
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Trends in Software and Control

Sanz, Ricardo; Årzén, Karl-Erik

Published in:
Control Systems Magazine

DOI:
10.1109/MCS.2003.1200238

2003

Link to publication

Citation for published version (APA):
Sanz, R., & Årzén, K.-E. (2003). Trends in Software and Control. Control Systems Magazine, 23(3), 12-15.
https://doi.org/10.1109/MCS.2003.1200238

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/MCS.2003.1200238
https://portal.research.lu.se/en/publications/3880065b-dd4f-460d-b78c-a13973c39924
https://doi.org/10.1109/MCS.2003.1200238

12 IEEE Control Systems Magazine June 2003
0272-1708/03/$17.00©2003IEEE

Researchers in the computers and control
field are becoming increasingly aware of the

need for an integrated scientific and technologi-
cal perspective on the role that computers play in
control systems and that control can play in com-
puter systems. This need is evidenced by recent
advances in areas such as embedded systems,
plantwide control systems, robotics, and
middleware. Control engineers must master com-
puter and software technologies to be able to
build the systems of the future, and software engi-
neers need to use control concepts to master the
ever-increasing complexity of computing sys-
tems. The increased awareness and activities
within the field are underscored by IEEE Control
Systems Magazine in this special issue and in the
February 2003 special issue on software-enabled
control.

By Ricardo Sanz and
Karl-Erik Årzén

Sanz (ricardo.sanz@etsii.upm.es) is with the Universidad
Politécnica de Madrid, Spain, and Årzén (karlerik@con-
trol.lth.se) is with Lund University, Sweden.

C
D

S
T

R
A

N
D

:©
19

99
JO

H
N

F
O

X
X

IM
A

G
E

S
4

C
O

M
M

U
N

IC
A

T
IO

N
S

;S
K

Y
&

D
O

O
R

W
A

Y
IM

A
G

E
©

R
U

B
B

E
R

B
A

LL
P

R
O

D
U

C
T

IO
N

S
;D

O
O

R
W

A
Y

T
E

X
T

U
R

E
:©

D
IG

IT
A

L
V

IS
IO

N
,L

T
D

Complexity is increasing, and the limitations of classical
methods for real-time systems engineering become appar-
ent when faced with the embedded controls required for
critical applications. Control systems are becoming very
complex software applications. Most of the software as-
pects that induce complexity have their roots in require-
ments that are hard to meet in isolation and extremely
difficult to attain in conjunction with other subsystems.
Many software systems for control are or need to be:

• Time critical: They require high performance and/or
are subject to hard real-time constraints.

• Embedded: They must execute on platforms with lim-
ited computing resources and interact with the exter-
nal environment.

• Fault tolerant: They must maintain
(some level of) performance under fault
conditions.

• Distributed: Software components are
often distributed on several intercon-
nected computers.

• Intelligent: They may require the solu-
tion of ill-posed problems, requiring a
substantial level of intelligent and au-
tonomous behavior.

• Large: They consist of potentially mil-
lions of lines of code.

• Integrated: An application requires the
integration of several subsystems into a
single, cohesive unit.

• Open: They should be nonproprietary and capable of
supporting third-party applications.

• Heterogeneous: They should be able to execute on a
variety and mixture of computational platforms.

Ten years ago, research in control software focused on
one or a couple of these aspects. Today, even the simplest
controller is subject to several of these requirements. Con-
sider, for example, embedded systems for plant automation.
They comprise key components in both end-user products
and production systems. Machine controllers, process con-
trollers, PLCs, robot controllers, and servocontrollers for
devices such as fixtures and welding equipment are
well-known industrial examples. Such embedded systems
are real-time systems, typically distributed/networked, and
integrated in large assemblies supporting standardized in-
terfaces for openness and interoperability.

Control systems have traditionally been relatively
static systems; however, technological advances and
market demands are rapidly changing the situation. The
evolution from static to dynamic systems makes flexibil-
ity a key design attribute for future systems. Local compo-
nent intelligence is increasing, and large distributed
controllers are being developed as communities of inter-
acting intelligent agents. The increased connectivity im-
plied by the Internet and mobile device technology will
have a major impact on control system architectures.

Modern products are often based on component architec-
tures using commercial off-the-shelf (COTS) elements as
units. Standardization and use of open market technolo-
gies are current requirements in control systems. New
languages and platforms such as Java, C#, and CORBA are
promising increased ease of use, portability, and safety
and contribute to making heterogeneous distributed con-
trol system platforms possible.

Control systems constitute an important subclass of em-
bedded real-time systems. In most critical cases, the require-
ments for predictability are imposed by the fact that the
real-time system is actually a control system. A soft-
ware-based controller is part of a computerized feedback

loop that imposes timing constraints on the software and the
platforms. The traditional approach in the real-time commu-
nity is to design the system so as to maximize the temporal
determinism. In control applications, however, the temporal
nondeterminism can be viewed as a disturbance or uncer-
tainty, and the control system can be designed to be robust
against variations or to actively compensate for them. This
opens up the possibility for more dynamic system architec-
tures where the control applications and the implementation
platform negotiate online for access to shared resources,
such as CPU time and communication bandwidth. In this ap-
proach, the control performance can be regarded as a qual-
ity-of-service parameter.

The rapid development of COTS computing and commu-
nication platforms lacking stringent timing guarantees
makes static system designs based on worst-case assump-
tions increasingly conservative. Research is needed on de-
sign and implementation techniques that allow dynamic
run-time flexibility with respect to variations such as
changes in workload and resource utilization patterns. In
addition, we need to improve our understanding of how this
dynamic flexibility may be combined with more traditional
real-time system approaches based on static design meth-
odologies. For example, how should event-driven execution
be combined with prescheduled time-driven execution in
embedded control systems?

June 2003 IEEE Control Systems Magazine 13

Control engineers must
master computer and
software technologies
to be able to build the
systems of the future.

The use of control-based approaches for the modeling,
analysis, and design of embedded computer and communi-
cations systems is currently receiving increased attention
from the real-time systems community as a promising foun-
dation for controlling the uncertainty in large and complex
real-time systems. Areas of growing interest include feed-
back architectures for adaptive real-time computing, theory
for performance guarantees under uncertainty, integrated
resource scheduling and feedback control, control-theoreti-
cal models of dynamic real-time systems, ap-
plication of control theory for controlling
timing behavior, and optimal, robust, or adap-
tive feedback control in real-time systems.
The use of control has the potential to in-
crease flexibility while preserving depend-
ability and efficiency. For example, control
techniques can be used to compensate for
shortcomings and imperfections in the imple-
mentation platforms. Control approaches to
resource allocation are especially interesting
for distributed control systems. For example,
a feedback scheduler can distribute the com-
puting and communications resources in
such a way that the global control perfor-
mance is maximized. This is also an alterna-
tive approach to increase system dependability or achieve
graceful degradation.

For future industrial competitiveness, new types of com-
petence and system solutions are needed. The use of con-
trol-based approaches in the analysis and design of
embedded systems is one promising approach. Further-
more, low-level, real-time technology needs to be combined
with high-level aspects, such as programming, networking,
security, simulation, and control.

The use of these technologies in the implementation of
complex controllers will necessarily be based on develop-
ment tools and methodologies that provide support for de-
sign, implementation, verification, and deployment.
Real-time Unified Modeling Language (UML, the modeling
language of reference in the software engineering commu-
nity) will potentially provide us with methods for modeling
real-time embedded systems in such a way that we will be
able to compute real-time system properties (e.g., respon-
siveness, schedulability, resource requirements) in ad-
vance from the models.

When complexity increases, engineers rely on well-
known, effective designs. Design knowledge capture is a
critical issue for control engineers, who repeatedly re-use
control designs that are well known and well documented.
When software is involved in the final implementation, how-
ever, many other factors that are not well documented in the
control design textbook must be taken into account. It is dif-
ficult to document the control and the software parts of a
controller in a concise, coherent, and integrated way. An in-
teresting methodology that can help us with this knowledge

capture task is the use of design patterns for the systems in
our field. These patterns will contribute to the effective
sharing of the best design knowledge and will serve as a ba-
sis for effective systems development based on automated
tool support.

To summarize, software is critical for the control sys-
tems community, and a better understanding of it is neces-
sary to build the systems of the future in a framework of
progressively difficult requirements: smaller size, less cost,

less time, more functionality, more evolvability, and more
dependability. To cope with these requirements, the control
systems community must actively follow the developments
in a number of areas: agent technology, architecture-based
design, artificial intelligence, concurrent engineering, com-
posability, design patterns, distributed embedded systems,
domain engineering, embedded systems, frameworks, inte-
gration, life cycles, model-based software engineering, mod-
ular systems, object-oriented programming, ontologies,
product line engineering, real-time distributed systems, re-
usability, software components, and software processes.
This special section includes five articles that cover a part
of this spectrum of knowledge.

Tools that unify the analysis and design of controllers
and computing systems are critical for this field. The arti-
cle “How Does Control Timing Affect Performance?” by
Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and
Karl-Erik Årzén discusses the possibilities for analyzing
the control performance effects caused by non-
deterministic jitter (e.g., in sampling intervals and laten-
cies) due to real-time kernel anomalies, communication
delays, and the like. Two new MATLAB toolboxes are pre-
sented: Jitterbug and TrueTime. Jitterbug makes it possi-
ble to compute a quadratic performance criterion for a
linear control system under various timing conditions. Us-
ing the toolbox, one can determine how sensitive a control
system is to delay, jitter, lost samples, aborted computa-
tions, and so on. The tool can also be used to investigate jit-
ter-compensating, aperiodic, and multirate controllers.
TrueTime allows the user to simulate the timing effects

14 IEEE Control Systems Magazine June 2003

Software engineers
need to use control
concepts to master the
ever-increasing
complexity of
computing systems.

caused by scheduling, context switches, and interrupt
handling in an RT kernel, as well as their impact on control
performance. Additionally, the effects caused by various
communication protocols on the performance of net-
worked control loops can be simulated. TrueTime also
serves as a simulation platform for the design of more flexi-
ble/adaptive scheduling strategies that take the applica-
tion characteristics into account dynamically. One such
example is feedback scheduling. The article primarily con-
siders feedback scheduling in the context of control-loop
scheduling (i.e., how to apply feedback scheduling ideas in
the design of real-time feedback control systems).

Good design engineering is critically based on our
competence in building good models of the systems we in-
tend to build. In their article, Cervin et al. took an ap-
proach based on classic tools in the controls field; in
“Using Models in Real-Time Software Design,” Bran Selic
and Leo Motus proceed along the same lines but from a
different direction: that of mainstream software technol-
ogy. Software engineering is critically conditioned by our
capability to convey designs among all stakeholders in a
complex software system (as most control systems are).
This is especially critical when difficult requirements
must be met (e.g., small footprint, speed, predictability,
distribution). As the authors say, “real-time software is
particularly difficult to design,” but traditional model-
based engineering is useful for this task. Multiperspective
software models help designers focus on relevant details
and ignore what is irrelevant for a particular task (analy-
sis, understanding, code generation, etc.). Selic and
Motus highlight the use of UML to model the real-time
software implementation of controllers.

Transfer and storage of design knowledge is critical for
systems engineering effectiveness. The article “Pattern-
Based Control Systems Engineering” by Ricardo Sanz and
Janusz Zalewsky introduces a pattern-based methodology
for capturing control systems design knowledge. Patterns
offer such a method for design knowledge transfer and are
even more critical in domains with tight requirements,
such as the control domain. When design heterogeneity
grows, as is the case when control is augmented with com-
plex software issues, it is progressively difficult to capture
and interchange design knowledge. Patterns help in shar-
ing knowledge and in the development of a common vocab-
ulary and a shared understanding of design alternatives.

The increasing availability of distributed computing re-
sources and the escalating need to fulfill complex behav-
ioral requirements in the presence of uncertainty
necessarily lead to the allocation of intelligence to the small-
est parts of a control system. The article “Agent-Based Con-
trol Systems” by Nicholas R. Jennings and Stefan Bussmann
describes the implementation of control systems com-

posed of collections of semiautonomous agents that coop-
erate to reach a global control objective. The “agent” design
paradigm offers a solid, generic foundation for control sys-
tems engineering. Encapsulating behavior in agents helps
solve the composability problem of large-scale controller
engineering, increasing functionality and systems resilience
due to the increased autonomy of isolated entities.

The article “Feedback Performance Control in Software
Services” by Tarek F. Abdelzaher, John A. Stankovic,
Chenyang Lu, Ronghua Zhang, and Ying Lu looks at the
other side of the coin. Software is critical for control sys-
tems, but control systems are also going to be critical for
complex software systems. The authors describe ways of
modeling the software system and give examples of how
control technology can help increase the sustained perfor-
mance of the system. They introduce control-theoretic
concepts for the implementation of software systems that
provide increased quality of service, and they describe
tools and middleware platforms that can be used to regu-
late system performance attributes.

This special issue provides a sample of an extremely
broad and complex field. Although we do not cover all the
technologies and knowledge needed for a future synthesis
of control and software, we hope that the sampling pre-
sented can help pave the way to a broader and more inte-
grated knowledge sharing between both disciplines.

Ricardo Sanz is an associate professor of systems engi-
neering and automatic control at the Universidad
Politécnica de Madrid, Spain. He obtained his engineering
and Ph.D. degrees from the same university in 1987 and
1991, respectively. He is a Senior Member of the IEEE and
chair of the IFAC Technical Committee on Computers and
Control and the OMG Control Systems Working Group. His
research interests include large-scale controller engineer-
ing, intelligent modular control, and object-based distrib-
uted real-time systems. He is an associate editor of IEEE
Control Systems Magazine.

Karl-Erik Årzén received a Ph.D. in automatic control
from the Lund Institute of Technology, Sweden, in 1987. He
has been a professor at the Department of Automatic Con-
trol at Lund Institute of Technology since 2000. His re-
search interests are real-time systems, real-time control,
and programming languages for control applications. He
was chair of the IEEE Control Systems Society Technical
Committee on Real-Time Control, Computing, and Signal
Processing from 1999 to 2002 and is currently vice-chair of
the IFAC Technical Committee on Computers and Control.

June 2003 IEEE Control Systems Magazine 15

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

