substrates [69] 
(Fig 2).

Phosphorylation sites

Activation	loop
The activation loop is a stretch of 20-30 
amino acids located in the catalytic cleft of 
the catalytic domain [85, 86]. Phosphoryla-
tion of a threonine residue in a conserved 
motif by PDK1 (see below) is the initial 
priming step for maturation and is neces-
sary for PKC to become a functional kinase 
[69, 87]. Phosphorylation of the activation 
loop is crucial for autophosphorylation of 
the turn motif and the hydrophobic site but 
once phosphorylated at the two C-terminal 
positions, the cPKCs no longer require a 
phosphate at the activation loop to be cata-
lytically competent [83, 88]. 

Turn	motif
The turn motif is a conserved phosphor-
ylation site in the C-terminus of PKC and 
has been proposed to have a stabilising role 
and protect against inactivation. Phosphor-
ylated turn motif interacts with the catalytic 
domain and this interaction locks PKC in 
a catalytically competent conformation that 
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is insensitive to dephosphorylation and 
degradation [83, 88, 89]. Phosphorylation 
of the turn motif is also important for the 
localisation of PKC and non-phosphor-
ylated turn motif is believed to localise the 
protein to the detergent-insoluble fraction 
of cells [90]. There are different opinions 
whether phosphorylated turn motif is nec-
essary for PKC activity. Bornancin et al 
have shown that a negative charge at this 
site does not have an effect upon catalytic 
activity on its own but rather stabilises the 
protein and protects it from phosphatases 
[89]. On the other hand it has been dem-
onstrated that phosphorylated turn motif is 
essential for both catalytic activity and cor-
rect subcellular localisation of PKCβI and 
PKCβII [83, 90, 91]. The authors claim that 
phosphorylation sites in the vicinity of the 
turn motif may compensate for the absence 
of a negative charge when the turn motif is 
non-phosphorylated [91]. 

Hydrophobic	site
The hydrophobic site is the most C-termi-
nal autophosphorylation site and it con-
tains a serine or threonine residue flanked 
by hydrophobic amino acids. It has been 
demonstrated that a negative charge on the 
turn motif is necessary for the hydrophobic 
site to be phosphorylated [83, 91]. There is 
no absolutely requirement for a negative 
charge on the hydrophobic site to yield a 
fully active protein. Rather it controls phos-
phorylation of other sites of PKC as well as 
maintaining the protein in an active, closed 
conformation thereby preventing dephos-
phorylation and degradation [92-95]. Phos-
phorylation of the hydrophobic site has also 
been suggested to increase the affinity for 
Ca2+ and PS probably because of a confor-
mational change that locks the protein in a 
catalytically favourable conformation [95]. 
Several studies have demonstrated that the 
autophosphorylated V5 domain positions 
itself on top of the catalytic domain. Phos-

FIGURE 2. Model for regulation of PKC by phosphorylation and cofactors. Newly synthesised PKC is located by the plasma 
membrane in an open conformation in which the pseudosubstrate is released from the active site. PDK1 phosphorylates the 
activation loop and this is followed by autophosphorylation of the turn motif and the hydrophobic site. The phosphorylated 
protein is released into the cytosol where it is maintained in a closed conformation with the pseudosubstrate bound to the ac-
tive site and the C1 domain masked. Generation of DAG and Ca2+ targets PKC to the plasma membrane and the release of the 
pseudosubstrate allows downstream signalling. Modified from A Newton, 2003.
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phorylated hydrophobic site can generate 
the appropriate conformation on its own 
even though the interaction is stronger 
when the turn motif is phosphorylated as 
well [89, 96, 97]. Apart from its stabilising 
role the hydrophobic site also provides a 
docking site for PDK1 [98] (see below).

Additional phosphorylation sites

Once the mature PKC has been formed, it 
is believed to be subjected to further auto-
phosphorylation and transphosphorylation 
by various activators and protein kinases 
[99]. A number of non-conserved autophos-
phorylation sites have been identified but 
these sites have not been shown to be im-
portant for PKC activity [100, 101]. PKCδ is 
frequently phosphorylated on tyrosine resi-
dues it has been shown that treatment with 
H2O2 induces tyrosine phosphorylation of 
classical PKC isoforms leading to activation 
unrelated to the DAG-dependent activation 
[102].

Phosphorylation by PDK1

The first and rate-limiting step in the ac-
tivation of PKC is phosphorylation of the 
activation loop by PDK1 [69] and it has 
been suggested that both PDK1 and PKC 
need to be recruited to the membrane by 
phosphatidylinositol-(3,4,5)-trisphosphate 
(PIP3) and DAG, respectively, for this phos-
phorylation to occur [87]. PDK1 has been 
shown to be regulated by tyrosine phospho-
rylation at several sites and translocates to 
the membrane when activated [103]. Ac-
cording to a model by Newton [104, 105] 
newly synthesised, non-phosphorylated 
PKC is located by the membrane where 

PDK1 directly phosphorylates the activa-
tion loop by docking to the non-phosphor-
ylated hydrophobic site. PDK1 actually has 
higher affinity for phosphorylated hydro-
phobic site, but because the phosphorylated 
full-length protein has a more closed con-
formation PDK1 is not able to bind it in this 
conformation. However, negatively charged 
carboxyl-terminal constructs compete with 
PKC and displace PDK1 from PKC acceler-
ating the maturation of PKC by promoting 
autophosphorylation [78]. Thus, PDK1 reg-
ulates PKC by phosphorylating the activa-
tion loop and also promotes autophospho-
rylation due to its release. Contrasting this 
hypothesis is a study demonstrating that a 
cluster of positively charged amino acids 
in PDK1 interacts with the phosphorylated 
hydrophobic site in various AGC kinases 
[106]. It is also suggested that other parts 
than the hydrophobic site is essential for 
the interaction with PDK1. Reducing the 
entire V5 domain from PKCε still induces 
an interaction with PDK1 [107], although 
this deletion makes PKC catalytically inac-
tive, and at least in the case of PKCβ and 
PKCζ, the regulatory domain might play a 
role in PDK1 interaction [78, 108].

Autophosphorylation

Autophosphorylation has besides regulat-
ing the activity and localisation of PKC 
[109] been shown to alter its membrane 
binding [90], increase its sensitivity to 
Ca2+ and its rate of H1 histone phosphor-
ylation when assayed in vitro [83, 110] and 
to increase the sensitivity of the enzyme to 
down-regulation [89, 92, 94]. When PKC is 
non-phosphorylated it is maintained in a 
closed conformation and is not competent 
to downstream signalling. Once phosphor-
ylated, PKC can be activated by its second 
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messengers and translocate to membranes 
and phosphorylate its substrates [69]. It is 
believed that PKC is phosphorylated at the 
activation loop shortly after synthesis sug-
gesting the phosphorylation is not regu-
lated [69]. However, several stimuli and 
extracellular factors have been shown to 
influence the levels of autophosphorylated 
PKC suggesting that autophosphorylation 
is regulated [111-115]. One possible expla-
nation for the differences could be that the 
autophosphorylation is regulated in pri-
mary cell cultures [111, 112, 115] while the 
regulation is changed in cancer cells induc-
ing constitutive autophosphorylation.  

Regulation

Membrane association and 
dissociation

Stimulation with physiological stimuli acti-
vates PLC-coupled receptors and the subse-
quent increase in levels of Ca2+ and DAG 
induces translocation of PKC to the plasma 
membrane and other intracellular locations 
[58, 116, 117]. In addition to physiological 
stimuli phorbol esters and fatty acids induce 
isoform-specific targeting to different cel-
lular membranes [16, 118]. Depending on 
the cell type and stimulus PKC translocates 
to distinct subcellular locations including 
the plasma membrane [117, 119], cell-cell 
contacts [57], nucleus [120] or perinuclear 
structures such as the endoplasmic re-
ticulum [71, 121] or recycling endosomes 
[122]. Targeting of different PKC isoforms 
to distinct locations in the cell is important 
for bringing PKC close to its substrates as 
well as positioning individual PKCs in the 
appropriate location to respond to specific 
receptor-mediated activating signals [123].

Several studies have shown that the initial 
increase in Ca2+-levels induces transloca-
tion to the plasma membrane of the clas-
sical PKCs where the C2 domain interacts 
with PS [58, 117, 119, 124]. Once bound 
to the membrane the protein undergoes 
changes in the conformation allowing the 
C1a domain to insert into the membrane 
and this drives the release of the pseudo-
substrate from the active site [29]. For most 
PLC-coupled receptors, agonist activation 
is immediately followed by desensitisation 
and down-regulation of the receptors [125]. 
The subsequent decrease in the cellular 
DAG and Ca2+-levels leads to a relocation 
of PKC to the cytosol. It has been suggested 
that kinase activity of PKC is essential for 
the returning of the protein to the cyto-
plasm following its membrane transloca-
tion [116, 119] and inability to relocate has 
been proposed to be due to lack of auto-
phosphorylation [109, 126]. 

Dephosphorylation and degradation

PKC signalling is also controlled by de-
sensitisation mechanisms and prolonged 
stimulation with phorbol esters or growth 
factors ultimately leads to inactivation and 
down-regulation of the enzyme [127]. A 
key step in the inactivation of PKC signal-
ling is dephosphorylation of the priming 
phosphorylation sites and this step is trig-
gered by the membrane-associated activa-
tion of PKC [128, 129]. However, dephos-
phorylation does not determine the rate of 
down-regulation indicating that these de-
sensitising pathways might operate in par-
allel [130]. Membrane-bound PKC is high-
ly sensitive to dephosphorylation because 
of a more open conformation that exposes 
phosphorylated residues to phosphatases 
and proteases [88, 128, 130, 131]. There are 
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two protein phosphatases that frequently 
dephosphorylate PKC; protein phosphatase 
1 (PP1) dephosphorylates all three priming 
sites yielding an inactive protein whereas 
protein phosphatase 2A (PP2A) selectively 
dephosphorylates the activation loop and 
the hydrophobic site yielding a protein that 
is capable of rephosphorylation and acti-
vation [83]. Once dephosphorylated, PKC 
is thought to undergo ubiquitination and 
proteolytic degradation [132]. There are 
however other studies demonstrating that 
fully phosphorylated PKC can be ubiquiti-
nated at the plasma membrane and subse-
quently degraded by the proteasome [133]. 
The same authors also provide evidence for 
a second proteasome-independent pathway 
that involves caveolae-dependent traffick-
ing of the active enzyme to a perinuclear 
compartment where dephosphorylation 
and degradation occur [133, 134].

Regulation of novel PKC 
isoforms
There are not as many studies done on 
regulation of novel PKCs as classical PKCs. 
There are reports suggesting that these iso-
forms are regulated by phosphorylation on 
conserved sites like the classical PKC iso-
forms as well as reports proposing differ-
ent mechanisms. While phosphorylation 
of the activation loop by PDK1 is necessary 
for activation of PKCε [135] the depend-
ence on activation loop phosphorylation of 
PKCδ is still a point of controversy. It has 
been suggested that the activation loop of 
PKCδ does not need to be phosphorylated 
to be catalytically active [136, 137]. There 
are several possible explanations for how 
PKCδ can be active despite lack of a nega-
tive charge on the activation loop. It has 

been suggested that a glutamate positioned 
five residues N-terminal of the activation 
loop partially fulfils the role of activation 
loop phosphorylation [138] and a recent 
study identifies two phenylalanines near 
the activation loop that are supposed to 
stabilise the activation loop of PKCδ in the 
absence of phosphorylation [86]. However, 
other studies show that the lack of a phos-
phate on the activation loop greatly reduces 
activity and show that PKCδ is phosphor-
ylated by PDK1 in the same manner as the 
classical PKCs [139]. The novel PKCs have 
the same conserved phosphorylation sites 
in the C-terminus as the classical PKCs and 
at least phosphorylation of the turn motif 
has been shown to be important for control 
of activity and stability of the protein [140]. 
In the same manner as the classical PKCs 
it has been suggested that the hydropho-
bic site of PKCε is autophosphorylated by 
intrinsic catalytic activity [135]. However, 
phosphorylation of the hydrophobic site 
in PKCδ and possibly PKCε, has also been 
proposed to be phosphorylated by a kinase 
complex including PKCζ. Inhibition of the 
mTOR pathway with the inhibitor rapamy-
cin abolishes phosphorylation suggesting a 
regulatory role for mTOR in phosphoryla-
tion of the hydrophobic site [141, 142].

PKCδ exhibits some unique properties 
illustrated by the fact that activated PKCδ 
can be tyrosine-phosphorylated by different 
tyrosine kinases [138]. Tyrosine phosphor-
ylation has been shown to create a modified 
enzyme that is activated by a lower concen-
tration of lipids [102]. However, tyrosine 
phosphorylation has also been reported 
to diminish the activity of PKCδ and these 
different effects on activity might regulate 
the specificity of the kinase towards a given 
substrate [143, 144].
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Intramolecular interactions
There are several intramolecular interac-
tions that keep PKC isoforms in a closed 
conformation and these are important for 
exact regulation of the protein. Release of 
intramolecular interactions opens up the 
conformation of PKC and facilitates as-
sociations with lipids and other proteins. 
This leads to activation and translocation 
of PKC and subsequent phosphorylation of 
its substrates. Some interactions have only 
been studied for certain isoforms and it is 
not clear whether they are present in all iso-
forms while others are more general.

The pseudosubstrate

The first known intramolecular interaction 
is between the pseudosubstrate and the 
substrate-binding site in the catalytic do-
main and this interaction maintains PKC 
in an inactive conformation. Deleting the 
pseudosubstrate or mutating an alanine to 
a glutamate in the pseudosubstrate leads 
to increased activity of PKC [145] and also 
increased sensitivity to proteolysis because 
the protein is in a more open conformation 
[13]. Upon activation, PKC is targeted to 
the plasma membrane and penetration of 
the protein into the membrane provides the 
energy to release the pseudosubstrate from 
the active site [69]. 

C1a-C2

As mentioned above, individual PKC iso-
forms show different specificity to PS and 
follow distinct membrane-binding mecha-
nisms. When PKC is in its resting state 
the C1a domain is not available for DAG 
binding and this is thought to be due to 

an intramolecular interaction between the 
C1a domain and the C2 domain [30, 31, 
49, 146]. Mutation studies have shown that 
D55 in the PKCα C1a domain binds to R252 
in the C2 domain hiding the DAG-binding 
site. This intramolecular interaction is dis-
rupted when PS in the membrane binds to 
the calcium-binding loop in the C2 domain 
and allows membrane penetration and 
DAG binding of the C1a domain [31]. A 
similar intramolecular interaction has been 
demonstrated for PKCδ which like PKCα 
only has the capacity to bind DAG with 
its C1a domain. Mutating E177 in PKCδ, 
corresponding D55 in PKCα, dramatically 
increases activation and DAG binding for 
PKCδ [32]. On the other hand, mutation 
of a corresponding amino acid residue in 
PKCγ, in which both C1 domains bind 
DAG equally well, does not change DAG-
binding [35]. 

RACK

RACKs are anchoring proteins that are 
thought to interact with active PKC and lo-
calise it in close proximity to its substrates. 
Active PKC can interact with its RACKs via 
a RACK-binding site located in the C2 and 
V5 domain of PKCβII [51, 147] and in the 
C2 domain of PKCε [148, 149]. In the in-
active state, the RACK-binding site in PKC 
is tethered to an intramolecular sequence 
located in the C2 domain that resembles 
the sequence of the corresponding RACK 
(pseudo-RACK) and this keeps the protein 
in a closed conformation. For PKCβII it is 
most likely mainly the V5 domain that is 
involved in the intramolecular interaction 
with the pseudo-RACK and this masks the 
RACK-binding site in the inactive state 
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[76]. Based on this hypothesis Mochly-
Rosen and coworkers have designed inhibi-
tory and activating peptides based on the 
RACK-binding and pseudo-RACK sites. 
Peptides that bind to RACK compete with 
PKC and inhibit translocation of PKC to 
its RACK [150]. In a similar way, peptides 
based on the pseudo-RACK disrupt the in-
tramolecular interaction and the more open 
conformation exposes the RACK-binding 
site and enables association with PKC and 
its anchoring RACK [151].

Catalytic domain – phosphorylated 
V5 domain

As mentioned above, non-phosphorylated 
PKC adopts a more open conformation and 
is more sensitive to dephosphorylation. 
When PKC is autophosphorylated the V5 
domain positions itself on top of the N-lobe 
in a basic cluster in the catalytic domain [96, 
97]. The phosphate on the activation loop 
stabilises the activation loop and phospho-
rylated turn motif form ionic contacts with 
a Lys-374 and Arg-415 and this stabilises 
the catalytic domain. The phosphorylated 
hydrophobic site is hydrogen bonded to a 
conserved glutamine and there are also sev-
eral hydrogen bonds anchoring the hydro-
phobic motif to the catalytic domain [96]. 
The intramolecular interaction between the 
phosphorylated hydrophobic site and a hy-
drophobic pocket in the catalytic domain 
is further demonstrated in several AGC ki-
nases [106].

Neuroblastoma
Neuroblastoma is the most common ex-
tracranial tumour among children and is 
responsible for approximately 15% of all 

childhood cancer deaths. The tumour orig-
inates from sympathetic progenitor cells 
derived from the neural crest and arise at 
locations of the sympathetic nervous sys-
tem, typically the adrenal medulla [152]. 
Neuroblastoma is a heterogeneous disease. 
Some tumours are aggressive and do not 
respond to therapy, whereas others regress 
spontaneously. Tumour stage and the site 
where the primary tumour is located are 
important prognostic factors for neuroblas-
toma and a primary tumour in the adrenal 
medulla is associated with worse outcome. 
Furthermore, the age at diagnosis is impor-
tant and in general children less than 1 year 
when diagnosed have a good prognosis. 
Different genetic changes have been shown 
to be important in the prognosis of neurob-
lastoma. Amplification of MYCN, deletion 
of the short arm of chromosome 1 and gain 
of the long arm of chromosome 17 are as-
sociated with unfavourable prognosis. 

The neutrophin receptor TrkA, which is 
involved in the development of the nervous 
system, is highly expressed in favourable 
tumours. High expression of TrkA is con-
nected to young age, absence of MYCN am-
plification and good outcome whereas high 
expression of TrkB is correlated with poor 
prognosis [153]. Metastases are commonly 
found in neuroblastomas at the time of di-
agnosis and are associated with unfavour-
able outcome [154].

Migration
A major problem in curing cancer is the 
capacity of cancer cells to migrate, invade 
tissues and subsequently seed metastases 
in other organs. Cell migration contributes 
to several pathological processes including 
vascular and chronic inflammatory disease 
and cancer but it also plays an important 
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role in a variety of biological phenomena 
like embryonic morphogenesis and tissue 
repair [155]. In metastasis, tumour cells 
migrate into the circulatory system, which 
they subsequently leave and migrate into a 
new site [156] and the ability to form me-
tastases is the cause of 90% of human can-
cer deaths [157]. 

General aspects of migration

Migration is a multistep process that starts 
with formation of membrane protrusions 
at the leading edge, which attach to the ex-
tracellular matrix (ECM). Regions of the 
leading edge or the entire cell body con-
tract, thereby generating traction force that 
leads to the gradual gliding of the cell body 
[158].

Formation	of	membrane	protrusions	and	
focal	contact	assembly
The initial step in migration is formation 
of membrane protrusions and a polarised 
asymmetric morphology which is driven 
by actin polymerisation [159]. This is reg-
ulated by the Rho family of GTPases, in-
cluding Rac that regulates the formation 
of lamellipodia and Cdc42 that induces the 
formation of filopodia [160, 161]. Growing 
cell protrusions then attach to the ECM and 
form focal contacts, large multiprotein com-
plexes that consist of integrins, signalling 
proteins and growth factor receptors [162]. 
Focal contacts are dynamic in assembly 
and composition and can mediate dynamic 
cell behaviour resulting in forward move-
ment or stable arrest [163]. The interactions 
with the ECM are mediated via integrins, 
which are transmembrane ECM receptors 

FIGURE 3. Proteins involved in migration. Integrins cluster in the membrane when binding the ECM and via their intracellular 
domain different signalling and adaptor proteins are recruited forming a focal contact. FAK and Src can mediate signalling via 
Erk and Rho GTPases resulting in changes in the cytoskeleton and focal contacts that affects the cell motility. Modified from 
Carragher et al. 2004
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comprised of α and β subunits. When in-
tegrins come into contact with ECM lig-
ands they change conformation and cluster 
in the cell membrane [164, 165]. Via their 
intracellular domain different proteins are 
recruited to the focal contacts and adaptor 
proteins like focal adhesion kinase (FAK), 
paxillin and vinculin connect integrins to 
the filamentous actin cytoskeleton thereby 
forming a focal contact [164, 166]. Auto-
phosphorylation of FAK facilitates binding 
of Src, leads to further phosphorylation of 
FAK and recruitment of additional struc-
tural and signalling molecules that con-
tribute to the assembly of focal complexes 
[167]. After ECM binding, integrins cause 
phosphorylation and dephosphorylation 
events of regulatory molecules in down-
stream signalling cascades [164]. A tumour 
cell needs to be able to degrade ECM com-
ponents to invade the surrounding tissues 
and focal contacts facilitate the recruitment 
of surface proteases which cleave ECM pro-
teins [158].

Cell	movement
In order for the cell to move it needs to 
change shape and create tension through 
actin contractility mediated by myosin II. 
Active myosin II binds to actin filaments 
and generates actomyosin contractions 
that allow the cell to move forward [168, 
169]. Extracellular signal-regulated protein 
kinase (Erk) activity stimulates myosin 
light-chain kinase (MLCK) phosphoryla-
tion of the myosin light chain (MLC) which 
activates myosin II [170, 171]. In addition 
to a contracting force, focal contact disas-
sembly at the trailing edge is necessary for 
forward movement of the cell [163] and 
the disassembly of focal contacts occurs 
through several mechanisms. Actin bind-
ing proteins and severing proteins cause 
actin filament strand breakage and phos-

phatases limit the assembly of cytoskel-
etal proteins [172, 173]. Furthermore, fo-
cal adhesion proteins like integrins can be 
cleaved by calpains [174, 175]. Following 
focal contact disassembly and forward 
movement integrins detach from the sub-
strate and become internalised in vesicles 
for recycling towards the leading edge to be 
able to form new adhesions [176]. Figure 3 
summarises the assembly of focal contacts 
and its downstream signalling.

Migration and neuroblastoma

Metastases are found in 70% of neuroblas-
toma patients at the time of diagnosis [154] 
and are indicative of a poor prognosis. The 
most frequent metastatic sites are bone, 
bone marrow, and liver [177]. The mecha-
nisms determining the migratory capacity 
of neuroblastoma cells are not fully under-
stood but several studies report that growth 
factors as well as integrins are important for 
a migratory phenotype.

PDGF
Platelet-derived growth factor (PDGF) is 
a mitogen that has been shown to induce 
chemotaxis and actin reorganisation [178] 
and PDGF has been shown to be a potent 
promoter of migration and invasion of SH-
SY5Y cells [179]. The effect of PDGF on 
migration can be modulated by somato-
statin which is a peptide that is distributed 
throughout the central nervous system and 
peripheral tissues. It has been suggested 
that expression of somatostatin receptors 
is a favourable prognostic factor in neu-
roblastoma [180]. Somatostatin inhibits 
PDGF-induced migration and invasion of 
SH-SY5Y cells via a mechanism that de-
pends partly on Erk inhibition and partly 
on inhibition of Rac [179]. 
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IGF-I
Insulin growth factor-I (IGF-I) is another 
potent stimulator of neuroblastoma cell 
motility [181, 182] and invasion [183] and 
highly tumourigenic neuroblastoma cells 
often express increased levels of IGF recep-
tor type I (IGF-IR). Bones contain high lev-
els of IGF-I and these increased levels might 
be an explanation why bone is the primary 
site of neuroblastoma metastasis [182, 184, 
185]. IGF-I has been shown to increase mo-
tility in neuroblastoma cells by stimulating 
dynamic changes in cell morphology lead-
ing to larger lamellipodia in SH-SY5Y cells 
[182, 186]. Rac is a Rho GTPase, and when 
bound to GTP it stimulates the formation of 
lamellipodia via actin polymerisation [187]. 
IGF-I activates Rac in SH-SY5Y in a time 
course consistent with observed changes in 
actin polymerisation and cell morphology 
suggesting a role for Rac in IGF-mediated 
lamellipodial extensions. Furthermore, it 
has been shown that Rac activation by IGF-
I is dependent upon PI3K signalling [188] 
and it has also been suggested that both the 
PI3K- and the Erk pathway attenuate IGF-
I-mediated motility. However, simultane-
ously inhibition of these pathways does not 
completely suppress the motility suggesting 
that IGF-I activates other pathways, includ-
ing PKC [189] and STATs [190] that may be 
involved in regulating the motility response 
[182]. 

Integrins
In addition to growth factors, integrins have 
been shown to be involved in migration 
and invasion of neuroblastoma cells [191]. 
Primary tumours with good prognosis ex-
press several β1 integrin heterodimers and 
in vitro, the expression of β1 integrin pro-
tein in neuroblastoma cell lines correlates 
with attached cells [191, 192]. Conversely, 
tumours with poor prognosis lack integrins 

with β1 subunits due to increased degrada-
tion [191-193]. Neuroblastoma cells with 
decreased integrin expression have ab-
normal integrin-mediated signalling and 
are less adherent to fibronectin [191, 194]. 
Highly aggressive tumours commonly have 
MYCN amplification and several studies 
have shown that expression of N-myc in 
neuroblastoma cells decreases β1 integrin 
expression [192, 193]. 

It has been suggested that αvβ3 integrin 
occupancy is required for IGF-IR-mediated 
migration [195]. In addition, neuroblasto-
ma cells with high IGF-IR levels also have 
high expression of β3 integrins and this 
may contribute to increased cell migration 
[191].

PKC and migration

PKC	isoforms	involved	in	migration
PKC has long been suggested to play an 
important role in cell motility through its 
effects on the actin cytoskeleton and acti-
vation of PKC has been shown to induce 
cell spreading and ruffling [196, 197] and 
dismantling of stress fibres [197, 198]. Fur-
thermore, PKC can mediate morphological 
changes both upstream and downstream of 
integrins. There does not seem to be a par-
ticular PKC isoform regulating migration 
but rather it seems like many isoforms have 
the capacity to influence migration and 
which isoform that is involved is cell type 
dependent [199]. 

Elevated levels of PKCα have been shown 
to induce motility of a variety of cell lines 
including the breast cancer cell lines MDA-
MB-435 [200], MCF-10A [201] and MCF-7 
[202], colon carcinoma cells [203] and en-
dothelial cells [204]. Furthermore, inhibiting 
PKCα with a dominant-negative approach 
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reduces migration of melanoma cells [205] 
whereas down-regulation of PKCα with 
antisense oligonucleotides results in de-
creased spreading of vascular smooth mus-
cle cells [206] and decreased migration and 
adhesion of endothelial cells [207]. Over-
expression of PKCβII increases invasion of 
colon cancer cells [208] while expression 
of PKCβI in non-motile PKCβI deficient 
cells restores their locomotory behaviour 
[209]. Moreover, inhibition of PKCβ blocks 
spreading of platelets on fibrinogen [210]. 
Activation of PKCδ is important for EGF-
induced fibroblast motility [211] while 
inhibition of PKCδ completely inhibits 
PDGF-stimulated dermal fibroblast migra-
tion [212]. PKCε has been shown to be nec-
essary for hepatocyte growth factor (HGF)-
stimulated motility in HeLa cells [213] and 
for cellular movement on fibronectin [214] 
and activation of PKCε enhances the motil-
ity of glioma cells through increased focal 
adhesion formation and integrin clustering 
[215]. In addition, activated PKCε rescues 
cell spreading in fibroblasts devoid of β1 
integrin signalling [216]. Furthermore, in-
hibiting PKCε with siRNA in highly motile 
head and neck squamous cell carcinoma 
cell lines [217] and MDA-MB-231 breast 
cancer cells [218] reduces invasion. 

Several PKC isoforms have also been 
shown to negatively regulate motility and 
PKCα activation inhibits EGF-induced cell 
spreading of MDA-MB-231 human breast 
cancer cells [219]. Contrasting other stud-
ies [202, 220, 221] overexpression of PKCα 
and PKCβI in MCF-7 breast cancer cells 
has been shown to induce a less aggres-
sive phenotype that is less invasive [222]. 
Downregulation of PKCδ enhances cell 
migration and increases secretion of matrix 
metalloproteases in MCF-7 cells [223] and 
high PKCδ activity inhibits migration of 
smooth muscle cells [224].

PKC	and	integrins
Integrins are a family of heterodimeric 
transmembrane receptors that mediate 
the binding of the cell with the ECM and 
PKC has been shown to control integrin 
localisation and transduction of integrin 
signals. PKC can both be activated by in-
tegrins (outside-in signalling) and itself 
activate integrins (inside-out signalling) 
[225]. There are several reports that PKC 
and integrins associate and co-localise. In 
particular PKCε [214, 215, 226] and PKCα 
[64, 202] have been demonstrated to asso-
ciate with β1 integrin but it has also been 
shown that PKCβ and β3 integrin interact 
[210]. Some of these interactions are indi-
rect and are dependent on association with 
RACK1 [210, 215, 227].

An important function of PKC is to 
regulate the transport and distribution of 
integrins. PKCα seems to have a role in in-
ternalisation of integrins [114, 202] as well 
as inducing relocation of integrins to the 
leading edge [64, 228]. Moreover, PKCε has 
been shown to control the recycling of β1 
integrin to the plasma membrane by phos-
phorylation of cytoskeletal components 
[229]. 

PKC	substrates
There are several PKC substrates that have 
been shown to directly influence the mor-
phology of the actin cytoskeleton and con-
tribute to PKC-induced spreading and mi-
gration [199]. Myristoylated alanine-rich C 
kinase substrate (MARCKS) is a membrane 
protein and has in many studies been sug-
gested to be a crucial mediator of PKC ef-
fects on the actin cytoskeleton. Phosphor-
ylation of MARCKS in its effector domain 
results in a dissociation of MARCKS from 
the membrane [230]. There are indications 
that MARCKS exerts its functions by se-
questering PIP2 and a release of MARCKS 
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from the membrane would then lead to an 
increase in available PIP2 leading to a re-
organisation of the cortical microfilaments 
[231]. In addition, MARCKS binds F-actin 
and its dissociation from the membrane 
could thereby influence the cortical cy-
toskeleton [232, 233].

The ezrin-radixin-moesin (ERM) pro-
teins both function as connectors of the mi-
crofilaments with the plasma membrane as 
well as transducing signals to different path-
ways [199]. PKCα has been shown to bind 
to and phosphorylate a threonine residue 
in ezrin and overexpression of a non-phos-
phorylated mutant suppresses migration in 
PKCα-overexpressing cells [234]. Moreover, 
PKCθ has been shown to phosphorylate the 
corresponding threonine residue in moesin 
[235] with a consequent increased interac-

tion with cortical microfilaments [236]. The 
activation of ERM proteins might therefore 
be an important pathway in mediating PKC 
effects on migration. 

Fascin is a protein that tightly bundles 
F-actin and is important for the formation 
of actin-based protrusions. It is suggested 
that PKCα phosphorylation of fascin leads 
to dissociation of fascin from the F-actin 
bundles and this is likely of importance 
for cell spreading [39, 237]. Another PKC 
substrate that affect the actin cytoskeleton 
is the multi-domain protein AFAP-110 that 
can cross-link F-actin and bind to and acti-
vate Src. Phosphorylation by PKC disrupts 
its multimerisation [238] and makes it able 
to activate Src which seems to be important 
for the formation of podosomes [239]. 
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The present investigation
Aim
The general aims of this study have been to investigate the regulation of classical PKC 
isoforms and how PKC influences the migratory behaviour of neuroblastoma cells.

The specific aims were:

• To investigate how PKCα can be specifically regulated
•  To identify possible intramolecular interactions in PKCα
• To investigate the role of PKC in migration of neuroblastoma cells
• To clarify mechanisms mediating the effects of PKC on migration
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Results and discussion
Previous results from our group show that 
PKCα is transiently translocated to the plas-
ma membrane by carbachol stimulation of 
neuroblastoma cells. This is induced by an 
increase in Ca2+ and PKCα is not sensitive 
to stimulation with DAG. Deletion of the 
catalytic domain makes PKCα sensitive to 
DAG indicating that structures in this do-
main contribute to the unresponsiveness 
[117]. 

Stimulation	with	carbachol	induces	a	
sustained	translocation	of	catalytically	
inactive	PKCα	(Paper	I)
In paper I we continued this study by in-
vestigating if and how the kinase activity 
and autophosphorylation contribute to the 
regulation of the translocation of PKCα. 
For this purpose we stimulated living SK-
N-BE(2)C neuroblastoma cells transfected 
with vectors encoding PKC fused to en-
hanced green fluorescent protein (EGFP) 
and visualised the translocation by confo-
cal microscopy. EGFP is frequently used as 
a fluorescent reporter molecule and fusing 
EGFP to the C-terminus of PKC does not 
influence the subcellular localisation of a 
number of different PKC isforms in SK-
N-BE(2)C cells [117]. We first investigated 
whether catalytic activity of PKC influ-
ences translocation to the plasma mem-
brane. Cells overexpressing PKCαWT were 
pretreated with the general PKC inhibitor 
GF109203X before stimulation with carba-
chol and this induced a sustained translo-
cation of PKCα to the plasma membrane. 
Furthermore, kinase-dead PKCα also re-
sponded with a sustained translocation to 
the plasma membrane indicating that in-
hibition of the catalytic activity abolishes 
relocation to the cytosol. Kinase-inhibition 

was also shown to induce a sustained trans-
location of PKCβI, PKCβII and PKCδ sug-
gesting that a prolonging of translocation 
by kinase inhibition is an effect common 
for several PKC isoforms.

Autophosphorylation	 is	 not	 a	 mechanism	
for	dissociation	of	PKCα	from	the	membrane	
(Paper	I)
Other studies have demonstrated that ki-
nase activity is necessary for PKC to relo-
cate to the cytosol and it has been suggested 
that autophosphorylation of PKC is essen-
tial for the membrane dissociation thereby 
providing a mechanism to turn off the PKC 
signal [116, 119]. To test if the sustained 
translocation obtained for catalytically in-
active PKCα was due to absent autophos-
phorylation the turn motif (T638) and the 
hydrophobic site (S657) were mutated to 
glutamate or alanine to mimic phospho-
rylated or non-phosphorylated PKCα, 
respectively. Stimulation with carbachol 
induced a transient translocation of gluta-
mate mutants whereas non-phosphorylat-
ed PKCα remained by the membrane after 
translocation indicating that autophospho-
rylation contributes to the transient nature 
of PKCα translocation. It is common to 
mutate phosphorylation sites to glutamate 
or aspartate to mimic the effect of a phos-
phorylation [89, 92, 94, 95]. However, these 
mimicking amino acids do not completely 
induce the same effect as the wild-type pro-
tein. For PKCα it has been shown that an 
acidic residue at the turn motif produces a 
PKCα mutant with a phenotype intermedi-
ate between the wild-type and non-phos-
phorylated mutant PKCα regarding ther-
mal stability and dephosphorylation [89]. 
Similar partial effects are seen for muta-
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tions at the activation loop of PKCα where 
the glutamate mutant has reduced activity 
and the hydrophobic site where an aspar-
tate instead of a serine yields a protein that 
is not capable to get fully phosphorylated 
[92]. For PKCβII it has been shown that a 
glutamate on the hydrophobic site decreas-
es stability of the protein but partially pro-
tects PKC from thermal denaturation [95]. 
Besides influencing the translocation re-
sponse, autophosphorylation has been sug-
gested to prevent PKC from accumulating 
in a detergent-insoluble fraction [91, 95]. 
From confocal images we could however 
not detect a difference in the localisation of 
phosphorylated and non-phosphorylated 
PKCα and both were equally distributed 
throughout the cytoplasm demonstrating 
that accumulation of non-phosphorylated 
PKCα in detergent-insoluble fractions does 
not cause a changed localisation. Further-
more there are studies showing that non-
phosphorylated PKC is more sensitive to 
dephosphorylation and subsequent degra-
dation [128, 129]. When analysing the ex-
pression of non-phosphorylated protein we 
could however not detect any degradation 
products of PKCα indicating that the rate of 
degradation of non-phosphorylated PKCα 
is slow in neuroblastoma cells. 

The previous experiments could have 
the implication that autophosphorylation 
of PKC upon its activation by the plasma 
membrane is a mechanism to cause its re-
location to the cytosol. Hannun and co- 
workers have also demonstrated that cata-
lytically inactive and non-phosphorylated 
PKCβII remains by the membrane as a re-
sponse to physiological stimuli. They inter-
pret the results that autophosphorylation 
is the mechanism for dissociation of PKC 
from the plasma membrane [116]. If this 
hypothesis is true, the levels of autophos-
phorylation would be expected to increase 

by carbachol stimulation and decrease by 
GF109203X treatment. We could however 
not detect any major differences in the lev-
els of autophosphorylated PKCα after stim-
ulation with carbachol and treatment with 
GF109203X. Moreover, a PKCα mutant 
mimicking fully phosphorylated PKCα was 
not desensitised to carbachol stimulation 
and responded similar to PKCαWT further 
indicating that autophosphorylation is not 
a mechanism causing dissociation from the 
membrane. 

Non-phosphorylated	 PKCα	 is	 sensitive	 to	
diacylglycerol	due	to	changed	conformation	
(Paper	I	and	II)
Instead of being a mechanism for dissocia-
tion of PKCα from the membrane we found 
that inhibition of catalytic activity and the 
subsequent reduction of autophosphoryla-
tion increased the sensitivity of PKCα for 
DAG. This contrasts PKCαWT and gluta-
mate mutants which do not respond to 
stimulation with DAG. We have previously 
seen that removing the entire catalytic do-
main of PKCα makes the protein respond 
to DAG [117] and in paper II we found 
that deletion of the V5 domain increased 
the sensitivity of PKCα to DAG, further 
establishing the importance of the V5 do-
main in maintaining PKCα insensitive to 
DAG. These findings led us to hypothesise 
that the autophosphorylated V5 domain of 
PKCα is involved in an intramolecular in-
teraction masking the DAG binding C1a 
domain. When PKCα is not autophospho-
rylated, on the other hand, this intramo-
lecular interaction would be disrupted 
and cause a conformational change of the 
protein. The phosphorylated V5 domain 
has been suggested to be involved in an in-
tramolecular interaction by binding to the 
catalytic domain and thereby protect the 
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PKC against dephosphorylation, degrada-
tion and perhaps inactivation [93, 128, 129] 
and it is possible that this interaction con-
tributes to hiding the C1a domain by caus-
ing a conformational change. To investigate 
a possible difference in conformation cells 
were transfected with a vector encoding 
PKCα tagged to a blue fluorescent protein 
in the N-terminus and a yellow fluorescent 
protein in the C-terminus and the FRET 
signal in transfected cells was measured. 
Cells expressing PKCαWT or the glutmate 
mutants of PKCα had a higher FRET signal 
than cells expressing non-phosphorylated 
PKCα indicating that PKCα has different 
conformations depending on whether it is 
phosphorylated or not. The same approach 
has been used for studying conformational 
change in PKCδ where ligands binding to 
the C1 domain increased the FRET signal 
presumably leading to a more open confor-
mation of the protein [240]. The contrast-
ing results are probably related to the dif-
ferent setups of the regulatory domains of 
PKCα and PKCδ with the pseudosubstrate 
placed in the immediate N-terminus of 
PKCα whereas it is located between the C2 
and C1 domains in PKCδ.

We next tested if isolated V5 constructs 
of PKCα could disrupt a possible intramo-
lecular interaction by binding to PKCα and 
thereby induce a more destabilised confor-
mation and an increased sensitivity to DAG. 
Cotransfecting cells with vectors encod-
ing isolated V5 constructs and PKCαWT 
increased the sensitivity of PKCα to DAG. 
However, the autophosphorylation sites of 
the V5 domain did not need to be negative-
ly charged to increase the DAG sensitivity 
of PKCα indicating that it is other struc-
tures in the V5 domain that are important 
for disrupting a possible intramolecular in-
teraction. 

Non-phosphorylated	PKCβI	and	PKCβII	
are	sensitive	to	DAG
Autophosphorylation of the V5 domain is 
considered to be a regulatory mechanism 
for classical PKC isoforms and we investi-
gated whether autophosphorylation influ-
ences the DAG sensitivity of PKCβI and 
PKCβII as well. Contrasting PKCαWT that 
is completely insensitive to DAG both wild-
type PKCβI and PKCβII often translocated 
to the plasma membrane when stimulated 

FIGURE 4. Mutations in the C2 and 
V5 domain of PKCα. Sequences of 
the PKCα V5 domain and part of the 
C2 domain with the mutations high-
lighted.
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with DAG. However, similar to non-phos-
phorylated PKCα, non-phosphorylated 
PKCβ translocated to the membrane in a 
rapid and sustained manner upon stimula-
tion with DAG. These results indicate that 
the DAG binding domain is masked in 
PKCβWT in the same manner as for PKCα. 
When the autophosphorylation sites are not 
phosphorylated the DAG binding domain 
is exposed and PKCβ becomes sensitive to 
DAG. However, there might be some differ-
ences in the conformation between PKCα 
and PKCβ considering that PKCβWT is 
weakly translocates after stimulation with 
DAG.

There	 is	 an	 intramolecular	 interaction	 be-
tween	acidic	residues	in	the	V5	domain	and	a	
lysine-rich	cluster	in	the	C2	domain	(Paper	II)
In the next set of experiments we investi-
gated possible intramolecular interactions 
that could contribute to the insensitivity of 
PKCα to DAG. Syndecan-4 is a transmem-
brane heparan sulphate proteoglycan that 
has a lysine-rich variable region that di-
rectly binds to the V5 domain in PKCα and 
partly activates the enzyme [77]. A con-
ceivable mechanism for this effect is that 
the lysines interact with acidic residues in 
the V5 domain and thereby induces a more 
open conformation of PKCα. We therefore 
hypothesised that acidic residues in the V5 
domain take part in an intramolecular in-
teraction that keeps PKCα in a closed con-
formation. There are not that many acidic 
amino acids in the V5 domain but we found 
a region between the autophosphorylation 
sites with three acidic amino acids close 
to each other. These amino acids, D649, 
D652 and E654, mutated to either alanine 
or lysine were found to be sensitive to DAG 
(Fig 4). PIP2 has been shown to both en-
hance the effect of syndecan-4 on PKCα 

[241] and to bind a lysine-rich cluster con-
sisting of K197, K199, K209 and K211 [50, 
242] and we hypothesised that the lysine-
rich cluster in the C2 domain takes part 
in an intramolecular interaction with the 
negatively charged part of the V5 domain. 
Mutation of the four lysines in the C2 do-
main to glutamates increased the sensitivity 
to DAG indicating that this part might be 
involved in an intramolecular interaction 
hiding the DAG-binding site (Fig 4). It has 
previously been shown that the lysine-rich 
cluster in the C2 domain is involved in an 
intramolecular interaction. Mutation of 
lysines to alanines converted the enzyme 
into a constitutively active kinase and abol-
ished the ability of PKCα to translocate to 
the membrane when stimulated with iono-
mycin and 1,2-dioctanoylglycerol (DOG). 
The abrogated translocation was proposed 
to be due to inability to bind to RACK1 by 
the membrane or a decreased accessibility 
of the C1 domain to DAG [49]. We found 
that stimulation with DOG induces a sus-
tained translocation of the PKCα mutant 
where the lysines have been mutated to 
glutamate suggesting an increased accessi-
bility of the C1 domain. However, in 50% 
of the experiments this mutant did not re-
spond to DAG indicating that these lysines 
are important for optimal membrane bind-
ing. The different effects seen are most like-
ly due to the fact that glutamate is charged 
and alanine is neutral. Both mutants might 
disrupt the intramolecular interaction but 
it is conceivable that the different charges 
affect PKCα differently. Further confirming 
an interaction between the charged amino 
acids in the V5 and C2 domain is the fact 
that simultaneous introduction of the re-
versing mutation restores this interaction 
and increases the sensitivity to DAG. There 
are several studies demonstrating intramo-
lecular interactions between the C2 and the 



- The present investigation -

29

V5 domain that keep the PKC in a closed 
conformation. Part of the RACK1-bind-
ing site is located in the V5 domain and it 
is suggested to bind to the pseudo-RACK 
sequence in the C2 domain [76]. Further-
more, when the hydrophobic site of PKCβII 
is phosphorylated there is an increased af-
finity for Ca2+ and it has been suggested 
that the phosphorylated V5 domain inter-
acts with the C2 domain [95]. 

GF109203X	induces	a	changed	conformation	
of	PKCα	(Paper	I)
We found that inhibition of the catalytic 
activity either with a dominant negative 
PKCα or a PKC inhibitor increased the 
sensitivity to DAG. The kinase-dead PKCα 
was not autophosphorylated and this might 
explain the response to DAG. However, 
treatment with GF109203X did not reduce 
the level of autophosphorylation although 
it potentiated the translocation response. 
Other studies have shown that GF109203X 
can induce translocation of PKCα to the 
membrane fraction [79] and together with 
TPA increase the membrane localisation 
of PKCδ and PKCε [243]. Furthermore, 
we found that GF109203X prolonged the 
translocation of PKCα with the autophos-
phorylation sites mutated to glutamate and 
it reversed the relocation to the cytosol 
once it had occurred. It is therefore likely 
that GF109203X enhances the transloca-
tion of PKCα through other means than 
by suppression of the autophosphoryla-
tion of PKCα. GF109203X is an inhibitor 
that reduces the catalytic activity of the 
novel and classical PKCs by binding to the 
ATP binding site. The ATP binding site is 
located in a deep cleft between two highly 
conserved subdomains, the N lobe and the 
C lobe. Depending on the position of the 
two lobes kinases can be classified into a 

closed, an intermediate and an open con-
formational state [244]. The crystal struc-
ture of the catalytic domain of PKCβII in 
complex with GF109203X indicates that the 
PKCβII structure represents an intermedi-
ate conformation [96] and it is conceivable 
that the more open conformation unmasks 
the C1a domain. Instead of affecting the 
autophosphorylation of PKCα we propose 
that the GF109203X destabilises the closed 
conformation and thereby exposes the C1a 
domain making it available for interaction 
with DAG.

Our data show that inhibition of PKCα 
not only blocks PKC activity but also in-
creases the amount of PKC molecules at the 
plasma membrane, although it is probably 
mainly catalytically inactive enzyme. PKC 
has been shown to exert several effects in-
dependently of its kinase activity [245-249] 
and our group has previously seen that the 
regulatory domain of PKCε induces neur-
ites in neuroblastoma cells [247]. Further-
more, it has been demonstrated that PKCδ 
induces apoptosis in vascular smooth cells 
independent of the catalytic domain [248] 
and that the regulatory domain of PKCθ 
induces apoptosis in neuroblastoma cells 
[249]. It is therefore possible that the use of 
inhibitors and dominant-negative PKC ac-
tually potentiates some effects of PKC.

Activation	of	PKC	stimulates	migration	
of	neuroblastoma	cells	(Paper	III)
The ability to move is crucial for tumour 
cells to metastasise and different PKC iso-
forms have been shown to be involved in 
migration. To investigate the role of PKC 
in neuroblastoma cell migration we stud-
ied whether activation of PKC could induce 
cell migration using transwell and scratch 
assays. We found that stimulating SK-N-
BE(2)C neuroblastoma cells with TPA in-
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duced migration in both assays. TPA is an 
activator of novel and classical PKC isofor-
ms but it has also been shown to influence 
other proteins that can regulate the mi-
crofilament morphology [199, 250]. These 
include chimaerins which are GTPase-ac-
tivating proteins [251] and the Cdc42 ef-
fector myotonic dystrophy kinase-related 
Cdc42-binding kinase (MRCK) [252] and 
it is therefore likely that TPA induces effects 
via these proteins. To investigate whether 
TPA-mediated migration is dependent on 
PKC different PKC inhibitors were includ-
ed together with TPA in the assays. Both 
the general inhibitor GF109203X and the 
inhibitor of the classical isforms, Gö6976, 
markedly reduced TPA-induced migration. 
To analyse whether the PKC effect is gen-
eral for neuroblastoma cells we investigated 
migration of two other neuroblastoma cell 
lines. Using the transwell assay we found 
that the MYCN amplified cell line KCN-69c 
migrated as a response to TPA, an effect 
that was blocked by GF109203X, while SH-
SY5Y cells which lack the MYCN amplifi-
cation did not respond to TPA. Both SK-
N-BE(2)C and KCN-69c carry an MYCN 
amplification which results in more aggres-
sive tumours. It is possible that the amplifi-
cation may be associated with the presence 
of a pathway that transduces a PKC signal 
to increased motility although a larger pan-
el of neuroblastoma cells need to be exam-
ined to draw such a conclusion. SH-SY5Y 
cells did not increase its motility in re-
sponse to TPA indicating that activation of 
PKC is not sufficient to drive migration of 
these cells. This is however not due to poor 
migratory capacity of these cells since they 
have been shown to migrate in response to 
other stimuli like PDGF and IGF-I [179, 
182, 191]. Furthermore, in terms of PKC 
effects SH-SY5Y cells are unique in that 
they differentiate upon treatment with TPA 

[253] and this might explain why they do 
not migrate upon PKC activation.

Cell migration can either be direct move-
ment towards a stimulus, chemotaxis, or 
random, chemokinesis. In the transwell 
assay the chemoattractant is added to the 
lower wells and by time an equilibrium 
between the upper and the lower compart-
ments is formed. In the transwell assay cells 
were allowed to migrate for 6 hours and 
it is likely a combination of chemotactic 
and chemokinetic effects. However, in the 
scratch assay there is no direct migration 
towards a stimulus and the increased mi-
gration is due to chemokinetic effects.

There are several studies suggesting 
that the closure of the cell-free area in the 
scratch assay is a combination of cell mi-
gration and proliferation [254]. We did not 
investigate proliferation in the scratch assay 
but considering that SK-N-BE(2)C cells are 
dividing approximately every 24 hour and 
the scratch is almost closed in 24 hours pro-
liferation is probably not the main mecha-
nism. Further supporting cell migration as 
the main mechanism in closing the scratch 
is the migratory phenotype observed with 
extended protrusions of cells migrating 
into the scratch.

PKCε	is	the	isoform	driving	
migration	(Paper	III)
Neuroblastoma cells generally express 
PKCα, PKCβII, PKCδ and PKCε [255] and 
to elucidate which isoform that is promot-
ing TPA-induced migration we used siRNA 
to knock down the levels of different PKC 
isoforms. Downregulation of PKCε with 
siRNA markedly decreased migration dem-
onstrated in both transwell and scratch as-
says. The effect was further confirmed by 
using two other siRNA nucleotides against 
PKCε. We could not completely inhibit the 
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levels of PKCε and this might explain why 
the migration was not reduced more. It is 
possible that even more suppressive effects 
could be obtained if PKCε could be de-
pleted from the cells. A role of PKCε is in 
line with the inhibitory effect of the general 
PKC inhibitor GF109203X on TPA-induced 
migration. However, in contrast to PKCε 
treatment with siRNA, the kinase inhibitor 
did not affect migration under basal condi-
tions. Since PKCε has been shown to in-
duce morphological effects independently 
of its kinase activity it is possible that some 
of the promigratory effects of PKCε may be 
exerted independently of its catalytic activ-
ity [247, 256].

Downstream	targets	(Paper	III)
The PI3K pathway and the Erk pathway 
have previously been shown to regulate 
migration of neuroblastoma cells [179]. 
PKCε has been shown to activate Erk at fo-
cal adhesions and this induces glioma cell 
adhesion and motility [257]. Furthermore, 
PKCε targets Erk to focal complexes during 
HGF-mediated cell movement [213]. Since 
both of these events are mediated via PKCε 
we hypothesised that the Erk pathway was 
involved in migration of SK-N-BE(2)C 
cells. We could however not detect a criti-
cal role of Erk in the PKCε-mediated mi-
gration of neuroblastoma cells. The MEK 
inhibitor, PD98059, suppressed TPA-medi-
ated migration in the scratch assay but had 
no effect in the transwell assay and down-
regulation of PKCε did not influence TPA-
stimulated Erk phosphorylation. These re-
sults indicated that the Erk pathway is not a 
downstream target of PKCε.

In addition to regulating other signalling 
proteins, PKC can more directly regulate 
the cytoskeleton by phosphorylating several 
proteins, such as MARCKS and ERM pro-
teins [234, 258]. MARCKS is a membrane-

bound PKC substrate that can be phospho-
rylated by classical and novel PKC isoforms 
and has in many studies been suggested to 
be a crucial mediator of PKC effects on the 
actin cytoskeleton. Stimulation with TPA 
induced phosphorylation of MARCKS and 
this was suppressed by PKC inhibitors, 
which is in line with a role for MARCKS 
in PKC-mediated motility of neuroblas-
toma cells. MARCKS has been suggested 
to be involved in PKC-mediated motility of 
several other cell types [211, 259, 260] and 
our data further support the general im-
portance of this pathway. However, down-
regulation of any of the isoforms PKCα, 
PKCδ or PKCε did not alter the phospho-
rylation of MARCKS. Since downregula-
tion of PKCε suppresses migration it does 
not seem as if MARCKS is a downstream 
target for PKCε-mediated migration even 
though it might be involved in TPA-in-
duced migration. These results also indicate 
that several PKC isoforms phosphorylate 
MARCKS in SK-N-BE(2)C neuroblastoma 
cells. The ERM proteins have been shown 
to transduce signals to different pathways 
as well as function as connectors of the mi-
crofilaments with the plasma membrane 
[199]. Since ezrin and moesin have been 
shown to be phosphorylated by PKC [234, 
235] we investigated a possible role of ERM 
proteins in TPA-mediated migration. How-
ever, stimulation with TPA did not induce a 
difference in phosphorylation of ERM pro-
teins (not shown). 

PKC has also been shown to mediate its 
function on migration via other pathways. 
Integrins are surface molecules that mediate 
the binding of the cell to the ECM and PKC 
has been shown to function both upstream 
and downstream of integrins. PKCε has in 
many reports been suggested to associate 
and co-localise with β1 integrin [214, 229] 
and in some studies this has been shown 



- Regulation of PKCα and the role of PKC in neuroblastoma cell migration -

32

to be mediated by the scaffolding protein 
RACK1 [210, 215]. We investigated wheth-
er PKCε, β1 integrin and RACK1 associated 
in SK-N-BE(2) neuroblastoma cells after 
activation of PKC (not shown). We could 
however not detect an interaction between 
any of the proteins indicting that this is not 
a down-stream pathway in PKCε-mediated 
migration.
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Conclusions
• When PKCα is not autophosphorylated  it becomes sensitive to DAG
• Treatment with the PKC inhibitor GF109203X makes PKCα sensitive to
 DAG probably due to a conformational change
•  Mutation of acidic amino acids in the V5 domain or a lysine-rich cluster in
 the C2 domain of PKCα increases the sensitivity to DAG perhaps by 
 disrupting an intramolecular interaction between the C2 and the V5 domain
•  PKCε induces migration of neuroblastoma cells
•  Several PKC isoforms phosphorylate MARCKS in neuroblastoma cells
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Populärvetenskaplig sammanfattning 
 

Människokroppen består av 50-60 biljoner 
celler och det är de som bygger upp krop-
pens organ. För att kunna svara på och an-
passa sig till förändringar i sin omgivning 
krävs att cellerna kommunicerar med var-
andra. I cellen finns komplexa nätverk som 
vidarebefordrar signaler inom cellen som 
svar på yttre faktorer. Fel i signaleringen kan 
be upphov till olika sjukdomar som tex can-
cer. 

Proteiner är komplexa ämnen som utgör 
en av huvudbeståndsdelarna i allt levande 
material. I cellen finns många proteiner som 
när de för tillfället inte behövs befinner sig 
i en inaktiv form. Det betyder att de inte 
kan skicka signaler i cellen. När det behövs, 
aktiveras proteinet tex genom att en signal 
utifrån signalerar in i cellen. En typ av pro-
tein som påskyndar biokemiska reaktioner 
kallas för enzymer. Enzymer spelar en bety-
dande roll för signalering i celler genom att 
aktivera och inhibera olika signalvägar. Utan 

denna reglering skulle det bli kaos i cellen. 
Proteinkinaser är en grupp enzym som 
påskyndar fosforylering av proteiner. Med 
fosforylering menas att det sätts på en fos-
fatgrupp på en aminosyra i proteinet. Det 
leder till att proteinet antingen aktiveras el-
ler inaktiveras. På så sätt kan proteinkinaset 
reglera att signaler som kan ge upphov till 
olika svar, skickas vidare i cellen. Proteinfos-
forylering är en mycket viktig signalerings-
mekanism i cellen. 

Proteinkinas C (PKC) består av 10 olika 
medlemmar, sk isoformer. De olika isofor-
merna finns på olika ställen i cellen och 
beroende på vilken isoform som aktiveras 
svarar cellen på olika sätt. När PKC är inak-
tivt finns det i den sk cytoplasman som är 
en vätska inne i cellen. 

När PKC däremot är aktivt kan det för-
flytta sig till andra delar av cellen. För att 
PKC ska bli aktivt krävs att det fosforylerar 
sig själv, sk autofosforylering. PKC har tre 



- Populärvetenskaplig sammanfattning -

35

viktiga platser som behöver fosforyleras för 
att proteinet själv ska kunna bli aktivt. Föru-
tom att PKC måste autofosforyleras krävs 
att det finns kalcium och diacylglycerol i 
cellen för att PKC ska bli aktivt. Kalcium är 
en positivt laddad jon och diacylglycerol är 
ett fett som finns i cellmembranet. Signaler 
utifrån kan leda till att nivåerna av kalcium 
och diacylglycerol i cellen ökar. Kalcium 
och diacylglycerol binder till olika delar, 
eller domäner, av PKC. Kalcium binder 
till C2 domänen och diacylglycerol till C1 
domänen. När PKC har fosforylerats och 
det finns kalcium och diacylglycerol i cellen 
kan PKC förflytta sig till cellmembranet. 
Där ändrar proteinet form och kan aktivera 
andra protein. Att PKC ändrar form och att 
det flyttar sig till membranet är viktigt för 
regleringen av PKC. Är det i en aktiv form 
hela tiden så kan det ske okontrollerad ak-
tivering av andra proteiner. Likaså är det 
viktigt att aktivt PKC befinner sig på rätt 
plats i cellen så det kan aktivera rätt pro-
tein.

I delarbete I och II har jag tittat mer i de-
talj på hur en av PKC isoformerna, PKCα, 
regleras. Vi har tidigare sett att PKCα kan 
flytta sig till membranet när det finns höga 
nivåer av kalcium i cellen. Finns det bara 
diacylglycerol stannar PKCα i cytoplas-
man. 

I delarbete I har jag funnit att om PKCα 
är inaktivt så kan det förflytta sig till mem-
branet när det bara finns diacylglycerol i 
cellen. Vidare fann jag att detsamma gäller 
när PKCα inte har autofosforylerats. Vi tror 
att det beror på att när PKCα inte är fosfo-
rylerat så har det en mer öppen form. Det 
innebär att C1 domänen, som binder till di-

acylglycerol, är mer exponerad och därmed 
kan binda till diacylglycerol i membranet. 
Å andra sidan, när PKCα är autofosforyler-
at får proteinet en mer stängd form. Det gör 
att C1 domänen är mer gömd och att det 
även behövs kalcium för att PKCα ska för-
flytta sig till membranet.

I delarbete II har jag fortsatt att under-
söka varför PKCα svarar så dåligt på bara 
diacylglycerol. Det verkar som den allra yt-
tersta delen på PKCα kan binda till en del 
i mitten av PKCα. När dessa båda delar är 
bundna till varandra kan PKCα inte för-
flytta sig till membranet när det bara finns 
diacylglycerol. Om man däremot bryter 
upp bindningen kan PKCα svara på dia-
cylglycerol. Det beror förmodligen på att 
proteinet får en mer öppen form och att 
C1 domänen inte är gömd. Den här typen 
av kunskap har betydelse för utveckling av 
substanser som specifikt kan påverka reg-
lering av proteinet.

I delarbete III har jag undersökt om 
PKC är viktigt för att neuroblastomceller 
ska kunna förflyttas, migrera, och därmed 
sprida sig i kroppen. Neuroblastom är en 
barncancer som uppstår när celler från 
nervsystemet inte mognar utan fortsätter 
dela sig okontrollerat. Det är vanligt att 
tumörer uppstår i binjuremärgen och att 
dessa sedan sprider sig till andra delar av 
kroppen och bildar sk metastaser. Jag har 
funnit att en PKC isoform, PKCε, är viktig 
för att neuroblastomcellerna ska kunna mi-
grera. Tar man bort PKCε från cellerna så 
migrerar de mycket långsammare. PKCε 
skulle alltså kunna vara ett möjligt protein 
att inhibera för att förhindra att neuroblast-
omceller sprider sig i kroppen.
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