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1. Introduction

Symbolic manipulation will play an important role in future CACE tools. Unfortu-
nately, today’s systems for Computer Aided Control Engineering (CACE) allow basi-
cally the user to perform numerical calculations. They do not support symbolic calcu-
lations. Omne important reason for this is that the tools were designed for computers
with what is today considered as moderate computing power and symbolic manipula-
tion calls for computing power. The increasing capacity of computers and workstations
makes it now worthwhile {o introduce symbolic calculations in CACE systems.

[Pavelle et al., 1981] give a popular scientific introduction to computer algebra.
There are commercial general-purpose systems for symbolic systems available:

MACSYMA  developed at the MIT Laboratory for Computer Science, USA

REDUCE developed at Stanford University, the University of Utah and the Rand
Corporation, USA

Scratchpad developed by IBM

SMP developed at the California Institute of Technology, USA
Maple developed at the Universily of Waterloo, Canada
muMATH developed by the Soft Warehouse, Honolulu

The main purpose of the project “Combination of Symbolic Manipulation and
Numerics” was to experiment with and gain experiences of using a program for symbolic
manipulation. As the tool we used MACSYMA and as the application analysis of
multivariable systems was selected. There is a framework for analysis and design of
multivariable systems using polynomial matrices. A standard text book is [Kailath,
1980]. Unfortunately, these methods have poor numerical properties. Methods based
on state space representations have better numerical properties. However, in many
cases it is desirable to be able to work in the frequency domain. It may be easier to
formulate and analyse properties of interest in the frequency domain than in the state
space. MACSYMA is good at polynomials and rational functions.

Motives for supporting symbolic calculations are presented in Chapter 2. The pack-
age developed in MACSYMA for analysis of multivariable linear systems is described
in Chapter 3. A Lisp function in MACSYMA can be used to establish interaction
with other programs, such as Simnon and CTRL-C. This is presented in Chapter 4. In
Chapter 5 a new method for calculating root loci is demonstrated. This serves as an
example of the idea fo combine symbolic and numerical computation and thereby solve
more complex and composite problems. Conclusions are given in Chapter 6.




2. Motives

There are several good reasons for including symbolic manipulation in CACE tools.
First, structure is important and an analytic answer may give a better insight. Second,
the user interface could be improved, since the user’s original formulation is usually
not a computational procedure but rather equations and relations on symbolic form.
Third, models could be multi-purpose and reusable independent of what is known and
what should be computed. Forth, symbolic manipulation could be used to facilitate
numerical solution. Below we will discuss these motives in more detail.

Insight is Desirable

You may think that the ultimate CACE program is an automatic procedure which
outputs a VLSI chip that implements the optimal controller. Life is not that easy. You
must at least specify your desires and requirements; a specification of what you think is
optimal. Unfortunately, this may be a laborious and demanding task. Many problems
are not that well-defined. If it is a new type of plant, it might be difficult to know which
are the decisive requirements and which that are easy to fulfil. A given constraint may
be totally decisive for the outcome of the control design. A designer may be willing to
adjust the requirements to achieve other benefits, but he is not willing to consider every
case or combination. He wants to work in an iterative way and be able to eliminate
bad approaches early. He also wants to know why a certain approach fails. He wants
to get insight. For example, it may be easy and favourable to remove a constraint by
redesigning the plant. It is in most cases favourable to take the interaction between
process design and control design into account and consider them simultaneously.

A designer is happy when he has a profound understanding of the system dy-
namics. He then knows the possibilities and the limitations and can make the proper
compromises during the design. He can justify why it is not possible to make a better
design according to the circumstances. In many cases insight is the key to design. If
you can pinpoint the critical parts and if you understand the difficulties, you can often
solve or avoid the problems and make a good design,

In real life most plants have significant non-linear behavior, while most available
software for analysis and synthesis assumes linear models. It is difficult to analyse non-
linear systems. The simulation model could be used for empirical studies concurrently
with a mathematical analysis., Possibilities to include and exclude different features in
the model by changing the model for one part or by making parameter changes are
useful when studying their importance. To have some success with the analysis we
are more or less forced to work mainly with linear models and to estimate the effects
of nonlinearities. Linearization is tedious to do with paper and pen. A good formula
manipulation program which takes the nonlinear equations and outputs the linearized
ones would be a real time-saver. If there also was a program that took the linear model
and intervals for the parameters and made proper approximations, the analysis would
be even simpler to carry out. A nice thing with linear models is that they can be
transformed into the frequency domain where many dynamical properties are easier
to understand. When analysing a system it is useful to have different viewpoints and
possibilities to transform back and forth between different representations.




Support Users’ Concepts

It is important that a user can describe his problems on a for him natural form. The
user interface of a CACE system could be viewed as consisting of a language and
environment. The language should be more than just a means for instructing the
computer to perform tasks. It should also serve as a framework within which we
organize our ideas. It should be a high level problem solving language.

It is important that the user can give the mathematical description of a submodel
on a natural form. When deriving models from first principles the result is often a
system of differential algebraic equations (DAE):

g(t, 2, 2,v,p, C) =0

where { is the time, 2 and v vectors of unknown variables, p a vector of known pa-
rameters and ¢ a vector of known constants. It is natural to require that interactive
software for model development and simulation supports DAE systems. The proto-
type simulator Hibliz ([Elmqvist and Mattsson, 1986]; [Mattsson, Elmqvist and Briick,
1986]) which was developed in another CACE project (STU project 84-5069) accepts
mathematical descriptions given as DAE systems. However, most simulation packages
of today do not allow models given as DAE systems, but require assignment statements
for derivatives and algebraic variables. The user must solve for the derivatives and put
the model on the form

T = f(t,m,p,c)
He is often allowed to introduce sequences of auxiliary variables and to give the assign-
ment statements in any order:

& = fl(tsm.:m:”apac)
v = f2(ts‘i3:‘r’s”3p, c)

as long as it possible to sort them so that all derivatives and auxiliary variables are
calculated before use, This means that the user has to manipulate his model manually,
This is a non-trivial task. Errors may be introduced.

When DAE systems are supported, the model becomes more readable since the
user can recognize fundamental relations as mass and energy balances and other phe-
nomenological equations. It is easier to check that the model is entered correctly and
the risk of introducing errors during manual transformation is reduced.

Multi-Purpose and Reusable Descriptions

It is a laborious and time-consuming task to develop good models of plants and various
phenomena, Consequently, it is important that the investments in model development
can be reused. A model can be used for different purposes as simulation, analysis and
design, The status of a variable may vary. Sometimes it is considered to be known, while
in other situations we want to solve for it. For example, when solving for a stationary
operating point the derivatives are set to zero and the states are to be solved for. When
a numerical ODE solver is used, the states are considered {0 be known and we should
solve for the derivatives. When designing the plant or the control system, some of the
parameters are considered to be unknown by the designer.
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Furthermore, as thoroughly motivated by [Elmqvist, 1978], the equation form is the
only reasonable representation for model libraries, With models on assignment form,
it must be decided for each submodel which of its variables that are inputs (in other
words are known) and which of its variables that are outputs (defined by the model).
As a simple example consider a resistor. Ohin’s law states V; — V3 = RI, where V; and
V, are the voltages at the ends of the resistor, I is the current through the resistor and
R is the resistance. The model has three variables V3, V5 and I. The resistance R is in
this model a given parameter. If we should write the model on assignment form there
are three possibilities

Ii= (Vi - V3)/R
Vi=Vo +RI
'Vz = Vl — RI

The first variant assumes that V3 and V, are inputs and defines 7. This model is
appropriate if for example one end of the resistor is connected to a voltage source
and the other to ground. The second and third variants assume that the current
and the voltage at one end is known. These models are appropriate if the resistor is
connected to a current source and ground. Consequently, for models on assignment
form we need several different models for a resistor, depending on how it is connected
to the environment. This makes both use and maintenance of a model library messy.
Furthermore, other environments may result in algebraic loops so that equation systems
with equations from several submodels must be solved to transform the model into
assignment form. Two resistors connected in series between a voltage source and ground
is a simple example of this. Submodels cannot be transformed into assignment form
individually, but the transformation is a global problem.

Improve the Numerical Properties

It is favourable if a CACE system accepts problems on forms preferred by users. By
exploring symbolic manipulation the problems can in many cases be simplified and
transformed to a form more suitable for numeric solution.

As an example consider the problem of finding the optimum of a function. The
numerical solution procedure could be made faster and more robust if analytic proce-
dures for calculating the gradient and the Hessian are given. However, in many cases
it is laborious for the user to provide these procedures. It is much more convenient for
him if they are generated automatically.

You may say that a problem is ill-conditioned if a small perturbation in the equa-
tions can lead to a large deviation in the solution. The main question is, however,
what perturbations we have to consider in a particular case. If we have a fully param-
eterized model, where all explicit numbers are exact (structural ones, zeros etc), the
perturbations of interest are those described by perturbations in the parameters. If we
want to perform a numerical calculation and substitute the parameters with numbers,
then it is of interest to consider unstructured and random perturbations to model for
example quantization. Then a larger class of problems becomes ill-conditioned. For
a fully parametrized problem the condition number is not a problem invariant, but it
depends on the formulation and may be decreased by symbolic manipulation.

It is important o consider the structural properties of a problem when deciding
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whether it is well-posed or not. For example the problem e+y = 1 where we know that
the system is stable, is well-posed. The only perturbations that we have to consider are
perturbations in & which lead to an € greater or equal zero. Even from a numerical view,
it must be considered to be well-posed. It is a minimum demand that a non-negative
number is represented by the computer as a non-negative number.

Possibilities {o use symbolic manipulation to handle DAE systems are discussed in
[Mattsson, 1986].



3. An Analysis Package in MACSYMA

The framework of polynomial matrices is useful for analysis of multivariable linear
systems, see [Kailath, 1980]. However, polynomial matrices are not easily manipulated
by hand. It is thus very important that good analysis tools for polynomial matrices are
available. We have tried to fill the gap between theory and practice by implementing a
package for analysis of multivariable linear systems in MACSYMA. The functions of this
package is listed below, Then a MACSYMA demo with matrix fraction decompositions,
co-prime factorizations, multivariable realizations, etc., will illustrate the beauty of
symbolic manipulations. The examples are taken from [Kailath, 1980]. For further
examples and details on the implementation including listings of the functions we refer

to [Holmberg, 1986].

Available Funetions

The following functions for analysis of multivariable linear systems have been imple-

mented in MACSYMA,

Linearization
LINEARIZE Linearizes the dynamical system ¢ = f(z,u), y= g(=,u)
Stability analysis
ROUTH Generates the stability conditions for a continuous time system
JURY Gives the stability conditions of discrete time systems and the steady
state output variance
Sampling
SAMP Sampling from transfer function to pulse-transfer function
SAMPSTATE Sampling from staie space to state space '
Geometry functions — state space
HERMITE Gaussian elimination when applied to a constant matrix
KER Computes the Kernel {X]|AX = 0}

INVERSE_IMAGE  Calculates the inverse image {X[4AX = B} (4 possibly singular)
INTERSECTION Computes the intersection of two subspaces
GRAM_SCHMIDT Calculates an orthogonal base for a subspace

AIRV Computes the maximal A-invariant subspace in a given subspace
ABINV Computes the maximal (A4, B)-invariant subspace in a given sub-
space

Factorization — Frequency dormain
SMITH Calculates the Smith form together with transformation matrices
SMITH McMILLAN Calculates the Smith-McMillan form with transformation
HERMITE Calculates the Hermite form
COLUMNREDUCE Makes a denominator polynomial matrix column reduced
ROWREDUCE Makes a denominator polynomial matrix row reduced
RMFD Right Matrix Fraction Decomposition (MFD) of a transfer matrix
LMFD Left MFD of a transfer matrix
RIGHTCOPRIME Gives a right coprime MFD from a noncoprime MFD
LEFTCOPRIME Gives a left coprime MFD from a noncoprime MFD
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SS2TF State space to transfer function conversion

MAKESYS Makes a list of the 4, B, C, D matrices to represent a system
Multivariable Realizations

CONTROLLER Calculates a controller form realization

OBSERVER Calculates an observer form realization

CONTROLLABILITY Calculates a controllability form realization
OBSERVABILITY Calculates an observability form realization

Generation of the §(4, B, C, D)-file
TOMIMO Generates the file ABCD.MIM from A, B, C, and D.

Example—Polynomial Matrix Manipulations

The following example is a MACSYMA Demo that illustrate the use of polynomial
madtrices for analysis of multivariable linear systems. The cumbersome manipulations
are done by the above functions. The Demo starts with a transfer function matrix,
describing a multivariable linear system. The description is transfered into a matrix
fraction decomposition, MFD, i.e. a polynomial matrix description. Extraction of
different polynomial matrix factors of the MFD are made. Also, different multivariable
realizations are presented. For terminology and a background the reader is refered to
[Kailath], especially Chapter 6.

The file shown is a MACSYMA log file, output with the typeset switch true.
The resulting Troff/EQN typesetting code has automatically translated to TEX by the
program MacEQ2TgX (see [Martensson, 1986]).

(c1) load("login.mac")$

(c2) demo("realizations.dem");

/* This demo describes a couple of examples in Kailath, chapter 6.
Example 6.2-1. Alternative MFDs for a Transfer Function. p. 368-9,
Example 6.4-1. Controller-Form Realization of a Right MFD. p. 407-8.
Example 6.4-2. Observer-Form Realization of a Left MFD. p. 416

Example 6.4-6. Constructing Canonical Controllability Forms. p. 433-4. */
(c3) grmatrix([s/((s+1)*(s+2))"2,8/(s+2)"2], [-s/(s+2)~2,-5/(a+2)"21);

(d3) [(a+1>2(a+2)2 (Hfz)*]
=) ey

/% Example 6.2-1. Alternative MFDs for a Transfer Function. p. 368-9. */
(c4) rmfd(g);

(d4) ldfr:[(‘g“)z(”z)z 0 },m:[ ° SH

0 (s +2) —s(s+1)® —s

(¢b) ev(rightcoprime(dr,nr),%);




(d5)

e A P R IV TS B |

(c6) ev(columnreduce(dr,nr),%);

(3_32)2 _(s+:fz(s+2)] ,nrz{_ss 302],’&:[3-12 2]}

/* Example 6.4-1. Controller-Form Realization of a Right MFD. p. 407-8. */
(c7) ev(real:controllex{dr,nr),%):

(de) [dr =

- =4 —4 0 —1 —2- -0 17 .
1 0 0 0 0 0 0 1 00 0 0
(d7) e=]0 0 —4 -5 —-2|,b=]|-1 0f,c= [_1 0 1 0 0}
0 0 1 0 0 0 0
. L 0 0 0 1 0 . L 0 0. -

/* Example 6.4-6. Constructing Canonical Controllability Forms. p. 433-4.
*/

/* Search by Crate 2 #/

(c8) ev(controllability(a,b,c),¥%);

i 0 0 -2 0 0 - "1 07 7
1 0 -5 0 0 0 0 o0 1 1 .
(d8) a={0 1 -4 0 0 |,b=|0 0}f,c= 14 12 -1 4
00 2 0 —4 0 1 i
i 0 0 1. 1 —4] L0 04 -
/* Search by Crate 1 */
(c9) cratenr:1;
(d9) 1

(¢10) ev(controllability(a,b,c),real);

- 70 0 0 —4 27 107 -
100 -12 5 00 o o0 1 6'1
(d10) |e=|0 1 0 -13 4 [,b=|0 0],c= N
-1 4 —-12 32 -1
001 —6 1 0 0
L oo o o0 -2 [0 1] |




/% Example 6.4-2. Observer-Form Realization of a Left MFD. p. 4168 */
(ct1) Imfd(g);

(@11) [dl _ [(s +1P2(s+2° 0
0 (s 4-2)2

=] 3(8_*;1)2”

(c12) ev(leftcoprime(dl,nl),%);

_ (3+1)2(8+2)2 0 ] = 8 s(s-{-l)z _ 1 0
(12) {dl_[(s+1)2(s+2) s+2]’ l_[o 2 ]’rl_[—1 s+2]

(c13) ev(rowreduce(dl,nl),%);

(d13) [dl:[(s+1)g(s+2) —(::22)2],7112[3 32]’“2[:) —(sl+2)]

(c14) ev{(observer(dl,nl),%);

- =4 1 0 0 0] F1 17 :
-4 0 0 0 0 0 0 0 0100
(d14) a=|0 0—410,1::01,:::[ ]
-1 00 0 0
1 0 -5 0 1 0 0
. L2 o -2 o ol [0 o] i




4. Generation of a MIMO System Text File

It will now be demonstrated how a MIMO system in MACSYMA can be transfered
into a text file of a special form. The special form of the text file is chosen to be
the same as the print format from CTRL-C. This makes it possible to load results
form MACSYMA into CTRL-C. It should also be mentioned that there is a Pascal
program written by [Martensson, 1986] that generates Simnon code from this text file
representation. The generation of the text file from MACSYMA is made by the function
TOMIMO. This is a LISP program and consequently we have to enter the LISP mode
before we apply it to our MIMO system.

(c1) load("login.mac")$

(c2) a:matrix([1,2]1,[3,4]1)%
(c3) b:matrix([5,6]1,[7,8]1)%
(c4) cimatrix([9,10],111,121)%
(cB) d:matrix([13,14],{15,16])%
(c6) sys:makesys(a,b,c,d);

@ o= 3]e=07 obemln Bl o]

(c?)

Break Entering Lisp:

<i>: (load "tomimo.1l")

t

<1>: (tomimo $sys ’abcd.mim)
t

The MIMO system has now been writien in the file ABCD.mim. This file looks as
follows:

nmp =

222
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9 10
i1 12

13 14
i 16
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b. Root Locus

In this section we will demonstrate a method for computing root loci by combining
symbolic and numerical computations. Only a very brief description will be given. A
fuller description is given in [Holmberg, Lilja, Mértensson, 1986].

The naive way of plotting root loci of the type

A(s) + kB(s) = 0

where A and B are polynomials and k real, is to solve the equation for a number of
equi-distant k-values and then mark the roots by an ‘x’ for each k. This method has
severe disadvantages: Firstly it is rather time consuming and secondly it gives a very
bad resolution near multiple roots. To be presentable, the plots also need heavy manual
paste-up. In the following subsection, a method based on the implicit function theorem
is suggested. A non-linear differential equation, that describes the root locus locally,
is obtained by some manipulations of the transfer function (done in MACSYMA for
example) and a package for solving the differential equation (e.g. Simnon) can then be
utilized to compute and plot the root locus. This method is both faster and gives a
better performance near multiple roots than the method mentioned above.

A general problem

This subsection proposes a method for plotting the locus of points s in the complex
plane satisfying the equation

f(sak)=07 s5,keC (b)

where f is analytic in s and k and where & is restricted to the real axis. Several common
control theory problems are covered in this formulation: Ordinary root loci, LQG root
loci (k = control weighting), zeros of sampled systems (k = the sampling interval), etc.

The method is based on the implicit function theorem applied to (b). The idea is
the following: The problem is to compute {s[f(s,k) =0, & € [a,b] C R}. For this,
compute the k’s such that (b) has multiple roots in s. Away from these, the branches
s;(k) satisfies

of

d ok
Spsilk) = T ()
s

Implementation

The transfer function G(s) is specified in MACSYMA and the closed loop characteristic
polynomial p(s, k) is calculated. The real and imaginary part of the right hand side
of (§) are then computed and written to a file using the function print_ode. To avoid
divide overflow in Simnon when a multiple root is encountered one has to stop the
integration before the multiple root. For each multiple root, one therefore has to find
the local behavior of s with respect to k. A graphical method to do this is to plot a

12



Newton diagram. This is equivalent to making the substitution s := bk? in the charac-
teristic polynomial and then finding pairs of dominating terms. The function newton
implements this and returns two lists. The first list contains the possible k%-alternatives
and the second list gives the corresponding coeflicients (expressed as a polynomial in
b). The function near multiple.roots uses newton for calculating the values of k for
which |a%;_‘3f(k)’ = dmaz. The function print_kxy uses near multiple_roots to print
out these & values and the corresponding solutions in s.

The differential equation for the real and imaginary parts of the root locus is writ-
ten into the file ode.rl. The k-values specifying the intervals for which the root locus
is to be plotted for are written (together with the corresponding initial values for the
branches of the root locus) into the file rootloc.rl. These two files are then processed
by a procedure written in the “editor language” TPU (Text Processing Utility) in VMS
generating one Simnon system description file ode.t (the “dynamics” file) and one file
rootloc.t containing the commands for setting initial values and integrating,

An Example

The following MACSYMA dialogue shows an example where the functions print._ode
and print_kxy are used. In the example the interval for the gain k is chosen to —2 <
k < 2 and the maximum derivative to dpe, = 100.

(c1) load("rootloc.mac")$

(c2) g:matrix([i/s~2,1/s],[-1/s"2,0]1);

L1
d2 5o
(42) [—;‘f .
(c3) print_ode(g);

(d3) | ode.rl
(c4) print kxy(g,-2,2,100);

(d4) rootloc.rl

The resulting files ode.rl and rootloc.rl are then processed by the TPU file
rootloc.tpu to get the Simnon system description file ode. t and the Simnon command
file (“macro” file) rootloc.t. The Simnon commands required to plot the root locus
are:

> syst ode
>axes h -2 2 v -2 2

> rootloc

The result is shown in Figure.

13
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Figure: The root locus plot.

6. Conclusions

As motivated and illustrated symbolic manipulation could be very useful. The user
interface could be improved by allowing the user to work on a higher level. He can
present his problem on a for him suitable form. Results on analytic or symbolic form
could give a better insight into structural properties than numerical tables. Even when
it is not possible to carry the symbolic calculations all the way through, symbolic
manipulation could be useful. Symbolic manipulation could simplify the problem and
transform it to a form better suited for numerical solution. Symbolic manipulation
could also be used for automatic generation of procedures for calculating gradients,
Jacobians, Hessians etc. thereby relieving the user’s burdon and hopefully decreasing
the possibilities of introducing errors.

Our experiences of MACSYMA are that it is a powerful tool and can do a lot
with proper guidance from the user. One advantage with with MACSYMA is that it
is written in Lisp. This makes it possible to extend the program with Lisp functions.
As you remember from Chapter 4, this enabled us to establish an interaction between
MACSYMA and other programs, like Simnon and GTRL-C. The drawbacks are that
it is a large program and that it consumes a lot of computer power. Unfortunately,
MACSYMA is not modularized. For use in CACE systems it should be desirable to
have modularized tools for symbolic calculation so that a user could select for him a
proper set. We are eagerly searching for such a toolkit.
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It is important to consider that there is a user in the loop. He can in many cases
improve the manipulation by proposing substitutions and by informing the system on
what kind of forms he want the answer. In many cases an equation system can be
simplified considerably if it can be assumed that a parameter or a certain expression
is zero. It is difficult for the user to anticipate all such cases in advance, but he may
well be able to answer those questions interactively. Also, if the model is modified
there should be facilities to take care of assumptions made before so he doesn’t need
to consider them once more when the manipulations are redone. To speed up the
manipulation it is advisable to store the successful path and try it when the user has
modified his model. The logging facility is also necessary for the explanation facility.
If the numerical solution procedure fails, the error message should relate to the user’s
original formulation and not to the manipulated expressions.
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