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1.1

1. MARKVKRMESYSTEM

Ett tnarkvarmesystem utnyttjar marken som va'rmeka'lla eller som lagrings-

medium for va'rme. Till markvarmesystem hanfbres ocksa va'rmelagring i

vattenfyllda bergrum, gropar o. dyl. Ordet mark anva'ndes har nagot

oegentligt for att beteckna berg, jord och grundvattenfbrande skikt

(akviferer), dvs undergrunden.

Va'rmen fran marken eller marklagret anva'nds normalt for bostadsupp-

varmning. Vid hbga temperaturer kan varmen anvandas direkt. Vid lagre
temperaturer fbrsbrjer markva'rmesystemet en varmepUmp med lagtempera-

turvarme. Varmekallan for varmelagret kan vara solva'rme eller spill-

varme. Vid laga temperaturnivaer ar olika slag av naturva'rme eller
"sommarvarme" - varmt ytvatten, varm luft o dyl - en viktig varmekalla.

Systemen for va'rmelagring i mark kan indelas 1 tre huvudtyper:

1. Bergrum, grop, blockfyllt bergrum.

2. Markvarmelager. Borrhal i berg, slangar i lera.

3. Akvifervarmelager.

Varmelagren kan anvandas for sasongslagring mellan sommar och vinter

eller for kortare perioder.

System for uttag av va'rme ur mark kan uppdelas i fyra huvudkategorier:

1. Yt jordva ' rme.

2. Bergva ' rmebrunnar .

3. Grundva t tenvarme.

4. Geotermisk va'rme.
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I vissa uttagssystem fdrekommer aktiv aterladdning med v'a'rme under

sommaren for att atersta'lla naturliga ostbrda temperaturfbrhal1anden.

En introduction t i l l markva'rmeomradet ges i referenserna 107 och 148.

Olika projekt och bversikter finns redovisade i referenserna 149-155.

Den fbrsta stbrre internationel la konferensen om markva'rme hblls i

Stockholm i juni 1983; referens 156.

Figur 1.1 visar ett bergrumsvarmelager. Bergrummet a'r fyllt med vatten

som v'a'rme 1 agringsmedi urn. En viss varmelagringskapacitet hos angr'a'nsande

berg utnyttjas ocksa. Normalt a'r vattnet temperaturstatifierat med var-

mare och da'rmed Ta'ttare vatten bverst.

Figur 1.1. Bergrumsvarmelager. (Faltfbrsbk i Avesta).

Alternativ t i l l bergrum a'r gropar, dammar, nedgravda tankar, gruvschakt,

bergtunnlar m m.

En variant av bergrummet med vatten ar ett bergrum fyllt med en blandning

av spr'a'ngsten och vatten. Se figur 1.2. Ett sadant blockfyllt bergrum

kan byggas i stbrre dimensioner an ett vanligt eftersom stenblocken

stabiliserar berget. I ett gropmagasin kan man ocksa ha denna blandning

av sten och vatten i stallet for rent vatten.
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f/%^^v,v~\m med o u t l a s l a d
|.">-'^,isprangsten

Figur 1.2. Varmelagring i blockfyllt bergrum.

En markvolym kan utnyttjas direkt for varmelagring. Vid laddningen

uppvarmes marken. Vidatervinning av va'rme sa'nks markvolymens tempera-

tur. For att kunna till fora och ta ut varme maste man skapa ett rbr-

eller kanalsystem genom den utnyttjade markvolymen. Varmebararfluiden

cirkuleras i kanalsystemet. Som allma'n beteckning for denna typ av

va'rmelager skall termen markvarmelager anvandas.

Figur 1.3 visar ett markva'rmelager i berg, da'r man utnyttjar djupa borr-

hal som kanalsystem for varmebararfluiden. Varje borrhal har en nedat-

gaende och en uppgaende kanal for varmebararen. Ett normalt system har

manga borrhal som ligger i ett regelbundet monster. Avstandet mellan

borrhalen a'r i storl eksordningen 4 meter. En alternativ utformning ar

att borrhalen ligger som ett divergerande knippe for att minska arean

via markytan.

Manga typer av kanalsystem a'r mb'jliga. I lera fbrekommer en typ da'r

plastslangar i form av U-rb'r drivs ner i marken. Slangarna ligger i

ett regelbundet monster. Avstandet mellan dem kan vara i storleksord-

ningen 2 meter. Ett alternativ a'r att gra'va upp hela jordvolymen och

placera ut horisontella slanqar under aterfyl Iningen. I nagot fall

har man utnyttjat rader med nedgravda plattva'rmevaxlare. Ett sa'tt att

placera ut slangarna a'r att gra'va rader av smala och djupa diken i

vilka plastslangar placeras pa ett antal nivaer.
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Figur 1.3. Markvarmelager. Borrhal i berg.

Ett akvifervarmelager utnyttjar en akvifer, dvs. ett grundvattenfbrande

markskikt, for varmelagring. Grundvattnet anvands som varmebarare,

medan va'rmelagringen utnyttjar blandningen av jord och vatten. I det

enklaste fallet har man tva brunnar. Se figur 1.4. Vid laddning tas

grundvatten upp ur den ena brunnen. Efter uppvarmning injekteras vatt-

net i den andra brunnen. Vid uttag va'ndes cirkulationsriktningen.

Figur 1.4. Akvifervarmelager.

Det har varit besvarligt att hitta en bra terminolgi. I denna skrift

ar vartnelager i mark det bverordnade begreppet, medan markva'rmelager

a'r en undergrupp.
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Figur 1.5 visar ett ytjordvarmesystem. Via ytjordvarmeslangarna som

kan ligga pa en knapp meters djup tas varme fran marken. I allmanhet

fryses under vintern ett omrade runt varje slang. Da'rmed utnyttjas

markens frysvarme. Under var och sommar aterstalles naturliga, ostbrda

temperaturforhal landen genom uppvarmning fran markytan. Man har en

passiv, naturlig aterladdning.

Figur 1.5. Ytjordvarmesystem.

En bergvarmebrunn utnyttjar en djup, bergborrad brunn for att ta ut

varme ur marken. Se figur 1.6. Man kan ha en inre och en yttre kanal i

brunnen genom vilka vatten cirkuleras. Genom att pumpa runt vatten som

a'r kallare an omgivande berg far man en varmetil Ifbrsel fran berget.

Va'rmen fas genom nedkylning av omgivande berg. Nedkylningen stabiliserar

sig efter hand. Pa mycket lang sikt erhalles stbrre delen av va'rmen

fran markytan. Temperaturer under 0 °C kan anvandas om cirkulations-

systemet for varmebararfluiden a'r slutet. Bergvarmebrunnen kan kom-

bineras med ett uttag av grundvattenvarme. Man har da bade en cirkulation

av vatten i brunnen och ett nettouttag av vatten. Denna allma'nnare typ

kan kallas for en enerqibrunn. System med flera bergvarmebrunnar fbre-

kommer. Aterladdning av brunnarna sommartid kan vara aktuell.

Det enklaste grundvattenvarmesystemet bestar av en enda brunn. Va'rme-

innehallet i grundvattnet ner till la'gst 0 C utnyttjas, varefter vattnet

avbbrdas t.ex. i dagvattensystemet. I allmanhet maste dock grundvattnet

aterinjekteras. Man kan ha ett tvabrunnssystem som visas i figur 1.4.
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Figur 1.6. Bergvarmebrunn.

Grundvattnet tas upp ur den ena brunnen och aterinjekteras nedkylt i

den andra brunnen. En Sterladdning av systemet kan vara nbdvandig.

Sommartid tas det kalla vattnet upp och aterinjekteras efter uppvarm-

ning. Man kan fa en viss va'rmelagringsfunktion om vattnet varmes over

naturlig ostbrd temperaturniva.

Temperaturen i marken stiger med okande djup pa grund av den geotermiska

gradienten. Ett riktvarde ar en bkning med 3 °C per hundra meter. Djupare

liggande grundvattenformationer ar darfbr en intressant varmekalla. Da

djupen blir stora talar man om geotermiska system. Man behbver minst

tva brunnar for produktion och aterinjektering av geotermalvattnet.

Ett markvarmesystem kan karakteriseras av sin medel tempera turn ivS

relativt den ostbrda marken. For ett varmelager ligger medeltemperatur-

nivan over medeltemperaturen i ostbrd mark, medan ett varmeuttagssystem

har temperaturer under den ostbrda markens. Ett markva'rmesystem far en

varmefbrl ust medan ett uttagssystem far en tillfbrsel av va'rme fran

omgivande mark.

De relative varmefbrl usterna beror kraftigt pa varmelaarets storlek.

Varmelager i mark maste gbras stora.De ar ej aktuella vid sasongslagring'

for ett enskilt eller ett fatal sma'hus. Varmeuttagssystemen kan a

andra sidan ofta med fbrdel anvandas for den enskilda v i l l a n .
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En mellanform av markvarmesystem har en medeltemperaturniva som a'r

vasentligen lika med omgivningens. Man tar ut varme under uppva'rmnings-

sasongen och aterladdar systemet till mattliga temperaturer pa

sommaren. Dessa system kan vara sma.

Markvarmesystemen a'r starkt beroende av geologiska fbrutsattningar. I

berggrund kan bergv'a'rmebrunnar och markva'rmelagermed borrhal anva'ndas.
Markvarmelager i lera kraver att leran a'r till ra'ckl igt ma'ktig och att

slangsystemet kan anlaggas ti l l rimlig kostnad. Potentialen for akvifer-

varmelager begra'nsas av krav pa till gang till en akvifer av la'mplig

typ. Systemen med grundvattenva'rme kraver brunnar med stor vattenfb'ring.

Stora omraden i Skane a'r har speciellt gynnade. I sydva'stra Skane finns

potential for geotermiska system.

For markva'rmesystemen finns en mangd problem och fragesta'llningar som

a'r fb'rknippade med de termiska processerna i lagret eller uttagssystemet

och i omgivande mark. Fragorna rbr va'rmefbrluster och andra termiska

prestanda, temperaturpaverkan pa omgivningen, lampliga rb'ravstand,
brunnskonfigurationer, aterladdning.

Denna skrift behandlar dessa ting. Enbart de rent termiska fbrloppen

och harmed fbrknippade analyser tas upp.

2-B5
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2. FALTFORSOK

I detta kapitel ges en summarisk redovisning av ett antal markva'rme-

projekt. Syftet ar att ge en bversikt for olika typer av v'a'rmelager.

Dversikten ar ej heltackande. NSgon vardering av projekten gores e j.

System for uttag av va'rme ur nark, sasom ytjordvarme, grundvattenvarme

och bergvarmebrunnar redovisas, sanar som pa nagra fall, ej bar. For

dessa system ha'nvisas till referens 112 och 113.

2.1 Bergrum, grop och blockfyllt bergrum

2.1.1 Svenska fa'ltfbrsbk

1. Avesta (1980- ). Statens Vattenfallsverk.

Korttidslagring av va'rme i bppet bergrum. 'Overskottsvarme fran en

sopfbrbra'nningsanlaggning lagras under vardagar for att anvandas

nattetid och under veckoslut. Lagret ar anslutet till fja'rrvarme-

na'tet. Specie! It intresse agnas at bergets mekaniska egenskaper

vid varmebelastning.

Data:
3

- Lagervolym 15 000 m

- Bergrummets bveryta ar belaget pa 25 meters djup.

- Lagertemperatur 70-115°C

Referens 114. Lagret togs i drift 1982. Under de fbrsta tva aren skall

langtidslagring testas.

2. Lyckebo (1982- ). Uppsala Kraftva'rme AB.
o

Varmt vatten fran solfangare (4300 m ) lagras under sommarhalvaret i

ett vattenfyllt bergrum. Den lagrade va'rmen anvands for uppva'rmning

av 550 enfamiljshus via ett lokalt fjarrva'rmenat. Forskningsprogranimet

for detta fbrsbk onifattar energibalanser, v'a'rmeflbden, vattenkemi och

bergmekanik.
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Data:

- Lagervolym 100 000 m3

- Lagrets b'veryta a'r belagen 30 m under markytan

- Lagertemperatur 40-90°C

- Lagrad energimangd 5500 MWh/ar

Referens 115. Lagret tas i drift under sommaren 1983.

3. Lambohov (1980- ). LINKOPING.

Va'rmelagret ar belaget i en grop som sprangts i berg. Gropens vaggar

och golv bestar av betong. En termisk isolering har anbringats mellan

cementva'gg och omgivande berg. Gropen a'r ta'ckt av flytande isoleringar

med tjockleken 0.4 m. Varmelagret ingar i ett solenergisystem. Med

anvandande av varmepump levereras energi till 55 enfamiljshus.

Data:

- Lagervolym 10 000 in

- Lagret har formen av en cylinder. Diameter 32 m. Hbjd 11 m.

- Lagertemperatur 5-65°C

- Lagrad energimangd 700 MWh/ar

- 100 temperaturmatningspunkter

Referens 116. Varmelagret laddades for fb'rsta gangen under sommaren 1980.

4. Ingelstad (1979- ). Va'xjo kommun.

Varmelagring i vattenfylld betongtank som utvandigt a'r isolerad med

glasfiber och mineralull. Lagret ingar i ett solva'rmeverk som fb'rsb'rjer

52 enfamiljshus.

Data:

- Lagervolym 5 000 m

- Lagret har cylindrisk form. Diameter 28 m. Hojd 8 m.

- Lagertemperatur 40-95°C

Referens 109. Lagret har varit i drift sedan 1979. Varmefbrlusterna fran

lagret var betydligt stbrre an va'ntat. Detta beror troligen pa konvek-

tion i luftspalter mellan betongvagg och isolering.
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5. Studsvik (1979- ). Studsvik Energiteknik AB.

Demonstrationsanlaggnlng for va'rmelagring i gropmagasin. Varmt vatten
o

erhalls fran solfangare (120 m ) och tillfbrs lagret. Varmen fbrsb'rjer

under vinterhalvaret en kontorsbyggnad. Inga varmevaxlare anvands i

systemet.

Data:
3- Lagervolym 640 m

- Lagertemperatur 30-70°C

- Totalt energibehov 22.5 MWh/ar

Referens 117. Varmelagret har varit i drift i 4 ar. Nara 100% av kontors-

husets va'rmebehov har ta'ckts av va'rme fran lagret. Va'rmefbrlusterna fran
lagret var nagot hbgre an vantat beroende pa infiltration av regn- och

smaltvatten i isoleringen.

6. Laboratorieexperitnent (1981- }. Institutionen for geoteknik med

grundlaggning, Chalmers Tekniska Hbgskola.

Experimentet ar utfbrt som ett tids- och langdskalat fbrsbk med va'rme-

lagring i ett blockfyllt bergrum. Lagringsgropen ar utfbrd 1 betong och

fylld med en blandning av sten och vatten. Ett syfte med experimentet

var att verifiera den datormodell som beskrivs i kapitel 6.2.

Data:

- Lagervolym 21 m

- Porositet 41%

- Lagertemperatur 10-75°C

Referens 108. Jamfbrelse mellan experiment och simulering visar god

overensstammel se.

7. Ljusnarsberq (1982- ). Rejlers Ingenjbrsbyra AB och Hagconsult AB.

Va'rmelagring i bvergiven gruva. Temperaturen pa sommarvarmt sjbvatten

hb'js med hja'lp av en va'rmepump och injiceras darefter i gruvan.
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Data:

- Lagervolym 150 000 m3

- Lagertemperatur 5-50°C

Referens 111. Varmt vatten injekterades i gruvan under sommaren 1982.

2.1.2 Svenska fbrprojekterade anlaggningar

1. Sbdertuna (1982). Sbdertalje Energiverk.

Ett alternativ for varmelagring vid solva'rmeverket i Sbdertuna ar en

vattenfylld staltank. Sol va'rmeverket levererar varme till 525 enfamils-

hus. Kostnadsjamfbrelse gbrs med vattenfyllt bergrum och markvarmelager

(borrhal i berg). Alternativet med staltank framstar som det billigaste
alternativet.

Data:

- Lagervolym 40 000 m3

- Lagertemperatur 15-65°C

- Va'rmebehov 6 400 MWh/ar

Referens 118.

2. Rya-verken, Gbteborg (1982). Gbteborgs Energiverk.

Varmelagring i blockfyl l t bergrum. Lagringsvolymen bestar av fyra

parallella bergrum. Bergrummen ar fyllda av outlastad sprangsten och

vatten. Avsikten ar att lagra spillvarine fran oljeraffinaderier pa

Hisingen. Den lagrade varmen anvands sedan i Gbteborgs fja'rrva'rmena't.

Data:

- Total lagervolym 850 000 m3

- Avstandet me!Ian lagrets overyta och markytan 37 m

- Lagertemperatur 10-115°C

- Lagrad energima'ngd 40 GWh/ar

Referens 110.
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2.1.3 Utlandska projekt

1. Stor varmvattenreservoar, Vast-Tyskland (1975-79). Kernforschungsanl age

Jiilich GmbH.

Utredning om varmelagring i stort gropmagasin avsett for fjarrvarmenat

med 140 000 forbrukare.

Data:

- Lagervolym 5 000 000 m3

- Lagertemperatur 50-90°C

- Varmebehov 1 TWh/ar

Referens 119.

2. Wolfsburg, Vast-Tyskland (1979-82). Stadtwerke Wolfsburg AG.

Fbrprojektering av varmelagring i vattenfylld grop. Lagret ingar i ett

energisystem for 23 enfamiljshus. Lagrets va'ggar utgors av betong.

Data:

- Lagervolym 10 000 m

- Lagertemperatur 30-95°C

- Va'rmebehov 500 MWh/ar

Referens 120.

3. Mannheim, Vast-Tyskland (1977-79). Stadtwerke Mannheim AG.

Fbrprojektering av varmelagring i vattenfylld grop. Lagret a'r avsett

att inga i ett fjarrvarmenat.

Data:

- Lagervolym 30 000 m

- Lagertemperatur 50-90°C
- Lagrad energimangd 1400 MWh/ar

Referens 121.
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4. Chaltestown Naval Yard, USA (1982- ). Argonne National Laboratory.

Varmelagring i tva stora underjordstankar av betong i Bostons hamnom-

rade. Energi erhalles fran plana solfangare. Den lagrade energin an-

vands for husuppvarmning.

Data:
3- Total lagervolym 5 700 nT

- Lagertemperatur 45-85°C

- Varmebehov 2000 MWh/ar

Referens 122. Projektets fbrsta fas har avslutats. Varmelagring kan ske

om nya forskningsanslag beviljas.

5. Hjortekjaer, Danmark (1982- ). Danmarks Tekniska Hbgskola.

Fbrprojektering av ett solvarmeverk med sasongslagring. Energi fran

plana solfangare lagras i en vattenfylld grop. Lagret a'r oisolerat mot

omgivande mark. Solvarmeverket levererar energi till 200 enfamiljshus

av partyp.

Data:

- Lagervolym 49 400 m

- Lagertemperatur 30-56°C

- Varmebehov 2700 MWh/ar

Referens 123.

2.2 Markvarmelager. Borrhal i berg, slangar i lera.

2.2.1 Svenska faltfbrsbk

1. Sigtuna (1978- ). Sunstore KB.

Denna fbrsbksanlaggning omfattar ett varmelager med borrhal i berg.

Det ingar i ett varmesystem for ett enfamiljshus. Stora radiatorytor

medfbr att temperaturen i systemet kan hallas mycket lag. Varme till-

fbrs fran enkla solfangare. Systemet arbetar utan varmepump.
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Data:

- Lagervolym 7700 m

- 42 borrhal med borrhalsradien 0.08 m. Aktivt borrhalsdjup
2-23 m.

- Lagertemperatur 24-30°C

- Stort antal temperaturmatningspunkter.

Referens 124.

2. Utby (1979- ). Jordvarmegruppen, Chalmers Tekniska Hijgskola.

Varmelagret, som ar belaget i vattenmattad lera, ingar i uppvarm-

ningssystemet for ett enfamiljshus. Va'rme tas ur lagret under den

kalla sasongen med hjalp av en varmepump. Harvid fryses en del av

leran runt roren. En luftkonvektor anvands for aterinjektering av

varme under sommaren.

Data:

- Lagervolym 1300 m

- 37 vertikala PVC-rbr med en yttre diameter pa 50 mm.
Aktivt rbrdjup 0-10 m.

- Lagertemperatur 0-14°C

- 43 st temperaturgivare

Tre arscykler bar genomfbrts. Referens 125.

3. Lindalvsskolan, Kungsbacka (1981- ). Bengt Dahlgren AB.

Va'rmelager med vertikalt neddrivna plastslangar i lera. Lagret ingar
2

i ett system for uppvarmning av en skolbyggnad med 15000 m golvyta.

Varme erhalls fran solfangare som utgbrs av svart takplat. Varmepump

anvands for uttag av energi fran lagret.

Data:

- Lagervolym 80 000 m3

- 600 U-formade plastrbr med ytterdiametern 16 mm. Aktivt
rbrdjup 0.5-35 m.

- Lagertemperatur 8-20 C

Referens 126.
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4. Alnarp (1979-80). Institutionen for lantbrukets byggnadsteknik,

Sveriges Lantbruksuniversitet.

Qverskott av solenergi fran ett va'xthus lagrades i lera rued hjalp av

en va'rmepump. Lagret var belaget direkt under va'xthuset. Den lagrade

va'rmen tillfbrdes vaxthuset under bbrjan av den kalla sa'songen.

Data:

- Lagervolym 1500 m

- 1800 meter horisontella polyetylenrb'r med en yttre
diameter pa1 32 mm. Tre nivaer till ett djup av 4 meter.

- Lagertemperatur 10-40°C
- 15 temperaturma'tningspunkter

Referens 127. Va'rmefbrl usten fran lagret var mycket stor. Det mesta av

den lagrade varmemangden fbrlorades under hbsten. Metoden med horison-

tellt nedgravda rbr bedbmdes vara olamplig for sa'songslagring p.g.a.

svarigheter att erhalla ett lager med stor vertikal tjocklek utan

kostbar utschaktning.

5. Lulea - etapp I (1981). Institutionen for vattenbyggnad, Lulea

Tekniska Hbgskola.

Fa'l tfbrsbket avsag varmelagring i granit. Fern cykler om vardera 24

dagar genomfbrdes. Lagrets dimensioner skalades sa att en cykel

motsvarar en period pa ett ar for ett oskalat system.

Data:

- Lagervolym 400 m

- 19 ofodrade borrhal med diametern 52 mm. Aktivt borrhals-
djup 6.5-19.5 meter.

- Lagertemperatur 20-45°C

- 50 temperaturma'tningspunkter

Referens 20.

6. Lulea - etapp II (1983- ). Institutionen for vattenbyggnad, Luleas

Tekniska Hbgskola, Allmanna Ingenjbrsbyran AB (AIB) och Lulea

Energiverk AB.

Sasongslagring av spillvarme fran stalverket i Lulea. Den lagrade va'rmen

skall med anvandande av varmepump tillfbras byggnader vid hbgskolan.
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Lagringsmediet a'r granit.

Data:

- Lagervolym 115 000 m

- 120 ofodrade borrhal med diametern 150 mm. Aktivt borr-
halsdjup 5-65 m.

- Lagertemperatur 30-60°C

- Uttagen energimangd 2000 MWh/ar

- Maximal uttagseffekt 580 kW

Referens 128. Systemet beskrivs vidare i avsnitt 7.1.

7. Kungalv (1982- ). Institutionen for geoteknik med grundlaggning,

Chalmers Tekniska Hbgskola.

Matstation for geotekniska studier av varmelagring i lera. Speciellt

intresse agnas at porvattenrbrelser under varmebelastning. Tva mindre

lager med olika typ av varmevaxlare bar anlagts.

Data:

- Lagervolym 2500 m i bada fallen.

- I: 49 st U-formade polyamidslangar med ytterdiametern
30 mm till ett djup av 12 meter.
II: 25 st stalrbr med diametern 76 mm till ett djup av
12 meter.

- 80 st ma'tpunkter for temperatur, 19 st for portryck, 2 st
balgslangar for matning av sattningar, 10 st markpeglar.

Referens 129. Skjuvhallfastheten sjunker enligt vissa resultat.

2.2.2 Svenska fbrprojekterade anlaggningar

1. Stora skuggan (1982). Sunstore KB.

Varmelager i granit for energianlaggning vid motions- och rekreations-

centrum. Solenergi fran "1 agtemperatursol f angare utgbr energikalla.

Tre systemvarianter med olika Ibsningar for varmvattenberedning, topp-

lasteffekt och varmesystem for byggnaden behandlas. I ett av dessa

antas varmefbrsbrjningen ske utan va'rmepump.
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Data:

- Lagervolym 50 000 - 180 000 m3

- Borrhalsdiameter 115 mm

- Byggnadens energibehov 500 MWh/ar

- Lagertemperatur 8-20°C eller 24-31°C

Referens 130.

2. Sbdertuna. (1982) . AIB.

Varmelager i granit. Energi fran takintegrerade lagtemperatursolfangare
o

(30 000 m ) lagras for att under vintern anvandas for uppvarmning av

ett radhusomrade med 525 lagenheter. Vid uttag utnyttjas varmepump.

Data:

- Lagervolym 105 000 m

- Lagertemperatur 10-70°C

- Varmebehov 6 400 MWh/ar

Referens 131.

3. Ryaverken, Gb'teborg (1982). Studsvik Energiteknik AB.

Sommaroverskottet fran raffinaderiernas atervinningsanlaggningar for

spillvarme tillfb'rs ett varmelager i granit. Lagret ar av typen borr-

hal i berg. Dessa ar borrade fran ett dvre galleri av relativt stora

tunnlar, vilka ar belagna cirka 20 m under markniva. Tunnlarna ar vid

drift fyllda med vatten och kan da anvandas for dygnslagring av varme.

Data:

- Lagervolym 3 000 000 m3

- 150 meter djupa borrhal med inbbrdes avstand pa 3.5 m.

- Lagertemperatur 50-90°C

- Uttagen energimangd 60 GWh/ar

Referens 132.
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2.2.3 Utlandska projekt

1. Groningen, Holland (1982-85). Institute of Applied Physics

TNO-TH, Delft.

Varmelagring i vattenmattad sand med inslag av lager av lera och

torv. Solenergi sasonglagras for uppvarmning av 96 enfamiljshus med

1 agtemperaturradia torer.

Data:

- Lagervolym 23 000 m3

- U-formade rbr till ett djup av 20 m

- Lagertemperatur 25-60°C

Referens 133.

2. Vaulruz, Schweiz (1982- ). Sorane SA, Lausanne.

Varmelager med horisontella plastslangar i grov sand med inslag av

lera. Lagret ingar i ett solenergisystem som levererar energi till en

servicebyggnad (totalt uppvarmd volym ;

vandes vid uttag av varme fran lagret.

Data:

servicebyggnad (totalt uppvarmd volym 25 000 m ). En varmepump an-

- Lagervolym 3 500 m

- 7 lager av polyetylenslangar med en innerdiameter pa 16 mm.
Total slanglangd 8 400 m. Lagret nar till 4.6 meters djup.

- Lagertemperatur 15-35°C

- Arligt varmebehov for lagtemperaturlast 200 MWh.

Referens 134.

3. Kranebitten, Osterrike (1982- ). Institut fur Allgemeines Physik,

TU-Wien.

Solenergi lagras i jord for uppva'rmning av en militarfbrlaggning.

Systemet anv'a'nder varaepump vid uttag av energi fran lagret varvid en

del av jorden fryses. Varmelagret bestar av tvat skikt med horisontella

slangar.
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Data:

- Lagervolym 60 000 m

-. Plastslangar med 20 mm diameter. Totallangd 12 000 m
fbrdelade pa tva nivaer (3 resp. 8 m)

- Lagertemperatur -6 - + 10°C

- Arligt varmebehov 1220 MWh/ar

Referens 135.

2.3 Akvifervarmelager

2.3.1 Svenska faltfbrsbk

1. Kvarteret Tarnan, Landskrona (1980-82). Kjessler & Mannerstrale AB.

Fbrsbk med varmelagring i sprickig kal kstensakvifer. Avsikten var att

utrbna mojligheten att utnyttja akviferen for sasongslagring av varmt

vatten, som under vinterhal varet utgbr varrnekalla for varmepump. Varme-

behovet ges av 9 enfamil jshus.

Data:

- Lagrad vattenvolym 1 700 m

- Tvabrunnssystem

- Aktivt brunnsdjup 32-82 meter.

- Fbrsoket varade i 30 dagar.

- Injektionstemperatur 25.3°C. Naturlig grundvattentemperatur

Referens 21. Datorsimuleringar visar att vattenflbdet i akviferen a'r

mycket inhomogent. Flbdet synes till stor del ske i sprickzoner.

2.3.2 Svenska fbrprojekterade anlaggningar

1. Klippan (1982). VBB.

Varmelagring i isa'lvsavlagring. Systemet skall anslutas till ett fja'rr-

varmenat som betjanar 3 000 lagenheter.
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Data:

- Lagrad vattenvolym 1 000 000 m3

- Akvifertjocklek 4 meter

- Lagertemperatur 5-18°C

Referens 136. Ett inledande fbrsbk med infiltration av varmvatten

har genomfbrts.

2. Tranas (1982). VBB.

Varmelagring i isalvsavlagring. Systemet skall inga i ett fjarrvarme-

na't for 6 000 lagenheter.

Data:

- Lagrad vattenvolym 1 600 000 m3

- Akvifert jocklek 1 0 m

- Lagertemperatur 5-18°C

Referens 137.

2.3.3 Utlandska projekt

1. SPEOS, Schweiz (1982). Swiss Federal Institute of Technology,

Lausanne.

Varmelagring i akvifer. Vatten cirkuleras i akvifer via ett brunns-

system bestaende av tva skikt med horisontella draner som sammanstralar

i en central uppsamlingsbrunn. Vattenrbrelsen i lagret sker huvud-

sakligen vertikalt mellan dessa nivaer.

Data:

- Lagervolym 30 000 m3

- Lagrets hbjd (avstand mellan de tva nivaerna) 19 m

- Lagertemperatur 25-80°C

Referens 138.
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2. Auburn, USA (1976- ). Auburn University.

Va'rmelagring i sluten akvifer. Ett flertal fa'ltfbrsbk har genomfbrts.

Injektlonstemperaturen har varierats mellan de olika fbrsbken i

syfte att studera inverkan av flbden som a'r inducerade av densitets-

skillnader. Inhomogeniteter i akviferens permeabil itet har varit

fbremal for studier, liksom mbjligheter att fbrbattra lagrets effektivitet

med selektiv extraktion av varmt vatten ur brunnens bvre del i

akviferen.

Data:

- Lagrad vattenvolym 8 000 - 60 000 m3

- Akviferens tjocklek 21 m

- Lagertemperatur 20-85°C

Referens 139. Resultaten visar att igensattningsproblem vid brunnarna

kan reduceras betydligt om injektions- och aterledningsbrunn a'r belagna

i samma akvifer.

3. Scarborough, Canada (1982- ). Public Works Canada.

Lagring av kyla och va'rme i sluten artesisk akvifer. Lagret skall inga

i energisystemet for en 14-vanings kontorsbyggnad. Tva tva-brunnssystem

anvands for injektion och extraktion av vatten.

Data:

- Lagrad vattenvolym 450 000 m per tvabrunnssystem

- Akvifertjocklek 10 m

- Lagertemperatur 4-50°C

- Varmebehov 2 400 MWh/ar, kylbehov 2 600 MWh/ar

Referens 140.

4. Kina (1965- ).

Varmelagring i akvifer utvecklades fran fbrsbk nied aterinjektering av

vatten i syfte att motverka marksankning och hbja grundvattennivan. Man

fann under dessa fbrsbk att temperaturen pa det aterinjekterade vattnet

i akviferen andrades mycket langsanit. Lagring av va'rme och kyla har

sedan infbrts i stor skala och omfattar nu omkring 500 brunnar. De
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fiesta av dessa a'r belagna i trakten omkring Shanghai.

Referens 22.

5. College Station, USA (1978-79). Texas A & M University.

Lagring av kallt vatten i bppen akvifer. Na'r lufttemperaturen understeg

10°C pumpades vatten genom ett sprinklersystem till en bppen bassang

och kyldes da'rvid till lufttemperatur. Detta vatten injekterades i

akviferen och lagrades till sommaren, da det anvandes for luft-

konditionering.

Referens 141. En stor del av det kylda vattnet fbrlorades under lagringen

pa grund av ett stort naturligt grundvattenflbde i akviferen.

6. Yamagata, Japan (1977- ). University of Yamagata.

Lagring av va'rme och kyla i en sluten akvifer. Under sommaren tas kallt

vatten ur akviferen for luftkonditionering av en affa'rsbyggnad sam-

tidigt som luftvarmt vatten aterinjekteras i akviferen. Det varma vattnet

extraheras med omvand cirkulationsriktning under vintern.

Data:
o

- Lagrad vattenvolym 9 500 m

- Akvifertjocklek 19 m

- Tvabrunnssystem med ett avstand pa 22.4 m mellan injektions-
och extraktionsbrunn.

- Injektionstemperatur 5.3°C. Naturlig grundvattentemperatur 14 C

Referens 142. Fbrsbket visade att avstandet mellan brunnarna var for

litet. Temperaturen steg kraftigt i slutet av perioden for uttag av kallt

vatten. Enligt datorsimuleringar borde avstandet mellan brunnarna okas

till 40 m.

7. St. Paul, USA (1980- ). University of Minnesota.

Faltfbrsbk med varmelagring i sandstensakvifer. Lagret a'r belaget pa

stort djup. Trycket i akviferen a'r sadant att vatten kan lagras vid

mycket hbga temperaturer.

3 - B5
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Data:

- Lagervolym 736 000 m3

- Akvifertjocklek 60 m

- Lagertemperatur 100-150°C

2
Ett inledande forsbk med injektion av 8300 m vatten har genomfbrts.

Vid injektion var vattentemperaturen 91°C. Speciellt intresse har agnats

at andringar i vattnets kemiska sammansattning. Referens 143.

8. Hbrsholm, Danmark (1979- ). Ris0 forskningslaboratorium, Roskilde.

Varmelagring i en sluten akvifer. Materialet i akviferen utgbrs av sand.

En centrumbrunn omges av fyra perifera brunnar pa ett avstand av 40 meter.

Lagret ar kopplat till en sopforbranningsanlciggning vilken i sin tur in-

gar i fjarrvarmenatet. Fbrutom sasongslagring skall lagret aven anvandas
for lagring fran vardagar till veckoslut da ingen sopfbrbranning sker.

Data:

- Lagervolym 75 000 m3

- Akviferens tjocklek 15 m

- Lagertemperatur 60-100°C
- Lagrad varmemangd 1740 MWh

Referens 144. Ett inledande forsbk med injektion och extraktion av varmt

vatten har genomfbrts.

2.4 D'vrigt

1. Geotermi, Lund (1982- ). Lunds Energiverk. Institutionen for Geotek-

nologi, Lunds Tekniska Hbgskola.

Varmt geotermalvatten fran en akvifer pa 500-700 meters djup utnyttjas.

Efter nedkylning fran 25 C till 5°C aterinjekteras vattnet i akviferen.

Va'rme levereras till Lunds f ja'rrva'rmena't via en varmepump. Prel imina'rt

planeras ett system med 10-12 brunnar.

Data:

- Effektuttag 10 MW/produktionsbrunn

- Pumpflbde per brunn 100 1/s

Tva testbrunnar borrades i ma.i 1983. Borrningen av en fbrsta etapps
fyra brunnar pagar (augusti 1984).
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2. Aulnay-sous-Bois, Frankrike (1982- ). Ecole des Mines de Paris.

Detta projekt avser utnyttjande av grundvattenva'rme i stadsbebyggel se.

Varme aterladdas i akviferen under sommarhalvaret for att undvika en

langsiktig nedkylning av grundvattnet. Harigenom kan a'ven ett relativt

kort avstand mellan produktions- och aterinjektionsbrunn anvandas.

Aterladdningen sker via enkla solfangare for vilka en hog effektivitet

kan uppnas vid dessa laga temperaturer. Systemet anvands for uppvarm-

ning av 224 lagenheter.

Data:

- Akviferen bela'gen pa 80 meters djup.
- Grundvattentemperatur 13 C.

Referens 145.
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3. INTRODUKTION TILL HANDBOKEN

3.1 Uppla'ggning och innehall

Denna skrift har disponerats sa att den skall kunna anvandas som en

handbok. Analyserna for de olika typerna av markva'rmesystem har helt

sarskilts i olika kapitel. En langtgaende uppdelning i delproblem

exempelvis for olika geometriska former har gjorts. Detta har medfb'rt

att vissa ting upprepas i olika kapitel.

Det matematiska bakgrundsmaterialet sasom partiella differentialekva-

tioner, harledningar av analytiska Ibsningar och numerisk teknik har ej

medtagits. For detta hanvisas till referenser. I en del fall, da'r nya

analytiska Ibsningar tagits fram, saknas a'nnu publicerade rapporter.

Vissa teoretiska resonemang, som a'r nbdvandiga for att fbrsta hur

processerna-och problemen spaltas upp och analyseras, tas dock upp.

Det viktigaste exemplet pa detta a'r superpositionsteknik.

De olika typerna av markvarmesystemen behandlas i kapitel 6 till 11.

Kapitel 6 behandlar bergrumsvarmelager och beslaktade system, kapitel 7

markvarmelager, kapitel 8 akvifervarmelager, kapitel 9 grundvattenvarme

inklusive geotermiska system, kapitel 10 bergva'rmebrunnar och kapitel 11

ytjordvarme. For ytjordva'rmesystem behandlas enbart varmeuttag utan

frysning.

I kapitel 4 behandlas den stationara komponenten av temperaturfbrloppet

utanfbr ett markvarmelager. Kapitel 5 tar upp renodlade dynamiska pro-

cesser. Dessa tva kapitel utgbr en gemensam grund for de termiska

analyserna av de olika markvarmesystemen.

Temperaturpaverkan pa omgivande mark behandlas i varje kapitel for de

olika typerna av markva'rmesystem. I kapitel 12 tas vissa gemensamma

aspekter upp.

Kapitel 13 ger en bversikt over de datormodeller som anva'nts.
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3.2 Beteckningar

Fb'ljande beteckningar anvandes nagorlunda genomgaende i de fbljande
kapitlen:

A varmel edningsformaga i marken (W/m • K)

o
C = pc volymetrisk varmekapacitet i marken (J/m • K)

o
a = A/C temperaturledningstal (m /s)

&
z djup under marken (m)

/"? 2r = /x +y radiellt avstand till z-axeln (m)

t tid (s)

T temperatur (°C)

TQ medel temperatur i marken, arsmedel temperatur

vid markytan (°C)

T^ medel temperatur pa lagerytan (°C)

Tm(t) medel temperatur i lager (°C)

T+, T_ bvre och undre temperaturgrans for

varmelager (undantag: avsnitt 3.3) (°C)

T komplexvard temperatur (°C)

T temperatur i marken vid ror eller brunn (°C)

temperatur i varmebararfluid (°C)

m̂ o

Q

u = T _T (t.ex.) dimensionslbs temperatur
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Q varmeflbde (W)

o
q varmeflbde per ytenhet eller langdenhet (W/m , W/m)

h dimensionslbs vartneforlustfaktor (-)

P
E ackumulerat varmeflbde (J, J/m , J/m)

E+ inmatad varmemangd under lagringscykel (J)

E_ uttagen varmemangd under lagringscykel (J)

t periodtid, lagringscykelns langd (s)

d = /at /IT intrangningsdjup for periodiskt forlopp (m)

L varmelagrets langd (m)

B varmelagrets bredd (m)

R varmelagrets radie (m)

H varmelagrets vertikala utstrackning,

aktiv brunnslangd for bergvarmebrunn,

akviferens hbjd (m)

Dm dj.up till varmelagrets mitt (m)

D avstand fran markytan till lagrets bveryta (m)

V lagrets volym (m)

RQ brunnsradie (m)

m varmemotstand mellan fluid och mark vid

brunn eller slang ra'knat per meter (K/(W/m))

qw grundvattenflbde (m/s eller mw/ni >
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Qw pumpflbde (mw/s)

C ^4.2 • 106 vattnets va'rmekapacitet (J/m3 • K)

m stationa'r komponent (=medelvarde)

tr komponent for transient va'rmeuppbyggnad

i va'rmeisolering

komplexva'rd storhet

3.3 Effektivitetsmatt

Nagra kortfattade synpunkter pa problemet att valja la'mpliga

effektivitetsmatt for markvarmelager skall bar ges. En komplett be-

skrivning av ett givet markvarmelagers prestanda i ett givet drifts-

fall inneba'r att man ger hela tidsfbrloppet for va'rmeba'rarens inlopps-

och utloppstemperatur samt pumpflbdet bade vid laddning och uttag av

va'rme. Med hjalp av olika effektivitetsmatt soker man kondensera denna

information.

For att ett varmelager skall vara idealt maste samma varmemangd aterfas

som inlagrades. Detta a'r emellertid inte tillrackligt for att lagret

skall vara perfekt. Man maste ocks§ fa tillbaka va'rme med samma kvalitet

dvs. vid samma temperaturnivaer som vid laddningen. Man far naturligt

tva effektivitetsmatt.

Lat E+ vara inlagrad varmemangd under lagringscykeln och E uttagen

varmemangd.

JEner£i_ve£kn_irig^graden_ a'r da

E_
n = - (3.3.1)
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Medel temperaturen hos inlagrad och uttagen va'rme ar T+ respektive

T_ . Den exakta definitionen av dessa medel varden ges nedan. Ostbrd

marktemperatur ar T . Ett matt pa temperaturverkningsgraden ges av:
o — ~~ — ~~~~ — ~~~ ~~ ~~ — " — ~~~ —

(3.3.2)

Ofta anges bara energiverkningsgraden TV. Detta kan vara missvisande

eftersom man da ej ger nagon information om temperaturnivaer.

V i l l man ytterligare kondensera bedrivningen till ett enda effektivitets-

matt bbr ett matt som baserar sig pa termodynamikens andra huvudsats

anvandas (second-law efficiency). Verkningsgraden relateras till entropi-

produktionen. Ett idealt lager har ingen entropiproduktion.

I referens 16 anges en fbrenklad form av effektivitetsmatt baserade pa

andra huvudsatsen. Medel temperaturerna T+ och T_ beraknas genom en

viktning dar varje temperaturniva viktas med den varmemangd som tillfbres

respektive uttages vid denna niva. Produkten av r̂  och ny ger da ett

sammanvagt matt pa varmelagrets verkningsgrad:

n , n = n • nT (3.3.3)
second law E T

For en harledning av detta hanvisas till referens 16.

Genom de tva faktorerna i forme! 3.3.3 speglas prestanda bade for

energimangd och for energikval itet eller temperaturniva.

For att fa en rattvisande jamfbrelse maste ocksa den totala energi-

omsattningen beaktas. Ett system med hbgre verkningsgrad men med

lagre energiomsattning kan vid en totalbedbmning vara det. sa'rire

alternativet.

Man kan definiera en utnyttjandefaktor (utilization factor), dar t.ex.

uttagen va'rme relateras till en referensvarmemangd , E _p, vilken

kan vara varmelagrets nominella lagringskapaci tet:



3.6

E
—^ (3.3.4)
"ref

dar t.ex.

E f = (AT) , • VC, (3.3.5)ref ref lager '

3.4 Partiella differentialekvationer

Tempera turfb'rloppen i marken beskrivs matematiskt av den sa kallade

varmeledningsekvationen. Den far olika form i olika fall. De analyser

som redovisas i denna skrift baserar sig pa analytiska och numeriska

losningar av denna partiella differentialekvation med givna randvillkor

och andra data. Dessa mer teoretiska ting redovisas ej i denna skrift.

Som bakgrundsinformation skall dock en kortfattad redovisning av

styrande ekvationer i nagra fall anges. Detta avsnitt a'r ej nbdvandigt

for forstaelsen av det bvriga stoffet.

I ett markomrade utan grundvattenrbrel ser uppfyller temperaturen

T(x,y,z,t) den tredimensionella icke-stationara varmeledningsekvationen:

32T 82T 32T 1 3T , . n
— 7 + — 9 — 9 = ̂  ' "HT 13.4.1)
3X2 3y2 3Z2 3 8t

Har a'r a tetnperaturledningstalet. Varmeledningsfbrmagan x antas for

denna form vara konstant i det aktuella markomradet.

For en bergva'rmebrunn eller ett cyl inderformat va'rmelager anvandes

cyl inderkoordinaterna z (djup fran markytan) och r (radiellt avstand

till z-axeln). Varmeledningsekvationen blir da

i ! T + l | T + £ T = l . | T T = T( r . z . t ) ( 3 . 4 . 2 )
3r2 r 3r 3z2 a 3t

Den rent radiella processen kring t.ex. ett inre rbr i ett markva'rme-

lager styrs av:

+ 7 ' - T = T(r,t) (3.4.3)
a r
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Med hja'lp av Laplaceoperatorn som definieras av

V2T=3!T I2! ̂  (3.4.4)
3X 3y^ 3Z

kan den tredimensionella dynamiska varmeledningsekvationen skrivas:

I avsnitt 5.2 behandlas rent periodiska fbrlopp dar tidsvariationen

ges av sinus- och cosinusfunktioner. Periodtiden betecknas t . En

komplex notation anvandes. Se avsnitt 5.2.1. Den komplexvarda tempera-

turenT uppfylles:

T = T(x,y,z) T = T.e2ir1t/to (3.4.6)

I kapitel 7 utnyttjas sa-kallade steady-flux Ibsningar for att beskriva

vissa fbrlopp internt runt rbren vid laddning och uttag. Dessa karakteri-

seras av att varmeflbdet i varje punkt ar konstant i tiden. Temperaturen

stiger med konstant hastiqhet i varje punkt. Temperaturbkningstakten

bestams av inmatad varmemangd per volymsenhet (Q/V). Man har en tempera-

tur av fbljande typ:

T(x,y,z,t) = 5̂ t + Tsf(x,y,z) (3.4.7)

Temperaturen T ̂  uppfyller ekvationen:

v2Tsf=^ (3.4.8)

I ett stationart fall galler:

v2T = 0 (3.4.9)

Ekvationerna 3.4.5, 3.4.6, 3.4.8 och 3.4.9 ar olika former for va'rme-

ledningsekvationer vilka kommer till anvandning i de olika avsnitten.

Varmeledningsekvationen far en annan form for en akvifer, dar man har

strbmmande grundvatten. Lat q = (q , q , q ) vara vattenvolymflbdet
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(m vatten per m och sekund eller fbrkortat m/s). Det strb'mmande

grundvattnet ger upphov till en konvektiv varmetransport. Ekvationen

far fbljande allmanna tredimensionella form:

p 3 I 3 / . 8 I T r \I ~r r

C 3t = 3* ( A H - T CW V} + 3y ( A ly ' T CW

(3 .4 .10 )

Har ar C akviferens volymetriska varmekapacitet och C^ vattnets

(J/m • K). Om q ar lika med

tionen i (3.4.1) (a = A/C).

3 - w(J/m • K). Om q ar lika med noil och X ar konstant, sa bvergar ekva-

Grundvattenstrbmningen q bestams av den naturliga regionala qrund-

vattenrbrelsen och av pumpning i olika brunnar. Infiltration kan ocksa

paverka strbmbilden.

Varmeflbdet q i en punkt i marken ges av:

Randvil1koret over ett varmeisolerande skikt vid ett varmelagers yta

mot mark kan fa fbljande form:

(T - T ) • = -,\lager mark d - 8n mark

Den fbrsta faktorn i vanstra ledet ar temperaturdifferensen over

varmeisoleringen. Denna multipliceras med isoleringens varmelednings-

fbrmaga A - och divideras med dennas tjocklek d.. Vanstra ledet ger da

varmeflbdet ut i marken. Detta skall vara lika med hbgra ledet som

uttrycker varmeledningen i marken strax utanfbr varmeisoleringen. Har

anger — temperaturderivatan i normalriktningen.

For ett borrhal i berg far man fbljande typ av randvillkor. Temperaturen

i varmebararfluiden betecknas T^, medan T,, ar temperaturen i berget

precis vid brunnen. Brunnsradien ar R . Varmeflbdet ut fran brunnen

per meter brunn blir:

-* 4̂  L-D -2T.Rn (W/m) (3.4.13)
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Ha'r a'r 2iiR omkretsen, medan — anger temperaturderivatan i radiell

led. Varmemotstandet mellan fluid och bergvagg raknat per meter brunn

betecknas m (K/(W/m)). Randvillkoret vid brunnen blir da:

= m •(-AJ.ilp 9r r=R0'2irRo (3'4'14)

Uttryckt i ord innebar denna ekvation att temperaturdifferensen a'r lika

med varmemotstandet ganger va'rmeflbdet.

Vid numerisk Ibsning anva'ndes explicita framatdifferenser. For stationara

fall utnyttjas bverrelaxation. I fall da'r grundvattenflbde fbrekommer

anvandes en nyutvecklad teknik for att undvika sa kallad numerisk dis-

persion.

I tvadimensionella och cylindersymmetriska fall utnyttjas normalt i

storleksordninqen 500 gitterceller for att representera temperaturfbr-

loppet. Normal tidsatgang for en simulering av 25 ar kan vara runt fern

minuter pa en UN I VAC 1100/80. I genuint tredimensionella fall anva'nds

i storleksordningen 10 000 gitterceller. For ett system med bergvarme-

brunnar kan 2-50 cylindersymmetriska problem Ibsas parallel It. Dessa har

vardera nagot hundratal gitterceller.

De numeriska berakningarna bedbms genomgaende ge ett fel pa maximalt

nagra procent.

3.5 Superposition

De olika formerna av va'rmel edningsekvationen i fbregaende avsnitt a'r

vasentligen linjara partiella differentialekvationer. Detta innebar att

olika Ibsningar kan superponeras. Om tva temperaturfbrlopp var for sig

uppfyller varmeledningsekvationen sa ga'ller detta a'ven for summan av de

tva temperaturerna. Ett komplicerat temperaturfbrlopp kan pa detta satt

ses som en bverlagring av ett antal delkomponenter vilka var for sig kan

ha en relativt enkel struktur.

Med superposition kan manga komplicerade varmestrbmningsproblem Ibsas.

Genom en sadan uppdelning i enkla grundl a'ggande fbrlopp far man en battre

bverblick och fbrstaelse av vad som sker.
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Superpositionsteknik kan ej anva'ndas i markornraden dar frysning sker. Den

andra viktiga begransningen f or de har aktuella tillampningarna galler

tempera turf brlopp i strommande grundvatten. Fbrlopp som ha'rfbr sig till

olika strb'mningsmbnster for grundvattnet kan ej superponeras.

Figurerna 3.1-2 illustrerar superpositionstekniken vid analys av ytjord-

varmeslangar. Figur 3.1 visar ett vertikalt tvarsnitt i marken vinkelrat

mot en markvarmeslang. Till denna har man ett tidsvariabelt varmeflb'de.

Effektflbdet uppdelas i tva delar q,(t) och q2(t). Den ena delen kan ut-

gbra korttidsvariationer medan den andra delen svarar for en mer langsik-

tig variation. Pa samma satt kan temperaturvariationen vid markytan ses

som en summa av tva delar T,(t) och T^Ct). Det totala temperaturfbrloppet

i marken kring ytjordva'rmeslangen kan ses som summan av tva delfbrlopp

enligt figur 3.1. Det fbrsta delfbrloppet har effektuttaget q^(t) och

temperaturen T,(t) vid markytan. Motsvarande storheter for den andra del-

processen a'r q2(t) och T,,(t). Genom en lamplig uppdelning av effektuttag

och temperatur vid markytan kan t.ex. korttids- och langtidseffekter sepa-

reras fran varandra.

T1+2(x,z,t) T1(x,z,t)

T2(t)

T2(x,z,t)

Figur 3.1. Superposition av tva temperaturprocesser for en ytjordva'rme-

slang.

I figur 3.2 visas ett tvarsnitt i marken for tva parallella ytjordvarme-

slangar. Problemet definieras av en given temperatur T (t) vid markytan

och givna effektuttag q.(t) och q?(t) till slangarna. Processen uppdelas

enligt figuren i tre mer elementara delar.
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T0(t)

Figur 3.2. Superposition da'r ostbrd marktemperatur och rena effektuttag

for tva ytjordva'rmeslangar separeras.

Den fbrsta delen bar effektuttaget noil till bada slangarna och den

fbreskrivna temperaturen vid markytan. Denna del ger naturlig ostbrd tem-

peratur i marken. Den andra delen bar effektuttaget q/t) till den ena

slangen, medan den andra slangens effektuttag a'r noil. Den tredje delen

tar hand om den andra slangens effektuttag q~(t). Temperaturen vid mark-

ytan skall for de tva sista komponenterna vara noil. Adderas dessa tre

processer far man den totala, mer komplicerade processen. Den andra och

den tredje komponenten a'r ett grundfall da'r man har ett effektuttag tried

en enda slang. Problemet enligt va'nster bild i 3.2 har genom denna super-

position uppdelats i enklare grundfall.

Ett givet tidvariabelt effektuttag q(t) kan genom superposition uppdelas

i enklare typer av effektuttagsfunktioner. I avsnitt 5.3 visas hur komp-

licerade effektuttag kan reduceras till ett antal stegpulser. Ett enkelt

exempel visas i figur 5.3.1.

For temperaturfbrloppen i marken har man tre fundamentala delkomponenter.

Man har en tidsoberoende eller stationer del och en bverlagrad periodisk

variation under t.ex. en arscykel. Under en fbrsta tidsperiod sker for

ett v'a'rmelager en transient uppbyggnad av en va'rmekudde runt lagret.

Den periodiska komponenten ger ett pulserande temperaturfbrlopp med en

viss, relativt begra'nsad ra'ckvidd runt markva'rmesystemet. Man far ett

pulserande varmeflbde ut i marken. Nettoutflbdet under en lagrings-

cykel blir noil.

Tiden for den transienta uppbyggnaden av en va'rmekudde runt ett mark-

va'rmelager kan for stora lager vara flera tiotals ar. Efter hand stabi-
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liserar sig fbrloppet. Den transienta temperaturuppbyggnaden na'rmar sig

ett stationart sluttillstand. Man har da en tidsoberoende eller stationar

temperaturfbrdelning i marken runt varmelagret. Hart i l l kommer den bver-

lagrade periodiska variationen under lagringscykeln.

Vid bera'kning av arliga varmefbrluster fran ett va'rmelager kan man bortse

fran den periodiska komponenten eftersom dennas nettoutflbde a'r noil.

Va'rmeutflbdet bestams av medeltemperaturer under lagringscykeln. Ars-

variationer vid markytan kan vara betydelsefulla for varmefbrl usternas

fbrdelning under arscykeln. De paverkar ej den arliga varmefbrl usten. Vid

markytan skall man anvanda en konstant temperatur T som a'r lika med

arsmedeltemperaturen for den aktuella orten. Pa varmelagrets yta mot

marken har man en konstant temperatur T som representerar ett arsmedel-

va'rde. Figur 3.3 visar for ett varmelager detta delproblem som bestammer

arl ig varmefbrl ust.

Figur 3.3. Delproblem som bestammer de arliga varmefb'rlusterna. Vid la-

gerytan ansattes arsmedelvardet T .

For den transienta uppbyggnaden har man begynnelsetemperaturen T i marken.

Vid lagrets yta har man den konstanta temperaturen T . Dessa renodlade

transienta arsvarmefbrluster behandlas i avsnitt 5.1. Det stationara

temperaturfbrloppet bestammer de arliga varmefbrlusterna efter insvang-

ningsperioden. Denna mycket betydelsefulla delprocess behandlas i kapitel

4.

Den stationara temperaturfbrdelningen a'r ocksa av intresse ur miljbsyn-

punkt eftersom den ger maximal temperaturpaverkan fran markva'rmesystemet.

I omradet na'rmast varmelagret tillkommer periodiska variationer under

arscykeln.



3.13

Superponeringsteknik anvands i vissa av datorprogrammen. I datormodellen

for ett system av bergvarmebrunnar (Superposition Bore-hole Model) super-

poneras Ibsningar som ha'nfbr sig till brunnarna var for sig. I modellen

for rbrvarmelager (Duct Storage Model) superponeras ett globalt tempera-

turfbrlopp i och utanfbr lagret och ett antal lokala Ibsningar runt

varmebararkanal erna.

3.6 Error function

Funktionen erfc(x) anvands pa manga stallen i de fbljande kapitlen. Pel-

funktionen eller pa engelska Error function behandlas grundligt i refe-

rens 103 B.

Error function erf(x) definieras som integralen:

erf(x) = f / e- s 2ds < 3- 6- 1)
V TT ;

0

Den sa kallade Complementary error function ges av:

7 °° c2
erfc(x) = 1 - erf(x) = -~= / e b ds (3.6.2)

x

Man bar fbljande samband for positive och negativa argument:

erfc(-x) = 2 - erfc(x) (3.6.3)

Nagra va'rden ar:

erfc(O) = 1 erfc(0.5)^ 0.5 erfc(1) = 0.16

(3.6.4)

erfc(2) = 0.005

Serieutveckl ingen i x ar:

erfc(x) = 1 - 4- x + -i • V - ••• (3 .6 .5 )
/IT /IT j

Asymptotiskt galler for stora x:
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-x

2x
(x > 1.5) (3.6.6)

Funktionen ges i tabell 3.1 och i figur 3.4. I figuren visas aven approxi-

mative uttryck for sma och stora x enligt 3.6.5-6.

erfc (x)

0.5

1--

1 -x2i—e *

0.5 1.0 1.5

Figur 3.4. Funktionen erfc(x).

0 0.05 0.10 0.15 0 .20 0 .25 0.30

erfc(x) 1 0.944 O . E 0.832 0.777 0.724 0.671

0.35 0.40 0.45 0 .50 0.55 0.60 0.65

erfc(x) 0.621 0 .572 0.525 0.480 0 .437 0.396 0.358

0.70 0.75 0.00 0.85 0.90 0.95 1.0

erfc(x) 0.322 0.289 0.258 0.229 0.203 0.179 0.157
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X

erfc(x)

1.

0.

1

120

1.2

0.090

1.3

0.066

1.4

0.048

1.5

0.034

1.6

0.024

1.7

0.016

1.8

0.011

1.9

0.007

2.0

0.005

X

erfc(x)

2-

0.

0

0047

2

0

.2

.0019

2

0

.4

.00069

2.

0.

6

00024

2

0

.8

.000075

3.0

0.000022

Tabell 3.1. Funktionen erfc(x).

Fbljande approximation for erfc har ett maximal! fel \%\) ̂  e

-x 2 + x

2 + ( 1 + + v̂ F •
VTT /

(3.6.7)

(0 < x «*>)

3.7 Varmekonduktivitet i svensk berggrund

Detta avsnitt a'r skrivet av

Jacob Johnson, Sveriges Geologiska Undersbkning, Uppsala,

Jan Sundberg, Geologiska Institutionen, Jordvarmegrupperi, Chalmers

Tekniska Hbgskola, Gbteborg,

Bo Thunholm, Sveriges Lantbruksuniversitet, Uppsala

i juli 1984.

Vid utvinning och lagring av va'rme i berggrunden a'r varmeledningsfbrmagan

eller varmekonduktiviteten X (W/mK) av betydelse. Den energimangd som kan

utvinnas ur en bergvarmeanlaggning a'r direkt proportionell mot x- vardet

i berget.

Vid Geologiska institutionen, CTH, har i samarbete med SGU narmare 4000

beraknade och uppmatta varden pa olika bergarters Varmekonduktivitet sam-

manstallts. Arbetsfbrdelningen har varit sadan att SGU har svarat for in-

samling av data och uppra'ttande av databank medan CTH har verifierat be-

ra'kningsmetoden, utvarderat data m m. Ha'rvid har X-vardena klassats med
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avseende pa ett tjugofemtal olika bergartsgrupper. De fiesta beraknade -
va'rden harrbr fran redovisade mineralsammansa'ttningar i SGU:s publika-
tioner, fra'mst i serie Af. Uppma'tta va'rden har erhallits bl a fran CTH:s
studier om varmeflbde i berg och fran matningar i svenska gruvor. Va'rden
for sedimenta'ra bergarter ar nastan uteslutande uppmatta och harrbr fran
en dansk undersb'kning.

Bera'kningar pa grundval av bergartsprovernas mineral sammansa'ttning har

utfbrts pa flera satt:

(1) artimetiskt medelva'rde
(2) geometriskt medelvarde
(3) harmoniskt medelva'rde
(4) medelvarde av en undre och en b'vre grans enligt Hashin, Shtrikman.

Vanligen ordnar sig de olika berakningarna enligt (3) < (2) < (4) < (1).

Tidigare studier samt resultat fran denna undersbkning visar att metod

(4) bverenssta'mmer bast med uppmatta va'rden. Den stbrsta avvikelsen mel-
lan uppmatta och beraknade va'rden i denna undersbkning harrbr fran pro-

ver fran anisotropa bergarter.

I figur 3.5 visas medelva'rden for olika kristallina bergarter for hela
landet. Den streckade linjen visar vilket varde som 90% av fbrdelningen

bverskrider med konfidensgrad 95%. For ytterligare information ha'nvisas
till Johnson, Sundberg, Thunholm, Va'rmekonduktivitet i svensk berggrund,

Byggforskningsradet, i koncept. Den beraknas utkomma hbsten 1984. I den
rapporten redovisas aven bl a va'rmekonduktiviteten lansvis. Detta med-
fbr naturligtvis stbrre variationer av medelvardet men med mindre sprid-
ning. Rapporten innehaller aven olika mbjligheter att bestamma varmekon-

duktivitet for ett visst objekt pa en viss plats.

En undersbkning som avser Va'rmekonduktivitet och specifik varmekapaci-
tet for olika svenska jordarter ar under utva'rdering vid CTH och avses

att publiceras inom kort.

*
Rapporten finns nu i tryck, referens 165.
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A (W/mK)
VARMEKONDUKTIVITET

BEFtGARTSKOD

Figur 3.5. Varmekonduktivitet for kristallina bergarter
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4. STATIONARA TEMPERATURFORLOPP.
VARMEFORLUSTFORMLER

Den station'a'ra, dvs tidsoberoende, delen av det totala temperatur-

fbrloppet i marken utanfbr ett markvarmelager 'a'r en av de viktigaste

koniponenterna for de termiska analyserna. Denna del bestammer den

totala arliga va'rmefbrlusten efter en inledande transient period.
Denna transienta temperaturuppbyggnad behandlas i avsnitt 5.1. Vidare

ger den stationara delen maximal temperaturstbrning fran va'rme-

lagret utom for omraden narmast lagret dar tidsvariabla processer

ocksa a'r av betydelse. I detta kapitel redovisas ett antal grund-

laggande fall vilka senare kommer att utnyttjas for de olika lager-

typerna. Formler for arlig varmefbrlust anges som funktion av lager-
storlek, lagerform och va'rmeisolering.

4.1 Introduktion

4.1.1 Stationa'r delprocess

Det totala temperaturfbrloppet i och utanfbr ett markvarmelager kan

genom superposition uppdelas i enklare delprocesser. Detta diskuteras i
avsnitt 3.5. Den totala processen bestar av en Stationa'r del och en

periodisk del. Vidare har man under de fbrsta aren en transient upp-

byggnad fram till arligt periodiska fbrhallanden. Grundlaggande

periodiska och transienta fbrlopp behandlas i na'sta kapitel.

Enligt diskussionen i avsnitt 3.5,dar superpositionsprinciperna be-

handlas, best'a'ms varmeflbdet till och fran lagret av temperaturen

pa lagerytan. Denna varierar over ytan. Den varierar a'ven med tiden.

Den periodiska delen av ytteinperaturen ger ett periodiskt in- och

utflbde av varme. Nettoflbdet under arscykeln blir noil. Bortsett

fran de fbrsta arens transient bestams da'rfbr det arliga varme-

flbdet av medeltemperaturen pa lagerytan under arscykeln. Arsmedel-

temperaturen varierar normalt fran punkt till punkt pa lagerytan.

Man har en medelniva T och en bverlagrad variation over ytan.

Om variationen over ytan a'r liten eller om medelnivan va'ljes pa

lampligt satt blir nettovarmeflbdet fran den bverlagrade variationen
vasentligen fbrsumbar.
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Va'rmefbrlusten bestams da av en lampligt vald konstant yttemperatur

T . Delar av lagerytan kan tackas av varmeisolerande skikt. Vidm
markytan r&der en konstant temperatur T . Vi far ett stationart

varmestrbmningsproblem i marken utanfb'r lagret. Detta stationara

temperaturfbrlopp illustreras i figur 4.1.1 for ett lager under
mark och for ett lager med bverytan vid marknivan. I det senare

fallet nar man varmeisolerat bversidan och en bit av den vertikala

kanten.

Figur 4.1.1. Stationart temperaturfbrlopp i marken utanfbr va'rme-

lager med konstant yttemperatur T .

Det stationara varmeutflbdet fran lagret skall betecknas Q (W). I

en del fall skall a'ven ett plant tvarsnitt av ett langstrackt va'rme-

lager studeras. I ett sadant fall betecknas va'rmefbrlusten per meter

i lagrets langdriktning q (W/m).

4.1.2 Dimensionslbs form. Varmefbrlustfaktor h.

Den stationara temperaturfbrdelningen i marken, T(x,y,z), kan re-

presenteras i dimensionslbs form enligt:

T(x,y,z) = TQ + (Tm - T0) • u(x/Ls, y/Ls> Z/LS) (4.1.1)

Den dimensionslbsa temperaturen u ar noil vid markytan och +1 vid

lagrets yta. Rumskoordinaterna for u ar dimensionslbsa genom skalning
med en langd LS. Denna kan vara t.ex. lagrets hbjd eller bredd.



Varmefbrlusten Q a'r direkt proportionell mot temperaturdifferensen

T - T och mot varmeledningsfbrmagan A i marken. Varmefbrlusten kan

skrivas:

4.3

- VLs'h (W) (4.1.2)

Faktorn h a'r dimensionslbs. Vi skall genomgaende anvanda denna be-

teckning och kalla den for varmef brl ustfaktor.

Lit L , L,, Lg osv vara de la'ngder som karakteriserar varmelagret. Varme-

fb'rlustfaktorn blir en funktion av skalade langder, dvs. av lagrets

form och lage:

h = h(L1/Ls, L2/Ls,...; (4.1.3)

Marken utanfbr lagret kan besta av omraden med olika va'rmelednings-

fbrmagor X, A., \y osv. Varmefbrlustfaktorn blir da ocksa en funktion

av relativa varmeledningsfbrmagor A./A osv:

h = (4.1.4)

En speciell komplikation a'r skalningen for varmeisoleringen av lagret.

Figur 4.1.2 visar ett exempel , da'r lagret har en vertikal isolering

la'ngs kanten. Isoleringens tjocklek a'r d., och dess varmeledningsfbr-

maga a'r A.. Isolerskivan gar ner en la'ngd D-j.

varmelager

Figur 4.1.2. Vertikal isolering vid kanten av ett lager.
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Isoleringen ger de tre dimensionslbsa parametrarna d./L , D-/L

och X - / A - Normal t ra'knas isoleringen bara som ett varmemotstand

mellan lagertemperaturen T̂  och marken utanfor isoleringen. Vid skal-
ning skall da isoleringens va'rmemotstand d./x. skalas mot va'rme-

motstandet L /x. Isoleringen ger da tva dimensionslbsaparametrar

for varmefbrlustfaktorn

h = hÛ 'L,.,... , 0./Ls, (d.x)/(LsXi)) (4.1.5)

For ett langstrackt lager betecknade q varmefbrlusten per meter. Den
dimensionslbsa varmefbrlusten blir for ett sadant tvadimensionellt

fall

qm = X(Tm " V ' h (W/m) (4.1.6)

Faktorn h blir en funktion av lagrets geometriska form.

Det a'r larorikt att jamfbra formlerna 4.1.2 och 4.1.6. I det tre-

dimensionella fallet a'r varmefbrlusten Q proportionell mot den

linjara storleken L . Detta beror pa att varmefbrlusten a'r pro-

portionell mot lagrets area ganger temperaturgradient. Den senare

faktorn a'r proportionell mot 1/L . Totalt far vi

VLs'1/Ls = Ls (4J'7)

I det plana fallet, da'r vi ra'knar per meter vinkelrat mot planet, har
man i stallet:

(4.1.8)

Varmefbrlusten q beror saledes ej pa lagrets linjara dimensioner.

4.2 Sfariskt lager.

Vi skall i detta avsnitt studera fallet, da varmelagret har sfarisk

form. Detta fall kan synas va'l akademiskt, men det kommer att visa
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sig vara av intresse pa grund av att processen a'r genuint tre-

dimensionell och att forrnlerna blir enkla.

Lat oss fbrst se pa ett sfariskt varmelager som ligger sa djupt ner

under markytan att denna ej paverkar det stationara temperaturfbr-

loppet kring lagret. Lagrets radie a'r R. Det radiella avstandet

fran lagrets centrum betecknas r.

Temperaturen vid lagerytan a'r T . Pa stort avstand fran lagret a'r

den ostb'rda marktemperaturen T . Den stationara temperaturen utanfbr
det sfa'riska lagret blir da:

T = To + (Tm - V'7 r = /x2 + y2 + z2 (4.2.1]

Varmefbrlusten Q fran ett sfariskt lager i en o'a'ndlig omgivning

blir:

- To) (4.2.2)

Om vi tar L = R for skalningen blir varmefbrlustfaktorn:

h = 4TT (l_s = R) (4.2.3)

Varmeutflbdet per ytenhet fran sfa'ren blir enligt formel 4.2.2:

? D '
4-TrR

Den oandliga sfa'riska omgivningen svarar saledes mot en "plan" tjock-
lek R.

Figur 4.2.1 visar ett sfariskt lager pa mattligt djup under mark-

ytan. Lagrets mittpunkt ligger pa djupet D under markytan (D > R).



4.6

Figur 4.2.1. Sfariskt varmelager pa djupet Dm under markytan.

Varmefbrlustfaktorn blir en funktion av Dm/R. Vi har med utnyttjande

av formel 4.2.3:

- To)R'hCVR)
(4.2.5)

Figur 4.2.2 visar h(Dm/R).

h(Dm/R)
h(co)

2.5

2-

1.5-

Figur 4.2.2. Varmefbrlustfaktor for sfariskt lager pa djup D^

relativt sfa'r pa oandligt djup. Korsen anger va'rden

enligt den approximative formeln 4.2.6.

I avsnitt 4.4 anges approximativa formler for varmefbrlust Qm och

for varmefbrlustfaktor h for ett lager pa mattligt djup, da man

kanner fbrlusten for samma lager pa stort djup. Vi far med formlerna

4.4.1 och 4.2.3:
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h(Dm/R)
4ir

1 -
R
2DI

(Dm/R 1.5) (4.2.6)

Va'rden enligt denna forme! ar markerade tried kryss i figur 4.2.2.

Vi ser att approximationen a'r mycket god (fel i 3%) da D /Ra 1.5.

4.3 Cylinderformat va'rmelager under mark.

Varmelagret bar formen av en cylinder med hbjden H och radien R.

Cylinderns rotationsaxel sammanfaller med den vertikala z-axeln.

Cylinderns bveryta ligger pa djupet D under markytan. Pa cylinder-

ytan a'r temperaturen T , och vid markytan a'r den T . Se figur 4.3.1.

Resultaten i detta avsnitt finns mer detaljerat redovisade i referens

1.

Figur 4.3.1. Stationa'rt temperaturfbrlopp utanfbr cyl inderformat

varmelager under mark.

4.3.1 Temperaturfalt

Den dimensionslbsa temperaturen u enligt forme! 4.1.1 a'r +1 pa

cylinderytan och noil vid markytan. Vi skalar la'ngden med D (L = D).
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Tempera turf altet beror av de tva parametrar R/D och H/D. Temperatur-

faltet har beraknats numeriskt for tre fall med olika geonietri.

Resultatet visas i figur 4.3.2 A-C. De tre figurerna ger en god

bild av temperaturpaverkan fran ett varmelager i mark. Vi ser att

temperaturfaltet har en "dipol"-karaktar. Utstrackninaen av tem-

peraturfalten bestams av varmelagrets linjara dimensioner.

o 1

Figur 4.3.2. Dimensionslbst tempera turf a'11 utanfbr cyl inderformat

varmelager. A: R/D = 2, H/D = 2. B: R/D = 2, H/D = 5.

C: R/D = 10, H/D = 2.

Marken utanfbr varmelagret fbrutsatts ha en enda varmeledningsfbr-

maga i dessa tre exempel. Figur 4.3.3 visar ett fall da'r marken be-
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star av tre olika skikt. Varmeledningsfbrmagan for de tre skikten

ges i figuren. Geometrin a'r densamma som i figur 4.3.2 A.

Figur 4.3.3. Dimensionslbst temperaturfalt utanfor ett cylinder-

format va'rmelager. Marken bestar av tre skikt med olika

varmeledningsformaga. R/D = 2, H/D = 2.

Vi ser vid en jamfbrelse mellan 4.3.3 och 4.3.2 A att temperaturfal ten

a'r fbrhallandevis likartade. Isotermerna i det inhomogena fallet a'r

dock mer utbredda beroende pa att varmeledningsformagan a'r vasentligt

stb'rre i det understa skiktet an i de tva bvre.

4.3.2 Varmefbrlust

V'a'rmefbrlusten for det cyl inderformade lagret under markytan ges

enligt formel 4.1.2 med D som skalningsla'ngd:

Qm = A(Tm ' To)D >h(R/D' H/D)
(4.3.1)

Faktorn h har beraknats numeriskt for ett antal parameterva'rden. Re-

sultatet ges i tabell 4.3.1.
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20

15

10

5

4

2

1

63

54

43

31

28

21

17

1

57 89

53 84

44 73

32 66

2 3

230

213

194

171

165

150

140

5

569

547

521

456

10

1064

1038

1006

923

15

1716

1686

1649

1549

20

R/D

Tabell 4.3.1. Varmeforlustfaktor h for cylinderformat lager under

mark enligt formel 4.3.1 och figur 4.3.1.

Varmefbrlusten fran en cylinder pa stort djup har ocksa beraknats

numeriskt for olika cylinderformer. I detta fall anvandes R som skal-

langd. Varmefbrlustfaktor beror da av H/R:

Qm = A(Tm - T )R-h,(H/R) (4.3.2)

For en cylinderskiva (H = 0) har man det exakta resultatet h.(0) = 8.

Varmefbrlustfaktorn h, ges i tabell 4.3.2.

H/R

h^H/R)
0

8
1/20
8.8

1/10

9..0

1/5

9.4

1/3

10.0

1/2

10.7

H/R "

h^H/R)

1

11 .9

2

14.8

3

17 .3

5

21 .8

10

31 6

20

48. 1

Tabell 4.3.2. Varmeforlustfaktor h. for cylinderformatlager
djup for formel 4.3.2.

stort

label! 4.3.1 ger varden pa h for R a D och H £ D. Lagret ligger da

pa fbrhallandevis litet djup. Vid djup, som ej ar alltfbr sma, kan

formel 4.4.1 anvandas, eftersom vi kanner h,(H/R) och darmed Q for

stort djup. Vi far fran formlerna 4.4.1, 4.3.2 och 4.3.1:



h(R/D, H/D) = , . -
h^H/R)

(D a R/2) (4.3.3)
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Observera att vi har skalat med D respektive R i de tva fallen.

Medeldjupet Dm till lagret ar i detta fall

hygglig noggrannhet om D ar stbrre an R/2.

Medeldjupet D till lagret ar i detta fall D + H/2. Formeln bbr ge

Uttryckt i varmefbrlust Q som funktion av djupet blir forme!

4.3.3:

Q (»)

Rh^H/R)

47T2DTHJ

(D >= R/2) (4.3.3'

For att ytterligare belysa hur varmefbrlusten beror av djupet, har

numeriska berakningar utfbrts for fallet H lika med R och D/R variabel.

Resultatet ges i tabell 4.3.3.

D/R = D/H

<Jm

x(T -T
o>R

numerisk
berakning

enl igt
formal 4 .3 .3 '

1

17.2

17.4

2

14.6

14.6

3

13.7

13.8

5

13

13

.0

.0

10

12.4

12.5

20

12

12

.0

.2

CO

11.9

11.9

Tabell 4.3.3. Dimensionslbs varmefbrlust som funktion av djupet D for

fallet H - R.

For oandligt djup far vi fbrlusten 11.9. Vid djuoet D = 3R ar f'br-

lusten 13.7. Okningen ar relativt mattlig. Vid djupet D = R ar fbr-

lusten ungefar 50% stbrre an for det oandligt djupa fallet.

Motsvarande varden enligt formel 4.3.3' ges ocksa. Va'rdet h1(1) = 11.9

enligt tabell 4.3.2 har utnyttjats. Vi ser att bverenssta'mmelsen med

numeriskt beraknade varden ar mycket god.

Exempel 1. Ett cylindriskt varmelager har bverytan 10 m under mark-

ytan. Lagretsdiameter ar 40 m och dess hbjd 40 m. Va'rme-

ledningsfbrmagan i marken ar 1.2 W/mK. Den arliga medel-

5-B5
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temperaturen over lagerytan a'r 60°C, medan arsmedel tem-

peraturen vid markytan a'r 9°C. Vi bar da:

D = 1 0 m H = 4 0 m R = 2 0 m

Tm = 60°C TQ = 9°C

Den stationara varmefb'rlusten blir da enligt formel 4.1.2
och tabell 4.3.1:

h(20/10, 40/10) = 53

Qm = 1.2-(60 - 9).10-53 = 32 kW

Exempel 2. Vi har samma lager pa mycket stort djup och pa ett mattligt

djup:

i. D = « ii. D = 40 m

For mycket stort djup har vi enligt formel 4.3.2 och tabell

4.3.2:

h1(40/20) = 14.8

Qm = 1.2(60-9) 20-14.8 = 18.1 kW

For det mattliga djupet D = 40 m kan ej tabell 4.3.1 utnyttjas

eftersom R/D = 1/2. Med formel 4.3.3' far vi:

Qm(») = 18.1 kW h1(40/20) = 14.8

1Q 1
Qm = — = 23 kW

1 _ 20-14.8

4Ti(80+40)

Exempel 3. Vi tar §ter exempel 1 men anvander i stallet for tabell 4.3.1

den approximativa formeln 4.3.3'. Vi har da enligt formel

4.3.3' och exempel 2:

Qm = - - = 30 kW
1 _ 20-14.8

4ir(2-10+40)
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Felet relativt det direkt beraknade va'rdet Q = 32 kWtn
enligt exempel 1 ar 6%. Vi ligger precis pa den angivna

gransen for tillampbarheten av 4.3.3':

H) 1
20 2"

4.3.3. Effekt av isoleringar

Vi skall i detta avsnitt med nagra exempel illustrera vad man tja'nar

genom att varmeisolera olika ytor pa cylindern. Foljande data an-

vandes:

A = 2 U/mK Tm ' To = 50 °C

D = 1 0 m H = 2 0 m R = 2 0 m (4 .3 .4)

Den stationara varmefbrlusten blir enligt tabell 4.3.1:

Q = 2 - 5 0 - 1 0 - 4 4 = 44 kW (4 .3 .5 )

Varmeutflodets fbrdelning pa bveryta, sidoyta och underyta visas

i figur 4.3.4 B.

I figur 4.3.4 C bar bverytan varmeisolerats med en isolering da'r

d i/X i ar lika med 1.25 m2K/W. I 4.3.4 D och E har isoleringen

bkats till 2.5 respektive 5. Vi ser att isoleringen ger en relativt

mattlig minskning av total varmefb'rlust. I figur 4.3.4 F och G har

det bvre hornet isolerats ytterligare. I figur 4.3.4 H ar bade bver-

yta och sidoyta varmeisolerat. Vi far da en kraftig reduktion av

varmeforlusten fran 44 till 26 kW.
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10m

20m

Qm.upoat

Qm(kW)

Qm,ned5t

20m

Qm,sida 43.9 kW

6.6

21.9

107

1.0.6

6.6

= 1.25m'K/W

8.4

388

6.7

=̂2.5
^i

23.8 36.9

6 7

24.4 34.1

6.7

20.8

6.5

32.5

68

J4m

19.1

_6J__J?U5
™| ^i

26.4 810.2

9.4

H

Figur 4.3.4. Varmefbrlust (kW) genom de tre delytorna av en cylinder

vid olika isolering. Data enligt 4.3.4.

4.4 Varmefbrlust vid mattliga kontra stora djup

Den stationara varmefbrlusten fran ett varmelager under mark beror

pa hur djupt ner lagret ligger. Lat D beteckna djupet fran markytan

till lagrets mittpunkt. Varmefbrlusten Q for ett lager av given form

och storlek blir en funktion av medeldjupet D = W-
Varmeforlusten fran samma lager pa sa stort djup att markytans effekt

blir fbrsumbar betecknas Q («.). Genom en spegl ingsteknik, dar man an-

satter ett spegellager ovan markytan, kan fbljande approximative sam-

band mellan Qm(Dm) och Q (») harledas. Se referens 2.
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Q (<*>)
Q (D ) ~ 2 (4.4.T

m m

Formeln galler ej for lager som ligger alltfbr nara markytan.

Som ett fbrsta exempel tar vi ett sfariskt varmelager. Detta be-

handlas i avsnitt 4.2. Varmefbrlusten for ett lager pa stort djup,

dvs. i en fri omgivning, ges av formel 4.2.2:

(4.4.2)

For en sfa'r pa ett djup D under markytan (figur 4.2.1) far vi da

Q_(D
(4.4.3)

Den exakta varmefbrl ustfaktorn som funktion av djupet ges i figur

4.2.2. Va'rden enligt ovanstaende approximation ar markerade med

kryss i figuren. Vi ser att approximationen ar mycket god for stb'rre

djup. Felet ar mindre an 1%, 3% och 14% for Dm/R > 2, Dm/R > 1.5

respektive D /R > 1.2. Formeln 4.4.3 eller 4.2.5 kan saledes an-

vandas med god precision for D /R > 1.5. Det tackande jordskiktet

vid sfarens bvre punkt, D - R, ar da stbrre an halva radien pa

sfaren.

Som ett andra exempel tar vi det cylindriska lagret under mark. Detta

behandlas i avsnitt 4.3. Medeldjupet D blir:

D = D + H/2 (4.4.4)

Varmefbrl ustfaktorn for en fri cylinder pa stort djup ges i tabell

4.3.2 for olika cyl inderformer. Vi har enligt formel 4.3.2:

Qm(-) = x(Tm - TQ) R h^H/R) (4.4.5)
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Varmefbrlusten for ett lager pa a'ndligt djup gavs av 4.3 .1 :

W = - T0)D.h(R/D,K/D) (4.4.6)

Insa'ttning av 4.4.5-6 i forme! 4.4.1 ger uttrycket 4.3.3 for va'rme-

fbrlustfaktorn h. Tabell 4.3.3 ger en ja'mfbrelse med numeriskt be-

raknade va'rden. Vi ser att for dessa mattliga och stora djup stammer

forme!n mycket va'l.

4.5 Ell ipsoidformat va'rmelager

En ellipsoid besta'ms av de tre axlarnas langd. Dessa kan va'ljas o-

beroende av varandra for att ge lamping langd, bredd och hb'jd. En

stor klass av former pa ett va'rmelager i marker kan da'rfbr approxi-

mativt beskrivas av en ellipsoid. Varmefbrlustformler fran ett ellips-

oidformat lager pa stort djup och na'ra markytan har da'rfbr stor an-

va'ndbarhet. De formler som ges i detta avsnitt ha'rleds i referens 2.

4.5.1 Rotationsellipsoid pa stort djup

Vi tanker oss ett va'rmelager pa stort djup. Lagret har formen av en

rotationsellipsoid med hbjden H och radien R. Se figur 4.5.1.

(\\/2)
= 1

Figur 4.5.1. Rotationsellipsoid med hbjden H och radien R.

For H = 0 far vi en cirkelskiva. For H = 2R har vi en sf'a'r. Rotations-

ellipsoiden a'r oblat for 0 < H < 2R och prolat for H > 2R.
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Stationar va'rmefbrlust Q kan enligt 4 .1.2 med R som skalningslangd

skrivas:

Qm = - TQ )R.h 2 (H/R)

Varmefbrlustfaktorn h« ges av

0 S H/R £ 2: h2(H/R) =

f = /1 - ?R.

(4.5.1)

(4. 5. 2 ' )

H/R * 2: h2(H/R) = ™ -

f = 71 - 2R

Speciellt har vi vardena:

(4.5.2"

h 2 (0 ) = 8 (c i rke lsk iva)

h2 (2) = 47T (sfar)

Derivatan av h2 nied avseende pa H/R vid H/R = 2 ges av:

h2 (2) =

(4.5.3)

(4 .5 .4 )

Vi har fbljande approximativa uttryck for f. Dessa har ett maximalt

fel pa 2%:

« 4 - 2 0.5 s s 5 (4.5.5)

(4.5.6)

(4.5.7)
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Varmefbrlustfaktorn h2(H/R) visas i figur 4.5.2,

Figur 4.5.2. Varmefbrlustfaktor for rotationsellipsoid enligt formlerna

4.5.2' och 4.5.2".

4.5.2. Jamfbrelse mellan cylinder och rotationsellipsoid

Det a'r intressant att jamfbra varmefbrlusten fran cylinder och rotations-

ellipsoid. Vi ser pa en cylinder pa stort djup med hbjden HC och radien

R . Varmefbrlusten ges av formel 4.3.2 och tabell 4.3.2. Rotations-

ellipsoiden pS stort djup har radien R och hbjden H. Dess varmefbrlust

ges av 4.5.1-2.

Cylinderns radie och hbjd valjes sa att den far samma volym och hbjd-

breddforhlillande som rotationsellipsoiden. Vi har da:

4TT
T

H Hc
R = R7 (4.5.8)
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Detta innebar:

R = RV3/| H = HV3/T (4.5.9)
L. Y O U y 0

Fbrhallandet mellan varmefbrlusten for cylinder och motsvarande

rotationsell ipsoid blir enligt formlerna:

f . Vcyl VMW _X3/T h1 (H/R) ( 4 5 1 Q )

" Vrot ' R VH/R ' "V 3 ' h-WRT ^'^

For en sfa'r och motsvarande cylinder far vi

H/R = 2 f = \ ~~ = 1.03 (4.5.11)

Cylindern harsaledes 3% storre varmefbrlust. For nagra andra former

far vi

5 = i f = 0-99
i = i f = °-95
£ = 20 f = 1.01 (4.5.12)
K

Vi ser att f hela tiden ligger mycket na'ra 1. En mattlig andring av

lagret under bevarande av volym och form ger saledes ingen storre fbr-

andring av varmefbrlusten.

4.5.3 Allma'n ellipsoid

Vi skall nu ge formler for det allma'nna fallet dar lagret har formen

av en godtycklig ellipsoid. Vi forutsatter fortfarande att varmelagret

ligger langt under markytan.

Ellipsoiden har de tre halvaxlarna A, B, L. Dessa va'ljes sa att

A £ B a L (4.5.13)
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Ellipsoiden definieras av

+ *- + ±- = 1
9 7 ?
^ B^ 'I/

(4.5.14)

Har har z-axeln lagts langs den stb'rsta axeln (L) .

Som skalningslangd anvandes L. Vi har da for varmefb'rlusten

Qm = - T 0 )L-h 3 (A/L, B/L)

Varmefbrl ustfaktorn h3/(4Tr) ges i figur 4.5.3.

0 1

Figur 4.5.3. Varmefbrl ustfaktor for godtycklig el l ipsoid
Halvaxlarna a'r A, B och L.

(4.5.15)

stort djup.

Vi har fbljande speciella va'rden.

h3(0,1) = 8

(sfar)

(cirkel skiva] (4.5.16)

Da B/L = 1 far vi den oblata rotationsel 1 ipsoiden. Vi harmed B = L = R ,

A = H/2:



4.2'

h3(H/(2R),1) = h2(H/R) (4.5.17)

Har ges h« av 4 . 5 . 2 ' . Da A = B far vi den prolata rotations-

el lipsoiden. Vi harmed A = B = R, L = H/2:

h,(2R/H, 2R/H) = 4r h,(H/R)o h e - > 2R 7 £ (4.5.18)

Har ges h~ av 4.5.2 ".

Vi ser i figur 4.5.3 att nivakurvorna for h., med god approximation

a'r ra'ta linjer med en lutning pa 45°. Vi har fbljande approximation:

h /A B\ /A+B A+B^ /. ,- l qv
h3VL' LJ" h3 V21T ' TT) (4.5.19)

Hbgra ledet av 4.5.19 kan uttryckas med h« enligt 4.5.18. Varmefbrlust-

faktorn hg ges i sin tur av formel 4.5.2". Vi far fbljande approximation

for h.,:

'3 L

_
2L

Funktionen f. ges i figur 4.5.4.

(4 .5 .20)

Figur 4.5.4. Funktion for approximationen 4 .5 .20 .
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Genom att anvanda approximationerna 4 .5 .5 och 4 .5 .7 far vi fbljande

enkla formler:

4TT ,. R . . v A+B ̂  n ,
T < A + B ^

. . /A &\L A+B „ ,, , „.«
L 'H3 ' " - S ° - 3 (4.5.21)

Uttryckt direkt i varmeforlusten Q far vi fbljande enkla formler for

varmeforlusten fran en ellipsoid pa stort djup:

n A -^ n T 1 A+B+L A+B ^ n ,
Qm^A (Tm - To) ' -3-

Qm . 4,X (Tm - To) - — - ,0.3 (4.5.22)

Felen i dessa approximationer a'r maximalt nagra procent.

4.5.4 Varmefbrl ustens variation med formen vid fix volym

Varmeforlusten fran ellipsoiden beror pa form och storlek. Det a'r

instruktivt att se hur varmeforlusten beror pa formen vid given volym.

Volymen V hos ellipsoiden ges av

V = 4̂  ABL (4.5.23)

Varmeforlusten kan da enligt 4.5.15 skrivas:

h (A/L, B/L)

UT

Vi tar det sfar iska lagret som referens ( A = B = L , h = 4n) :
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h3(A/L,B/L)
(4.5.25)

Kvoten f,. anger den relative varmefbrlusten som funktion av formen.

Den visas i figur 4.5.5.

Figur 4.5.5. Varmefbrlust for ett ellipsoidformat lager jamfort med

ett sfariskt lager med samma volym. Formel 4.5.25.

Vi ser att varmeforlusten ar mycket okanslig for formfbrandringar.

Om A/L och B/L ar stbrre an 0.7 ar andringen fran sfa'ren mindre an 1%.

Andringen understiger 20% om A/L och B/L ar stbrre an 0.2. Vi kan a l l -

mant dra slutsatsen att varmefbrlustandringen vid en mattlig and-

ring av ett va'rmelagers form under bibehallen volym ar liten.

4.5.5. Korrektion for andligt djup.

Figur 4.5.6 visarett el 1 ipsoidformat lager under markytan. Djupet ner

till lagrets mitt ar D . Djupet fran markytan till lagrets bversta

punkt betecknas D. Ellipsoidens langsta axel ar 2L lang. De tva andra

axlarna har langden 2A och 2B. Den langsta axeln kan ligga horisontellt

som i figuren eller vertikalt. Sneda lagen ar ocksa tillatna.
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Figur 4.5.6. El 1 ipsoidformat lager med djupet D under markytan.

Med hjalp av varmefdrl usten for en el l ipsoid pa stort djup kan enligt

den approximativa formeln 4.4.1 motsvarande fbrlust pa ett djup D

anges. Den allmanna formeln ges av 4.4.1 och 4 .5 .15 . Utnyttjas approxi-

mationerna 4 .5 .21 far vi fbljande enkla formler for varmefbrl usten

fran ett el 1 ipsoidformat lager pa djupet D under markytan:

A+B+L 1

1- A+B+L TT (4 .5 .26 )

TQ)

In 4L
A+B,

A+B
2L

s 0.3

D > l Ln,ax,xy

Kravet for att formlerna skall vara giltiga ar att varmelagret ej ligger

alltfbr nara markytan. Na'rmare bestamt kraver vi

n > — I
' 4 max.xy (4 .5 .28)

Har ar L langden av den stbrsta axeln i horisontalplanet. Om L-rnax, xy
axeln ar horisontell blir L l ika med 2L, medan L blir lika

med 2B om L-axeln ar vert ikal.
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4.6 Allma'n formel for va'rmefbrlust fran lager under mark.

Vid sa'songslagring av va'rme under markytan a'r lagrets va'rmefbrl uster till

omgivningen av stor betydelse. Fbrlusterna a'r stbrst under de fbrsta lag-

ringsperioderna da en va'rmekudde bygges upp runt lagret. Sa smaningom kan

utflbdet fran lagret ses som summan av ett stationartoch ett periodiskt

va'rmeflbde fran lagret. Nettoutflbdet under aret av det periodiska va'rme-

flbdet a'r noil. Det stationara va'rmeflbdet drives av differensen Tm - T

mellan lagerytans och markytans medeltemperatur under den arliga lag-

ringsperioden.

I avsnitt 4.5.5 gavs mycket enkla formler (4.5.26-28) for det stationara

va'rmeflbdet Q for ett ell ipsoidformat laqer. Vi har sett i avsnitt 4.5.2m
och 4.5.4 att va'rmefbrl usten a'r relativt okanslig for mattliga fbra'nd-

ringar av lagrets form, da dess volyni bevaras.

Genom att approximera vart va'rmelager med en la'mplig ellipsoid kan vi

fortfarande utnyttja de enkla formlerna i avsnitt 4.5.5.

Det betraktade varmelagret under mark har relativt godtycklig form.

Lagrets medelpunkt ligger pa djupet D . Avstandet fran lagrets hbgsta
punkt till markytan a'r D. Dess volym a'r V. Lagret approximeras med en

ellipsoid med de tre axlarna 2A, 2B och 2L. Ellipsoidens axlar valjes

med samma proportioner som det ursprungliga lagrets bredd, hbjd och

la'ngd. Vidare valjes axlarnas la'ngd sa att ellipsoidens volym

V = ̂~ (4.6.1)

overensstammer med det ursprungliga lagrets volym. Beteckningarna va'ljes

sa att L betyder den langsta halvaxeln. Axeln L kan vara horisontell eller

vertikal. Se figur 4.5.6.

Nedanstaende approximative formler kan anva'ndas med god noggrannhet sa

la'nge som det ursprungliga lagrets form ej alltfbr mycket avviker fran

ellipsoidens. Den viktigaste begransningen for formens giltighet a'r att

lagret ej far ligga alltfbr nara markytan. Lat L , vara lagretsmax,xy
stbrsta utstra'ckning i det horisontella xy-planet. Formlerna har ett
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fel pa bara nagra procent, om D > ̂  LM- ma x) xy

- T
A+B+L

6Dm

: D > Lmax,xy

Exempel 1. Givet ett cylindriskt varmelager med radien 50 m och hojden 50 m.

Lagrets bvre yta befinner sig 50 m under marknivan. Lagerytans och

markytans arsmedel temperatur a'r 55 C respektive 5 C. Jordens

varmel edni ngsf brmaga a'r 3.5 W/'mK.

Lagret approximeras med en ellipsoid da'r

A 1

Vidare ger volymbevarande:

^ ABL =^-^LL = w502-50 m3

Vi far da

L = B = 57.2 m A = 28.6 m

A-i-R
= 0.75 D = 50 - (28.6-25) = 46 m

Kax,xy =I

Formel 4.6.2 ger da med D = 75

Qm = 154 kW

Enligt avsnitt 4.3.2 blir fbrlusten:
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Qm = 3.5 • 50 • 50 •17 = 149 kW

'O'verensstammel se mellan formel och direkt numerisk losning a'r

god.

Exempel 2. Samma lager som i exempel 1 med skillnaden att lagrets bveryta

ligger 10 m under marknivan. Vi har da samma el 1ipsoidapproxi-

mation. Villkoret 4.6.3 a'r ej langre uppfyllt:

D = 10 - (28.6-25) = 6.4 m

| L = 28.6 m4 max,xy

Anvands formel 4 .6 .2 a'nda far vi med D = 35 mm

Qm = 329 kW

Alternativt kan vi anvanda de direkta formlerna enligt avsnitt

4.3.2. Formel 4.3.1 och tabell 4.3.1 ger:

50 50\ . .
O, TO; ~ U1

Qm = 3.5 • 50 • 10 • 171 = 299 kW

Formel 4.6.2 ger saledes i detta fall ett fel pa 10%.

Exempel 3. Givet ett bergrum med la'ngden 200 m, hb'jden 90 m och bredden 30 m.

Dess medelpunkt ligger 150 m under markytan. Lagrets volym blir
O -3

540 • 10 m . Bergets va'rmeledningsfb'rmaga a'r 3.5 W/mK. Arsmedel-

temperaturen vid markytan a'r 5°C. Lagertemperaturen varierar

under aret mellan 90°C och 20°C. Vi ansa'tter en medeltemperatur

pa lagerytan:

T 90+20 (-(-Op
Tm = ~2̂  = 55 C

Vi har nu:

TQ = 5°C Dm = 150 m

6-B5
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Lagrets approximeras med en ellipsoid dar

A _ 30 B __ 90
L 200 L 200

Volymbevarande ger

540- lo'-^ABL =£.,&. ̂

L = 124 m

A = 18.6 m B = 55.8 m

Vi har da

A+B _ n ?n
- °'30

Formel 4.6.2 ger varmefbrlusten

Qm = 187 kW

Har har det bvre uttrycket anvants. Det undre uttrycket ger

Qm = 184 kW

4.7 Varmefbrlustanalys for lager med bverytan vid markniva.

Vi skall i detta avsnitt analysera de olika bidragen till varmefbrlusterna

for ett varmelager vars bveryta ligger vid marknivan. Lagrets bveryta och

bvre delen av den vertikala kanten mot marken a'r varmeisolerade. Vi skall

har speciellt analysera effekten av den vertikala kantisoleringen.

Figur 4.7.1 visar den betraktade typen av varmelager. Lagret stracker sig

ner till djupet M. Kantisoleringen gar ner till djupet D.. Vid markytan

a'r temperaturen T0. Pa varmelagrets yta mot mark och innanfbr isolerinqen

rader temperaturen T .
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Figur 4.7.1. Varmelager med dverytan och en b'vre del av kanten varme-
isolerad.

4.7.1 Delvarmefbrluster

Den stationara varmefbrlusten Q bestar av tre delar. En del av varme-
fbrlusten sker genom den bvre horisontella isoleringen. En andra del av

fbrlusten sker genom kantisoleringen. Den resterande varmefbrlusten sker

direkt mot omgivande mark genom den undre ytan och den oisolerade delen

av den vertikala ytan.

m,upp (4.7.1)

De tva fbrsta bidragen ar tamligen enkla att uppskatta. Det tredje bi-

draget ar mer komplicerat, eftersom det kra'ver en berakning av det fler-

dimensionella, stationa'ra temperaturfaltet i marken. En specie!! komplika-

tion ar hur kantisoleringen paverkar denna tredje fbrlustterm.

4.7.2 Va'rmefbHust genom bvre isolering.

Den tackande horisontella va'rmeisoleringen har tjockleken d. och va'rme-

ledningsfbrmagan X.. Dess area ar A.. Varmefbrlusten blir da:

Qm,upp = (Tm " V Ai (4.7.2)
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4.7.3 Varmeforlust genom kantisolering

Lat lagrets horisontella omkrets vara L.. Kantisoleringens totala area

blir da D.L.. I marken strax utanfbr isoleringen rader en i djupled

varierande temperatur. Uppe vid markytan ar temperaturen T och vid

isoleringens nederdel T . Lat T vara medeltemperaturen over isoler-m mo
djupet. Varmeforlusten genom kantisoleringen blir da:

-T )
Ai D.L.

Xkant " "nf'mo' ' 'dT i i (4.7.3)

Ett rimligt varde pa T ar

T

mo ~
Tm+To (4.7.4)

Detta bbr ge en god uppskattning eftersom vi har T vid bverkanten och

T vid underkanten. En uppskattning av varmeflodet genom kantisoleringen

blir da:

X. D.

Qm,kant ̂  (Tm " To5 TT ' ~T ' Li (4.7.5)

Total varmefbrlust genom horisontell och vertikal isolering blir nu
enligt 4 .7 .2 och 4 .7 .5 :

- T
m,isolering 'm,upp + m,kant

di

(4.7.6)

Genom medelvardet 4 .7 .4 kan vi saga att kantisoleringen verkar mellan
T och T med halverad area.
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4.7.4 Varmefbrlust direkt mot mark

4.7.4.1 All manna samband

Varmefbrlusten direkt mot marken, Q , i formel 4.7.1, beror pam,marK
lagrets geometri, varmeledningsfbrmagan i marken och pa den vertikala

kantisoleringen. Se figur 4.7.1. Den kommer ailment sett att bero pa

isoleringsdjupet D. och isoleringens varmemotstand d./x..

Man kan har normalt gbra fbljande fbrenkling. Marken strax utanfbr

kantisoleringen representerar ett varmemotstand i storleksordningen
0.5D./X. Normalt ar varmemotstandet for isoleringen mycket stbrre an

0.5D.J/X. T.ex. kan vi ha:

Di = 2 m

X = 2 W/mK

0.5D, di = 0.2 m d.

.. = 0.04 W/mK i
-1 = 5 (4.7.7)

Processen for varmeflbdet direkt ut mot marken blir da i stort sett den-
samma om man betraktar den vertikala varmeisoleringen som totalisolerande.

Vi slipper da en parameter. Denna approximation gores i det fbljande.

Figur 4.7.2 visar det aktuella problemet for varmefbrlusten mot marken
under kantisoleringen.

totalisolering

Figur 4.7.2. Varmefbrlust direkt mot mark med approximationen att kant-

isoleringen ger totalisolering.

Enligt forme! 4.1.2 har vi med L som skalningslangd:

' To) Ls'h (4.7.8)
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Varmefbrlustfaktorn beror av lagrets form och av relative varmelednings-

tal i enlighet med 4.1.4. Vidare beror h av isoleringen via parametern

VLs'

Varmefbrlustfaktorn h for cylinderformat och parallellepipedformat lager

ges i avsnitt 4.8 och 4.9. I de tva fbljande avsnitten nedan ges en formel

for hur varmefbrlusten mot mark varierar med isolerdjupet D..

4.7.4.2. Formel for sma isolerdjup.

Figur 4.7.3 visar ett plant, vertikalt tvarsnitt av omradet kring den

vertikala kantisoleringen. Vi fbrutsatter att lagerdjupet H ar stort jam-

fort med isolerdjupet D..

Figur 4.7.3. Plant, vertikalt tvarsnitt kring kantisoleringen, da dennas

djup ar litet relativt lagerdjupet.

Vi kan vid analys av den lokala temperaturprocessen i hornet kring kant-

isoleringen ta'nka oss lagervaggen utstrackt langt nedSt i z-led. Det

plana problemet enligt figur 4.7.3 kan Ibsas analytiskt.

o
Vi ar intresserade av varmeflbdet q (z) (W/m ) genom lagervaggen (x = 0,

z > D . ) . Det ges av

( 4 . 7 . 9 )
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Integreras detta i z-led far vi varmeflb'det per meter ra'knat vinkelrat

mot (x,z)-planet. Integralen divergerar dock om vi integrerar mot o-

andligheten nedat i z-led.

Lat oss nu betrakta tva fall med olika isolerdjup D. och D^. De ar for

bvrigt lika. Skillnaden i varmeflbde ges av tva termer av typ 4.7.9.

Denna skillnad konvergerar da integrationen gar mot oandligheten. Vi far

-V

(D., D° < £) (4.7.10)

Har ar q (D-) varmefbrlusten per meter for isolerdjupet D.. Vi fbrut-

sa'tter har att D. och D. ar sma relativt lagerdjupet H. Det visar sig

ra'cka att D. och D? ar mindre an H/2.

Varmefbrlusten mot mark for tva olika isolerdjup ar saledes relaterade

till varandra enligt fbljande forme! :

D°x
Q , (D.) = Q . (D°) + x(T - T ) L.- - In (~\m,mark v 'm,mark v m o i n \Q.J

( D D ? < H/2) (4.7.11)
^

Har ar L. den totala langden av kantisoleringen i horisontalplanet.

Formel 4.7.10-11 innebar att vi bara behbver ra'kna numeriskt for ett

enda isolerdjup.

4.7.4.3 Formel for godtyckligt isolerdjup.

Formel 4.7.10 kan generaliseras till ett godtyckligt isolerdjup:

0 < D.J < H. Figur 4.7.4 visar varmeledningsproblemet for det vertikala

tvarsnittet.
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0 < DJ < H

Figur 4.7.4. Varmeledningsproblem for vertikalt tvarsnitt kring kant-

isolering.

Skillnaden i varmefbrlust for tva olika relativa isolerdjup D./H och

D°/H blir nu:

- qm(D°/H) = x(Tm - Tfl) - In (4.7.12)

Har ges £ . och ̂  av ekvationerna:

D. D°
(4 .7.13)

-- (
11 I

f (€) = - - I - C + arccot
'1 -

(4.7.14)

(-1 s C £ D

Funktionen f(?) visas i figur 4.7.5. Approximationer for vissa c-varden

ar ocksa angivna. Da Dn-/H och D°/H a'r mindre an 0.5 bvergSr 4.7.12 i

4.7.10:

0.5-

0-- -0.5 0 0.5

Figur 4.7.5. Funktionen f enligt formel 4.7.14.
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Vi skall i det kommande ofta ta isolerdjupet till H/10. Vi far da

!8 (4.7.15')Di
lf

For detta fall far vi

"m(VH) =

Funktionen g a'r given i figur 4.7.6.

1.5

1.0-

0.5-

qm(D,/H)-qml0.1)

0.05

A

g

0.5-

0 -

-0.5-

-1.0-

-1.5-

01

(4.7.15".

g=- X(Tm-T0

0.5

Figur 4.7.6. Funktionen g(D./H) som ger kantvarmefbrlust relativt isoler-
djupet D°/H = 0.1. Forme! 4.7.17.

Fbr varmefbrlusten mot mark har vi nu:

A(Tm - To} V

(4.7.16)
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, da'r 5. och £i ges av 4.7.13-14. Speciellt har vi

Vmark<VH> = Vmark*0'1} + X(Tni ' V Li ' 9(Di/H) (4'7'17)

Funktion g ges i figur 4.7.6.

4.7.5 Vertikal kontra horisontell kantisolering

Varmeisoleringen vid lagrets bvre kant har har antagits vara vertikal,
Ett annat alternativ ar att la'gga isoleringen horisontellt utat fran

lagerkanten. De tva alternativen visas i figur 4.7.7.

Figur 4.7.7. Vertikal kontra horisontell isolering vid kanten.

Vi antar i bada fallen att kantisoleringen har djupet respektive bredden

D.. Ovanstaende analys kan upprepas for det horisontella fallet. Varme-

flbdet genom kantisoleringen blir samma som tidigare om man gbr samma

typ av uppskattning. Fortnlerna 4.7.3-5 galler da fortfarande. Analysen

i avsnitt 4.7.4.2 kan ocksa upprepas. Vi skall vaxla x- och z-axlar i

figur 4.7.3. Integralen av varmeflodet blir detsamma. Forme! 4.7.10

galler fortfarande.

Resultatet av den skisserade jamfbrelsen ar att det ur varmefbrlustsyn-

punkt inte spelar nagon roll om kantisoleringen placeras vertikalt eller

horisontellt.
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4.8 Cylinderformat va'rmelager med bverytan vid markniva1

Varmelagret har formen av en cylinder med hbjden H och radien R. Dess

axel ar vertikal. Dverytan ligger vid marknivan. Denna cirkelyta a'r

varmeisolerad. Vidare finns vertikalt vid kanten varmeisolering ner till

djupet D.. Varmeisoleringens tjocklek a'r d., och dess varmeledningsfbr-

maga a'r A.. Temperaturen vid cylinderytan direkt mot mark och innanfbr

va'rmeisoleringen a'r T , medan temperaturen vid markytan a'r T . Temperatur-

skillnaden over den horisontella va'rmeisoleringen a'r saledes T - T .

Figur 4.8.1 visar ett vertikal tvarsnitt genom det cyl inderformade v'a'rme-

lagret.

Figur 4.8.1. Cyl inderformat varmelager med bverytan vid markniva. 'O'ver-

yta och en bvre del av den vertikala kanten a'r varmeisolerade.

4.8.1 Temperaturfa'l t

Den dimensionslbsa stationa'ra temperaturen u i marken ges av formel 4.1.1,

Temperaturfunktionen u a'r lika med 0 vid markytan och +1 vid den cylinder-

ien: L = R.

for teniperatur-

formade lagerytan. Som skalningsla'ngd skall vi anv'a'nda radien: L = R.

Dimensionslbsa koordinater blir da r/P. och z/R. Vi har

faltet i marken utanfbr cylindern:

T(r,z) - T
u(r/R, z/R) =

m o
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Figur 4.8.1 visar numeriskt beraknade isotermer for fallet da cylindern

har samma langd och diameter, dvs. H/R = 2.

Figur 4.8.2. Isotermer for dimensionslos temperatur u for fallet H/R = 2.

4.8.2 Total varmefbrlust

Den stationara varmeforlusten Q fran cylindern bestar enligt avsnitt

4.7.1 av tre komponenter. Vi har ett bidrag fran den bvre horisontella

isoleringen och ett fran den vertikala kantisoleringen ner till djupet C

Det tredje bidraget kommer fran varmeflbdet direkt mot mark under nivan

Arean A. av den bvre isoleringen och langden L. av kantisoleringen blir:

,2
Ai = = 2irR (4.8.2)

Varmeforlusten genom den varmeisolerade bvre del en blir da enligt

forme! 4.7.6:
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Q . , . =* 1- m , - — .UR2 + irRD.) (4 .8 .3)m.isolenng d • v

Den total a varmefbrlusten Q ar

Q = Q • n • + Q i (4.8.4)m m,isolenng m,mark

Varmefbrlusten direkt mot marken behandlas i na'sta avsnitt.

4.8.3 Varmefbrlust direkt mot mark.

All manna samband for varmefbrlusten direkt mot mark diskuteras i avsnitt

4.7.4.1. Varmefbrlusten erhalles genom en numerisk berakning av det sta-

tionara temperaturfal tet. Den vertikala kantisoleringen antas har vara

total isolerande. Vi har da tre la'ngdparametrar R, H och D.. Med R som

skallangd far vi enligt formel 4.7.8:

Q i = X(T - T ) R-h(H/R, D./H) (4.8.5)m,mark v m o r

Varmefbrl ustfaktorn h blir en funktion av H/R och D./R eller av H/R och

D/H.

4.8.3.1 Vertikalt isolerdjup D^. = 2 m

Ett rimligt djup for den vert ikala isoleringen ar tva meter. Vi skal l

da'rfbr har direkt ge varmefbrlusten mot mark som en funktion av R och H
da DI. = 2 m. Figur 4.8.3 visar Qm,mark/U(Tm - T Q ) ) .
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10,'log(q12
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Figur 4.8.3. Varmefbrlust mot mark som funktion av radie och hbjd pa

cylindern vid tva meters vertikal kantisolering (D. = 2 m).

4.8.3.2 Vertikalt isolerdjup D = H/10

Varmefbrl ustfaktorn h i forme! 4.8.5 visas i figur 4.8.4 som funktion av

cylinderformen H/R for fallet D^H = 0.1. Den ges ocksa i tabell 4.8.1.

h(H/R,0.1)

20 -i

Figur 4.8.4. Varmefbrlustfaktor i formel 4.8.5 for cylinder da D./H = 0.1.
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H/R

h(H/R, 0. 1)

.04

19. 7

.06

19.1

.08

18.7

0.

18 6

0.

18

2

.1

0.4

18.0

H/R

h(H/R, 0.1)

0.6

18.2

0

1E

8

i.6

1.0

19.0

2

21 .2

4

25 4

6

29 2

H/R

h(H/R, 0 .1 )

8

33 0

10

36 .6

15

45 .3

20

52. 5

Tabell 4.8.1. Varmeforlustfaktor i forme! 4.8.5 for cylinder da D^/H = 0.1.

4.8.3.4 Godtyckligt vertikalt isolerdjup

Na'r vi ka'nner varmefbrlustfaktorn for ett isolerdjup kan vi med formlerna

i avsnitten 4.7.4.2-3 ge varmefbrlusten for andra isolerdjup.

For fallet D. < H/2 far vi enligt 4.7.11 och 4.8.5:

Vark = A ( T m ' To) R ' {h(H/R ' °"1 ) + 4 ' l n (°'1 H/V}

(0 < D i < H/2) (4.8.6)

Vi har har utnyttjat att langden av kantisoleringen, L., ar lika med

2 T T R .

For storre isolerdjup har vi forme! 4 .7 .17 :

Vmark= ̂  ~ To) R {h(H/R' OJ) + ̂

(0 < D^'H ^ 1) (4 .8 .7 )

Har ges funktionen g av figur 4 .7 .6 .
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4.8.4 Varmelager med formen av en stympad kon

Varrnelagret har formen av en stympad kon med vertikal axel. Se figur

4.8.5. Lutningsvinkel for konen ar 45°. Hbjden ar H och medelradien R.

Vid markytan a'r da radien R + H/2. Vid bottenytan ar den R - H/2. Kant-

isoleringen gar ner vertikalt ett djup D.. Dess bredd blir saledes

Di /I.

R-

Figur 4.8.5. Varmelager ined formen av en stympad kon. Lutningsvinkeln

ar 45°.

Varmefbrlustfaktorn har beraknats for nagra former for isolerdjupet

Di = 0.1 H. Se tabell 4.8.2.

H/R

^m.mark

x(T -T )Rm o

0.2 0.4 1 2

14.0 14.3 16.2 19.8
D.

Tabell 4.8.2.Varmefbrlustfaktor for varmelager med formen av en

stympad kon.

Det ar intressant att jamfbra varmefbrlusten for den stympade konen med

motsvarande cylinder. Vi ja'mfbr for samma H och R. Vidare har vi D./H = 0.1

i bada fallen. Varmefbrlusten ges direkt av varmefbrlustfaktorerna enligt

tabell 4.8.2 for stympad kon och tabell 4.8.1 for cylindern. Vi far
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H/R

Q

V^T

0.2

.77

0.4

.79

1 2

.85 .93

label 1 4.8.3. Varmefbrlustkvot for varmelager med formen av en stympad

kon och ett cylindriskt varmelager.

Tabellen visar hur den sneda kanten reducerar varmefbrlusten fran lagret
till marken.

4.8.5 Nagra numeriska exempel.

Exempel 1. Ett cylinderformat lager med hojden 25 meter och diametern

50 meter bar anlagts i mark med varmeledningsformagan 2 W/'mK.

Lagrets bveryta och de bversta 5 meterna pa lagrets sidoyta har

ta'ckts med en 25 centimeter tjock isolering. Arsmedeltemperatur-
en pa lagrets yta a'r 30 C. Vid markvtan ar medeltemperaturen

5 °C.

Vi har fbljande data:

H = 25 m R = 25 m

= 5 m

T -'m ~

d. = 0.25 m

To = 5 °C

X = 2 W/mK

x. = 0.05 W/mK

Den totala stationara varmefbrlusten ges av formel 4.7.1. Varme-

fbrlusten genom isoleringen ges av formel 4.8.3.

,isolering kW

Eftersom D. < H/2 kan forme! 4.8.5 anvandas for att be-

rakna varmefbrlusten till mark. Funktionsvardet h(1,0.1) = 19.0

hamtas ur tabell 4.8.1.

Q , = 20.3 kW
xm,mark

7-B5



4.44

Den totala varmefbrlusten a'r

Q = Q . , . + Q . = 32.1 kWm m,isolering m,mark

Exempel 2. Vi har ett cylindriskt lager med hbjden 50 meter och diametern

100 meter. Va'rmeledningsfbrmagan i omkringl iggande berg a'r

3.5 W/mK. Lagret har isolerats pa bverytan och sidoytan till

ett djup av 2 meter. Isolertjockleken a'r 0.4 meter. Arsmedel-

temperaturen pa lagrets yta a'r 55 °C. Vid markytan. a'r tempera-

turen 5 °C.

Vi tar fbljande data:

H = 50 m R = 5 0 m A = 3.5 W/mK

DI = 2 rn d. = 0.4 m A . = 0.04 W/mK

T = 55 °C T = 5 °fim DD t IQ s t

Va'rmefbrlusten genom isoleringen bera'knas enligt forme! 4.8.3.

V iso le r ing= 4 0 - 8 klj

Va'rmefbrlusten till omgivande mark fas ur figur 4.8.3 (q'«1150m).

Den totala Va'rmefbrlusten a'r

Qm = 242 .1 kW

4.9 Parallellepipedformat varmelager

Va'rmelagret har formen av en parallelepiped med bverytan vid markniva. Se

figur 4.9.1. Hbjden a'r H, Ta'ngden L och bredden B. Vi tar L > B. Qverytan

a'r som vanligt va'rmeisolerad. Den vertikala kanten ner till djupet D. a'r

ocksa va'rmeisolerad. Temperaturen pa lagerytan a'r T , och temperatureh vid
markytan a'r T .
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Figur 4.9.1. Paral1 ellepipedformat varmelager med bverytan vid marknivan.

Kantisoleringen gar ner ett djup D..

4.9.1 Total varmefbrl ust

Varmefbrl usten genom de varmeisolerade ytorna ges av formel 4.7.6. Uver-

ytans area och langden av kantisoleringen blir:

A. = LB Li = 2L + 2B (4.9.1]

Vi har da enligt formlerna 4.7.6, 4.7.1 och 4.7.8, nar vi anva'nder H

som skalningslangd:

Qm = - TQ) JAH-h(L/H, B/H, D./H)

_! (LB + (L+B)D. (4.9.2)

4.9.2 Varmeforlust mot mark

Varmefbrlusten mot marken ges av varmefbrlustfaktorn. Denna ges for olika

parallellepipedformer for D./H = 0.1 i tabell 4.9.1.

Den totala varmefbrlusten for godtyckligt isolerdjup ges da enligt formel

4.9.2 och 4.7.17 av

Qm = (Tm - TQ) jxH - h(L/H, B/H, 0.1) +

- (LB (4.9.3)
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Har ges h av tabell 4.9.1, g av figur 4.7.6 och L. av formel 4.9.1,

B/H

10

5

2

1

1/2

1/5

7.17

3.99 5.54

1/5 1/2

12.2

9.64

7.92

1

22.2

17.1

14.4

12.5

2

53.6

37.0

31.2

28.1

25.8

5

110

80.3

61.5

54.5

50.9

48.0

10

L/H

label! 4.9.1. Varmefbrlustfaktor h (L/H, B/H, D./H) for parallellepiped-

format lager med D./H = 0.1

Exempel. Lat oss ta ett parallellepipediskt varmelager med hbjden 40 meter,

bredden 20 meter och langden 80 meter. Marken har varmelednings-

fbrmagan 2.5 W/mK. En 25 centimeter tjock isolering ta'cker lagrets

bveryta och de bvre 6 meterna av lagrets sidoytor. Arsmedeltem-

peraturen pa lagrets yta ar 35 °C. Markytans arsmedeltemperatur

ar 10 °C.

Vi har fbljande data:

H = 40 m

Di = 6 m

\ 2.5 W/mK

B = 20 m

di = 0.25 m

Tm = 35 °C

L = 80 m

\. = 0.05 W/mK

To = 10 °C

Den totala varmefbrlusten ges av formel 4.9.3. Vi far med hja'lp

av diagram 4.7.6.B och tabell 4.9.1:

g(0.15) = -0.26 h(2, 0.5, 0.1) = 14.4

Qm = 43.8 kW
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4.9.3 Jamfbrelse radian cylinder och parallellepiped

Det ar intressant att jamfbra varmefbrlusten frSn ett parallellepiped-

format varmelager med ett motsvarande cylindriskt lager. Lagrets bver-

yta ligger i bSda fallen vid marknivSn. Vi later den vertikala kant-

isoleringen D. vara lika med H/10.

De tva lagren har samma djup H. Vidare va'ljer vi cylinderns radie R sa
att volymerna blir lika:

irR H = L B H

R = A* (4.9.4)

Vi ser bara pa varmefbrlusten mot marken under kantisoleringen. Fbr-

hSllandet mellan parallellepipedens och cylinderns varmefbrlust betecknas

f. Vi har da fran formlerna 4.9.2 och 4.8.5:

f = Qm,mark,paranellepiped = H hp(L/H, B/H, 0.1) (4 g ̂

Qm,mark,cylinder R hc(H/R, 0.1)

Har ges R av 4.9.4. Varmefbrlustfaktorerna ges i tabell 4.9.1 (hp) och

tabell 4.8.1 (hc). Kvoten f ges i tabell 4.9.2 for olika former pS
parallellepipeden.

B/H

10

B

2

1

1/2

1/5

1.05

1.02 1.09

1/5 1/2

1.05

1.08
1.25

1

1.05

1.10

1.24

1.53

2

1.06

1.14

1.33

1.64

2.22

5

1.08

1.12
1.36

1.68

2.18

3.08

10

L/H

Tabell 4.9.2. Fbrhallandet f mellan varmefbrlusten for parallellepiped

och cylinder med samma volym och hbjd. Forme! 4.9.5.
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4.10 Va'rmelager med formen av en halvsfar

I vissa fall kan va'rmelagret som en rimlig beskrivning .approximeras av

en halvsfa'r. Varmelagret har formen av en halvsfa'r med snittytan vid

markytan. Radien a'r R. Vi skall for detta fall fbrutsa'tta att halvsfaren

a'r va'rmeisolerad runtom. Se fiqur 4.10.1.

Figur 4.10.1. Hal vsfa'riskt va'rmelager som a'r varmeisolerat runtom.

Temperaturen vid markytan a'r T medan 1 agertemperaturen a'r T . Isolering-

en har tjockleken d. och va'rmeledningsfbrmagan Som skalfaktor an-

vander vi radien R. Eftersom hela ytan a'r isolerad far vi i enlighet med

avsnitt 4.1.2 bara en dimensionslbs parameter d' som definierar varme-

isoleringens relative isoleringsfbrmaga.

diA

RAT (4.10.1

Vardet d! = 1 innebar att va'rmeisoleringen har samma va'rmemotstand som

ett jordskikt med tjockleken R (d./x. = R/x).

De i detta avsnitt redovisade resultaten harleds och presenteras narmare

i referens 3.

4.10.1 Temperaturfa'l t

Den dimensionslbsa temperaturen u enligt formel 4.1.1 beror av r/R och

z/R. Som enda parameter har vi d'. Figur 4.10.2 visar temperaturfa'ltet

for tre parameterva'rden.
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Figur 4.10.2. Dimensionslost temperaturfal t utanfbr hal vsfa'riskt lager
for tre olika dimensionslbsa isolertjocklekar.

Den hbgsta temperaturen i marken erhalls vid lagrets botten r = 0,

z = R. Denna temperatur som funktion av dimensionslbs varmeisolerings-

tjocklek visas i figur 4.10.3.

0 05 10 15 2.0 '

Figur 4.10.3. Hbgsta marktemperatur vid lagrets botten (r = 0, z = R)

som funktion av dimensionslbs varmeisoleringstjocklek.

Lat e vara vinkeln mot z-axeln. Figur 4.10.4 visar hela profilen i marken

strax utanfbr lagrets isolering. De olika kurvorna avser olika isoler-

tjocklek.
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0.5-

90'

Figur 4.10.4. Temperatur i marken strax utanfor varmeisoleringen som
funktion av vinkeln e mot z-axeln. De olika kurvorna avser

olika dimensionslb's isolertjocklek cK.

4.10.2 Varmefbrlust

Den totala stationara varmeforlusten genom overyta och genom den halv-

sfariska isoleringen mot marken blir i enlighet med avsnitt 4.1.2 och

4.7.1-2

, n2

Sm = + xR.h(d l)j (4.10.2)

Varmefbrlustfaktorn h(dl) visas i figur 4.10.5. Da isolertjockleken gar

mot noil, gSr h mot oandligheten, eftersom vi da direkt vid markytan ex-

ponerar lagret med temperaturen T mot markytans temperatur TQ.

d'
0 0.5 10 1.5 2.0

Figur 4.10.5. Varmefbrlustfaktor for halvsfariskt varmelager
enligt figur 4.10.1.
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Exempel. Vi ser pa ett hal vsfa'riskt varmelager med en radie pa 10 meter

for nagra isolertjocklekar. Vi har fbljande data:

R = 10 m T T _ m or

X = 1.25 W/mK

T - T = 50 UCm o

= 0.05 W/mK

di = 0.05, 0.10, 0.25, 0.50 m

Varmefbrl usten ges av formel 4.10.2. For d. = 0.10 m far vi

h(d!) ~ 4TT-0.86 = 10.8d! = 0.25

Detta ger

Qm = 14.6 kW

For de olika isolertjocklekarna fas

d. j (m)

Q m (kW)

0.05

24.4

0.10

14.6

0.25

7.3

0.50

4.1

4.11 Varmefbrlust for tvarsnitt av langstrackt lager

For langstrackta varmelager kan det ra'cka att studera varmefbrl usten i

ett vertikalt tvarsnitt vinkelrat mot lagrets langdriktning. Vi far ett

tvadimensionel 11 varmestbrningsproblem i (x,z)-planet. Varnieforlusten

per meter av lagrets la'ngd betecknas q (W/m). Temperaturen i lagret ar

som vanligt T . Vid markytan ar temperaturen T .

4.11.1 Rektangulart tvarsnitt

Varmelagrets tvarsnitt har formen av en rektangel med bverytan vid mark-

ytan. Lagret har bredden B och djupet H. Det ar va'rmeisol erat pa ovan-

sidan och vid kanterna ner till ett djup D. (0 < D. < H). Se figur 4.11.
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4.11.1. Rektangula'rt tva'rsnitt av ett langstrackt va'rmelager.

Varmefbrl usten q ges i enlighet med diskussionen i avsnitt 4.7 av

d d
(Tm

D.

- TQ) h(B/H, (4.11.1)

For varmefbrlustfaktorn h har hbjden H anvants som skalningslangd. Med
hjalp av formel 4.7.15" har vi da

c, (Tm- To)

2xg(D./H)|

.) +Ah(B/H, 0.1)

(4.11.2)

Funktionen g ges i figur 4.7.6. Varmefbrlustfaktorn for D./H = 0.1
har beraknats numeriskt. Resultatet ges i tabell 4.11.1.

B/H

h(B/H, 0.1)

0.1

4.07

0

4

.2

.35

0

4

5

61

1

4.77

2

4.97

5

5.22

10

5. 53

Tabell 4.11.1. Varmefbrlustfaktor till formel 4.11.2.

4.11.2 Trapetsformat tva'rsnitt

Varmelagrets tva'rsnitt har trapetsform. Se figur 4.11.2. 'Overytan ligger
vid marknivan. De sneda sidorna lutar 45° mot en vertikal linje. Lagrets
djup a'r H och dess medelbredd a'r B. Bredden vid bverytan a'r da B + H och
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vid underytan B - H. O'verytan och den bversta tiondelen av kanterna a'r

varmeisolerade.

4.11.2. Langstrackt varmelager med trapetsformat tv'a'rsnitt.

Kantisoleringen har bredden 0.1 H«/~2. Varmef orl ustf aktorn b!ir en

funktion av B/H enbart eftersom kantisolerdjupet H/10 ej varierar fritt.

Vi far i analogi med forme! 4.11.2:

d.

A h ( B / H )

Vcirmefbrlustfaktorn h ges i tabell 4 .11.2

(4.11.3)

B/H

h(B/H)

1

3.31

2

3.55

5

3.90

10

4.19

label! 4.11.2. Varmefbrlustfaktor till forme! 4.11.3.

4.11.3 Jamfbrelse mellan vertikal och sned lagervagg

Det a'r intressant att jamfbra varmefbrluster for rektangulart och trapets-

format tvarsnitt. Vi far harmed en uppfattning om betydelsen av lager-

vaggens orientering. Jamfbrelsen gbrs for samma H och B i de tva fallen.

Tvarsnitten far da samma area. Vi ser bara pa varmefbrlusten mot marken

da isolerdjupet vid kanterna a'r H/10.
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Lat f vara kvoten me!Ian varmeforlusten mot mark for trapetsformat och

rektangulart lager. Den ges direkt av varmeforlustfaktorerna i avsnitt

4.11.2 (h2) respektive 4.11.1 (h1) i

f =
h'(B/H, 0.1)

Kvoten f ges i tabell 4.11.3.

(4.11.4)

B/H

f

1 2 5 10

.69 .71 .75 .76

Tabell 4.11.3. Varmeforlustkvot for trapetsformat och rektangulart

varmelager.

Tabellen visar hur den sneda kanten reducerar varmeforlusten fran lagret

till marken.

4.11.4 Cirkulart tvarsnitt under markytan

Varmelagret, som ligger belt under markytan,har ett cirkulart tvarsnitt.

Ett exempel a'r en tunnel. Radien a'r R. Medelpunkten ligger pa djupet

z = D (D > R). Lagret a'r helt oisolerat. Se figur 4.11.3.

Figur 4.11.3. Varmelager med cirkulart tvarsnitt.
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4.11.4.1 Varmefbrlust

Varmefbrlusten q ges av

qm - A(Tm ' V

Nagra varden pa varmef brl ustfaktorn ges i tabell 4.11.4.

(4.11.5)

D /R
m

xTTTTTm o

1.1 1.2 1.3

14.2 10.1 8.31

1.4

7.25

1.5

6.53

1.

5.

75

42

2

4.77

?.

4.

5

01

VR

qm

X(VV

3

3.56

3

3

5

26

4

3.05

5

2.74

7

2

.5

.32

10

2.10

25 100

1.61 1.19

Tabell 4.11.4. Varmeforlustfaktor for cirkulart tvarsnitt enligt

formel 4.11.5.

4.11.4.2 Tempera turfalt

Temperaturen 1 marken ges med koordinater enligt figur 4.11.3 av:

, L- t ^ \) = - H i in

x2 + (z-z/
+ T

(4.11.6)

Isotermerna blir cirklar.

Pa stbrre avstand fran lagret kan temperaturfaltet approximeras enligt
fbljande:
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T ( x , z ) c* JH . _ o + T ( /xSz^ > 3z ) (4 .11.7)
"A xSzZ °

Formeln ger en enkel uppskattning av temperaturinfluensen en bit bort

fran varmelagret.

Varmeflbdet vid markytan blir:

A jl| = -^ • -fa (4.11.8)
•z=0 w x +ZQ

4.12 Lager med va'rmeisolering over hela ytan mot mark

Vissa markvarmelager va'rmeisoleras over hela ytan mot omgivande mark och

mot Tuft. For denna typ kan under vissa restriktioner varmefbrlusten er-

hallas med en enkel forme!, da'r marken representeras av ett ekvivalent
varmemotstand som a'r oberoende av isolertjockleken.

Dessa formler harrbr fran en teori for optimal va'rmeisolering av ytor

mot mark. Teorin och de ha'r redovisade formlerna och diagrammen a'r

tagna fran referens 4.

I detta avsnitt antages hela lagerytan mot mark vara varmeisolerad. Iso-

leringens tjocklek a'r d., och dess va rmel edn i ngsf brmaga ar A^. Innanfbr

isoleringen i lagret a'r temperaturen T . Vid markytan a'r den T .

4.12.1 Allmanna formler

Varmelagret kan ligga helt under mark. Alternativt ligger bverytan vid

marknivan eller hbgre. Varmefbrlusten genom bverytan, da denna ligger

vid marknivan, ges av formel 4.7.2. Vi skall ha'r ge formler for va'rme-

fbrlusten genom marken, Q . .m,ma rK

Vi har fbljande all manna formel:
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r:~T~

Har ar A. varmelagrets area mot marken. Skalningslangden ar L . Stor-

heten u ges nedan for olika former pa varmelagret.

Preclsionen i formeln beror pa isolertjockleken d.. Felet avtar da d.

bkar. Vi har en viss minimitjocklek d . som nedan anges for de olika

lagerformerna. Formeln ger alltid va'rden under de exakta. Precisionen

i formeln 4.12.1 ar ungefar enligt fbljande:

maximalt fel cirka 10% da d. > d .i mm
maximalt fel cirka 5% da d. > 2 d . (4.12.2)

maximalt fel cirka 2% da d. > 5 d .

Vi kan da'rfbr anvanda formeln, da d. ar stb'rre an 2 d . . Formeln kan

med viss fbrsiktighet a'ven anva'ndas, da d. ar stbrre an d . .

Vi skall anvanda foljande beteckning:

d . -A
d, = min (4.12.3)
mm X.L

Storheten d'. ar dimensionslbs. For varje lagerform skall vi nedan ange

de tva dimensionslbsa storheterna u och d'. .

Formeln 4.12.1 har en enkel tolkning. Varmeflbdet ges av arean ganger

temperaturdifferensen dividerad med ett varmemotstand. Den fbrsta delen

av detta motstand, d./x., ar varmemotstandet for varmeisoleringen. Den

andra delen L u /x ar varmemotstandet (per ytenhet) for ett skikt av

jorden med tjockleken L u . Dessa tva motstand adderas. Vi kan tol ka

formeln sa att markens varmeisolerande fbrmaga kan representeras av en

ekvivalent tjocklek L -u . Har ar L en skalningsfaktor. Storheten u

ar saledes den dimensionslbsa ekvivalenta marktjockleken.

Kravet 4.12.2 pa en viss minsta isolertjocklek innebar att den varme-

isolerande fbrmagan hos marken ar av samma storleksordning eller mindre

an varmeisoleringens isolerfbrmaga. Formlerna g'a'ller da'rfbr for fbrhal-

landevis kraftigt isolerade varmelager. Skalfaktorn L ingar i na'mna-

ren av 4.12.3. Ett stbrre lager far da'rfbr en hbgre grans for lagsta
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isolertjocklek dar formeln ar tillampbar.

Vi skall for nagra fall ange varmefbrlusten q . (W/m) for ett tvar-m,ma rK
snitt av ett langstrackt lager. I dessa fall har vi:

~ L~
m o

m,mark im d. L ui s m
T7 + ~T~

Har anger L. isolerlangden mot mark i tvarsnittet.

4.12.2 Cylinderformat lager

Varmelagret har formen av en cylinder med vertikal axel. Radien ar R

och hbjden H. Cylinderns bveryta ligger vid markytan. Hela cylinder-

ytan mot mark ar varmeisolerad. Se figur 4.12.1. Specialfallet H=0
innebar att vi har ett cylinderformat lager med varmefbrlust genom

bottenytan mot marken.

(4.12.4)

Figur 4.12.1. Cylinderformat varmelager.

Som skalningslangd anvandes radien: L = R. Den dimensionslbsa ekviva-

lenta marktjockleken u ges i figur 4.12.2 som funktion av formen H/R.

Den dimensionslbsa undre gransen for isolertjockleken, d'. , ges ocksa.

0.8

0.6-

o.t-
0.2-

0
t.O 2.0

H/R

0.3

Q2

0.1

0
1.0 2.0

H/R

Figur 4.12.2. Storheterna u och d ' . for cylinderformat varmelager

enligt figur 4 .12 .1 .
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Arean mot marken blir:

A im = TrR2 + 2-rrRH (4 .12 .5 )

Exempel. Ett varmelager har cylindrisk form. Dess bveryta sammanfaller

med markytan. Fbljande data galler:

R = 2 0 m H = 1 0 m A = 2 W/mK

di = 0.6 m x i = 0.04 W/mK

Tm = 60°C TQ = 6°C

Vi far med figur 4.12.2 och formlerna 4 .12 .3 och 4 .12.5 :

H/R = 0.5 d^ = 0.35 um = 0.47

LS = R = 20 m

2d = 2 0 - 0 4 - 2 0 - 0 . 3 5 _ 0 28 m

di = °'6 > 2dmin

= 2510 m2

Varmefbrlusten till mark blir da enligt formel 4 . 12 .1 :

0.6 6°20.Q^7 = 6 - 9 kw

0.04 + 2

4.12.3 Parallel!epipedformat lager

Varmelagret har formen av en parallellepiped med bredden B och langden

L. L va'ljes stcrre an el ler lika med B. Avstandet mellan markytan och

lagrets botten ar H. Lagrets bveryta ligger over markytan eller samman-

faller med denna. Hela kontaktytan mot mark ar va'rmeisolerad. Som skal-

ningslangd anvandes bredden: L =B.

8-B5
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Vi bijrjar med specialfallet H=0. Lagrets kontaktyta mot marken utgbres

da av en rektangel pa markytan. Arean mot mark ges av:

A. = LBim (4.12.6)

Storheterna u och d'. ges i figur 4.12.3.

dmjn

0.4

0.2

1 2 3 4 5
L/B

0.1

L/B

Figur 4.12.3. Storheterna u och d'. for parallellepipedformat lager

med bottenytan vid marknivan.

I det allmanna fallet H > 0 ges arean mot mark av:

. = LB + 2(L+B)H (4.12.7)

Storheterna u och d 1 . blir funktioner av formen, dvs. av L/B ochm mm
H/B. De ges i tabell 4.12.1 for nagra va'rden pa L/B, da H/B ar lika

med 0.2.

L/B

um

min

1

0.24

0.20

2

0.33

0.22

5

0.40

0.23

H/B = 0.2

Tabell 4 .12.1. Storheterna u och d ' . for parallellepipedformat lager
med b'verytan vid marknivan eller ovanfb'r denna.
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Exempel. Ett varmelager har formen av en parallellepiped. Dess bveryta
sammanfaller med markytan. Foljande data galler for lagret

och marken:

L = 2 0 m B = 1 0 m H = 2 m

di = 0.5 m A. = 0.05 W/mK

Tm = 80°C TQ = 5°C \ 2.5 W/mK

Vi far med tabell 4.12.1 och formlerna 4.12.3 och 4.12.7:

L/B = 2 , H/B = 0.2 : d'. = 0.22 u = 0.33irnn m

LS = B = 10 m

di = ° - 5 m > 2 d m i n

Aim = 32° ™2

Varmefbrlusten blir da enligt formel 4 .12 .1 :

Vark - 32° * 0 . 5 8 ° i o ' o . 3 7 = 2 - 1 kW

0705 + ~TT5~~

4.12.4 Jamfbrelse mellan cylinder och parallellepiped

Det a'r intressant att jamfbra det stationara varmeflbdet mot mark for

cylinderformat och parallellepipedformat varmelager. Jamfbrelsen gores

for lager med samma volym, hbjd och isolertjocklek. Isolertjockleken

va'ljes for varje lagervolym sa att d. = 2d . for parallellepiped-

lagret.

Jamforelsen har gjorts dels for lager som stSr pa markytan, dvs. H=0,

dels for lager da'r overytan ligger i niva med markytan.
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IVB^

.0

.2

1

1.0

1.07

2

1.07

1.09

5

1.17

1.27

^m,para11el1epiped

in,cyl inder

Tabell 4.12.2. Kvot mellan varmefbrluster fran ett parallellepiped-
format lager och ett lika stort cylinderformat lager

med samma hbjd.

Kvoten mellan fbrlusten fran det parallellepipedformade lagret och

det cylindriska ges i tabell 4.12.2. Kvoterna bar nagot for laga va'r-

den (cirka 10%) pa grund av att de tredimensionella berakningarna ar

behaftade med ett stbrre numeriskt fel an de tvadimensionella, cylind-

riska. (Uvriga i denna uppsats redovisade tredimensionella berakningar

har ej detta relativt stora fel.)

Tabellen visar att parallellepipedformen med gott resultat kan approxi-

meras av en cylinder med samma volym och hbjd om kvoten L/B ej har

for hbgt va'rde.

4.12.5 Plana tvarsnitt

Runt de centrala delarna av ett langstrackt varmelager kan varmeflbdet

approximativt beskrivas soni tvadimensionellt. Varmefbrlustberakningar
for ett tvarsnitt genom lagret ger varmefbrlust per langdenhet av

lagret.

4.12.5.1 Rektangulart tvarsnitt

Varmelagrets form i ett vertikalt tvarsnitt ar en rektangel, vars

bveryta 1 igger i niva med markytan. Lagrets hbjd och bredd ar H res-

pektive B. Hela kontaktytan mot marken ar varmeisolerad. Se figur

4.12.4.
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Tm

Figur 4.12.4. Rektangulart tvarsnitt genom ett langstrackt lager.

Lagrets bredd anvandes som skalningslangd: L = B. Tvarsnittets iso-

lerlangd mot mark L. ar:

Lim 2H
(4.12.8)

Storheterna u och d ' . ges i figur 4.12.5.

0.5-

0.5 1.0
H/B

0.3

0.2-

0.1

0
0.5

H/B

Figur 4.12.5. Storheterna u och d' . for ett langstrackt lager med

rektangulart tvarsnitt enligt figur 4.12.4.

Exempel. Ett langstrackt varmelager har ett rektanguVa'rt tvarsnitt.

Dess overyta sammanfaller med markytan. Fbljande data galler

for lagret och marken:

= 12 m H = 6 m X = 1.5 W/mK

d. = 0.4 m A. = 0.05 W/mK

To = 7 C

Vi far med figur 4.12.5 och formlerna 4.12.3 och 4.12.8:

H/B = 0.5 d' . = 0.27 u = 0.53mm m

= B = 12 m
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, . , 0.05-12-0 .27 n ,,
2dmin = 2 T5 = °'22 m

d. = 0.4 m > 2d .i mm

Lim = 24

Varmefbrlusten blir dS enligt formel 4.12.4

Vmark = 24 ' 0.4 = 65 W/m

4.12.5.2 Rektangulart tvarsnitt under mark

Varmelagrets form i ett vertikalt tvarsnitt a'r en rektangel. Avstandet

mellan dennas overyta och markytan ar D. Lagrets hbjd a'r H och dess

bredd a'r B. Hela kontaktytan mot marken a'r varmeisolerad. Se figur

4.12.6.

Lagrets bredd anvandes som skalningslangd: L =B. Tvarsnittets isoler-

Ta'ngd mot marken a'r:

Lim = (4.12.9)

Figur 4.12.6. Rektangulart tvarsnitt genom ett langstra'ckt lager

under mark.

Storheterna u och d'. ges i figur 4.12.7.
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0.5:

H/B=1

'0.25

0.5

•"'IP

OA-

0.2-

10
01B

0.5 1.0
D/B

Figur 4.12.7. Storheterna u och d' . for ett tvarsnitt genom ett

langstra'ckt lager enligt figur 4.12.6.

Exempel. Ett lUngstrackt varmelager under mark har rektangulart tvar-

snitt. Fbljande data galler for lagret och marken:

B = 12 m H = 6 m D = 12 m

- = 0.4 m = 0.05 W/mK x = 3.5 W/mK

Tm = 40 C

Vi far med figur 4.12.7 och formlerna 4.12.3 och 4.12.9:

H/B = 0.5 d 1 . = 0.24mm = °'

LS = B = 12 m

2d - 2 . 0-05-12-0.24 _ „„
Zdmin ~ i 375 0'08

di = °'4 m > 2dmin

= 35

Varmeforlusten till marken blir da enligt formel 4.12.4:

= 36 4 0 - 7
0.4 12-0.88
07D~5 3.5

^ = 110 W/m
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4.12.6 Tva skikt - moran, grani't

I fbregaende avsnitt har markens varmeledningsformaga haft ett varde i

hela omradet utanfb'r lagervolymen. Effekten av olika varmelednings-

formaga pa olika djup skall har belysas med nagra exempel.

4.12.6.1 Rektangula'rt tvarsnitt

Figur 4.12.8 visar ett vertikalt tvarsnitt genom ett langstrackt

varmelager. Lagrets bveryta ligger i n'iva med markytan. Lagrets bredd

a'r B och dess hbjd a'r H. Lagrets botten gra'nsar mot granit. Mel Ian

markytan och graniten ligger ett skikt mora'n. Varmel edningsformagan

for granit antages vara 3 ganger vardet for mora'n.

Figur 4.12.8. Rektangulart tvarsnitt genom ett langstra'ckt varmelager.

Marken bestar av ett mora'nskikt over granit.

Lagrets bredd anva'ndes som skalningslangd: L =B. Tva'rsnittets isoler-

langd mot marken a'r

L. = B+2Him (4.12.10)

For en lagerform da'r H/B a'r lika med 0.5 blir vardet pa storheterna

um och dmin:

um = 0.29

dmin =

Motsvarande varden for lagret, om va'rmel edningsformagan har samma

varde i hela markvolymen, blir enligt figur 4.12.5:
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um = 0.53

d1 . = 0.27mm

Lat oss ta ett fall d'a'r B ar 10 m och H ar 5 m. Varmeledningsfb'rmagan

for moran och granit ar 1.2 respektive 3.6 W/mK.

Det ekvivalenta varmemotstandet mellan lagret och markytan, L u /A ,

blir:

ren moran:

ren granit:

granit + moran:

= 4 . 4 m K / W

1 0 ' °5 3 = 1.5 m2K/W6

= 2.4 m K / W

4.12.6.2 Cylinder

Varmelagret har cylindrisk form. Dess bveryta sammanfaller med mark-

ytan. Radien ar R och hbjden ar H. Forutsattningarna for marken ar

desamma som ovan i 4.12.6.1.

Lagrets radie val jes som skalningsla'ngd: L =R

Lagrets kontaktyta mot marken ar

A - _ = irR2 + 2-jrRH (4.12.

Storheterna u och d ' . ges i tabell 4.12.3.m mm

H/R

um

°min

0.4

0.22

0.079

1

0.33

0.03

Tabell 4 .12 .3 . Storheterna u och d ' . for ett cylindriskt varmelager.

Marken bestar av ett moranlager med hb'jden H ovanpa

granit.
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Exempel. Ett va'rmelager har cylindrisk form. Dess bveryta sammanfaller

med markytan. Varmefbrl usterna fran lagret skall bestammas for

tre typer av omgivande mark. Fbljande data a'r gemensamma for

de olika fallen.

R = 1 0 m H = 4 m

di = 0.3 m A i = 0.04 W/mK

T = 75°C T = 5°C
m o

Fal1 1. Marken bestar av ren mora'n, vars varmeledningsformaga

a'r:

X .. = 1.2 W/mKmoran '

Figur 4.12.2 samt formlerna 4.12.3 och 4.12.5 ger

|_s = R = 10 m H/R = 0.4

dmin = °'36 um = °'45

,. , 0.04-10-0.36 n ,,
2dmin = 2 O = °'24

2dmin

A. =565 m2im

Varmeforlusten till mark blir da enligt formel 4 .12 .1

' 0.3 '' 10^0.45
"O4 + "" 1.2

Fa 11 2 . Marken bestar av ren granit, vars varmeledningsfor-

maga a'r

Vanit
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Pa samma sa'tt som i fall 1 erhalles

L = R = 10 m H/R = 0.4

= °-36 = °-45
,. , 0.04-10-0 .36 n

2dmin = 2 0 = °'

d. = 0.3 m > 2dmin

= 565 m2

Q , =* 565 • 7n—75.n ^ /ic = 4.5 kW
xm,mark 0.3 10*0 .45

0.04 3.6

Fall 3. Marken bestar av granit, som ar tackt av ett 4 meter

tjockt lagerav moran. Varmeledningsfbrmagan for granit och

moran ar

xgranit

Eftersom A ../A .. ar lika med 3 och H/R ar lika med 0.4granit moran
kan tabell 4.12.3 anvandas for bestamning av d'. och u .

PS samma sa'tt som i fall 1 erhalles

L = R = 10 m

dmin = °-079

,, 9 0.04-10-0.079 n nc m2d . = 2 • 1—?j = 0.05 mnun 1.2

d. = 0.3 m > 2dm.n

A.m = 565 m2

.
0704 + T72
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4.12.7 Effekt av grundvattenstrijm

Figur 4.12.9 visar ett vertikalt tvarsnitt genom ett langstrackt varme-

lager. Lagrets hbjd ar H och dess bredd ar B. Grundvattenytan ligger pS

djupet D under lagrets bottenyta.

Vattenflbdet ar sa starkt att temperaturen under lagret vid grundvatten-

ytan kan sa'ttas till den ostbrda grundvattentemperaturen langt fran

lagret.

B

Tm

Figur 4.12.9. Rektangulart tvarsnitt genom ett langstrackt lager med

ett kraftigt grundvattenflode under djupet H+D.

Lagrets bredd valjes som skalningslangd: LS=B.

Storheterna u och d'. ges i tabell 4.12.4 for ett lager da'r kvoten

H/B ar 0.2.

Lagrets isolerlangd mot markytan ar

L. = B+2Him (4.12.12)

D/B

um

d' .mm

0.2

.15

.04

0.3

.21

.07

0.6

.31

.13

CO

.45

.20

H/B = 0.2

label! 4 .12.4 . Storheterna u och d ' . for ett va'rmelager enligt

figur 4.12.9.



4.71

4.13 Tidsskala for stationar varmefbrlust

Den stationara varmefbrlusten under en tid t ges av Q -t. Under en

varmelagringscykel utnyttjas ett temperatursving T+ - T_ i lagret.

Motsvarande varmeinangd blir (T+-T )-C V. Har ar C Storage) varme-

kapaciteten per volymenhet i varmelagret och V lagrets volym. Varme-

fbrlust under en tid t dividerad med lagrets varmelagringskapacitet

blir da

Q y VT. '-• . /

Vi har har utnyttjat formel 4.1-.2 for Q . Den fbrsta faktorn, tempera-

turkvoten, i 4.13.1 ar normalt i storleksordningen 1. Den andra faktorn

ar da ett matt pa varmefbrlust under en tid t relativt lagringskapa-

citet. Vi-definierar en tid t for vilken denna faktor blir lika med

ett:

C V
s (4.13.2)

Tiden t ger en tidsskala for den stationa'ra va'rmel edningsf brl usten.

For lagringscykler som ar korta relativt t blir varmefbrlusten liten,

medan varmefbrlusten blir stor om tiden for lagringscykeln ar stor

jamfbrt med t .

Tiden t kan ocksa tolkas som en tidsskala for en temperaturavkl ing-

ning hos varmelagret. Lat T (t) beteckna en 1 agermedel tempera tur.

Varmefbrlusten ar av storleksordninqen x(T (t) - T )L h. En energi-

balans ger da:

-To)Lsh

eller

^(Tn,^- V = - ( T m ( t ) - V

Detta ger en exponentiell avklingning med tidsskalan t :

(4.13.4)
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Varmeforlusttidsskalan t a'r enligt 4.13.2 proportionel 1 mot V/L , dvs.

mot lagrets linjara dimensioner i kvadrat. Detta inneba'r att om de

linjara dimensionerna fbrdubblas sa fyrdubblas tidsskalan.

For varmefbrlusten q fran ett tvarsnitt av ett langstrackt varmelager

ersattes Q av q och volym V med lagrets tvarsnittsarea A. Tidsskalan

t blir da med utnyttjande av forme! 4.1.7:

C A

(4'13'5)

Tidsskalan beror fortfarande kvadratiskt pa lagrets linjara dimensioner.

Exempel 1. For ett sfa'riskt lager pa stort djup har vi med hjalp av

4.2.3:

h = 4ir LS = R

V

Numeriskt kan vi ta

= 4.2 MJ/m3K A = 2 W/mK

R = 3 m tm = 0.2 ar

R = 10 m t = 2.2 arm

R = 50 m tm = 55 ar

Exempel 2. Vi har ett cyl inderformat lager med bverytan vid marknivan.

Radien a'r R och hbjden H. Dverytan och kanten ner till tva

meters djup (D. = 2 m) a'r mycket kraftigt isolerade s& att

denna va'rmefb'rlust kan fbrsummas.

Tidsskalan t for detta fall ges av

Varmeflbdet Qm = Qm mark ges i figur 4.8.3. Da ga'ller:
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= R2HC
'

Vi har fbljande termiska data:

C = 2 •106 J/m3K X = 2 W/mK

Da galler approximative

R2H 1

Har ges q' av figur 4.8.3.

T.ex. har vi:

R

H

R

H

R

H

= 10 m

= 10 m

= 32 m

= 32 m

= 100 m

= 100 m

q 1

q'

q'

= 160 m

= 660 m

= 2500 m

tm = 0.6 ar

tm = 5 ar

tm = 40 ar

4.14 O'versikt over varmef brl ustf orml er

I detta avsnitt ges en bversikt over de formler, diagram och tabeller for

stationa'ra varmef brl uster som har presenterats i de fbregaende avsnitten.

Figur 4.1.1 illustrerar det stationa'ra varmestrbmningsproblemet. Va'rme-

lagrets yta har en bvertemperatur T -T relativt markytan och ostbrd

mark. Oet stationa'ra varmefIbdet fran varmelagret betecknas Q (W). For

ett varmelager med en dynamisk lagringscykel ar T ett lampligt valt

medelvarde av lagerytans temperatur under lagringscykeln t . En uppskatt-

ning av total varmefbrlust per cykel ar Q -t . En langd L anvands for

skalning. Varmefbrlusten Q ges enligt formel 4.1.2 av

Q = A(T -T )L -h (4.14.1)^m m o s
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Ha'r a'r h en dimensionslb's varmeforl ustfaktor som beror av problemets

skalade langder (L./L osv.). label! 4.14.1 ger en sammanstallning av

varmeforl ustformlerna for de tredimensionella fallen fran avsnitten

4.2-10.

Typ, form Avsnitt Formler

Sfar pa stort djup

Sfar pa djup D

Cylinderformat varmelager under
mark

Cylinderformat varmelager pa
stort djup

Allmant samband me!Ian mattligt
och stort djup

Rotationsel1ipsoid pa stort djup

Allman ellipsoid pa stort djup

Allman ellipsoid pa mattligt
djup

Allman formel for lager under
mark

Varmeforlust genom varmeisolering
i marknivan

Varmeforlust genom kantisolering 4.7.3 4.7.5

Varmeforlust mot mark for olika
kantisolerdjup D.

Cylinderformat varmelager med
bverytan vid marknivan

Stympad kon 4.8.4

Parallellepipedformat varmelager 4.9
med bverytan vid marknivan
Halvsfar 4.10.2

4.2

4.2

4.3.2

4.3.2

4.4

4.5.1

4.5.3

4.5.5

4.6

4.7.2

4.2.2

4.1.5, figur 4.2.2

4.3.1, tabell 4.3.1

4.3.2, tabell 4.3.2

4.4.1

4.5.1-2, 4.5.5-7, figur
4.5.2

4.5.15, figur 4.5.3, 4.5.21
4.5.22

4.5.26-27

4.6.1-3

4.7.2

4.7 .4 .2-3 4.7.10-11, 4 .7 .15, 4 .7 .17 ,
figur 4.7.6

4.8.2-3 4.8.2-6, figur 4.8.3-4,
tabell 4.8.1
tabell 4.8.2
4.9.2-3, tabell 4 .9 .1

4.10.2, figur 4.10.5

Tabell 4.14.1. D'versikt over varmeforl ustforml er for tredimensionella

stationara fall.

Varmeforlusten i ett tvadimensionellt tvarsnitt av ett langstrackt varme-

lager betecknas q . Den raknas per meter i lagrets langdriktning (W/m).

Motsvarigheten till formel 4.14.1 blir:
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q = X(T -T ) - h
Mm m o

(W/m) (4 .14.2)

label! 4 .14.2 ger en sammanstal Ining av varmefbrlustfornllerna for de tva-
dimensionella fallen fran avsnitt 4.11.

Typ, form Avsnitt

Rektangulart tvarsnitt 4 .11 .1
Trapetsformat tvarsnitt 4.11.2
Cirkulart tvarsnitt under mark- 4.11.4
ytan

Formler

4.11.1-2, tabell 4.11.1

4.11.3, tabell 4.11.2

4.11.5, tabell 4.11.4

label! 4.14.2. Gversikt over varmefbrlustformler for tvaditnensionella

stationara fall.

Vissa markvarmelager varmeisoleras over hela ytan. For dessa kan speciella

formler for varmefbrlusten anges. Marken representeras av en ekvivalent

marktjocklek. Tabell 4.14.3 ger en sammanstalIning av formlerna for

dessa fall.

Typ, form Avsnitt

Allmanna formler 4.12.1

Cylinderformat lager 4.12.2

Parallellepipedformat lager 4.12.3

Rektangulart tvarsnitt 4.12.5.1

Rektangulart tvarsnitt under mark 4.12.5.2

Tva skikt - mora'n, granit 4.12.6

rektangulart tva'r- 4.12.6.1
snitt

cylinder 4.12.6.2

Grundvattenstrbm under rektangu- 4.12.7
la'rt tvarsnitt

Formler

4.12.1-4

figur 4.12.2

figur 4.12.3; tabell 4.12.1

figur 4.12.5

fiaur 4.12.7

Tabell 4.14.3. Oversikt over varmefbrlustformler for varmelager som ar

isolerade over hela ytan.

9-B5
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5.GRUNDLAGGANDE DYNAMISKA TEMPERATURFORLOPP

5.1 Transient process vid konstant yttemperatur

Vi skall i detta avsnitt behandla transienta temperaturprocesser i

mark, da man vid en starttid gbr en stegandring av yttemperaturen. I

det betraktade markomradet ar temperaturen konstant vid startbgonblicket:

!/,_„ = T . Vid markytan har man hela tiden temperaturen T . Pa lager-

ytan rader fran starten t = 0 temperaturen T . Vi far da i marken ett

transient insvangningsfbrlopp mot det stationara temperaturfaltet, vil-

ket har behandlats i fbregaende kapitel.

Detta ar en av de fundamentala delprocesserna for ett narkvarmelager.

Under de fbrsta aren utbildas en varmekudde kring markvarmesystemet.

Dverlagrat har man sedan ett arligt periodiskt fbrlopp. Uppbyggnaden av

varmekudden kra'ver ett extra varmetillskott vilket efter hand minskar i

storlek. Detta varmetillskott ges vasentligen av det transienta va'rme-

flbde som man far vid en stegbkning av yttemperaturen till T vid t = 0.

Vi behbver ocksa ka'nna till det transienta va'rmeflbdet vid en stegandring

av yttemperaturen for analyser av olika delprocesser. Ett exempel ar re-

sponsen kring ett rbr eller ett borrhal.

I detta avsnitt skall vi sammanstalla formler for det transienta va'rme-

flbdet genom ytan da'r man har gjort en stegandring av temperaturen.

5.1.1 Transient temperaturfalt

Figur 5.1.1 illustrerar den aktuella transienta processen for ett cylinder-

format va'rmelager med bverytan vid marknivan. Temperaturen i marken ar

T vid starten t = 0. Pa lagerytan hbjes da temperaturen till T . Vid

markytan rader hela tiden temperaturen T .
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u=0

Figur 5.1.1. Transient temperaturprocess for cylinderformat varmelager

vars yta ges temperaturen T vid t = 0. Till hbger visas

villkoren for den dimensionslbsa temperaturen.

Den dimensionslosa temperaturen u definieras av

T-T
u =

m o (5.1.1)

Denna blir da +1 vid lagerytan och 0 vid markytan. Vid starten t = 0 ar

u noil i marken. Villkoren for u illustreras av den hogra bilden i figur

5.1.1.

Temperaturen u ar en funktion av rumskoordinaterna och tiden. I en dimen-

sionslos formulering anvandes en la'ngd L for skalning av rumskoordinaterna.

Denna la'ngd kan vara lagrets hbjd eller dylikt. Den dimensionslosa tiden
2 2ges av at/L . Har ar a (m /s) markens temperaturledningstal . Den dimensions-

losa temperaturen som funktion av dimensionslosa variabler blir:

(5.1.2)

Som parametrar far vi dimensionslosa storheter for lagrets form m.m.

(LI/LS,... x^x ,..., dix/(Lsxi),..., a.j/3, ... osv). Se avsnitt 4.1.2.

5.1.1.1 Cyl inderformat varmelager med b'verytan vid markniva.

Figur 5.1.2 visar det transienta forloppet i marken utanfbr ett cylinder-

format varmelager vars hbjd H ar lika med diametern 2R. Den vertikala
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kantisoleringen gar ner ett djup D. = 0.1 H. Isoleringen antages bar

vara total. Kantisoleringen bar bara betydelse for dess narmaste omgivning.

Den paverkar ej temperaturfbrloppet i stort.

Figur 5.1.2. Transient temperaturf or! opp utanfbr cylinderformat varme-

lager. A: isotermen u = 0.5. B: isotermen u = 0.1.

Som skalningslangd anvandes R. Dimensionslbs temperatur blir da en funktion

av r/R, z/R och at/R2. Figur 5.1.2 A visar isotermen u = 0.5 vid olika tid-

punkter, medan 5.1.2 B visar u = 0.1.

Vi ser att 0.5-isotermen na'rmar sig det stationara vardet betydligt snabbare

an 0.1-isotermen.

Som en illustration tar vi fbljande fall med tre lagerstorlekar:

a = 1 • 10 6 m2/s

i. R = 10 m (H = 20 m)

ii. R = 20 m (H = 40 m)

i i i . R = 50 m (H = 100 m) (5.1.3)
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Detta ger tidsskalorna:

i. R2/a = 108 s = 3.2 ar

ii. R2/a = 13 ar ( at. = t \. R2/a = 79 ar ^ R2 R2/a ' (5.1.4)

Vi ser att det minsta lagret ger en tidsskala pa 3 ar for den transienta

processen. Det stbrsta lagret med linjara dimensioner pa 100 m far en

tidsskala pa nastan hundra ar for den transienta temperaturuppbyqqnaden

kring varmelagret.

Vi ser fran figur 5.1.2 att 0.5-isotermen hamnar pa en knapp radies av-

stand fran lagret, medan 0.1-isotermen hamnar pa ett avstand 2-5 R efter

lang tid.

5.1.1.2 Cyl inderformat varmelager under mark

Som ytterligare ett exempel pa den transienta temperaturuppbyggnaden skall

vi se pa ett cyl inderformat bergrum. Exemplet ha'rror fran referens 5.

Lagret ar 20 meter hbgt, och radien ar 10 m. Lagrets bveryta ligger 10 m

under marknivan. Lagerytan ar antingen oisolerad eller ta'ckt med en iso-

lering med varmemotstandet m. Fbljande data har anvants:

a = 1.7 • 10~6 m2/s X = 3.6 W/mK m = 0 resp. 4 m2K/W

TQ = 5 °C TRI = 55 °C (5.1.5)

I detta fall ges fb'rloppet direkt utan skalning. Se figur 5.1.3 A-C.

Figur 5.1.3 A visar isotermen for 30 °C efter 1, 5 och 10 ar, medan 5.1.3.

och C visar isotermen for 15 °C. I A och B ar bergrummet oisolerat, medan
p

det i C har en isolering med varmemotstandet 4 m K/W. Vi ser vid ja'm-

fbrelse mellan B och C att att isoleringen ger en relativt kraftig minsk-

ning av det uppvarmda omradets utstrackning.
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10 20 30 r(tn) 10 20 30

z(m)

rim) 10 20,

50

z(m)

z m)

Figur 5.1.3. Transient temperaturuppbyggnad utanfbr cylinderformat

bergrum. A: T = 30 °C, m = 0. B: T = 15 °C, m = 0.

C: T = 15 °C, m = 4 m2K/W.

5.1.1.3 Plant, endimensionellt fall

En viktig elementarprocess ar det plana, endimensionella, halvoandliga

fallet 0 < x < oo. Se figur 5.1.4. Denna typ av transient process far man

i bbrjan vid en stegandring av yttemperaturen. Efter hand kan flerdimen-
sionella effekter och en yttre begransning bbrja stbra den rena processen.

x=0

Figur 5.1.4. Plant, endimensionellt fall,

Den dimensionslbsa temperaturen fran forme! 5.1.1 blir

u(x,t) = erfc
'4at

(5.1.6)

Har ar erfc(s) den komplementara felfunktionen. Den behandlas i avsnitt

3.6 . Temperaturstbrningen u ges direkt av erfc(s), dar argumentet ges av

x/ /4at. Kurvformen ar saledes densamma vid alia tider. Langdkoordinaten
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skalas med den tidsberoende langden /4at.

Lat XQ ,- vara x-koordinaten for 50% temperaturstbrning (u = 0.5) vid
tiden t. Vi bar da1, eftersom erfc(J) = 0.480=^0.5:

XQ 5 = /at (5.1.7)

Formel 5.1.7 ger ett enkelt direkt uttryck for hur isotermen u = 0.5 rb'r
sig utat.

Som ett exempel kan vi ta:

a = 1 -10"6 m2/s

Vi far da fbljande varden

t
xn .- (m)

1 timme
0.06

1 dygn

0.30

1 vecka
0.78

2 man

2.3

1 ar

5.6

10 ar

18

100 ar

56

Nagra andra isotermer rbr sig utat enligt fbljande:

erfc(1.16) = 0.1 XQ 1 = 2.3-/at
erfc(1.8) = 0.01 xQ'01 = 3.6-/at • (5.1.8)

5.1.1.4 Transient forlopp utanfbr sfar

Ett annat instruktivt elementarfall ar den transienta processen i en fri
rymd utanfbr en sfar. Sfarens radie ar R. Det radiella avstandet till
sfarens centrum ar r. Den dimensionslbsa temperaturen u(r,t) skall uppfylla:

u(r,0) = 0 r > R u(R,t) = 1 t > 0 (5.1.9)
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Lbsningen ar:

u(r,t) = ~
t > 0

r = 7x2+y2+z2 (5.1.10)

Har ar erfc den komplementara felfunktionen, vilken behandlas i avsnitt 3.6.

Den stationara slutlbsningen for t = °° ges av R/r. Insvangningen till det

stationara slutvardet ges av erfc-faktorn i formel 5.1.10. Denna har exakt

samma form som i det plana fallet enligt fbregaende avsnitt om vi sa'tter

x = r - R.

Lat r,, r beteckna radien for vilken 50% av det stationara slutvardet har

uppnatts vid en viss tid:

Vi har da eftersom erfc(i) ̂  0.5:

rQ 5 = R + /at (5.1.12)

Denna formel ar analog med formel 5.1.7 for det plana fallet.

5.1.2 Transient varmefbrlust

Vi skall i detta avsnitt med formler och diagram ange det transienta v'a'rme-

flbdet for olika fall, dar lagerytan ges en temperaturhbjning T - T vid

t = 0. I tredimensionella fall betecknas det transienta varmeflbdet genom

ytan med Qtr(t) (W). Med index tr skall vi genomgaende avse den aktuella

typen av transient process. For ett plant tvarsnitt betecknar q. (t) varme-

flbdet per langdenhet vinkelrat mot planet. Vi skall ocksa anvanda q. (t)

for att beteckna varmeflbdet per langdenhet fran en cylinder eller ett rbr.

I plana, endimensionel la fall ar q, (t) varmeflbdet per ytenhet. Sorten forQ tr
q. (t) ar saledes W/m eller W/m .



Det ackumulerade varmeflbdet betecknas E. (t):

Et (t) = J Q (t') dt' (J)
o
t „

Et (t) = / qt (t1) dt1 (J/m, J/r/) (5.1.13)
o

Da tiden gar mot oandligheten, gar de transienta varmeflbdena mot de
stationara vardena. Vi bar i enlighet med kapitel 4:

Qtr(t) -> Qm t + -

qtr(t) * qm t H. » (5.1.14)

5.1.2.1 Dimensionslbs form

Den transienta varmefbrl usten a'r direkt proportionell mot markens varme-
ledningsfbrmaga A och mot temperaturdifferensen T - T . Pa samma satt som

i det stationara fallet enligt avsnitt 4.1.2 blir Q. ocksa proportionell
mot skalningslangden L . Varmefbrl usten blir en funktion av dimensionsl bs

2tid at/L och av skalade parametrar sasom L./L osv.

Vi bar

Qtr(t) = A(Tm - TQ) Ls- htr (at/L.,...) (w) (5.1.15)

Ha'r a'r h. det dimensionslbsa, transienta varmeflbdet. Den blir en funktion
av dimensionslbs tid och av skalade parametrar for form o.dyl. Da tiden gar
mot oa'ndl igheten na'rmar sig h den stationara varmefbrl ustf aktorn h vilken

behandlas i kapitel 4.

I ett plant tvarsnitt far vi i stallet:

qtr(t) = A(Tm - TQ) . htr(at/L;...) (W/m) (5.1.16)



5.9

For ett endimensionellt fall far vi :

*(T - T ) , o
qtr(t) = - JO - £.htr(at/L<;...) (W/mZ) (5.1.17)

Den ackumulerade varmefbrlusten E, blir i dimensionslbs form:

Har betecknar e. den dimensionslosa ackumulerade varmeforlusten. Markens

varmekapacitet per volymsenhet ar C (a = x/C). I ett tvadimensionellt fall

far vi

E t r = C ( T m - V L s ' e t r (at /L*; . . . } (J/m) (5 .1 .19)

I ett plant, endimensionellt fall har vi slutligen:

Etr = C ( Tm-V Ls- etr ( a t / Ls !"-

Sambandet mellan e. och h. blir:

etr = I h (f ;...) df (5.1.21

Va'rmeflbdet gar mot konstant varde da tiden gar mot oandligheten enligt

forme! 5.1.14. Den ackumulerade forlusten bkar da som 0 -t eller q -t.

Den dimensionslosa ackumulerade forlusten bkar da ocksa linjart med dimen-

sionslbs tid.

5.1.2.2 Cyl inderforrnat lager med overytan vid marknivan

Det aktuella varmelagret har formen av en cylinder med overytan vid mark-

nivan. Cylinderns hbjd ar H, och dess radie ar R. Den vertikala kanten ar

varmeisolerad ner till ett djup D.. Vi skall enbart behandla fallet D. = 0.1H.

Varmeisoleringen antages vara total.
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Som skalningslangd L anva'ndes radien R. Det ackumulerade, dimensions-
2Ibsa varmeflbdet e. blir en funktion av dimensionslbs tid at/R . Den

enda parametern a'r cyl inderformen H/R, eftersom isoleringen a'r total

och isolerdjupet D. a'r proportionellt mot hbjden. Vi har med formel

5.1.18:

tr - T "tr
at (5.1.22)

Numeriskt beraknade varden for e. visas i figur 5.1.5. D'kningen med tiden

blir efter en viss tid linja'r. Fbrloppet a'r da vasentligen stationart.

Figur 5.1.5. Transient, ackumulerad varmeforlust for cylinder med b'verytan

vid markniva. Formel 5.1.22.
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Exempel. Lat oss ta ett lager med 20 meters radie och hbjd. Det ar om-

givet av granit. Vi har fbljande data:

R = 20 m

X = 3.5 W/mK

T - T = 40m o

Vi har da

R2/a = 7.9 ar

H = 20 m

a = 1.6 • 10~6 m2/s

Di = 2 m

H/R = 1

C(T - T ) R3 = 7.0 • 1011 J = 194 MWhm o

Diagram 5.1.5 A och B ger

t(ar)

0.5

1

2

3

4

5

etr

3.0

4.8

7.9

10.8

13.5

16.1

Etr(MWh)

580

930

1530

2100

2620

3120

Varmefbrlusten per ar blir:

ar 1: 930 MWh

ar 2: 600 MWh

ar 5: 500 MUh

ar 25: 480 MWh

Den stationara varmefbrl usten per ar blir enligt formel 4.8.5

3.5-40-20-18.9.3600-24-365 J = 464 MWh. Vi ser att varmefbrl usten

per ar ar dubbelt sa stor som den stationara under fbrsta aret.

Redan under det femte aret rader vasfintl igen stationer varmefbr-

lust.

De givna diagrammen och exemplet galler for isolerdjupet D. = 0.1 H. Re-

sultaten kan dock vasentligen aven anvandas for andra isolerdjup pa

fbljande satt. Det stationara va'rmeflbdet i

formler i avsnitt 4.7. Skillnaden mellan Q

fbljande satt. Det stationara va'rmeflbdet Q varierar med isolerdjup enligt

. och Q blir i stort oberoende
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av D., eftersom isolerdjupet bara paverkar ett mindre lokalt omrade

kring kanten.

Vi kan for varmelager med bverytan vid markniva, vilka har en kantisoler-

ing ner till ett djup D. anvanda approximationen:

" (Qtr - "J
tr m D.=0.1H

(5.1.23)
•=0.1H

Om vi utnyttjar forme! 4.7.17 far vi

Qtr I - Qt I + A(VTo) Li'9(Di/H) (5.1.24)tr |D tr ID =o.1H m o i i

Vi behbver saledes bara studera fallet dar kantisoleringen ar 0.1 H. Detta

galler fbrstas aven for andra lager med kantisolering. Faktorn g^ ges av

figur 4.7.6, medan L. ar kantisoleringens langd runt lagret.

5.1.2.3 Plant endimensionell t fall

Det plana, endimensionella fallet for ett hal voa'ndl igt omrSde illustreras

i figur 5.1.4. Temperaturresponsen vid en stegandring av randtemperaturen

behandlas i avsnitt 5.1.1.3. Varmeflbdet vid x = 0 erhalles genom derivering

av forme! 5.1.6. Vi far

A(T -T ) ,
qtr(t) = .m °- (W/m^) (5.1.25)
tr

Varmeutflbdet fran en area A blir

MT -T )A
Qtr(t) = - ̂5_ (W) (5.1.26)

/Tat

Formlerna 5.1.25-26 ar mycket grundlaggande eftersom tempera turf brl oppet

i manga fall ar vasentligen plant, halvoandligt under en fbrsta tid. Varme-

flbdet ges av A(Tm - T ) dividerat med langden A at.

Det ackumulerade varmeflodet b!ir:

Etr(t) =C(Tm-To)/ll (J/m2) (5.1.27)
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5.1.2.4 Skiva

Det endimensionella transienta temperaturfbrloppet for en skiva med

tjockleken L illustreras i figur 5.1.6. Denna situation kan vi t.ex.

fa i ett tackande jordskikt ovanfbr ett varmelager.

T=T,
t>0 T(x.O)=T.

x=0

Figur 5.1.6 Transient varmeflbde for en skiva

Varmeflbdet per ytenhet av skivan blir da L anvandes som skalningslangd:

- V
Mtr (W/nr (5.1.28)

Fbljande uttryck galler for h. med mycket god precision:

'tr'

.(1 + 2e'1/T)

1 + 2e~

<
IT

T £ -
IT

(T = at/L' (5.1.29)

En a'nnu enklare approximation ges av fbrsta termen i de tva uttrycken

5.1.29. De svarar emot det hal voa'ndl iga fallet enligt fbregaende avsnitt

och det stationara fallet. Brytpunkten mellan de tva fallen ges av

T = I/IT. Vi har de tva approximationerna:

Aat

X(T - T ;m o

^ < ~ , halvoandlig \/

(~ > - , stationar ^
^L Tl approximation^

(5.1.30)

(5.1.31)
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Det maximala felet for dessa approximationer a'r 8.6%.

Det transienta fbrloppet da skivan a'r total isolerad vid den andra sidan

x = L a'r ocksa av intresse. Detta fall illustreras i figur 5.1.7. Denna

situation kan vi ha mellan rader av plana plattvarmevaxlare i mark.

x=L

Figur 5.1.7. Transient va'rmeflbde for en skiva da den motstaende sidan

x = L a'r total t varmeisolerad.

Va'rmeflbdet per ytenhet ges av forme! 5.1.28, da'r nu h. ges av

-TT2T/42e

Maximalt fel i dessa formler a'r tva promille.

(5 .1 .32)

5.1.2.5 Cylinder eller rb'r

Ett viktigt transient elementarfall a'r forloppet utanfb'r en cylinder

eller ett rbr. Radien a'r R. Processen sker i ett plant tvarsnitt vinkel-

ra't mot cyl inderaxeln. Den .omgivande marken a'r oa'ndlig. Det aktuella

fallet visas i figur 5.1.8. Detta fall behandlas i referens 102 A.

Figur 5.1.8. Transient va'rmeflbde fran cylinder eller rbr med radien R.
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- TQ) • h t r (a t /R*) ( W / m ) (5.1.33)

Faktorn h. ges av nedanstaende tabell och figur 5.1.9.

loglh,r| 02 05 1 2 5 10 20 50 100 200 500 1000

1.0

0.5

r. 5.1.34

1=4-
RZ

rappr. 5.1.35

htr

"logrtl

Figur 5.1.9. Transient varmeforl ustfaktor for cylinder i oandlig om-

givning enligt figur 5.1.8. Formel 5.1.33.

For sma tider har vi approximationen

1 1
I ' 4

IT

/T + T!

< 0.5)

(5.1.34)

I det angivna omradet a'r felet maximalt 2%.

0.01 0.02 0.05 0.1 0.2 0.5 1

h t r(T) 38.51 28.10 18.83 14.13 10.78 7.75 6.18 5.03 3.95

10 20 50 100 200 500 1000 2000 5000 10000

ht (t) 3.35 2.90 2.44 2.17 1.96 1.72 1.58 1.45 1.32 1.23

Tabell. Transient varmeforlustfaktor for cylinder i oandlig omgivning

enliqt figur 5.1.8. Formel 5 .1 .33.

10-B5
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For stora tider har vi approximationen:

h (T )« 4. (In T - 0.345) (T = 1* > 1500) (5 .1 .35 )
1 (In T + 0.232T R

Det maximala felet i det givna intervallet a'r 2.5%.

5.1.2.6. Sfar

Det transienta temperaturf brl oppet utanfbr en sfa'r i en oandlig omgivning

behandlas i avsnitt 5.1.4. Det transienta va'rmeflbdet erhalles genom deri-
vation av 5.1.10. Vi har fb'ljande formel for det transienta varmeflbdet
fran sfa'ren:

Q tr = A(T m - T0) - 4 ,R + (5 .1 .36 )

Formeln a'r instruktiv. Vid oandlig tid ger den fbrsta termen det stationara

varmeflbdet fran en sfa'r enligt formel 4.2.2. Den andra termen i parentesen
2

a'r ett uttryck av typen 5.1.26, da'r arean A sa'ttes till sfa'rens yta 4?rR .

Vi kan saga att den transienta fbrlusten fran en sfa'r a'r lika med stationar

fbrlust plus ett transient bidrag som svarar mot ett plant fall med en

area som a'r lika med sfa'rens. De tva bidragen a'r lika stora vid tiden

|̂ = J- (5.1.37)
RZ '

Skriven enligt var dimensionsanalys blir formel 5.1.36:

Qtr= ̂ rn'V R'4^ 0 +-= (5J'38)

Ackumulerat va'rmeflbde blir:

1 + - (5.1.39)

Den transienta fbrlusten under ar n a'r:

Etr,n = Etr(nty} ' Etr ( (n-1) ty ) (ty = 1 Sr) (5-1 '40)
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Formlerna 5.1.40 och 5.1.39 ger da:

E. = 4irXR(T - T ) t • 1 + ——
tr'n m ° y V Alt

(5.1.41)

(n = 1,2,...:

5.1.2.7. Extra varmefbrlust vid horn

Figur 5.1.10 visar den transienta processen utanfbr ett horn. Vi ser pa

ett plant tvarsnitt vinkelra't mot hbrnlinjen. Randen ut till ett avstSnd

L. fran hornet betraktas.

Figur 5.1.10. Transient process i ett plant tva'rsnitt utanfbr ett horn.

Kring hornet a'r temperaturprocessen tvadimensionell, medan den vasentligen

ar endimensionell vinkelrat ut mot randen langre bort fran hornet. Om-

radet kring hornet, da'r vi har en tvadimensionell process, vaxer efter

hand. Den endimensionella processen vinkelrat mot en rand behandlas i av-

snitt 5.1.2.3. Det transienta, endimensionella varmeflbdet genom randen
2

(W/m ) ges av forme! 5.1.25.

Det totala transienta varmeflbdet fran hornet kan skrivas:

- T°H
2L,

(5.1.42)

Den fbrsta termen i parentesen ger det endimensionella, transienta varme-

flbdet. Langden pa randen a'r 2L.. Termen a (edge) ger den extra varme-
fbrlusten beroende pa hornet.

e —



5.18

I referens 6, da'r den transienta processen kring ett horn analyseras,

visas att a a'r konstant for sma tider, da stbrningen fran hornet ej

har natt ut strackan L. Tangs randen. Vi har da

a = — - ̂ 0̂.602 (5.1.43)e

Som krav for att 5.1.43 skall galla med god precision har vi

1

< 7 (5.1.44)

Vid gransen /at = L./2 a'r det endimensionella bidraget till 5.1.42 fyra

ganger stbrre an bidraget fran hornet. Vi kan da'rfbr utstracka giltig-

heten av formel 5.1.42-43 till att galla da Sat < lr

Lat oss nu se pa varmefbrlusten fran en yta som innehaller en kantlinje

Ytan ges av tva plana delar som mbter varandra under rat vinkel . De plana
ytornas totala area a'r A och kantlinjens la'ngd L .

Den transienta varmefbrlusten under en fbrsta tid blir da:

For formelns giltighet har vi kravet:

4̂  < 1 (5.1.45")
L1

Langden L, definieras i enlighet med figur 5.1.10.

5.1.2.8. Va'rmelager pa stort djup

Vi skall i detta avsnitt behandla den transienta varmefbrlusten fran ett

va'rmelager, som ligger sa djupt ner att effekten av markytan kan fbrsummas.

Vi skall fbrst behandla processen for smS tider. Formel 5.1.45 som tar

ha'nsyn till den extra varmefbrlusten vid kanter kan da anvandas.
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Fbr ett parallellepipedformat lager med kantla'ngderna L, B och H blir

arean A och kantlangden Lg :

A = 2(LB + LH + BH) (5.1.46)
Le = 4(L + B + H)

Det transienta va'rmeflbdet ges av formel 5.1.45. Formels galler vid tider

som uppfyller:

-̂  < i L. = 1 min (L, B, H) (5.1.47)L1 ^ 1 i

Vart na'sta fall ar ett cyl inderformat varmelager med hbjden H och radien

R. Vi har tvli plana cirkula'ra ytor med en area A. MelTan dessa och mantel-

ytan har vi tva cirkulara kantlinjer med la'ngden Lg:

A = 2 • wR2 Le = 2 -2irR (5.1.48)

For dessa delar kan vi anvanda formel 5.1.45. Va'rmeflbdet ut fran mantel -

ytan ges av formel 5.1.33. Det skall mul tip! iceras med hojden H. Under en

fbrsta tid far vi fbljande transienta flbde fran cylindern:

Qtr = A ( Tm - To} ' -= + °-6L + H n ( a t / R ) ( 5 -1 .49 )t r m o

Har ges A och L av formel 5.1.48 och h?^ av figur 5.1.9 och formel

5.1.34.

Det transienta varmeflbdet fran en sfa'r med radien R ges av formel 5.1.38:

"tr = x(Tm - V ™

Denna formel ga'ller bade i bbrjan och for la'ngre tider sa lange som

effekten av markytan kan fbrsummas.

Fbr stbrre tider kan det vara rimligt att approximera varmelagret med en

sfa'r. Lat V vara lagrets volym. Vi fbrutsatter att lagrets form ej avviker

starkt frSn en sfa'r. Radien R,. for en sfa'r med samma volym blir:
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Det transienta varmeflbdet fran varmelagret blir da approximativt vid

stbrre tider:

- (5.1.52)

For ett parallellepipedformat lager har vi

R = 3/3LBH

For ett cylinderformat lager galler:

12

RV =
3/ 3HIT

(5.1.53)

(5.1.54)

For att kunna approximera cylinder och paral lellepiped med en sfa'r far

formen ej vara extrem. Det a'r rimligt att krava att 2R/H, B/L och H/L alia

ligger mellan 1/5 och 5.

Sammanfattningsvis har vi fbljande uttryck for den transienta va'rmefbr-

lusten for ett varmelager som a'r ostort av markytan.

Parallellepiped: Formlerna 5.1.46 och 5.1.45 (sma tider) ,r , ̂

Formlerna 5.1.52-53 (stora tider)

Cylinder:

Sfar:

Varmelager av

annan form:

Formlerna 5.1.48-49

Formlerna 5.1.52,54

Formel 5.1.50

Formlerna 5 .1 .51-52

(sma tider)

{stora tider)
(5.1.56)

(5.1.57)

(stora tider) (5.1.58)

For cylinder och parallellepiped ges tva uttryck. Vid en viss tidpunkt

blir dessa lika. Formlerna for sma1 tider va'ljes fore denna tid, medan

formlerna for stora tider sedan tages. Av de tvS alternativen tar man da

hela tiden det som ger stbrst varmeflbde.
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Exempel 1. Lat oss se pa den transienta forlusten fran en kub med kant-

langden L. Formlerna 5.1.45-46 ger for sma tider:

p
Q! = X(T - T ) f— — + 12L -0.6
xtr v m o \ — r

x /IT at

Approximeras kuben med en sfar med samma volym har vi

I 3 _ 4Ti R3L - -3- Kv

2
Varmefbrlusten Q, ges av forme! 5.1.52.

Kvoten mellan dessa tva approximationer blir:

f = V = 0.924 /at/L + 0.434

r 0.350

Vi far nedanstaende tabell

/at/L 0 0.25 0.75 1.0 1.5 2

1.24 1.11 1.02 1.01 0.98 0.97 0.94 0.924

Vi ser att kvoten hela tiden ligger relativt na'ra 1. For kuben

far vi bryttiden /at/L ̂  1.

Den transienta forlusten ges av Q da /TE/L < 1 och av

Q da /at/L > 1.

Exempel 2. Vi tar en cylinder med 10 meters radie och 20 meters hbjd. Vi

tar fbljande data

R = 10 m H = 20 m

>^(Tm - TQ) = 50 W/m a = 1.0 • 10~6 m2/s

Formlerna 5.1.48-49 ger den transienta forlusten for sma tider,

medan den ges av 5.1.52,54 for stora tider.

Formel 5.1.48-49 ger:
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at/R" = t/t. t. = R /a = 3.17 ar

Q t r - so
'TTt/t ,

27T * 1 0 + 20htr1(t/ti

Detta kan skrivas:

1.77

Har ges h ^ av figur 5.1.9. Vi far fbljande va'rden:

t/t. 0.01 0.05 0.1 0.5 0.6 0.7

Qtr(kW) 60.0 30.5 23.5 14.0 13.4 12.8 12.4

t/t 1.0 1.2

Q t r ( kW) 11.7 11.2

Formlerna 5.1.52,54 da'r cylindern approximeras av en sfa'r ger

RV = 11.45 in

Q « 50 -4ir • 11.45
tr

1J4_5_-
At/t.

eller

kW
* L/ L *

Detta ger fbljande va'rden

t/t. 0.5 0.6 0.7 0.8 1.0 1.2 1.5

Q t r (kw)

t/t.

Q tJkW)

13.8

1.8

10.7

13.2

2.0

10.5

12.8

2.5

10.1

12.4

5

9.3

11.9

10

8.7

11.4

25

8.1

11.0

7.2

Vardena enligt denna tabell ar stb'rre an enligt den tidigare da

t/t1 > 0.8.
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Vi far bryttiden

t = 0.8 t1 = 2.5 ar

Fore denna tid galler den fdrsta approximationen enligt formlerna

5.1.48-49. Efter denna tid galler approximationen med en sf'a'r

enligt formlerna 5.1.52,54.

5.1.2.9 Varmelager pa mattligt djup

Den transienta varmefbrlusten fran ett lager pa mattligt djup kan uppskattas

pa fbljande satt. Lagrets mittpunkt ligger pa djupet D . Vi fbrutsatter att

lagrets oversta punkt ej ligger alltfbr nara markytan.

For korta tider paverkar markytan ej det transienta varmeflodet. Formlerna

enligt fbregSende avsnitt 5.1.2.8 kan anvandas. Lat Q (D = ») vara denna

transienta fbrlust. For korta tider har vi approximationen:

Qtr - Qtr(Dm = -) (tlitet) (5.1.59)

Efter lang tid blir den transienta varmefbrlusten lika med den stationara,

Q . Denna behandlas i kapitel 4. Vi har da" approximationen:

Qtr ~ Qm (t stort) (5.1.60)

Vid en viss bryttid t. blir uttrycken 5.1.59 och 5.1.60 lika. Fore denna

tid valjes 5.1.59 och efter denna 5.1.60. Vi tar da hela tiden det stbrre

av de tva uttrycken. Vi har saledes for ett varmelager pa mattligt djup:

(5.1.61)

5.1.2.10 Sfar pa mattligt djup

Det sfariska va'rmelagret har radien R. Dess mittpunkt ligger pa djupet D .

Se figur 4.2.1.
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Den transienta varmefbrlusten ges av approxirnationerna 5.1.59 och

5.1.60. Formeln for oandligt djup (D = ») ges av 5.1.38. Den stationara

varmefbrlusten Q for en sfar pa djupet D ges av forme! 4.2.5. Dessa

ar lika vid en bryttid t, :

(5.1.62)
eller

V-^a—

For den transienta varmefbrlusten fran en sfar pa djupet D har vi da

foljande approximative uttryck:

at (5.1.63)

Exempel . Lat oss ta en sfar med radien 10 m. Mittpunkten ligger pa 20 meters

djup. Vi tar fbljande data:

R = 10 m Dm = 20 m Tp - TQ = 25°C

a = 1.0-10"6m2/s X = 2.0 W/mK

Bryttiden t. enligt forme! 5.1.62 blir:

b m~°

Forme! 5. 1 .63 ger:

0 < t < 9.1 ar: Q ^ 6.3 \ / t t kW

t1 = R2/(ira) = 1.0 ar

t > 9.1 ar : Q ^ 8.4 kW
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5.1.2.11 Cylinderformat varmelager under markniva

Det cyl inderformade varmelagret har radien R och hbjden H. Dess bvre
yta ligger pa djupet D under markytan. Se figur 4.2.1.

Den transienta varmefbrlusten ges av approximationerna 5.1.59 och

5.1.60. For oandligt djup (Dm = D + H/2 = •») har vi de tva alterna-
tiven enligt forme! 5.1.56. Den stationara varmefbrlusten Q ges av

forme! 4.3.1 och tabell 4.3.1. Bryttiden t, definieras av att de tva

approximationerna ges samma va'rde.

Fore tiden t, ges da den transienta varmefbrlusten fran cylindern av

formel 5.1.56. Efter denna tid galler approximativt fortnel 4.3.1.

Exempel. Lat oss ta ett cylinderformat varmelager med radien 10 m och

hbjden 20 m. Dess bveryta ligger 10 m under marknivan.

Vi har fbljande data:

R = 1 0 m H = 2 0 m D = 10 m

x(Tm - TQ) = 50 W/m a = 1.0-10'6 m2/s

Samma cylinder pa stort djup har behandlats i exempel 2 i

avsnitt 5.1.2.8.

Fore en bryttid t. galler formel 5.1.56, dvs. 5.1.48-49 vid

korta tider och 5.1.52,54 vid langre tider. Resultatet i exempel

2 i avsnitt 5.1.2.8 galler direkt.

Efter bryttiden har vi den stationara varmefbrlusten enligt

formel 4.3.1 och tabell 4.3.1. Vi fSr:

h(10/10, 20/10) = 21

Qtr ̂  Qm = 50-10-21 = 10.5 kW
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Enligt den andra tabellen i exempel 2 i avsnitt 5.1.2.8 far

vi bryttiden vid t/t, = 2.0. Vi har saledes:

tb = 2 t1 = 6.3 ar

Sammanfattningsvis har vi

0 S t s 2.5 ar: Q. enligt fbrsta tabellen i exempel 2

i avsnitt 5.1.2.8.

2.5 s t s 6.3 ar: Q. enligt andra tabellen i exempel 2

i avsnitt 5.1.2.8.

t g 6.3 ar:
Qtr ^m

Nagra varden ges i nedanstaende

t/t,

Qtr(kW)

0.01

60.0tr

t/t,

Qtr(kW)

1.0

11.9

Problemet har

berakning gav

t/t,

QtJkW)

0.01

59.0tr

t/t,

Qtr(kW)

1.0

13.1

0.05

30.5

1.2

11.4

a'ven Ibsts

0.1

23.5

1.5

11.0

10.5 kW

tabell (t,

0.5

14.0

2

10.5

= 3.17 ar).

0.8

12.4

2.5

10.5

direkt med en numerisk metod.

5

10.5

Denna

foljande resultat:

0.05

30.3

1.2

12.8

0.1

23.6

1.5

12.5

0.5

14.8

2

12.0

0.8

13.5

2.5

11.8

5

11.4

I figur 5.1.11 kan resultaten fran de tva berakningsmetoderna

jamforas.
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Figur 5.1.11. Den transienta varmeforlusten Qtr for cylinder pa mattligt

djup. Jamforelse mellan numerisk Ibsning (heldragen linje)

och approximativa formler (kryss). De streckade linjerna

avgransar de interval! inom vilka de olika formlerna ar

giltiga.

O'verensstammelsen mellan de olika metoderna ar tillfredsstallande. Det

maximala felet ar 14% vid t/t1 = 2.0.

5.1.2.12 Parallel!epipedformat varmelager under markniva.

Det paral1 ellepipedformade varmelagret har kantlangderna L, B och H.

Dess mittpunkt ligger pa djupet D̂ .

Den transienta varmefbrlusten ges av approximationerna 5.1.59 och 5.1.60.

Vid en bryttid t. ar dessa lika. Den fbrsta approximationen galler da

t £ t, och den andra da tat^.

Approximationen enligt 5.1.59 ges av formlerna 5.1.55, dvs. av 5.1.45-46

for sma tider och av 5.1.52-53 for stbrre tider.

Approximationen 5.1.60 efter bryttiden innebar att det transienta va'rme-

flodet approximeras med det stationara va'rdet Qffl. Formler for detta ges

i avsnitt 4.6
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5.1.3 Oversikt over transienta varmef brlusXformler

I detta avsnitt ges en b'versikt over de formler, diagram och tabeller for

transienta varmef brluster som har givits i avsnitt 5.1.2.

Figur 5.1.1 illustrerar fbrutsattningarna for det renodlade transienta

varmestrbmningsproblemet. Varmelagrets yta ges vid tiden t=0 en bvertem-

peratur T -T relativt markytan och den ostbrda marken. Det transienta

varmeflbdet fran lagret betecknas Qtr(t) (W). Yttemperaturen T ar ett

Vampligt valt medelvarde av lagerytans temperatur under lagringscykeln.

I tvadimensionella och endimensionella fall betecknas varmeflbdet qt (t)

E. (
~

(W/m, W/m ). Integrerad transient varmefbrlust betecknas E. (t).

Uversikten over transienta varmefbrl ustforml er ges av tabell 5.1.3.1.

Typ, form Avsnitt Formler

Plan yta 5.1.2.3 5.1.26

Skiva. T=TQ vid x=L 5.1.2.4 5.1.28-31

Skiva. Isolerad vid x=L 5.1.2.4 5.1.28, 5.1.32

Cylinder eller rbr 5.1.2.5 5.1.33, figur 5.19

Sfar 5.1.2.6 5.1.36

Cyl inderformat lager med bverytan 5.1.2.2 5.1.22, figur 5.1.5,
vid marknivan 5. 1 .24

Extra va'rmeforlust vid kant 5.1.2.7 5.1.45

Cyl inderformat lager pa stort 5.1.2.8 5.1.56
djup

Parallellepipedformat lager pa 5.1.2.8 5.1.55
stort djup

Sfarisk approximation av lager 5.1.2.8 5.1.51-52
pa stort djup

Formler for varmelager pa matt- 5.1.2.9 5.1.61
ligt djup

Sfar pa mattligt djup 5.1.2.10 5.1.63

Cyl inderformat varmelager under 5.1.2.11
marknivan

Parall ell epi pedf ormat varmelager 5.1.2.12
under marknivan

Tabell 5.1.3.1. Dversikt over formler for renodlad transient varmefbrlust.
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5.2 Periodiska temperaturfbrlopp

Genom superposition kan det totala tempera turfor!oppet uppdelas i enklare

delprocesser. Se avsnittet om superposition i kapitel 3. En av de grund-

laggande delprocesserna ar periodiska forlopp. I detta avsnitt behandlas

olika grundfall. De givna formlerna kommer att utnyttjas i de fbljande

kapitlen.

Det aktuella delfbrloppet ar en rent periodisk process med periodtiden

t . Temperaturen i varje inre punkt och vid randerna varierar med denna

periodtid. Genom en Fourierutveckling kan det periodiska fbrloppet upp-

delas i rent harmoniska forlopp, dvs. cosinus- och sinusvariation i tiden.

Dessa koraponenter i Fourierutvecklingen har periodtiderna t /1, t /2,

t /3 osv. Det ra'cker da'rfbr att behandla ett rent harmoniskt forlopp

med en given periodtid t . Overtoner kan sedan bverlagras enligt samma

formler med periodtider t /n.

Temperaturfal tet for nagra grundlaggande fall ges i avsnitt 5.2.2. I det

fbljande avsnittet ges samband mellan temperatur och varmeflbde vid ran-

den.

5.2.1 Kompl exa temperaturer

Det ar praktiskt att anvanda en komplex notation vid analys av periodiska

fbrlopp. Temperaturer och varmeflbden ar da komplexvarda storheter. Reell

va'rda Ibsningar ges av den komplexa Ibsningens realdel och imaginardel.

I ett allmant tredimensionell t fall har vi det komplexvarda temperatur-

faltet:

T(x>y>z,t) = T(x,y,z)e2lTit/to (5.2.1.1)

Har ar i = den imaginara enheten. Tidsfaktorn innehaller bade cosinus-

och sinusvariation i tiden:

,
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Rumsvariationen ges av den komplexvarda storheten T(x,y,z). Tecknet

anvands for att markera att en storhet a'r komplexvard. Storheten T har

beloppet |T| och fasen eller argurnentet arg(T):

T = T .ei>ar9(T) (5.2.1.3)

Realdelen av ekvation 5 .2 .1 .1 ger en periodisk Ibsning som varierar med

cosinus i tiden:

Re(T) = | T | -cos(M + arg(T)) (5 .2 .1 .4 )
^ o '

Imaginardelen ger en sinusvariation:

Im(T) = f| • sin(M + arg(f)) (5 .2 .1 .5 )
^ o '

De reella Ibsningar som utnyttjas ges av 5.2.1.4 eller 5.2.1.5. Vi kan

a'ven ta en kombination av dem.

Det komplexvarda varmeflbdet ges av

-X grad(T) e2lrit/to (5.2.1.6)

Reella varmefloden erhalles av realdel och imagina'rdel.

I komplex notation ges tidsfaktorn alltid av e o. For att forenkla

formlerna ar denna faktor ofta ej medtagen i det fbljande. Sven temperaturen

T anges utan denna tidsfaktor.

5.2.2 Temperaturfalt

5.2.2.1 Plant, hal voa'ndl igt fall. Intrangningsdjup d .

Det enklaste periodiska fb'rloppet ges av det endimensionella, hal voa'ndl iga

fallet. Vid randen x = 0 varierar temperaturen sinusformat. Se figur

5.2.1.
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Figur 5.2.1. Endimensionellt, halvoandligt fall.

Detta fall far man utanfbr en plan yta vars temperatur varierar sinus-

format i tiden, om marken stracker sig tillrackligt langt ut i normal-

riktningen utan stbrningar.

Temperaturen ges enligt referens 102 C av:

T(x,t) = T • e-x/do - s (5.2.2.1;

Langden d a'r

(5.2.2.2)

Vi skall ocksa ange Ibsningen i komplexvard form. Den komplexa temperaturen

vid randen x = 0 a'r:

T(0,t) = e2llit/to (5.2.2.3)

Har a'r T I ett godtyckligt komplext tal. Detta komplexa fall illustreras

i figur 5.2.2.

2iri t / t

x=0

Figur 5.2.2. Endimensionel 11, hal voandl igt fall rned komplex rand-
temperatur enligt ekvation 5.2.2.3.

1-B5
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Den komplexvarda Ibsningen ar enligt referens 102 C:

T(x,t) =Tre-(1+1)x/do.e2lTlt/to (5.2.2.4)

De reella Ibsningarna ges av real- och imaginardel. Den tidigare Ibsningen
5.2.2.1 erhalles om vi valjer T. = T. och tar imaginardelen:

T(x, t ) = In, {T, e-x/do . e1(2lTt/to " x/do}} (5 .2 .2 .5 )

Beloppet av temperaturen 5.2.2.4 blir:

J T J = 1,1 • e"X/do (5 .2 .2 .6)

Den periodiskt varierande temperaturen dampas saledes med exponential-

faktorn e o. Vid randen x = 0 ar amplituden JT. . Dampningen sker med

langdskalan d . Denna la'ngd blir ett matt pa hur den periodiska svangningen

vid ytan dampas inat. Vi skall kail a d intrangningsdjupet for det
0 — '— — — — — —

periodiska fbrloppet. Dampningsfaktorn for olika djup x blir:

x = 0 : e"° = 1 x = dQ/2 : e"1/2 = 0.61

x = dQ : e"1 = 0.37 x = 2dQ : e"2 = 0.14

x = 3dQ : e"3 = 0.05 x = 4do : e"4 = 0'02

x = 5dQ : e"5 = 0.007

Pa djupet x = d har saledes amplituden minskat till 0.37 • |T.j. Vid

x = 3dQ aterstar 5% av randens amplitud.

Temperatursvangningens fas ges av faktorn

ei(2*t/t0 ^argd^ - x/dQ) (5.2.2.7)

Termen -x/d ger en bkande fasfbrdrbjning inat. Vid x/d = w ligger

svangningen i motfas relativt yttemperaturen. Amplituden ar har kraftigt

da'mpad: e"11 = 0.05.

Intrangningsdjupet d beror pa t och a. Temperaturledningstalet a ligger

for olika jord- och bergarter runt va'rdet a = 1.0 • 10" m /s. Tabell 5.2.1
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anger intrangningsdjupet d for detta varde pa a samt for ett hbgt och

ett lagt varde. Tabellen ger d for periodtider fran en sekund till fern

ar.

a

(m2/s)

1.6-10"6

1.0-10"6

0.4-10"6

1 sek 1 min 1 tim 1 dygn 1 vecka 1 man 1 ar 5 ar

0.0007 0.006 0.043 0.21 0.55 1.16 4.0 9.0

0.0006 0.004 0.034 0.17 0.44 0.91 3.2 7.1

0.0004 0.003 0.021 0.10 0.28 0.58 2.0 4.5

Tabell 5.2.1. Intra'ngningsdjup d at /IT (m) for olika periodtider t .

5.2.2.2 Periodiskt fbrlopp utanfbr rbr eller cylinderyta

Rbret eller cylindern har radien R. For en plastslang i mark ar radien R

cirka 2 cm. For ett cyl inderformat varrnelager i mark ar radier R upp till

50 m aktuella. Vid randen r = R rader en periodisk temperaturvariation.

Har behandlas det rent radiella, periodiska temperaturfbrl oppet T(r,t)

for r s R.

Vid randen r = R rader med komplex notation temperaturen:

T(R,t) = T .e2irit/to (5.2.2.8)

Den analytiska Ibsningen uttrycks med hjalp av v issa Besselfunktioner

med komplext argument, s .k . Kelvinfunktioner. Se kapitel 7 i referens 9,

da'r dessa Ibsningar behandlas. Lbsningen ar

T(r , t ) =

da'r

'at

( r ' } i(2irt/t + * ( r 1 ) - 4, ( R 1 ) )

N 0 (R '
0 T0

R 1 =
R/2

(5 .2 .2 .9 )

(5 .2 .2 .10 )
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Funktionerna N och * ar amplitud och fas for en Kelvinfunktion av

noilte ordningen.

For ett reellvart randvillkor:

T(R, t ) = T1 . «

blir da Ibsningen

£irt

0

T(r,t) = T
N Q ( r ' ;

VR"

(5.2.2.11)

(5.2.2.12)

Funktionerna N och A visas i figur 5.2.3. De ges ocksa i tabell 5.2.2.

iulog(funktion)
001 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1 2 3

r';R'

funMion

-2 -1.5 -1 -0.5
lologlr');10log(R')

Figur 5.2.3. Funktioner for periodiskt fbrlopp utanfbr rbr eller cylinder-

yta. De streckade linjerna ger approximationer enligt 5.2.2.13.
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r ' ;R '

0.001

0.002

0.003
0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

3

4

5

10

20

50

N Q ( r ' )

7.067

6.379

5.977

5.692

5.471

5.291

5.138

5.006

4.890

4.786

4.104

3.707

3.426

3.209

3.033

2.884

2.756

2.643

2.542

1.892

1.525

1.275

1.088

0.942

0.823

0.725

0.643

0.572

0.207

0.084

0.036

0.0161

0.00034

0.00000

0.00000

-*„<-•)
0.111

0.123

0.132

0.138

0.144

0.149

0.153

0.158

0.161

0.165

0.193

0.214

0.231

0.247

0.261

0.276

0.289

0.302

0.311

0.412

0.501

0.535

0.665

0.744

0.820

0.896

0.971

1.046

1.774

2.490

3.202

3.913

7.463

14.53

35.74

F ( R ' )

1

1

1

1

1

1

1

1

1

1

1

1.000

0.999

0.999

0.999

0.998

0.998

0.997

0.996

0.986

0.971

0.949

0.925

0.899

0.870

0.840

0.810

0.779

0.489

0.284

0.158

0.086

0.0035

0.0000

0.0000

G ( R ' )

0

0

0

0

0

0

0

0

0

0.000

0.001

0.002

0.003

0.005

0.006

0.008

0.010

0.012

0.015

0.045

0.086

0.131

0.181

0.235

0.291

0.349

0.408

0.469

1.119

1.800

2.492

3.189

6.712

13.77

34.97

A ( R ' )

7.067

6.379

5 .977

5.692

5.471

5.291

5.138

5.006

4.890

4.786

4.104

3.707

3.429

3.212

3.036

2.890

2.762

2.651

2.552

1.919

1.571

1.344

1.176

1.048

0.946

0.863

0.794

0.734
0.423

0.296

0.228

0.187

0.0965

0.0491

0.0199

B ( R ' )

0.111

0.123

0.132

0.138

0.144

0.149

0.153

0.158

0.161

0.165

0.192

0.212

0.228

0.242

0.255

0.268

0.279

0.290

0.296

0.367

0.415

0.454

0.484

0.509

0.529

0.547

0.563

0.577

0.655

0.690

0.710

0.724

0.751

0.768

0.778

1 / A ( R ' J

0.142

0.157

0.167

0.176

0:183

0.189

0 .195

0.200

0.204

0.209

0.244

0.270

0.292

0.311

0.329

0.346

0.362

0.377

0.392

0.521

0.637

0.744

0.850

0.954

1.057

1.16'

1.26

1.36

2.36

3.38

4.39

5.35

10.36

20.35

50.35

label! 5.2.2. Funktioner for periodiskt fbrlopp utanfor ror eller

cylinderyta.

For sma argument ga'ller fbljande approximative uttryck:

N (r1) ^ /(ln(2/r') - j)2 + Tr2/16

<)> ( r 1 ) =a -arctan
0 v l n (2 / r ' ) - Y

(r1 < 0.1)

Y = 0.5772

( 5 . 2 . 2 . 1 3 )
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Felet for r' < 0.1 a'r mindre an 1%. Dessa approximationer ges av de

streckade kurvorna i figur 5.2.3. For stora argument ga'ller:

2r'

(r1 > 7) (5 .2 .2 .14 )

Felet for r 1 > 7 a'r mindre an ]%.

Temperatursvangningens amplitud da'mpas med okande radie r enligt

faktorn:

N-(r')
— (5.2.2.15)
NQ(R')

For sma r1 och R 1 kan approximationerna 5.2.2.13 anvandas. Da'mpningen

fcir en relativt komplicerad form. Detta fall upptrader for rbr och brunnar,

dar radien R b1ir liten jarnfbrt med intrangningsdjupet d . For cylindriska

lager daremot a'r radien R normalt stor jamfb'rt med penetrationsdjupet

d . Approximatior

5.2.2.9 blir da:

d . Approximationen 5.2.2.14 kan da anvandas. Temperaturen enligt

) . 1 . . . e i ( 2 . t / t o - (r-R)/d0)

' / r (5.2.2.16)

(R a 5dQ)

Maximal t fel for r a R a 5d a'r 1%. Formeln ovan har samma form som det

plana fallet med x = r - R. Enda skillnaden a'r att faktorn /R/r till-

kommit.

Amplituddampningen enligt formel 5 .2 .2 .15 a'r:

e-(r-R)/d0 ( R > d ) ( 5 . 2 . 2 . 1 7 )M . e
N 0 (R '

Det visar sig att denna formel ger god noggrannhet i ett stbrre inter-

val 1. Maximal t fel far r > R > dQ a'r bara 4%.
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5.2.2.3 Periodiskt fbrlopp utanfbr sfar

Givet en sfar med radien r = R. I omradet utanfbr den sfariska ytan,

r 6 R, rader ett rent radiellt, periodiskt temperaturfb'rlopp. Vid

randen r = R ar den komplexvarda temperaturen fbreskriven:

T(R,t) = ̂  .e2lTit/to (5.2.2.18)

Lbsningen till detta problem ar

T(r, t) = T, .£e- ( U i ) ( l

(5.2.2.19)

(r = /x2 + y2 + z2 a R)

I reell form med randvillkoret

T(R,t) = T. sin ̂  (5.2.2.20)
I \\/

bl ir Ibsningen

T(r,t) = T1 • R- e"'r"R^/do • sin^^ - ̂) (5.2.2.21)
0 0

(r i R)

Temperaturamplituden dampas med bkande radie r enligt

|e-(r-R)/do (r*R) (5.2.2.22)

Fasfbrdrbjningen ges av (r-R)/d .

5.2.2.4 Jamfbrelse mellan plan, cylindrisk och sfarisk yta.

Det ar intressant att jamfbra de periodiska temperaturfbrloppen utanfbr

plan, cylindrisk och sfarisk yta. Den komplexa temperaturen kan i de

tre fallen skrivas

T(s,t) = T(s) .e27Tlt/to (5.2.2.23)
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I det £ljina_ fallet ger formel 5 .2.2.4:

f ( x ) = T, • e" (1+ i )x /d0 , x a 0 (5 .2 .2 .24 )

I det sfari_sj<a fallet ger formel 5 .2 .2 .19:

+ y2 + z2 a R (5.2.2.25)

Det cyli.ndH_ska_ fallet ar mer komplicerat. Den allma'nna Ibsningon ges

av 5.2.2.12. I f;

enligt 5.2.2.16:

av 5.2.2.12. I fall da R/d ej ar litet galler en enkel approximation

(R > 5dQ, R > d0)

Maxiraalt fel for approximationen ar 1% for R > 5d . Formeln kan dock

anvandas a'nda ner till R > d . Felet i amplitud ar da maximalt 4%.

De tre uttrycken 5.2.2.24-26 innehaller samma exponentiella dampnings-

faktor e o, dar s ar avstandet till ytan och d intrangningsdjupet.

I det cylindriska fallet tillkommer faktorn /R/r och i det sfariska

faktorn R/r. Fasfbrdrbjningen ges i alia tre fallen av s/d .

5.2.3 Sambahd mellan temperatur och varmeflbde vid randen

I detta avsnitt anvands genomgaende komplex notation. Den komplexvarda
randtemperaturen ar

T, .e2lTit/to (5.2.3.1)

Beloppet av T, ger temperatursvangningens amplitud. Fasen kan va'ljas god-
tyckligt. For det komplexvarda varmeflbdet vid randen utnyttjas beteckningen
" 2 ?q^ (W/m , W/m) och for den ackumulerade varmemangden e. (J/m , J/'RI):
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2irit/t 2-nit/t
q.,-6 ° e^-e ° (5.2.3.2)

Motsvarande beteckningar for tredimensionell t fall ar Q. (W) och E. (J).

Alia formler i detta avsnitt ges i fbrsta hand i komplex form. Ur realdel

och imaginardel erhalles reella samband mellan temperatur och varmeflbde.

Tidsderivatan av ackumulerad varmemangd skall ge varmeflbdet vid randen.

Detta ger:

e = q E = Q (5.2.3.3)

Man bbr observera att den totala varmemangden som pulserar genom randen

ges av dubbla amplituden:

t t
(5.2.3.4)

5.2.3.1 Plant, halvoandligt fall

Det plana, haloandliga fallet har behandlats i avsnitt 5.2.2.1. Vid

randen rader temperaturen f.. Se figur 5.2.4. Lb'sningen ges av formel

5.2.2.4.

x=0

Figur 5.2.4. Plant, halvoandligt fall.

Varmeflbdet vid randen blir enligt denna formel:

-
3X

Ui= - A - T . ( - ) l±l.e (5 .2 .3 .5)
x=0 o

Detta ger det komplexa randflbdet

q, = ̂ ^- t. (W/m 2 ) ( 5 .2 .3 .6 )
o
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Sambandet mellan effekt- och temperaturamplitud blir da:

i A /2~ IT (5.2.3.7)

Argumentet av 1 + i ar ir/4. Effekten ligger darfor ir/4 fore temperaturen

i fas. Detta svarar mot en Sttondels period. Temperaturmaximum intraffar

tiden t /8 efter effektmaximum.

Den ackumulerade varmemangden blir enligt formlerna 5.2.3.4 och 5.2.3.6:

C d_ .
e1 = 1 + i '

I reellvard form fas exempelvis:

J/m

Randtemperatur T. • sinf-—-j
^ '

Randflode

0

sini (5.2.3.8)

Ackumulerad varme T F -- 7T

5.2.3.2 Ror eller cylinder

Det periodiska fbrlopoet utanfor ett rbr eller en cylinder med radien R

har behandlats i avsnitt 5.2.2.2. Vid randen r = R ar temperaturen f..

Se figur 5.2.5.

'1

Figur 5.2.5. Periodiskt temperaturfbrlopp utanfor rbr eller cylinder.
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Lbsningen ges av formel 5.2.2.9. Derivation med avseende pa r ger varme-

flijdet. Vi skal"! ange varmeflbdet per meter rbr. Fijr cylinder innebar

detta att varmeflbdet anges per meter i hbjdled.

Det komplexa sambandet mellan temperatur och varmeflbde vid randen r = R

blir enligt referens 9 (formel 7.10):

_ n + G(R')) R' = (5.2.3.9)
' 1 ~ ~o — T" - ̂  u Û -,1 2^A p(R1) 0

Funktionerna N , <|> , F och G ges i figur 5.2.3 och tabell 5.2.2. Infbres

A = NQ/F och B = -<j>0- G erhailes:

T = L A(R')e~iB(RI) • q (5.2.3.10)

Funktionerna A och B ges i figur 5.2.3 och tabell 5.2.2. Observera att

q. har dimensionen W/m.

For sma va'rden pa R' ligger F na'ra 1 och G nara 0. Detta innebar att A

sammanfaller med N och -B med <j> . Approximationerna enligt formel

5.2.2.13 galler:

A ( R ' ) ~ /On(2/R' ) - y ) 2 + 7T2 /16 (R 1 < 0.1)
( 5 . 2 . 3 . 1 1 )

B ( R ' ) c, arctanf ^ ) Y = 0 .5772
Mn(2/R') - y/

Dessa approximationer visas med streckade linjer i figur 5.2.3.

For stora R' kan fbljande approximation harledas genom serieutveckling:

L_ = IJLl R > + 1 . _L±-1 ( R 1 a 1) (5 .2 .3 .12 )
A - e n D /2" 2 8/2R 1

Den sista termen kan med acceptabel precision fbrsummas. Vi far fbljande

approximation:

f1 . 2 T T X R (iiJ. + ̂  M ^ (R > d0) (5 .2 .3 .13)

o
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Det maximala felet for beloppet a'r nagon procent. Maximalt fel i fas

a'r nagot storre.

I reellvard form fas exempelvis:

Randtemperatur T. • s i n - ^

0 ( 5 .2 .3 .14 )

Randflbde T, . -^- . sin(^ + B(R'
1 A ( R ' ) ^o

Exempel. Vi tar fbljande tva exetnpel.

f1 = 10 °C tQ = 1 ar

a = 1.6 • 10~6 m2 /s A = 3.5 W/m K

Intrangningsdjupet blir

/at"
d = / — ° = 4 .01 m

0 / TT

R 1 = 0.0176

Approximationerna 5 .2 .3 .11 kan anvandas:

Varmeflbdet blir enligt 5 .2 .3 .10

.n 2Ti 3.5 i • 0.187 ,n n i • 0.187 ...
q,| = 10 • . 22 ' e = 60.0 • e W/m

Effektens amplitud blir saledes 60 W/m.

Fasen a'r 0.187 = 2n • 0.030.

Detta motsvarar 0.030 • 365 = 11 dagar.
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i i. R =_ _10_m_

R' = 3.53

Approximationen 5.2.3.13 kan anvandas:

q. = 2 T T 1 0 - 3 . 5 fl̂ -1 + ——) • 10 =
v 4 .01 2 • 10'

= 2200 (—— + — + i
4.01 20 4.01'

= 2200 • (0 .30 + i 0.25) = 2200 • 0.39 • e1 ' °'69

= 8 6 0 - e 1 °'69 W/m

Effektens amplitud ar 860 W/m.

Per ytenhet blir da flbdet:

•o—n = 14 W/m
^TTK

Fasen ar 0.69 = 2ir • 0.11

Detta motsvarar 40 dagar.

5 .2 .3 .3 Sfa'r

Det periodiska fbrloppet utanfbr en sfar med radien R har behandlats i

avsnitt 5 .2 .2 .3 . Vid randen r = R skall temperaturen vara T, . Se figur

5.2.6.

Temperaturen ges av formel 5.2.2.19. Varmeflbdet ges av derivatan med

avseende pa r. Det totala flbdet genom sfarens yta betecknas Q. ( W ) .

Detta blir

Q. = f. • A 4irR2 (~ + -^-^-} (W) (5 .2 .3 .15 )
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Figur 5.2.6 Periodiskt tempera turf brl opp utanfbr en sfa'r.

Det a'r intressant att jamfbra formlerna i plant, cylindriskt och

sfariskt fall. For varmeflbdet per ytenhet ger formlerna 5.2.3.6,13 och

15:

Plant 1 + i

Cylindriskt
(R > do)

Sfariskt

_L
2irR

Qi

2R

a

(5.2.3.16)

5.2.3.4 Effekt av ytmotstand

Ett varmelager i mark kan skyddas av varmeisoleringar. Innanfbr isoler-

skiktet a'r en periodisk temperatur T, given. Isolerskiktet har tjockleken
-

d^ och varmel edningsf brmagan X..

i marken strax utanfbr isoleringen. Se figur 5.2.7.

-i
Lat T, vara den periodiska temperaturen

A i
/
7

d.

Figur 5 .2 .7 . Periodiskt fbrlopp i mark da'r ytan tacks av en varmeisolering.
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o
Lat q. (W/rn ) vara varmef Ibdet genom isoleringen. Da galler fbljande

komplexa samband

( T T ) A
( 5 . 2 .3 .17 )

Mellan t. och q, rader de ovan givna sambanden.

I det plana fallet galler saledes:

(5.2.3.18)

Detta ger sambandet

I det cyl indriska fallet galler da q, avser varrneflbdet bver hela ornkretsen:

- -1 xi
(T rTJ) —• 2HR = ^ (5 .2 .3 .20 )

Forme! 5 .2 .3 .10 ger da:

f = ( ^ 1 + A O V ) e - i B ( R ' ) ) q . ( 5 . 2 . 3 . 2 1 )
1 \2 i rKA. 2irA / 1

For det sfa'r iska fallet galler analogt:

+ - Q ( 5 . 2 . 3 . 2 2 )

Exempel . Vi tar fbljande plana fall.

T1 = 10°C tQ = 1 ar

a = 1.6-10"6 m2 /s A = 3.5 W / m - K

di = 0 .20 m A i = 0.05 W / m - K

Detta ger

dQ = 4.01 m
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Forme! 5.2.3.19 ger:

'0.20 . 4.01 -0.125i -
- %cli

, 17 0.1251 ... 2q, = 2.17-e W/m

5.2.3.5 Kanter

Va'rmelagren i mark begra'nsas ofta av plana och cylindriska ytor. Det

periodiska va'rmeflbdet genom dessa kan bera'knas med ovan angivna formler.

De plana ytorna skar varandra la'ngs kantlinjer. Detta ger en stbrning av

de rena, endimensionella fallen. I detta avsnitt anges en mycket enkel for-

me! for dessa kanteffekter.

Lit oss nu se pa tva plana randytor till varmelagret, vilka mots la'ngs en

kant. Vinkeln mellan ytorna ar ip raknad fran marksidan. Pa ytorna rader

en periodisk temperatur f,. Figur 5.2.8 visar det aktuella fallet i ett

tvarsnitt vinkelrat mot kantlinjen.

Figur 5.2.8. Periodiskt fbrlopp utanfb'r tva plana ytor som mots la'ngs en

kantl inje.

I planet vinkelrat mot kantlinjen rader ett tvadimensionel1t temperatur-

fbrlopp. Fbrloppet bvergar i det endimensionella da kantpaverkan blir fbr-

sumbara. Detta sker pa avstand 2 till 3 d fran kanten.

Na'ra horn dar olika kantlinjer mots erhalls ett genuint tredimensionellt

fbrlopp. Det visar sig emellertid att dessa tredimensionella hbrneffekter

ar fbrsumbara ja'mfbrt med de tvadimensionella kanteffekterna.
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Temperaturf brl oppet na'ra kanten blir mycket kompl icerat. Vi ar har intres-

serade enbart av det integrerade varmeflbdet over de tva ytorna. For detta

flb'de far man markvardigt enkla samband.

Lat A vara de tva pi ana ytornas area. Det total a varmeflbdet genom de tva

ytorna, som har en gemensam kantlinje med langden L (edge), betecknas

Q. -e °. Varmeflbdet Q, (W) har ett bidrag fran den plana losningen.

Formel 5.2.3.6 ger:

gplan = ft . MHilf (5.2.3.21)
o

Effekten av kanten ges av Q, - Q!? an. Vi bortser i denna diskussion fran

andra kanter till de tva plana ytorna. Kanteffekten ar proportionell mot

f , , X och kantlangd L . En relativt intrikat dimensionsanalys visar att

kantbidraget fransett dessa faktorer enbart ar en funktion av vinkeln tp .

Se referens 6. Fbljande samband galler:

(5.2.3.22)

Kantkonstanten a ges for 0 < cp < 2ir i referens 6. Speciellt galler

a {-*) = —e 2 TT

a (TT) = 0 (5.2.3.22')

c3ir\6 4 „ ,na (-75-) = —= - -~- a 0.60
e v 2 ' 9/3 Sir

Fallet tp =TT innebar att kant saknas, sa a blir da noil. Normalt har vi- 5 6
vid en kant vinkeln ip = -£-. Kantkonstanten a ar da 0.6. Konstanten a

ar positiv, da ip ar stbrre an TT, eftersom exponeringen ar stbrre. Den

blir negativ da tp ar mindre an IT.

5.2.3.6 Parallellepipedformat varmelager under mark

Givet ett parallellepipedformat varmelager under mark. Lagret har langden
L, bredden B och hbjden H. Pa dess rand rader den periodiska temperaturen

T.. Lagerytan bestar av sex plana ytor vilka mots langs tolv kantlinjer.
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Den total a ytan A blir

A = 2(LB + LH + BH) (5 .2 .3 .23)

Total kantlangd blir

L = 4(L+H+B) (5 .2 .3 .24 )

Vinkeln cp mellan planen ar bverallt 3ir/2. Kantkonstanten a ar da 0.6. Det

totala komplexa varmeflbdet ges av forme! 5.2.3.22:

Q,, = T1 A (A - - ^p + L e -0 .6 ) (5 .2 .3 .25)

Har ges A och Lg av 5.2.3.23-24.

Kravet for att detta skall qa'lla ar att kantlangderna ej ar sma relativt

intrangningsdjupet d

ytan. Vi tar kravet:

intrangningsdjupet d . LSt D vara avstandet fran lagrets bveryta till mark-

D, L, H, B > 2dQ (5.2.3.26)

Exempel. Vi tar foljande data

dQ = 3 m A = 2 W/m-K TI = 25°C

L = B = H = 20 m tQ = 1 ar

DS galler:

A = 6-L2 = 2400 m2

= 12L = 240 m

Q,, = 25-2-(2400 • - - + 240-0.6) = 50-{800( Hi ) + 144}

= 62000- e1'0'70 (W)
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Effektens amplitud blir saledes 62 kW. Fasen ar 0.70 = 2ir-0.11.

Effektmaximum sker saledes 0.11-365 = 41 dagar fore temperatur-

maximum.

Det kan vara intressant att jamfbra en kub med en sfa'r. Vi valjer dem sa

att de far samma area. For en kub med kantlangden L ar sambandet mellan

va'rmeflbde och temperatur vid randen enligt forme! 5.2.3.25

Q^ub = T1 X(6L2 .̂  + 12L - 0.6) (5.2.3.27)
o

For en sfa'r med radien R enligt forme! 5.2.3.15:

-sfa'r i . D2/1 1 + i \ c. •> -i oa\^ = 1 , X4irR 1-^ + —p-1 (b.d.J.dti)

\'

Lika areor ger

4TrR2 = 6L2 £ = fJ- (5.2.3.29)
L / 2ir

Ur 5.2.3.27-29 fas:

1+i+0.83 dQ /R

1 + i + d Q / R

Nedanstaende tabe!! ger nagra varden:

d0/R

Qkub/Qsfar

0.1 0.5 1

0 gg _ i • 0.008 0 96 • i " °-027 0 93 • e1 ' °'036

5.2.3.7 Cyl inderformat va'rmelager under mark.

Givet ett cyl inderformat va'rmelager under mark. Lagret bar hb'jden H och

radien R. Avstandet fran b'verytan till markytan ar D. For formlerna i

detta avsnitt fbruts'a'tts att dessa Ta'ngder ej ar sma relativt intrangnings-

djupet d :

2R, H, D > 2dQ (5 .2 .3 .30)
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Pa cylinderns randyta rader den periodiska temperaturen T,.

•)
Cylinderns yta bestar av tva plana delar med arean A = 2 • -nR .

Mantelytan har hbjden H. Mel Ian dessa ytor ar kantlangden L = 2 • 2irR.

Vi fbrsummar att kantlinjen ar cirkular. Felet harvid torde vara fbr-

sumbart.

Det totala periodiska varmeflbdet blir med formlerna 5.2.3.22 och

5.2.3.10

0 . 6 + H - - r e (5.2.3.31)

Formel 5.2.3.13 kan anvandas i stallet for 5.2.3.10 eftersom vi fbr-

utsatt att R > dQ. Ovanstaende formel blir da:

^ = TI • A2TiR f(1+i) ~ + 1.2 + ̂j (5.2.3.32)

Exempel. Vi tar fbljande data:

f 1 = 25 °C X = 2 W/m • K dQ = 3 m

R = 1 0 m H = 2 0 m t = 1 g r

Varmeflbdet blir da enligt 5 .2 .3 .32:

Q, = 2 5 . 2 . 2 , . 1 0 . ( ( 1 + i ) - l ^ 0 + 1 .2+§

= 3140 • (10(1+i ) + 1.2 + 1) =

= 3140 -15 .8 -e 1 ' 0 ' 6 9

= 50000- e1 '0 '6 9

Effektamplituden blir 50 kW. Fasen ar 0.69 = 0.11 - 2*. I tid

blir detta 0.11 - 3 6 5 = 40 dagar.
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5.2.3.8 Varmelager med bverytan vid markniva

Ett va'rmelager med bveryta vid marknivan bbr skyddas av varmeisolerande

skikt mot den kalla temperaturen vid markytan. Isoleringen har tjock-

leken d. och va'rmeledningsfbrmagan A.. Den antas ta'cka lagrets overyta
vid markytan. Isoleringen tacker ocksa de vertikala sidoytorna till

ett djup D..

I lagret, dvs pa dess rand mot mark och pa varmeisoleringens insida,

rader den periodiska temperaturen f.. Vid markytan ovanfbr isoleringen

rader den periodiska temperaturen f , eller om vi aven skriver ut tids-

faktorn f • e ™ o. Se figur 5.2.9. Normalt ar vi intresserade ava
arsperioden. Beloppet It I ar amplituden for lufttemperaturens ars-a
variation. I allmanhet har f. och fg olika fas. Till exempel innebar

en fasdifferens TT, T = f. -e11T, att lagret ar varmast vid la'gsta ute-a i
temperatur.

Ta

Figur 5.2.9. Periodisk delprocess for va'rmelager med bverytan vid mark-

nivan.

Det periodiska varmeflbdet Q, genom lagrets randyta bestar av en del genom
va'rmeisoleringen och en del mot marken:

(5.2.3.33)

Temperaturdifferensen over va'rmeisoleringen ar f, - T . Arean av deni a
va'rmeisolerade ytan ar A . . Det periodiska va'rmeflbdet over isoleringen
blir da:

Q1,isolering = Ai ' (Ta ' (5.2.3.34)
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Den vertikala isoleringen mot mark har pa grund av den skyddande

jorden utanfbr isoleringen en nagot mindre temperaturdifferens. Detta

kan dock fbrsummas om D. bara a'r nagon meter och va'rmeisoleringen

nagorlunda kraftig. Markens va'rmemotstand vid kantisoleringen a'r da

litet relativt va'rmeisoleringens. Forme! 5.2.3.34 kan da'rfbr normalt

anva'ndas for hela isolerytan inklusive den vertikala kantdelen. Arean

A.J a'r da lika med b'verytans och kantisoleringens totala area.

For va'rmeflbdet mot mark kan de olika formlerna i fbregaende avsnitt

anvandas. Arean mot mark u^tecknas A .

For ett £aĵ ajj£lĵ £i£edf£rniaj: varmelager med la'ngden L, bredden B och

hbjden H blir isolerarean och arean mot mark:

i = LB + 2(B+L)Dn.

= LB + 2(B+L)(H-Dn.)

[5.2.3.35)

Det totala periodiska va'rmeflbdet blir da med formlerna 5.2.3.34 och 25:

Q 1 = (1,^)^1 +^.^1^ + 1^.0.6) (5 .2 .3 .36)

Kantlangden L blir

Le = 2L + 2B + 4(H-D i ) (5 .2 .3 .37)

For ett £y]_i£derf£rma_t lager med radien R och hbjden H fas:

A i = nR2 + 2-irR D^

Am = TrR2 + 27rR (H-Dn.) (5 .2 .3 .38)

Det totala periodiska va'rmeflbdet blir med formel 5.2.3.34 och med en
modification av 5.2.3.31:
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Q, = (trfa) -jT1 + T, ̂ R2 . It! + 2wR • 0.6
(5.2.3.39)

Den fbrsta termen ger varmeflodet genom isoleringen. Den andra termen
p

ger flbde genom bottenytan med arean irR". Den tredje termen ger kant-
bidraget fran cylinderns undre cirkel, medan den sista termen ger bi-
draget fran cylinderytan med hbjden H-D..

Exempel. Vi tar ett parallellepipedformat lager med fbljande data:

d = 3 m t = 1 S r A = 2 W / m K

L = 40 m B = 30 m H = 20 m

Di = 2 m di = 0.4 m A I = 0.04 W/m • K

lip

f. = 10 °C f = 10 - e a °Ci a

Vi antar att lagret "ligger ett kvarts ar efter luften i fas:

T a = i 1 0 ° C

Areorna enligt forme! 5.2.3.35 blir:

Ai = 1480 m2

Am = 3720 m2

Kantla'ngden enligt formel 5.2.3.37 blir:

Le = 212 m

Formel 5.2.3.36 ger det komplexa varmeflodet:

Q, = (10 - 10i) -1480Q' °'04 + 1 0 - 2 -(3720 • - 1 - + 212-0.6)

= 1480 (1-i) + 24800 (1+i) + 2544
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Den fbrsta termen ger varmeflbdet genom isoleringen, den andra

det endimensionella bidraget mot mark och den tredje kanteffekten.

Vi ser att flb'det mot mark dominerar. Kanteffekt och isolering

ger bidrag i samma storleksordning.

Q, = 37000-e1 ' °'68

Amplituden for det totala flb'det blir 37 kW.

5.2.4 Isolerad cylinderregion

For markvarmelager av typ borrhal i berg och slangar i lera sker va'rme-

tillfbrsel och varmeuttag via rbr, slangar och borrhal. Samma sak galler

for ett system av bergvarmebrunnar, vilka aterladdas sommartid. Varme-

bararfluidens kanaler ligger i ett regelbundet monster. Radiellt i om-

radet runt ett rbr far man en pulserande process.

Markvolymen kan uppdelas sa att en lamplig del runt ett rbr tillskrives

detta. Vi fbrutsatter har att denna region kan approximeras med en cirkel

med radien R,. Detta fbrutsatter i sin tur att rbren ligger i ett nagor-

lunda regelbundet monster utan alltfor kraftiga variationer i rbravstand.

Rbret eller slangen har radien R . For en slang avses ytterradien.

Cirkeln r = R ger markens rand mot rbret.

Via rbret sker en periodisk in- och utmatning av va'rme till den cirkulara

regionen R s r s R.. Effekten, som ra'knas per meter rbr, har amplituden

q1 (W/m). Periodtiden a'r t . For det studerade radiella periodiska fbr-

loppet sattes varmeflbdet till noil vid den yttre randen r = R.. Se

figur 5.2.10.
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q ( t ) = q e
2irit/t

Figur 5.2.10. Periodisk injektion-extraktion av va'rme via ett centrumrbr

i en isolerad cylinderregion.

5.2.4.1 Rbrtemperatur

Vi a'r framfbr allt intresserade av marktemperaturen vid rbret. Fbljande

beteckningar skall anva'ndas:

TR(t) = T(R0,t) = TR.e2irit/to (5.2.4.1)

Har a'r TR den komplexa temperatur vid rbret som maste uppratthal las for

att det specificerade periodiska varmeflbdet skall erhallas. Dessutom

anvands fbljande beteckningar:

/T~f n j— p r—
/ U L (\ rj t \ A / f )

d = /—° rQ = 0/2 r, = -^ (5.2 .4 .2 )
^ o o

Det periodiska fbrloppet i en oandlig omgivning har behandlats i avsnitt

5.2.2.2 och 5.2.3.2. Detta fall a'r ett specialfall av vart nuvarande. Det

erhalles for

rQ = R 1 r1 = +» (5.2.4.3)

Den analytiska Ibsningen for detta periodiska fbrlopp ha'rledes och dis-

kuteras i detalj i referens 10. Randtemperaturen blir:

TR = -̂ -- e"lB •q1 (5.2.4.4)

Amplitud- och fasfunktionerna A och B a'r funktionen av r och r^. De

visas i figur 5.2.11-13.
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A(r0,r,)

2.5

Figur 5.2.11. Amplitudfunktion A for rbrtemperatur; formel 5.2.4.4.
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0

Figur 5.2.12. Fasfunktion B for rortemperatur; forme! 5.2.4.4.

VA(r0.r,J

1.5 - —

1.0-

0.5-

n-n,
0

Figur 5.2.13. Ampl itudfunktion 1/A for varnieflbde vid rb'ret; formel

5.2.4.5.
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Formel 5.2.4.4 ger rbrtemperatur da flb'det a'r givet. Omva'nt ga'ller om

rortemperaturen a'r given:

T ( t )=T'.eR 2l'1t/t
(5.2.4.5)

Faktorn 1/A ger effektampl ituden vid given temperaturampl itud

Funktionen 1/A visas i figur 5.2.13.

Formel 5.2.4.4 a'r helt analog med formel 5.2.3.10 for cylinder i fri om-

givning. Funktionerna A och B a'r har en direkt utvidgning av det tidigare

fallet (A(R') + A(rQ, B(R') + B(rQ,

5.2.4.2 Optimalt rbravstand

Det a'r intressant att notera att .kurvorna for A i figur 5.2.11 har ett

minimum vid ett visst r1 - r . I figur 5.2.13 ger detta ett maximum for

1/A vid ett visst r^ - r . Amplituden 1/A har saledes for givna RQ och

d ett maximum vid ett visst R.. Denna radie representerar i vissa fall

ett op_timum, eftersom detta enligt formel 5.2.4.5 ger maximal! va'rmeflbde

vid given temperaturamplitud. Figur 5.2.14 visar sambandet mellan r. och

rQ for detta optimum.

i.a

1.3 '

1 n

/
/^

^'

^-
--'

0.05 0.10

Figur 5.2.14. Samband mellan r. och r vid minimum for A som funktion

av r..



5.59

5.2.4.3 Approximative formler

Rb'rradien RQ ar i manga tillampningar mycket mindre an intrangnings-

djupet dQ. Den dimensionslosa radien r blir da mycket mindre an ett.

For sma r galler fbljande approximation:

A .e
"lB

- Y - i Y = 0.5772 (5.2.4.6)

Felet for rQ < 0.3 ar hbgst nagon procent. Funktionen KI(r.) visas i
figur 5.2.15. Den ges aven i tabell 5.2.3.

r1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

RetKKr , ) )

3.17

2.48

2.07

1.78

1.56

1.38

1.22

1.09

0.97

0.87

0.78

0.69

0.62

0.55

0.48

0.42

0.37

MKKr,)}

199.

49.2

21.4

11.7

7.23

4.80

3.33

2.39

1.74

1.29

0.96

0.71

6-52

0.38

0.27

0.18

0.11

r1

1.8

1.9

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

Re{KI(r , ) }

0.32

0.28

0.23

0.17

0.11

6.8-10"2

3.6-10"2

1.5-10"2

6.1-10"3

-7 .4-10" 3

-1.1-10"2

-1 .2-10" 2

- t .1-10" 2

-9.1-10"3

-7.0-10"3

-5.0-10"3

-3.2-10""

Im{KI(r t))

5.9-10"2

2.0-10"2

-9.8-10"3

-4.7-10"2

-6.3-10"2

-6.6-10'2

-6.0-10"2

-5.0-10'2

-3.9-10"2

-2.9-10'2

- 1 . 9 - t O " 2

-1.2-10'2

-5.9-10"3

-2.0-10"3

4.2-10"4

1.7-10"3
_•>

2.3-10 J

rt

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.5

8.0

8.5

9.0

9.5

10.0

RelKKr,))

-1.9-10"3

-8.6-10"4

-2.0-10"4

2.0-10"4

4.0-10"4

4.7-10"4

4.5-10"4

3.8-10"4

3.0-10"4

2.2-10"4

1.5-10"4

2.6-10"5

-1.5-10"5

-1.8-10"5

-9.6-10"6

-2.9-10"5
_7

1.4-10 '

InKKKr,)}

2.3-10" 3

2.1-10"3

1.7-10"3

1.2-10"3

8.5-10"4

5.3-10"4

2.9-10"4

1.1 -10"4

2.9-10"6

-6.0-10"5

-8.9 -10"5"

-7.9-10"5

-3.8-10"5

-9.3-10'6

2.2-10"6

3.9-10'6
-6

2 . 4 - 1 0

Tabell 5.2.3. Funktionen i formel 5.2.4.6.

1.2

10

0.8

0.6

0.4

0.2

0

-0.2

Figur 5.2.15. Funktionen KKr,) i formel 5.2.4.6.
1" r, 0.8 1.0 1.2 U 1.6 1.8 2.0 2.2 24
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For sma va'rden pa r, galler approximationen

KKr,) = l n - Y + + i - - < r < 1 ) (5 .2 .4 .7)

Felet ar maximalt nagra procent for r. < 1. Approximationen visas av de

streckade linjerna i figur 5.2.15.

For stora va'rden pa r. galler approximationen

KI(rJ = Tre"1^1 rl(1+i) . (1 + _J (Hi)) (5.2.4.8)
1 4 /2~r .

1 (^ > 3)

Felet ar maximalt nagra procent for r. > 3.

Approximationerna 5 .2 .4 .6 ,7 ger ti l lsammans det enkla uttrycket

P
A .e" iB - In (U) - |+ 2 (r < 0.3, r^D (5.2.4 .9)

\' i r,

Ackumulerad varmemangd i cylinderregionen ges av dennas medeltemperatur

Tm(t). Medeltemperaturen kan for RQ « R^ skrivas:

(5.2.4.10)

Formlerna 5.2.4.9, 4, 1 och 10 ger

T H-\ H-\1 fn fK^\1 2irit/tTR(t) - T (t) = -y— nn p- - -%} e o
R m 2vX [ VRQy 4J (5.2.4.11!

(ro < 0.3, r, < 1)

Vi har ett enkelt samband mellan va'rmeflbde och den drivande temperatur-

differensen TD(t) - T (t).K m

5.2.4.4 Rbrmotstand m
P

Vara formler har relaterat varmeflbdet till temperaturen T,,, dvs tem-

peraturen i marken vid rbret. Va'rmeba'rarfluiden har temperaturen T,r(t).
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Lat m (K/(W/m)) vara varmemotstandet mellan fluid och mark raknat per

meter rbr. Da galler:

Tf(t) - TR(t) = q(t) • mp (5.2.4.12)

Mellan fluidtemperatur och varmeflbde far vi da enligt formlerna
5.2.4.12,4 fbljande samband

T f ( t ) = ,4- . (A • e" iB + 2TrAm } - e2irit/to (5.2.4.13)
T £TTA [ PJ

5 .2 .4 .5 Tva exempel

For att illustrera dessa formler skall vi ta ett exempel med granit och

ett med lera. Periodtiden ar ett ar. Vi har fbljande data:

to = 1 ar

Granit: a = 1.62 • 10"6 m2/s A = 3.5 W/m • K

Lera: a = 0.4 • 10~6 m2/s A = 1.0 W/m • K

Intrangningsdjupet d blir

Granit: d = 4.03 m Lera: d = 2.00 m

Vi tar fbljande dimensionslbsa radier:

ro = 0.01

Da galler enligt figurerna 5.2.11-12:

A = 4.41 B = 0.498

Rbrtemperaturen blir da:

TR ( t ) = ^ - 4 . 4 1

(5.2 .4 .14)
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Fasfbrdrbjningen ar:

For granit valjer vi

q 1 = 100 W/m

Rortemperaturens amplitud blir da

A = °° c 4.41 = 20.1 °C
2irA 2ir' 3. 5

Amplituden hos medeltemperaturen blir enligt formel 5 .2 .4 .10

A . A = 9 1 oc

r1

Vi har da:

q ( t ) = 100 e2Tr i t / to ( W / m )

TR ( t ) = 20.1 en v o

Tm(t) = 9.1 . e i (2ir t / to

De tva radierna blir:

r d r.,d
R^ = -2-2 = 0.028 m R. = -i-̂  = 2.85 m

0 /2 1 /I

Fbr leran valjer vi

q1 = 20 W/m

Rortemperaturens amplitud blir da:

1 A = 14.0 °C
2irA
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Medeltemperaturens amplitud blir:

q1 2

Vi har da:

2irit/t
q(t) = 20 • e ° (W/m)

i(2irt/t -0.498)
TR( t) = 14.0 • e ° ( C)

l (2TTt / t -IT/2)

Tm(t) = 6.4 • e ° (°C)

De tva radierna bl ir:

r d r.d
R = _°J?. = o.OH m R, = -L£= 1.41 m

0 1

Approximative formler kan tillampas for detta fall. Vi har:

rQ = 0.01

Formel 5.2.4.6 och tabell 5.2.3 ger nu:

KI(1) = 0.87 + i • 1.29

A e"lB = In - - 0.5772 - i - 0.87 - i • 1.29

= 3.85 - i • 2.08

= 4.38 e - 1 ' - 0 - 5 0

Detta stammer veil med de va'rden som kan avlasas i figur 5.2.11-12.

For att illustrera optimaltval av R. tar vi fallet:

ro = 0.02

13-B5
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Enligt figur 5.2.14 erhalles optimum for

r1 = 1.20

Detta ger i de tva fallen

Granit: R. = 1 - 1° - 4 - 0 3 = 3.4 m
1 /2

Lera: R I = 1 - 2 0 ' 2 - 0 0 = 1.7 m

For granit far vi nu:

2-rrit/t
q(t) = 100 ' e ° (W/m)

i(2irt/t -0.359)
TR ( t ) = 1 9 . 6 - e ° (°C)

i (2TTt/t -IT/2)

Tm(t) = 6 . 3 - e

Motsvarande varden for lera ar:

2irit/t
q(t) = 20 • e ° (W/m)

i(2nt/t -0.359)
TR ( t ) = 13.7 • e ° (°C)

i(2wt/ t -TT/2)
Tm(t) = 4 . 4 - e ° (°C)
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5.3 Varmeuttag via rbr. Stegpulsanalys.

Manga markvarmesystem utnyttjar rbr, slangar eller borrhal for uttag

och tillfbrsel av varme. Lokalt n'a'ra ett sadant rbr far man ett vasent-

ligen radiellt temperaturfbrlopp. Effektuttaget ar en funktion av

tiden: q = q(t) (W per meter rbr). Vardet pa q blir negativt da varme

matas ut i omgivande mark. Det ar noil under viloperioder.

Vi skall i detta avsnitt visa hur man kan analysera det lokala temperatur-

fbrloppet och i synnerhet ange temperaturen Tn(t) vid rbrvaggen mot om-

givande mark.

5.3.1 Superposition

Givet ett effektuttag q(t) (W/m) till ett rbr i mark. Detta effektuttag

ger upphov till en dynamisk radiell temperaturprocess kring rbret. Over-

lagrat pa detta finns sedan andra delprocesser som t.ex. ha'rrbr fran

andra rbr eller andra delar av samma rbr. Det ar bara den renodlade
radiella processen som behandlas har.

Det enklaste slaget av effektuttag ar en stegpuls. Effekten q(t) for en

stegpuls som startar vid t = 0 ges av:

(5.3.1.1)

Har ar q konstant. For stegpulsen, som behandlas i na'sta avsnitt, finns

en fbrhallandevis enkel analytisk Ibsning.

En effektpuls med storleken q. under en tid t, < t 6 ty kan genom super-

position ses som summan av tva stegpulser. Se figur 5.3.1.

Temperaturfbrloppet och rbrtemperaturen TR for effektpulsen ges av

summan fran de tvS stegpulserna.



5.66

Figur 5.3.1. Superponering av tva stegpulser till en effektpuls.

Mer komplicerade effektuttag q(t) kan byggas upp med hjalp av effekt-

pulser. Figur 5.3.2 visar ett exempel som ger tre pulser.

1
Figur 5.3.2. Exempel pa superposition av effektpulser.

Det totala fbrloppet q(t) kan saledes ses som en summa av ett antal

stegpulser. I det kontinuerliga fallet bvergar summan i en integral.

Det totala tetnperaturf brl oppet for ett effektuttag q(t) ges som en
summa av temperaturfbrlopp for olika stegpulser.

5.3.2 Analytisk Ibsning for stegpuls.

Figur 5.3.3 visar fbrutsattningarna for den studerade stegpulsen. Rbret

ligger langs y-axeln. Den omgivande marken har va'rmeledningsfbrmagan A

och temperaturledningstalet a. Marken ta'nkes oandligt utstrackt at alia

hall. Effektuttaget ges av formel 5.3.1.1. Temperaturen i marken a'r

noil vid starten t = 0 da enbart effekten av uttagspulsen studeras.
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p.q(t)'

q(t)

Figur 5.3.3. Stegpuls.

Temperaturen i marken blir en funktion av det radiella avstandet

r = /x^ + ẑ  till rbret och av tiden. Lbsningen ges i referens 102 B.

(5.3.2.1;

Funktionen E.(x) ges av:

's
E.(x) = e' ds

x

Tabeller och samband for denna funktion ges i referens 103 A.

(5.3.2.2)

Uttrycket 5.3.2.1 a'r enkelt. Temperaturen ar en funktion enbart av
0

r /(at). Vi tar fbljande numeriska exempel:

X = 1.5 W/m • K a = 0.75 • 10~6 m2/s

q = 10 W/m (5.3.2.3)

De resulterande temperaturprofilerna vid olika tider visas i figur

5.3.4. Temperaturfbrloppet for olika avstand r visas i figur 5.3.5.

Vi a'r intresserade av radiell temperaturprof il och av utvecklingen i

tiden pa olika avstand r. Vi infbr da'rfbr tva representationer av

Ibsningen 5.3.2.1.

T(r,t)-a.Et
at

(5.3.2.4)

(5.3.2.5)
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E och E. ges da av:

Er(s) = -

-2

-3

T(r,t)CC)

r(m) 0

Figur 5.3.4. Temperaturprofiler vid olika tidpunkter for stegpulsen. Data

enligt 5.3.2.3.

T(r,t) CO

_ ° first month 1/1Z 1 2

- 5 - -

t (years)

Figur 5.3.5. Temperaturutveckling pa olika avstand fran rbret for steg-

pulsen. Data enligt 5.3.2.3.

Funktionen E (s), s = r//aT, ger den radiella variationen for given tid.

Den ges i tabell 5.3.1 och figur 5.3.6.
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0.001 0.002 0.005 0.01 0.02 0.05 0.1

-1.164 -1.053 -0.908 -0.797 -0.687 -0.541 -0.431

0.2 0.5 1 10

Er(s) -0.321 -0.180 -0.083 -0.018 -2.2-10"5 -4.3-10"14

Tabell 5.3.1. Temperaturprofilfunktion Er(s), s = r//at", for steg-

pulsen.

Er(s)

. 0

-0.1-

-0.5-

1.0 2.0 r

TiT

Figur 5.3.6. Temperaturprofilfunktion E (s) for stegpulsen.

For stora s galler asymptotiskt:

-2,,
M» - - (s > 5) (5.3.2.7)

Temperaturen langt ut blir extremt liten pa grund av exponentialfaktorn.

Temperaturen beror pa r/ /at. Langden /at a'r saledes ett matt pa in-

fluensomradet kring rbret. Temperaturpaverkan a'r ytterst liten i om-

radet r/ /at > 3. Lat oss ta foljande numeriska exempel:

a = 0.75 • 10 6 m2/s
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Influensradien /at blir da:

t

/at (m)

1 min

0.007

10 min

0.02

1 tim

0.05

1 dygn

0.25

1 vecka

0.67

1 rnanad 3 manader 1 ar 3 ar 10 ar

/at (m) 1.4 2.4 4.9 8.4 15

Funktionen E.(-u), T = at/r , ger temperaturfbrloppet i tiden for given

radie. Argumentet T ar en dimensionslbs tid. Funktionen ges i figur 5.3.7

-2

0.1

Et(x)

-0.1

--0.2

10

Figur 5.3.7. Funktionen E.(T), T = at/r , som ger temperaturutvecklingen

for given radie enligt forme! 5.3.2.5.

For stora va'rden pa T ga'ller fbljande formel:

(5.3.2.8)

da'r Y = 0.5772 Eulers konstant (-O 0.5)

Maximalt fel ar 1% for T >_ 0.5. Speciellt erhalles fbljande anvandbara

uttryck:

E t(T) « - (ln(4T) -

Maximalt fel ar 2% for i > 5.

(5.3.2.9)
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Fbljande exempel visar tidsskalan r /a for olika avstand (T = t/(r /a)).

a = 0.75-10"6 m2/s

r (m)

r2/a

r (m)

r2/a

0.01

2 min

2

2 man

0.03

20 min

5

1 ar

0.05

1 tin

10

4 ar

0.10

4 tim

25

26 ar

0.5 1

4 dagar 15 dagar

100

420 ar

Denna tabell ar larorik.

Temperaturen i marken strax utanfbr rbret eller vid brunnsvaggen betecknas

TD(t). Cirkeln r=R ger rbrets ytterradie eller brunnsvaggen. Varmebarar-
K

fluiden i rbret eller brunnen har temperaturen TJt). Det total a va'rme-

motstandet mellan fluid och mark betecknas m (pipe). Det ra'knas per
P —

meter rbr eller brunn. Dimensioner blir da K/(M/m). Sambandet mellan TV

och Tn ar:

T f(t) = TR ( t ) - mp • q( t) (5.3.2.10)

Var Ibsning for stegpulsen kan ti l lampas i marken utanfbr rbret, r >_ R. Vi

ar speciellt intresserade av rbrtemperaturen TD, dvs. temperaturen i marken
K

strax utanfbr rbret. Formel 5.3.2.5 ger:

T f - t - \ n C f \ C Q O -1 1 \(t) = — t. (—*) (b.3.2.11)

Lat oss ta fbljande exempel:

X = 1.5 W/m-K a = 0.75-10"6 m2/s

q = 10 W/m R = 0.02 m

[5 .3 .2 .12)

Da erhalles:

R2/a = 533 s = 9 min ^ = 6.7°C
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Approximationen 5.3.2.9 galler efter 45 min:

t

TD (°C)

T ~ 1 CL& - n

1 tim 5

-1.4 -2

53- ln(

tim

.3

1 )3600'

1 dygn

-3.1

t , 3
3600 > 4

1 man

-5.0

1 ar

-6.3

Exemplet visar att appr.oximationen 5.3.2.9 kan anvandas efter ganska kort

tid:

(t > ̂-) (5.3.2.13)a

Den analytiska Ibsningen 5.3.2.1 for en stegpuls fbrsummar detaljstruk-

turen na'ra rbret. Strikt matematiskt erhalles stegpulsens effektuttag for

r=0. Det visar sig vid en mer detaljerad analys att den givna Ibsningen ar

tillampbar efter en viss begynnelsetid. Ett rimligt val av denna tid ar

t = 5R /a. Se referens 9 (i kap 6). Som allman restriktion for tillamp-

barheten av var stegpulsanalys i detta avsnitt 5.3 bar vi kravet:

R2
t > 5 • — (5.3.2.14)a

Detta innebar att formel 5 .3 .2 .13 alltid kan anvandas. En analys for

kortare tider an dessa kra'ver bl.a. att man tar ha'nsyn till varmekapacitet

hos varmebararen i rbr eller brunn. Exemplet 5 .3 .2 .12 kan galla ett system

med plastslangar i lera. Tidsgransen for detta fall blev 45 minuter.

For en bergborrad brunn kan fbljande data vara representativa:

R = 0.055 m a = 1.6-10"6 m2/s (5.3.2.15)

Detta ger tidsgransen:

R2
t > 5 • — = 2.5 timmara



5.73

5.3.3 Avklingning efter en effektpuls

Varmeuttaget q(t) for en effektpuls som startar vid t=0 ges av:

q 0 < t < t.

q(t) =
1

0 t > t. (och t < 0)

(5 .3 .3 .

Fran marken erhalles en konstant effekt q (W/m) under pulstiden 0 < t < t..

Harefter ar varmeuttaget noil. Processen for t > t. representerar avkling-

ningen efter en effektpuls.

Effektpulsen kan genom superponering ges som summan av tva stegpulser.

Den fbrsta startar vid t=0 med effektuttaget q. Den andra startar vid

t=t. med effektuttaget -q. Under den fbrsta perioden 0 < t < t. ga'ller

stegpulsanalysen i fbregaende avsnitt. Temperaturen runt rbret ges av

formel 5.3.2.1.

Temperaturfbrl oppet under avkl ingningen blir genom superposition:

Speciellt ges rdrtemperaturen TD av logaritnlapproximationen 5 .3 .2 .13 . Vi
K

far fbljande ytterst enkla formel:

TR(t> = - 47A ln (t>t1+5.^) (5.3.3.3)

Som exempel tar vi fbljande fall:

A = 3.0 W/m-K a = 1.4-10~6 m2/s R = 0.055 m

(5.3.3.4)

q = 20 W/m ^ = 30 dagar

Da galler:

2
5 •— = 3.0 timmar -J- = 0.53°Ca 4wX
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Under effektuttaget galler da enligt formel 5.3.2.13:

-r ^^ 20

(0.055)" ' '

= 3.64 - 0.53 ln(t) (3 tim < t < 30 dygn)

Vid avklingningen galler enligt formel 5.3.3.3:

(t > 30.1 dagar)TR(t) = -0.53-In „

Detta ger:

t (dagar) 0.5 2 10 30 30.5 32 35

t (dagar)

-2.0 -2.8 -3.6 -4.2 -2.2 -1.5 -1.0

40 60 90 120 180 365

-0.7 -0.4 -0.21 -0.15 -0.10 -0.05

5.3.4 Superponering av effektpulser

Genom superponering kan nu fallet med ett godtyckligt antal effekt-

pulser Ibsas. Effektuttaget, q(t), ar konstant under givna tidsintervall

q(t) =

0 t < t,

'l
t.

t <

(5.3.4.1;

Da tiden t ligger i det n:te intervallet blir temperaturen:
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"v1 qi J ( r2 \ ~2»t) = - A /f-T- i E, /i,/4._+. \ - E.

Q

r

I formeln har uttryck 5.3.3.2 omvants for pulserna 1,2,..., n-1 och

uttryck 5.3.2.1 for den pagaende pulsen. En alternativ form for

5.3.4.2 ar:

T(r,t) = - I \T,l~] E! Ua(t-t )) (5.3.4.3)
i =1 i

(qo = 0)

Den fbrsta termen ha'rrbr fran stegpulsen q. (= q. - q ) vid t = t^.

Na'sta term, dvs. andra termen i summan, ha'rrbr fran den vid tiden t = t^

bverlagrade stegpulsen qg - q,.

Rortemperaturen T^ blir med anva'ndning av formlerna 5.3.3.3 och

5.3.2.13:

n-1 qi , t-ti x

TR(t) = '.̂  4̂ 1 ln (t̂ tT̂ y

(5.3.4.4)

Y = 0.5772

Alternativt kan detta skrivas:

TR(t)=-j C^~ • i (ln(—?r-*-) -Y) (5.3.4.5)

(q0 = 0)
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Infbres en referenstid t kan 5.3.4.5 skrivas:

4at.

i = 1
(5.3.4.6)

(qo = 0) (tn

Exempel. A = 3.5 W/m • K a = 1.6 • 10 6 m2/s

R = 0.055 m

Effektuttaget ar foreskrivet for perioder om ett kvarts ar. Under

sommarperioden tillfbres berget vamie.

q(t) =

10 (W/m) host 1 (3 manader)

30 vinter 1

15

-10

10

osv

var 1

sommar 1

host 2

Vi far med referenstiden t = 3 manader:

. / /4at N x
-r- In (— / - 0.5772 = 0.2084irA \ 2 / /

Temperaturen vid brunnen ges av formel 5.3.4.6. Vi tar t, = 0,

t« = t osv.

1. Host 1, 0 < t < t

TR = -2.08 - 0 .227 • In
t > 5 ' T
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2. Vinter 1, tp < t < 2 - tp

TD = -6.24 - 0.227 In U=-
R Vtp,

-0.454 In y- - 1
V P

3. Var 1, 2t < t < 3t

Tn = -2.08 - 0.227 In (^~
P

- 0.454 In (±- - \ + 0.340 In (~ - 2
P ' V P

4. Sommar 1, 3t < t < 4t

TR = 2.08 - 0.227 In

-0.454 In (~ - l) + 0.340 In (-£- - 2
V P J V P

+ 0.568 In (~~ - 3\

Osv.

Nedanstaende tabell visar nagra va'rden for Tn enligt ovanstaende

formler.

t/tn
P

TR (°0

t/t
P

TR (°0

0.01

-1.03

2.01

-3.81

0.1

-1.56

2.1

-3.07

1

-2.08

3

-2.64

1.01

-4.15

3.01

-1.10

1.1

-5 .22

3.1

0.21

2

-6.40

4

1.50
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5.3.5 Pulstag

Ett viktigt specialfall ar en sekvens av likadana pulser, ett pulstag.

Periodtiden, dvs. tiden mellan tva pulsers start, ar t . Langden av

pulserna ar atQ, 0 < a < 1. Pulstagets medeleffekt ar qQ (W/m). Effekt-

uttaget for pulserna blir da q Ax. Se figur 5.3.8.

q(t)

q

a

%

i

7/
'//

= 1 l

X/
'//

= 2 i

//
//
y,

= 3 i

//
//
' (

- 4

0 at

0 < a < 1

2t

Figur 5.3.8. Pulstag med medeleffektuttaget q .

Rbrtemperaturen Tp erhalles genom superposition enligt det ovan sagda.

Exenipel. t = 1 dag

\ 1.5 W/m • K

qo = 10 W/m a = 1/3

a = 0.75 • 10~6 m2/s R = 0.02 m

(5.3.5.1]

Beraknad uttagstemperatur visas i nedanstaende figur. Den streckade

linjen visar for konstant effektuttag q(t) = q .

q(W/ml

t ldays)

« 50

-5

t ldays)
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I exemplet ovan oscillerar rbrtemperaturen for pulstaget kring den

streckade kurvan for medeleffektuttaget q(t)=q . Den transienta andring-

en fran puls till puls forsvinner efter ett fatal pulser. Oscillationen
kring medeleffektkurvan a'r i stort likadan under den 5:e, 10:e och 50:e

dagen.

Dessa oscillationer representerar effekten av pulsationen. Denna del

skall bverlagras bidraget fran medeleffekten q(t) = qQ.

De formler som ges nedan galler bade for rb'rradien r = R och for god-

tyckliga andra avstand r. Lat T°(r,t) beteckna bidraget fran konstant

effektuttag qQ. Forme! 5.3.2.1 ger:

r2
:1 V4at (5.3.5.2)

Den bverlagrade oscillerande delen betecknas T*(r,t). Den totala tempera-

turen fran pulstaget blir da:

T(r,t) = T°(r,t) + T*(r,t)

Figur 5.3.9 visar de tva komponenterna.

t.

(5.3.5.3)

Figur 5.3.9. Temperatur T(r,t) fran ett pulstag. Definition av extrem-

vardena £'. och £'!.

Vi a'r framfbr allt intresserade av extremvardena for oscillationen T*.

Dessa erhalles vid slutet av varje puls (£'• for puls i) och i slutet av

varje period strax innan na'sta puls startar (EV for period i). Se figur

5.3.9. En dimensionsanalys visar att E'. och E'.' blir funktioner av

14-B5
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o
r /(at ) och a. Vi har da

T*(r, t(i-1) + at)=-- E. -, a) (5.3.5.4)

De tva funktionerna E' och Ê ' visas i figur 5.3.10-13 for i = 1 och
i = 5. Normalt ra'cker det med dessa tva i-varden eftersom variationen

med i a'r mattl ig.
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0.0001 0.0003 0.001

-5

a = 0.05

0.1

5.3.10. Pulst§gsfunktion E] for fbrsta cykeln. Se formel 5.3.5.4 och

figur 5.3.9.



5.82

0.0001 0.0003 0.001 0.003 0.01
,̂ 1̂ ,.

a t0

a=0.95
.0.9' 0.8

0.1,0.05-

-9

0.01

-8

0.03

-7 -6 -5

0.1 0.3 _
atr

a=0.95

0.9

0.8
,0.7

0.5

-5 -3 -2 -1

Figur 5.3.11. Pulstagsfunktion E!j for fbrsta cykeln. Se formel 5.3.5.4 och

figur 5.3.9.
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0.0001 0.0003 0.001

"V
<x=0.05

0.1.

-5 -4

Figur 5.3.12. Pulstagsfunktion E' for femte cykeln. Se formel 5.3.5.4 och

figur 5.3.9.
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0.0001 0.0003 0.001

-5

Figur 5.3.13. Pulstagsfunktion E£ for femte cykeln. Se forme! 5.3.5.4 och

figur 5.3.9.
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5.4 Temperaturavklingning av ett uppvarmt omrade

De transienta och periodiska fbrloppen utanfbr en lagervolym bar be-

handlats i avsnitt 5.1-2. Temperatur eller va'rmeflb'de a'r da givna pa

lagervolymens begransningsyta mot omgivande mark. I detta avsnitt skall

tempera turfbrloppet i och kring en uppva'rmd markvolym studeras. Se

referens 8. Fragesta'llningen galler hur snabbt temperaturen i en upp-

varmd zon sjunker.

Lagerzonen va'rms under en given laddningsperiod. Da'refter Ta'mnas lagret

ostbrt fram till dess att va'rmeuttaget pabbrjas. Varmeledning i och kring

lagret ger en med tiden sjunkande temperatur.

Vi skall i det fbljande studera ett fall da'r lagerzonen initialt har en

konstant temperatur T^.Omgivande mark har begynnelsetemperaturen T .

Vid markytan a'r temperaturen T . Marken har homogena termiska egenskaper.

Detta enkla fall a'r mycket anva'ndbart. Antag att vi har ett dynamiskt

temperaturfbrlopp i lagret och i omgivande mark. Lagret ges sedan en

extra temperaturhb'jning. Den totala termiska processen a'r en superposition

av det ursprungliga fbrloppet och Ibsningen till den adderade temperatur-

hbjningen. Avklingningen av den adderade Ibsningen, dvs. av den extra

temperaturhbjningen, a'r fullstandigt oberoende av den ursprungliga termiska

processen.

Denna superpositionsteknik anva'nds for att bera'kna temperaturavkl ingningen

i ett va'rmelager. Vi infbr en dimensionslbs temperatur u definierad av

T(x,y,z,t) = TQ + (TrT0) • u(x,y,z,t) (5.4.1)

Temperaturavklingning raknas fran en momentan temperaturhbjning vid tiden

t = 0. Om va'rme tillfbres under en given laddningsperiod raknas lampligen

tiden for temperaturavklingningen fran laddningsperiodens mitt.

5.4.1 Lager pa stort djup

Har behandlas de fall da'r lagret a'r bela'get pa ett stort djup. Det

termiska fbrloppet i lagret paverkas ej av fbrhallanden vid markytan.
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5.4.1.1 Endimensionellt plant fall

Det endimensionella plana fallet ger en fundamentallbsning som anvands

for analys av flerdimensionella problem. Detta fall kan dessutom an-

vandas for att uppskatta varmefbrlusten fran ett lager med stor horison-

tell utstrackning i fbrhallande till dess tjocklek i vertikalled. Varme-

transporten i lagret ar dS huvudsakl igen vertikal. Lagret har en tjock-
lek L och bef inner sig i en oandlig omgivning -» < x < «. Lagrets mitt-

punkt bef inner sig i origo. Se figur 5.4.1. Vi infbr en dimensionslbs

tid T och en dimensionslbs langdkoordinat x':

4at v 1 - xX - T (5.4.2)

x

112

0

L/2

Figur 5.4.1. Endimensionell t plant fall.

Temperaturen i omradet ges av referens 102 D.

u(x,t) = f(x',T
(5.4.3)

Beteckningen erf avser felfunktionen. Se referens 10.3.B eller avsnitt

3.6. Funktionens f(x',T) ges i figur 5.4.2.

Temperaturen i lagrets mittpunkt ges av

u(0,t) = erf (5.4.4)
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Figur 5.4.2. Temperaturavklingning for det endimensionella

x 1 = x/L, T = 4at/L2

Vid lagrets gransyta (x = ±-y) mot omgivningen galler

u(±L/2,t) = I erf

plana fallet.

(5.4.5)

Energiinnehallet i lagret a'r direkt proportionellt mot medelbvertemperaturen

i lagret. Genom att integrera forme! 5.4.3 erhSlls medeltemperaturen:

(5.4.6)

Funktionen f (T) ges i tabell 5.4.1 och i figur 5.4.3.

0.5

Figur 5.4.3. Avklingning av medeltemperaturen for det endimensionella
plana fallet.



5.J

T

V^

T

VT>

1

fm^

T

fm^

0

1

0.25

0.718

1.5

0.415

0.0003

0.99

0.001

0.982

0.5

0.610

2

0.369

0.031

0.90

0.01

0.944

0.75

0.538

3

0.308

0.196

0.75

0.05

0.874

1

0.486

5

0.244

0.91

0.50

0.1

0.822

1.25

0.447

10

0.175

4.8

0.25

Tabell 5.4.1. Funktion f (T) sotn ger lagrets niedeltemperatur for det

plana fallet.

For sma och stora va'rden pS T galler fbljande asymptotiska uttryck:

T « 1

(5.4.7)

Exempel 1. Ett grundvattenskikt med tjockleken L uppvarms till 50°C. Tetn-

peraturen i omgivande mark ar 10°C. Lagringsperioden ar 6 mana-

der. Marken antas ha homogena termiska egenskaper med varmeled-

ningsfbrmagan 2 W/mK och varmekapacitiviteten 2 MJ/m3K.

Grunddata

t = 6 manader = 15.768-106 s

a = A/C = 1-10"6 m2/s

Vi infbr en karakteristisk la'ngd for systemet:

L. = /4at = 7.9 m

T = 4at/L2 = (Lt/L)2 = (7.9/L)2
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Va'rmefbH usten a'r proportionell mot medel tempera turens avklingning

for skiktet. Energiinnehallet raknas relativt den ostbrda marktem-

peraturen. Varmefbrlusten for nagra olika va'rden pa tjockleken

L ges i tabell 5.4.2.

L (m)

T

Va'rmefbrlust (%)

2

15.6

86

4

3.90

73

8

0.98

51

16

0.24

30

32

0.061

14

Tabell 5.4.2. Varmefbrlust fran ett grundvattenskikt med tjock-

leken L efter 6 manader.

Detta illustrerar storlekens betydelse for lagrets effektivitet.

Det kra'vs i detta fall en tjocklek pa 8 meter for att ungefar

halva energimangden skall atersta efter 6 manader.

Exempel 2. Figur 5.4.4 visar ett lager som a'r belaget omedelbart under ett

hus. Lagret har tjockleken D. Lagrets sidor och bveryta a'r isole-

rade.

Figur 5.4.4. Lager belaget omedelbart under ett hus.

Lagret uppva'rms under ett initialskede till temperaturen T..

Begynnel setemperaturen i omgivande mark a'r T . Varmeflbdet a'r

huvudsakligen endimensionellt. Antag att varmeflodet genom iso-

leringarna kan fbrsummas. Varmeflbdet a'r da noil vid x=0 i Ibs-

ningen (formel 5.4.3) p.g.a. symmetri. Lbsningen till detta exempel

ges om vi sa'tter L=2D. Medel temperaturen i lagret ges av formlerna

5.4.1. och 5.4.6:
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Tm(t) =
Tabell 5.4.3 ger den tid da 50% av lagrets varme har fbrlorats
for olika tjocklekar.

t1/2

D (m)

1 dag

0.31

1 vecka

0.82

1 nianad

1.7

3 manader

2.9

6 manader

4 .2

Tabell 5.4.3. Lagringstid t. ,„ vid vilken 50% av va'rmen har fbr-

lorats. a = MO"6 m2/s.

Aterigen ser vi storlekens betydelse for lagrets effektivitet.

Det bbr observeras att endimensionellt vertikalt flbde har fb'rutsatts rada
for dessa exempel. Avvikelser fran detta antagande, d.v.s. flerdimensionella
effekter, komraer att oka fbrlusten fran lagret.

5.4.1.2. Parallellepipediskt lager

Lagret har formen av en parallellepiped med kantlangderna L , L , och L .x y z
Lagret ges vid tiden t=0 en bvertemperatur i fbrhallande till omgivande
mark.

Den dimensionslbsa temperaturen u ges som en produkt av endimensionella funda-
mentallbsningar, formel 5.4.3, for de tre koordinatriktningarna.

u(x,y,z,t) =

x L

y 4at, (5.4.8)

Funktionen f ( x ' , T ) definieras av formel 5.4.3. Medeltemperaturen erhalls
genom integration av formel 5.4.8:

(5 .4 .9 )
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Funktionen fm(-r) ar definierad av forme! 5.4.6. Den ges i figur 5.4.3

och i tabell 5.4.1. For sma och stora varden pa T kan formel 5.4.7

tillampas.

Exempel. I figur 5.4.5 jamfors temperaturavkl ingningen for kub, kvadrat

och oandliga platta.

Vi har fbljande data:

• Lx = Ly - Lz =

II- , L y = L z = L

III. L x = L y = +», L z = L

(kub)

(kvadrat)

(platta)

Figur 5.4.5. Temperaturavklingning for kub (I), kvadrat (II) och

oa'ndl ig platta (III).

Betrakta varmefbrlusten vid den tidpunkt da halften av varme-

innehallet forlorats i det endimensionella fallet. For kvadraten

har da 3/4 av varmen forlorats, emedan kuben har fbrlorat 7/8.

De tva- och tredimensionella effekterna kan som synes vara be-
tydande.

Har ges nagra numeriska exempel.

a = x/C = 1 . 10"6 m2/s t = 6 manader Aat = 7.9 m
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Lx

15

15

15

20

50

30

y
15

15

15

15

50

30

Lz

15

10

5

5

50

30

\^

0.70 • 0.70 • 0.70 = 0.34

0.70 • 0.70 • 0.57 = 0.28

0.70 -0.70 -0.33 = 0.16

0.77 -0.70 -0.33 = 0.18

0.91 -0.91 • 0.91 = 0.75

0.85 -0.85 -0.85 = 0.61

label! 5.4.4. Temperaturavklingning for parallellepipedisk volym

med kantlangderna L , L och L efter 6 manader.

Det framgar av tabellen att temperaturavklingningen till stbrsta

delen bestams av den minsta kantlangden.

5.4.1.3 Endimensionellt radiellt fall

Manga lagringssystem utnyttjar en volym som har formen av en cylinder

med vertikal symmetriaxel. Det tredimensionella temperaturfbrloppet for

ett sadant fall ar en funktion av en radiell koordinat r och en vertikal

koordinat z. I detta avsnitt behandlas det rent radiella fallet for en

cylinder med stor hbjd.

Lat R vara lagrets radie. Temperaturen beror av dimensionslbs la'ngd och

tid:

at [5.4.10)

Den dimensionslbsa temperaturen kan nu skrivas som:

u(r,t) = g(r', (5.4.11;

For temperaturen i cylinderns mittpunkt (r=0) galler fbljande enkla

uttryck:

u(0,t) = 1 -e" 4at (5.4.12)
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Figur 5.4.6. Temperaturavklingning for det endimensionella radiella

fallet. r' = r/R, T = at/R2.

Vart huvudintresse avser temperaturavklingningen i lagringscylindern.

Varmeinnehallet representeras av medeltemperaturen:

dar

Har ar I och I, modifierade Besselfunktioner 103 C.

For sma och stora varden pa T har vi de asymptotiska uttrycken:

g (T) » 1 - 2 /— T « 1m / TT

1 (. \\ » !

(5.4.13)

(5.4.14)

Temperaturen i lagrets centrum g(0,t) och medelvardet gm(T) ges i figur

5.4.7. Funktionen g (T) ges a'ven i tabell 5.4.5.
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0.5

9m h»

0.5

Figur 5.4.7. Avklingning av cylindervolymens medeltemperatur, g (T),
och av temperaturen i centrum, g(0,t).

T

gm(T)

T

*«M

T

9n,<*>

0

1

0.75

0.25

8-10'5

0.99

0.001

0.96

1

0.20

0.008

0.90

0.01

0.90

1.25

0.17

0.05

. 0.75

0.05

0.75

1.5

0.14

0.22

0.50

0.1

0.65

2.5

0.09

0.75

0.25

0.25

0.48

5

0.05

0.5

0.33

10

0.02

label! 5.4.5. Funktion gm(T) som ger lagrets medeltemperatur for det
radiella fallet.

Exempel 1. Nar har 50% av varmen fbrlorats for ett cyl inderformat lager
med radien R och med stor hbjd?

a = 1 • 10~6 m2/s

0.22 D2 _ 0.22 • 10
'—'— K ~ T?

T = ~ = 0.22 (tabell 5.4.5)
IT

t = 2.55

3600 -g- • R (dygn)

dygn

For nagra varden pa radien R erhalls

R(m)

t(dygn)

1

2.6

2

10.2

5

63.8

10

255.0
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Exempel 2. Lat oss jamfbra ett cylindriskt och ett kvadratiskt omrade

med samma area:

,R2 = L2

Lat t och t, beteckna den tid da 50% av varmen har fbr-c t\s i det cylindriska respektive kvadratiska fallet.

Fran figur 5.4.7 och figur 5.4.5 erhalls

at 4at,
= 0.22 = 0.27

Rc L'

eller med samma area

R2
t,. = 0.22 — t. =c a i\T

R2 R2— = 0.21 —
9 3

Det kvadratiska omradet fbrlorar varmen nagot snabbare.

5.4.1.4 Cylindriskt lager

Lagervolymen har ofta formen av en cylinder med vertikal axelriktning.

Cyl indern har la'gre varmefbrlust an ett parallellepipedformat lager med

samma volym och hbjd. Vid injektering av varmvatten via en brunn i en

akvifer far det uppva'rmda omradet ofta naturligt formen av en cylinder.

Figur 5.4.8 visar ett cylinderformat laqer i en oandlig omgivning.

Figur 5.4.8. Cylinderformat lager i en oandlig omgivning.

15-B5



5.96

Cylinderns radie och hbjd betecknas med R respektive H. Begynnelse-

temperaturen ar T. i cylinderregionen och T i omradet utanfbr denna.

Temperaturen ar en funktion av r, z och t. Lbsningen kan uttryckas som

produkten av de Ibstiingar som ges i kapitel 5.4.1.1 och 5.4.1.3.

—) (5.4.15)
R^ ^n H2'

Funktionerna g och f ges i figur 5.4.6 respektive 5.4.2.

Varmeinnehal let ges av medelbvertemperaturen i cylinderregionen. Medel-

vardet av formel 5.4.15 erhalls ur medelva'rdet av f och g. Vi har

at Mat (5.4.16)

Funktionen f (T) ges i tabell 5.4.1 och i. figur 5.4.3. For sma och stora

tider ga'ller formel 5.4.7. Funktionen g (T) ges i tabell 5.4.5 och figur

5.4.7. Varden for sma och stora tider erhalls ur formel 5.4.14. Temperatur-

avkl ingningen for en cylinder ges av produkten av ett endimensionellt fall

med hbjden H och ett radiellt fall med en uppvarmd region 0 s r s R.

2 2Temperaturavklingningen beror av tva parametrar at/R och 4at/H . Stor-

heten /4at ar en la'ngd. Temperaturavkl ingningen ar en funktion av la'ngd-

fbrhallandena /~4aT/(2R) och /4at/H. Varmefbrlusten beror saledes pa
storleken av langden /4at jamfbrt med hbjden H och diametern 2R pa

cylindern.

Temperaturavkl ingningen ges i figur 5.4.9. Axlarna ar langdkvoterna

/ 4at/H och /4at/(2R). Varje kurvskara motsvarar ett speciellt varde av

kvoten (T(t) - "

0.25

0.5

Figur 5.4.9. Temperaturavklingning for ett uppvarmt cylindriskt omrade.



Uttrycket 5.4.16 for medeltemperaturen kan fbrenklas om vi anvander de
asymptotiska formlerna 5.4.14 och 5.4.7. Vi erhaller da:

y*) - TO
T1 - To"

/4at
2R )

(5.4.17)
,och

Felet ar mindre an 1% inom angivna granser ( /~4~aT < H/2, R/2). Formeln

kan anvandas nar (T - T )/(T. - T ) ar stb'rre an 0.7.

Exempel. Vi tar foljande varden

5.97

a = 1 - 10~6 m2/s t = 6 manader

Detta ger langden

= 7.9 m

Nedanstaende tabell ger va'rmefbrlusten for olika H och R.

Formal 5.4.16 och figur 5.4.3 och 5.4.7 har anvants.

H

5

10

5

10

10

20

20

50

R

5

5

10

10

20

20

40

50

(VV/tW
0.11

0.16

0.23

0.32

0.44

0.60

0.69

0.83

Fbrlust (%)

89

84

77

68

56

40

31

17

Tabell 5.4.6. Medeltemperaturavklingning och varmefbrlust for

uppvarmt cylindriskt omrade med hbjden H och
radien R efter 6 manader. (a = 1 • 10~6 m2/s.)

Vi ser aterigen att varmefbrlusten fran sma system ar mycket stor.
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5.4.2. Lager na'ra markytan

I avsnitt 5.4.1 behandlades temperaturavklingningen for ett uppvarmt

omrade i en oandlig omgivning. Denna analys galler endast for lager som

ar belagna djupt under markytan. I detta avsnitt studeras lager pa mattligt
djup.

Figur 5.4.10. Temperaturavklingning for ett uppvarmt omrade pa mattligt

djup under markytan.

Lagrets bveryta befinner sig pa djupet D. Lagret bar tjockleken H och
begynnelsetemperaturen T,. Vid markytan ar temperaturen T . I marken

utanfbr lagret ar temperaturen T vid begynnelsetiden t = 0.

5.4.2.1 Endimensionellt plant fall

Detta problem kan Ibsas med spegl ingsteknik. For det endimensionella

fallet erhalls Ibsningen som en superposition av den egna och den speglade

Ibsningen.

Temperaturen i marken blir nu:

T(z,t) . T0 . „, - T.)

(5.4.18)
,/z-D-H/2
- —

Har ar -z djupet fran markytan. Funktionen f(x',T) ges av formel 5.4.3.

Vi infbr fbljande beteckningar:

4at

Temperaturen ar en funktion av z/H, d, och T.
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Medel temperaturen i lagret ges av

T / ± \
Tm(t) = T

da'r

(5.4.19)

. ^(ierfc (^) + ierfc (5 .4 .20)

Har ges funktionen f (T) av forme! 5.4.6. Funktionen ierfc ar integralen

av den komplementa'ra f el funktionen:

ierfc(x) = 4- e"x - x + x -er f (x )
/IT

(5.4.21)

Det tidigare fallet med ett lager i en oandlig omgivning ges av d = + °° :

f (»,T) = fm(-r)- Det andra extremfallet, d = 0, intraffar na'r lagrets
bveryta ligger vid markytan. Dverytan har da temperaturen TQ.

Funktionen f (d,r) ges i figur 5.4.11. Kurvskaran med d > 1/.2 samman-

faller tamligen va'l for T < 1 . De resultat som ges i avsnitt 5.4.1.1 kan
da'rfbr anvandas na'r D ar stbrre an H/2. En korrektion for markytans in-

verkan ar nbdvandig endast da lagervolymen ligger sa na'ra markytan att

D ar mindre an H/2.

0.5 1 1.5 2

Figur 5.4.11. Temperaturavklingning f'(d,T) for ett skikt som befinner

sig pa djupet D under markytan.
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Exempel. Ett lager med tjockleken H a'r ta'ckt av ett skyddande markskikt med
tjockleken D. Vi tar

a = 1-10"6 m2/s H = 10 m

Va'rmefbrl usten efter tva manader ges i tabell 5.4.7 for nagra

olika djup D. Den dimensionslbsa tiden T a'r lika med 0.21. Va'r-
dena a'r tagna ur figur 5.4.11.

D (m)

<VV/<YV
Fbrlust (%)

00

0.74

26

5

0.74

26

3

0.74

26

2

0.73

27

1

0.69

31

0

0.61

39

Tabell 5.4.7. Va'rmefbrlust for endimensioneTIt plant fall med olika
avstand D till markytan. Data a'r givna i texten.

Va'rmefbrl usten for D > 4 a'r 26%. Den bkar for minskande D upp till
39% for D=0.

5.4.2.2. Parallellepipediskt lager

Lagervolymen har formen av en parallellepiped med sidolangderna L , L , och
LZ- Parallellepipedens bvre horisontella yta befinner sig pa djupet D under
markytan. Temperaturen vid markytan a'r T . Begynnelsetemperaturen i parallell-

epipeden a'r T. och utanfbr denna T . Tempera turf a'ltet i marken ges da av

T(x,y,z,t} = T + (T -T).f(A,o 1 o L
z+D+L 12 z-D-L /2/ z

(5.4.22)

Funktionen f(x',T) definieras av formel 5.4.3.
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Medel temperaturen i paral 1 ell epipeden a'r

Funktionen f '(d,i) aterfinns i figur 5.4.11 och f (T) i figur 5.4.3.

5.4.2.3. Cylindriskt lager

Lagret har formen av en cylinder med vertikal axelriktning. Cylindern har

hb'jden H och radien R. Dess ijveryta a'r belagen pa djupet D under markytan.

Figur 5.4.12 visar den cylindriska lagervolymen med ett medeldjup z = -D-H/2.

Ett speglat lager med negativ begynnelsetemperatur ligger pa medelhb'jden

z = D+H/2.

Figur 5.4.12. Cylindrisk lagervolym pa djupet D under markytan. Ett speglat

lager med begynnelsetemperaturen -T. a'r bela'get ovanfb'r mark-

ytan.

Temperaturfaltet a'r en superposition av losningarna fran de tva cylinder-

regionerna. Bada losningarna a'r av den typ som ges av formel 5.4.15. Den
r atradiella funktionen g(-p, —j) a'r densamma for de tva losningarna. Tempera-
"̂  R

turen ges av:

T(r,z,t) = y(TrTo)

f(z-D-H/2
"n H

dtl—o-J
„£

(5.4.24)

Funktionen g visas i figur 5.4.6. Funktionen f definieras av formel 5.4.3.
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Medeltemperaturen i lagercylindern ar:

(5.4.25)

Funktion g visas i figur 5.4.7 och f i figur 5.4.11.

Exempel. Ett lager med hbjden 20 meter och radien 20 meter ar belagen pS_/- p
djupet D under markytan. Temperaturledningstalet ar a = 1-10 m /s.

Varmefbrlusten efter sex manader (t=6 manader) ges i tabell 5.4.8

for olika djup D.

D (m)

(VV/'YV
Fbrlust (%)

CO

0.60

40

10

0.60

40

5

0.60

40

2

0.57

43

1

0.55

45

0

0.52

48

label! 5.4.8. Varmefbrlust efter sex manader for ett cylindriskt

lager pa djupet D.

Varmefbrl usten andras ej na'r djupet okas fran D=5 m. Gkningen av
fbrlusten ar tamligen mattlig da tjockleken D pa det tackande

skiktet minskar.

5.4.3. Cylindriskt lager omedelbart under markytan

De analytiska samband som gavs i avsnitt 5.4.1-2 ga'ller tamligen renodlade

fall. I detta avsnitt beraknas temperaturavklingningen for mer komplicerade

fall numeriskt.

Lagret har formen av en cylinder med vertikal axelriktning. Lagrets hbjd

ar H och dess radie R. Overytan sammanfaller med marknivan. En termisk

isolering tacker lagrets bveryta och dess sida till ett djup H.. Se

figur 5.4.13. Begynnelsetemperaturen ar T, i lagret och T i omgivande

mark. Vid markytan halls temperaturen konstant vid T .
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Medeltemperaturen i lagret ges av

(5.4.26)

Funktionenu ger medel temperaturens avklingning i dimensionslbs form.

u'
'Mi/E

Figur 5.4.13. Varmelager med skyddande isolering pa bveryta och vertikal

si da.

Marken har varmeledningsfbrmagan X och varmekapaciteten C. Isoleringstjock-

leken a'r d. och dess varmeledningsfbrmaga a'r X..

Foljande data galler:

= 20°C

A = 2 W/mK C = 2 MJ/m°K

(a = X/C = 1 10~6 m2/s) (5.4.27)

Xi = 0.03 W/mK

Hi = 1 m

di = 0.3 m

Lit oss som fbrsta exempel betrakta nagra smS lager. Figur 5.4.14 visar

temperaturavklingningen i ett lager med radien R=5 m for olika hbjder:

R = 5 m H = 1, 2, 5 m (5.4.28)

Dvriga data enligt 5.4.27.
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tldays]

Figur 5.4.14. Dimensionslbs medeltemperatur for ett cylindriskt lager. Data

enligt 5.4.27 och 5.4.28.

Temperaturavklingningen ar mycket snabb for dessa sma system. Halva varme-

innehallet fbrloras pa 18 dagar om lagrets hbjd ar 2 meter. Det ar uppen-

bart att dessa lager ej ar lampade for sasongslagring.

Figur 5.4.15 visar temperaturavklingningen for en stbrre radie:

R = 10 m H = 1, 2, 5, 10, 20 m (5.4.29)

tldays)
300 365

Figur 5.4.15. Dimensionslbs medeltemperatur for cylindriskt lager. Data enligt

5.4.27 och 5.4.29.

For de fall da'r H ar 10 och 20 meter aterstar ungefar 50% av det ursprung-

liga varmeinnehallet efter 4 respektive 6 manader.

I figur 5.4.16 illustreras effekten av andringar av nagra data (5.4.27).

Vi tar

R = 10 m H = 5 m (5.4.30)

Kurvan med A=2 i figur 5.4.16 visar temperaturavklingningen med referens-

data (5.4.27). Effekten av att varmeledningsfbrmagan a'ndras fran A=2 till
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X=1 respektive X=3.5 ges. Den sista kurvan visar inverkan av en mindre

isolertjocklek (d. = 0.1 m).

t (days)

Figur 5.4.16. Dimensions!bs temperaturavkl ingning for nagra olika va'rden

pa markens varmeledningsfbrmaga A och isoleringstjockleken

d.. Data enligt 5.4.27 och 5.4.30.

Figur 5.4.17 visar temperaturavklingningens beroende av lagrets storlek.

Vi har tre fall:

2R = H = 25, 50, 100 m (5.4.31)

tWays]

Figur 5.4.17. Dimensionslbs temperaturavklingning for tre storlekar av

ett cylindriskt lager. Data enligt 5.4.27 och 5.4.31.

Den takt med vilken temperaturavkl ingningen sker a'r i hog grad beroende

av lagrets storlek. Med R=50 och H=100 aterstar 84% av det ursprungliga

varmeinnehallet efter ett ar.

Nasta exempel berbr det cylindriska lagrets form. Volymen halls konstant.

Fbljande fall har studerats:
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H = 5 m H = 1 0 m H = 2 0 m H = 5 0 m H = 1 0 0 m

R = 7 9 m R = 5 6 m = 4 0 m = 2 5 m R = 1 8 m
(5.4.32)

Resultaten ges i figur 5.4.18.

VarmefbHusten sker genom lagrets yta. Varmeinnehallet ar daremot propor-

tionellt mot volymen. Det ar da'rfbr efterstravansvart att utforma lagret

sa att kvoten mellan yta och volym ar liten. For detta fall ar det optimala
va'rdet av H/R nara 1.

Figur 5.4.18. Ditnensionslbs temperaturavklingning for olika former pa lager-

cylindern. Data enligt 5.4.27 och 5.4.32.

En vanlig geologisk situation i Sverige ar att ett jordskikt ligger direkt

ovanpa urberget. Ett varmelager som utnyttjar detta jordskikt tenderer att

bli tamligen platt, d.v.s. H blir litet jamfbrt med R. Kurvorna med H=5 och

H=10 i figur 5.4.18 kan kanske representera ett sadant system. I dessa fall

var dock varmeledningsfbrmagan densamma i hela marken. Lat oss antaga att
varmeledningsfbrmagan i det ovre skiktet har en lag varmeledningsfbrmaga,

emedan urberget har en hog varmeledningsfbrmaga.

1

3.5

-H < z < 0

z < -H
(5.4.33)

Vi valjer ett reltivt platt system:

H = 10 m R = 56 m (5.4.34)

Resultatet visas i figur 5.4.19. Faltet med A=2 i figur 5.4.18 ges som

jamfbrelse.
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HDMTSI

Figur 5.4.19. Dimensionslb's temperaturavklingning for ett lager i ett ytligt

jordskikt beTaget ovanpa urberg. Data enligt 5.4.33, 5.4.34

och 5.4.27.
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