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Abstract

In this paper error bounds for truncated balanced
linear time-varying systems in discrete time are ob-
tained. The analysis is based on direct calculations
with the time-varying observability and controlla-
bility Lyapunov inequalities. The obtained bounds
in the induced #;-norm generalize well-known error-
bound formulas for time-invariant systems. The case
of time-varying state-space dimension is considered,
and this proves to be valuable both for technical and
practical reasons. Input-output stability of truncated
models is shown to be guaranteed.

1. Introduction

This paper will treat model reduction of time-varying
linear systems. Time-varying linear systems are
of interest not only for modeling of time-varyving
physical processes, but also because of the fact
that fime-invariant nonlinear systems can he well
approximated by time-varying linear systems about
nominal trajectories.

To reduce the order of linear time-invariant systems
balanced truncation is often used. Balanced realiza-
tions were introduced for this purpose in [8]. Since
then an error bound has been proven, [3, 4, 1], which
gives a bound on the worst-case error between the
original and reduced model and justifies the approxi-
mation. This result is now considered to be standard.
Balanced realization for time-varying linear systems
have also gotten attention, see for example {11, 13|
for some early references. However, until recently
no error bound has been given for the time-variable
case. To obtain bounds, methods for uncertain sys-
tems could be utilized, see for example {2]. However,
these bounds would be conservative as the known
time-variance is encapsulated in an uncertainty ball.

The first explicit error bound for balanced time-
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varying models, to the authors’ best knowledge, was
given in [7] and later in [6]. There, an operator-
theoretic framework was used to give bounds sim-
ilar to those that apply to time-invariant models.
For time-periodic linear systems bounds have been
proven in [8, 12]. There, a special form of lifting iso-
morphism was used.

In this paper we will work directly with the ob-
servability and confrollability Lyapunov inequalities
{LMIs). It will be seen that it is natural to allow
the state-space dimension to vary in size over time.
The approach will give stronger error bounds and
the method will give stability results on the reduced
models. As special cases we will recover the known
results for time-invariant and periodic systems. Sim-
ilar results for systems in continuous time are given
in [10].

The ability to vary the state-space dimension over
time is not only of interest for technical reasons.
In for example stiff problems, such as chemical
reactions, it is frequent that in the initial phase,
many complex reactions take place and that the
dynamics then slows down. It is then reasonable
to have a model with many states in the initial
phase and then switch to a low-order model after
some time. The analysis presented will help to decide
when to switch the number of states and also how
much loss in accuracy a particular choice might give.

2. Preliminaries and notation

It will be useful to utilize time-varying state-space
dimension as commented in the introduction. It is
known that minimal realization of linear systems
in general have this property, see [5}. However, it
will also be a useful technical tool for reducing the
order of systems where the state-space dimension
originally is constant. Let the state-space dimension
at time & be nz.

In the following the weighted Euclidean norm will
be used for x, € R™: |ku%,* xg'kak, P, > 0.



Discrete-time signals x over a time interval [0, 7],
with x; € R™, belong to 5[0, T'] iff the norm

r 12
{xfl2,p = (Z Exkli,,)
k=0

is finite for P, = I. Linear systems G : (3:[0,T] —
£5[0, T) are used with the induced norm

[|Gullz
Gl = sup —.
el ||unz§n [[z|lz "

The linear systems y = Gu that we consider are
assumed to have finite dimensional state-space real-
izations:

(1)

G. = Apxy + Bruy, x0=0
"1 yi=Cixp+ Dhpup, x € R™
with m inputs and p outputs. As the model order may
vary with k, A; is not necessarily a square matrix but
rather rectangular. The matrices have the following
structure:

Ak c Rﬂu-lx"h’ Bk c Rﬂnlxm,
C. € RP*™, D, € RP*™,

The system we would like to obtain, § = Gu, will be
called a reduced-order system. It will have the state-
space dimension 7y, where A, < n, for all k. The
set

T ={k: Ay <m}

contains the time peints where the state-space di-
mension differs. We will construct & from G based
on the matrix partitions

Apyr Apyo } .
Ap = ’ 1, A € Riwaeis
* [Ak,2] Agoa ki1
Bk’l Fyp1 XM
By = s By e R+
Byo
Ch=[Ce1 GCrgl, Cp1 € RPM,

If the realization (1) is chosen such that the states
in the lower part of x; are “small” in some sense,
a reasonable reduced-order candidate is obtained by
truncating those states:

G i'k-i-l = Ak,ll;ik + Bpau, 3:50 =0 ) @)
$p = Cea®r + Drup, Rz € R™,
The auxiliary signal
Zk+1 = Apn1fr + Brour &)
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will be useful. Z, € R™ ™ and is only defined if
E € T. 5 is not needed to evaluate the map &. It
will be used to evaluate the difference between the
outputs of G and G.

If the systems G and @ shall have a similar input-
output behavior when the above truncation scheme
is used, it is important that the coordinate system
in the realization of G is well chosen. As we will
see, such coordinate systems exist in many cases. A
change in coordinate system, x; = Tp#p, for invert-
ible T}, will transform the realization according to

{Ar, By, Cp, Dy} LN (4)
{Ays, By, Gy, Di} = {T5 L ArTe, Ty LiBr, Gy, Dy}

The topic of this paper is to answer the question of
how to choose the numbers fiy, and then to give a
bound on the error ||G — G|| that results from this
chaice.

We will bound ||G — G|| by finding numbers C > 0
such that {ly — 3|lz < Cllulls

3. Observability results
Consider the Lyapunov observability inequality:

Al QriAr + CTCy < Q. (5)

It determines how much energy there will be in
the cutput for a given initial state of the system
& with zero input. It can, however, also be used
to determine the difference in energy between the
outputs from G and & when both systems are driven
by the same input signal. To see this, assume there
is a positive semidefinite solution @, with a block-
diagonal structure

Qe g

% = |: 0 qk - Ink—ﬁ.t

] € Rxne (6)

and gy, scalar. Then rewrite (5) in the following way:

AT @i O YA T
AT ]eose

If we apply the same input signal u to (1) and {2}
we obtain the trajectories x and %. Introduce the

partition
.
xp =
Xk 2
and multiply (7) from the right with

[xk,l — %

en
Xk2



and with the transpose from the left, We then obtain

Xpy1,] — Xpt1
Liy1,2 — Zri1 [Qk+1 0 } Ti4l,2 — 241

0 - Xp1— X%
Xk2 Xk2

k41,1 — Xre1

xp1— %

+ye—3* <0
which is equivalent to

Alxpy — Bl + Alxral3,— )

2qr+12h, %0412 + Benrll, + v — FP <0

using the structure (6) of . The forward difference
operator A is defined as

Aap = Qg1 — Q.

on a scalar sequence {a;}. Now we can state the
following lemma:

LEMMA 1—OBSERVABILITY

If there is a solution @; with the structure (6) to the
Lyapuncv inequality (5) on the interval [0, T + 1],
then the solutions of (1) and (2) satisfy

{®
ler 11— Er41lf,,,, + xTe12is,, +

ly =518+ (184l2, — 2quéTs2) <0 (9
keT

where equality holds if (5) was sclved with
equality.

(ii) For every non-increasing positive scalar se-
quence {a;}]_, we have

Hy = $lBa = 2 as-20ufna <0. (10)
keT

Proof. (i): Sum the inequalities (8) over k= 0,..., T
and notice the canceling terms.

(ii): Multiply (8) with a; for each %, and sum for
k = 0,...,T. For non-increasing a, the partially
canceling terms are necessarily non-negative. The
sum over ‘7 is the only sign-indefinite term, which
leads to the inequality (10). (]

As seen if T = @ the difference in output is zero,
as G = G. Also notice that all terms in the lemma
are necessarily non-negative except the terms with
2T x; 5. These terms are the price we pay for removing
states. It is also seen that if the numbers ¢, are small
for k € T, we might expect ||v —#||2 to be small. This
is only true if 27x; 5 is simultaneously small. We will
bound these terms by an analysis of controllability
next.

4. Controllability results

Here it will be seen how far away the states in
G and G can be forced with the input signal u.
The following inequality will be called the Lyapunov
controllability inequality:

AkPkA}: + BkBg‘ < Pay1. (11)
Assume again there is a block diagonal solution

Py ¢

P, =
* [ 0 pe Iﬂrﬁh

:I E Rnkxm, (12)
and that it is positive definite for all k. Notice that
{11) can be rewritten as

‘ 1/2 -1/2
[ P* AT P

5P

1/2 12 p-1/2
[Pk/AP/ k+{Bk]

which is equivalent to

A, B, Pk_+1 0 FTA, By < 0 0
[1 o] [ 0 —Pgl]_I 0]—{0 1]'
(13)
Now, assume we again apply the same input signal

u to G and G. We then obtain the system trajectories
x and %. Multiply (13) with

Xt + Xy
xk,Q E Rn;-ﬁ—m
2up

from the right and with the transpose from the left.
This gives

Aka.1+fk|2p;; +Alxp2|pnt
" ‘ (14)

2Pt bz + |Zparlias, < 4lual?

if the structure of P is used. Now the following
lemma can he stated:

LEMMA 2—CONTROLLABILITY

If there is a solution P; to the inegquality (11} with
the structure (12) on the interval [0, T + 1] then the
solutions to (1) and (2) satisfy

()
beria1+ £T+l|§9ﬁu + IxT+1,2|f,;x+l-I-

> (182 + 200 2 w2 < 4lluil}
keT

(15)

(ii) For every positive non-increasing scalar se-
quence {b;}]_, we have

> br 125 8 xr 2 < 4lull3 (18)
keT



Proof. As in Lemma 1. Use (14) instead of (8). O

The lemma gives boundaries on the reachable set
in the state-space for fixed amounts of input energy.
Notice that when 7 = & equation (15) reduces to
the well-known result

T opo 2
xr Prixra < fluily

as x = &; for all k. Also notice that the sum in (16)
potentially can cancel the sum in (10), namely if

ap—1qr = bp-1p3" (17)
for all £ € T. This will be utilized in the following.

5. Balanced realizations and error bounds

The two previous sections rely heavily on the ability
to obtain block-diagonal solutions to the inequalities
(5) and (11). Luckily, there are such solutions if
the system is completely controllable and observable,
that is, P, > 0 and @; > 0 for all & These are called
balanced solutions and are diagonal and equal;

Py =@ =Z; =diag{o1,0r2,.... Gy }»

with each element positive. This normally requires
a coordinate transformation (4), of the original re-
alization of G, It is always possible t¢ permute the
elements in Z;. The elements will be called the sin-
gular values of G. The singular value o quantifies
how observable and controllable the state x; is, and
thereby how important it is, as will be shown. How
to obtain balanced solutions and other properties has
been throughly studied, see for example [12] and ref-
erences therein.

We would like to get an upper error bound between
G and @, ie. ||G — G|, for different choices of 7.
This can be done rather easily with Lemmma 1 and 2,
if there is a balanced realization of G at hand. It is
useful to group states that share a common singular
value. Therefore introduce the notation

Iy =diag{ow; 15 -, Onn, 'Is;..w,,}-

Thus there are N; unique singular values at time %
and sg1 + - + 84N, = ne As there are monotonicity
conditions on the weight sequences {az} and {&z}
in Lemma 1 and 2 we expect this to show up
"somehow in the error bound. The following types of
subsequences will be used.

Non-increasing subsequence: Assume there is
& non-increasing subsequence in time among the
elements in X. Collect them in a set S;:

Si = {O-d,Nda-'-’o-e,Ney-“}
d<...<e<...&T;

dedz...zdg,jvzz....
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The corresponding states in G can be truncated to
obtain G with an error bound by choosing a; = 1 for
all 2, and b;_; = O';‘;Ni if or v, € 8;, in order to fulfill
{(17). As by, needs to defined for all & € [0, T), we need
to assign values to the possible gaps. Actually, we
can assign any values to the gaps as long as the full
sequence {b;}] is kept non-increasing. Next, from
Lemma 1 and 2, add (10) and (186):

Iy~ 311 < 4llul i3 < 4supby - el 12

=> ]|G—(A}l|SZSLlpak,,».r,b =2sup S, (18)
ReT;

Non-decreasing subsequence: A corresponding
result exists for non-decreasing subsequences from
z: :

8 ={Cang - Cen,s }
d<..<e<...cT;
Ny S ... S 0N, S

Then choose by 1 for all 2 and g,y = O;%,
if & € T;, to fulfill (17). For the possible gaps in
{ay}, any assigned numbers that keeps the complete
sequence {a;}] non-increasing will do. If we add (10)
and (16} we again obtain (18).

5.1 Error bounds

If we have several different sequences S; we can
remove them iteratively, as a truncated system is
still balanced with the remaining singular values.
This is seen from straightforward calculations. We
can now formulate the main result:

r].:‘HEOE’.EM 1
Assume G in (1) is balanced with ;. If there are L
sequences S;, defined as above, then

L
IG-G||<2) supS.

i=1

(19)

Gis Iialanced with the singular values in the set
Z-Uin S

Proof. Use (18) iteratively and the triangular in-
equality. Benote the mth truncation G,,.

IG-Gll=|IG-CG1+Gi+...+ Gr1 — Gi||
L
<G =Gl +...+]1GL1 — Gr|| <2 supS..

i=1
]

In several special cases we can simplify Theorem 1.
Let us consider two cases: monotonous and periodic
systems.



COROLLARY 1—MONOTONOUS SYSTEMS
Assume G is balanced with X, = diag{Zs1,Zs2},

zk,l = diag{o'k;l ) ISH s Ok IS,}’
Zk,z = djag{o'k,r+1 ) IE”.]: e s TN - ISN}

and that every singular value 64, t=r+1...N, is
monotonous in time, then the truncated (s1+...+s)-
order system G is balanced with Z;; and

N
I6-6l1<2 Y supo

i=r+1

(20)

]

Proof. Use Theorem 1 with the sequences 5;
{ow i}t fori=r+1...N.

Here we have assumed s; = s and N, = N are
constant for simplicity. The corollary is essentially
Theorem 1 in [10], but there it was formulated for
continuous-time systems. These results generalize
the well-known error bound for time-invariant sys-
tems derived in [3, 4, 1]: for constant Z, the error
bound is recovered.

For w-periodic systems G there is a realization
Apre = Ak, Briw = Br, Crpa = G and Dy = Dy
for all k. If the system is completely controllable and
observable there is a w-periodic balanced solution
Zt = Ziya, See [8].

COROLLARY 2—PERIODIC SYSTEMS

If G is w-periodic and balanced with Z;., = E; for
all k then the truncation G is balanced with the
remaining singular values and

. @ N
e-6Gll<2d" 3 o

k=1i=ry+1

over an infinite time horizon.

Proof. Use Theorem 1. Choose the first infinite
sequence 8 as

81 = {OLN Clea N, Fre2aNyy - -}
Ti={l1+w1+20,...}

and observe that all elements in S are equal and
thus fulfill the monotonicity condition. After we have
removed the states in S;, we continue iteratively as
before and remove the wanted amount of states. The
result follows. O

Results similar to Corollary 2 were also obtained in
[7, 8, 12] with other techniques. One should however
notice that this bound easily gets conservative. For a
system with a large period @ (from fast sampling of a
continuous-time system for instance) the bound gets
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Figure 1: Two sequences {0y x,} of singular values of a
system G. In A the singular values are all non-
increasing so that we can put them all in a
sequence S;. In B the value at & = 2 destroys
this property. But we can still use the result by
introducing a second sequence Ss.

large very quickly if states over the whole period are
removed. A better bound is ebtained if we search for
constant balanced solutions £; = X to the Lyapunov
inequalities, as the sets S; get larger and fewer!.
Such solutions always exist. Constant £ were also
used in [6].

Let us look at an example of how Theorem 1 works:

EXAMPLE 1

In Figure 1 two sequences {o:n,} are shown. Se-
quence A is non-increasing so all the cerresponding
states can be removed with

|6 -6 < 2max oy, = 4

In sequence B the value at & = 2 destroys the mono-
tonicity property. However, two separate monctonic
subsequences can be found:

81 = {o1v), CsMes -, 07N }

Sy = {o2m, }

for example. If all the states are removed as in A
then

IG—G|} <2-max§;+2-maxS; = 2.242-2.2 = 84.

As seen it is advisable to lock for solutions where
many of the singular values ¢, are equal or change
monotonically as this leads to larger and fewer
sequences S;. To find such solutions one should
use the freedom the Lyapunov inequalities and the
boundary conditions give. [

LA golution with many, but necessarily not all, constant singu-
lar values over the period also lowers the bound.



6. Input-output stability

As was noted in {10], where similar results were
developed for continuous-time systems, the previous
results have implications on the stability of the
truncated system . This will be made plausible by
an informal discussion.

If the original system G is input-output stable (finite
£r-gain) and subsequences of states S; are removed
to obtain G, as in Theorem 1, bounds of the type

lly =32 < Cllefl, C>0

(21)
are obtained over an infinite time-horizon. If finite-
time input signals « are applied, we know from the
input-output stability of G that y — 0 as ¢t — oo.
From (21) {j¥ — |} is bounded. This implies ¥ —
y — 0. Therefore the system & will also be input-
output stable.

One of the advantages of the approach in this paper
is that we have not been so concerned with stahility,
as we have worked over finite time horizons. This
allows us even to work with unstable systems.
However, that the original system and its truncation
automatically have the same stability property is
important as it allows us to let T — oo in the
results. It should be noted that truncated models
might become non-minimal, but they will behave
nicely, as they are input-output stable and all states
will be bounded.

7. Conclusion

Error bounds (in induced #;-norm) for truncated
linear time-varying systems were presented. The
method requires block-diagonal solutions to Lya-
punov inequalities. Systems with balanced realiza-
tions fit well to this requirement. The presented er-
ror bounds generalize known time-invariant results
into the time-varying setting. Each state at each time
instant is associated with a singular value. If the sin-
gular values fulfill certain monotonicity conditions
over time and are small, it is possible to truncate
many states over long, possibly infinite, time hori-
zons with a small error. Time-varying state-space di-
mension is considered. Input-output stability of trun-
cated models is guaranteed if the original system is
input-output stable. l
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