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FORORD

Denna skrift redovisar resultat fran vara studier av markvarmesystem under
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perioden 1982-85 har finansierats av BFR.

Forutom forfattarna har foljande personer deltagit i projektet.

Johan Bennet har utvecklat datormodelierna for grundvattenvarme, geotermi
och akvifervirmelager samt utfort en stor del av de simuleringar som re-
dovisas i kapitel 8 och 9. Vidare har Mats Areskoug, Mats Johansson,

Tord Bengtsson och Peter Olandersmedverkat i forskargruppen. Pia Bruhn
och Birgitta Salmi har svarat for utskrift. Sigurd Madison har hjalpt

ti11 med datorkorningarna mm. Figurerna har ritats av Lilian Johansson.

Avsnitt 3.7 ar skrivet av Jacob Johnsson, SGU, Jan Sundberg, Jordvarme-
gruppen och Bo Thunholm, SLU.
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Leif Lemmeke m f1 p& VBB; Bengt Rydell och Cargline Palmgren, SGI; Mats
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Per-Ake Franck,Ingvar Rehn, Gosta Rosenblad, Jan Sundberg och Peter Wilén,
Jordvarmegruppen, CTH; Kent Adoifsson, Ingvar Bogdanoff och UIf Lindblom,
Geoteknik, CTH; Orjan Haag m f1, Geologi, CTH; Goran Hultmark och Stefan
Olsson, Andersson & Hultmark AB; Peter Margen, Margen-Consult; Torgny Ager-
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1. MARKVARMESYSTEM

Ett markvarmesystem utnyttjar marken som varmekdlla eller som Tagrings-
medium for virme. Ti11 markvdarmesystem hanfores ocksd varmelagring i
vattenfyllda bergrum, gropar o. dyl. Ordet mark anvidndes hdr ndgot
oegentligt for att beteckna berg, jord och grundvattenforande skikt
(akviferer), dvs undergrunden.

Varmen frén marken eller marklagret anvands normalt for bostadsupp-
virmning. Vid hoga temperaturer kan varmen anvandas direkt. Vid ldgre
temperaturer forsdrjer markvarmesystemet en varmepump med 1agtempera-
turviarme. Varmekdllan for varmelagret kan vara solvdarme eller spill-
virme. Vid 1aga temperaturnivder ar olika slag av naturvdrme eller
"sommarviarme" - varmt ytvatten, varm Tuft o dyl - en viktig varmekdila.
Systemen for varmelagring i mark kan indelas i tre huvudtyper:

1. Bergrum, grop, blockfyllt bergrum.

2. Markvarmelager. Borrh&1 i berg, slangar i lera.

3. Akvifervdarmelager.

Virmelagren kan anvdndas for sasongslagring mellan sommar och vinter
eller for kortare perioder.

System for uttag av vdarme ur mark kan uppdelas i fyra huvudkategorier:
1. Ytjordvarme.

2. Bergvdrmebrunnar.

3. Grundvattenvarme.

4. Geotermisk varme.

1.

1
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I vissa uttagssystem forekommer aktiv dterladdning med varme under
sommaren for att dterstdlla naturliga ostorda temperaturforhdllanden.

En introduktion ti11 markvarmeomridet ges i referenserna 107 och 148.
0lika projekt och Gversikter finns redovisade i referenserna 149-155,
Den fdrsta stérre internationella konferensen om markvarme hglls i
Stockholm i juni 1983; referens 156.

Figur 1.1 visar ett bergrumsviarmelager. Bergrummet dr fyllt med vatten
som varmelagringsmedium. En viss varmelagringskapacitet hos angriansande
berg utnyttjas ocksd. Normalt ar vattnet temperaturstatifierat med var-
mare och ddrmed lattare vatten Gverst.

Bergrum

Figur 1.1. Bergrumsvdrmelager. (Filtforsok i Avesta).

Alternativ till bergrum dr gropar, dammar, nedgrdvda tankar, gruvschakt,
bergtunnlar m m.

En variant av bergrummet med vatten ir ett bergrum fyl1t med en blandning
av sprangsten och vatten. Se figur 1.2. Ett sadant blockfyllt bergrum

kan byggas i storre dimensioner in ett vanligt eftersom stenblocken
stabiliserar berget. I ett gropmagasin kan man ocksi ha denna blandning
av sten och vatten i stdllet for rent vatten.



J%?'\ Bergrum med outlastad

ssprangsten

Figur 1.2. Vdarmelagring i blockfyllt bergrum.

En markvolym kan utnyttjas direkt for varmelagring. Vid laddningen
uppvdrmes marken. Vid &tervinning av vdarme sdnks markvolymens tempera-
tur. For att kunna till1fora och ta ut vdarme miste man skapa ett ror-
eller kanalsystem genom den utnyttjade markvolymen. Varmebdrarfluiden
cirkuleras i kanalsystemet. Som allman beteckning for denna typ av
varmelager skall termen markvdrmelager anvindas.

Figur 1.3 visar ett markvarmelager i berg, ddr man utnyttjar djupa borr-
hal som kanalsystem for vdrmebdrarfluiden. Varje borrhdl har en nedit-
gédende och en uppgdende kanal for vérmebdraren. Ett normalt system har
ménga borrhdl som ligger i ett regelbundet monster. Avstdndet mellan
borrhdlen dr i storleksordningen 4 meter. En alternativ utformning 3r
att borrhdlen ligger som ett divergerande knippe for att minska arean
vid markytan.

Mdnga typer av kanalsystem dr mojliga. I Tera forekommer en typ dar
plastslangar i form av U-rOr drivs ner i marken. Slangarna ligger i
ett regelbundet monster. Avstadndet mellan dem kan vara i storleksord-
ningen 2 meter. Ett alternativ dr att grdva upp hela jordvolymen och
placera ut horisontella slangar under &terfyliningen. I nagot fall
har man utnyttjat rader med nedgrdvda plattvarmeviaxlare. Ett sdtt att
placera ut slangarna dr att grava rader av smala och djupa diken 1
vilka plastslangar placeras pa ett antal nivéer.

1.
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Figur 1.3. Markvarmelager.Borrhdl i berg.

Ett akvifervdrmelager utnyttjar enakvifer, dvs. ett grundvattenférande
markskikt, for varmelagring. Grundvattnet anvinds som virmebirare,
medan varmelagringen utnyttjar blandningen av jord och vatten. I det
enklaste fallet har man tvd brunnar. Se figur 1.4. Vid laddning tas
grundvatten upp ur den ena brunnen. Efter uppvdrmning injekteras vatt-
net i den andra brunnen. Vid uttag véndes cirkulationsriktningen.
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Figur 1.4. Akvifervdrmelager.

Det har varit besvdrligt att hitta en bra terminolgi. I denna skrift
ar vdrmelager i mark det Gverordnade begreppet, medan markvirmelager
dr en undergrupp.



Figur 1.5 visar ett ytjordvarmesystem. Via ytjordvarmeslangarna som
kan 1igga pd en knapp meters djup tas vdarme frdn marken. I allminhet
fryses under vintern ett omrdde runt varje slang. Ddarmed utnyttjas
markens frysvdrme. Under var och sommar aterstdlles naturliga, ostorda
temperaturfdrhallanden genom uppvarmning fran markytan. Man har en

passiv, naturlig dterladdning.

Figur 1.5. Ytjordvdarmesystem.

En bergvdrmebrunn utnyttjar en djup, bergborrad brunn for att ta ut
vdarme ur marken. Se figur 1.6. Man kan ha en inre och en yttre kanal i
brunnen genom vilka vatten cirkuleras. Genom att pumpa runt vatten som
dr kallare @n omgivande berg fdr man en varmetillforsel frén berget.
Varmen fds genom nedkylning av omgivande berg. Nedkylningen stabiliserar
sig efter hand. P& mycket 14ng sikt erh&lles storre delen av virmen

fran markytan. Temperaturer under 0 °C kan anviandas om cirkuiations-
systemet for vdrmebdrarfluiden dr slutet. Bergvarmebrunnen kan kom-
bineras med ett uttag av grundvattenvdrme. Man har dd b&de en cirkulation
av vatten i brunnen och ett nettouttag av vatten. Denna allminnare typ
kan kallas for en energibrunn. System med flera bergvirmebrunnar fore-

kommer. Aterladdning av brunnarna sommartid kan vara aktuell.

Det enklaste grundvattenvarmesystemet bestdr av en enda brunn. Virme-
innehallet i grundvattnet ner till ldgst 0 ¢ utnyttjas, varefter vattnet
avbordas t.ex. i dagvattensystemet. I allminhet maste dock grundvattnet
aterinjekteras. Man kan ha ett tvabrunnssystem som visas i figur 1.4,



Figur 1.6. Bergvarmebrunn,

Grundvattnet tas upp ur den ena brunnen och adterinjekteras nedkylt i
den andra brunnen. En dterladdning av systemet kan vara nddvandig.
Sommartid tas det kalla vattnet upp och aterinjekteras efter uppvarm-
ning. Man kan fa en viss vdarmelagringsfunktion om vattnet vdrmes Over

naturlig ostord temperaturniva,

Temperaturen i marken stiger med tkande djup pa grund av den geotermiska
gradienten. Ett riktvarde &r en Gkning med 3 °C per hundra meter. Djupare
Tiggande arundvattenformationer dr darfor en intressant varmekdlla. Da
djupen blir stora talar man om geotermiska system. Man behdver minst

tva brunnar for produktion och &terinjektering av geotermalvattnet.

Ett markvdarmesystem kan karakteriseras av sin medeltemperaturnivé
relativt den ostorda marken. Fdr ett varmelager ligger medeltemperatur-
nivdn dver medeltemperaturen i ostord mark, medan ett vdrmeuttagssystem
har temperaturer under den ostdrda markens. Ett markvirmesystem far en
virmefGriust medan ett uttagssystem far en tillforsel av virme fran
omgivande mark.

De relativa varmeforlusterna beror kraftigt pad varmelagrets storlek.
Vdrmelager 1 mark méste goras stora De dr ej aktuella vid sdsongslagring:
for ett enskilt eller ett fétal smahus. Vdrmeuttagssystemen kan &

andra sidan ofta med fordel anvdndas for den enskilda villan.



En mellanform av markvirmesystem har en medeltemperaturnivd som dr
visentligen 1ika med omgivningens. Man tar ut vdrme under uppvarmnings-
sisongen och &teriaddar systemet till mdttliga temperaturer pd

sommaren. Dessa system kan vara sma.

Markvirmesystemen dr starkt beroende av geologiska forutsdttningar. I
berggrund kan bergvdrmebrunnar och markvdrmelager med borrhdl anvdndas.
Markvirmelager i lera kraver att leran dr tillrackligt midktig och att
slangsystemet kan anldggas till rimlig kostnad. Potentialen for akvifer-
virmelager begrdnsas av krav pd tillgang till en akvifer av ldmplig

typ. Systemen med grundvattenvdrme krdver brunnar med stor vattenforing.
Stora omrdden i Skane ar hir speciellt gynnade. I sydvdstra Skéne finns
potential for geotermiska system.

For markvarmesystemen finns en mangd problem och fréagestdliningar som

ir forknippade med de termiska processerna i lagret eller uttagssystemet
och i omgivande mark. Fragorna ror vdrmeforluster och andra termiska
prestanda, temperaturpdverkan p& omgivningen, 1ampliga roravstand,

brunnskonfigurationer, aterladdning.

Denna skrift behandlar dessa ting. Enbart de rent termiska fdrloppen
och hdrmed forknippade analyser tas upp.
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2. FALTFORSOK

I detta kapitel ges en summarisk redovisning av ett antal markvarme-
projekt. Syftet dr att ge en Oversikt for olika typer av vdrmelager.
Oversikten dr ej heltdckande. N&gon vdrdering av projekten gores ej.

System for uttag av vdrme ur mark, sdsom ytjordvdarme, grundvattenvdrme
och bergvirmebrunnar redovisas, sandr som pd ndgra fall, ej har. For

dessa system hanvisas till referens 112 och 113.

2.1 Bergrum, grop och blockfyllt bergrum
2.1.1 Svenska fdltforsok

1. Avesta (1980~ ). Statens Vattenfallsverk.

Korttidslagring av vdarme i Gppet bergrum. Overskottsvarme frdn en
sopforbrinningsanldggning lagras under vardagar for att anvdndas
nattetid och under veckoslut. Lagret &r anslutet till fjdrrvdrme-
nitet. Speciellt intresse dgnas &t bergets mekaniska egenskaper
vid varmebelastning.

Data:

- Lagervolym 15 000 m3

Bergrummets Gveryta dr beldget pd 25 meters djup.

Lagertemperatur 70-115°C

Referens 114. Lagret togs i drift 1982. Under de forsta tvd &ren skall

ldngtidslagring testas.

2. Lyckebo (1982- ). Uppsala Kraftvdrme AB.

Varmt vatten fran solfingare (4300 m2) lagras under sommarhalvdret i
ett vattenfyllt bergrum. Den lagrade vdrmen anvdnds for uppvdrmning

av 550 enfamiljshus via ett lokalt fjdrrvarmendt. Forskningsprogrammet
for detta forsgk omfattar energibalanser, varmefloden, vattenkemi och
bergmekanik.
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2.2

Data:
- Lagervolym 100 000 m3
- Lagrets Gveryta dr beldgen 30 m under markytan
- Lagertemperatur 40-90°C
- Lagrad energimdngd 5500 MWh/ar

Referens 115. Lagret tas i drift under sommaren 1983.

3. Lambohov (1980- ). LINKOPING.

Vdrmelagret dr beldget i en grop som springts i berg. Gropens vdggar
och golv bestér av betong. En termisk isolering har anbringats mellan
cementvagg och omgivande berg. Gropen dr tickt av flytande isoleringar
med tjockleken 0.4 m. Varmelagret ingdr i ett solenergisystem. Med
anvandande av varmepump Tevereras energi till 55 enfamiljshus.

Data:
- Lagervolym 10 000 m°
- Lagret har formen av en cylinder. Diameter 32 m. HGjd 11 m.
- Lagertemperatur 5-65°C
- Lagrad energimangd 700 MWwh/&r

100 temperaturmdtningspunkter
Referens 116. Varmelagret laddades for forsta gangen under sommaren 1980.

4. Ingelstad (1979- ). Vixjo kommun.

Vdrmelagring i vattenfylld betongtank som utviandigt ar isolerad med
glasfiber och mineralull. Lagret ingér i ett solvarmeverk som forsdrjer
52 enfamiljshus.

Data:
- Lagervolym 5 000 m3
- Lagret har cylindrisk form. Diameter 28 m. Hgjd 8 m.
- Lagertemperatur 40-95%

Referens 109. Lagret har varit i drift sedan 1979. Virmeforlusterna fran
Tagret var betydligt storre &n vintat. Detta beror troligen pd konvek-
tion i luftspalter mellan betongvigg och isolering.



5. Studsvik (1979- ). Studsvik Energiteknik AB.

Demonstrationsanldggning for vdrmelagring i gropmagasin. Varmt vatten
erhd11s fran solféngare (120 m2) och till1fors lagret. Varmen forsérjer
under vinterhalvédret en kontorsbyggnad. Inga vdrmevaxlare anviands i

systemet.

Data:
- Lagervolym 640 m3
- Lagertemperatur 30-70°¢C
- Totalt energibehov 22.5 MWh/ar

Referens 117. Vdrmelagret har varit i drift i 4 &r. Ndra 100% av kontors-
husets vdrmebehov har tdckts av vdarme frén lagret. Vdrmeforlusterna frén
lagret var ndgot hogre an vantat beroende p& infiltration av regn- och
smaltvatten i isoleringen.

6. Laboratorieexperiment (1981- ). Institutionen for geoteknik med
grundlaggning, Chalmers Tekniska Hogskola.

Experimentet &dr utfort som ett tids- och langdskalat forsok med varme-
lagring i ett blockfyllt bergrum. Lagringsgropen dr utford 1 betong och
fyl1ld med en blandning av sten och vatten. Ett syfte med experimentet
var att verifiera den datormodell som beskrivs i kapitel 6.2.

Data:

Lagervolym 21 rn3
Porositet 41%
Lagertemperatur 10-75°C

Referens 108. Jdmforelse mellan experiment och simulering visar god
overensstdmmelse.

7. Ljusnarsberg (1982- ). Rejlers Ingenjorsbyrd AB och Hagconsult AB.

Varmelagring i overgiven gruva. Temperaturen p& sommarvarmt sjovatten
hdjs med hjalp av en vdrmepump och injiceras darefter i gruvan.
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2.4

Data:
- Lagervolym 150 000 m3
- Lagertemperatur 5-50°¢C

Referens 111. Varmt vatten injekterades i gruvan under sommaren 1982.

2.1.2 Svenska forprojekterade anlaggningar

1. Sodertuna (1982). Sodertdlje Energiverk.

Ett alternativ for varmelagring vid solvarmeverket i Sodertuna dr en
vattenfylld stdltank. Solvdarmeverket levererar virme till 525 enfamils-
hus. Kostnadsjdmférelse gors med vattenfyllt bergrum och markvarmelager
{borrhd1 i berg). Alternativet med staltank framstar som det billigaste
alternativet.

Data:
- Lagervolym 40 000 m°
- Lagertemperatur 15-65°C
- Varmebehov 6 400 MWh/&r

Referens 118.

2. Rya-verken, Goteborg (1982). Goteborgs Energiverk.

Varmelagring i blockfyl1t bergrum. Lagringsvolymen bestdr av fyra
parallella bergrum. Bergrummen dr fyllda av outlastad springsten och
vatten. Avsikten dr att lagra spillvirme fran oljeraffinaderier pé
Hisingen. Den lagrade vdrmen anvinds sedan i Goteborgs fjdrrviarmenat.

Data:
- Total lagervolym 850 000 m
- Avstdndet mellan lagrets Gveryta och markytan 37 m

3

- Lagertemperatur 10-115°¢C
- Lagrad energimangd 40 GWh/&r

Referens 110.
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2.1.3 Utldndska projekt

1. Stor varmvattenreservoar, Vist-Tyskland (1975-79). Kernforschungsanlage
Jiilich GmbH.

Utredning om virmelagring i stort gropmagasin avsett for fjdrrvarmendt

med 140 000 forbrukare.

Data:
- Lagervolym 5 000 000 m3
- Lagertemperatur 50-90°C
- Vdrmebehov 1 TWh/ar

Referens 119.

2. Wolfsburg, Viast-Tyskland (1979-82). Stadtwerke Wolfsburg AG.

Forprojektering av virmelagring i vattenfylld grop. Lagret ingdr i ett
energisystem for 23 enfamiljshus. Lagrets vdggar utgdrs av betong.

Data:
- Lagervolym 10 000 m3
- Lagertemperatur 30-95°C
- Vdrmebehov 500 MWh/&r

Referens 120.

3. Mannheim, Vdst-Tyskland (1977-79). Stadtwerke Mannheim AG.

Foérprojektering av vdrmelagring i vattenfylld grop. Lagret &r avsett
att ingd i ett fjdrrvarmendt.

Data:
- Lagervolym 30 000 m3
- Lagertemperatur 50-90°C
- Lagrad energimangd 1400 MWh/ar

Referens 121.



2.6

4. Chaltestown Naval Yard, USA (1982- ). Argonne National Laboratory.

Virmelagring i tvé stora underjordstankar av betong i Bostons hamnom-
rdde. Energi erhdlles frén plana solfdngare. Den lagrade energin an-
vands for husuppvarmning.

Data:
Total lagervolym 5 700 m3

- Lagertemperatur 45-85°C
Varmebehov 2000 MWh/&r

Referens 122. Projektets firsta fas har avslutats. Varmelagring kan ske
om nya forskningsansiag beviljas.

5. Hjortekjaer, Danmark (1982- ). Danmarks Tekniska Hogskola.

Forprojektering av ett solviarmeverk med sdsongslagring. Energi frén
plana solfangare lagras i en vattenfylld grop. Lagret dr oisolerat mot
omgivande mark. Solvarmeverket levererar energi till 200 enfamiljshus
av partyp.

Data:

- Lagervolym 49 400 m3

- Lagertemperatur 30-56°C
- Vdrmebehov 2700 Mih/&r

Referens 123.

2.2 Markvdrmelager. Borrhal i berg, slangar i lera.
2.2.1 Svenska faltforsok

t. Sigtuna (1978- ). Sunstore KB.

Denna fdrsdksanldggning omfattar ett varmelager med borrhdl i berg.
Det ingdr i ett vdrmesystem for ett enfamiljshus. Stora radiatorytor
medfor att temperaturen i systemet kan hallas mycket Tdg. Varme till-
fors fran enkla solféngare. Systemet arbetar utan varmepump.



Data:
- Lagervolym 7700 m3

42 borrhal med borrhdisradien 0.08 m. Aktivt borrhdlsdjup
2-23 m.

- Lagertemperatur 24-30°C

Stort antal temperaturmatningspunkter.

Referens 124.

2. Utby (1979- ). Jordvdrmegruppen, Chalmers Tekniska Hogskola.

Varmelagret, som dr beldget i vattenmdttad lera, ingdr i uppvarm-
ningssystemet for ett enfamiljshus. Vdrme tas ur lagret under den
kalla sdsongen med hjdlp av en vdrmepump. Hdrvid f?yses en del av
leran runt roren. En luftkonvektor anvands for dterinjektering av
varme under sommaren.

Data:

- Lagervolym 1300 m°

37 vertikala PVC-ror med en yttre diameter pd 50 mm.
Aktivt rordjup 0-10 m.

- Lagertemperatur 0-14°¢C
- 43 st temperaturgivare

Tre &rscykler har genomfdrts. Referens 125.

3. Lindalvsskolan, Kungsbacka (1981- ). Bengt Dahlgren AB.

Virmelager med vertikalt neddrivna plastslangar i Tera. Lagret ingér
i ett system for uppvarmning av en skolbyggnad med 15000 m2 golvyta.
Virme erh&11s fran solféngare som utgdrs av svart takplat. Vdrmepump
anvinds for uttag av energi fran lagret.

Data:
- Lagervolym 80 000 m°

- 600 U-formade plastror med ytterdiametern 16 mm. Aktivt
rordjup 0.5-35 m.

- Lagertemperatur 8-20%C

Referens 126.
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4. Alnarp (1979-80). Institutionen for lantbrukets byggnadsteknik,
Sveriges Lantbruksuniversitet.

Uverskott av solenergi fran ett vaxthus lagrades i lera med hjalp av
en vdarmepump. Lagret var belidget direkt under vixthuset. Den lagrade
virmen tillfordes vaxthuset under borjan av den kalla sasongen.

Data:
- Lagervolym 1500 m3

- 1800 meter horisontella polyetylenrdr med en yttre
diameter pd 32 mm. Tre nivder till ett djup av 4 meter.

- Lagertemperatur 10-40°C
- 15 temperaturmdtningspunkter

Referens 127. Varmefdrlusten frén lagret var mycket stor. Det mesta av
den lagrade vdrmemdngden forlorades under histen. Metoden med horison-
tellt nedgrdvda rér bedomdes vara oldmplig for sasongslagring p.g.a.
svarigheter att erhdlla ett lager med stor vertikal tjocklek utan
kostbar utschaktning.

5. Luled - etapp I (1981). Institutionen for vattenbyggnad, Luled
Tekniska Hogskola.

Fdltforsoket avsdg varmelagring i granit. Fem cykler om vardera 24
dagar genomfdrdes. Lagrets dimensioner skalades s& att en cykel
motsvarar en period pd ett &r for ett oskalat system.

Data:
- Lagervolym 400 m3

- 19 ofodrade borrhdl med diametern 52 mm. Aktivt borrhils-
djup 6.5-19.5 meter.

- Lagertemperatur 20-45°C
- 50 temperaturmdtningspunkter

Referens 20.

6. Luled - etapp Il (1983- ). Institutionen f&r vattenbyggnad, Luleés
Tekniska Hogskola, Allminna Ingenjorsbyran AB (AIB) och Luled
Energiverk AB.

Sdsongslagring av spillvidrme fran stalverket i Lulei. Den lagrade vdrmen
skall med anvdndande av vdrmepump tillforas byggnader vid hogskolan.



Lagringsmediet dr granit.

Data:
- Lagervolym 115 000 m°

- 120 ofodrade borrhal med diametern 150 mm. Aktivt borr-
halsdjup 5-65 m.

- Lagertemperatur 30-60°C
- Uttagen energimdngd 2000 MwWh/ar
- Maximal uttagseffekt 580 kW

Referens 128. Systemet beskrivs vidare i avsnitt 7.1.

7. Kungilv (1982- ). Institutionen for geoteknik med grundldggning,
Chalmers Tekniska Hogskola.

Mitstation for geotekniska studier av vdrmelagring i lTera. Speciellt
intresse dgnas &t porvattenrorelser under virmebelastning. Tvd mindre
Tager med olika typ av vdrmevdxlare har anlagts.

Data:
- Lagervolym 2500 m3 i bdda fallen.

- I: 49 st U-formade polyamidsiangar med ytterdiametern
30 mm till ett djup av 12 meter.
II: 25 st stalror med diametern 76 mm till ett djup av
12 meter.

- 80 st matpunkter for temperatur, 19 st for portryck, 2 st
bslgslangar for matning av sdttningar, 10 st markpegiar.

Referens 129. Skjuvh&lifastheten sjunker enligt vissa resultat.

2.2.2 Svenska forprojekterade anldggningar

1. Stora skuggan (1982). Sunstore KB.

Virmelager i granit for energianldggning vid motions- och rekreations-
centrum. Solenergi fran lagtemperatursolféngare utgor energikdlla.

Tre systemvarianter med olika 10sningar for varmvattenberedning, topp-
lasteffekt och viarmesystem for byggnaden behandlas. I ett av dessa
antas viarmeforsorjningen ske utan vdrmepump.
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Data:
~ Lagervolym 50 000 - 180 000 m
- Borrhalsdiameter 115 mm

3

- Byggnadens energibehov 500 MWh/&r
- Lagertemperatur 8-20°C eller 24-319C

Referens 130.

2. Sodertuna. (1982). AIB.

Virmelager i granit. Energi fran takintegrerade 1&gtemperatursolfangare
(30 000 m2) lagras for att under vintern anvindas for uppvarmning av
ett radhusomrdde med 525 ligenheter. Vid uttag utnyttjas vdrmepump.

Data:
- Lagervolym 105 000 m3
- Lagertemperatur 10-70°C

- Vdrmebehov 6 400 MWh/&r
Referens 131.

3. Ryaverken, Goteborg (1982). Studsvik Energiteknik AB.

Sommaroverskottet fran raffinaderiernas atervinningsanldggningar for
spillvarme til1fors ett vdrmelager i granit. Lagret dr av typen borr-
hal i berg. Dessa ar borrade fran ett Gvre galleri av relativt stora
tunnlar, vilka dr beldgna cirka 20 m under markniva. Tunnlarna ir vid

drift fyllda med vatten och kan di anvindas for dygnslagring av virme.

Data:
- Lagervolym 3 000 000 m3
150 meter djupa borrhdl med inbbrdes avstand pd 3.5 m.

- Lagertemperatur 50-90°C

Uttagen energimangd 60 GWh/&r

Referens 132.



2.2.3 Utldndska projekt

1. Groningen, Holland (1982-85). Institute of Applied Physics
TNO-TH, Delft.

Varmelagring i vattenmdttad sand med inslag av lager av lera och
torv. Solenergi sdsonglagras for uppvarmning av 96 enfamiljshus med
Té&gtemperaturradiatorer.

Data:

- Lagervolym 23 000 m3

- U-formade ror till ett djup av 20 m
- Lagertemperatur 25-60°C

Referens 133.

2. Vaulruz, Schweiz (1982- ). Sorane SA, Lausanne.

Varmelager med horisontella plastslangar i grov sand med inslag av
Jera. Lagret ingdr i ett solenergisystem som levererar energi till en
servicebyggnad (totalt uppvdarmd volym 25 000 m3). En vdrmepump an-
vindes vid uttag av vdrme fran lagret.

Data:
- Lagervolym 3 500 m3

- 7 lager av polyetylenslangar med en innerdiameter pd 16 mm.

Total slanglangd 8 400 m. Lagret ndr till 4.6 meters djup.

Lagertemperatur 15-35°¢C

Arligt vdrmebehov for 1agtemperaturlast 200 Muh.
Referens 134.

3. Kranebitten, Usterrike (1982- ). Institut fir Allgemeines Physik,
TU-Wien.

Solenergi lagras i jord for uppvdrmning av en militdrforldggning.
Systemet anvander varmepump vid uttag av energi fran lagret varvid en
del av jorden fryses. Varmelagret bestér av tvd skikt med horisontella
slangar.



A2

Data:
- Lagervolym 60 000 m3

.Plastslangar med 20 mm diameter. Totallangd 12 000 m
fordelade pd tvd nivder (3 resp. 8 m)

Lagertemperatur -6 - +10°C
Arligt varmebehov 1220 MWh/ar

Referens 135.

2.3 Akvifervarmelager
2.3.1 Svenska faltforsok

1. Kvarteret Tarnan, Landskrona (1980-82). Kjessler & Mannerstrale AB.

Forsok med vdarmelagring i sprickig kalkstensakvifer. Avsikten var att
utrona mojligheten att utnyttja akviferen for sasongslagring av varmt
vatten, som under vinterhalvdret utgor varmekdalla for varmepump. Varme-
behovet ges av 9 enfamiljshus.

Data:

- Lagrad vattenvolym 1 700 m3
- Tvdbrunnssystem

- Aktivt brunnsdjup 32-82 meter.
- Forscket varade i 30 dagar.

- Injektionstemperatur 25.3°C. Naturlig grundvattentemperatur
11.50C

Referens 21. Datorsimuleringar visar att vattenflodet i akviferen dr
mycket inhomogent. Flddet synes till stor del ske i sprickzoner.

2.3.2 Svenska forprojekterade anldggningar

1. Klippan (1982). VBB.

Vdrmelagring i isdlvsavlagring. Systemet skall anslutas till ett fjdrr-
varmenat som betjdnar 3 000 ldgenheter.



Data:
- Lagrad vattenvolym 1 000 000 m
- Akvifertjocklek 4 meter

3

- Lagertemperatur 5-18°¢C

Referens 136. Ett inledande forsok med infiltration av varmvatten
har genomforts.

2. Trands (1982). VBB.

Varmelagring i isdlvsavlagring. Systemet skall ingd i ett fjdrrvirme-
nat for 6 000 ldgenheter.

Data:
- Lagrad vattenvolym 1 600 000 m
- Akvifertjocklek 10 m
- Lagertemperatur 5-18°¢C

3

Referens 137.

2.3.3 Utlandska projekt

1. SPEOS, Schweiz (1982). Swiss Federal Institute of Technology,
Lausanne.

Varmelagring i akvifer. Vatten cirkuleras i akvifer via ett brunns-
system bestédende av tvd skikt med horisontella drdner som sammanstrilar
i en central uppsamlingsbrunn. Vattenrdrelsen i lagret sker huvud-
sakligen vertikalt mellan dessa nivéer.

Data:

- Lagervolym 30 000 m3

- Lagrets hojd (avsté&nd mellan de tva nivéerna) 19 m
- Lagertemperatur 25-80°¢C

Referens 138.
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2. Auburn, USA (1976- ). Auburn University.

Varmelagring i sluten akvifer. Ett flertal fdaltforsok har genomférts.
Injektionstemperaturen har varierats mellan de olika forscken i

syfte att studera inverkan av floden som dr inducerade av densitets-
skillnader. Inhomogeniteter i akviferens permeabilitet har varit

foremdl for studier, liksom mgjligheter att forbdttra lagrets effektivitet

med selektiv extraktion av varmt vatten ur brunnens dvre del i
akviferen.

Data:
- Lagrad vattenvolym 8 000 - 60 000 m°
- Akviferens tjocklek 21 m
- Lagertemperatur 20-85°¢C

Referens 139. Resultaten visar att igensdattningsproblem vid brunnarna
kan reduceras betydligt om injektions- och &terledningsbrunn dr beldgna
i samma akvifer.

3. Scarborough, Canada (1982- ). Public Works Canada.

Lagring av kyla och vdarme i sluten artesisk akvifer. Lagret skall inga
i energisystemet for en 14-vanings kontorsbyggnad. Tvd tv&-brunnssystem
anvands for injektion och extraktion av vatten.

Data:

Lagrad vattenvolym 450 000 m3 per tvabrunnssystem
Akvifertjocklek 10 m

Légertemperatur 4-50°C

Varmebehov 2 400 MWh/&r, kylbehov 2 600 MWh/&r

1

Referens 140.

4. Kina (1965- ).

Varmelagring i akvifer utvecklades frén forsok med &terinjektering av
vatten i syfte att motverka marksankning och hoja grundvattennivan. Man
fann under dessa forsok att temperaturen p& det dterinjekterade vattnet
i akviferen dndrades mycket 1angsamt. Lagring av vdrme och kyla har
sedan inforts i stor skala och omfattar nu omkring 500 brunnar. De
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flesta av dessa dr beldgna i trakten omkring Shanghai.
Referens 22.

5. College Station, USA (1978-79). Texas A & M University.

Lagring av kallt vatten i oppen akvifer. Nar Tufttemperaturen understeg
10°C pumpades vatten genom ett sprinklersystem till en Oppen bassdng
och kyldes darvid till Tufttemperatur. Detta vatten injekterades i
akviferen och lagrades till sommaren, d& det anvandes for luft-
konditionering.

Referens 141. En stor del av det kylda vattnet forlorades under lagringen
pd grund av ett stort naturiigt grundvattenflode i akviferen.

6. Yamagata, Japan (1977- ). University of Yamagata.

Lagring av vdrme och kyla i en sluten akvifer. Under sommaren tas kallt
vatten ur akviferen for luftkonditionering av en affdrsbyggnad sam-~
tidigt som luftvarmt vatten &terinjekteras i akviferen. Det varma vattnet

extraheras med omviand cirkulationsriktning under vintern.

Data:
Lagrad vattenvolym 9 500 m3
Akvifertjocklek 19 m

- Tvébrunnssystem med ett avstédnd pd 22.4 m mellan injektions-
och extraktionsbrunn.

- Injektionstemperatur 5.3°C. Naturlig grundvattentemperatur 14°¢

Referens 142. Forscket visade att avstdndet mellan brunnarna var for
Titet. Temperaturen steg kraftigt i slutet av perioden for uttag av kallt
vatten. Enligt datorsimuleringar borde avstindet mellan brunnarna okas
til1 40 m.

7. St. Paul, USA (1980- ). University of Minnesota.

Faltforsok med varmelagring i sandstensakvifer. Lagret dr beldget pa
stort djup. Trycket i akviferen dr sddant att vatten kan lagras vid
mycket hoga temperaturer.

.15
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Data:
- Lagervolym 736 000 m3
- Akvifertjocklek 60 m

- Lagertemperatur 100-150°¢C

Ett inledande forsok med injektion av 8300 m2 vatten har genomforts.
Vid injektion var vattentemperaturen 91°¢. Speciellt intresse har &dgnats
dt dndringar i vattnets kemiska sammansittning. Referens 143.

8. Horsholm, Danmark (1979- ). Risp forskningslaboratorium, Roskilde.

Varmelagring i en sluten akvifer. Materialet i akviferen utgors av sand.
En centrumbrunn. omges av fyra perifera brunnar pi ett avstind av 40 meter.
Lagret &r kopplat till en sopforbrinningsanlaggning vilken i sin tur in-
gdr 1 fjdrrvirmendtet. Forutom sdsongslagring skall lagret dven anviandas
for lagring frén vardagar till veckoslut d& ingen sopforbranning sker.

Data:
- Lagervolym 75 000 m3
- Akviferens tjocklek 15 m
- Lagertemperatur 60-100°C

Lagrad vdarmemangd 1740 MWh

Referens 144. Ett inledande forsok med injektion och extraktion av varmt
vatten har genomforts.

2.4 Ovrigt

1. Geotermi, Lund (1982- ). Lunds Energiverk. Institutionen for Geotek-
nologi, Lunds Tekniska Hdgskola.

Varmt geotermalvatten fran en akvifer pd 500-700 meters djup utnyttjas.
Efter nedkylning fran 25°C ti11 5°¢ aterinjekteras vattnet i akviferen.
Vdrme levereras ti11 Lunds fjdrrvarmenit via en vdrmepump. Prelimindrt
planeras ett system med 10-12 brunnar.

Data:
- Effektuttag 10 MW/produktionsbrunn
- Pumpflode per brunn 100 1/s

Tvad testbrunnar torrades i maj 1983. Berrningen av en forsta etapps
fyra brunnar pagdr (augusti 1984).



2. Aulnay-sous-Bois, Frankrike (1982- ). Ecole des Mines de Paris.

Detta projekt avser utnyttjande av grundvattenvarme i stadsbebyggelse.
Varme dterladdas i akviferen under sommarhalvaret for att undvika en
langsiktig nedkylning av grundvattnet. Hdarigenom kan dven ett relativt
kort avstdnd mellan produktions- och &terinjektionsbrunn anvéndas.
Aterladdningen sker via enkla solfdngare for vilka en hog effektivitet
kan uppnds vid dessa 1dga temperaturer. Systemet anvands for uppvarm-
ning av 224 1dgenheter.

Data:
- Akviferen beldgen pa 80 meters djup.

- Grundvattentemperatur 13°C.

Referens 145,



3. INTRODUKTION TILL HANDBOKEN

3.1 Uppldggning och innehall

Denna skrift har disponerats sd att den skall kunna anvdndas som en
handbok. Analyserna for de olika typerna av markvdrmesystem har helt
sarskilts 1 olika kapitel. En 18ngtgdende uppdeining i delproblem
exempelvis for olika geometriska former har gjorts. Detta har medfort
att vissa ting upprepas i olika kapitel.

Det matematiska bakgrundsmaterialet sésom partiella differentialekva-
tioner, harledningar av analytiska 1dsningar och numerisk teknik har ej
medtagits. For detta hdanvisas till referenser. I en del fall, ddr nya
analytiska 16sningar tagits fram, saknas dnnu publicerade rapporter.

Vissa teoretiska resonemang, som dr ndodvandiga for att forstd hur
processerna-och problemen spaltas upp och analyseras, tas dock upp.
Det viktigaste exemplet pd detta dr superpositionsteknik.

De olika typerna av markvdrmesystemen behandlas i kapitel 6 till 11.
Kapitel 6 behandlar bergrumsvdrmelager och beslaktade system, kapitel 7
markvarmelager, kapitel 8 akvifervdrmelager, kapitel 9 grundvattenvdrme
inklusive geotermiska system, kapitel 10 bergvirmebrunnar och kapitel 11
ytjordvarme. For ytjordvarmesystem behandlas enbart vdrmeuttag utan
frysning.

I kapitel 4 behandlas den stationdra komponenten av temperaturfdrloppet
utanfor ett markvdrmelager. Kapitel 5 tar upp renodlade dynamiska pro-
cesser. Dessa tvd kapitel utgor en gemensam grund for de termiska
analyserna av de olika markvdrmesystemen.

Temperaturpdverkan p& omgivande mark behandlas i varje kapitel for de
olika typerna av markvdrmesystem. I kapitel 12 tas vissa gemensamma

aspekter upp.

Kapitel 13 ger en oversikt Over de datormodeller som anvants.

3.
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3.2

3.2 Beteckningar

Fb1jande beteckningar anvandes ndgorlunda genomgdende i de foljande

kapitlien:
A virmeledningsforméga i marken (W/m «K)
C = pc volymetrisk vdrmekapacitet i marken (J/m3- K)
a =2A/C temperaturledningstal (mz/s)
z djup under mark;n (m)
r= x2+y2 radiellt avsténd till z-axeln (m)
t tid (s)
T temperatur (°c)
TO medeltemperatur i marken, &rsmedeltemperatur
vid markytan (°c)
T medeltemperatur p& lagerytan (°c)
Tm(t) medeltemperatur i lager ) (°c)
T, T dvre och undre temperaturgrans for
varmelager (undantag: avsnitt 3.3) (°c)
T komplexvard temperatur (°c)
TR temperatur i marken vid rdr eller brunn (°c)
Tf temperatur i varmebdrarfluid (OC)
T . . ..
u = T’:T"(t‘ex’) dimensions16s temperatur (-)

m

(=)



= Vato/‘n

varmeflode

varmeflode per ytenhet eller ldngdenhet
dimensions16s varmeforlustfaktor
ackumulerat vdarmeflode

inmatad vdarmemingd under lagringscykel
uttagen varmemdngd under lagringscykel
periodtid, lagringscykelns 1angd
intrangningsdjup for periodiskt forlopp
varmelagrets langd

varmelagrets bredd

virmelagrets radie

varmelagrets vertikala utstrdckning,
aktiv brunnsliangd for bergvarmebrunn,
akviferens hojd

djup till vdrmelagrets mitt

avstand fran markytan till lagrets overyta
lagrets volym

brunnsradie

virmemotstand mellan fluid och mark vid
brunn eller slang rdknat per meter

grundvattenflode

3.3

(W)

(W/m®, W/m)
(=)

(J, d/m, I/m)
)

(J)

(s)

(K/(W/m))

(m/s eller m3/m2, s)
W



Q, pumpf1dde (mi/s)
C,~4.2 106 vattnets virmekapacitet (3/m - )
Index

m stationdr komponent (=medelvirde)

tr komponent for transient varmeuppbyggnad

i virmeisolering

komplexvdrd storhet

3.3 Effektivitetsmatt

Nagra kortfattade synpunkter pad problemet att vilja 1dmpliga
effektivitetsmdtt for markviarmelager skall hir ges. En komplett be-
skrivning av ett givet markvarmelagers prestanda i ett givet drifts~
fall innebdr att man ger hela tidsforloppet for varmebdrarens inlopps-
och utloppstemperatur samt pumpflgdet bade vid laddning och uttag av
varme. Med hjalp av olika effektivitetsmitt soker man kondensera denna
information.

For att ett vdrmelager skall vara idealt miste samma vdrmemangd &terfas
som inlagrades. Detta dr emellertid inte tillrdckligt for att lagret
skall vara perfekt. Man miste ocksd f& tillbaka virme med samma kvalitet
dvs. vid samma temperaturnivier som vid Taddningen. Man far naturligt
tvd effektivitetsmatt.

Lat E, vara inlagrad varmemdngd under Tagringscykeln och E_ uttagen
varmemangd.



Medeltemperaturen hos inlagrad och uttagen vdrme &r T respektive
T_. Den exakta definitionen av dessa medelvdrden ges nedan. Ostdrd
marktemperatur ar TO. Ett matt pa temperaturverkningsgraden ges av:

T - To
D (3.3.2)
+ 0
0fta anges bara energiverkningsgraden Ng- Detta kan vara missvisande
eftersom man da ej ger nagon information om temperaturnivaer.

Vill man ytterligare kondensera bedrivningen till ett enda effektivitets-
métt bor ett mitt som baserar sig pd termodynamikens andra huvudsats
anvindas (second-law efficiency). Verkningsgraden relateras till entropi-
produktionen. Ett idealt lager har ingen entropiproduktion.

I referens 16 anges en forenklad form av effektivitetsmitt baserade pa
andra huvudsatsen. Medeltemperaturerna T, och T_ berdknas genom en
viktning diar varje temperaturnivd viktas med den vdrmemingd som tillfores
respektive uttages vid denna niva. Produkten av g och Ny oger dad ett
sammanvagt matt p& vdrmelagrets verkningsgrad:

"second law - "E T (3.3.3)

For en hiarledning av detta hdnvisas till referens 16.

Genom de tvd faktorerna i formel 3.3.3 speglas prestanda béade for
energimdngd och for energikvalitet eller temperaturniva.

For att f& en rattvisande jamforelse maste ocksa den totala energi-
omsattningen beaktas. Ett system med higre verkningsgrad men med
1dgre energiomsdttning kan vid en totalbedomning vara det sdmre
alternativet.

Man kan definiera en utnyttjandefaktor (gtilization factor), dar t.ex.
uttagen varme relateras till en referensvdrmemangd, Eref’ vilken
kan vara varmelagrets nominella lagringskapacitet:

3.5



3.6

E

- (3.3.4)
Eref

i
dar t.ex.

E = (aT) (3.3.5)

ref ref 'Vc1ager

3.4 Partiella differentialekvationer

Temperaturforloppen i marken beskrivs matematiskt av den sd kallade
varmeledningsekvationen. Den far olika form i olika fall. De analyser
som redovisas i denna skrift baserar sig pd analytiska och numeriska
1osningar av denna partiella differentialekvation med givna randvillkor
och andra data. Dessa mer teoretiska ting redovisas ej i denna skrift.
Som bakgrundsinformation skall dock en kortfattad redovisning av
styrande ekvationer i ndgra fall anges. Detta avsnitt dr ej nodvéndigt
for forstdelsen av det Ovriga stoffet.

I ett markomrdde utan grundvattenrorelser uppfyller temperaturen
T(x,y,z,t) den tredimensionella icke-stationdra vdarmeledningsekvationen:

aT

1
T YTt T T A at

(3.4.1)

Har dr a temperaturledningstalet. Varmeledningsférmdgan x antas for
denna form vara konstant i det aktuella markomrédet.

For en bergvdrmebrunn eller ett cylinderformat vdrmelager anvindes
cylinderkoordinaterna z (djup fran markytan) och r (radiellt avsténd
till z-axeln). Varmeledningsekvationen blir da

2 2 .
9T .1 aT 2T _ 1 oT -
= ot - T3 T=T(r,z,t) (3.4.2)

Den rent radiella processen kring t.ex. ett inre ror i ett markvirme-
lager styrs av:

4
L

or

—
58]
=

. =

1
ra

T =T(r,t) (3.4.3)

1
|-
Q2
o

[ae]



Med hjalp av Laplaceoperatorn som definieras av

vT= Sl o+ Sl ¢ 2 (3.4.4)

] i
vT- 1 (3.4.5)

I avsnitt 5.2 behandlas rent periodiska forlopp ddr tidsvariationen
ges av sinus- och cosinusfunktioner. Periodtiden betecknas to' En
komplex notation anvindes. Se avsnitt 5.2.1. Den komplexvdrda tempera-
turenf uppfylles:

v'T = (";/ ST T =Ty T=TeYh (3.406)

I kapitel 7 utnyttjas sd-kallade steady-flux 10sningar for att beskriva
vissa forlopp internt runt roren vid laddning och uttag. Dessa karakteri-
seras av att vdrmeflodet i varje punkt dr konstant i tiden. Temperaturen
stiger med konstant hastighet i varje punkt. Temperaturtkningstakten
bestims av inmatad varmemingd per volymsenhet (Q/V). Man har en tempera-
tur av foljande typ:

.t
T(x,y,2,t) = ch + T e(x0y,2) (3.4.7)
Temperaturen Tsf uppfyller ekvationen:
2 _Q
VT = N (3.4.8)

I ett stationdrt fall gdller:

veT = o (3.4.9)

Ekvationerna 3.4.5, 3.4.6, 3.4.8 och 3.4.9 dr olika former for vdrme-
ledningsekvationer vilka kommer till anvdndning i de olika avsnitten.

Varmeledningsekvationen féar en annan form for en akvifer, ddr man har

strommande grundvatten. L&t q_ = (q } vara vattenvolymflodet
W

wx? qu’ Gz

3.7
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(m3 vatten per m?

och sekund eller forkortat m/s). Det strommande
grundvattnet ger upphov till en konvektiv varmetransport. Ekvationen

far foljande allminna tredimensionella form:

3T _ 9 aT 3 aT
C—‘W(' S TC, Q)+ ay( TCq)

c 202 -T0,q,)

Har ar € akviferens volymetriska varmekapacitet och C vattnets
(J/m +K). Om q dr Tika med noll och A &r konstant, sa overgar ekva-
tionen i (3 4, 1) (a = x/C).

Grundvattenstromningen aw bestams av den naturliga regionala grund-
vattenrorelsen och av pumpning i olika brunnar. Infiltration kan ocksa
paverka strombilden.

Vdarmef1ddet q i en punkt i marken ges av:

| i o T
Ay = X oy ay = A 5y q, = X 53 (3.4.11)
Randvillkoret Gver ett vdrmeisolerande skikt vid ett virmelagers yta

mot mark kan fa foljande form:

lager ~ 'mark’’ da; = 30 dmark

(T (3.4.12)
Den férsta faktorn i vanstra ledet &r temperaturdifferensen over
vdrmeisoleringen. Denna multipliceras med isoleringens varmelednings-
formdga A och divideras med dennas tjocklek di' Vanstra ledet ger d&
varmeflodet ut i marken. Detta skall vara 1ika med hogra ledet som
uttrycker vdrmeledningen i marken strax utanfor virmeisoleringen. Hidr
anger —I temperaturderivatan i normalriktningen.

For ett borrhal i berg fir man foljande typ av randvillkor. Temperaturen
i vdrmebdrarfluiden betecknas Tf, medan TR dr temperaturen i berget
precis vid brunnen. Brunnsradien ir Ro’ Varmeflodet ut fran brunnen
per meter brunn blir:

aT .
-\ 3 r:Ro -2nRO (W/m) (3.4.13)



Har dr ZvRO omkretsen, medan %% anger temperaturderivatan i radiell
led. Varmemotstandet mellan fluid och bergvdgg rdknat per meter brunn

betecknas mp (K/(W/m)). Randvillkoret vid brunnen blir da:

f_TR:m -(—)\). oT

R I (3.4.14)
p ar r-RO 0

Uttryckt i ord innebdr denna ekvation att temperaturdifferensen &r 1ika
med varmemotstdndet ganger vdrmeflodet.

Vid numerisk 10sning anvandes explicita framatdifferenser. For stationdra
fall utnyttjas Overrelaxation. I fall ddr grundvattenflode forekommer
anvdandes en nyutvecklad teknik for att undvika s& kallad numerisk dis-
persion.

I tvadimensionella och cylindersymmetriska fall utnyttjas normalt i
storleksordninaen 500 gitterceller for att representera temperaturfor-
Toppet. Normal tidsdtgéng for en simulering av 25 &r kan vara runt fem
minuter pd en UNIVAC 1100/80. I genuint tredimensionella fall anvinds

i stor]eksordningen 10 000 gitterceller. For ett system med bergvdrme-
brunnar kan 2-50 cylindersymmetriska problem 16sas parallellt. Dessa har
vardera nagot hundratal gitterceller.

De numeriska berdkningarna bedoms genomgdende ge ett fel pa maximalt
ndgra procent.

3.5 Superposition

De olika formerna av vdarmeledningsekvationen i foregdende avsnitt &r
vasentligen linjdra partiella differentialekvationer. Detta innebdr att
olika 1osningar kan superponeras. Om tvd temperaturférlopp var for sig
uppfyller virmeledningsekvationen sa gdller detta dven fdr summan av de
tvd temperaturerna. Ett komplicerat temperaturforlopp kan pa detta sitt
ses som en dverlagring av ett antal delkomponenter vilka var for sig kan
ha en relativt enkel struktur.

Med superposition kan manga komplicerade varmestromningsproblem 1dsas.
Genom en sadan uppdelning i enkla grundldggande forlopp far man en bdttre
overblick och forstdelse av vad som sker.

3
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Superpositionsteknik kan ej anvdndas i markomréden didr frysning sker. Den
andra viktiga begrénsningen for de har aktuella tillampningarna giller
temperaturforlopp i stronmande grundvatten. Forlopp som harfor sig till
olika stromningsmdnster for grundvattnet kan ej superponeras.

Figurerna 3.1-2 illustrerar superpositionstekniken vid analys av ytjord-
vdrmeslangar. Figur 3.1 visar ett vertikalt tvarsnitt i marken vinkelrit
mot en markvarmeslang. Till denna har man ett tidsvariabelt vdrmefldde.
Effektflddet uppdelas i tva delar q1(t) och q2(t). Den ena delen kan ut-
gora korttidsvariationer medan den andra delen svarar for en mer langsik-
tig variation. P4 samma sdtt kan temperaturvariationen vid markytan ses
som en summa av tva delar T1(t) och T2(t). Det totala temperaturfiérloppet
i marken kring ytjordvdrmeslangen kan ses som summan av tvé delforlopp
enligt figur 3.1. Det forsta delforloppet har effektuttaget q1(t) och
temperaturen T1(t) vid markytan. Motsvarande storheter for den andra del-
processen &r qz(t) och Tz(t). Genom en 1amplig uppdelning av effektuttag
och temperatur vid markytan kan t.ex. korttids- och langtidseffekter sepa-
reras fran varandra.

Tt Ty(t) T,(t)

7

q (t1+q,(t)

T

T1’2(x,z,f) = Tix,2,4) + 12ix,2,4)

Figur 3.1. Superposition av tvad temperaturprocesser for en ytjordvdrme-
slang.

I figur 3.2 visas ett tvdrsnitt i marken for tvé parallella ytjordvarme-
slangar. Problemet definieras av en given temperatur To(t) vid markytan
och givna effektuttag q1(t) och qz(t) ti11 slangarna. Processen uppdelas
enligt figuren i tre mer elementira delar.
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Figur 3.2. Superposition ddr ostdrd marktemperatur och rena effektuttag
for tvd ytjordvdrmeslangar separeras.

Den forsta delen har effektuttaget noll till bdda slangarna och den
foreskrivna temperaturen vid markytan. Denna del ger naturlig ostdrd tem-
peratur i marken. Den andra delen har effektuttagetq1(t) ti11 den ena
slangen, medan den andra slangens effektuttag &r noll. Den tredje delen
tar hand om den andra slangens effektuttag qz(t). Temperaturen vid mark-
ytan skall for de tvd sista komponenterna vara noll. Adderas dessa tre
processer far man den totala, mer komplicerade processen. Den andra och
den tredje komponenten dr ett grundfall dar man har ett effektuttag med
en enda slang. Problemet enligt vdnster bild i 3.2 har genom denna super-
position uppdelats i enklare grundfall.

Ett givet tidvariabelt effektuttag q(t) kan genom superposition uppdelas
i enklare typer av effektuttagsfunktioner. I avsnitt 5.3 visas hur komp-
licerade effektuttag kan reduceras till ett antal stegpulser. Ett enkelt
exempel visas i figur 5.3.1.

For temperaturfdrloppen i marken har man tre fundamentala delkomponenter.
Man har en tidsoberoende eller stationdr del och en Gverlagrad periodisk
variation under t.ex. en &rscykel. Under en forsta tidsperiod sker for
ett virmelager en transient uppbyggnad av en varmekudde runt lagret.

Den periodiska komponenten ger ett pulserande temperaturfériopp med en
viss, relativt begrdnsad rdckvidd runt markvdrmesystemet. Man far ett
pulserande virmefldde ut i marken. Nettoutflddet under en lagrings-
cykel blir noll.

Tiden for den transienta uppbyggnaden av en varmekudde runt ett mark-
virmelager kan for stora lager vara flera tiotals &r. Efter hand stabi-

3.
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liserar sig forloppet. Den transienta temperaturuppbyggnaden nirmar sig
ett stationdrt sluttillstand. Man har dd en tidsoberoende eller stationdr
temperaturfordelning i marken runt varmelagret. Hartill kommer den Gver-
lagrade periodiska variationen under lagringscykeln.

Vid berdkning av arliga vdrmeforluster fran ett varmelager kan man bortse
fran den periodiska komponenten eftersom dennas nettoutflode &r noll.
Varmeutflodet bestams av medeltemperaturer under lagringscykeln. Ars-
variationer vid markytan kan vara betydelsefulla for varmeforlusternas
fordeIning under drscykeln. De péaverkar ej den &rliga varmeforlusten. Vid
markytan skall man anvdanda en konstant temperatur TO som dr Tika med
arsmedel temperaturen for den aktuella orten. P& vdarmelagrets yta mot
marken har man en konstant temperatur Tm som representerar ett &rsmedel-
virde. Figur 3.3 visar for ett vdrmelager detta delproblem som bestdmmer
arlig varmeforlust.

T, T

Q

/// L v
T i
/ Tm //‘: m/
/ D
7 0
Figur 3.3. Delproblem som bestdmmer de &rliga vérmeforlusterna. Vid la-
gerytan ansdttes arsmedelvdrdet Tm‘

For den transienta uppbyggnaden har man begynnelsetemperaturen TO i marken.
Vid lagrets yta har man den konstanta temperaturen Tm. Dessa renodlade
transienta arsvdrmeforluster behandlas i avsnitt 5.1. Det stationdra
temperaturforioppet bestdmmer de drliga varmeforlusterna efter insvdng-
ningsperioden. Denna mycket betydelsefulla delprocess behandlas i kapitel
4.

Den stationdra temperaturférdelningen ar ocksa av intresse ur miljosyn-
punkt eftersom den ger maximal temperaturpdverkan fran markvarmesystemet.

I omradet ndrmast vdrmelagret tillkommer periodiska variationer under
arscykeln,



Superponeringsteknik anvands i vissa av datorprogrammen. I datormodellen

for ett system av bergvdrmebrunnar (Superposition Bore-hole Model) super-

poneras losningar som hanfdr sig till brunnarna var for sig. I modellen

for rérvarmelager (Duct Storage Model) superponeras ett globalt tempera-

turforlopp i och utanfor lagret och ett antal lokala 1dsningar runt

varmebdararkanalerna.

3.6 Error function

Funktionen erfc(x) anvdnds pd ménga stdllen i de foljande kapitlen. Fel-

funktionen eller pd engelska Error function behandlas grundligt i refe-

rens 103 B.

Error function erf(x) definieras som integralen:

erf(x) = éL

m

e S ds

O — X

Den s& kallade Complementary error function ges av:

erfc(x) = 1 - erf(x) = éi e ds

™

X+— 8

Man har foljande samband for positiva och negativa argument:

erfc(-x) = 2 - erfc(x)

Nagra vdrden dr:

erfc(0) =1 erfc(0.5) ~ 0.5 erfc(1) = 0.16

erfc(2) = 0.005

Serieutvecklingen i x ar:

X3

3 = .

erfc(x) = 1 - $%~x + é% .

Asymptotiskt gdller for stora x:

(3.6.1)

(3.6.2)

(3.6.3)

(3.6.4)

(3.6.5)

.13



erfc(x) ~ 7%~e_x . {1.- 513} (x > 1.5) (3.6.6)
X

Funktionen ges i tabell 3.1 och i figur 3.4. 1 figuren visas &ven approxi-
mativa uttryck for smd och stora x enligt 3.6.5-6.

erfc (x)
1

AN

05 AN

\\\\ 1 o
7
~I~
\§
0 X
0 05 10 15
Figur 3.4. Funktionen erfc(x).
X I ¢ 0.05 0.10 0.15 0.20 0.25 0.30
erfc(x) l 1 0.944 0.888 0.832 0.777 0.724 0.671
X 0.35 0.40 0.45 0.50 0.55 0.60 0.65

erfc(x) | 0.621 0.572 0.525 0.480 0.437 0.396 0.358

X 0.70 0.75 0.80 0.85 0.90 0.95 1.0

erfc(x) | 0.322 0.289 0.258 0.229 0.203 0.179 0.157




X ‘1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

2.0

.15

erfc(x) l 0.120 0.090 0.066 0.048 0.034 0.024 0.016 0.011 0.007 0.005

X l 2.0 2.2 2.4 2.6 2.8 3.0

erfc(x) ‘ 0.0047 0.0019 0.00069 0.00024 0.000075 0.000022

Tabell 3.1. Funktionen erfc(x).

Foljande approximation for erfc har ett maximalt fel pd 1%:

erfc(x) e ™ » (3.6.7)

X + Ve x2

~nNo
+
—
-
+
§i.|>+
~— X

(0 < x < =)

3.7 Vidrmekonduktivitet i svensk berggrund

Detta avsnitt ar skrivet av

Jacob Johnson, Sveriges Geologiska Undersdkning, Uppsala,

Jan Sundberg, Geologiska Institutionen, Jordvdrmegrupperi, Chalmers
Tekniska Hogskola, Goteborg,

Bo Thunholm, Sveriges Lantbruksuniversitet, Uppsala

i juli 1984.

Vid utvinning och lagring av vdrme i berggrunden dr vdrmeledningsformagan
eller virmekonduktiviteten A (W/mK) av betydelse. Den energimdngd som kan
utvinnas ur en bergvirmeanldggning dr direkt proportionell mot x- vdrdet
i berget.

Vid Geologiska institutionen, CTH, har i samarbete med SGU ndrmare 4000
berdknade och uppmitta virden pd olika bergarters varmekonduktivitet sam-
manstdllts. Arbetsférdelningen har varit sddan att SGU har svarat for in-
samling av data och uppridttande av databank medan CTH har verifierat be-
rakningsmetoden, utvirderat data m m. Harvid har A-vdrdena klassats med



avseende pd ett tjugofemtal olika bergartsgrupper. De flesta beriknade -
virden hgrror frén redovisade mineralsammansattningar i SGU:s publika-
tioner, frémst i serie Af. Uppmatta virden har erhi11its bl a fr&n CTH:s
studier om varmefiode i berg och fran mitningar i svenska gruvor. Virden
for sedimentdra bergarter dr nastan uteslutande uppmatta och harror fran
en dansk undersdkning.

Berdkningar p& grundval av bergartsprovernas mineralsammansdttning har
utforts pd flera satt:

(1) artimetiskt medelvirde
(2)  geometriskt medelvirde
(3)  harmoniskt medelvdrde
(4) medelvdrde av en undre och en Gvre grdans enligt Hashin, Shtrikman.

Vanligen ordnar sig de olika berdkningarna enligt (3) < (2) < (4) < (1).

Tidigare studier samt resultat fran denna undersokning visar att metod
(4) Gverensstdmmer bast med uppmdtta vdrden. Den storsta avvikelsen mel-
lan uppmdtta och berdknade vdrden i denna undersckning hirrér fran pro-
ver fran anisotropa bergarter.

I figur 3.5 visas medelvédrden for olika kristallina bergarter for hela
landet. Den streckade linjen visar vilket virde som 90% av fordelningen
overskrider med konfidensgrad 95%. For ytterligare information hinvisas
ti11 Johnson, Sundberg, Thunholm, Virmekonduktivitet i svensk berggrund,
Byggforskningsradet, i koncept. Den berdknas utkomma histen 1984", 1 den
rapporten redovisas dven bl a vdrmekonduktiviteten lansvis. Detta med-
for naturligtvis stdrre variationer av medelvirdet men med mindre sprid-
ning. Rapporten innehdller dven olika mgjligheter att bestimma virmekon-
duktivitet for ett visst objekt pa en viss plats.

En undersokning som avser varmekonduktivitet och specifik varmekapaci-
tet for olika svenska jordarter &r under utvirdering vid CTH och avses

att publiceras inom kort.

—
Rapporten finns nu i tryck, referens 165.
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4. STATIONARA TEMPERATURFORLOPP.
VARMEFORLUSTFORMLER

Den stationira, dvs tidsoberoende, delen av det totala temperatur-
forloppet i marken utanfor ett markvarmelager dr en av de viktigaste
komponenterna for de termiska analyserna. Denna del bestammer den
totala arliga virmeforliusten efter en inledande transient period.
Denna transienta temperaturuppbyggnad behandlas i avsnitt 5.1. Vidare
ger den stationdra delen maximal temperaturstdrning fran varme-
lagret utom for omraden nirmast lagret ddr tidsvariabla processer
ocksa ir av betydelse. I detta kapitel redovisas ett antal grund-
ldggande fall vilka senare kommer att utnyttjas for de olika lager-
typerna. Formler for &rlig vdrmefdrlust anges som funktion av lager-
storlek, lagerform och vdrmeisolering.

4.1 Introduktion

4.1.1 Stationar delprocess

Det totala temperaturférloppet i och utanfor ett markvdrmelager kan
genom superposition uppdelas i enklare delprocesser. Detta diskuteras i
avsnitt 3.5. Den totala processen bestdr av en stationdr del och en
periodisk del. Vidare har man under de forsta aren en transient upp-
byggnad fram till rligt periodiska forhdllanden. Grundlaggande
periodiska och transienta forlopp behandlas i ndsta kapitel.

Enligt diskussionen iavsnitt3.5,ddr superpositionsprinciperna be-
handlas, bestims virmeflodet till och fran lagret av temperaturen

pé lagerytan. Denna varierar odver ytan. Den varierar dven med tiden.
Den periodiska delen av yttemperaturen ger ett periodiskt in- och
utflode av virme. Nettoflodet under 3rscykeln blir noll. Bortsett
fran de forsta arens transient bestams darfor det arliga vdrme-
flodet av medeltemperaturen pé lagerytan under arscykein. Arsmedel-
temperaturen varierar normalt fréan punkt ti11 punkt pd lagerytan.
Man har en medelniva Tm och en @verlagrad variation Over ytan.

Om variationen Gver ytan &r liten eller om medelnivdn véljes pd
Tampligt sdtt blir nettovdrmeflodet fran den overlagrade variationen
vasentligen forsumbar.

4.1



4.2

Varmeforlusten bestdms d3 av en lampligt vald konstant yttemperatur
Tm' Delar av lagerytan kan tdckas av virmeisolerande skikt. vid
markytan rdder en konstant temperatur To. Vi far ett stationirt
varmestromningsproblem i marken utanfor lagret. Detta stationidra
temperaturforlopp illustreras i figur 4.1.1 for ett lager under
mark och for ett lager med Gverytan vid marknivén. I det senare
fallet har man virmeisolerat Gversidan och en bit av den vertikala
kanten.

T T

5
o] /I Tm /
7 Do

Figur 4.1.1. Stationirt temperaturforiopp i marken utanfor virme-

lager med konstant vttemperatur Tm.

Det stationdra viarmeutfliodet fran lagret skall betecknas Qm (W). I
en del fall skall &ven ett plant tvdrsnitt av ett langstrdckt varme-
Tager studeras. I ett sddant fall betecknas varmeforlusten per meter
i lagrets ldngdriktning I (W/m).

4.1.2 Dimensionslos form. Varmefériustfaktor h.

Den stationdra temperaturfordelningen i marken, T(x,y,z), kan re-
presenteras i dimensionsigs form enligt:

TGysz) = T+ (T - T)) - ulx/Lo, y/lg, /L) (4.1.1)
Den dimensionslosa temperaturen u dr noll vid markytan och +1 vid

lagrets yta. Rumskoordinaterna for u dr dimensionsldsa genom skalning
med en 1dngd Ls' Denna kan vara t.ex. lagrets hojd eller bredd.



4.3

Varmeforiusten Qm ar direkt proportionell mot temperaturdifferensen
Tm - To och mot varmeledningsformadgan A i marken. Varmeforlusten kan
skrivas:

- T Lh (W) (4.1.2)

Faktorn h d@r dimensionslds. Vi skall genomgdende anvdnda denna be-
teckning och kalla den for vérmeforiustfaktor.

Lat LS, L1, L2 osv vara de langder som karakteriserar vdrmelagret. Vdrme-
forlustfaktorn blir en funktion av skalade 1&ngder, dvs. av lagrets
form och ldge:
= /

h=h(L, /L, Ly/Lse..) (4.1.3)
Marken utanfor lagret kan bestd av omrdden med olika varmelednings-
formadgor A, A AZ osv. Varmeforlustfaktorn blir dd ocksd en funktion
av relativa vdrmeledningsformagor A1/A osvV:

h = h(L1/LS,..., A1/X,...) (4.1.4)

En speciell komplikation &r skalningen fdr vdrmeisoleringen av lagret.
Figur 4.1.2 visar ett exempel, ddr lagret har en vertikal isolering
langs kanten. Isoleringens tjocklek ar di’ och dess vdrmeledningsfor-
maga ar Age Isolerskivan gér ner en langd Dj.

Dj

Tm

varmelager

Figur 4.1.2. Vertikal isolering vid kanten av ett lager.



4.4

Isoleringen ger de tre dimensionsldsa parametrarna di/Ls’ Di/Ls

och xi/x. Normalt rdknas isoleringen bara som ett varmemotstand
mellan Tagertemperaturen Tm och marken utanfor isoleringen. Vid skal-
ning skall d& isoleringens vdrmemotsténd di/xi skalas mot varme-
motstandet LS/A. Isoleringen ger dd tvd dimensionslosaparametrar

for varmeforlustfaktorn

ho=h(Ly/Lgsenn s Dy/Lgs (din)/(LAL)) (4.1.5)

For ett 18ngstrédckt lager betecknade 4 varmeforlusten per meter. Den
dimensionsldsa varmeforlusten blir for ett sddant tvddimensionellt
fall

-T)-h (W/m) (4.1.6)
Faktorn h blir en funktion av lagrets geometriska form.

Det dar ldrorikt att jamfora formlerna 4.1.2 och 4.1.6. I det tre-
dimensionella fallet dr varmeforlusten Qm proportionell mot den
linjdra storleken Ls' Detta beror pd att vdrmefdrlusten ar. pro-
portionell mot lagrets area gdnger temperaturgradient. Den senare
faktorn dr proportionell mot 1/LS. Totalt far vi

Q «LS SV (4.1.7)

n S

I det plana fallet, ddr vi rdknar per meter vinkelrdt mot planet, har
man i stdllet:

qelg »1/Lg = 1 (4.1.8)

m

Varmeforiusten 4 beror sdledes ej pd Tagrets linjdra dimensioner.

4.2 Sfdariskt lager.

Vi skall i detta avsnitt studera fallet, dd vdarmelagret har sfarisk

form. Detta fall kan synas vdal akademiskt, men det kommer att visa



sig vara av intresse pd grund av att processen dr genuint tre-
dimensionell och att formlerna blir enkla.

Lat oss forst se pd ett sfariskt vdrmelager som ligger s& djupt ner
under markytan att denna ej pdverkar det stationdra temperaturfor-
Toppet kring lagret. Lagrets radie dr R. Det radiella avsténdet
fran Tagrets centrum betecknas r.

Temperaturen vid Tagerytan dr Tm. P& stort avstand frén lagret dr

den ostdrda marktemperaturen To' Den stationdra temperaturen utanfor
det sfariska Tagret blir da:
_T).B_ r o= x2+y2+z2 (4.2.1)

Varmeforlusten Qm frian ett sfdriskt lager i en odndlig omgivning
blir:

Q, = 4mR(T - T)) (4.2.2)
Om vi tar LS = R for skalningen blir vdrmeforlustfaktorn:
h = 4x (L. =R) (4.2.3)

Varmeutflodet per ytenhet frén sfaren blir enligt formel 4.2.2:

= —— (4.2.4)

Den odndliga sfariska omgivningen svarar saledes mot en "plan" tjock-
lek R.

Figur 4.2.1 visar ett sfdriskt Tager péd mdttligt djup under mark-
ytan. Lagrets mittpunkt 1igger pd djupet Dm under markytan (Dm > R).

4.5



4.6

Figur 4.2.1. Sfariskt varmelager p& djupet Dm under markytan.

Varmeforlustfaktorn blir en funktion av Dm/R. Vi har med utnyttjande
av formel 4.2.3:

Q = AT, - T )R-h(D_/R) h(e) = 4x (4.2.5)

Figur 4.2.2 visar h(Dm/R).

9 D_m
1 2 3 4 5 R
Figur 4.2.2. Varmeforlustfaktor for sfariskt lager pd djup Dm

relativt sfdr pd odndligt djup. Korsen anger virden
enligt den approximativa formeln 4.2.6.

[ avsnitt 4.4 anges approximativa formler for virmeforlust Qm och
for viarmeforlustfaktor h for ett lager p& mattligt djup, d& man

kdnner forlusten for samma lager pd stort djup. Vi far med formlerna
4.4.1 och 4.2.3:



4n .
h(Dm/R)-’!—'}—-—:B-:——— (Dm/R > 1.5) (4-2.6)

2D,

Varden enligt denna formel dr markerade med kryss i figur 4.2.2.
Vi ser att approximationen ar mycket god (fel =3%) d& Dm/Rz 1.5.

4.3 Cylinderformat varmelager under mark.

Varmelagret har formen av en cylinder med hdjden H och radien R.
Cylinderns rotationsaxel sammanfaller med den vertikala z-axeln.
Cylinderns overyta ligger p& djupet D under markytan. P& cylinder-
ytaﬁ ar temperaturen Tm, och vid markytan dr den To. Se figur 4.3.1.

Resultaten i detta avsnitt finns mer detaljerat redovisade i referens
1.

Figur 4.3.1. Stationdrt temperaturférlopp utanfor cylinderformat
virmelager under mark.

4.3.1 Temperaturfdlt

Den dimensions1dsa temperaturen u enligt formel 4.1.1 dr +1 pd
cylinderytan och noll vid markytan. Vi skalar lingden med D (Ls = D).

A,



4.8

Temperaturfdltet beror av de tvd parametrar R/D och H/D. Temperatur-
fdltet har berdknats numeriskt for tre fall med olika geometri.
Resultatet visas i figur 4.3.2 A-C. De tre figurerna ger en god

bild av temperaturpaverkan frén ett virmelager i mark. Vi ser att
temperaturfaltet har en "dipol"-karaktdr. Utstréckningen av tem-
peraturfdlten bestdms av vdrmelagrets linjdra dimensioner.

o}

Figur 4.3.2. Dimensions1gst temperaturfdlt utanfor cylinderformat
varmelager. A: R/D = 2, H/D = 2. B: R/D = 2, H/D = 5.
C: R/D = 10, H/D = 2.

Marken utanfor virmelagret forutsatts ha en enda vdrmeledningsfor-
maga i dessa tre exempel. Figur 4.3.3 visar ett fall diar marken be-



stdr av tre olika skikt. Varmeledningsfdrmdgan for de tre skikten
ges i figuren. Geometrin &r densamma som i figur 4.3.2 A.

Figur 4.3.3. Dimensionslost temperaturfdlt utanfor ett cylinder-
format virmelager. Marken bestdr av tre skikt med olika
varmetedningsformdga. R/D = 2, K/D = 2.

Vi ser vid en jamforelse mellan 4.3.3 och 4.3.2 A att temperaturfdlten
dr forh&1landevis likartade. Isotermerna i det inhomogena fallet &ar
dock mer utbredda beroende pid att vdarmeledningsfdrmégan &r vdsentligt
storre i det understa skiktet &n i de tva ovre.

4.3.2 Vdrmeforlust

Varmeforlusten for det cylinderformade lagret under markytan ges
enligt formel 4.1.2 med D som skalningsléngd:

Qm = A(Tm - TO)D -h(R/D, H/D) (4.3.1)

Faktorn h har berdknats numeriskt for ett antal parameterviarden. Re-
sultatet ges i tabell 4.3.1.

4.9



4.

10

20 63 230 569 1064 1716
15 54 213 547 1038 1686
H
ol 10 43 194 521 1006 1649
5 31 57 89 171
4 28 53 84 165
2 21 44 73 150 458 923 1549
1 17 32 66 140
1 2 3 5 10 15 20
R/D

Tabell 4.3.1. Vdrmeforlustfaktor h for cylinderformat lager under
mark enligt formel 4.3.1 och figur 4.3.1.

Varmeforlusten fran en cylinder pd stort djup har ocksd berdknats
numeriskt for olika cylinderformer. I detta fall anvdndes R som skal-
ldangd. Varmeforiustfaktor beror dd av H/R:

Q =T -T

. n O)R-h1(H/R) (4.3.2)

For en cylinderskiva (H = 0) har man det exakta resultatet h1(0) =8,
Varmeforlustfaktorn h1 ges i tabell 4.3.2.

H/R 0 1/20 1/10 1/5 1/3 1/2
h1(H/R) 8 8.8 9.0 9.4 10.0  10.7

H/R 1 2 3 5 10 20
hy(H/R) | 11.9 14.8 17.3 21.8  31.6 48.1

Tabell 4.3.2. Varmeforlustfaktor h1 for cylinderformatlager pd stort
djup for formel 4.3.2.

Tabell 4.3.1 ger vdrden pd h for R =z D och H z D. Lagret ligger d&
pa forhdllandevis Titet djup. Vid djup, som ej dr alltfor smd, kan
formel 4.4.1 anvidndas, eftersom vi kdnner h1(H/R) och ddrmed Q_ for
stort djup. Vi fér fran formlerna 4.4.1, 4.3.2 och 4.3.1:



ny (H/R) (D = R/2) (4.3.3)
1_“‘R—(_T“h1 /R 2 3.
T (20+HY

h(R/D, H/D) =~ % )

Observera att vi har skalat med D respektive R i de tvd fallen.
Medeldjupet Dm ti11 lagret &r i detta fall D + H/2. Formeln bor ge
hygglig noggrannhet om D dr stdrre &n R/2.

Uttryckt i varmeforiust Qm som funktion av djupet blir formel
4.3.3:
Q ()

Q (D) & ———s (D = R/2) (4.3.3")
Rh1(H/R)

L v G )

For att ytterligare belysa hur varmefOrlusten beror av djupet, har

numeriska berdkningar utforts for fallet H lika med R och D/R variabel.

Resultatet ges i tabell 4.3.3.

D/R = D/H v 2 3 5 10 20 =
Qm

AT -T )R | enligt
m o0 formel 4.3.3" 17.4 14.6 13.8 13.0 12.5 12.2 11.9

numerisk

berdkning 17.2 14.6 13.7 13.0 12.4 12.0 11.9

Tabell 4.3.3. Dimensions1ds varmeforlust som funktion av djupet D for
fallet H = R.

For oandligt djup far vi forlusten 11.9. Vid djupet D = 3R ar for-
Justen 13.7. Okningen ar relativt mattlig. Vid djupet D = R dr for-
lusten ungefar 50% storre dn for det odndligt djupa fallet.

Motsvarande virden enligt formel 4.3.3' ges ocksd. Vdrdet h1(1) =11.9
enligt tabell 4.3.2 har utnyttjats. Vi ser att Gverensstammelsen med
numeriskt beriknade varden dr mycket god.

Exempel 1. Ett cylindriskt vdrmelager har Gverytan 10 m under mark-
ytan. Lagretsdiameter &r 40 m och dess hojd 40 m. Vdrme-
ledningsférméagan i marken dr 1.2 W/mK. Den arliga medel-



temperaturen Over lagerytan &r 60°C, medan arsmedeltem-
peraturen vid markytan dr 9°C. Vi har da:

D=10m H=140m R=20m
- 0 _ g0
T, = 60°C To = 9°C
Den stationdra varmeforiusten blir d& enligt formel 4.1.2
och tabell 4.3.1:

h(20/10, 40/10) = 53
Qm =1.2+(60 - 9).10-53 = 32 kW

Exempel 2. Vi har samma lager pa mycket stort djup och péd ett mdttligt
djup:
i. D=w ii. D =40m

For mycket stort djup har vi enligt formel 4.3.2 och tabell
4.3.2:

h1(40/20) = 14.8
Q

For det mattliga djupet D = 40 m kan ej tabell 4.3.1 utnyttjas
eftersom R/D = 1/2. Med formel 4.3.3' far vi:

m = 1.2(60-9) 20-14.8 = 18.1 ki

Q=) = 18.1 ki h,(40/20) = 14.8
. 18.1 )
Q= = 23 kil
) - 20-14.8
4r(80+40)

Exempel 3. Vi tar dter exempel 1 men anvinder i stillet for tabell 4.3.1
den approximativa formeln 4.3.3'. Vi har da enligt formel
4.3.3" och exempel 2:
Q = 18.1 - 30 Kku
1 - 20-14.8
4n(2+10+40)




Felet relativt det direkt berdknade vardet Qm = 32 kW
enligt exempel 1 dr 6%. Vi ligger precis pd den angivna
gransen for tilldmpbarheten av 4.3.3':

10

[N

D _
R -

~N)
fa]

4.3.3. Effekt av isoleringar
Vi skall i detta avsnitt med ndgra exempel illustrera vad man tjdnar
genom att vdarmeisolera olika ytor pd cylindern. Foljande data an-

vandes:

2 W/mK T -1 =500

>
It

o
I

10 m H=20m R=20m (4.3.4)
Den stationdra vdrmeforlusten blir enligt tabell 4.3.1:
Q, = 2:50-10-44 = 44 ki (4.3.5)

Varmeutflddets fordelning pd Overyta, sidoyta och underyta visas
i figur 4.3.4 B.

I figur 4.3.4 C har Overytan vdrmeisolerats med en isolering dar
di/Ai dar Tika med 1.25 mZK/W. 1 4.3.4 D och E har isoleringen

dkats till 2.5 respektive 5. Vi ser att isoleringen ger en relativt
mattlig minskning av total vdrmeforlust. I figur 4.3.4 F och G har
det Ovre hornet isolerats ytterligare. I figur 4.3.4 H &r bdde over-
yta och sidoyta vdarmeisolerat. Vi fér d& en kraftig reduktion av
varmeforlusten fran 44 till 26 kW.

.13
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o Bk 107 §L=125m2mw
—
20m 439KkW 219 406 (232
6.6 66
C
i : ém_ d
8.4 9. 59 g, 66  Jbm.di
L — —2 s —t s
388 738 369 I 361 208
67 61 67
D E
gi
65 N 67 i g
——lin e
325 |91 264 {102
68 94
G H

Figur 4.3.4. Virmeforlust (kW) genom de tre delytorna av en cylinder
vid olika isolering. Data enligt 4.3.4.

4.4 Vdrmeforlust vid mattliga kontra stora djup

Den stationdra virmeforlusten fran ett virmelager under mark beror

pd hur djupt ner lagret ligger. LAt Dm beteckna djupet fran markytan
till lagrets mittpunkt. Virmeforlusten Qm for ett lager av given form
och storlek blir en funktion av medeldjupet Dm: Qm = Qm(Dm).

Varmeforlusten fran samma lager pd sd stort djup att markytans effekt
bTir forsumbar betecknas Qm(m). Genom en speglingsteknik, dir man an-
sdtter ett spegellager ovan markytan, kan f¢1jande approximativa sam-
band mellar Qm(Dm) och Qm(m) hdrledas. Se referens 2.



Q (D ) = m (4.4.1)

4nA(Tm-T0)-2Dm

Formeln gdller ej for lager som ligger alltfdr ndara markytan.
Som ett forsta exempel tar vi ett sfériskt varmelager. Detta be-

handlas i avsnitt 4.2. Vdrmeforlusten for ett lager pd stort djup,
dvs. i en fri omgivning, ges av formel 4.2.2:

Qm(w) = 4WAR(Tm-TO) : (4.4.2)
For en sfdr pd ett djup Dm under markytan (figur 4.2.1) far vi da

Q (D) h(D _/R)
N L (4.4.3)
Q () “ - R

m

2D
m

Den exakta varmeforlustfaktorn som funktion av djupet ges i figur
4.2.2. Vdrden enligt ovanstdende approximation ar markerade med
kryss i figuren. Vi ser att approximationen dr mycket god for storre
djup. Felet @r mindre an 1%, 3% och 14% for Dm/R > 2, Dm/R > 1.5
respektive Dm/R > 1.2. Formeln 4.4.3 eller 4.2.5 kan sdledes an-
vandas wmed god precision for Dm/R > 1.5. Det tédckande jordskiktet
vid sfarens Ovre punkt, Dm - R, @r da storre an halva radien pd
sfdren.

Som ett andra exempel tar vi det cylindriska lagret under mark. Detta
behandlas i avsnitt 4.3. Medeldjupet D, blir:

Dm =D+ H/2 (4.4.4)

Varmeforlustfaktorn for en fri cylinder pa stort djup ges i tabell
4.3.2 for olika cylinderformer. Vi har enligt formel 4.3.2:

Qi) = AT = T)) R by (H/R) (4.4.5)

4.15
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Varmeforlusten for ett Tager p& andligt djup gavs av 4.3.1:

Qm(Dm) = A(Tm - TO)D-h(R/D,H/D) (4.4.6)
Insdttning av 4.4.5-6 i formel 4.4.1 ger uttrycket 4.3.3 for virme-
fortustfaktorn h. Tabell 4.3.3 ger en jimforelse med numeriskt be-
réknade vdrden. Vi ser att for dessa mattliga och stora djup stdmmer
formeln mycket val.

4.5 Ellipsoidformat virmelager

En ellipsoid bestdms av de tre axlarnas 1dngd. Dessa kan vidljas o-
beroende av varandra fér att ge ldmplig ldngd, bredd och htjd. En

stor klass av former pd ett virmelager i marken kan dirfor approxi-
mativt beskrivas av en ellipsoid. Varmeforlustformler fran ett ellips-
oidformat lager pd stort djup och nira markytan har dirfor stor an-
vindbarhet. De formler som ges i detta avsnitt hirleds i referens 2. .

4.5.1 Rotationsellipsoid pd stort djup

Vi ténker oss ett varmelager pd stort djup. Lagret har formen av en
rotationsellipsoid med héjden H och radien R. Se figur 4.5.1.

= 2 2 2
H r= x2+y2 O AN =1

Figur 4.5.1. Rotationsellipsoid med hdjden H och radien R.

For H = 0 far vi en cirkelskiva. F6r 4 = 2R har vi en sfir. Rotations-
ellipsoiden dr oblat for 0 < H < 2R och prolat for H > 2R.



Stationdr vdarmeforlust Qm kan enligt 4.1.2 med R som skalningsldngd

skrivas:

Q = (T

m n TO)R-h

L(H/R)

Varmeforlustfaktorn h2 ges av

. - .. o fnf
0 < H/R s 2: hz(H/R) = Ircsin(ey
_/ _(Hf
f=/1- (5
/R 2 2: ho(/R) = AL

Speciellt har vi vardena:

(cirkelskiva)

(sfar)

(4.5.1)

(4.5.2")

(4.5.2")

(4.5.3)

(4.5.4)

Vi har foljande approximativa uttryck f&ér f. Dessa har ett maximalt

fel pd 2%:
- 2r (H ) o H
h2—4ﬂ+—3<§ 2} 0.571?,5
h. o 4y + 2T (ﬂ.- 2y - (W 2\2 0 < B
2 =T R ) 20\R "~ ¢) R~

H/R H o
h2—2ﬂ'1m ﬁ*: 10

(4.5.5)

< 10 (4.5.6)

(4.5.7)

4.17
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Varmeforlustfaktorn hZ(H/R) visas i figur 4.5.2.

h,

204

R TR A3 P S N, B3
hoste o 25 9) L (o)

Figur 4.5.2. Vdrmeforlustfaktor for rotationsellipsoid enligt formlerna
4.5.2' och 4.5.2",

4.5.2. Jdmforelse mellan cylinder och rotationsellipsoid

Det dr intressant att jamfora virmeforlusten fran cylinder och rotations-
ellipsoid. Vi ser p4 en cylinder pa stort djup med hijden HC och radien
Rc' Varmeforlusten ges av formel 4.3.2 och tabell 4.3.2. Rotations-
ellipsoiden pd stort djup har radien R och hojden H. Dess vdirmeforlust
ges av 4.5.1-2.

Cylinderns radie och hdjd vdljes s& att den f&r samma volym och hgjd-
breddforhd1lande som rotationsellipsoiden. Vi har di:

™3
=
=

4o 2 H _ _ . C
TR 5 "R.He R™R, (4.5.8)



Detta innebar:

_pnJ3/2 _u3f2
RC = R 3 HC = H 7 (4.5.9)

Forhdllandet mellan varmeforlusten for cylinder och motsvarande
rotationsellipsoid blir enligt formlerna:

Q R h,(H /R) h, (H/R)
fomeyl e 1tc el 3/2 1 (4.5.10)
. rot R, (H/R) 3 ", (AR

For en sfar och motsvarande cylinder féar vi

WR=2 f- 3A§ ~ 12;8 - 1.03 (4.5.11)

Cylindern harsdledes 3% storre vdrmeforlust. For ndgra andra former
far vi

Ho1 _

LR f = 0.99

Ho 1 )

X =70 f = 0.95

H _

R =20 f = 1.01 (4.5.12)

Vi ser att f hela tiden ligger mycket ndra 1. En mdttlig dndring av
lagret under bevarande av volym och form ger sdledes ingen stirre for-
andring av varmeforlusten.

4.5.3 Allmdn ellipsoid

Vi skall nu ge formler for det allmdnna fallet ddr lagret har formen
av en godtycklig ellipsoid. Vi forutsdtter fortfarande att varmelagret
ligger 13ngt under markytan.

Ellipsoiden har de tre halvaxlarna A, B, L. Dessa vdljes sd att

A<Bz=lL (4.5.13)

4.
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Ellipsoiden definieras av

N
~n
~n

- (4.5.14)

lex
(N
lek
N
r’IN
[N

Hir har z-axeln Tagts 1sngs den storsta axeln (L).
Som skalningsldngd anvdndes L. Vi har dd for varmefdrlusten

Q= (T

m - TO)L-h3(A/L, B/L) (4.5.15)

m

Varmeforiustfaktorn h3/(4n) ges i figur 4.5.3.

A

L
; . . . .

hy (AL, BIL)(km) !
§ L
%
)
] & L
“
@ .%b
s
- o‘ -
Qf g
3
%
“
o
- 0 {$ -
&
7%
o 6

0 ; . , . 2

0 ) T

Figur 4.5.3. Varmeforlustfaktor for godtycklig ellipsoid pd stort djup.
Halvaxlarna dr A, B och L.

Vi har foljande speciella virden.
h3(1,1) = 4y (sfar)

h3(0,1) =8 (cirkelskiva) (4.5.16)

D& B/L = 1 far vi den oblata rotationsellipsoiden. Vi har med B =L =R,
A= H/2:
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_ : H
ny(H/(2R),1) = hy(H/R) (ﬁ < 2) (4.5.17)
Hér ges h2 av 4.5.2'. D& A = B far vi den prolata rotations-
ellipsoiden. Vi har med A=B=R, L = H/2:

h3(2R/H, 2R/H) = %§ hz(H/R) (% > 2> (4.5.18)

Hdr ges h, av 4.5.2".

Vi ser i figur 4.5.3 att nivédkurvorna for h3 med god approximation
dr rdta linjer med en lutning pd 45°, Vi har foljande approximation:

(A B\, (AB A
W\ T =M\ &) (4.5.19)

Hogra ledet av 4.5.19 kan uttryckas med h2 enligt 4.5.18. Vérmeforlust-
faktorn h2 ges i sin tur av formel 4.5.2". Vi far foljande approximation

for h3:

i (A[—B> - =X
In <%;f>
2
£- N (!2\{_8_) (4.5.20)

Funktionen f1 ges i figur 4.5.4.

0 - —

0 PRFTY

Figur 4.5.4. Funktion for approximationen 4.5.20.
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Genom att anvdnda approximationerna 4.5.5 och 4.5.7 far vi f51jande
enkla formler:

4n A+B

A B .
A By 4nl A+B _
L‘h3 (t s t/ = —‘?L-' = 0.3 (4.5.21)

4L
In <m)

Uttryckt direkt i varmefdrlusten Qm féar vi foljande enkla formler for
vdrmeforliusten fran en ellipsoid pi stort djup:

A+B+L A+B
Qmu 4mx (Tm - TO) M 3 T= 0.3
L A+B
Qrn o~ 4o (Tm - To) - e— S0 < 0.3 (4.5.22)
jLﬁ\
A+B)

Felen i dessa approximationer dr maximalt nigra procent.

4.5.4 Vdrmeftrlustens variation med formen vid fix volym

Varmeforlusten fran ellipsoiden beror p& form och storlek. Det ar
instruktivt att se hur varmeforlusten beror pd formen vid given volym.
Volymen V hos ellipsoiden ges av

4y

V= TT'ABL (4.5.23)

Varmeforlusten kan dd enligt 4.5.15 skrivas:

(A/L, B/L)

Q = AT -T)/ 3V,

m m o} Ay (4.5.24)

w
=
w
=
.
(o~}



Q h(A/L,B/L)
P T / (4.5.25)

m,sfdr 3/A. B
4vv T T

Kvoten fv anger den relativa varmeforlusten som funktion av formen.
Den visas i figur 4.5.5.

A
1 L ' N
101
103
f=1.1
1 12 i
15
2
0 . . . : 2
0 1

Figur 4.5.5. Varmeforlust for ett ellipsoidformat lager jamfort med
ett sfdriskt lager med samma volym. Formel 4.5.25.

Vi ser att vdrmeforiusten &r mycket okdnslig for formfdrandringar.

Om A/L och B/L &r stdrre dn 0.7 &r &dndringen fran sfiren mindre &n 1%.
Andringen understiger 20% om A/L och B/L dr stOrre dn 0.2. Vi kan all-
mant dra slutsatsen att vdrmeforlustdndringen vid en mdttlig &nd-

ring av ett vdrmelagers form under Hibehd1len volym dr liten.

4.5.5. Korrektion for andligt djup.

Figur 4.5.6 visar ett ellipsoidformat lager under markytan. Djupet ner
till lagrets mitt dr Dm. Djupet frén markytan till lagrets Gversta
punkt betecknas D. Ellipsoidens langsta axel dr 2L 1ang. De tvd andra
axlarna har ldngden 2A och 2B. Den lingsta axeln kan ligga horisontellt
som i figuren eller vertikalt. Sneda ldgen &r ock§é tilldtna.

4.23
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2L //
VA / 7
Figur 4.5.6. Ellipsoidformat lager med djupet Dm under markytan.

Med hjalp av vdrmeforlusten for en ellipsoid pa stort djup kan enligt
den approximativa formeln 4.4.1 motsvarande forlust p& ett djup Dm
anges. Den allminna formeln ges av 4.4.1 och 4.5.15. Utnyttjas approxi-
mationerna 4.5.21 far vi foljande enkla formler for virmeforlusten

fran ett ellipsoidformat lager p& djupet Dm under markytan:

A+B+L 1 A+B
Q = 4rx(T_-T.) . -+ 2 0.3 (4.5.26)
m m 0 3 - A+B4L 2L
6D
m
1 A+B _
Qm o 4nx(Tm - TO) i = = 0.3
In <———>
B/ 1
L ZDm
1
D> ﬁ'Lmax,xy (4.5.27)

Kravet for att formlerna skall vara giltiga dr att virmelagret ej ligger
alltfor ndra markytan. Nirmare bestdmt kridver vi

1
D> E'Lmax,xy (4.5.28)
Har dar LmaX Xy Tangden av den sttrsta axeln i horisontalpianet. Om L-
axeln dr horisontell blir L lika med 2L, medan L blir 1ika
max ,Xxy max , Xy

med 2B om L-axeln dr vertikal.
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4.6 Allmdn formel fGr varmeforlust fran lager under mark.

Vid sdsongslagring av vdrme under markytan dr lagrets virmeforluster till
omgivningen av stor betydelse. Forlusterna dr stdrst under de forsta lag-
ringsperioderna d& en vdrmekudde bygges upp runt lagret. S& smdningom kan
utflodet fran lagret ses som summan av ett stationdrtoch ett periodiskt
varmeflode fran lagret. Nettoutflodet under dret av det periodiska varme-
flodet d@r noll. Det stationdra virmeflodet drives av differensen Tm - TO
mellan lagerytans och markytans medeltemperatur under den arliga lag-
ringsperioden.

I avsnitt 4.5.5 gavs mycket enkla formler (4.5.26-28) for det stationdra
varmeflddet Qm for ett ellipsoidformat lager. Vi har sett i avsnitt 4.5.2
och 4.5.4 att varmeforlusten dr relativt okdnslig for méttliga forind-
ringar av lagrets form, did dess volym bevaras.

Genom att approximera vart vdarmelager med en Tamplig ellipsoid kan vi
fortfarande utnyttja de enkla formlerna i avsnitt 4.5.5.

Det betraktade virmelagret under mark har relativt godtycklig form.
Lagrets medelpunkt Tigger p& djupet Dm. Avstandet fran lagrets hdgsta
punkt till markytan d@r D. Dess volym dr V. Lagret approximeras med en
ellipsoid med de tre axlarna 2A, 2B och 2L. Ellipsoidens axlar viljes
med samma proportioner som det ursprungliga lagrets bredd, hdjd och
ldngd. Vidare vdljes axlarnas langd s& att ellipsoidens volym

v 4—“3*& (4.6.1)

Gverensstammer med det ursprungliga lagrets volym. Beteckningarna viljes
sd att L betyder den ldngsta halvaxeln. Axeln L kan vara horisontell eller
vertikal. Se figur 4.5.6.

Nedanstdende approximativa formler kan anvidndas med god noggrannhet sa
ldnge som det ursprungliga lagrets form ej alltfoér mycket avviker fran
ellipsoidens. Den viktigaste begransningen for formens giltighet ar att
lagret ej far ligga alltfor ndra markytan. L&t L vara lagrets

max ,xy
storsta utstrdckning i det horisontella xy-planet. Formlerna har ett



4.26

< . o

fel pa bara ndgra procent, om D > 7 Lmax,xy'

A+B A+B+L 1

57— 2 0.3: Q = 4mx(T_-T) (4.6.2)

2L ‘ m m o) 3 . A+R+L

6Dm
A+B . . _ 1
o0 < 030 Qe dm(T, - T) I (4.6.3)
_\A+B) 1
L 2D
Krav: D > 4 L
) 4 “max,xy

Exempel 1. Givet ett cylindriskt varmelager med radien 50 m och hdjden 50 m.
Lagrets ovre yta befinner sig 50 m under marknivdn. Lagerytans och
markytans &rsmedeltemperatur ar 559¢C respektive 59C. Jordens
varmeledningsformaga dr 3.5 W/mK.

Lagret approximeras med en ellipsoid ddr

A1 B,
L 2 L

Vidare ger volymbevarande:

4r _4r L _ 2, 3
YTl = %35l = ws0fes0 m
Vi far da
L-B=5.2m A= 28.6m
5%% - 0.75 D = 50 - (28.6-25) = 46 m

1 1

T Lmax,xy = 7 57.2 = 28.6 m

Qm = 154 kW

Enligt avsnitt 4.3.2 blir forlusten:
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Qm =3.5+50-50-17 = 149 kW

Overensstammelse mellan formel och direkt numerisk 10sning dr
god.

Exempel 2. Samma lager som i exempel 1 med skillnaden att lagrets overyta
Tigger 10 m under marknivan. Vi har dd samma ellipsoidapproxi-
mation. Villkoret 4.6.3 &r ej langre uppfyllt:

D=10- (28.6-25) =6.4m

1

z[ Lmax,xy = 28.6 m

Anvands formel 4.6.2 andd far vi med Dm =35m
Qm = 329 kW

Alternativt kan vi anvdnda de direkta formlerna enligt avsnitt
4.3.2. Formel 4.3.1 och tabell 4.3.1 ger:

50 50% _

Qm =3.5.50 10 <171 = 299 kW

Formel 4.6.2 ger sdledes i detta fall ett fel pa 10%.

Exempel 3. Givet ett bergrum med langden 200 m, hojden 90 m och bredden 30 m.
Dess medelpunkt Tigger 150 m under markytan. Lagrets volym blir
540 -103 m3. Bérgets vdrmeledningsformdga dr 3.5 W/mK. Arsmedel-
temperaturen vid markytan ar 59¢. Lagertemperaturen varierar
under aret mellan 90°C och 20°C. Vi ansatter en medeltemperatur
pad lagerytan:

_90+20 _ .0
Tm = Ty E 55°C
Vi har nu:
T =5% D =150 m

0 m
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Lagrets approximeras med en ellipsoid dar

A 30 B _ 90
L ™ 200 L = 200
Volymbevarande ger
3 _4n g - 4n.30 90 3
540 - 10° = 5 ABL = 3700 ° 700 L
L =124 m
A=18.6m B =55.8m
Vi har d&
A+B
- = 0.30

Formel 4.6.2 ger varmeforlusten

Qm = 187 kW

Har har det Gvre uttrycket anvints. Det undre uttrycket ger
Qm = 184 kW

4.7 Véarmeforlustanalys for lager med Gverytan vid markniva.

Vi skall i detta avsnitt analysera de olika bidragen till vdrmeforlusterna
for ett vdrmelager vars Gveryta ligger vid marknivén. Lagrets Overyta och

ovre delen av den vertikala kanten mot marken ar viarmeisolerade. Vi skall

hdr speciellt analysera effekten av den vertikala kantisoleringen.

Figur 4.7.1 visar den betraktade typen av varmelager. Lagret strdcker sig
ner till djupet H. Kantisoleringen gar ner till djupet Di' Vid markytan
dr temperaturen To. P& varmelagrets yta mot mark och innanfor isoleringen
rader teniperaturen Tm.
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To 1,

7

Figur 4.7.1. Varmelager med Overytan och en ovre del av kanten varme-
isolerad.

4.7.1 Delvdrmeforluster

Den stationdara varmeforlusten Qm bestdr av tre delar. En del av vdrme-
forTusten sker genom den Ovre horisontella isoleringen. En andra del av
forlusten sker genom kantisoleringen. Den resterande vdrmeforlusten sker
direkt mot omgivande mark genom den undre ytan och den oisolerade delen
av den vertikala ytan.

Q. =1Q Q

Q (4.7.1)

m m,upp * m,kant " Sm,mark

De tvéd forsta bidragen dr tdmligen enkla att uppskatta. Det tredje bi-
draget dar mer komplicerat, eftersom det krdver en berdkning av det fler-
dimensionella, stationdra temperaturfaltet i marken. En speciell komplika-
tion ar hur kantisoleringen paverkar denna tredje forlustterm.

4.7.2 Vdrmeforlust genom Gvre isolering.

Den tdckande horisontella varmeisoleringen har tjockleken di och varme-
ledningsfdormagan Ai. Dess area ar Ai' Varmeforlusten blir d&:

N
- - i
mupp (Tm TO) di Ai (4.7.2)
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4.7.3 Vdrmeforlust genom kantisolering

Lat lagrets horisontella omkrets vara Li' Kantisoleringens totala area
blir da D1L1' I marken strax utanfér isoleringen rider en i djupled
varierande temperatur. Uppe vid markytan dr temperaturen To och vid
isoleringens nederdel Tm' Lat Tmo vara medeltemperaturen over isoler-
djupet. Varmeforlusten genom kantisoleringen blir da:

T
ﬂ;ﬂ“Tmo U, kant = (T Tno! %? DLy (4.7.3)
Ett rimligt vdrde pa Tmo ar
To= TT”ETO (4.7.4)

Detta bor ge en god uppskattning eftersom vi har TO vid dverkanten och
Tm vid underkanten. En uppskattning av varmeflodet genom kantisoleringen
blir da:

;

Qm,kant - (Tm - To) T 7Ly (4.7.5)
Total vdrmeforlust genom horisontell och vertikal isolering blir nu
enligt 4.7.2 och 4.7.5:

ATy = Tp) 1
m,isolering ~ Qm,upp * Qm,kant S g '(A.i ty |-1-D1-)

(4.7.6)

Q

Genom medelvdrdet 4.7.4 kan vi sdga att kantisoleringen verkar mellan
Tm och TO med halverad area.
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4.7.4 Vdrmeforlust direkt mot mark
4.7.4.1 Allmanna samband
Varmeforlusten direkt mot marken, Qm mark i formel 4.7.1, beror péd
lagrets geometri, vdrmeledningsformdgan i marken och pd den vertikala

kantisoleringen. Se figur 4.7.1. Den kommer allmdnt sett att bero pd
isoleringsdjupet Di och isoleringens varmemotsténd di/xi.

Man kan har normalt gora foljande forenkling. Marken strax utanfor
kantisoleringen representerar ett varmemotstdnd i storleksordningen
0.5Di/A. Normalt @r vdrmemotstdndet for isoleringen mycket stdrre &n
O.SDi/A. T.ex. kan vi ha:

Di =2m 0.5D1 di =0.2m '

— = 0.5 Tl
A= 2 W/mK A, = 0.04 W/mK i

(=%

=5 (4.7.7)

It

Processen for varmeflodet direkt ut mot marken blir da i stort sett den-
samma om man betraktar den vertikala vdrmeisoleringen som totalisolerande.
Vi slipper dd en parameter. Denna approximation gores i det fdljande.

Figur 4.7.2 visar det aktuella problemet for vdarmeforlusten mot marken
under kantisoleringen,

totalisolerin
T potenng g

P

Tn |

>~ Q%r
m,mark
YO

7

Figur 4.7.2. Varmeforlust direkt mot mark med approximationen att kant-
isoleringen ger totalisolering.

Enligt formel 4.1.2 har vi med LS som skalningsldngd:

Q MT - T) Ls-h (4.7.8)

m,mark ~ "''m 0
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Varmeforlustfaktorn beror av lagrets form och av relativa varmelednings-
tal i enlighet med 4.1.4. Vidare beror h av isoleringen via parametern
Di/Ls‘

Varmeforlustfaktorn h for cylinderformat och parallellepipedformat lager
ges i avsnitt 4.8 och 4.9. I de tv3 foljande avsnitten nedan ges en formel
for hur vdrmeforlusten mot mark varierar med isolerdjupet Di'

4.7.4.2. Formel for sm3 isolerdjup.

Figur 4.7.3 visar ett plant, vertikalt tvirsnitt av omradet kring den
vertikala kantisoleringen. Vi forutsitter att lagerdjupet H dr stort jam-
fort med isolerdjupet Di'

Figur 4.7.3. Plant, vertikalt tvirsnitt kring kantisoleringen, di dennas
djup dr litet relativt lagerdjupet.

Vi kan vid analys av den Tokala temperaturprocessen i hornet kring kant-
isoleringen tinka oss lagervdggen utstrackt Téngt neddt i z-led. Det
plana problemet enligt figur 4.7.3 kan lgsas analytiskt.

Vi dr intresserade av virmeflddet q (z) (W/mz) genom lagervdggen (x = 0,
X

z > Di)' Det ges av

(4.7.9)
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Integreras detta i z-led f&r vi vdrmeflgdet per meter rdknat vinkelrdt
mot (x,z)-planet. Integralen divergerar dock om vi integrerar mot o-
andligheten neddt i z-led.

L&t oss nu betrakta tvd fall med olika isolerdjup Di och D?. De dr for
gvrigt lika. Skillnaden i varmefldode ges av tvd termer av typ 4.7.9.
Denna skillnad konvergerar da integrationen gdr mot odndlicheten. Vi fér

09
ap(D;) = a (D) = A(T, - To) - oot (B%>
o H

(D, D < 7) (4.7.10)

Har &r qm(Di) varmeforlusten per meter for isolerdjupet D.. Vi forut-
sdtter hdr att D? och D, &r smd relativt Tagerdjupet H. Det visar sig

racka att Di och D? dr mindre an H/2.

Virmeforiusten mot mark for tvd olika isolerdjup dr sdledes relaterade
till varandra enligt foljande formel:
0

(%) + A(T_ - T) L.- £ 1n )
m,mark i m o’ Ti o \Di

m,mark
(D,DF < H/2) (4.7.11)

Hdr &ar Li den totala langden av kantisoleringen i horisontalplanet.

Formel 4.7.10-11 innebdr att vi bara behdver rdkna numeriskt for ett

enda isolerdjup.

4.7.4.3 Formel for godtyckligt isolerdjup.

Formel 4.7.10 kan generaliseras till ett godtyckligt isolerdjup:

0< Di < H. Figur 4.7.4 visar varmeledningsproblemet for det vertikala
tvarsnittet.
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0<Di<H

Figur 4.7.4. Virmeledningsproblem for vertikalt tvarsnitt kring kant-
isolering.

Skillnaden i vdrmeforiust for tva olika relativa isolerdjup Di/H och
D/H blir nu:

Un(D3/H) = q (OS/H) = A(T - T)

1 -9,
o ( i ) (4.7.12)

Har ges £; och g? av ekvationerna:

= f(e.) = () (4.7.13)

f(E) - l' { /‘| - 52 + arccot /——E_>1 (4.7.14)
" \ /1 - 52 (-1 =¢:21)

Funktionen (&) visas i fiqur 4.7.5. Approximationer for vissa £-virden
dr ocksé angivna. D& D;/H och D?/H dr mindre &n 0.5 dvergdr 4.7.12 i

A

4.7.10.
f(E):%
1
2 an 22 v
! 3nJ7(1+g) \<\F ‘
054 \\\\ L
; : , 13
0—1 -05 0 05 1

Figur 4.7.5. Funktionen f entigt formel 4.7.14,



Vi skall i det kommande ofta ta isolerdjupet till H/10. Vi far d&

A=)
=%

= 0.1 g? = 0.988 (4.7.15")
For detta fall far vi
A,(D3/H) = q (0.1) + a(T - T ) - a(D,/H) (4.7.15")

Funktionen g dr given i figur 4.7.6.

g
05 4 '
B Qn {0, /H)~ g, (0.1}
T MT,-Ty)
0 4
g
15 .
_ Gy{D,/H)- g, (0.1)
TN ST 05+
104
-104.
05
-15+4
D
0 -4 B
0 H 0 05 1 H
A B

Figur 4.7.6. Funktionen g(Di/H) som ger kantvarmeforlust relativt isoler-
djupet D?/H = 0.1. Formel 4.7.17.

For varmeforlusten mot mark har vi nu:

(D,/H) = Q

0]
‘m,mark

1-¢
o, . Sl !
m,mark(Di/H) s T To) L ™ Tn \
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, ddr 5? och £, ges av 4.7.13-14. Speciellt har vi

Q (D,/H) = Q (0.1 + (T - T) Ly - a(Dy/H) (4.7.17)

m,mark m,mark

Funktion g ges i figur 4.7.6.

4.7.5 Vertikal kontra horisontell kantisolering

Varmeisoleringen vid lagrets Gvre kant har hdr antagits vara vertikal.
Ett annat alternativ @r att ldgga isoleringen horisontellt utdt fran
lagerkanten. De tvd alternativen visas i figur 4.7.7.

O;

—

]

77/47/7_

Figur 4.7.7. Vertikal kontra horisontell isolering vid kanten.

Y

Vi antar 1 bdda fallen att kantisoleringen har djupet respektive bredden
Di' Ovanstdende analys kan upprepas for det horisontella fallet. Virme-
flddet genom kantisoleringen blir samma som tidigare om man gér samma
typ av uppskattning. Formlerna 4.7.3-5 gdller d& fortfarande. Analysen
i avsnitt 4.7.4.2 kan ocksd upprepas. Vi skall vixla x- och z-axlar i
figur 4.7.3. Integralen av vdrmeflodet blir detsamma. Formel 4.7.10
galler fortfarande.

Resultatet av den skisserade jimforelsen dr att det ur varmeforlustsyn-

punkt inte spelar ndgon roll om kantisoleringen placeras vertikalt eller
horisontellt.
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4.8 Cylinderformat vdrmelager med Overytan vid markniva

Varmelagret har formen av en cylinder med hojden H och radien R. Dess

axel dr vertikal. Uverytan Tigger vid marknivdn. Denna cirkelyta dr
vdrmeisolerad. Vidare finns vertikalt vid kanten vdrmeisolering ner till
djupet Di' Varmeisoleringens tjocklek ar di’ och dess varmeledningsfor-
méga ar Ai. Temperaturen vid cylinderytan direkt mot mark och innanfor
varmeisoleringen &r Tm’ medan temperaturen vid markytan dr To‘ Temperatur-
skillnaden Over den horisontella vdrmeisoleringen &r sdledes Tm - TO.
Figur 4.8.1 visar ett vertikaltvdrsnitt genom det cylinderformade vérme-
Tagret.

To T ot

WL

77

Figur 4.8.1. Cylinderformat vdrmelager med Gverytan vid marknivd. Over-

z

yta och en ovre del av den vertikala kanten dr vdarmeisolerade.

4.8.1 Temperaturfdlt
Den dimensionsldsa stationdra temperaturen u i marken ges av formel 4.1.1.

Temperaturfunktionen u dr lika med 0 vid markytan och +1 vid den cylinder-
formade Tagerytan. Som skalningsldangd skall vi anvanda radien: LS = R.
Dimensionsldsa koordinater blir d& r/R och z/R. Vi har d& for temperatur-
fdltet i marken utanfor cylindern:

T(r,z) - To
u{r/R, z/R) = ——————— (4.8.1)
T -7
m ]
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Figur 4.8.1 visar numeriskt berdknade isotermer for fallet da cylindern
har samma ldngd och diameter, dvs. H/R = 2.

Tl

i~

Figur 4.8.2. Isotermer for dimensionslds temperatur u for fallet H/R = 2.

4.8.2 Total varmeforlust

Den stationdra vdrmeforlusten Qm fran cylindern bestdr enligt avsnitt
4.7.1 av tre komponenter. Vi har ett bidrag fran den dvre horisontella
isoleringen och ett frin den vertikala kantisoleringen ner till djupet Di'
Det tredje bidraget kommer frin varmeflodet direkt mot mark under nivén

z = Di'

Arean Ai av den dvre isoleringen och langden Li av kantisoleringen blir:

A, - R? L. = 2nR (4.8.2)

Varmeforlusten genom den virmeisolerade Svre delen blir di enligt
formel 4.7.6:
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it'm 0 2
Qm,iso]ering T4, +(nR% 4 WRDi) (4.8.3)

Den totala varmefdrlusten Qm ar

Q.=1Q Q (4.8.4)

. - +
m m,isolering m,mark

Viarmeforlusten direkt mot marken behandlas i ndsta avsnitt.

4.8.3 Varmeforlust direkt mot mark.

AlTmdnna samband for vdrmeforiusten direkt mot mark diskuteras i avsnitt
4.7.4.1. Varmeforiusten erhd1les genom en numerisk berdkning av det sta-
tiondra temperaturfdltet. Den vertikala kantisoleringen antas hdr vara
totalisolerande. Vi har dd tre langdparametrar R, H och Di' Med R som
skalldngd far vi enligt formel 4.7.8:

Q MT, - Ty) Reh(H/R, D;/H) (4.8.5)

m,mark - m
Varmeforlustfaktorn h blir en funktion av H/R och Di/R eller av H/R och
Di/H.

4.8.3.1 Vertikalt isolerdjup Di =2m

Ett rimligt djup for den vertikala isoleringen dr tvd meter. Vi skall
ddrfor hdr direkt ge vdrmeforiusten mot mark som en funktion av R och H

da Di =2 m. Figur 4.8.3 visar Qm,mark/(k(Tm - To))‘
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10
toglg), ? 10 29 59 100 R(mi 5000‘1'(”’)
35 /// |
— //V%/ L 2000
3 //7/ / 1000
L Hm) /7//// -
= i
ks 7
Lt ] v, - 200
32 ? Z
2 4— 20 “ 100
10 /
5 / / - 50 v
. Q K ]
e I I 7a R A
L 20
1 7/
! 05 1 15 2 Plog(R)

Figur 4.8.3. Vdrmeforlust mot mark som funktion av radie och hdjd pd

cylindern vid tvd meters vertikal kantisolering (Di =2m).

4.8.3.2 Vertikalt isolerdjup Di = H/10

Varmeforlustfaktorn h i formel 4.8.5 visas i figur 4.8.4 som funktion av
cylinderformen H/R for fallet Di/H = 0.1. Den ges ocksa i tabell 4.8.1.

hiHR, 01 NIHIR 00
20 — 60 s
19 - L0 L
18 . 20 -
0 3 HR 0 10 20 MR

Figur 4.8.4. Vdarmeforlustfaktor i formel 4.8.5 for cylinder d& Di/H =0.1.
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H/R .04 .06 .08 0.1 0.2 0.4
h(H/R, 0.1)]19.7 19.1 18.7 18.6 18.1 18.0

H/R 0.6 0.8 1.0 2 4 6
h(H/R, 0.1)]18.2 18.6 19.0 21.2 25.4 29.2

H/R 8 10 15 20
h(H/R, 0.1)]33.0 36.6 45.3 52.5

Tabell 4.8.1. Vdrmeforlustfaktor i formel 4.8.5 for cylinder da Di/H = 0.1.

4.8.3.4 Godtyckligt vertikalt isolerdjup

Nar vi kdnner varmeforlustfaktorn for ett isolerdjup kan vi med formlerna
i avsnitten 4.7.4.2-3 ge virmeforlusten for andra isolerdjup.

For fallet Di < H/2 fér vi enligt 4.7.11 och 4.8.5:

Q MT = T,) R-{h(H/R, 0.1) + 4+ 1n (0.1 H/Di)}

m,mark = m
(0 < Di < H/?2) (4.8.6)

Vi har hdr utnyttjat att lingden av kantisoleringen, Li’ ar lika med
2nR.

For storre isolerdjup har vi formel 4.7.17:

0 AT, - 1) R fROR, 0.1) + 2ag(D, /1)

m,mark - m 0 1 f

(0 < D;/H = 1) (4.8.7)

Har ges funktionen g av figur 4.7.6.
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4.8.4 Vdarmelager med formen av en stympad kon

Vdrmelagret har formen av en stympad kon med vertikal axel. Se figur
4.8.5. Lutningsvinkel for konen &r 45°, Hojden dr H och medelradien R.
Vid markytan dr d& radien R + H/2. Vid bottenytan dr den R - H/2. Kant-
isoleringen gir ner vertikalt ett djup Di' Dess bredd blir sdledes

D, /2.

Figur 4.8.5. Vdarmelager med formen av en stympad kon. Lutningsvinkeln
. 0
ar 457,

Varmeforlustfaktorn har berdknats for nagra former for isolerdjupet
Di = 0.1 H. Se tabell 4.8.2.

H/R 0.2 0.4 1 2

Q D,
_mpmark 4.0 14.3  16.2  19.8 = 0.1
MT -TOR

Tabell 4.8.2.Varmeforlustfaktor for varmelager med formen av en
stympad kon.

Det dr intressant att jamfora varmeforlusten for den stympade konen med
motsvarande cylinder. Vi jamfor for samma H bch R, Vidare har vi Di/H = 0.1
i bada fallen. Vdrmeforlusten ges direkt av vdrmeforlustfaktorerna enligt
tabell 4.8.2 for stympad kon och tabell 4.8.1 for cylindern. Vi far
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H/R 0.2 0.4 1 2
Q
X
th—Qﬂ 77 .79 .85 .93
m,cyl

Tabell 4.8.3. Varmeforlustkvot for vdrmelager med formen av en stympad

kon och ett cylindriskt vdrmelager.

Tabellen visar hur den sneda kanten reducerar vdrmeforlusten frap lagret
ti1l marken.

4.8.5 N&gra numeriska exempel.

Exempel 1.

Ett cylinderformat lager med hojden 25 meter och diametern
50 meter har anlagts i mark med varmeledningsformagan 2 W/mK.
Lagrets Gveryta och de dversta 5 meterna pd lagrets sidoyta har
tdckts med en 25 centimeter tjock isolering. Arsmedeltemperatur-
en pd lagrets yta ar 30 . vid markytan dr medeltemperaturen

0
5 °C.
Vi har foljande data:

H=25m R=25m A= 2 W/mK

D, =5m d; = 0.25m Ay = 0.05 W/mK
_2n O L0

T, =30 % T, =5°%

Den totala stationira vdrmefdrlusten ges av formel 4.7.1. Vdrme-
forlusten genom isoleringen ges av formel 4.8.3.

Q = 11.8 kW

m,isolering

Eftersom Di < H/2 kan formel 4.8.6 anvindas for att be-
rikna varmeforlusten till mark. Funktionsvardet h(1,0.1) = 19.0
hamtas ur tabell 4.8.1.

- 2
Qm,mark = 20.3 kil
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Den totala vdrmefSrlusten ar

Q. =Q +Q = 32.1 kW

m m,isolering m,mark -

Exempel 2. Vi har ett cylindriskt lager med hojden 50 meter och diametern
100 meter. Varmeledningsformdgan i omkringliggande berg dr
3.5 W/mK. Lagret har isolerats pd overytan och sidoytan till
ett djup av 2 meter. Isolertjockleken dr 0.4 meter. Arsmedel-
temperaturen p& lagrets yta dr 55 c. Vid markytan, dr tempera-
turen 5 °C.
Vi tar foljande data:

H=50m R=250m A= 3.5 W/mK

Di =2m di = 0.4 m Ai = 0.04 W/mK
_ 0 _ 0

Tm = 55 °C TO =5 "°C

Varmeforlusten genom isoleringen berdknas enligt formel 4.8.3.

Qm,iso]ering =40.8 ku
Varmeforiusten till omgivande mark fds ur figur 4.8.3 (g'~1150m).
Qm,mark = 201.3 kW

Den totala varmeforlusten ar

Q, = 242.1 kil

4.9 Parallellepipedformat vdrmelager

Varmelagret har formen av en parallelepiped med dverytan vid marknivéd. Se
figur 4.9.1. Hojden &r H, ldngden L och bredden B. Vi tar L = B. Overytan
dr som vanligt vdrmeisolerad. Den vertikala kanten ner till djupet Di ar
ocksd virmeisolerad. Temperaturen pd lagerytan ar Tm, och temperaturen vid
markytan ar TO.
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Figur 4.9.1. Parallellepipedformat varmelager med Overytan vid marknivan.
Kantisoleringen gér ner ett djup Di'

4.9.1 Total varmeforlust

Varmeforlusten genom de vdrmeisolerade ytorna ges av formel 4.7.6. Uver-
ytans area och langden av kantisoleringen blir:

A. = LB Li = 2L + 2B (4.9.1)

Vi har d& enligt formlerna 4.7.6, 4.7.1 och 4.7.8, ndr vi anvdander H
som skalningslangd:

Qm = (Tm - TO) {AH-h(L/H, B/H, Di/H) +

Aq
+H§ (LB + (L+B)D1.)} (4.9.2)

4.9.2 Varmeforlust mot mark

Varmeforlusten mot marken ges av vdrmeforlustfaktorn, Denna ges for olika
parallellepipedformer for Di/H = 0.1 i tabell 4.9.1.

Den totala vdrmeforlusten for godtyckligt isolerdjup ges d& enligt formel
4.9.2 och 4.7.17 av

Q = (T - TO) {AH -h(L/H, B/H, 0.1) + ALi -g(Di/H) +

A

cq (e Loy (4.9.3)

.i
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Har ges h av tabell 4.9.1, g av figur 4.7.6 och Li av formel 4.9.1,

10 110
5 53.6 80.3
B/H 2 22.2 37.0 61.5
1 2.2 17.1 31.2 54,5
172 7.17  9.64 14.4 28.1 50.9]
1/5 | 3.99 5.5 7.92 12.5 25.8 48.0
/5  1/2 1 2 5 10
L/H

Tabell 4.9.1. Varmeforlustfaktor h (L/H, B/H, Di/H) for parallellepiped-
format lager med Di/H = 0.1

Exempel. L&t oss ta ett parallellepipediskt vdrmelager med hojden 40 meter,
bredden 20 meter och langden 80 meter. Marken har virmelednings-
formdgan 2.5 W/mK. En 25 centimeter tjock isolering técker lagrets
Overyta och de Gvre 6 meterna av lagrets sidoytor. Arsmedel tem-
peraturen pa lagrets yta dr 35 °C. Markytans &rsmedeltemperatur
ar 10 °c.

Vi har féljande data:

H=140m B=20m L=80m

Di =6m di = 0.25m A; = 0.05 W/mK
= X - o] _ 0

o= 2.5 WmK Tm =35 °C T0 =10 “°C

Den totala varmefsrlusten ges av formel 4.9.3. Vi far med hjalp
av diagram 4.7.6.B och tabell 4.9.1:

9(0.15) = -0.26 h(z, 0.5, 0.1) = 14.4

Qm = 43.8 kW
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4.9.3 Jamforelse mellan cylinder och parallellepiped

Det dr intressant att jamfora vdrmeférlusten frén ett parallellepiped-
format varmelager med ett motsvarande cylindriskt lager. Lagrets over-
yta ligger i bdda fallen vid marknivdn. Vi 14ter den vertikala kant-
isoleringen Di vara 1ika med H/10.

De tvad lagren har samma djup H. Vidare vdljer vi cylinderns radie R s§
att volymerna blir lika:

«REH =L BH

R = //@gf (4.9.4)

Vi ser bara pad viarmeforlusten mot marken under kantisoleringen. For-
hdllandet mellan parallellepipedens och cylinderns virmeforlust betecknas
f. Vi har d3 frén formlerna 4.9.2 och 4.8.5:
£ - Qm,mark,para]]e]]epiped _H hP(L/H, B/H, 0.1)
Qm,mark,cy]inder R hC(H/R, 0.1) )

(4.9.5)

Hir ges R av 4.9.4. Varmeforlustfaktorerna ges i tabell 4.9.1 (hP) och
tabell 4.8.1 (h®). Kvoten f ges i tabell 4.9.2 for olika former pé
parallellepipeden.

10 1.08
5 1.06  1.12

B/H 1 1.05 1.14 1.36
1 1.05 1.10 1.33 1.68

1/2 1.05 1.08 1.24 1.64 2.18

1/5 | 1.02 1.09 1.25 1.53 2.22 3.08

/5 172 1 2 5 10
L/H

Tabell 4.9.2. Forhdllandet f mellan virmefdorlusten for parallellepiped
och cylinder med samma volym och hdjd. Formel 4.9.5.
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4.10 Vdrmelager med formen av en halvsfir

I vissa fall kan vdarmelagret som en rimlig beskrivning -approximeras av
en halvsfdr. Vdrmelagret har formen av en halvsfir med snittytan vid
markytan. Radien &r R. Vi skall for detta fall forutsitta att halvsfdren
dr vdrmeisolerad runtom. Se figur 4.10.1.

e

7

Figur 4.10.1. Halvsfariskt viarmelager som dr virmeisolerat runtom.

7

Temperaturen vid markytan &r To’ medan lagertemperaturen dr Tm' Isolering-
en har tjockleken di och varmeledningsférmagan Aje Som skalfaktor an-
viander vi radien R. Eftersom hela ytan dr isolerad fdr vi i enlighet med
avsnitt 4.1.2 bara en dimensionslos parameter d{ som definierar varme-
isoleringens relativa isoleringsforméga.

d.x

vo_
di = ﬁr; (4.10.1)

Vardet d% = 1 innebdr att vérmeisoleringen har samma virmemotstind som
ett jordskikt med tjockleken R (di/xi = R/A).

De i detta avsnitt redovisade resultaten hirleds och presenteras narmare
i referens 3,

4.10.1 Temperaturfilt

Den dimensionslgsa temperaturen u enligt formel 4.1.1 beror av r/R och
z/R. Som enda parameter har vi d%. Figur 4.10.2 visar temperaturfiltet
for tre parametervarden.
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|-

Figur 4.10.2. Dimensions1dst temperaturfdalt utanfor halvsfdariskt lager
for tre olika dimensionsldsa isolertjockliekar.

Den hogsta temperaturen i marken erh&11s vid lagrets botten r = 0,
z = R. Denna temperatur som funktion av dimensionsl1ds varmeisolerings-
tjocklek visas i figur 4.10.3.

10 1 ] 1 1
r=0;z=R
0.5 L
oo i d
0 05 10 15 20

Figur 4.10.3. Hogsta marktemperatur vid lagrets botten (r = 0, z = R)

som funktion av dimensionslds virmeisoleringstjocklek.

L&t © vara vinkeln mot z-axein. Figur 4.10.4 visar hela profilen i marken
strax utanfor lagrets isolering. De olika kurvorna avser olika isoler-
tjocklek.
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Figur 4.10.4. Temperatur i marken strax utanfor virmeisoleringen som
funktion av vinkeln o mot z-axeln. De olika kurvorna avser
olika dimensions1ds isolertjocklek d%.

4.10.2 Varmeforlust

Den totala stationdra varmeforlusten genom Gveryta och genom den halv-
sfdriska isoleringen mot marken blir i enlighet med avsnitt 4.1.2 och
4.7.1-2

UREURRATEE e LRICH) (4.10.2)

Varmeforiustfaktorn h(d%) visas i figur 4.10.5. D& isolertjockleken gir
mot noll, g&r h mot odndligheten, eftersom vi d3 direkt vid markytan ex-
ponerar lagret med temperaturen Tm mot markytans temperatur TO.

h(di)/4m
15

1.0

T T T T T d;

0 05 10 1.5 20

Figur 4.10.5. VYarmeforiustfaktor for halvsfiriskt vdrmelager
enligt figur 4.10.1.



Exempel. Vi ser pé& ett halvsfariskt vdrmelager med en radie pd 10 meter
for ndgra isolertjockiekar. Vi har foljande data:
R=10m T -T =50°
m 0
A= 1.25 W/mK A = 0.05 W/mK
di = 0.05, 0.10, 0.25, 0.50m
Varmeforiusten ges av formel 4.10.2. For di =0.10 m far vi

d% = 0.25 h(d%) o~ 47-0.86 = 10.8
Detta ger
Qm = 14.6 kW

For de olika isolertjocklekarna fas

di(m) 0.05 0.10 0.25 0.50

Qm(kw) 24.4 14.6 7.3 4.1

4.11 Védrmeforlust for tvarsnitt av ldngstrdckt lager

For langstrackta varmelager kan det rdcka att studera vdrmeforlusten i
ett vertikalt tvdrsnitt vinkelrat mot Tagrets ldangdriktning. Vi far ett
tvadimensionellt varmestorningsproblem i (x,z)-planet. Varmefdrlusten
per meter av lagrets langd betecknas 4 (W/m). Temperaturen i lagret dr
som vanligt Tm. Vid markytan dr temperaturen To'

4.11.1 Rektangulart tvarsnitt

Varmelagrets tvdrsnitt har formen av en rektangel med Overytan vid mark-
ytan. Lagret har bredden B och djupet H. Det dr vdarmeisolerat pd ovan-
sidan och vid kanterna ner till ett djup D; (0 < D, =< H). Se figur 4.11.
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To

Dj}

4.11.1. Rektangulart tvdrsnitt av ett langstrickt varmelager.

Varmeforlusten q,, ges i enlighet med diskussionen i avsnitt 4.7 av

di di D_i
G = K;A(Tm - TO)-B + —? (Tm - To) A
+ >\(Tm - TO) h(B/H, Di/H) (4.11.1)

For varmeforlustfaktorn h har hojden H anvints som skalningsldngd. Med
hjdlp av formel 4.7.15" har vi d§

d.
-
X

~ i, I
q = (T To) \ :

n n -(B+D1) + Ah(B/H, 0.1) +

. ng(Di/H)} (4.11.2)

Funktionen g ges i figur 4.7.6. Vdrmeforlustfaktorn for Di/H = (.1
har berdknats numeriskt. Resultatet ges i tabell 4.11.1.

B/H 0.1 0.2 0.5 1 2 5 10

h(B/H, 0.1) | 4.07 4.35 4.61 4.77 4.97 5.22 5.53

Tabell 4.11.1. Varmeforlustfaktor ti1l formel 4.11.2.

4.11.2 Trapetsformat tvarsnitt

Varmelagrets tvdrsnitt har trapetsform. Se figur 4.11.2. Overytan ligger
vid marknivén. De sneda sidorna lutar 45° mot en vertikal linje. Lagrets
djup dr H och dess medelbredd dr B. Bredden vid Gverytan ar da B + H och



vid underytan B - H. Uverytan och den Gversta tiondelen av kanterna ir
vdrmeisolerade.

B+H HI10 1
B-H ///////
7

4.11.2. Léngstrdckt varmelager med trapetsformat tvdrsnitt.

Kantisoleringen har bredden 0.1 H. /2. Virmeforlustfaktorn blir en
funktion av B/H enbart eftersom kantisolerdjupet H/10 ej varierar fritt.
Vi fér i analogi med formel 4.11.2:

q o~ (T -T) {Ei~(8 +H+ 0.1 HV2) +
A
Ah(B/H)} (4.11.3)

Vdrmeforlustfaktorn h ges i tabell 4.11.2

/H 1 2 5 10

h(B/H) 3.31  3.55 3.90 4.19

Tabell 4.11.2. VdrmefGrlustfaktor till formel 4.11.3.

4.11.3 Jamforelse mellan vertikal och sned Tagervagg

Det dr intressant att jdmfora varmeforiuster for rektanguldrt och trapets-
format tvarsnitt. Vi far hdarmed en uppfattning om betydelsen av lager-
vaggens orientering. Jamforelsen gors for samma H och B i de tvd fallen.
Tvdrsnitten far dd samma area. Vi ser bara pd varmefdrlusten mot marken

da isolerdjupet vid kanterna ar H/10.
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Lat f vara kvoten mellan varmeforlusten mot mark for trapetsformat och
rektangulart lager. Den ges direkt av varmeférlustfaktorerna i avsnitt
4.11.2 (h%) respektive 4.11.1 (h') i

_ h%(B/H)

fog—"—
! (8/H, 0.1)

(4.11.4)

Kvoten f ges i tabell 4.11.3.

B/H 1 2 5 10

f .69 71 .75 .76

Tabell 4.11.3. Varmeforlustkvot for trapetsformat och rektanguldrt
varmelager.

Tabellen visar hur den sneda kanten reducerar virmeforlusten fran lagret
ti11 marken.

4.11.4 Cirkuldrt tvdrsnitt under markytan

Virmelagret, som ligger helt under markytan,har ett cirkuldrt tvirsnitt.
Ett exempel dr en tunnel. Radien &r R. Medelpunkten 1igger pd djupet
z =0 (Dm > R). Lagret dr helt oisolerat. Se figur 4.11.3.

X
Dml

z

Figur 4.11.3. Vdrmelager med cirkuldrt tvdrsnitt.



4.11.4.1 Vdrmeforlust

Varmeforlusten 9 9es av

2m

q = MT -T) - — (4.11.5)
m m0T a(p /R + D /R - 1)
m m
Nagra vdrden pa varmeforlustfaktorn ges i tabell 4.11.4.
D /R 1.1 1.2 1.3 1.4 1.5 1.75 2 2.5
o 4.2 10.1  8.31 7.25 6.53 5.42  4.77 4.01
A“(T:n-:‘T’;")' . ). . . . . - .
D /R 3 3.5 4 5 7.5 10 25 100
qm
3.56 3.26 3.05 2.74 2.32 2.10  1.61 1.19
T =T

Tabell 4.11.4. Varmeforlustfaktor for cirkuldrt tvdrsnitt enligt
formel 4.11.5.

4.11.4.2 Temperaturfdlt

Temperaturen i marken ges med koordinater enligt figur 4.11.3 av:

I 1 x? + (z+zo)2
Tx,2) = 55 e 7 In | m—y 2" o

x5+ (z—zO

Isotermerna blir cirklar.

P4 stirre avsténd frén lagret kan temperaturfdltet approximeras enligt
foljande:
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q z-z
T(x,2) =~ ﬂm . O 47 (v xZ4z2 5 3z, ) (4.11.7)

Formeln ger en enkel uppskattning av temperaturinfluensen en bit bort
fran vdrmelagret.

Varmeflodet vid markytan blir:

oT | 9 %y
AN =", (4.11.8)
BZ'Z=O b X2+22

4.12 Lager med varmeisolering Sver hela ytan mot mark

Vissa markvdrmelager vdrmeisoleras over hela ytan mot omgivande mark och
mot Tuft. For denna typ kan under vissa restriktioner virmeforlusten er-
h&1las med en enkel formel, dar marken representeras av ett ekvivalent
vdrmemotstédnd som dr oberoende av isolertjockleken.

Dessa formler hdrror fran en teori for optimal varmeisolering av ytor
mot mark. Teorin och de hdr redovisade formlerna och diagrammen ir
tagna frdan referens 4.

I detta avsnitt antages hela lagerytan mot mark vara virmeisolerad. Iso-
leringens tjocklek &r di’ och dess varmeledningsformiga ar A Innanfor
isoleringen i lagret dr temperaturen Tm' Vid markytan dr den To.

4.12.1 AlTmanna formler

Varmelagret kan ligga helt under mark. Alternativt Tigger overytan vid
marknivan eller hdgre. Varmeforlusten genom Gverytan, di denna ligger
vid marknivén, ges av formel 4.7.2. Vi skall hir ge formler for virme-
forTusten genom marken, Qm,mark'

Vi har foljande allmdnna formel:



T -7
m 0
Unmark = M @ T (dj 2 2+dpsp) (4.12.1)
—_—
A A

i

Har ar A1.m viarmelagrets area mot marken. Skalningslangden ar LS. Stor-
heten u, ges nedan for olika former pd vdarmelagret.

Precisionen i formeln beror pd isolertjockleken di' Felet avtar da di
okar. Vi har en viss minimitjocklek dmin som nedan anges for de olika
lagerformerna. Formeln ger alltid vdrden under de exakta. Precisionen
i formeln 4.12.1 &r ungeféar enligt foljande:

maximalt fel cirka 10% d& di > d

min
maximalt fel cirka 5% d& di > 2 dmin (4.12.2)
maximalt fel cirka 2% da di > 5 dmin

Vi kan ddarfor anvinda formeln, da di dr storre dn 2 dmin' Formeln kan
med viss forsiktighet dven anvandas, da di dr storre dn dmin'

Vi skall anvdnda foljande beteckning:

min AL (4.12.3)

Storheten d&in ar dimensionsl0s. For varje lagerform skall vi nedan ange

de tva dimensionsldsa storheterna Uy och d&in'

Formeln 4.12.1 har en enkel tolkning. Varmeflddet ges av arean ganger
temperaturdifferensen dividerad med ett vdrmemotstand. Den forsta delen
av detta motstand, di/xi, dr varmemotstdndet for vdrmeisoleringen. Den
andra delen Lsum/x dr vdrmemotstdndet (per ytenhet) for ett skikt av
jorden med tjockleken Lsum' Dessa tvd motstdnd adderas. Vi kan tolka
formeln sa att markens vdarmeisolerande forméga kan representeras av en
ekvivalent tjocklek Lsoum. Hdr dar LS en skalningsfaktor. Storheten U

dar sdledes den dimensionsldsa ekvivalenta marktjockleken.

Kravet 4.12.2 pa en viss minsta isolertjocklek innebdr att den vdrme-
isolerande formdgan hos marken #r av samma storleksordning eller mindre
an varmeisoleringens isolerformaga. Formlerna gdller ddrfor for forhal-
landevis kraftigt isolerade vdrmelager. Skalfaktorn LS ingdr i namna-
ren av 4.12.3. Ett storre lager far ddrfdr en hogre gréns for ldgsta
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isolertjocklek ddr formeln &r tillampbar.

Vi skall for ndgra fall ange varmeforlusten g (W/m) for ett tvdr-

m,mark
snitt av ett ldngstrackt lager. I dessa fall har vi:
Tm - TO
Ymark = Lim * T T (d; R 2 doin) (4.12.4)
i, .sm
A X

Har anger L1.m isolerldngden mot mark i tvdrsnittet.

4.12.2 Cylinderformat lager

Varmelagret har formen av en cylinder med vertikal axel. Radien dr R
och hdjden H. Cylinderns Gveryta ligger vid markytan. Hela cylinder-
ytan mot mark ar vdrmeisolerad. Se figur 4.12.1. Specialfallet H=0

innebdar att vi har ett cylinderformat lager med varmeforlust genom
bottenytan mot marken.

T

77

Figur 4.12.1. Cylinderformat varmelager.

Z

Som skalningsldngd anvandes radien: LS = R. Den dimensionsldsa ekviva-
lenta marktjockleken u, ges i figur 4.12.2 som funktion av formen H/R.

Den dimensionslosa undre grdnsen for isolertjockleken, dﬁin’ ges ocksa.

Un d'rnin
0'8 i i i 1 N A i OL A I SR N SN W S W i
061 . 03 /////”—__—_ﬁ“§\\-
04 : 02 »
- N
021 i 01
) E—— HIR —_— e
0 10 20 0% 10 20"R

Figur 4.12.2. Storheterna U och dﬁin for cylinderformat viarmelager
enligt figur 4.12.1.
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Arean mot marken blir:

A= 1R® + 2nRH (4.12.5)

Exempel. Ett vdrmelager har cylindrisk form. Dess Overyta sammanfaller
med markytan. Foljande data g&ller:

R=20m H=10m A = 2 W/mK

[=8
1]
=]
)]
E
>
]

0.04 W/mK

6°C

—
il
oy
o
(e
-
H

H/R = 0.5 di. = 0.35 u = 0.47
LS =R=20m

2d 1o = 2+ 20880035 L g g
d; = 0.6 > 2d

A = 2510 m?

Varmeforlusten till mark blir d& enligt formel 4.12.1:

Q ~ 2510

m,mark "% 20.0.47 S 69K

4.12.3 Parallellepipedformat lager

Varmelagret har formen av en parallellepiped med bredden B och ldngden
L. L v@ljes sttrre dn eller 1ika med B. Avstandet mellan markytan och
Tagrets botten &r H. Lagrets overyta ligger Sver markytan eller samman-
faller med denna. Hela kontaktytan mot mark dr varmeisolerad. Som skal-
ningsldngd anvindes bredden: LS=B.
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Vi borjar med specialfallet H=0. Lagrets kontaktyta mot marken utgores
dd av en rektangel pd markytan. Arean mot mark ges av:

Aim = LB (4.12.6)

Storheterna Un och d&in ges 1 fiqur 4.12.3.

Um min
04

/ ] 01 /_\

0.2

L/B
5

0 .
O35 1 sL/®8 vz 3 &

Figur 4.12.3. Storheterna Up och dﬁin for parallellepipedformat lager
med bottenytan vid marknivén.

I det allménna fallet H > 0 ges arean mot mark av:

Aim = LB + 2(L+B)H (4.12.7)

Storheterna U och d&in blir funktioner av formen, dvs. av L/B och
H/B. De ges i tabell 4.12.1 for ndgra vdrden pd L/B, d& H/B dr lika

med 0.2.
L/B 1 2 5
U 0.24 0.33 0.40 H/B = 0.2
dmin 0.20 0.22 0.23

Tabell 4.12.1. Storheterna Uy och dﬁin for parallellepipedformat Tager
med Gverytan vid marknivén eller ovanfor denna.



Exempel. Ett vdrmelager har formen av en parallellepiped. Dess Overyta
sammanfaller med markytan. Foljande data gdller for lagret

och marken:

L=20m B=10m H=2m

d; = 0.5m A, = 0.05 W/mK

T = 80°C T, = 5% A= 2.5 W/mK

Vi far med tabell 4.12.1 och formlerna 4.12.3 och 4.12.7:

L/B=2, H/B=0.2: d

.= 0.22 u_ = 0.33
min m

24 - p . 0.05:10-0.22

min 75 =0.09m

d. =0.5m> 2d
m

i in

_ 2
Aim =320m

Varmeforlusten blir da enligt formel 4.12.1:

80 -5  _
U mark = 320 * g5~ 10,033 - 21 KW
005 * 2.5

4.12.4 Jsmforelse mellan cylinder och parallellepiped

Det dr intressant att jamfora det stationdra vdrmeflddet mot mark for
cylinderformat och parallellepipedformat vdrmelager. Jdmforelsen gores
for lager med samma volym, hdjd och isolertjocklek. Isolertjockleken
valjes for varje lagervolym s& att di = 2d o for parallellepiped-

mi
lagret.

Jamforelsen har gjorts dels for lager som stdr p& markytan, dvs. H=0,
dels for lager ddr Gverytan ligger i nivd med markytan.

4.61
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H/BL/B ' ’ 5
-0 1.0 1.07 117 Qm,para11e11ep1ped
.2 1.07 1.09 1.27 Qm,cy1inder

Tabell 4.12.2. Kvot mellan vdrmeforluster fran ett parallellepiped-
format lager och ett lika stort cylinderformat lager
med samma hojd.

Kvoten mellan forlusten frén det parallellepipedformade lagret och

det cylindriska ges i tabell 4.12.2. Kvoterna har ndgot for 1&ga vdr-
den (cirka 10%) pd grund av att de tredimensionella berdkningarna dr
behdftade med ett storre numeriskt fel dn de tvddimensionella, cylind-
riska. (Uvriga i denna uppsats redovisade tredimensionella berdkningar
har ej detta relativt stora fel.)

Tabellen visar att parallellepipedformen med gott resultat kan approxi-
meras av en cylinder med samma volym och hdjd om kvoten L/B ej har
for hogt vdrde.

4.12.5 Plana tvdrsnitt

Runt de centrala delarna av ett langstrdckt vidrmelager kan varmeflodet
approximativt beskrivas som tvaddimensionellt. Varmeforlustberdakningar
for ett tvdrsnitt genom lagret ger varmeforlust per langdenhet av
lagret.

4.12.5.1 Rektanguldrt tvdarsnitt

Varmelagrets form i ett vertikalt tvdarsnitt dr en rektangel, vars
overyta Tigger i nivd med markytan. Lagrets hojd och bredd dr H res-
pektive B. Hela kontaktytan mot marken dr varmeisolerad. Se figur
4.12.4.
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7

Figur 4.12.4. Rektanguldrt tvdrsnitt genom ett léngstrdckt lager.

Lagrets bredd anvdndes som skalningslangd: Ls = B. Tvdrsnittets iso-
lerldangd mot mark Lim ar:

Lim =B+ 2H (4.12.8)
Storheterna Un och dmin ges i figur 4.12.5.
Y,
" dmin
‘/' 0.3 i
05. L L
1 3 02 -
014
e 0 peors ey
0 0 05 10 W8 0 05 1<0HIB

Figur 4.12.5. Storheterna Un och d&in for ett 1angstrdckt lager med
rektanguldrt tvdrsnitt enligt figur 4.12.4.

Exempel. Ett l4ngstrackt vdrmelager har ett rektanguldrt tvdrsnitt.
Dess Gveryta sammanfaller med markytan. Foljande data gdller
for lagret och marken:

B=12m H=6m X o= 1.5 W/mK
d1 =0.4m Ay o= 0.05 W/mK

- 0 _ 50
Tm = 40°C T0 =77¢C

Vi f&r med figur 4.12.5 och formlerna 4.12.3 och 4.12.8:

H/B = 0.5 dmin = 0.27 Uy = 0.53
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2d . - p . 0.05412.0.27

min 15 =0.22m

d1 =0.4m> dein

im = 24 m
Varmeforlusten blir di enligt formel 4.12.4

. 40-7
Smomark = % * 7712053 = 65 Wm
T05 Y TS

4.12.5.2 Rektangulart tvirsnitt under mark
Varmelagrets form i ett vertikalt tvirsnitt &r en rektangel. Avstdndet

mellan dennas Gveryta och markytan &r D. Lagrets hojd ar H och dess

bredd dr B. Hela kontaktytan mot marken dr virmeisolerad. Se figur
4.12.6.

Lagrets bredd anvindes som skalningslangd: LS=B. Tvdrsnittets isoler-
langd mot marken &r:

Lim = 2(B+H) (4.12.9)

To

Tm

W

B/
T

Figur 4.12.6. Rektangulart tvirsnitt genom ett léngstrdckt lager
under mark.

Storheterna U och dmin ges 1 figur 4.12.7.
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Um ‘ “Iin e
10] H/B=1, i 04] ~HiB=10 i
0! ~"05
05/ o me 02 T
: . : : D/B
% 05 70"/® % 05 10

Figur 4.12.7. Storheterna Uy och d&in for ett tvdrsnitt genom ett
T&ngstrdackt lager enligt figur 4.12.6.

Exempel. Ett l&ngstrdckt vdrmelager under mark har rektanguldrt tvdr-
snitt. Foljande data gdller for lagret och marken:

B=12m H=6m D=12m

d1 =0.4m Ai = 0.05 W/mK X = 3.5 W/mK
- 0 _ 50

Tm = 40°C To =7°C

Vi far med figur 4.12.7 och formlierna 4.12.3 och 4.12.9:

H/B = 0.5 dh.o=0.24 oy =0.88
Ls =B=12m

2d =2 . LOAED2 g g5
dy=0.4m>2d .

L =36m

Varmeforlusten till marken blir di enligt formel 4.12.4:

e . A0 -7
momark - 3 * 77 Tz-o.ss - 1O WM

0.05 3.5

q
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4.12.6 Tv& skikt - mordn, granit

I foregdende avsnitt har markens virmeledningsférmiga haft ett virde i
hela omrddet utanfér lagervolymen. Effekten av olika varmelednings-
formdga pd olika djup skall hdr belysas med nagra exempel.

4.12.6.1 Rektangulart tvarsnitt

Figur 4.12.8 visar ett vertikalt tvirsnitt genom ett l&ngstrackt
varmelager. Lagrets Gveryta 1igger i niva med markytan. Lagrets bredd
dr B och dess hdjd dr H. Lagrets botten gransar mot granit. Mellan
markytan och graniten ligger ett skikt mordn. Varmeledningsférmdgan
for granit antages vara 3 génger vardet for mordn.

5/ /:o_/_\/_jH
NN

Figur 4.12.8. Rektangulért tvdrsnitt genom ett léngstrackt varmelager.
Marken bestdr av ett moranskikt Gver granit.

Lagrets bredd anviandes som skalningslangd: LS=B. Tvdrsnittets isoler-
1angd mot marken &r

L. = B+2H (4.12.10)
im

For en lagerform dar H/B #r lika med 0.5 blir virdet pa storheterna

1 -
u, och dmin'

Uy = 0.29

dﬁin = 0.06

Motsvarande vdrden for lagret, om varmeledningsfdrmigan har samma
vdrde i hela markvolymen, blir enligt figur 4.12.5:



U, = 0.53

dﬁin = 0.27

Lat oss ta ett fall ddr B dr 10 m och H dr 5 m. Vdrmeledningsférmégan

for mordn och granit dr 1.2 respektive 3.6 W/mK.

Det ekvivalenta varmemotstdndet mellan

blir:

ren moran:

ren granit:

granit + mordn:

4.12.6.2 Cylinder

lagret och markytan, Ls um/A,

10:0.53 4 n2usu
T.2

10-0.53 _ , . 2

T = 1.5 m K/W

10:0.29 - 2.4 nék/u

Varmelagret har cylindrisk form. Dess Overyta sammanfaller med mark-

ytan. Radien dr R och hdjden ar H. Forutsdttningarna for marken dr

desamma som ovan i 4.12.6.1.

Lagrets radie vdljes som skalningslangd: LS:R

Lagrets kontaktyta mot marken &r

A. = ’TTRZ

im + 27RH

4.67

(4.12.11)

Storheterna Uy och dmin ges i tabell 4.12.3.

H/R 0.4 1
U 0.22 0.33
d&in 0.079 0.03

Tabell 4.12.3. Storheterna Uy och d&in for ett cylindriskt varmelager.

Marken bestdr av ett mordnlager med hdjden H ovanpd

granit.
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Exempel. Ett vdrmelager har cylindrisk form. Dess Overyta sammanfaller
med markytan. Vdrmefdrlusterna fran lagret skall bestdmmas for
tre typer av omgivande mark. Foljande data ar gemensamma for
de olika fallen.

R=10m H=4m

d1 =0.3m A1 = 0.04 W/mK
- o _ 0

Tm = 75°C TO =57C

Fall 1. Marken bestdr av ren morédn, vars vdrmeledningsformiga
ar:
A= 1.2 W/mK
moran

Figur 4.12.2 samt formlerna 4.12.3 och 4.12.5 ger

L.=R=10m H/R=0.4

S

d&in = 0.36 Up = 0.45

2d . =2 . 0.04-10-0.36 = 0.24 m
min 1.2

d. = 0.3 m> dei

1 n

A. = 565 ml
m

Varmeforlusten till mark blir dd enligt formel 4.12.1

75 - 5
0.3 10-0.45

0.04 1.2

565 -

9 = 3.5 kW

m,mark =

Fall 2. Marken bestdr av ren granit, vars varmeledningsfor-
maga ar

Agranit = 3.6 W/mK



4.69

P& samma satt som i fall 1 erhdlles

L.=R=10m H/R = 0.4

S
d&in = 0.36 U, = 0.45
_ 0.04100.36 _
de_in =2 . — 385 0.08 m

di =0.3m> dein

_ 2
Aim = 565 m

75 -5
mmark = %65 * 53— 100,95 = 40 KW

0.0 3.6

Q

Fall 3. Marken bestdr av granit, som dr tdackt av ett 4 meter
tjockt lager av moran. Varmeledningsformdgan for granit och
moran ar

Xgranit = 3.6 W/mK

by = 1.2 W/mK

moran

Eftersom Agranit/xmorén dr 1ika med 3 och H/R dr lika med 0.4

kan tabell 4.12.3 anvdndas for bestdmning av dﬁin och U

P& samma sdtt som i fall 1 erhdlles

Lg=R=10m

doip = 0-079 uy = 0.22

2d =2+ 010008 g g5

d; = 0.3m>2d .

A = 565

Qm,mark =~ 565 - Ehéizg_iﬁgﬁzzz = 4,2 ki

0.0 1.2
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4.12.7 Effekt av grundvattenstrom

Figur 4.12.9 visar ett vertikalt tvdrsnitt genom ett 1&ngstrickt virme-
lager. Lagrets hojd dr H och dess bredd r B. Grundvattenytan ligger pd
djupet D under lagrets bottenyta.

Vattenflodet dr s& starkt att temperaturen under lagret vid grundvatten-

ytan kan sdttas till den ostorda grundvattentemperaturen langt frén
lagret.

B

Z////ﬁ/ 2

- / , ’ , e /////
/ 4 / e / Id / / 7/
A A Vv as

Figur 4.12.9. Rektanguldrt tvarsnitt genom ett 1&ngstrickt lager med
ett kraftigt grundvattenflode under djupet H+D.

Lagrets bredd vdljes som skalningsliangd: LS:B.

Storheterna U och d%in ges i tabell 4.12.4 for ett lager dir kvoten
H/B &dr 0.2.

Lagrets isolerldngd mot markytan dr

L. = B+2H (4.12.12)
im
b/B 0.2 0.3 0.6 o
Uy .15 .21 .31 .45 H/B = 0.2
t
min 04 .07 13 20

Tabell 4.12.4. Storheterna U och dﬁin for ett varmelager enligt
figur 4.12.9.
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4.13 Tidsskala for stationdr vdarmeforlust

Den stationdra varmeforlusten under en tid t ges av Qm-t. Under en
varmelagringscykel utnyttjas ett temperatursving T+ - T_ i lagret.
Motsvarande varmemangd blir (T+-T_)-CSV. Har dr Cs (storage) vdrme-
kapaciteten per volymenhet i vdarmelagret och V lagrets volym. Vdarme-
forlust under en tid t dividerad med lagrets vdrmelagringskapacitet
bTir da

Qm.t Tm-TO ALS h t

- . : (4.13.1)
(T,-TCV =~ T,-T_ " ¢y

Vi har hdar utnyttjat formel 4.1.2 for Qm. Den forsta faktorn, tempera-
turkvoten, i 4.13.1 dr normalt i storleksordningen 1. Den andra faktorn
dr dd ett matt pa varmeforlust under en tid t relativt lagringskapa-
citet. Vi-definierar en tid tm for vilken denna faktor blir 1ika med
ett:

(]

v
_ s
tm = Xf;ﬁ (4.13.2)

Tiden tm ger en tidsskala for den stationdra vdrmeledningsforlusten.

For lagringscykler som ar korta relativt tm blir varmeforiusten liten,
medan varmeforlusten blir stor om tiden for lagringscykeln dr stor
Jjamfort med tm'

Tiden tm kan ocksd tolkas som en tidsskala for en temperaturavkling-
ning hos varmelagret. Lt Tm(t) beteckna en lagermedeltemperatur.
Varmeforlusten dr av storleksordningen A(Tm(t) - TO)LSh. En energi-
balans ger da:

d

1

[o8

£ LTy = Tdegv] = -nm (o) - T

d 1
7 (Tt - 7)) = - T (T (t) = T) (4.13.3)

Detta ger en exponentiell avklingning med tidsskalan tm:

T(t) = T, = (T (0) - T )e ™/tm (4.13.4)
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Varmeforlusttidsskalan tm dr enligt 4.13.2 proportionell mot V/Ls’ dvs.
mot Tagrets linjdra dimensioner i kvadrat. Detta innebar att om de
linjara dimensionerna férdubblas s& fyrdubblas tidsskalan.

For varmefdrlusten UG frén ett tvdrsnitt av ett léngstrdckt virmelager
ersattes Qm av q och volym V med lagrets tvdrsnittsarea A. Tidsskalan
tm blir d& med utnyttjande av formel 4.1.7:

) CSA

t, = —h (4.13.5)

Tidsskalan beror fortfarande kvadratiskt pd lagrets 1injara dimensioner.

Exempel 1. For ett sfariskt lager p& stort djup har vi med hjdlp av

4.2.3:
3
B _ _ 4nR
h = 4n¢ LS—R V—3
CSRZ
tm P
Numeriskt kan vi ta
C, = 4.2 MI/nK o= 2 W/mK
R=3m tm = 0.2 ar
R=10m tm = 2.2 ar
R=50m tm = 55 &r

Exempel 2. Vi har ett cylinderformat lager med Gverytan vid marknivén.
Radien dr R och hojden H., Uverytan och kanten ner till tvi
meters djup (Di = 2 m) dr mycket kraftigt isolerade s& att
denna varmeftrlust kan forsummas.

Tidsskalan tm for detta fall ges av

- -R% -
Q * by = TREHC (T - T))

Varmeflodet Qm = Qm,mark ges i figur 4.8.3. D& gdller:



Vi har foljande termiska data:
c=2-100 g/mik A = 2 W/mK

D& gdller approximativt:

2
¢ - RH 1

m ql 70 ar

Har ges q' av fiqur 4.8.3.

=10 m
=10 g' =160 m t, = 0.6 ér
R=32m
H=32m qQ' =660 m tm =5 ar
R =100m
H = 100 m q' = 2500 m tm = 40 &r

4.14 Oversikt over varmeforlustformler

I detta avsnitt ges en Oversikt Gver de formler, diagram och tabeller for
stationdra varmeforiuster som har presenterats i de foregdende avsnitten.

Figur 4.1.1 illustrerar det stationdra vdarmestromningsproblemet. Vdrme-
lTagrets yta har en Gvertemperatur Tm—T0 retativt markytan och ostdrd
mark. Det stationdara vdrmeflodet frén vdrmelagret betecknas G, (W). For
ett varmelager med en dynamisk lagringscykel &r Tm ett lampligt valt
medelvdarde av lagerytans temperatur under lagringscykeln to' En uppskatt-
ning av total vdrmefidriust per cykel &r Qm-to. En langd LS anvands for
skalning. Varmeforlusten Qm ges enligt formel 4.1.2 av

Q= MT T )Lgeh (4.14.1)



Har dr h en dimensions18s vdrmeforlustfaktor som beror av problemets
skalade langder (L1/Ls osv.). Tabell 4.14.1 ger en sammanstilining av
varmefdriustformlerna for de tredimensionella fallen fr&n avsnitten

4.2-10.

Typ, form

Sfar pé stort djup
Sfér pa djup Dm

Cylinderformat vdrmelager under
mark

CylTinderformat vdrmelager pa
stort djup

Allmdnt samband mellan mattligt
och stort djup

Rotationsellipsoid p& stort djup
Allmdn ellipsoid p& stort djup

Allman ellipsoid pd mattligt
djup

Allmdn formel fGr lager under
mark

Varmeforlust genom vdrmeisolering
i marknivan

Varmeforlust genom kantisolering

Varmeforlust mot mark for olika
kantisolerdjup Di

Cylinderformat varmelager med
overytan vid marknivan

Stympad kon

Parallellepipedformat virmelager
med Overytan vid marknivan

Halvsfar

Avsnitt Formler
2 2.2
.2 1.5, figur 4.2.2
.3.2 .3.1, tabell 4.3.1
4.3.2 4.3.2, tabell 4.3.2
4.4 4.4.1
4.5.1 4.5.1-2, 4.5.5-7, figur
4.5.2
4.5.3 4.5.15, figqur 4.5.3, 4.5.21;
4.5.22
4.5.5 4.5.26-27
4.6 4.6.1-3
4.7.2 4.7.2
4,7.3 4.7.5
4.7.4.2-3  4.7.10-11, 4.7.15, 4.7.17,
figur 4.7.6
4.8.2-3 4.8.2-6, figur 4.8.3-4,
tabell 4.8.1
.8.4 tabell 4.8.2
9 4.9.2-3, tabell 4.9.1
4.10.2 4.10.2, figur 4.10.5

Tabell 4.14.1. Uversikt over virmeforlustformler for tredimensionella

stationdra fall.

Varmeforlusten i ett tvadimensionellt tvirsnitt av ett langstrackt vdarme-

lager betecknas Qe Den rdknas per meter i lagrets langdriktning (W/m).
Motsvarigheten till formel 4.14.1 blir:



ap = A(Tm—TO)-h

(W/m)

(4.14.2)

Tabell 4.14.2 ger en sammanstdlIning av varmefdrlustformlerna for de tvé-
dimensionella fallen fran avsnitt 4.11.

Typ, form

Rektangulart tvarsnitt
Trapetsformat tvdrsnitt

Cirkuldrt tvarsnitt under mark-
ytan

Avsnitt

Formler

4.11.1
4.11.2
4.11.4

4.11.1-2, tabell 4.11.1
4.11.3, tabell 4.11.2
4.11.5, tabell 4.11.4

Tabell 4.14.2. Oversikt dver varmeforlustformler for tvddimensionella

stationara fall.

Vissa markvarmelager vdarmeisoleras Over hela ytan. For dessa kan speciella

formler for varmeforlusten anges. Marken representeras av en ekvivalent

marktjocklek. Tabell 4.14.3 ger en sammanstdllning av formlerna for

dessa fall.

Typ, form

Allmdnna formler

Cylinderformat lager
Parallellepipedformat Tager
Rektanguldrt tvdrsnitt
Rektanguldrt tvdarsnitt under mark
Tva skikt - moran, granit

rektangulart tvar-
snitt

cylinder

Grundvattenstrom under rektangu-
ldrt tvdrsnitt

Avsnitt Formler

4.12.1 4.12.1-4

4.12.2 figur 4.12.2

4.12.3 figur 4.12.3; tabell 4.12.1
4.12.5. figur 4.12.5

4.12.5. figur 4.12.7

4.12.6

4.12.6.

4.12.6.

4.12.7

Tabell 4.14.3. Oversikt over varmeforlustformler for vdrmelager som dr

isolerade Over hela ytan.



5. GRUNDLAGGANDE DYNAMISKA TEMPERATURFORLOPP

5.1 Transient process vid konstant yttenmperatur

Vi skall i detta avsnitt behandla transienta temperaturprocesser i

mark, d& man vid en starttid gor en stegdndring av yttemperaturen. I

det betraktade markomrddet dr temperaturen konstant vid startogonblicket:
T/t=0 = TO.
ytan rader frdn starten t = 0 temperaturen Tm' Vi fér dd i marken ett
transient insvangningsforlopp mot det stationdra temperaturfdltet, vil-
ket har behandlats i foregdende kapitel.

Vid markytan har man hela tiden temperaturen To. P& lager-

Detta dr en av de fundamentala delprocesserna for ett markvdrmelager.
Under de forsta dren utbildas en vdrmekudde kring markvarmesystemet.
Uverlagrat har man sedan ett 4rligt periodiskt forlopp. Uppbyggnaden av
varmekudden kraver ett extra varmetillskott vilket efter hand minskar i
storlek. Detta vdarmetillskott ges vdsentligen av det transienta varme-
flode som man far vid en stegdkning av yttemperaturen till Tm vid t = 0.

Vi behover ocksd kdnna till det transienta vdrmeflodet vid en stegdandring
av yttemperaturen for analyser av olika delprocesser. Ett exempel &r re-
sponsen kring ett ror eller ett borrhal.

I detta avsnitt skall vi sammanstdlla formler for det transienta varme-

flodet genom ytan ddr man har gjort en stegdndring av temperaturen.

5.1.1 Transient temperaturfalt

Figur 5.1.1 illustrerar den aktuella transienta processen for ett cylinder-
format vdrmelager med Overytan vid marknivan. Temperaturen i marken ar

T0 vid starten t = 0. P& lagerytan hGjes d& temperaturen till Tm. Vid
markytan réader hela tiden temperaturen TO.
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T=T, - u=0 r
T=Tn /i /// ///
,. o T = UIf=° =0
/////////’
4 Z

Figur 5.1.1. Transient temperaturprocess for cylinderformat varmelager
vars yta ges temperaturen Tm vid t = 0. Till hoger visas
villkoren for den dimensionslgsa temperaturen.

" Den dimensionsldsa temperaturen u definieras av

e (5.1.1)

Denna blir d& +1 vid lagerytan och 0 vid markytan. Vid starten t = 0 ir
u noll i marken. Villkoren for u illustreras av den hdgra bilden i figur
5.1.1.

Temperaturen u dr en funktion av rumskoordinaterna och tiden. I en dimen-
sions1ds formulering anvindes en lingd LS for skalning av rumskoordinaterna.
Denna lédngd kan vara lagrets hdjd eller dylikt. Den dimensionslosa tiden

ges av at/Lg. Har dr a (mz/s) markens temperaturledningstal. Den dimensions-
10sa temperaturen som funktion av dimensionsltsa variabler blir:

as .lL , 2 §E> (5.1.2)
\L LS s 1.2
s
Som parametrar fdr vi dimensionsldsa storheter for lagrets form m.m.
(L1/LS,... A1/A senes dix/(LSAi),..., a1/a, ... OSV). Se avsnitt 4.1.2.

5.1.1.1 Cylinderformat vdrmelager med Gverytan vid markniva.

Figur 5.1.2 visar det transienta férloppet i marken utanfor ett cylinder-
format vdrmelager vars hiojd H &r 1ika med diametern 2R. Den vertikala
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kantisoleringen gar ner ett djup Di = 0.1 H. Isoleringen antages har
vara total. Kantisoleringen har bara betydelse for dess narmaste omgivning.
Den pdverkar ej temperaturforloppet i stort.

00 ! u=0 [ 0 2 v0 3 4
R

|-

u=1

u=1 u=0.5

E-1N
N

Figur 5.1.2. Transient temperaturfdrliopp utanfér cylinderformat varme-
lager. A: isotermen u = 0.5. B: isotermen u = 0.1.

Som skalningsldngd anvindes R. Dimensionsids temperatur blir dd en funktion
av r/R, z/R och at/RZ. Figur 5.1.2 A visar isotermen u = 0.5 vid olika tid-
punkter, medan 5.1.2 B visar u = 0.1.

Vi ser att 0.5-isotermen narmar sig det stationdra vdrdet betydiigt snabbare
dan 0.1-isotermen.

Som en illustration tar vi foljande fall med tre lagerstorlekar:

a=1-10"°n?/s
i.R=10m (H=20m)
fi.R=20m  (H=40m)

iii. R = 50 m (H =100 m) (5.1.3)
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Detta ger tidsskalorna:
i. R%a =108 s = 3.2 ar
i1, R%a = 13 ar
iii. R%/a = 79 ar

[=}}
o+

_R{/_a)

TN
&S
N

(5.1.4)

Vi ser att det minsta lagret ger en tidsskala pd 3 &r for den transienta
processen. Det storsta lagret med linjdra dimensioner p& 100 m far en
tidsskala pd ndstan hundra &r for den transienta temperaturuppbyagnaden
kring vdrmelagret.

Vi ser frén figur 5.1.2 att 0.5-isotermen hamnar p& en knapp radies av-
stdnd fran lagret, medan 0.1-isotermen hamnar pd ett avstand 2-5 R efter
18ng tid.

5.1.1.2 Cylinderformat varmelager under mark

Som ytterligare ett exempel pd den transienta temperaturuppbyggnaden skall
vi se pé ett cylinderformat bergrum. Exemplet hdrrdr frén referens 5.

Lagret dr 20 meter higt, och radien dr 10 m. Lagrets Overyta ligger 10 m
under marknivdn. Lagerytan dr antingen oisolerad eller tdckt med en iso-
lering med varmemotstdndet m. Foljande data har anvints:

a=1.7-10"%mss A= 3.6 WmK  m=0 resp. 4 moK/W

_ ¢ O _ 0
TO =5°C Tm =55 7C (5.1.5)

I detta fall ges forloppet direkt utan skalning. Se figur 5.1.3 A-C.

Figur 5.1.3 A visar isotermen for 30 °C efter 1, 5 och 10 &r, medan 5.1.3. B

och C visar isotermen for 15 °C. I A och B ar bergrummet oisolerat, medan
det i C har en isolering med virmemotstindet 4 mZK/w. Vi ser vid jéam-
forelse mellan B och C att att isoleringen ger en relativt kraftig minsk-
ning av det uppvarmda omrddets utstrickning.
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0 10 20 3 0
r{m) r(m)
0 T=5'C 0
10 T=15°C 0
n=0 2Kiw
. m=bm I~
20{7=5>¢ 201
30 30
404 1 4,0
5 r4
501 10 &r
z{m)
A B C

Figur 5.1.3. Transient temperaturuppbyggnad utanfor cylinderformat
bergrum. A: T =30°, m=0. B: T =15 °c, m = 0.
C: T=150°, m=14 mK/M.

5.1.1.3 Plant, endimensionellt fall

En viktig elementarprocess ar det plana, endimensionella, halvoandliga
fallet 0 < x < . Se figur 5.1.4. Denna typ av transient process fér man
i borjan vid en stegandring av yttemperaturen. Efter hand kan flerdimen-

sionella effekter och en yttre begrdnsning bdrja stora den rena processen.

V S SS
T=Tm T(x,0)=T, X
t

>0 //

Figur 5.1.4. Plant, endimensionellt fall.

Den dimensionslgsa temperaturen fran formel 5.1.1 blir

u(x,t) = erfc (

) (5.1.6)
Jaat

Hir #r erfc(s) den komplementdra felfunktionen. Den behandlas i avsnitt
3.6 . Temperaturstdrningen u ges direkt av erfc(s), ddr argumentet ges av
x/ ¥ 4at. Kurvformen dr s&ledes densamma vid alla tider. Ldngdkoordinaten
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skalas med den tidsberoende ldngden /4at.

Lat Xy.5 vara x-koordinaten for 50% temperaturstérning (u =
tiden t. Vi har d&, eftersom erfc(i) = 0.480=~0.5:

X5 = Vat

Formel 5.1.7 ger ett enkelt direkt uttryck for hur isotermen u = 0

sig utdt.

Som ett exempel kan vi ta:

a=1+10"°%n%s

Vi far dd foljande vdrden

0.5) vid

(5.1.7)

.5 ror

t , 1 timme 1 dygn 1 vecka 2 man 1 &r 10 &r 100 ar
X0.5 (m)| 0.06 0.30 0.78 2.3 5.6 18 56
Ndgra andra isotermer ror sig utét enligt foljande:
erfc(1.16) = 0.1 Xy q = 2.3+/at
erfc(1.8) = 0.01 Xg o1 = 3-6+/at - (5.1.8)

5.1.1.4 Transient forlopp utanfor sfar

Ett annat instruktivt elementarfall dr den transienta processen i en fri

rymd utanfor en sfar. Sfirens radie ar R. Det radiella avstindet till

sfdrens centrum dr r. Den dimensionsldsa temperaturen u(r,t) skall uppfylla:

u(r,0) =0 r >R u(R,t) =1 t>0

(5.1.9)
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Losningen ar:

R

u(r,t) = T erfc ( r-R

4a

) |
>

’
o

2]

r = x2+y2+z2 (5.1.10)

Har ar erfc den komplementara felfunktionen, vilken behandlas i avsnitt 3.6.

Den stationara slutldsningen for t = » ges av R/r. Insvangningen till det
stationdra slutvdrdet ges av erfc-faktorn i formel 5.1.10. Denna har exakt
samma form som i det plana fallet enligt foregdende avsnitt om vi sdtter

X =r - R.

Lat 0.5 beteckna radien for vilken 50% av det stationdra slutvdardet har
uppndtts vid en viss tid:

u(ro'5 t) =} -u(r0 5 w) (5.1.11)

) s

Vi har d& eftersom erfc(i) ~ 0.5:
ro.s = R+ /at (5.1.12)

Denna formel dr analog med formel 5.1.7 for det plana fallet.

5.1.2 Transient varmeforlust

Vi skall i detta avsnitt med formler och diagram ange det transienta vdarme-
flodet for olika fall, ddar lagerytan ges en temperaturhdjning Tm - TO vid

t = 0. I tredimensionella fall betecknas det transienta varmeflodet genom
vtan med Qtr(t) (W). Med index tr skall vi genomgdende avse den aktuella
typen av transient process. For ett plant tvdrsnitt betecknar qtr(t) vdrme-
fl1ddet per ldngdenhet vinkelrdt mot planet. Vi skall ocksd anvanda qtr(t)
for att beteckna vdrmeflddet per Tdngdenhet fran en cylinder eller ett ror.
1 plana, endimensionelia fall &r qtr(t) varmeflodet per ytenhet. Sorten for
9, (t) dr saledes W/n eller W/n’.
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Det ackumulerade varmeflddet betecknas Etr(t):
t !
e (0) = S 0 (e1) dt (9)
t 2
Etr(t) = g qtr(t|) dt' (J/m, 3/m“) (5.1.13)

Dd tiden gér mot odndligheten, gdr de transienta varmeflddena mot de
stationdra vdrdena. Vi har i enlighet med kapitel 4:

(t)—»Qm t > =

Ae(t) > q toe (5.1.14)

5.1.2.17 Dimensionsios form

Den transienta varmeforiusten dr direkt proportionell mot markens vidrme-

ledningsformdga » och mot temperaturdifferensen Tm - T . P& samma satt som

a
0
i det stationdra fallet enligt avsnitt 4.1.2 blir Qtr ocksd proportionell
mot skalningsldngden Ls‘ Varmeforlusten blir en funktion av dimensionslds

tid at/Lg och av skalade parametrar sasom L1/Ls oSV,

Vi har

0 (1) = AT, - T Lewh el ) (5.1.15)

m

Har ar htr det dimensionslosa, transienta vdrmeflodet. Den blir en funktion
av dimensions10s tid och av skalade parametrar for form o.dyl. D& tiden gar
mot oandligheten ndarmar sig h
behandlas i kapitel 4.

tr den stationdra varmeforlustfaktorn h vilken

I ett plant tvarsnitt far vi i stdllet:

. htr(at/Lg;...) (W/m) (5.1.16)
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For ett endimensionellt fall féar vi:

MT - T,)

apt) = —moh (attls.) (W) (5.1.17)

Den ackumulerade varmeforlusten Etr blir i dimensionslds form:

E =T -T) L3

2.
tr m - To) L meglat/losa) (3 (5.1.18)

Har betecknar ey den dimensions1osa ackumulerade varmefdrlusten. Markens
virmekapacitet per volymsenhet &r C (a = A/C). I ett tv8dimensionellt fall
far vi

(at/Lg;...) (3/m) (5.1.19)

I ett plant, endimensionellt fall har vi slutligen:

_ 2, 2
B, = C (T, = To) Lg -etr(at/Ls,...) (3/m") (5.1.20)

Sambandet mellan € och htr blir:

2
at/LS

erp = g htr(t';...) dt! (5.1.21)

Varmeflddet gér mot konstant vdrde dd tiden gér mot oandligheten enligt
formel 5.1.14. Den ackumulerade forlusten okar d& som Qm-t eller qm-t.

Den dimensionslosa ackumulerade forlusten tkar dd ocksd linjart med dimen-
sionslos tid.

5.1.2.2 Cylinderformat lager med Overytan vid marknivan

Det aktuella vdrmelagret har formen av en cylinder med Gverytan vid mark-
nivdn. Cylinderns hdjd ar H, och dess radie dr R. Den vertikala kanten &r
virmeisolerad ner till ett djup Di' Vi skall enbart behandla fallet Di = 0.1H.
Varmeisoleringen antages vara total.



Som skalningsldngd LS anvandes radien R. Det ackumulerade, dimensions-
16sa vdarmeflodet e blir en funktion av dimensionslds tid at/Rz. Den
enda parametern &dr cylinderformen H/R, eftersom isoleringen &dr total
och isolerdjupet Di dr proportionellt mot hdjden. Vi har med formel
5.1.18:

2
_ . 3 at H
Eop = C(TL = T) RO ey (7 , ﬁ> (5.1.22)

Numeriskt berdknade virden for ep visas i figur 5.1.5. Ukningen med tiden
blir efter en viss tid 1injir. Forloppet &r d& vdsentligen stationdrt.

30

AN

w

20

N
\
AN

AN
\

at
0 05 10 R?
€4
300
%: 10
//
200+ i
]
./
4
./
L1 3
100 — ——
/
/?/ e
gty
] ! at
Oo 1 2 3 A 5 R

Figur 5.1.5. Transient, ackumulerad virmefSriust for cylinder med Gverytan
vid markniva, Formel 5.1.22.
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Exempel. Lat oss ta ett lager med 20 meters racie och hojd. Det &dr om-
givet av granit. Vi har foljande data:

R=20m H=20m Di =2m
A = 3.5 W/mK a=1.6-10"°ns
_ 0
T T =400
Vi har da
R%/a = 7.9 &r H/R = 1
o1 - T,) RS- 7.0-10"" J = 194 wun

Diagram 5.1.5 A och B ger da

t(&r) €ty Etr(Mwh)
0.5 3.0 580

1 4.8 930

2 7.9 1530

3 10.8 2100

4 13.5 2620

5 16.1 3120

Vadrmeforlusten per ar blir:

ar 1: 930 MWh
ar 2: 600 MWh
ar b5: 500 MWh
ar 25: 480 MWh

Den stationdra varmeforlusten per ar blir enligt formel 4.8.5
3.5-40.20-18.9-3600-24-365 J = 464 MWh. Vi ser att vdrmeforlusten
per ar dr dubbelt s& stor som den stationdra under forsta aret.
Redan under det femte dret rdder vdsentligen stationZr virmefdr-
lust.

De givna diagrammen och exemplet galler for isolerdjupet Di = 0.1 H. Re-
sultaten kan dock vasentligen dven anvandas for andra isolerdjup pa
foljande satt. Det stationdra varmeflodet Qm varierar med isolerdjup enligt
formler i avsnitt 4.7. Skillnaden mellan Qtr och Qm blir i stort oberoende
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av Di’ eftersom isolerdjupet bara pdverkar ett mindre lokalt omrade
kring kanten.

Vi kan for vdrmelager med Gverytan vid marknivd, vilka har en kantisoler-
ing ner till ett djup Di anvanda approximationen:

~ (Qy, - Qm)‘ (5.1.23)

Q... - Q
tr D,=0.1H

)
D

m
.i

Om vi utnyttjar formel 4.7.17 fé&r vi

Qtr l

Vi behdver sdledes bara studera fallet dir kantisoleringen 3r 0.1 H. Detta

+ A(Tm—TO) Li' g(Di/H) (5.1.24)

~ ‘
tr -
Di Di—O.1H

galler forstds dven for andra lager med kantisolering. Faktorn 9; ges av
figur 4.7.6, medan L1~ ar kantisoleringens ldangd runt lagret.

5.1.2.3 Plant endimensionellt fall

Det plana, endimensionella fallet for ett halvoandligt omridde illustreras
i figur 5.14. Temperaturresponsen vid en stegdndring av randtemperaturen
behandlas i avsnitt 5.1.1.3. Vdrmeflodet vid x = 0 erhdlles genom derivering
av formel 5.1.6. Vi fér

A(Tm—TO)

g, .(t) = e (W/n°) (5.1.25)

Varmeutflodet frén en area A blir
AT -
(Tm TO)A

Q, (t) = ———— (W) (5.1.26)
tr / mat

Formlerna 5.1.25-26 ar mycket grundlaggande eftersom temperaturforloppet
i mdnga fall dr vdsentligen plant, halvoandligt under en férsta tid. Virme-
flodet ges av A(Tm - TO) dividerat med langden /nat.

Det ackumulerade vdarmeflodet blir:

Ee(t) = (T, - 1) /8L (gmd) (5.1.27)
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5.1.2.4 Skiva

Det endimensionella transienta temperaturfdrioppet for en skiva med
tjockleken L illustreras i figur 5.1.6. Denna situation kan vi t.ex.
féd i ett tdckande jordskikt ovanfor ett varmelager.

TtV
t>0

- Tix,00=T, /A Te

Str =d§22§:j;/

x=L

Figur 5.1.6 Transient vdrmefldode for en skiva

Varmeflodet per ytenhet av skivan blir dd L anvandes som skalningslangd:
>\(Tm - T)

t 2
9 = ——2 by, (%) (W/m?) (5.1.28)

Foljande uttryck gdller for htr med mycket god precision:

(s 207V Tg%
_ ) T
htr(T) - 2 1
1+ 27T T2 —
T
(r = at/L?) (5.1.29)

En @nnu enklare approximation ges av fdrsta termen i de tvd uttrycken
5.1.29. De svarar emot det halvodndliga fallet enligt foregdende avsnitt
och det stationdra fallet. Brytpunkten mellan de tvé fallen ges av

v = 1/w. Vi har de tvd approximationerna:

MT - T)
qp = —_O (25 <1, natvoinarig
Tat L T approximation (5.1.30)
AMT - T)
At _.—fme o <9%»> — , stationdr 3
L approximation/ (5.1.31)



Det maximala felet for dessa approximationer ar 8.6%.
Det transienta forloppet d8 skivan dr totalisolerad vid den andra sidan

x = L dr ocksd av intresse. Detta fall illustreras i figur 5.1.7. Denna
situation kan vi ha mellan rader av plana plattvirmevixlare i mark.

=\

t=0 T(X,0)=T°
Ot ,/7//
x=0 x=L

Figur 5.1.7. Transient varmeflode for en skiva di den motstidende sidan
x = L d@r totalt varmeisolerad.

Varmeflodet per ytenhet ges av formel 5.1.28, ddr nu htr ges av

A1 - 2e7 VT Tl
_ A "
hy (1) =
r _ 2/4 1
27" T Tz (5.1.32)

Maximalt fel i dessa formler &r tvd promille.

5.1.2.5 Cylinder eller ror

Ett viktigt transient elementarfall dr férloppet utanfér en cylinder
eller ett ror. Radien dr R. Processen sker i ett plant tvirsnitt vinkel-
rat mot cylinderaxeln. Den omgivande marken &r odndlig. Det aktuella
fallet visas i figur 5.1.8. Detta fall behandlas i referens 102 A.

Figur 5.1.8. Transient varmefldde fran cylinder eller ror med radien R.
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Virmeflddet per langdenhet ldngs cylinderaxeln ges av
- 1) +hy (at/RE) (u/m) (5.1.33)

Faktorn htr ges av nedanstdende tabell och figur 5.1.9.

10,
toglhte) 2 05 1 2 5 10 20 50 100 200 500 1000 T
he
t1s
10 < 1-2% 10
R
4 - £2ppr 5136
3
\ IN
05 ~.appr. 5.1.35
~ - 3
Sl 2
e
0 1
A1 0 1 2 3 V91

Figur 5.1.9. Transient varmefdrlustfaktor for cylinder i odndlig om-
givning enligt figur 5.1.8. Formel 5.1.33.

For smd tider har vi approximationen

- [ 1.1 /T .«
hyp(7) = 2r = K/; . g} (5.1.38)

(< =E§< 0.5)

1 det angivna omrddet ar felet maximalt 2%.

T 0.09 0.02 0.05 0.1 0.2 0.5 1 2 5
htr(T) 38.51 28.10 18.83 14.13 10.78 7.75 6.18 5.03 3.95

T 10 20 50 100 200 500 1000 2000 5000 10000
htr(T) 3.35 2.90 2.44 217 1.96 1.72 1.58 1.45 1.32 1.23

Tabell. Transient virmeftrlustfaktor for cylinder i odndlig omgivning
enligt figur 5.1.8. Formel 5.1.33.

10—B35
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For stora tider har vi approximationen:

4n (In 1 - 0.345)

h, (1)~
tr (In <« + 0.232)°

_at
T = E? > 1500) (5.1.35)

Det maximala felet i det givna intervallet dr 2.5%.

5.1.2.6. Sfar

Det transienta temperaturforloppet utanfor en sfir i en oandlig omgivning
behandlas i avsnitt 5.1.4. Det transienta varmeflodet erhilles genom deri-
vation av 5.1.10. Vi har foljande formel f&ér det transienta varmeflodet
fran sfaren:

Qpp = MT = T )+ {aar + 41801 (5.1.36)

Formeln &r instruktiv. Vid odndlig tid ger den forsta termen det stationira
varmeflodet frén en sfdr enligt formel 4.2.2. Den andra termen i parentesen
dr ett uttryck av typen 5.1.26, dir arean A sittes till sfirens yta 4nR2.
Vi kan sdga att den transienta forlusten fran en sfir ar lika med stationir
forlust plus ett transient bidrag som svarar mot ett plant fall med en

area som dr 1ika med sfdrens. De tvé bidragen &r 1ika stora vid tiden

1
== (5.1.37)

Skriven enligt var dimensionsanalys blir formel 5.1.36:

R\
= MMT -7 R4 /1 + 5.1.38
Qtr ( m 0) ™ \ nat/ ( )
Ackumulerat varmeflode blir:
Egp = MT, = T,) R dnt (1 . 2R ) (5.1.39)
Vﬂaf

Den transienta forlusten under &r n ir:

Epon = Ege(nty) = E (=Dt )) (8, = 1 an) (5.1.40)



Formlerna 5.1.40 och 5.1.39 ger da:

R 2
E. = 4mR(T. - T) t - (1 . : ) (5.1.41)
tr,n m oy /naty /n o+ vYn-1

(n=1,2,...)

5.1.2.7. Extra vdrmeforlust vid horn

Figur 5.1.10 visar den transienta processen utanfor ett hdrn. Vi ser pa
ett plant tvirsnitt vinkelrdt mot hdrnlinjen. Randen ut till ett avstand
L1 frén hornet betraktas.

Figur 5.1.10. Transient process i ett plant tvdrsnitt utanfor ett horn.

Kring hornet #r temperaturprocessen tvaddimensionell, medan den vdsentligen
ir endimensionell vinkelrdt ut mot randen langre bort fran hornet. Om-
rédet kring hornet, dar vi har en tviddimensionell process, vidxer efter
hand. Den endimensionella processen vinkelrdt mot en rand behandlas i av-
snitt 5.1.2.3. Det transienta, endimensionella vdrmeflodet genom randen
(N/mz) ges av formel 5.1.25.

Det totala transienta varmeflodet frdn hornet kan skrivas:

LI (5.1.42)
mat
Den forsta termen i parentesen ger det endimensionella, transienta vdrme-
f1odet. Langden pa randen &r 2L,. Termen oy (edge) ger den extra vdrme-
forlusten beroende p& hornet.
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I referens 6, ddr den transienta processen kring ett horn analyseras,
visas att %y ar konstant for smd tider, dd stdrningen fran hornet ej
har nétt ut strdckan L1 tdngs randen. Vi har d&

-6 _ 4 0,602 (5.1.43)
3

o
€ 93

Som krav for att 5.1.43 skall gdlla med god precision har vi

Jat 1
L_1<? (5.1.44)

Vid grénsen /at = L1/2 dr det endimensionella bidraget till 5.1.42 fyra
ganger storre dn bidraget fré&n hornet. Vi kan ddrfor utstricka giltig-
heten av formel 5.1.42-43 till att galla da vat < Ly
L3t oss nu se pd vdrmeforlusten fran en yta som inneh&ller en kantlinje
Ytan ges av tva plana delar som moter varandra under rat vinkel. De plana
ytornas totala area d@r A och kantlinjens ldngd Le'

Den transienta varmefdrlusten under en forsta tid blir da:

( A +0.6L) (5.1.45")
rat e

For formelns giltighet har vi kravet:

ﬁL‘_—t < (5.1.45")

1

Langden L1 definieras i enlighet med figur 5.1.10.

5.1.2.8. Vdrmelager pa stort djup

Vi skall i detta avsnitt behandla den transienta varmeforlusten frén ett
varmelager, som 1igger s& djupt ner att effekten av markytan kan forsummas.

Vi skall forst behandla processen for smid tider. Formel 5.1.45 som tar

hdnsyn till den extra varmeforlusten vid kanter kan da anvindas.
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For ett parallellepipedformat lager med kantldngderna L, B och H blir
arean A och kantldngden L, :
L =4(L + B + H)
e
Det transienta varmeflodet ges av formel 5.1.45. Formels gdller vid tider
som uppfyller:

/at <
T

L1 =5 min (L, B, H) (5.1.47)
1 ,

o —

Vart ndsta fall dr ett cylinderformat varmelager med hojden H och radien
R. Vi har tvad plana cirkuldra ytor med en area A. Mellan dessa och mantel-
ytan har vi tvd cirkuldara kantlinjer med langden Le:

A= 2.qR?

Le = 2+2nR (5.1.48)
For dessa delar kan vi anvdnda formel 5.1.45. Vdrmeflddet ut frén mantel-
ytan ges av formel 5.1.33. Det skall multipliceras med hojden H. Under en
forsta tid far vi foljande transienta flode fran cylindern:

A
J/mat

Qpp = MT = T)) - { + 0.6, + H hi{‘(at/Rz)} (5.1.49)

Hdr ges A och Le av formel 5.1.48 och hiil av figur 5.1.9 och formel
5.1.34.

Det transienta varmeflodet fran en sfdr med radien R ges av formel 5.1.38:

R
= - 5.1.50
Qg = MTy = Ty) 4R (14 ﬂat> (5.1.50)

Denna formel gdaller bdde i bdrjan och for ldngre tider sd& lange som
effekten av markytan kan férsummas.

For storre tider kan det vara rimligt att approximera varmelagret med en

sfar. Lat V vara lagrets volym. Vi forutsdtter att lagrets form ej avviker
starkt frédn en sfdr. Radien RV for en sfdr med samma volym blir:

vV (5.1.51)



5.20

Det transienta vdrmeflodet frén vdrmelagret blir di approximativt vid

storre tider:

Qt ~ \(T

v m TO) 4nRV(1 + RV/ V' rat)

For ett parallellepipedformat lager har vi

For ett cylinderformat lager gdller:

R - 3/ 3R
v T

(5.1.52)

(5.1.53)

(5.1.54)

For att kunna approximera cylinder och parallellepiped med en sfir far
formen ej vara extrem. Det dr rimligt att krdva att 2R/H, B/L och H/L alla

ligger mellan 1/5 och 5.

Sammanfattningsvis har vi foljande uttryck for den transienta virmefor-

lusten for ett varmelager som &r ostort av markytan.

Parallellepiped: Formlerna 5.1.46 och 5.1.45
Formlerna 5.1.52-53

CyTlinder: Formlerna 5.1.48-49
Formlerna 5.1.52,54

Sfdr: Formel 5.1.50

Varmelager av
annan form: Formlerna 5.1.51-52

(smd tider)

(5.1.55)
(stora tider)
(sm& tider) (5.1.56)
(stora tider)

(5.1.57)

(stora tider) (5.1.58)

For cylinder och parallellepiped ges tvé uttryck. Vid en viss tidpunkt
blir dessa lika. Formlerna for smd tider vdljes fore denna tid, medan

formlerna for stora tider sedan tages. Av de tv3 alternativen tar man d3

hela tiden det som ger storst vdrmeflsde.
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Exempel 1. L&t oss se pa den transienta forlusten fran en kub med kant-
ldngden L. Formlerna 5.1.45-46 ger for smd tider:

2
er = MTy = To) ( =

+ 120 -0.6)
mat

Approximeras kuben med en sfar med samma volym har vi

Varmeforlusten Q%r ges av formel 5.1.52,

Kvoten mellan dessa tvd approximationer blir:

1
oo Qe 0.9 At + 0.3

Qir vat/L + 0.350

Vi fdr nedanstdende tabell

Vat/L 1 0 0.25 0.75 1.0 1.5 2 5 ®

f l 1.24 1.11 1.02 1.01 0.98 0.97 0.94 0.924

Vi ser att kvoten hela tiden ligger relativt ndra 1. For kuben
far vi bryttiden vat/L =~ 1.

Den transienta forlusten ges av er dd vat/L < 1 och av
0¢ da /AL > 1.

Exempel 2. Vi tar en cylinder med 10 meters radie och 20 meters hojd. Vi
tar foljande data

R=10m H=20m
- - -6 2
A(Tm - TO) = 50 W/m a=10-10 " m/s

Formlerna 5.1.48-49 ger den transienta forlusten for smd tider,
medan den ges av 5.1.52,54 for stora tider.

Formel 5.1.48-49 ger:
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at/R% = t/t, t, - R%/a = 3.17 ar

2 + 10

1
+ 0.6 22110 + 20 ' (t/t )}
r;{7€] tr 1

Q. = 50 {

Detta kan skrivas:

1.77

o cyl
Qtr‘ Yon + 3.77 + htr (t/t1) (kW)
1

Hir ges Y1 av Figur 5.1.9. Vi far f&1jande virden:

t/t, 0.01 0.05 0.1 0.5 0.6 0.7 0.8
Qu (kW) ! 60.0 30.5 23.5 14.0 13.4 12.8 12.4
t/t, 1.0 1.2

Q (kW) F 11,7 1.2

Formlerna 5.1.52,54 ddr cylindern approximeras av en sfir ger

RV = 11.45m
1.145
Q, =~ 50-4n «11.45 /1+ —_— ) W
tr \ /nt/t,
eller

t/t1 0.5 0.6 0.7 0.8 1.0 1.2 1.5

Qtr(kw) 13.8  13.2 12.8 12.4 11.9 1.4  11.0

t/t1

Qtr(kw) 10.7 10.5 10.1 9.3 8.7 8.1 7.2

Vdrdena enligt denna tabell &r stirre dn enligt den tidigare da
t/t1 > 0.8.
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Vi fér bryttiden
t =0.8 t1 = 2.5 &r

Fore denna tid gdller den forsta approximationen enligt formlerna
5.1.48-49. Efter denna tid gdller approximationen med en sfdr
enligt formlerna 5.1.52,54.

5.1.2.9 Vdrmelager pd mattligt djup

Den transienta varmeforlusten fran ett lager pd miattligt djup kan uppskattas
pd foljande sdtt. Lagrets mittpunkt ligger pd djupet Dm. Vi forutsdtter att
lagrets oOversta punkt ej ligger alltfor ndra markytan.

For korta tider p&verkar markytan ej det transienta vdrmeflddet. Formlerna
enligt foregdende avsnitt 5.1.2.8 kan anvandas. L&t Qtr(Dm = ») vara denna
transienta forlust. For korta tider har vi approximationen:

Q‘c

= Q,,.(0, = =) (t litet) (5.1.59)

r rom

Efter T1dng tid blir den transienta véarmeforlusten 1ika med den stationdra,
Qm. Denna behandlas i kapitel 4. Vi har da approximationen:

" (t stort) (5.1.60)

m

Vid en viss bryttid tb blir uttrycken 5.1.59 och 5.1.60 Tika. Fore denna
tid vdljes 5.1.59 och efter denna 5.1.60. Vi tar dd hela tiden det storre
av de tvd uttrycken. Vi har sdledes for ett vdrmelager pd mdttligt djup:

~ . 1
0, ~ max {Qtr(D = =) Oy (5.1.61)
5.1.2.10 Sfdr pa mdttligt djup

Det sfdriska vdrmelagret har radien R. Dess mittpunkt 1igger pd djupet Dm'
Se figur 4.2.1.
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Den transienta vdarmeforlusten ges av approximationerna 5.1.59 och
5.1.60. Formeln for odndligt djup (Dm = ») ges av 5.1.38. Den stationira
varmeforiusten Qm for en sfdr pd djupet Dm ges av formel 4.2.5. Dessa
dr lika vid en bryttid t

b:
1+ R = !
— R
TTatb 1 - .2-D;
" (5.1.62)
etier
(20 - R)?
t, = —m
b ma

For den transienta varmeforliusten fran en sfar pd djupet Dm har vi da
foljande approximativa uttryck:

R
Q= AT, - T,) 4nR (1 + ) 0<t<t

mat (5.1.63)

44R
R

1 - =—

2D
m

Qt o )\(T - TO)

t>t
r m

Exempel. Lat oss ta en sfar med radien 10 m. Mittpunkten ligger pd 20 meters
djup. Vi tar foljande data:

R=10m D =20m T -7T =25%

1.0-10"%%/s 2 = 2.0 W/mK

joT]
1]

Bryttiden ty enligt formel 5.1.62 blir:

_ (2-20-10)°

s =9.1 ar
w1070

Formel 5.1.63 ger:

0<t<9.1 ar: Qt =~ 6.3 (1 + ¢t1/t> kW

t> 9.1 ar : Q, .= 8.4 kW



5.1.2.11 Cylinderformat varmelager under marknivé

Det cylinderformade virmelagret har radien R och hojden H. Dess Ovre
yta ligger p& djupet D under markytan. Se figur 4.2.1.

Den transienta virmeférlusten ges av approximationerna 5.1.59 och
5.1.60. For odndiigt djup (Dm =D + H/2 = ») har vi de tvd alterna-
tiven enligt formel 5.1.56. Den stationdra varmeforlusten Qm ges av
formel 4.3.1 och tabell 4.3.1. Bryttiden ty, definieras av att de tvd
approximationerna ges samma vdrde.

Fore tiden tb ges d& den transienta vdrmeforlusten fréan cylindern av
formel 5.1.56. Efter denna tid gdller approximativt formel 4.3.1.

Exempel. L&t oss ta ett cylinderformat varmelager med radien 10 m och
hojden 20 m. Dess overyta ligger 10 m under marknivdn.

Vi har foljande data:

R=10m H=20m D

10m

1.0-107% n?

A(Tm - TO) = 50 W/m a /s

Samma cylinder p& stort djup har behandlats i exempel 2 i
avsnitt 5.1.2.8.

Fore en bryttid tb giller formel 5.1.56, dvs. 5.1.48-49 vid

korta tider och 5.1.52,54 vid lidngre tider. Resultatet i exempel

2 1 avsnitt 5.1.2.8 gdller direkt.

Efter bryttiden har vi den stationdra varmeforlusten enligt
formel 4.3.1 och tabell 4.3.1. Vi fér:

h(10/10, 20/10) = 21

Qpp = Qp = 50+10:21 = 10.5 ki



Enligt den andra tabellen i exempel 2 i avsnitt 5.1.2.8 far
vi bryttiden vid t/t1 = 2.0. Vi har sdledes:

tb =2t

Sammanfattningsvis har vi

1

= 6.3 &r

0=<ts< 2.5 4r: Qtr enligt forsta tabellen i exempel 2
i avsnitt 5.1.2.8.

2.5 <t =<6.3a4r Qtr enligt andra tabellen i exempel 2
i avsnitt 5.1.2.8.

t=26.3 ar: Qt Qm = 10.5 kW

Ndgra vdrden ges i nedanstdende tabell (t1 = 3.17 &r).

t/t1 0.01 0.05 0.1 0.5 0.8

Qtr(kw) 60.0 30.5 23.5 14.0 12.4

t/t1 1.0 1.2 1.5 2 2.5 5

Qtr(kw) 11.9 11.4 11.0 10.5 10.5 10.5

Problemet har dven 16sts direkt med en numerisk metod. Denna
berdkning gav foljande resultat:

t/t1 0.01 0.05 0.1 0.5 0.8

Qtr(kw) 59.0 30.3 23.6 14.8 13.5

t/t1 1.0 1.2 1.5 2 2.5 5
Qtr(kW) 13.1 12.8 12.5 12.0 11.8 11.4

I figur 5.1.11 kan resultaten frén de tva berdkningsmetoderna

Jjdmforas.
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Figur 5.1.11. Den transienta virmeforlusten Qtr for cylinder péd mattligt
djup. Jamforelse mellan numerisk 16sning (heldragen linje)
och approximativa formler (kryss). De streckade linjerna
avgransar de intervall inom vilka de olika formlerna dr
giltiga.

Overensstammelsen mellan de olika metoderna &r tillfredsstdllande. Det
maximala felet dr 14% vid t/t1 = 2.0.
5.1.2.12 Parallellepipedformat varmelager under markniva.

Det parallellepipedformade varmelagret har kantlangderna L, B och H.
Dess mittpunkt Tigger p& djupet Dm.
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Den transienta vdarmeforlusten ges av approximationerna 5.1.59 och 5.1.60.

Vid en bryttid tb ar dessa lika. Den forsta approximationen galler da
ts tb och den andra d& t= tb'
Approximationen enligt 5.1.59 ges av formlerna 5.1.55, dvs. av 5.1.45-46
for smd tider och av 5.1.52-53 for stdrre tider.

Approximationen 5.1.60 efter bryttiden innebdr att det transienta varme-
flodet approximeras med det stationira virdet Qm. Formler for detta ges
i avsnitt 4.6



5.1.3 Oversikt Gver transienta varmeforlushformler

I detta avsnitt ges en Oversikt Gver de formler, diagram och tabeller for
transienta vdrmeforluster som har givits i avsnitt 5.1.2.

Figur 5.1.1 illustrerar forutsdattningarna for det renodlade transienta

varmestromningsproblemet. Vdarmelagrets yta ges vid tiden t=0 en Overtem-

peratur Tm-T0 relativt markytan och den ostorda marken. Det transienta
varmeflddet fran lagret betecknas Qtr(t) (W). Yttemperaturen T, dr ett
lampligt valt medelvdarde av lagerytans temperatur under lagringscykeln.

I tvddimensionella och endimensionella fall betecknas viarmeflodet qtr(t)
(W/m, W/mz). Integrerad transient varmeforlust betecknas Etr(t)'

Uversikten Gver transienta vdrmeforlustformler ges av tabell 5.1.3.1.

Typ, form

Plan yta

Skiva. T=T0 vid x=L
Skiva. Isolerad vid x=L
Cylinder eller ror

Sfar

Cylinderformat lager med Gverytan
vid marknivan

Extra varmeforlust vid kant
Cylinderformat lager pa stort
djup

Parallellepipedformat Tager pa
stort djup

Sfdrisk approximation av lager
pd stort djup

Formler for vdrmelager pd matt-
ligt djup

Sfdar pd mattligt djup

CyTinderformat vdrmelager under
marknivan

Parallellepipedformat varmelager
under marknivan

Tabell 5.1.3.1.

Avsnitt Formler

5.1.2.3 5.1.26

5.1.2.4 5.1.28-31

5.1.2.4 5.1.28, 5.1.32

5.1.2.5 5.1.33, figur 5.19

5.1.2.6 5.1.36

5.1.2.2 5.1.22, figur 5.1.5,
5.1.24

5.1.2.7 5.1.45

5.1.2.8 5.1.56

5.1.2.8 5.1.55

5.1.2.8 5.1.51-52

5.1.2.9 5.1.61

5.1.2.10 5.1.63

5.1.2.11

5.1.2.12

Oversikt Over formler

for

renodlad transient varmeforlust.
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5.2 Periodiska temperaturforlopp

Genom superposition kan det totala temperaturférloppet uppdelas i enklare
delprocesser. Se avsnittet om superposition i kapitel 3. En av de grund-
ldggande delprocesserna dr periodiska forlopp. I detta avsnitt behandlas
olika grundfall. De givna formlerna kommer att utnyttjas i de fgljande
kapitlen.

Det aktuella delforloppet dr en rent periodisk process med periodtiden

to. Temperaturen i varje inre punkt och vid rénderna varierar med denna
periodtid. Genom en Fourierutveckling kan det periodiska forloppet upp-
delas i rent harmoniska forlopp, dvs. cosinus- och sinusvariation i tiden.
Dessa komponenter i Fourierutveckiingen har periodtiderna t0/1, t0/2,

t0/3 osv. Det rdcker dirfor att behandla ett rent harmoniskt forlopp

med en given periodtid to. Overtoner kan sedan Overlagras enligt samma
formler med periodtider to/n.

Temperaturfdltet for ndgra grundldggande fall ges i avsnitt 5.2.2. I det
foljande avsnittet ges samband mellan temperatur och vdarmeflode vid ran-
den.

5.2.1 Komplexa temperaturer

Det dr praktiskt att anvdanda en komplex notation vid analys av periodiska
forlopp. Temperaturer och varmefloden dr d& komplexvdrda storheter. Reell-
virda 10sningar ges av den komplexa 18sningens realdel och imagindrdel.

I ett allmdnt tredimensionellt fall har vi det komplexvirda temperatur-
faltet:

eg'm t/tO

T(x,y,z,t) = %(x,y,z) (5.2.1.1)

Hir dr i = /-1 den imagindra enheten. Tidsfaktorn innehd1ler bdde cosinus-

och sinusvariation i tiden:

eZmit/t, | cos(%iz) + -sin(izt) (5.2.1.2)
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Rumsvariationen ges av den komplexvarda storheten T(x,y,z). Tecknet °
anviands for att markera att en storhet dr komplexvdrd. Storheten T har
beloppet |T| och fasen eller argumentet arg(T):

i.arg(T)

% = \% .e

(5.2.1.3)

Realdelen av ekvation 5.2.1.1 ger en periodisk 16sning som varierar med
cosinus i tiden:

Re(T) = \%! -cos(%13 + arg(%)> (5.2.1.4)
0

Imagindardelen ger en sinusvariation:

Im(T) = \% -Sin<%31»+ arg(T)) (5.2.1.5)
0

De reella 1dsningar som utnyttjas ges av 5.2.1.4 eller 5.2.1.5. Vi kan
dven ta en kombination av dem.

Det komplexvdrda vérmeflddet ges av

-1 grad(T) 2™/t (5.2.1.6)
Reella vdrmefldoden erhdlles av realdel och imaginardel.
. . . 2nit/t . ..
I komplex notation ges tidsfaktorn alltid av e 0. For att forenkla

formlerna dr denna faktor ofta ej medtagen i det foljande. Aven temperaturen
T anges utan denna tidsfaktor.

5.2.2 Temperaturfdalt
5.2.2.1 Plant, halvodndligt fall. Intrdngningsdjup do‘

Det enklaste periodiska forloppet ges av det endimensionella, halvodndliga
fallet. Vid randen x = 0 varierar temperaturen sinusformat. Se figur
5.2.1.
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Figur 5.2.1. Endimensionellt, halvodndligt fall.
Detta fall far man utanfGr en plan yta vars temperatur varierar sinus-
format i tiden, om marken stracker sig tillrdckligt 14ngt ut i normal-

riktningen utan storningar.

Temperaturen ges enligt referens 102 C av:

T(x,t) = T, e, -sin<3§E - §L> (5.2.2.1)
0 (¢}

Langden d_ &r
- 0 2.2.2
d _ (5. ola )

Vi skall ocksd ange 1dsningen i komplexvdrd form. Den komplexa temperaturen
vid randen x = 0 &r:

T(0,t) = T, Lelmit/ty (5.2.2.3)

Hdr &ar ?1 ett godtyckligt komplext tal. Detta komplexa fall illustreras
i figur 5.2.2.

- Zﬂit/to r/ / /AX
T,e F/://7 /4;

x=0

Figur 5.2.2. Endimensionellt, halvodndligt fall med komplex rand-
temperatur enligt ekvation 5.2.2.3.

11—B5
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Den komplexvdrda 16sningen dr enligt referens 102 C:

T(x,t) = T, - g~ (I+ix/d, | 2nit/t, (5.2.2.4)

¢

De reella 16sningarna ges av real- och imaginardel. Den tidigare 10sningen
5.2.2.1 erh&lles om vi vidljer T1 = T1 och tar imagindrdelen:

T(x,t) = Im {T1 e*/d, -ei(z"t/to - x/do)} (5.2.2.5)
Beloppet av temperaturen 5.2.2.4 blir:

T = T, e/ (5.2.2.6)

Den periodiskt varierande temperaturen dampas sdledes med exponential-
faktorn e /9. vid randen x = 0 dr amplituden |Ty|. Ddmpningen sker med
ldngdskalan do' Denna 1dngd blir ett mdtt pd hur den periodiska svangningen

vid ytan ddampas indt. Vi skall kalla d0 dintrédngningsdjupet for det

periodiska forloppet. Dampningsfaktorn for olika djup x blir:

x=0 : 9 =1 x=d/2: e /%< 061
_ Y _ .oat2

X = do e = 0,37 X = 2d0 T e = 0.14
R _ L

X = 3do e = 0.05 X = 4dO e = (.02

x=5d, : e =0.007

P& djupet x = do har sdledes amplituden minskat till 0.37 « T1!. Vid
X = 3d0 dterstér 5% av randens amplitud.
Temperatursvangningens fas ges av faktorn
el (2nt/t, + arg(Ty) - x/d ) (5.2.2.7)

Termen -x/dO ger en dkande fasfordrojning indt. Vid x/dO = ¢ ligger
svdngningen i motfas relativt yttemperaturen. Amplituden &r hir kraftigt
dampad: e " = 0.05.

Intrdngningsdjupet d0 beror pa tO och a. Temperaturledningstalet a 1igger
for olika jord- och bergarter runt virdet a = 1.0 -10—6 mz/s. Tabell 5.2.1
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anger intrangningsdjupet dO for detta vdrde pd a samt for ett hogt och
ett 14gt vdrde. Tabellen ger dO for periodtider fran en sekund till fem
ar.

1 sek T min 1 tim 1 dygn 1vecka ! mdn 1 4r 5 &r

6

a 1.6-10" 0.0007 0.006 0.043 0.21 0.55 1.16 4.0 9.0

6

(mz/s) 1.0-10" 0.0006 0.004 0.034 0.17 0.44 0.917 3.2 7.1

0.4-10_6 0.0004 0.003 0.021 0.10 0.28 0.58 2.0 4.5

Tabell 5.2.1. Intrdngningsdjup d0 = /oaty/r (m) for olika periodtider t,.

5.2.2.2 Periodiskt forlopp utanfor ror eller cylinderyta

Roret eller cylindern har radien R. For en plastslang i mark dr radien R
cirka 2 cm. For ett cylinderformat vdrmelager i mark dr radier R upp till
50 m aktuella. Vid randen r = R rader en periodisk temperaturvariation.
Hir behandlas det rent radiella, periodiska temperaturforloppet T(r,t)
for r z R.

Vid randen r = R rdder med komplex notation temperaturen:

T(R,) = T, e?T 1% (5.2.2.8)
Den analytiska 10sningen uttrycks med hjdlp av vissa Besselfunktioner
med komplext argument, s.k. Kelvinfunktioner. Se kapitel 7 i referens 9,

dar dessa 10sningar behandlas. Losningen ar

-~ N .(r")

T(r,t) = Ty S ei(Zﬂt/to * ¢o(rl) i ¢0(RI)) (5.2.2.9)
N (RY)
0
dar
at
B 0 y _r/? . _ RV/?2
d = — r' = R' = —?E;_ (5.2.2.10)
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og(funktion)
0.0t

1

05

Funktionerna N0 och ¢ Hr amplitud och fas for en Kelvinfunktion av

0
nollte ordningen.

For ett reellvdrt randvillkor:

T(Ryt) = T -sin(z“t (5.2.2.11)
o
bTir d& 16sningen
N (r")
Trst) = Ty » (0 4 g (1) - g0 (RY) (5.2.2.12)
NO(R') 0’ /

Funktionerna NO och % visas i figur 5.2.3. De ges ocksd i tabell 5.2.2.

002 003 005 01 02 03 05 1 2 3 TR
funktion
— :
\
\
L3
\\\\\\\\\\ ~lr') L2
~
F(R) NAR)
N 1
///’ ‘\\ /_'__——
2 \ 05
i B(R)
e
N \ 103
T/ B "
/
GIR)-10
01
-2 -15 -1 -05 0 o Mog(r);“logiR)

Figur 5.2.3. Funktioner for periodiskt forlopp utanfér ror eller cylinder-
yta. De streckade linjerna ger approximationer enligt 5.2.2.13.



TR No(r") soor')  F(R') G(R") A(R") B(R') 1/A(R")
0.001 7.067 0.111 1 0 7.067 0.1 0.142
0.002 6.379 0.123 1 0 6.379 0.123 0.157
0.003 5.977 0.132 1 0 5.977 0.132 0.167
0.004 5.692 0.138 i 0 5.692 0.138 0.176
0.005 5.471 0.144 1 0 5.471 0.144 0.183
0.006 5.291 0.149 1 0 5.291 0.149 0.189
0.007 5.138 0.153 1 0 5.138 0.153 0.195
£.008 5.006 0.158 1 0 5.006 0.158 0.200
0.009 4.890 0.161 1 0 4.890 0.161 0.204
0.01 4.786 0.165 1 0.000 4.786 0.165 0.209
0.02 4.104 0.193 1 0.001 4.104 0.192 0.244
0.03 3.707 0.214 1.000 0.002 3.707 0.212 0.270
0.04 3.426 0.231 0.999 0.003 3.429 0.228 0.292
0.05 3.209 0.247 0.999 0.005 3.212 0.242 0.311
0.06 3.033 0.261 0.999 0.006 3.036 0.255 0.329
0.07 2.884 0.276 0.998 0.008 2.890 0.268 0.346
0.08 2.756 0.289 0.998 0.010 2.762 0.279 0.362
0.09 2.643 0.302 0.997 0.012 2.651 0.290 0.377
0.1 2.542 0.311 0.996 0.015 2.552 0.296 0.392
0.2 1.892 0.412 0.986 0.045 1.919 0.367 0.521
0.3 1.525 0.501 0.971 0.086 1.571 0.415 0.637
0.4 1.275 0.585 0.949 0.131 1.344 0.454 0.744
0.5 1.088 0.665 0.925 0.181 1.176 0.484 0.850
Q.6 0.942 0.744 0.899 0.235 1.048 0.509 0.954
0.7 0.823 0.820 0.870 0.291 0.946 0.529 1.057
0.8 0.725 0.8% 0.840 0.349 0.863 0.547 1.16°
0.9 0.643 0.971 0.810 0.408 0.794 0.563 1.26
1 0.572 1.046 0.779 0.469 0.734 0.577 1.36
2 0.207 1.774 0.489 1.119 0.423 0.655 2.36
3 0.084 2.490 0.284 1.800 0.296 0.690 3.38
4 0.036 3.202 0.158 2.492 0.228 0.710 4.39
5 0.0161 3.913 0.086 3.189 0.187 0.724 5.35
10 0.00034 7.463 0.0035 6.712 0.0965 0.751 10.36
20 0.00000 14.53 0.0000 13.77 0.049 0.768 20.35
50 0.00000 35.74 0.0000 34.97 0.0199 0.778 50.35

Tabell 5.2.2. Funktioner for periodiskt forlopp utanfor ror eller

cylinderyta.

For smd argument gdller foljande approximativa uttryck:

Jnz2/r) - )2 + 72716

-arctan <———————-
n(2/r') - v

/4

)

(
Y

r' < 0.1)
= 0.5772

(5.2.2.13)
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Felet for r' < 0.1 dr mindre &n 1%. Dessa approximationer ges av de
streckade kurvorna i figur 5.2.3. For stora argument gdller:

N()’")a & .e-y"//?

(r. ) (r'>7) (5.2.2.14)

Felet for r' > 7 &r mindre dn 1%.

Temperatursvdngningens amplitud ddmpas med okande radie r enligt
faktorn:

(5.2.2.15)

For smd r' och R' kan approximationerna 5.2.2.13 anvindas. Dimpningen

far en relativt komplicerad form. Detta fall upptridder fér ror och brunnar,
ddr radien R blir Titen jamfort med intrdngningsdjupet do' For cylindriska
lager ddremot dr radien R normalt stor jimfort med penetrationsdjupet

do' Approximationen 5.2.2.14 kan d& anvandas. Temperaturen enligt

5.2.2.9 blir da:

/;‘ cem(r=R)zdy o i(2nt/e ) - (r-R)/d)

(R z 5d0)

T(r,t) ~ %1
(5.2.2.16)

v

Maximalt fel for r 2 R 2 5d0 ar 1%. Formeln ovan har samma form som det
plana fallet med x = r - R. Enda skillnaden &r att faktorn YR/r till-

kommit.

Amplitudddmpningen enligt formel 5.2.2.15 &r:

N (r')
0 R -(r-R)/d
T__};r, ~ / oo r ) (R > do) (5.2.2.17)

=
~—

of

Det visar sig att denna formel ger god noggrannhet i ett storre inter-
vall. Maximalt fel far r 2 R > do ar bara 4%.



5.2.2.3 Periodiskt forlopp utanfor sfar

Givet en sfdr med radien r = R. I omrddet utanfor den sfdriska ytan,
r z R, réder ett rent radiellt, periodiskt temperaturforlopp. Vid
randen r = R dr den komplexvdrda temperaturen foreskriven:

T(R,t) = T, e 1H% (5.2.2.18)

Losningen till detta problem &r

T(r,t) =T, . R o1+ (r-R)/d | 2nit/t,

(5.2.2.19)
(r =V X% 4 yé + z2 > R)
I reell form med randvillkoret
T(R,t) = T, sin(2"t) (5.2.2.20)
1 tO/
blir Tosningen
T(r,t) = T R e_(r_R)/do .sin(2rt _r-R (5.2.2.21)
1 r t d
0 0
(r z R)
Temperaturamplituden dampas med Gkande radie r enligt
R e (r-R)/d, (r 2 R) (5.2.2.22)

Fasfordréjningen ges av (r—R)/dO.

5.2.2.4 Jamforelse mellan plan, cylindrisk och sfiarisk yta.
Det ar intressant att jamfora de periodiska temperaturforloppen utanfor
plan, cylindrisk och sfdrisk yta. Den komplexa temperaturen kan i de

tre fallen skrivas

T(s,t) = T(s) - 21/t (5.2.2.23)
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I det plana fallet ger formel 5.2.2.4:

T(x) = T, - e (1+1)x/dg (5.2.2.24)

-
x
v
o

1

I det sfdriska fallet ger formel 5.2.2.19:

Hry -7, - R o~ (1+1) (r-R)/d

R y2 v 22 2 R (5.2.2.25)

av 5.2.2.12. I fall d& R/dO ej dr Titet gdller en enkel approximation
enligt 5.2.2.16:

f(r) o %1 Vfghe—(1+i)(r_R)/do r= /x84 y2 z R (5.2.2.26)

(R> 5d0, R > do)

Maximalt fel for approximationen &r 1% for R > 5d0. Formeln kan dock
anvandas dnda ner till R > do' Felet i amplitud dr d4 maximalt 4%.

De tre uttrycken 5.2.2.24-26 innehdller samma exponentiella dampnings-
faktor e's/do, dir s dr avstandet til1 ytan och d0 intrdngningsdjupet.
I det cylindriska fallet tillkommer faktorn VR/r och i det sfiriska
faktorn R/r. Fasfordrdjningen ges i alla tre fallen av s/do.

5.2.3 Samband mellan temperatur och virmeflgde vid randen

I detta avsnitt anvdnds genomgdende komplex notation. Den komplexvdrda
randtemperaturen ar
T, e8I (5.2.3.1)
Beloppet av T1 ger temperatursvdngningens amplitud. Fasen kan viljas god-
tyckligt. For det komplexvirda virmeflodet vid randen utnyttjas beteckningen

9, (N/mz, W/m) och for den ackumulerade vdrmemingden & (J/mz, Jd/m):

1



2nit/t0 2n1t/t0
G, -e € e (5.2.3.2)

Motsvarande beteckningar for tredimensionellt fall dr 61 (W) och E1 (J3).
Alla formler i detta avsnitt ges i forsta hand i komplex form. Ur realdel
och imagindrdel erhdlles reella samband mellan temperatur och vdarmefldde.

Tidsderivatan av ackumulerad varmemangd skall ge vdrmeflddet vid randen.
Detta ger:

t t

- .05 -_934
& = 77 4y E1 TE Q (5.2.3.3)

Man bor observera att den totala vdrmemdngden som pulserar genom randen
ges av dubbla amplituden:

2le,0 == layl 2lE 1 =214, (5.2.3.4)

5.2.3.1 Plant, halveandligt fall

Det plana, halodndliga fallet har behandlats i avsnitt 5.2.2.1. Vid
randen rader temperaturen T1. Se figur 5.2.4. Losningen ges av formel
5.2.2.4.

WA/ IIIID
l///////

Figur 5.2.4. Plant, halvodndligt fall.

Varmeflodet vid randen blir enligt denna formel:

) . 2mit/t
T IS W PO S 0 (5.2.3.5)
X, 1 d
x=0 0
Detta ger det komplexa randflddet
g, = A1) f, (W/m) (5.2.3.6)
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Sambandet mellan effekt- och temperaturamplitud blir dé:‘

s a/2
|Q1|‘_’a';‘ IT1|

(5.2.3.7)

Argumentet av 1 + i dr w/4. Effekten ligger ddrfor n/4 fore temperaturen
i fas. Detta svarar mot en dttondels period. Temperaturmaximum intraffar

tiden t0/8 efter effektmaximum.

Den ackumulerade vdrmemangden blir enligt formlerna 5.2.3.4 och 5.2.3.6:

) cd .
e = ° T1 Jd/m 2
1+
I reellvdrd form f&s exempelvis:
cin 2Tt
Randtemperatur T s1n\~ﬁ;7
Randf1dde T, A2 ot
1 dy \t

Ackumulerad vdarme T

5.2.3.2 Ror eller cylinder

" %) (5.2.3.8)

Det periodiska forlopoet utanfor ett ror eller en cylinder med radien R

har behandlats i avsnitt 5.2.2.2. Vid randen
Se figur 5.2.5.

ek \\\\\ \

AN

O

r = R dr temperaturen T1.

N

N

Figur 5.2.5. Periodiskt temperaturforlopp utanfér ror eller cylinder.



Losningen ges av formel 5.2.2.9. Derivation med avseende pd r ger varme-
flodet. Vi skall ange varmeflddet per meter rér. For cylinder innebdr
detta att virmeflodet anges per meter i hojdled.

Det komplexa sambandet mellan temperatur och vdrmefldde vid randen r = R
blir enligt referens 9 (formel 7.10):

s G NRY SR ey = REZ 0 (5.2.3.9)
1 21T>\ F(Rl) 0

Funktionerna No’ 94 F och G ges i figur 5.2.3 och tabell 5.2.2. Infdres
A= NO/F och B = - ¢4~ G erhdlles:

= oy -iB(R'")
Ty =7y AR')e * 0y (5.2.3.10)
Funktionerna A och B ges i figur 5.2.3 och tabell 5.2.2. Observera att

61 har dimensionen W/m.

For smi virden p& R' ligger F ndra 1 och G ndra 0. Detta innebdr att A
sammanfaller med N0 och -B med ye Approximationerna enligt formel
5.2.2.13 galler:

A(R') = f(1n(2/R') - Y)? + 72/16 (R* < 0.1)
(5.2.3.11)
B(R') = arctan(—l/—“——\ v = 0.5772
\n(z/R') - +/

Dessa approximationer visas med streckade Tinjer i figur 5.2.3.

For stora R' kan féljande approximation hérledas genom serieutveckling:

1 + 1

8 /2R

1 1+ 1 R'

(R" 2z 1) (5.2.3.12)

A -eiB /2

+l_
2

Den sista termen kan med acceptabel precision forsummas. Vi fdr fdljande
approximation:

2 1+ i 1y -
T, - 2mR <T com) = (R>d) (5.2.3.13)

0
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Det maximala felet for beloppet dr ndgon procent. Maximalt fel i fas
dr ndgot storre.
I reellvard form fds exempelvis:

Randtemperatur T, . sin/EEEN
! \ty/
(5.2.3.14)

Randfldde T, Zm sin(%}i + B(R'))
A(R") 0

Exempel. Vi tar foljande tvd exempel.

T, =10 ¢ t, = 14ar

a=1.6-10"°n’s A= 3.5 uW/m K

Intrangningsdjupet blir

at
_ o _
dO =/ - 4.01m

Approximationerna 5.2.3.11 kan anvdndas:
A=14.,23 B = 0.187
Varmeflodet blir enligt 5.2.3.10

- 27 3.5 i.0.187 _
q,I =10 - 773 . e = 60.0

Effektens amplitud blir sdledes 60 W/m.

Fasen &r 0.187 = 2+ - 0.030.

Detta motsvarar 0.030 - 365 = 11 dagar.



Approximationen 5.2.3.13 kan anvandas:

] —2n10-3.5<—1—+-‘l+—1——> c 10 =
4.01 2-10

el
—
I

I
~N
~nN
(=]
o

TN
. -
+
|_h
+
-
!Q
N
1

2200 - (0.30 + 1 0.25) = 2200 +0.39 + ' * 067

I

- 860 - 0-69

Effektens amplitud dr 860 W/m.

Per ytenhet blir d& flddet:

860 _ )
?TT—Q =14 N/m

Fasen dr 0.69 = 2% - 0.11

Detta motsvarar 40 dagar.

5.2.3.3 Sfar

Det periodiska forloppet utanfor en sfdar med radien R har behandlats i
avsnitt 5.2.2.3. Vid randen r = R skall temperaturen vara f1. Se figur
5.2.6.

Temperaturen ges av formel 5.2.2.19. Vdrmef1ddet ges av derivatan med
avseende p& r. Det totala flddet genom sfdrens yta betecknas Q, (W).
Detta blir

ST 21, 1+i
Qp = Ty« 1 4R \§+T>

(W) (5.2.3.15)

5.
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7
\‘f

Figur 5.2.6 Periodiskt temperaturforlopp utanfor en sfar.

Det @r intressant att jamfora formlerna i plant, cylindriskt och
sfariskt fall. For vdrmefiddet per ytenhet ger formlerna 5.2.3.6,13 och
15:

Plant a =T, 2 1+ 1

1= T y

0

Cylindriskt L oo (1—+1 " l) (5.2.3.16)
R > q) 27R d, R

) 3 ,
Sfariskt L -1, ~x<1 * 1, l)

4R d R

5.2.3.4 Effekt av ytmotsténd

Ett vdrmelager i mark kan skyddas av varmeisoleringar. Innanfér isoler-
skiktet dr en periodisk temperatur f1 given. Isolerskiktet har tjockleken

di och vdarmeledningsformdgan Aie L&t f% vara den periodiska temperaturen

i marken strax utanfor isoleringen. Se figur 5.2.7.

A 21

)
7

Q.CLIQ%%\

Figur 5.2.7. Periodiskt forlopp i mark ddr ytan tdcks av en varmeisolering.



Lat q1 (W/mz) vara varmeflodet genom isoleringen. D& gdller foljande
komplexa samband

(1,-Th,

3 = q1 (5.2.3.17)

1! -

Mellan T 1 och ay rader de ovan givna sambanden.

I det plana fallet gdller sdledes:
d. d

._-1 i . ‘1_ [C N
T T v 0 Ty = 5T N (5.2.3.18)
Detta ger sambandet
d
- (Y o )4
T \X_ MY E / (5.2.3.19)
I det cylindriska fallet gdller da g, avser varmeflodet Over hela omkretsen
TN
(T1-T1) H: 27R = S (5.2.3.20)
Formel 5.2.3.10 ger da
fo (% AR FiBRDY (5.2.3.21)
1\ T Tem ) e
For det sfariska fallet gdller analogt
- 1 / j 1 \
T \X* +44i:jj474_7 (5.2.3.22)

Exempel. Vi tar foljande plana fall.

T, = 10% t, = 1ar
a=1.6-10"° n/s A = 3.5 W/meK
di =0.200m Ai = 0.05 W/m-K
Detta ger

d =4.01m
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Formel 5.2.3.19 ger:

_(0.20 . 4.0 . .-0.125i
10*(m*§.—5ﬁm)'q1‘4-6‘e 4
3, - 2.17.¢0-1251 |12

5.2.3.5 Kanter

Varmelagren i mark begrdnsas ofta av plana och cylindriska ytor. Det
periodiska vdrmeflodet genom dessa kan berdknas med ovan angivna formler.
De plana ytorna skdr varandra ldngs kantlinjer. Detta ger en storning av

de rena, endimensionella fallen. I detta avsnitt anges en mycket enkel for-
mel for dessa kanteffekter.

Lt oss nu se p& tvé plana randytor till varmelagret, vilka mots ldngs en
kant. Vinkeln mellan ytorna &r ©, rdknad frén marksidan. P& ytorna rader
en periodisk temperatur T1. Figur 5.2.8 visar det aktuella fallet i ett
tvarsnitt vinkelrdt mot kantlinjen.

Figur 5.2.8. Periodiskt forlopp utanfor tvd plana ytor som mots Tangs en
kantTinje.

I planet vinkelrdt mot kantlinjen rader ett tvadimensionellt temperatur-
forlopp. Forloppet Overgdr i det endimensionella da kantpdverkan blir for-
sumbara. Detta sker pa avstand 2 till 3 dO frén kanten.

Nara horn ddar olika kantlinjer mots erhdlls ett genuint tredimensionellt
foérlopp. Det visar sig emellertid att dessa tredimensionella horneffekter
dr forsumbara jamfort med de tvadimensionella kanteffekterna.
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Temperaturforloppet nara kanten blir mycket komplicerat. Vi dr hdr intres-
serade enbart av det integrerade varmeflddet Gver de tvd ytorna. For detta
f1ode far man mdrkvdrdigt enkla samband.

L&t A vara de tvd plana ytornas area. Det totala vdrmeflddet genom de tvé
ytorna, som har en gemensam kantlinje med langden Le (edge), betecknas
Q1-e2“‘t/t°. Virmeflodet @, (W) har ett bidrag fran den plana Tgsningen.
Formel 5.2.3.6 ger:

gtan - p . AU 7 (5.2.3.21)
Effekten av kanten ges av 61 - Q?]an. Vi bortser i denna diskussion fréan
andra kanter till de tvd plana ytorna. Kanteffekten &r proportionell mot
?1, x och kantlangd Le' En relativt intrikat dimensionsanalys visar att

kantbidraget fransett dessa faktorer enbart dr en funktion av vinkeln @ -
Se referens 6. Foljande samband galler:

Az 1+1 \
Q, - T1.X<A e, “e(“’o)) (5.2.3.22)

Kantkonstanten o, ges for 0 < @, < 2w i referens 6. Speciellt galler

T _ 4

aelz) = -3

cxe(n) =0 (5.2.3.22")
Bry L 164

ue(T Y A 0.60

Fallet ©,=T innebdr att kant saknas, sd g blir d& noll. Normalt har vi
vid en kant vinkeln 9, = %;. Kantkonstanten oy dar da 0.6. Konstanten og
ar positiv, da ©, dr storre dn m, eftersom exponeringen &r storre. Den

blir negativ da @, ar mindre an .

5.2.3.6 Parallellepipedformat varmelager under mark

Givet ett parallellepipedformat vdarmelager under mark. Lagret har ldngden
L, bredden B och hojden H. P& dess rand rdder den periodiska temperaturen

TI’ Lagerytan bestdr av sex plana ytor vilka mots langs tolv kantlinjer.

12—B5
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Den totala ytan A blir
A = 2(LB + LH + BH) (5.2.3.23)
Total kantléngd blir

Le = 4(L+H+B) (5.2.3.24)

Vinkeln @ mellan planen dr Gverallt 3n/2. Kantkonstanten oy dr dd 0.6. Det
totala komplexa vdarmeflgdet ges av formel 5.2.3.22:

G, = T, a(A-21 4 L0.6) (5.2.3.25)
1 1 dO e
Hdar ges A och Le av 5.2.3.23-24.
Kravet for att detta skall gdlla dr att kantlangderna ej dr smi relativt
intrangningsdjupet do' Lat D vara avsténdet frén lagrets Overyta till mark-

ytan. Vi tar kravet:

D, L, H, B> 2d0 (5.2.3.26)

Exempel. Vi tar foljande data

d,=3m A= 2 WmeK T, =25%
L=B=H=20m t, =1 ér
D& gdller:

A= 6-L% = 2400 m?

L, =12l =240 m

0y = 25-2+(2400 + 131 + 240-0.6) = 50+(800(1+1) + 144)

i.0.70 (

= 62000-e W)
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Effektens amplitud blir séledes 62 kW. Fasen dr 0.70 = 2n-0.11.
Effektmaximum sker s&ledes 0.11-365 = 41 dagar fOre temperatur-

maximum.

Det kan vara intressant att jamfora en kub med en sfdr. Vi vdljer dem sd

att de far samma area. For en kub med kantldngden L &r sambandet mellan

varmeflode och temperatur vid randen enligt formel 5.2.3.25

skub _ = 2 1+
Q1 = T1 A(6L 'ji; + 12L . 0.6) (5.2.3.27)
For en sfdr med radien R enligt formel 5.2.3.15:
CHESEER }\411R2<1l; s ldi‘l) (5.2.3.28)
)
Lika areor ger
2 _ 2 R /3
47R% = 6L =/ (5.2.3.29)
Ur 5.2.3.27-29 fas:
kub : b r .
Q ) 1+141.2 . ‘T 1+1+0.83 d /R
sfar ~ d - .
o s 2 1+i+d /R
Nedanstdende tabell ger nagra vdrden:
d /R ’ 0.1 0.5 1
Ql;ub/Qs;f'eir . 0.99 . gl +0-008 0.96 . o1 *0.027 0.93 . ol * 0-036

5.2.3.7 Cylinderformat varmelager under mark.

Givet ett cylinderformat vdrmelager under mark. Lagret har hdjden H och

radien R. Avsténdet frén Gverytan till markytan dr D. For formlerna i

detta avsnitt forutsitts att dessa ldngder ej dr smd relativt intrangnings-

djupet doz

2R, H, D > 2d0

(5.2.3.30)
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P& cylinderns randyta rdder den periodiska temperaturen T

Cylinderns yta bestdr av tvd plana delar med arean A = 2 - nR%.
Mantelytan har hdjden H. Mellan dessa ytor &r kantldngden Ly = 2+ 2R,

1-
2

Vi forsummar att kantlinjen dr cirkular. Felet hirvid torde vara for-

sumbart.

Det totala periodiska varmeflodet blir med formlerna 5.2.3.22 och

5.2.3.10

2 1+
0

2w

Q1=f1'>\<21TR —a——+4ﬂR‘0.6+H'me

iB(R'))

(5.2.3.31)

Formel 5.2.3.13 kan anvéndas i stdllet for 5.2.3.10 eftersom vi for-

utsatt att R > do. Ovanstdende formel blir da:

PR {14,y R+H HA
Q1_T1-x2nR\(1+1)d_0+1.2+?.R/

Exempel. Vi tar foljande data:

—
u
nNy
[S2]
o
o
>
n

2 W/m-K
R=10m H=20m
Varmeflodet blir d& enligt 5.2.3.32:

0, = 252 .zﬂ.m.((m) 10420

3140 - (10(1+1) + 1.2 + 1) =

3140 - 15.8 .o 069

i-0.69

50000 - e

d

2+

20\

20/

(5.2.3.32)

Effektamplituden blir 50 kW. Fasen r 0.69 = 0.11 - 2. I tid

blir detta 0.11 -365 = 40 dagar.



5.2.3.8 Vdrmelager med overytan vid marknivé

Ett vdrmelager med Gveryta vid marknivdn bor skyddas av varmeisolerande
skikt mot den kalla temperaturen vid markytan. Isoleringen har tjock-
leken di och vdrmeledningsformigan Ay Den antas tacka lagrets Overyta
vid markytan. Isoleringen tdcker ocksd de vertikala sidoytorna till

ett djup Di'

I Tagret, dvs p& dess rand mot mark och pd vdrmeisoleringens insida,
réder den periodiska temperaturen T1. Vid markytan ovanfor isoleringen
rédder den perio@iska temperaturen Ta’ eller om vi dven skriver ut tids-
faktorn T, L 2mit/t
&rsperioden. Beloppet lTal dr amplituden for lufttemperaturens &rs-
variation. I a11ménhet har T1.och Ta olika fas. Ti11 exempel innebdr
en fasdifferens =, Ta = f1 'e‘“, att lagret dr varmast vid lagsta ute-
temperatur.

0. Se figur 5.2.9. Normalt dr vi intresserade av

7

N
N

Figur 5.2.9. Periodisk delprocess for varmelager med Gverytan vid mark-
nivan.

Det periodiska varmeflodet Q1 genom lagrets randyta bestdr av en del genom
varmeisoleringen och en del mot marken:

U = O isotering * U, mark (5.2.3.33)
Temperaturdifferensen Gver varmeisoleringen &r f1 - fa' Arean av den
vdrmeisolerade ytan &r Ai‘ Det periodiska vdrmeflodet Gver isoleringen
blir da:

A

X s ;
Q1,1so1er1ng = A (T - Ty a (5.2.3.34)
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Den vertikala isoleringen mot mark har p& grund av den skyddande
Jorden utanfor isoleringen en ndgot mindre temperaturdifferens. Detta
kan dock forsummas om Di bara &r négon meter och vdrmeisoleringen
ndgorlunda kraftig. Markens vdrmemotstind vid kantisoleringen &r d&
Titet relativt varmeisoleringens. Formel 5.2.3.34 kan dirfor normalt
anvandas for hela isolerytan inklusive den vertikala kantdelen. Arean
Ai dr dd lika med Overytans och kantisoleringens totala area.

For varmeflodet mot mark kan de olika formlerna i firegdende avsnitt
anvandas. Arean mot mark uL~tecknas Am.

hdojden H blir isolerarean och arean mot mark:

p=
1]

LB + 2(B+L)D1
(5.2.3.35)

x
n

LB + 2(B+L)(H—D1)

Det totala periodiska varmeflodet blir dd med formlerna 5.2.3.34 och 25:

A (3 - i - 1+i

Q = (Ty - T)) i Ty = aA A L, +0.6) (5.2.3.36)
Kantlangden Le blir

Lo = 2L + 2B + 4(H-D,) (5.2.3.37)

A, - RS + 21R D
A, = mR + 2uR (H-D.) (5.2.3.38)
Le = 2nR

Det totala periodiska vdrmeflodet blir med formel 5.2.3.34 och med en
modifikation av 5.2.3.31:



' (5.2.3.39)
o (1-0;) gpey &P )

Den forsta termen ger varmeflodet genom isoleringen. Den andra termen
ger f16de genom bottenytan med arean sz. Den tredje termen ger kant-
bidraget frén cylinderns undre cirkel, medan den sista termen ger bi-
draget frén cylinderytan med hdjden H'Di‘

Exempel. Vi tar ett parallellepipedformat lager med foljande data:

d, =3m t, = 1dr x =2 Wm K
L=40m B=30m H=20m

D, =2m d; = 0.4m Ay = 0.04 W/m - K
T, =10 °%% T =10-eina %

1 a

Vi antar att lagret ligger ett kvarts dr efter Tuften i fas:
- I . To- i 0
0, =7 Ta i10 °C

Areorna enligt formel 5.2.3.35 blir:

1480 m?

p=]
i

2

=
n

3720 m
Kantldangden enligt formel 5.2.3.37 blir:

L, =212m

Formel 5.2.3.36 ger det komplexa varmeflodet:

G, = (10 - 109) 1980008 yg 2. (3720 - L1 4 212 - 0.6)

= 1480 (1-1) + 24800 (1+i) + 2544
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Den forsta termen ger virmeflodet genom isoleringen, den andra

det endimensionella bidraget mot mark och den tredje kanteffekten.
Vi ser att flddet mot mark dominerar. Kanteffekt och isolering
ger bidrag i samma storleksordning.

0, = 37000 . ¢' * 0-68

Amplituden fgr det totala flodet blir 37 kW.

5.2.4 Isolerad cylinderregion

For markvdrmelager av typ borrhal iberg och slangar i lera sker virme-
til1forsel och vdrmeuttag via ror, slangar och borrhdl. Samma sak gdller
for ett system av bergvdrmebrunnar, vilka &terladdas sommartid. Virme-
bararfluidens kanaler 1igger i ett regelbundet monster. Radiellt i om-
radet runt ett ror fir man en pulserande process.

Markvolymen kan uppdelas s& att en lamplig del runt ett ror tillskrives
detta. Vi forutsdtter hdr att denna region kan approximeras med en cirkel
med radien R1. Detta forutsdtter i sin tur att rdren ligger i ett nagor-
lunda regelbundet monster utan alltfdr kraftiga variationer i roravstand.
Roret eller slangen har radien Ro‘ For en slang avses ytterradien.
Cirkeln r = RO ger markens rand mot roret.

Via roret sker en periodisk in- och utmatning av varme till den cirkulira
regionen RO srs R1. Effekten, som rdknas per meter ror, har amplituden
a (W/m). Periodtiden ir t,- FOr det studerade radiella periodiska for-
loppet sdttes varmeflodet ti11 noll vid den yttre randen r = R1. Se
figur 5.2.10.



Figur 5.2.10. Periodisk injektion-extraktion av vdrme via ett centrumror
i en isolerad cylinderregion.

5.2.4.1 Rortemperatur

Vi dr framfor allt intresserade av marktemperaturen vid réret. Foljande
beteckningar skall anvandas:

= - 2nit/t
TR(t) = T(Ro,t) =Tpee ) (5.2.4.1)
Hdr @ar fR den komplexa temperatur vid réret som mdste upprdatthéllas for
att det specificerade periodiska varmeflddet skall erh&llas. Dessutom
anvands foljande beteckningar:

at R /- Ry /
- 0 _ov/?2 _ 172
dO = -—T‘_—‘ I"O = do r1 = T (5.2.4.2)

Det periodiska forloppet i en odndlig omgivning har behandlats i avsnitt
5.2.2.2 och 5.2.3.2. Detta fall dr ett specialfall av vart nuvarande. Det
erhdlles for

r =R' ry = e (5.2.4.3)

Den analytiska 10sningen for detta periodiska forlopp hdrledes och dis-
kuteras i detalj i referens 10. Randtemperaturen blir:

= A -iB
TR —Z_TT_Xe .q1 (5.2.4.4)

Amplitud- och fasfunktionerna A och B dr funktionen av o och re- De
visas i figur 5.2.11-13.
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Figur 5.2.11. Amplitudfunktion A for rortemperatur; formel 5.2.4.4.
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Figur 5.2.12. Fasfunktion B for rortemperatur; formel 5.2.4.4.
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Formel 5.2.4.4 ger rortemperatur déd flodet dr givet. Omvdnt gdller om
rortemperaturen dr given:

Tp(t) = T1{»e2”1t/to
) (5.2.4.5)
qp(t) = 2mT, »% eiB. 2mit/t,

Faktorn 1/A ger effektamplituden vid given temperaturamplitud T
Funktionen 1/A visas i figur 5.2.13.

1+

Formel 5.2.4.4 &r helt analog med formel 5.2.3.10 for cylinder i fri om-
givning. Funktionerna A och B dr hdr en direkt utvidgning av det tidigare
fallet (A(R') - A(ro,m), B(R') ~ B(ro,w).

5.2.4.2 Optimalt roravstand

Det dr intressant att notera att kurvorna for A i figur 5.2.11 har ett
minimum vid ett visst ry - ro- I figur 5.2.13 ger detta ett maximum for
1/A vid ett visst ry = Yo AmpTlituden 1/A har s8ledes for givna R0 och

dO ett maximum vid ett visst R1. Denna radie representerar i vissa fall
ett optimum, eftersom detta enligt formel 5.2.4.5 ger maximalt virmeflode
vid given temperaturamplitud. Figur 5.2.14 visar sambandet mellan " och
o for detta optimum.

h for Amin
15 =
// .
14
L1
13
12
11
10 fo
0 0.05 0.10

" Figur 5.2.14. Samband mellan r1 och o vid minimum for A som funktion

av Y‘1.
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5.2.4.3 Approximativa formler

Rorradien RO dr i médnga tilldmpningar mycket mindre &n intrdngnings-
djupet do. Den dimensionsldsa radien o blir d& mycket mindre &n ett.

For smd o galler foljande approximation:

A.e By n(;ﬁi) -y -

- KI(r1) Y = 0.5772 (5.2.4.6)
0

ESE ]

Felet for ro < 0.3 dr hogst n&gon procent. Funktionen KI(r1) visas i
figur 5.2.15. Den ges &dven i tabell 5.2.3.

vy [Re(KI(ry)} | Im{KI(r )}| ry Re{KI(r)}| Im(KI(r )} ry | Re{KI(ry)}| ImKI(ry)}
01| 3.7 199. | 1.81 o0.32 5.91072 | 5.0 -1.9.107% | 2.3.107°
0.2 2.48 9.2 |1.9] o.28 2.0.107% | 5.2 |-8.6-107% | 2.1.1073
0.3| 2.07 2.4 | 2.0] 0.3 | -9.8-107% | 5.4 [-2.0-107% | 1.7.1073
0.4 1.78 1.7 J2.2] 017 |-4.7.002 | 56| 2.00107% | 1.2.1073
0.5| 1.56 7.0 24| o | -6.3.1072 | 5.8 4.00107t | e.5.107
0.6 1.38 4.80 | 2.6 6.84107% | -6.6-107% | 6.0 4.7.107% | s5.3.107¢
0.7 ] 1.22 3.33 | 2.8 3.6.1072 | -6.0.107% | 6.2 4.5.107% | 2.9.107
0.8] 1.09 2.39 | 3.0] 1.5.107% | -5.0.107% { 6.4 3.8.107% | 1.1.107%
0.9 0.97 174|320 6.1107% | -3.9.107% | 6.6 | 3.0.107% | 2.9.107®
1.0] 0.87 1.29 | 3.4 ]-7.401073 | -2.9.1072 | 6.8 2.2.107% | -6.0.107°
1.1 0.78 0.9 [ 3.6 -1.1.1072 | -1.9.1072 | 7.0| 1.5.107% | -8.9.107%
1.2]  0.69 0.7 | 3.8 |-1.2.1072 | -1.2.107% | 7.5 | 2.6.107° | -7.9.107°
1.3 0.62 .52 | 4.0 |-1.1.107% | -5.9.1073 | 8.0{-1.5.107° | -3.8.107°
1.4  0.55 0.38 | 4.21-9.1.1073 | -2.0.10% | 8.5 | -1.8+107% | -9.3.107°
1.5 o0.48 0.27 {a.a{-7.00102 | 42107 | 0.0 -9.60107 | 2.2.10°°
1.6 | 0.42 0.18 | 4.6 |-5.0-107% | 1.7.107% | 9.5|-2.9.107% | 3.9.107®
.71 0.37 0.11 | 4.8(-3.2.107% | 2.3.107 {10.0) 1.4.1077 | 2.4.1070

Tabell 5.2.3. Funktionen KI(r1) i formel 5.2.4.6.

(n{Re{KI{r)} tnlImdK e, )
12 6
10 5 2
08 . i
Re(Kl(r,}} 1\ /Im(‘KIlr,))
067 > . N
Im{KIir,)) v 1-2><\\\\§S;\?z i
04 2 N RetKig)
1[—— n (-Z—)-y W |
02 |, Sy
—~—
0 ™ 0 1 ;
0 { : —]
-02 y L i '
0 : 05 U 08 10 12 w16 18 20 22 2 "

Figur 5.2.15. Funktionen KI(r1) i formel 5.2.4.6.
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For smd vdrden pa " galler approximationen

KI(r,) = 1n(g%> Sy s % " 1(&% - %) (ry < 1) (5.2.4.7)
1

Felet dr maximalt ndgra procent for ry < 1. Approximationen visas av de
streckade linjerna i figur 5.2.15.

For stora vdrden pa " gadller approximationen

KI(ry) = e /2T L 3 (qhy) (5.2.4.8)
44?7 "

Felet dr maximalt nagra procent for * > 3.

Approximationerna 5.2.4.6,7 ger tillsammans det enkla uttrycket

Blw

+ > (ro < 0.3, ry < 1) (5.2.4.9)

. R
A-e-]BzM /R—‘|> -
\ 0 i s

Ackumulerad vdrmemangd i cylinderregionen ges av dennas medeltemperatur
T (t). Medeltemperaturen kan for RO <K R1 skrivas:

m
41 2 2nit/t
Tm(t) =y e 0 (5.2.4.10)
1 Y‘1
Formlerna 5.2.4.9, 4, 1 och 10 ger
q R :
Te(®) - T(6) = b Lin (g - ) FTT %
T 0 (5.2.4.11)

(ry €0.3, ry < 1)

Vi har ett enkelt samband mellan varmeflode och den drivande temperatur-
differensen TR(t) - Tm(t).

5.2.4.4 Rormotstand mp

Vara formler har relaterat varmeflddet till temperaturen TR’ dvs tem-

peraturen i marken vid roret. Varmebararfluiden har temperaturen Tf(t).



Lat m, (K/(W/m)) vara varmemotstandet mellan fluid och mark riknat per
meter ror. D3 gdller:

Te(t) - Tp(t) = q(t) = m) (5.2.4.12)

Mellan fluidtemperatur och vdarmeflode far vi dé& enligt formlerna
5.2.4.12,4 foljande samband

99 -iB 2nit/t
Te(t) = 5 - {A e Py mmp} .e 0 (5.2.4.13)

5.2.4.5 Tvd exempel

For att illustrera dessa formler skall vi ta ett exempel med granit och
ett med lera. Periodtiden dr ett &r. Vi har foljande data:

to = 1 &r

6 2

Granit: a = 1.62 .10 /s A= 3.5 Wm-K
(5.2.4.14)

lera:  a=0.4-10"% m¥s A= 1.0 W/m K
Intrangningsdjupet d0 blir

Granit: d0 =4.03 m Lera: dO =2.00m
Vi tar foljande dimensionsligsa radier:

re = 0.01 ry =1
D& gdller enligt figurerna 5.2.11-12:

A=4.4 B = 0.498
Rortemperaturen blir da:

To(t) = % . 401 ol(2Tt/t, - 0.498)
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Fasfordrojningen dr:

0.498 _
ot to = 29 dagar

For granit valjer vi
qq = 100 W/m
Rortemperaturens amplitud blir da

9 100 0
'2—“—)\- A = ZTT' .5 4.41 = 20.1 C

AmpTlituden hos medeltemperaturen blir enligt formel 5.2.4.10

9 2 0
Zeuir i 9.1 *C
r
1
Vi har da:
a(t) = 100 eZnit/tO (W/m)

. 0
To(t) = 20.1 i(2nt/t - 0.498) (°c)

T (1) = 9.1.el (21t = n/2) (°c)

De tva radierna blir:

°" /3 Tz

For leran valjer vi
9 = 20 W/m

Rortemperaturens amplitud blir da:

91 0
mA=14.0 C



13—BS

Medeltemperaturens amplitud blir:

q
s = 6.0
T r
1
Vi har da:
Zﬂit/to
g(t) =20 « e (W/m)

i(Zﬂt/t0—0.498)

To(t) = 14.0 - e (°c)
i(Zﬂt/tO-w/Z) o
T,(t) =6.4 - e (°c)
De tvd radierna blir:
rodo r1do
R = = 0.014 m R1 = =1.41 m
° /2

Approximativa formler kan tillampas for detta fall. Vi har:
ro = 0.01 r, =1
Formel 5.2.4.6 och tabell 5.2.3 ger nu:

KI(1) = 0.87 + i-+1.29

-iB _ 2 _ Cem o R
Ae =1n <5T5T> 0.5772 iz 0.87 i«1.29
= 3.85 - i.2.08
-i+0.50

4.38 e

Detta stammer vdl med de varden som kan avldsas i figur 5.2.11-12.

For att illustrera optimaltval av R1 tar vi fallet:

ry = 0.02
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Enligt figur 5.2.14 erh&lles optimum for
ry = 1.20

Detta ger i de tva fallen

. 1.10-4.03
Granit: R, = ———"-= =34 m
! /2
1.20.2.00
Lera: R, =———==1.7m
L a
For granit far vi nu:
2ﬂ1t/to

g(t) = 100 - e

1(2wt/t0—0.359)
19.6 - e

—
=
—
+
~—
L

i (ZTTt/tO‘TT/Z)
T(t) =6.3-¢
Motsvarande vdrden for lera dr:

Zwit/to
g(t) =20.e

1(2vt/t0-0.359)
TR(t) = 13.7-e

i(Zwt/tO-n/Z)

-—
—
“+
~—
[l

4.4.¢



5.3 Vdarmeuttag via ror. Stegpulsanalys.

Manga markvdrmesystem utnyttjar ror, slangar eller borrhdl for uttag
och til1forsel av virme. Lokalt ndra ett sddant ror far man ett viasent-
1igen radiellt temperaturforliopp. Effektuttaget dr en funktion av
tiden: q = q(t) (W per meter rbr). Vardet pd q blir negativt d& vdrme
matas ut i omgivande mark. Det d@r noll under viloperioder.

Vi skall i detta avsnitt visa hur man kan analysera det lokala temperatur-
forloppet och i synnerhet ange temperaturen TR(t) vid rorvdggen mot om-
givande mark.

5.3.1 Superposition

Givet ett effektuttag q(t) (W/m) till ett ror i mark. Detta effektuttag
ger upphov till en dynamisk radiell temperaturprocess kring ridret. Over-
lagrat p& detta finns sedan andra delprocesser som t.ex. hdrrgr frén

andra ror eller andra delar av samma ror. Det dr bara den renodlade
radiella processen som behandlas har.

Det enklaste slaget av effektuttag ar en stegpuls. Effekten q(t) for en
stegpuls som startar vid t = 0 ges av:

0 t<0
q(t) =
qg t>0 (5.3.1.1)

Hir dr q konstant. For stegpulsen, som behandlas i ndsta avsnitt, finns
en forhdllandevis enkel analytisk ldsning.

En effektpuls med storleken <P under en tid t1 <tz t2 kan genom super-
position ses som summan av tvd stegpulser. Se figur 5.3.1.

Temperaturfdrloppet och rortemperaturen TR for effektpulsen ges av
summan frén de tvd stegpulserna.
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[N
-
l -j

Figur 5.3.1. Superponering av tvd stegpulser till en effektpuls.

Mer komplicerade effektuttag q(t) kan byggas upp med hjdlp av effekt-
pulser. Figur 5.3.2 visar ett exempel som ger tre pulser.

Figur 5.3.2. Exempel pd superposition av effektpulser.

Det totala forloppet q(t) kan siledes ses som en summa av ett antal
stegpulser. I det kontinuerliga fallet Gvergdr summan i en integral.
Det totala temperaturforloppet for ett effektuttag q(t) ges som en
summa av temperaturférlopp for olika stegpulser.

5.3.2 Analytisk 10sning for stegpuls.

Figur 5.3.3 visar forutsdttningarna for den studerade stegpulsen. Roret
1igger 1ldngs y-axeln. Den omgivande marken har varmeledningsformdgan A
och temperaturledningstalet a. Marken tinkes odandligt utstrdackt &t alla
hall. Effektuttaget ges av formel 5.3.1.1. Temperaturen i marken 3r
noll vid starten t = 0 dd enbart effekten av uttagspulsen studeras.



z

0

Figur 5.3.3. Stegpuls.

~—

a(t

R

Temperaturen i marken blir en funktion av det radiella avstandet

r= /x% + z2 ti11 réret och av tiden. Losningen ges i referens 102 B.
Trt) = - -4 . E (%) (5.3.2.1)
22D T T Iy T 1 \Gat) e

(5.3.2.2)

Tabeller och samband for denna funktion ges i referens 103 A,

Uttrycket 5.3.2.1 &r enkelt. Temperaturen dr en funktion enbart av
rz/(at). Vi tar foljande numeriska exempel:

1.5 W/m-«K

>
H

10 W/m

O
1]

a=0.75.107% m?ys

(5.3.2.3)

De resulterande temperaturprofilerna vid olika tider visas i figur

5.3.4. Temperaturforloppet for olika avstand r visas i figur 5.3.5.

Vi dr intresserade av radiell temperaturprofil och av utvecklingen i

tiden pd olika avstand r. Vi infor ddarfor tvd representationer av

1osningen 5.3.2.1.

T(r,t) =

>lo
B
rm
=
TN
> l‘
jut
N

T(r,t)

1]
> |
.

m
-+
TN
= ‘QJ
Ol e+
SN

(5.3.2.4)

(5.3.2.5)
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Er och Et ges da av:

2
_ o1 s .. 1
E(s) = - 4= E,(5) E () = - 7o E,(5) (5.3.2.6)
T(et (0 T ) (°C)
0 0 05 1r(m) 0 0 1 2 3 b
1 1r — —
1§;;;~:::: — pis T T ]
7 6 90days_—1" | _L—r—T |
%
-1 /[11224hours /// lyear —
L hyears

/7
i/ /i

/

-5

-3

Figur 5.3.4. Temperaturprofiler vid olika tidpunkter for stegpulsen. Data
enligt 5.3.2.3.

T(r,t) (°C)
0 . m2 1 2 4
0 ~——first month ——— t (years)
5 r=01_|
=002 |

Figur 5.3.5. Temperaturutveckling pa oh‘ka‘ avstdnd fran roret for steg-
pulsen. Data enligt 5.3.2.3.

Funktionen Er(s), s = r//at, ger den radiella variationen for given tid.
Den ges i tabell 5.3.1 och figur 5.3.6.

r{m)



S l 0.001 0.002 0.005 0.01 0.02 0.05 0.1

Er(s)|-1.164 -1.053 -0.908 -0.797 -0.687 -0.541 -0.431

s l 0.2 0.5 1 2 5 10

N 0
E.(5) | 0321 -0.180 -0.083 -0.018 -2.2.107° -4.3.107"

Tabell 5.3.1. Temperaturprofilfunktion E (s), s = r/ /at, for steg-
pulsen.

Epls)

-01 —

-05 /

Figur 5.3.6. Temperaturprofilfunktion Er(s) for stegpulsen.
For stora s gdller asymptotiskt:
E(s) ~ - — R (s > 5) (5.3.2.7)
r - s e e
Temperaturen 1angt ut blir extremt liten p& grund av exponentialfaktorn.
Temperaturen beror p& r/ /at. Lingden /at &r sdledes ett mitt pd in-
fluensomradet kring réret. Temperaturpdverkan dr ytterst liten i om-

radet r/ /at > 3. L3t oss ta foljande numeriska exempel:

a=0.75.107% m?/s
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Influensradien vat blir da:

t 1 min 10 min 1 tim 1 dygn 1 vecka
/at (m) 0.007 0.02 0.05 0.25 0.67

t 1 mdnad 3 mdnader | &r 3 ar 10 &r
vat (m) 1.4 2.4 4.9 8.4 15

Funktionen Et(r), T = at/rz, ger temperaturforloppet i tiden for given
radie. Argumentet t dr en dimensionslds tid. Funktionen ges i figur 5.3.7.

E*h)
-2 -1 0 1 2 3 Inlv)
01 | 3] . 1 3 10 '
\\\
\\\ 1
-0 \\/ ﬂ(]n(4T) Y)
" )
N
N
\Y
\\
-0.2 <

Figur 5.3.7. Funktionen Et(T), T = at/rz, som ger temperaturutvecklingen
for given radie enligt formel 5.3.2.5.

For stora vdrden pd 1 gidller foljande formel:

1 (1 1 )

Ey(r) = - 11? (In(41) - v) - T (& - 5 (5.3.2.8)

T 161

dar y = 0.5772 Eulers konstant (t> 0.5)

Maximalt fel dr 1% for ¢ 2> 0.5. Speciellt erhdlles foljande anvandbara
uttryck:

Eilr) =~ - 41—” (In(4t) -v) = 2>5 (5.3.2.9)

Maximalt fel dr 2% for «

R%
&
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Foljande exempel visar tidsskalan r’/a for olika avstand (r = t/(rz/a)}.

a=0.75-10"% /s

r (m) 0.01 0.03 0.05 0.10 0.5 1

‘rz/a 2 min 20 min 1 tim 4 tim 4 dagar 15 dagar
r (m) 2 5 10 25 100

r2/a 2 man 1 ar 4 ar 2 &r 420 ar

Denna tabell dr larorik.

Temperaturen i marken strax utanfor roret eller vid brunnsvéggeh betecknas
TR(t). Cirkeln r=R ger rorets ytterradie eller brunnsviggen. Virmebirar-
fluiden i roret eller brunnen har temperaturen Tf(t). Det totala varme-
motsténdet mellan fluid och mark betecknas m (pipe). Det raknas per
meter ror eller brunn. Dimensioner blir d& K/(W/m). Sambandet mellan T

f?
och TR ar:

Te(t) = Tp(t) - m -+ q(t) (5.3.2.10)

Var 10sning for stegpulsen kan tilldmpas i marken utanfor réret, r > R. Vi

dr speciellt intresserade av rirtemperaturen TR’ dvs. temperaturen i marken

strax utanfor roret. Formel 5.3.2.5 ger:

at
—?) (5.3.2.11)

Lat oss ta foljande exempel:

0.75-107° mé/s

>
"

1.5 W/m+K a

(5.3.2.12)
10 W/m

-
I

0.02 m

L
il

D& erh&lles:

R%/a = 533 s = 9 min 9 = 6.7°C
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Approximationen 5.3.2.9 gdller efter 45 min:

t t 3

Tp = ~1.44 - 0.53-In(3557) 200> 1
t l 1 tim 5 tim 1 dygn 1 man 1 &r
T, (°C) ‘ -1.4 -2.3 -3.1 -5.0 -6.3

Exemplet visar att approximationen 5.3.2.9 kan anvandas efter ganska kort
tid:

T(t) = - g% On (3 - ) (1> (5.3.2.13)

Den analytiska 18sningen 5.3.2.1 for en stegpuls forsummar detaljstruk-
turen ndra roret. Strikt matematiskt erhdlles stegpulsens effektuttag for
r=0. Det visar sig vid en mer detaljerad analys att den givna 16sningen ar
tillampbar efter en viss begynnelsetid. Ett rimligt val av denna tid ir

t = 5R2/a. Se referens 9 (i kap 6). Som allman restriktion for tillamp-
barheten av vér stegpulsanalys i detta avsnitt 5.3 har vi kravet:

2
t>5.R

(5.3.2.14)

Detta innebdr att formel 5.3.2.13 alltid kan anvindas. En analys for
kortare tider dn dessa krdver bl.a. att man tar hinsyn till varmekapacitet
hos vdrmebdraren i rgr eller brunn. Exemplet 5.3.2.12 kan gdlla ett system
med plastslangar i lera. Tidsgrénsen for detta fall blev 45 minuter.

FOr en bergborrad brunn kan f51jande data vara representativa:
-6 2
R = 0.055m a=1.6410 " m"/s (5.3.2.15)

Detta ger tidsgrdnsen:

RZ
t>5. ol 2.5 timmar



5.3.3 Avklingning efter en effektpuls
Varmeuttaget q(t) for en effektpuls som startar vid t=0 ges av:

q 0<t<t,
q(t) = (5.3.3.1)
0 t > t1 (och t < 0)

Fran marken erhdlles en konstant effekt g (W/m) under pulstiden 0 < t < t
Harefter dr vdrmeuttaget noll. Processen for t > t1 representerar avkling-
ningen efter en effektpuls.

Effektpulsen kan genom superponering ges som summan av tvd stegpulser.
Den forsta startar vid t=0 med effektuttaget q. Den andra startar vid

t=t1 med effektuttaget -q. Under den forsta perioden 0 < t < t1 galler
stegpulsanalysen i foregdende avsnitt. Temperaturen runt rdret ges av

formel 5.3.2.1.

Temperaturforloppet under avklingningen blir genom superposition:

2 2

__ 9 roy o r )
T(r,t) = ey {E1(13%) E1(E§(f:f?7)} (t> t1) (5.3.3.2)
Speciellt ges rortemperaturen TR av logaritmapproximationen 5.3.2.13. Vi
far foljande ytterst enkla formel:
t

——)

t t1

) (5.3.3.3)

- -9
TR(t) - [R5 In(

Som exempel tar vi féljande fall:

A= 3.0 WmeK  a=1.4.100%n%s  R=0.055m
(5.3.3.4)
q = 20 W/m t1 = 30 dagar
D& galler:
22

o
|
i
I

; 9 - 0
3.0 timmar Tk 0.537C

5.73
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Under effektuttaget galler d& enliigt formel 5.3.2.13:

_6 \ -
Ta(t) = - 720 <1n<4'1'4'10 S5 - 0.5772)
m (0.055)
= 3.64 - 0.53 In(t) (3 tim < t < 30 dygn)

Vid avklingningen gdller enligt formel 5.3.3.3:

To(t) = -0.53 - 1n (f;%T> (t > 30.1 dagar)
Detta ger:
t (dagar) | 0.5 2 10 30 30.5 32 35
Ty (°0) -2.0 -2.8  -3.6  -4.2  -2.2 -1.5 -1.0
t (dagar) | 40 60 90 120 180 365
T, (°0) -0.7 -0.4  -0.21 -0.15 -0.10 -0.05

5.3.4 Superponering av effektpulser

Genom superponering kan nu fallet med ett godtyckligt antal effekt-
pulser 18sas. Effektuttaget, q{t), dr konstant under givna tidsintervall:

0 t <t
q1 t1 <t < t2
q(t) = ay t, <t <ty (5.3.4.1)

Dé tiden t Tigger i det n:te intervallet blir temperaturen:



tn <tK tn+1
I formeln har uttryck 5.3.3.2 omvants for pulserna 1,2,..., n-1 och
uttryck 5.3.2.1 for den pagdende pulsen. En alternativ form for
5.3.4.2 ar:

T(r,t) = - (5.3.4.3)

{o~13

Gy (AP )

Trn . ©1 \Za(t-t.)

i=1 i

(g, = 0)

Den forsta termen hdarror frén stegpulsen ay (= a - qo) vid t = t,.

Ndsta term, dvs. andra termen i summan, hdrrdr fran den vid tiden t = t2

overlagrade stegpulsen 9p - dy-

Rortemperaturen TR blir med anvandning av formlerna 5.3.3.3 och
5.3.2.13:

— <1n\___7?.4<*} -y (5.3.4.4)

y = 0.5772

Alternativt kan detta skrivas:

— ) - Y) (5.3.4.5)
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infores en referenstid tp kan 5.3.4.5 skrivas:

a, 4atp
TR(t) = - E?K’<]n< R2 ) - 0.5772>
mo9i9ig L Y
-3 In ) (5.3.4.6)
i1 Y \ tp
RZ
(g, = 0) (t, + 53 Tttt y)
- _ -6 2
Exempel. » = 3.5 W/m.K a=16-10 " m/s
R =0.05m

Effektuttaget dr foreskrivet for perioder om ett kvarts &r. Under
sommarperioden tillfdres berget varme.

~

10 (W/m) host 1 (3 m&nader)
30 vinter 1 "
q(t) =4 15 var 1 "
-10 sommar 1 "
10 host 2 "
osv
Vi fér med referenstiden tp = 3 mdnader:

1 4a

o)
) - 0.5772) = 0.208

Temperaturen vid brunnen ges av formel 5.3.4.6. Vi tar t1 =0,
t2 = tp osv.

1. Host 1, 0<t< tp

2
- 208 - cn (B R
T = -2.08 - 0.227 + In <t/ <t>5 a)

p




2. Vinter 1, t <t<2. tp

P

T. =

. - [t
R T 7624 - 0.227 In (g~

'

-0.454

3. var 1, 2t <t < 3tp

p

+\
T. = !
t
o/

R = ~2.08 - 0.227 In (

- 0.454 n (i - ) +0.340 1n <L B} 2)

T
p &
4. Sommar 1, 3tp <Ct< 4tp
_ _ [t
Tp = 2.08 - 0.227 In &)
0.458 1n (- - 1) + 0.340 1n (l -
\t J t
p p
+ 0.568 1In ({“ - 3)
D /

Osv.

Nedanstdende tabell visar n&gra virden

for TR enligt ovanstédende

formler.

t/tp 0.01 0.1 1 1.01 1.1 2

TR (OC) -1.03 -1.56 -2.08 -4.15 -5.22 -6.40
t/t 2.01 2.1 3 3.01 3.1 4

TR (OC) -3.81 -3.07 -2.64 -1.10 0.21 1.50
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5.3.5 Pulstédg

Ett viktigt specialfall dr en sekvens av likadana pulser, ett pulstig.
Periodtiden, dvs. tiden mellan tvd pulsers start, &r to' Léngden av
pulserna ar uto, 0 <a < 1. Pulstdgets medeleffekt dr 9, (W/m). Effekt-

uttaget for pulserna blir da qo/a. Se figur 5.3.8.

q(t)
i=1 i=2 i=3 i=4

q

o ://

a

q07///____ ___.__._____/_. 0<a< 1
/ ¢

o at t, 2t 3t

Figur 5.3.8. Pulstdg med medeleffektuttaget 9y-
Rortemperaturen TR erhalles genom superposition enligt det ovan sagda.

Exempel. to = 1 dag 9, = 10 W/m a = 1/3

(5.3.5.1)

6 2

A= 1.5 Wm-K a=0.75-10" m/s R =10.02m

Beraknad uttagstemperatur visas i nedanstdende figur. Den streckade

Tinjen visar TR(t) for konstant effektuttag q(t) = 9o

q{Wim)
0 1 2 3 A 3 3 5 % %5 %
RC

0 1 2 3 A S 6 9 10 49 0

0

t(days)

3 t({days)
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1 exemplet ovan oscillerar rértemperaturen for pulstdget kring den
streckade kurvan for medeleffektuttaget q(t)= 9 - Den transienta &ndring-
en fréan puls till puls forsvinner efter ett fdtal pulser. Oscillationen
kring medeleffektkurvan dr i stort likadan under den 5:e, 10:e och 50:e

dagen.

Dessa oscillationer representerar effekten av pulsationen. Denna del
skall dverlagras bidraget fran medeleffekten g(t) = -

De formler som ges nedan gdaller bdde for rdrradien r = R och for god-
tyckliga andra avstand r. Lat T9(r,t) beteckna bidraget fran konstant
effektuttag dg- Formel 5.3.2.1 ger:

q 2\
0 __ Y r
°(r,1) = - 2% E, <_—4at) (5.3.5.2)

Den dverlagrade oscillerande delen betecknas T*(r,t). Den totala tempera-
turen frén pulstdget blir da:

T(r,t) = T2(r,t) + T*(r,t) (5.3.5.3)

Figur 5.3.9 visar de tvd komponenterna.

T(r,t)
to 2tO .
n To(r;t) - i
- ////////”’EZJ
ey Ty E

Figur 5.3.9. Temperatur T(r,t) fran ett pulstdg. Definition av extrem-
vardena E% och E;.

Vi dr framfor allt intresserade av extremvdrdena for oscillationen T*.
Dessa erhdlles vid slutet av varje puls (E% for puls i) och i slutet av
varje period strax innan ndsta puls startar (Eg for period 1). Se figur
5.3.9. En dimensionsanalys visar att E% och E? blir funktioner av
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rz/(ato) och a. Vi har d&
T*(r, t_(i-1) + t)«-q-o-
> "0 e LAY
q
« T
T(r, to1) T TR Ei \at0

De tvd funktionerna E% och E; visas
i = 5. Normalt rdcker det med dessa
med i dr mattlig.

£ (%i , cx) (5.3.5.4)
o)
)

i figur 5.3.10-13 for i = 1 och

tvd i-vdrden eftersom variationen
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Figur 5.3.10. Pulstdgsfunktion E1' for forsta cykeln. Se formel 5.3.5.4 och
figur 5.3.9.
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Figur 5.3.11. Pulstdgsfunktion E? for forsta cykeln. Se formel 5.3.5.4 och
figur 5.3.9.



Figur 5.3.12. Pulstdgsfunktion E'5 for femte cykeln. Se formel 5.3.5.4 och

figur 5.3.9.
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" for femte cykeln. Se formel 5.3.5.4 och

Figur 5.3.13. Pulstégsfunktion E5

figur 5.3.9.



5.4 Temperaturavklingning av ett uppvdrmt omréade

De transienta och periodiska forloppen utanfor en lagervolym har be-
handlats i avsnitt 5.1-2. Temperatur eller vdrmefldde dr d& givna pa
lagervolymens begransningsyta mot omgivande mark. I detta avsnitt skall
temperaturforioppet i och kring en uppvdarmd markvolym studeras. Se
referens 8. Friagestdaliningen gdller hur snabbt temperaturen i en upp-
varmd zon sjunker.

Lagerzonen vdarms under en given laddningsperiod. Darefter ldmnas lagret
ostort fram till dess att vdrmeuttaget p&bdrjas. Varmeledning i och kring
lagret ger en med tiden sjunkande temperatur.

Vi skall i det foljande studera ett fall ddr lagerzonen initialt har en
konstant temperatur T1.Omgivande mark har begynnelsetemperaturen TO.
Vid markytan dr temperaturen To' Marken har homogena termiska egenskaper.

Detta enkla fall &ar mycket anvandbart. Antag att vi har ett dynamiskt
temperaturforliopp i lagret och i omgivande mark. Lagret ges sedan en

extra temperaturhojning. Den totala termiska processen dr en superposition
av det ursprungliga forloppet och 16sningen till den adderadé temperatur-
hojningen. Avklingningen av den adderade 1dsningen, dvs. av den extra
temperaturhdjningen, @ fullstdndigt oberoende av den ursprungliga termiska
processen.

Denna superpositionsteknik anvands for att berdkna temperaturavklingningen
i ett vdarmelager. Vi infor en dimensions1os temperatur u definierad av

T(x,y,z,t) = T+ (T4=T )« ulxsy,2,t) (5.4.1)
Temperaturavklingning rdknas fran en momentan temperaturhdjning vid tiden
t = 0. Om vdrme til1fdres under en given laddningsperiod raknas Tampligen
tiden for temperaturavklingningen frdn laddningsperiodens mitt.

5.4.1 Lager pd stort djup

Har behandlas de fall ddr lagret dr beldget p& ett stort djup. Det
termiska forloppet i lagret péverkas ej av forhdllanden vid markytan.
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5.4.1.1 Endimensionellt plant fall

Det ehdimensione11a plana fallet ger en fundamentalldsning som anvinds
for analys av flerdimensionella problem. Detta fall kan dessutom an-
vindas for att uppskatta viarmeforlusten fran ett lager med stor horison-
tell utstrdckning i forhd1lande ti11 dess tjocklek i vertikalled. Virme-
transporten i lagret dr d& huvudsakligen vertikal. Lagret har en tjock-
Tek L och befinner sig i en odndlig omgivning -» < x < =. Lagrets mitt-
punkt befinner sig i origo. Se figur 5.4.1. Vi infor en dimensionslds
tid © och en dimensions1os Tangdkoordinat x':

_ dat VX
s x'= % (5.4.2)
X
L2
0 L
L2
7
Figur 5.4.1. Endimensionellt plant fall.
Temperaturen i omr&det ges av referens 102 D.
u(x,t) = f(x',t)
(5.4.3)

f(x',1) = %» {erf (gjfiﬁl> + erf (ngéil)}

T T

Beteckningen erf avser felfunktionen. Se referens 10.3.B eller avsnitt
3.6. Funktionens f(x',t) ges i figur 5.4.2.

Temperaturen i lagrets mittpunkt ges av

u(0,t) = erf( ) (5.4.4)

2 /4at
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Figur 5.4.2. Temperaturavklingning for det endimensionella plana fallet.
x' = x/L, © = dat/L2

Vid lagrets gransyta (x = :%) mot omgivningen gidller
1 L
u(+L/2,t) = = erf (—————) (5.4.5)
v dat

Energiinnehdilet i lagret dr direkt proportionellt mot medeldvertemperaturen
i lagret. Genom att integrera formel 5.4.3 erhd11s medeltemperaturen:

f (1)

um(t) m

f (1) = erf (71:) - /%—(1-6 %) (5.4.6)

T

Funktionen fm(r) ges i tabell 5.4.1 och i figur 5.4.3.

fn ()
1 \
\
05
-\.\_..
% 1 2 3"

Figur 5.4.3. Avklingning av medeltemperaturen for det endimensionella
plana fallet.
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T 0 0.001 | 0.01 0.05 c.1
fm(T) 1 0.982 | 0.944 | 0.874] 0.822
T 0.25 0.5 0.75 1 1.25

f (t) | 0.718 |0.610 | 0.538 | 0.486 | 0.447

f (z) | 6.415 |0.369 ] 0.308 | 0.244 ] 0.17%

T 0.0003 }0.031 | 0.19 | C.97 4.8

f (t) ] 0.99 0.90 0.75 0.50 0.25

Tabell 5.4.1. Funktion fm(T) som ger lagrets medeltemperatur for det
plana fallet.

For sm& och stora varden pd t galler féljande asymptotiska uttryck:

(5.4.7)

Exempel 1. Ett grundvattenskikt med tjockleken L uppvarms till 50°C. Tem-
peraturen i omgivande mark &dr 10°C. Lagringsperioden ar 6 mana-
der. Marken antas ha homogena termiska egenskaper med vdrmeled-
ningsformdgan 2 W/mK och vdarmekapacitiviteten 2 MJ/m3K.

Grunddata
t = 6 manader = 15.768-10° s
a=2/C=1-10"% /s

Vi infor en karakteristisk langd for systemet:
Lt = Y4at = 7.9 m

v = dat/t? < (L2 = (7.9/1)°
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Varmeforlusten ar proportionell mot medeltemperaturens avklingning
for skiktet. Energiinnehdllet rdknas relativt den ostorda marktem-
peraturen. Varmeforlusten for ndgra olika vdarden pd tjockleken

L ges i tabell 5.4.2.

L (m) 2 4 8 16 32
T 15.6 | 3.90 { n.9¢ | 0.24 | 0.061
virmeférlust (%) 86 73 51 30 14

Tabell 5.4.2. Vdarmeforlust fran ett grundvattenskikt med tjock-
leken L efter 6 manader.

Detta illustrerar storlekens betydelse for lagrets effektivitet.
Det krdvs i detta fall en tjocklek pd 8 meter for att ungefdr
halva energimangden skall dterstd efter 6 manader.

Exempel 2. Figur 5.4.4 visar ett lager som dr beldget omedelbart under ett
hus. Lagret har tjockleken D. Lagrets sidor och Gveryta &r isole-
rade.

Figur 5.4.4. Lager beldget omedelbart under ett hus.

Lagret uppvarms under ett initialskede till temperaturen T1.
Begynnelsetemperaturen i omgivande mark ar To' Varmeflodet dar
huvudsakligen endimensionellt. Antag att varmeflodet genom iso-
leringarna kan forsummas. Varmeflodet dr d& noll vid x=0 i 10s-
ningen (formel 5.4.3) p.g.a. symmetri. Losningen till detta exempel
ges om vi sdtter L=2D. Medeltemperaturen i lagret ges av formlerna
5.4.1. och 5.4.6:
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T(t) =T + (T1-T0)-fm(4at/4D2)

Tabell 5.4.3 ger den tid d& 50% av lagrets varme har forlorats
for olika tjocklekar.

t1/2 1 dag | 1 vecka | 1 mdnad | 3 m&nader | 6 minader

I
™~y

D (m) ] 0.3 0.82 1.7 2.9

Tabell 5.4.3. Lagringstid t1/2 vid vilken 50% av varmen har for-

lorats. a = 1.107° mz/s.

Aterigen ser vi storlekens betydelse for lagrets effektivitet.

Det bor observeras att endimensionellt vertikalt fldde har forutsatts rida
fOr dessa exempel. Avvikelser frin detta antagande, d.v.s. flerdimensionella
effekter, kommer att Gka forlusten frén lagret.

5.4.1.2. Parallellepipediskt lager

Lagret har formen av en parallellepiped med kantldngderna Lx’ Ly, och Lz'
Lagret ges vid tiden t=0 en dvertemperatur i forhdllande till omgivande
mark.

Den dimensionsldsa temperaturen u ges som en produkt av endimensionella funda-
mentallosningar, formel 5.4.3, f6r de tre koordinatriktningarna.

4at
2
X

E

(Y dat
)+f (L,

ulx,y,z,t) = F(&,
X y L

—
—

t
7) (s 50 (5.4.8)
y Z bz

Funktionen f(x',t) definieras av formel 5.4.3. Medeltemperaturen erhdlils
genom integration av formel 5.4.8:

_ dat 4at 4at
Um(t) = fm(L—Z‘)'fm(L—Z—)'fm([‘Z—) (5.4.9)
X y z



Funktionen f(t) dr definierad av formel 5.4.6. Den ges i figur 5.4.3
och i tabell 5.4.1. For smd och stora vdrden pd 7 kan formel 5.4.7
tillampas.

Exempel. I figur 5.4.5 jamfors temperaturavklingningen for kub, kvadrat
och oandliga platta.
Vi har foljande data:

I. Lx = Ly = LZ =L (kub)
II. LX = 4o, Ly = LZ =L (kvadrat)
III. LX = Ly = 4o, LZ =L (platta)

Figur 5.4.5. Temperaturavklingning for kub (I), kvadrat (II) och
odndlig platta (III).

Betrakta varmeforlusten vid den tidpunkt d8 hdlften av vdrme-
innehd1let forlorats i det endimensionella fallet. For kvadraten
har d& 3/4 av vdrmen forlorats, emedan kuben har forlorat 7/8.
De tvd- och tredimensionella effekterna kan som synes vara be-
tydande.

Hdr ges ndgra numeriska exempel.

a=2/C=1-10"8ns t = 6 minader v3aT = 7.9 m
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L Ly L, um(t)

151 15 | 15 0.70+0.70-0.70 = 0.34
151 15 1 10 0.70 - 0.70 - 0.57 = 0.28
151 15 5 0.70 «0.70 +0.33 = 0.16
20 1 15 5 0.77 -0.70 -+ 0.33 = 0.18
50 f 50 | 50 0.91-0.91.0.91 = 0.75
30§ 30 ¢ 30 0.85 -0.85 +0.85 = 0.61

Tabell 5.4.4. Temperaturavklingning for parallellepipedisk volym

med kantlangderna Lx’ Ly och LZ efter 6 manader.

Det framgdr av tabellen att temperaturavklingningen till stdrsta

delen bestdms av den minsta kantlangden.

5.4.1.3 Endimensionellt radiellt fall

Mdnga lagringssystem utnyttjar en volym som har formen av en cylinder

med vertikal symmetriaxel. Det tredimensionella temperaturfGrloppet for

ett sddant fall &ar en funktion av en radiell koordinat r och en vertikal
koordinat z. I detta avsnitt behandlas det rent radiella fallet for en
cylinder med stor hgjd.

L&t R vara lagre
tid:

Den dimensions1o

u(r,t)

For temperaturen
uttryck:

u({0,t)

ts

1
n
x| =5

Sa

.i

radie. Temperaturen beror av dimensions1os 1dngd och

1)
ps

(5.4.10)

—
n
™

R

temperaturen kan nu skrivas som:

g(r',t) (5.4.11)

cylinderns mittpunkt (r=0) gdller foljande enkla

1 -e Zat (5.4.12)
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Figur 5.4.6. Temperaturavklingning for det endimensionella radiella
fallet. r' = r/R, 1 = at/R%.

Vart huvudintresse avser temperaturavklingningen i Tlagringscylindern.

Varmeinnehd1let representeras av medeltemperaturen:

up(t) = g ()

dar

1
g (1) = 1-¢ & {IOG;) . 11<’217>} (5.4.13)

Har dr IO och I1 modifierade Besselfunktioner 103 C.
For smd och stora vdrden p& T har vi de asymptotiska uttrycken:

g (1)~ 1 -2 /= T <<
(5.4.14)

o
gm(T)"’T{ <1_71T} T >> 1

Temperaturen i lagrets centrum g(0,t) och medelvdrdet gm(r) ges i figur
5.4.7. Funktionen gm(T) ges aven i tabell 5.4.5.
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Figur 5.4.

1 \
\
05 49(0.7)

N

~

0% 05 t

7. Avklingning av cylindervolymens medeltemperatur, gm(T)’
och av temperaturen i centrum, g(0,t).

T 0 0.061 | G.01 0.05 | 0.1 0.25 | 0.5
gp(1) | 1 0.96 ] 0.90 | 0.75 | 0.65 | 0.48 | 0.33
T 0.75 |1 1.25 | 1.5 2.5 5 10
9o(t) | 0.25 fe0.20 | 0.17 | 0.14 | 0.09 | 0.05 | 0.02
1 8.107° | 0.008 | 0.05 | 0.22 | 0.75
Iplt) | 0.99 0.90 | 0.75 0.50 0.25

Tabell 5.4.5. Funktion gm(T) som ger laarets medeltemperatur for det

Exempel 1.

radiella fallet.

Ndr har 50% av vdrmen forlorats for ett cylinderformat lager
med radien R och med stor hojd?

a=1.107%n%/s v = 22 = 0.22 (tabell 5.4.5)
R
6
_0.22 2 0.22.10° 2
b= R =g - R (dvan)
. 2
t = 2.55 R™ dygn

For ndgra vdrden pd radien R erhdlls

R(m) 1 2 5 10
t(dygn) | 2.6 { 10.2]63.8 | 255.0




Exempel 2. L3t oss jamfora ett cylindriskt och ett kvadratiskt omride
med samma area:

L&t tC och tK beteckna den tid d& 50% av véarmen har for-
Torats i det cylindriska respektive kvadratiska fallet.
Fran figur 5.4.7 och figur 5.4.5 erh3lls

at, 4atK
_T: 0.22 _2= 0.27

R L

eller med samma area

2
_ R _0.27« R™ _
tg = 0.22 R ty = L2 LR g B

Det kvadratiska omrddet forlorar vdrmen nigot snabbare.

5.4.1.4 Cylindriskt lager

Lagervolymen har ofta formen av en cylinder med vertikal axelriktning.
Cylindern har ldgre vdrmefdriust dn ett parallellepipedformat lager med
samma volym och hdjd. Vid injektering av varmvatten via en brunn i en
akvifer fér det uppvarmda omr&det ofta naturligt formen av en cylinder.

Figur 5.4.8 visar ett cylinderformat lager i en odndlig omgivning.

Figur 5.4.8. Cylinderformat lager i en oandlig omgivning.

I15—BS
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Cylinderns radie och hojd betecknas med R respektive H. Begynnelse-
temperaturen ar T1 i cylinderregionen och T0 i omrddet utanfor denna.
Temperaturen &r en funktion av r, z och t. Lésningen kan uttryckas som
produkten av de 19sningar som ges i kapitel 5.4.1.1 och 5.4.1.3.

- - [r at). (E, dat
Tr,z,t) = T+ (T) - T) k> v s "z (5.4.15)
Funktionerna g och f ges i figur 5.4.6 respektive 5.4.2.

Varmeinneh&llet ges av medeldvertemperaturen i cylinderregionen. Medel-
vardet av formel 5.4.15 erh&11s ur medelvirdet av f och g. Vi har

T8 =T+ (T, - 7)) -gm<2—§> -fm<4—:21:) (5.4.16)
Funktionen fm(T) ges i tabell 5.4.1 och i figur 5.4.3. For sm& och stora
tider gdller formel 5.4.7. Funktionen gm(T) ges i tabell 5.4.5 och figur
5.4.7. Vdrden for sm& och stora tider erhd11s ur formel 5.4.14. Temperatur-
avklingningen for en cylinder ges av produkten av ett endimensionellt fall
med hojden H och ett radiellt fall med en uppvdrmd region 0 < r < R.

Temperaturavklingningen beror av tvd parametrar at/R2 och 4at/H2. Stor-
heten v/4at dr en ldngd. Temperaturavklingningen &r en funktion av Tangd-
forhdllandena v/ 4at/(2R) och v4at/H. Virmeforlusten beror siledes pa
storleken av ldngden /4at jamfort med hgjden H och diametern 2R pa
cylindern.

Temperaturavklingningen ges i figur 5.4.9. Axlarna dr ldngdkvoterna
v/ Bat/H och v7Zat/(2R). Varje kurvskaramotsvarar ett speciellt vdrde av
kvoten (Tm(t) - TO)/(T1 -T)).

o}
vhat
2R
05
In-To
hi=To &3
0.4

0.25 05
06

07
09 ¢
0 > Vhat

0 05 H

Figur 5.4.9. Temperaturavklingning for ett uppvarmt cylindriskt omréde.



Uttrycket 5.4.16 for medeltemperaturen kan forenklas om vi anvéander de
asymptotiska formlerna 5.4.14 och 5.4.7. Vi erhdller d&:

0 ~(1_1 /4at>{1_i »/Z[at)
A~ TV s R
(5.4.17)

viat , 1 /Rat , 1
(———H < Vi och >R < Z)

Felet ar mindre dn 1% inom angivna gréanser (v &at < H/2, R/2). Formeln
kan anvidndas nir (Tm - TO)/(T1 - TO) ar storre 3n 0.7.

Exempel. Vi tar fdljande vdrden

m-/s t = 6 manader

Nedanstdende tabell ger varmeforlusten for olika H och R.
Formel 5.4.16 och figur 5.4.3 och 5.4.7 har anvénts.

H R (Tm—TO)/(T1-TO) Forlust (%)
5 5 0.11 89
10 5 0.16 84
5 10 0.23 77
10 10 0.32 68
10 20 0.44 56
20 20 0.60 40
20 40 0.69 31
50 50 0.83 17

Tabell 5.4.6. Medeltemperaturavklingning och vdrmeforiust for
uppvarmt cylindriskt omrdde med hojden H och
radien R efter 6 ménader. (a = 1. 1076 mz/s.)

5.97

Vi ser &terigen att vdrmefdrlusten fran smd system dr mycket stor.
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5.4.2. Lager ndra markytan

I avsnitt 5.4.1 behandlades temperaturavklingningen for ett uppvarmt

omrade i en odndlig omgivning. Denna analys gdller endast for lager som

dr beldgna djupt under markytan. I detta avsnitt studeras lager pd mittligt
djup.

T=0

/
o

Figur 5.4.10. Temperaturavklingning for ett uppvarmt omride p& mattligt
djup under markytan.

Lagrets Overyta befinner sig pd djupet D. Lagret har tjockleken H och
begynnelsetemperaturen T1. Vid markytan &r temperaturen TO. I marken
utanfor lagret dr temperaturen T0 vid begynnelsetiden t = 0.

5.4.2.1 Endimensionellt plant fall

Detta problem kan 10sas med speglingsteknik. For det endimensionella
fallet erhdlls 10sningen som en superposition av den egna och den speglade
10sningen.

Temperaturen i marken blir nu:

z+D+H/2  4at) _
1o To) {f<—H ; T)

T(z,t) =T (T
(z ot "

e, o)

(5.4.18)

Har ar -z djupet fran markytan.Funktionen f(x',t) ges av formel 5.4.3.

Vi infor foljande beteckningar:

_ Sat
T “}-‘I'z—

a
i
o

Temperaturen dr en funktion av z/H, d, och =.



Medeltemperaturen i lagret ges av
_ (D 4at
T(t) = Ty o (Ty = o) - (R, ~Hz—) (5.4.19)
ddr

fé(d,r) = fm(x) + V1 derfc <Z;%l>

VT [ 2d+2° . 2d
- <1erfc (77?’) + jerfc (7?%) (5.4.20)

Har ges funktionen fm(r) av formel 5.4.6. Funktionen ierfc dr integralen
av den komplementdra felfunktionen:

2
. I I S .
jerfc(x) = 7=e X + Xserf(x) (5.4.21)
Det tidigare fallet med ett lager i en odndlig omgivning ges av d = +:
f&(w,r) = fm(T). Det andra extremfallet, d = 0, intrdffar ndar lagrets
overyta ligger vid markytan. Uverytan har dd temperaturen TO.

Funktionen f&(d,r) ges i figur 5.4.11. Kurvskaran med d > 1/2 samman-
faller tdmligen vdl for 7 < 1. De resultat som ges i avsnitt 5.4.1.1 kan
darfor anvandas ndr D &r storre dn H/2. En korrektion for markytans in-
verkan dr nodvandig endast dd lagervolymen ligger sd ndra markytan att
D ar mindre dn H/2.

fpldt)

1

N\ :

~§#ff§§§;§§53:::::::—- ©
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\\\
= 0\\

0
0 05 1 15 2 '

Figur 5.4.11. Temperaturavklingning f&(d,r) for ett skikt som befinner
sig pd djupet D under markytan.
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Exempel. Ett Tager med tjockleken H dr tdckt av ett skyddande markskikt med
tjockleken D. Vi tar

a =110 n?/s H=10m
Varmeforlusten efter tvd mdnader ges i tabell 5.4.7 for nigra

olika djup D. Den dimensionsldsa tiden t &r lika med 0.21. Vir-
dena dr tagna ur figur 5.4.11.

D (m) ® 5 3 2 1 0

(Tm-To)/(T1-TO) 0.74 | 0.74 | 0.74 | 0.73 | 0.69 | 0.61

Forlust (%) 26 26 26 27 31 39

Tabell 5.4.7. Varmeforlust for endimensionellt plant fall med olika
avstdnd D till markytan. Data ar givna i texten.

Varmeforlusten for D > 4 &r 26%. Den Okar for minskande D upp till
39% for D=0.

5.4.2.2. Parallellepipediskt Tager

Lagervolymen har formen av en parallellepiped med sidoléngderna Lx’ Ly, och
LZ. Parallellepipedens dvre horisontella yta befinner sig pi djupet D under
markytan. Temperaturen vid markytan 3r TO. Begynnelsetemperaturen i parallell-
epipeden dr T1 och utanfor denna To' Temperaturfaltet i marken ges di av

T(x,y,z,t) = T+ (T,-T )-f(X, 2345 ¥, 43ty,
0 170 2 L2
X Y iy (5.4.22)
z+D+L_/2 dat z-D-L_/2 4
T2, Y - f— B
L > 77 > 2
z LZ z LZ

Funktionen f(x',t) definieras av formel 5.4.3.
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Medeltemperaturen i parallellepipeden dr

N 4at 4at . (D 4at
T () = T (T T ) f () f () f 0 (s 5 (5.4.23)
Ly Ly z Lz

Funktionen fﬁ(d,r) dterfinns i figur 5.4.11 och fm(T) i figqur 5.4.3.

5.4.2.3. Cylindriskt lager

Lagret har formen av en cylinder med vertikal axelriktning. Cylindern har
hojden H och radien R. Dess Gveryta dr beldgen pd djupet D under markytan.
Figur 5.4.12 visar den cylindriska lagervolymen med ett medeldjup z = -D-H/2.
Ett speglat lager med negativ begynnelsetemperatur 1igger pd medelhtjden

z = D+H/2.

Figur 5.4.12. Cylindrisk lagervolym p& djupet D under markytan. Ett speglat
lager med begynnelsetemperaturen —T1 dr beldget ovanfor mark-
ytan.

Temperaturfdltet dr en superposition av ldsningarna fran de tva cylinder-

regionerna. Bada 1dsningarna dr av den typ som ges av formel 5.4.15. Den
radiella funktionen g(%, %%) ar densamma for de tvd 10sningarna. Tempera-

turen ges av:

T(r,2,t) = T+(T)-Tg)eglh, 25)(F(ZPHE, 220
R H
_o2-D-H/2 4at

(5.4.28)

Funktionen g visas i figur 5.4.6. Funktionen f definieras av formel 5.4.3.
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Medeltemperaturen i lagercylindern &r:

T (t) = To+(T

. T eg, () of 1 (B, 42t (5.4.25)

Mpe” MAy

Funktion In visas i figur 5.4.7 och fﬁ i figur 5.4.11.

Exempel. Ett lager med hdjden 20 meter och radien 20 meter dr beldgen pa
djupet D under markytan. Temperaturledningstalet &r a = 1-10_6 m2/s.
Vérmeforlusten efter sex manader (t=6 ménader) ges i tabell 5.4.8

for olika djup D.

D (m) @ 10 5 2 1 0

(Tm—TO)/(T1—TO) 0.60 | 0.60 { 0.60 | 0.57 | 0.55 | 0.52

Forlust (%) 40 40 40 43 45 48

Tabell 5.4.8. Varmeforlust efter sex manader for ett cylindriskt
lager p& djupet D. )

Varmeforlusten dndras ej ndr djupet okas fran D=5 m. Ukningen av
forlusten dar tdmligen méttlig di tjockleken D p& det tdckande
skiktet minskar.

5.4.3. Cylindriskt lager omedelbart under markytan

De analytiska samband som gavs i avsnitt 5.4.1-2 gdller tamligen renodlade
fall. I detta avsnitt berdknas temperaturavklingningen for mer komplicerade
fall numeriskt.

Lagret har formen av en cylinder med vertikal axelriktning. Lagrets hojd
dr H och dess radie R. Uverytan sammanfaller med marknivan. En termisk
isolering tdcker lagrets Gveryta och dess sida till ett djup Hi' Se
figur 5.4.13. Begynnelsetemperaturen ar T1 i lagret och TO i omgivande
mark. Vid markytan halls temperaturen konstant vid To’



Mede]temperafuren i Tagret ges av
Ta(t) = T°+(T1_T°)'um(t) (5.4.26)

Funktionenunlger medeltemperaturens avklingning i dimensions1gs form.

% %
B H/

Figur 5.4.13. Vdarmelager med skyddande isolering pd Gveryta och vertikal
sida.

7

Hi,

Marken har varmeledningsformdgan x och varmekapaciteten C. Isoleringstjock-
leken &r di och dess vdrmeledningsfgormidga &r Age

Foljande data gdller:

T, = 20%C T, = 0%

A = 2 W/mK C = 2 MI/mK

(a = a/C = 11078 n?/s) (5.4.27)
Ay = 0.03 W/mK di = 0.3 m

H. = 1m

L&t oss som forsta exempel betrakta ndgra smd lager. Figur 5.4.14 visar
temperaturavklingningen i ett lager med radien R=5 m for olika hojder:

R=5m H=1,2,5m (5.4.28)

Ovriga data enligt 5.4.27.
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um1

tidays)
365

Figur 5.4.14. Dimensions16s medeltemperatur for ett cylindriskt lager. Data
enligt 5.4.27 och 5.4.28.

Temperaturavklingningen dr mycket snabb for dessa smé system. Halva vidrme-
innehdllet forloras p&d 18 dagar om lagrets hojd dr 2 meter. Det dr uppen-
bart att dessa lager ej dr ldmpade for sdsongslagring.

Figur 5.4.15 visar temperaturavklingningen for en stdrre radie:

R=10m H=1,2,5,10, 20m (5.4.29)

05 5>\k\\\\\
S \
\
\\2\\\
t (days)

100 200 300 365

Figur 5.4.15. Dimensions1ds medeltemperatur for cylindriskt lager. Data enligt
5.4.27 och 5.4.29.

For de fall ddr H dr 10 och 20 meter 3terstdr ungefdar 50% av det ursprung-
liga vidrmeinnehdllet efter 4 respektive 6 ménader.

I figur 5.4.16 illustreras effekten av d@ndringar av ndgra data (5.4.27).
Vi tar

R=10m H=5m (5.4.30)

Kurvan med =2 i figur 5.4.16 visar temperaturavklingningen med referens-
data (5.4.27). Effekten av att varmeledningsformigan andras fran A=2 till



A=1 respektive 1=3.5 ges. Den sista kurvan visar inverkan av en mindre
isolertjocklek (di = 0.1 m.

—

—

0 t {days)
100 200 300 365

Figur 5.4.16. Dimensions16s temperaturavklingning for négra olika vdarden
pd markens vdrmeledningsformdga A och isoleringstjockleken
di' Data enligt 5.4.27 och 5.4.30.

Figur 5.4.17 visar temperaturavklingningens beroende av lagrets storlek.
Vi har tre fall:

2R = H =25, 50, 100 m (5.4.31)

I.||-|-|.I

[ | _R=25 Hz50
\
\ R=125 H=25

05

o

t(days)
100 200 300 365

Figur 5.4.17. Dimensions1ds temperaturavklingning for tre storlekar av
ett cylindriskt lager. Data enligt 5.4.27 och 5.4.31.

Den takt med vilken temperaturavklingningen sker dr i hog grad beroende

av lagrets storlek. Med R=50 och H=100 dterstar 84% av det ursprungliga
varmeinnehallet efter ett ar.

Nasta exempel berdr det cylindriska lagrets form. Volymen h&1ls konstant.

Foljande fall har studerats:
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H=5m H=10m H=20m H=50m H

100 m

(5.4.32)
R=79m R

56m R=40m R=25m R=18m

Resultaten ges i figur 5.4.18.

Varmeforlusten sker genom lagrets yta. Virmeinnehillet dr diremot propor-
tionellt mot volymen. Det dr dirfor efterstrivansvirt att utforma lagret

sd att kvoten mellan yta och volym dr 1iten. For detta fall ir det optimala
vardet av H/R ndra 1.

3
e R=25 HS0
T R=18 H=100

05 56 H-10—]

TP Hs

0

0 100 200 300 HDAYS)

Figur 5.4.18. Dimensions16s temperaturavklingning for olika former péd lager-
cylindern. Data enligt 5.4.27 och 5.4.32.

En vanlig geologisk situation i Sverige dr att ett jordskikt Tigger direkt
ovanpd urberget. Ett vdrmelager som utnyttjar detta jordskikt tenderar att
bli tdmligen platt, d.v.s. H blir 1itet jsmfort med R. Kurvorna med H=5 och
H=10 i figur 5.4.18 kan kanske representera ett sidant system. I dessa fall
var dock varmeledningsformidgan densamma i hela marken. Lat oss antaga att
vdrmeledningsformégan i det Svre skiktet har en 1&g viarmeledningsformiga,
emedan urberget har en hog virmeledningsformiga.

j1 SH<z<0
A= 7 (5.4.33)
3.5 z < -H

Vi viljerett reltivt platt system:
H=10m R=56m (5.4.34)

Resultatet visas i figur 5.4.19. Filtet med A=2 i figur 5.4.18 ges som
Jjamforelse.
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\\ R =5
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Figur 5.4.19. Dimensions1ds temperaturavklingning for ett lager i ett ytligt

jordskikt beldget ovanpd urberg. Data enligt 5.4.33, 5.4.34

och 5.4.27.



Denna skrift med karaktar av handbok behandlar termiska analyser
for markvarmesystem. Dessa utnyttjar marken som varmekalla eller
for direkt lagring av varme i jord och berg och grundvattenférande
skikt eller i undermarksforlagda vattenreservoarer.

For markvdarmesystem finns det en mangd problem och fragestall-
ningar som ar férknippade med de termiska processerna i lagreteller
uttagssystemet och i omgivande mark. Frdgorna ror varmeforluster
och andra termiska prestanda, temperaturpaverkan pd omgivning--
en, lampliga roravstand, brunnskonfigurationer, aterladdning m m.

| skriften redovisas grundlaggande teori, termiska analyser, dator-
modeller och simuleringsprogram. Detta omfattande material har
tagits fram av en forskargrupp vid avdelningen for matematisk fysik,
Lunds Tekniska Hogskola, under &ren 1977 —1985. Arbetet har skett i
samarbete med konsulter, innovatérer, forskare, byggare, geologer
m fl specialister. Skriften riktar sig till dessa specialistgrupper samt
den hogre undervisningen. Den ger bade en teoretisk bakgrund och
en praktisk handledning vid ingenjérsmassiga berakningar.
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