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FORORD

Denna skrift redovisar resultat fran vara studier av markvarmesystem under
aren 1977-85.Projektet finansierades under aren 1978-82 av Byggforsknings-
raddet (BFR) och Namnden for energiproduktionsforskning (NE). Den senaste
perioden 1982-85 har finansierats av BFR.

Forutom forfattarna har foljande personer deltagit i projektet.

Johan Bennet har utvecklat datormodellerna for grundvattenvdrme, geotermi
och akvifervarmelager samt utfort en stor del av de simuleringar som re-
dovisas i kapitel 8 och 9. Vidare har Mats Areskoug, Mats Johansson,

Tord Bengtsson och Peter Olandersmedverkat i forskargruppen. Pia Bruhn
och Birgitta Salmi har svarat for utskrift. Siqurd Madison har hjdlpt
ti11 med datorkorningarna mm. Figurerna har ritats av Lilian Johansson.

Avsnitt 3.7 dr skrivet av Jacob Johnsson, SGU, Jan Sundberg, Jordvarme-
gruppen och Bo Thunholm, SLU.
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Anders Eriksson, (AIB), Klas Cedervall och Bengt Aberg, (Vattenbyggnad,KTH),
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Leif Bjelm, Per-Gunnar Persson m f1 (Geoteknologi, LTH) och Soren Gotthards-
son (ASEA Stal Geoenergy AB), med vilka vi haft ett langvarigt och resul-
tatrikt samarbete om olika geotermiska system; Johan Tollin, AIB, som

varit till stor hjdlp vid vart arbete med bergvarmebrunnar; Hans Hydén,

Leif Lemmeke m f1 pa& VBB; Bengt Rydell och Cargline Palmgren, SGI; Mats
Larsson, Lennart Spante och Bengt Vasseur, Vattenfall; K-Gosta Eriksson,
Per-Ake Franck,Ingvar Rehn, Gosta Rosenblad, Jan Sundberg och Peter Wilén,
Jordvarmegruppen, CTH; Kent Adolfsson, Ingvar Bogdanoff och Ulf Lindblom,
Geoteknik, CTH; Orjan Haag m f1, Geologi, CTH; Goran Hultmark och Stefan
Olsson, Andersson & Hultmark AB; Peter Margen, Margen-Consult; Torgny Ager-



strand, Olof Andersson, Peter Englof, Lars Eriksson, Gunnar Gustafsson,
Johan Landberg m f1 p& VIAK AB; Christer Gedda, Kjessler & Mannerstrile AB;
Hans Gransell (Studsvik Energiteknik AV); Kjell Windelhed och Torgny

af Forselles (Hagconsult); Stellan Braun, Firma Brunnsborrningar

i Hoor AB; Lars Persson m f1, Energisparteknik AB; Sven-Erik Lundin och
Bjorn Svedinger (BFR) samt Ingvar OUsten Andersson (NE); Torbjdrn Jilar

m f1 vid Installationsteknik,CTH; Ingemar Johansson, AGA-Thermia.

Vi har haft ett nara samarbete med Chin-Fu Tsang och dennes forskargrupp
vid Earth Sciences Division, Lawrence Berkeley Laboratory, USA, anga-
ende termohydrauliska forlopp for akvifervarmelager och geotermiska sys-
tem. Samarbetet har blaskett i form av langvariga forskarbesok. Ett
samarbete har ocksd skett med Georges Vachaud, Alain Dunand m f1 vid
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Soren Rolandsson (Studsvik Energiteknik AB), Arne Boysen (Hidemark och
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9. GRUNDVATTENVARME, GEOTERMI

Varme frdn grundvatten dr en viktig naturvarmekdlla. Grundvattentempera-
turen ligger normalt i stort sett konstant vid eller ndgot over luftens
arsmedeltemperatur. Grundvattenvarme dar darfor en attraktiv — varmekdl-
la for vdrmepumpar.

I vissa omrdden i Sverige finns grundvatten pa stora djup. Detta geoter-
malvatten har hogre temperatur @r normalt grundvatten. Ett exempel ar
geotermiprojektet i Lund, ddr vdrme fran 25-gradigt vatten pa 700 meters
djup utnyttjas i stor skala for Lunds fjdrrvarmeforsorjning. De termis-
ka analysmetoderna for grundvatten kan direkt tillampas pd de for svenska
forhdllanden aktuella geotermisystemen, eftersom temperaturerna pa geo-
termalvattnet dr relativt mattliga. Vi skall hdr behandla grundvatten-
vdrme och geotermi i ett sammanhang.

9.1 Aterinjektering av nedkylt grundvatten

Varmeinnehd1let i grundvattnet eller geotermalvattnet ner till 0°C kan an-
vandas som varmekdlla till en varmepump. Ett normalt system har tvd eller
eventuellt fler brunnar. Grundvattnet tas upp ur den ena brunnen. Det ut-
nyttjas, dvs nedkyles, och &terinjekteras i den andra brunnen. Det kalla
vattnet ger en nedkylning kring aterinjekteringsbrunnen.

Man d@r intresserad av nedkylningens storlek, rdckvidd och tidsutveckling
for att kunna dimensionera ett system sd att det inte ger oacceptabla
miljostorningar exempelvis pa grundvattentdkter. Nedkylningen innebdr
ocksd en risk for att temperaturen pd det upptagna grundvattnet efter
hand sjunker ner till oanvandbara nivaer. For att undvika en sadan ter-
misk kortslutning mellan &terinjekteringsbrunn och uttagsbrunn maste av-
standet mellan brunnarna valjas tilirdackligt stort. Man méste veta hur
nedkylningen efter hand utvecklar sig for att kunna gora ett optimalt

val av brunnsavstdnd. Ett annat problem dr influens mellan olika grund-
vattenvarmesystem.

Nedkylningen kring dterinjekteringsbrunnen och eventuell temperatur-
sankning for upptaget grundvatten behandlas i detta kapitel. Temperatur-
forloppet dr starkt avhangigt av stromningsmonstret for grundvattnet.
Detta péaverkas av mdnga faktorer sasom akviferens eller akviferernas
geometri, inhomogeniteter, regionalt grundvattenflode, brunnarnas

9.1



9.2

1dgen och pumpfloden. Hir skall enbart ndgra forh&llandevis enkla

stromningsmonster behandlas.

Avstdndet mellan brunnarna betecknas L. Grundvattenflodet ges av vektorn

q,-
3 2 " . . 3

taget m~ vatten/m~.s. Pumpflddet till en brunn 3r QW (m”~ vatten/s).

Den antas sakna vertikalkomponent. Dess dimension dr m/s eller noga

Det rdknas negativt vid uttag av vatten. Vattnets volymetriska vdrme-
kapacitet dr C (=4.2 M/’ . K).

Den naturliga ostdrda temperaturen i marken ar TO. Temperaturen pd ater-
injekterat vatten betecknas T1. Den dimensionslodsa temperaturstdrningen
i marken ges av:

T-T

u = 0 (9.1.1)

T1_To

Ostord marktemperatur ges av u = 0, medan u = 1 ger maximal stdrning
(T:T1). I allmdnhet anges i det foljande temperaturen sdsom dimensions-
16s storning u. Verkliga temperaturer ges av (9.1.1).

De viktiga begreppen termisk hastighet och termisk radie behandlas iavsnitt
9.2 [cch 8.1.4). De anvdnda datormodellerna presenteras kortfattat i avsnitt
9.3. En omfattande studie av nedkylningen kring en enskild brunn redo-
visas i avsnitt 9.4. Temperaturforloppet runt dterinjekteringsbrunnen
forutsdtts vara rotationssymmetriskt. I det fgljande avsnittet anges

ndgra analytiska uttryck for termisk rdckvidd kring den enskilda brunnen.

I avsnitt 9.6 behandlas temperatursdnkningen i uttagsbrunnen for ett
brunnspar.

Akviferen har den konstanta tjockleken H. Den har stor utstrackning i hori-
sontalled. Det tdckande skiktets tjocklek D &r mycket stor for de geo-
termiska systemen. De termiska parametrarna i akvifer och i under- och
overliggande skikt betecknas p& samma satt som i kapitel 8 i enlighet med
figur 8.0.1.

9.2 Termisk hastighet och termisk radie

Det strommande grundvattnet ger en konvektiv transport av vdrme.
Temperaturfaltet T i akviferen forflyttas. Overlagrat pd denna vdrme-
transport sker vdrmeledning. Den konvektiva forflyttningen styrs av



9.3

grundvattenflodet aw till storlek och riktning. L&t VT (m/s) beteckna
den termiska hastigheten, dvs. den hastighet med vilken temperatur-
fdltet forskjutes pé grund av grundvattenflodet ﬁw. D& gdller

C
oG
Y (9.2.1)

Har ar CW varmekapaciteten for rent vatten och C varmekapaciteten for
akviferen med sin blandning av vatten och jordmateriel. Faktorn CW/C
ligger mellan 1 och 2.

Den termiska hastighetsvektorn QT anger till riktning och storlek hur
t.ex. en temperaturfront ror sig. Ekvation 9.2.1 dr en energibalansekva-

-T .
T o
Pd en tid dt har fronten forflyttats strickan }VT%dt. Denna del har dndrat

tion. Lat oss se péd en skarp temperaturfrontmed temperatursteget T

temperatur fran To till T1. Energin till detta kommer frdn grundvattnet.
Man har energibalansen:

(Ty-T )CHvgldt = (T,-T )C, i, idt (9.2.2)

Detta ger definitionen 9.2.1 for termisk hastighet, eftersom denna har
samma riktning som grundvattenflodet.

Den konvektiva och diffusiva vdrmestromningsprocessen i akviferen kan
ses som tva Overlagrade processer. Det termiska hastighetsfaltet ;T
anger i varje punkt vid varje tidpunkt den konvektiva forskjutningen
av temperaturfdltet. Overlagrat pa detta sker en temperaturspridning

genom vdrmeledning.

Vid injektering av vatten i en brunn dr grundvattenstromningen lokalt
kring brunnen radiell. Man fé&r, s& lange stdrningar kan forsummas, ett
rent radiellt forlopp enligt formel 9.4.1.1. Antag nu att vatten med
temperaturen T1injekteras fran tiden t=0. En termisk front med spranget
T1-T0 kommer att rdra sig utdt. Genom varmeledning blir fronten efterhand
mindre skarp. Den termiska radien RT definieras av energibalansen:

2 -
mRTHCTy=T) = Qt-C +(T,-T ) (9.2.3)
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Har ar Qw-t volymen av det utpumpade vattnet.

Den termiska radien blir
Vw(t)-Cw

Har ar Vw den utpumpade vattenmangden.

Termisk radie for ett ars utpumpning dr:

-C
_/wy W -0 .
Rpy = e (Vy = Q. t) (9.2.5)

Har ar wa under &ret totalt utpumpad vattenmdngd. Om pumpflodet ar
konstant, blir vattenvolymen Qw-ty.

Lat 9,0 Vara storleken pd det regionala grundvattenflddet. Motsvarande
termiska hastighet blir:

C
_ W .
Vio © T %o (9.2.6)

Lat LTy beteckna den termiska forskjutningen under ett &r pa grund av det
regionala grundvattenfiodet:

= . = Wo X =
Ly = YTo t c (t 1 ar) (9.2.7)
Det regionala grundvattenflddets belopp ges enligt Darcys lag av
g, = KeI (9.2.8)

Hir dr K akviferens hydrauliska konduktivitet (m/s) och I tryckfallet
rdknat i meter vattenpelare per meter.

StorheternaRTy(xh Hy ar viktiga vid analyser av nedkylningen kring
aterinjekteringsbrunnen. Om LTy ar mycket mindre @n RTy’ kan det regio-
nala grundvattenflodet forsummas. Detta innebdr en kraftig forenkling
av analysen. Om avstdndet L mellan brunnarna dr i samma storleksordning
som RTy finns risk for termisk kortslutning. Om LTy dr stor relativt

R, domineras processen av det regionala flodet.

Ty



9.3 Datormodeller

Samma datormodeller anvdndes for vdrmelagring i akviferer och for grund-
vattensystem. Grundversionen avser det rotationssymmetriska problemet
kring en brunn. Denna modell redovisas i avsnittet om datormodeller i
kapitel 8. Manual ges av referens 17.

For mer komplicerade stromningsmonster pdgdr utveckling av en relativt
allmén datormodell. Modellen dr avsedd for analys av de termiska pro-
cesserna. Grundvattenstromningen dr given av brunnarnas ldgen och pump-
floden samt av eventuellt regionalt flode. Stromningen sker i akviferens
plan. Strombilden genereras av konforma koordinater. Man kan hdrvid ha
ett antal brunnar i olika 1dgen och ett regionalt grundvattenflode.

Den konforma avbildningen for ett brunnspar utan regionalt grundvaiten-
fl1ode ger sd kallade bipoldra koordinater. Denna version av datormo-
dellerna anvdnds vid de numeriska berdkningarna for ett brunnspar. I

en studie av ett akvifervdrmelager i Jonkdping, vilken redovisas i
kapitel 8, forekommer en centrumbrunn och en cirkelkrans med yttre brun-
nar. I detta fall anvandes de konforma koordinater som svarar mot

ett sadant .brunnsmonster och ddrmed forknippad stromningsbild.

I akviferplanet rdknar man i de ortogonala koordinater som ges av den
konforma avbildningen. Grundvattenstromningen f&ljer den ena av dessa
koordinater. Den tredje koordinaten ges av den vertikala z-axeln.

Termiska egenskaper kan variera i z-led. Inloppstemperaturen dr tids-
variabel.

I de hdr aktuella problemen genomfors rdkningar for stora omrdden under
langa tider. Ett speciellt problem vid numerisk simulering av den kopp-
lade konvektiva och diffusiva varmeledningsprocessen ar s3 kallad nume-
risk dispersion. Denna innebdr att berdkningen ger en alltfor stor tem-
peraturspridning. Numerisk dispersion undvikes helt genom en ny, annu
ej dokumenterad berdkningsteknik. Metoden bygger pé en slags entropi-

konservation for den konvektiva delen av vdrmestromningsprocessen.

9.5
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Berdakningarna bedoms for de givna resultaten genomgédende ha ett maximalt
fel pd 5%. Denna beddmning baserar sig bl.a. pad jamforelser med de
analytiska 10sningar som ges i 9.5.1 och 9.5.2.

Berdkning for 25 ar for ett rotationssymmetriskt problem, sdsom referens-
fallet enligt avsnitt 9.4.2, krdver nagra minuters CPU-tid pa en UNIVAC
1100/80. Harvid anvandes runt 500 gitterceller i akvifer och under- och
overliggande mark. En genuint tredimensionell berdkning t.ex. for ett
brunnspar krdaver ldangre tid. Datortiden blir runt 2 minuter per arscykel,
dd nagot tusental gitterceller anvdndes. Ofta anvdndes ett finare gitter
for de forsta dren. En ny kdrning for en ldngre tidsperiod gores sedan
med ett grovre gitter.

En allmén erfarenhet &r att man maste anpassa cellindelningen till den
aktuella processen.

9.4 Parameterstudie av nedkylning kring enskild brunn

I detta avsnitt forutsdtts att grundvattenflodet dr rent radiellt ut
fran brunnen. Det kan variera i tiden. Temperaturforloppet blir rotations-
symmetriskt runt brunnen.

9.4.1 Rotationssymmetri kring brunnen

Akviferen forutsdtts homogen. Densitetsdrivna grundvattenfloden férsummas,
eftersom temperaturskillnaderna i vattnet dr smd. Grundvattenflodet runt
brunnen blir dd rent radiellt, om regionalt grundvattenfldde kan fGrsummas,
och om uttagsbrunnen ligger tillrdckligt 1dngt bort.

Figur 9.4.1 illustrerar det aktuella fallet. Brunnen ligger langs z-axeln.
Vatten dterinjekteras jamt fordelat dver hela akviferskiktet D < z < D+H.
Radiellt avstand till brunnen ar r.
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Figur 9.4.1. Rotationssymmetriskt forlopp kring aterinjekteringsbrunn.
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Pumpflodet Qw(t) (m3/s) ir normalt variabelt i tiden. Det kan vara posi-
tivt, negativt eller noll. Temperaturen T, (t) pd inmatat vatten &r en
given funktion av tiden. Den dr g1vetv1s bara definierad da Q ar posi-
tiv. Grundvattenflddet qw (m3 vatten/m ,$) blir:

Q(t)

w  2aAr

q (9.4.1.1)

Hdr dr 7 enhetsvektorn i radiell riktning.

Temperaturen blir en funktion av r, z och t: T = T(r,z,t). I akviferen sker
en kopplad konvektiv och diffusiv vdrmestromningsprocess. 1 dverliggande
(cap rock) och underliggande (bedrock) skikt har man ren vdrmeledning.
Ostord temperatur i akviferen &r TO. Arsfluktuationer vid marken kan
forsummas utom for mycket tunna tdckande skikt (D < 5 m). Vid markytan
ansdtts darfor den konstanta temperaturen TO. En konstant aterinjek-
tionstemperatur betecknas T1. Dimensions10s temperaturstérning u(r,z,t)
definieras av formel 9.1.1.

Isotermen u=0.5 anger de punkter ddr man har en temperaturstorning pd
50% raknad mellan TO och T1. Storningen har normalt storst rackvidd

ungefdr mitt i akviferen. Det storsta vdrdet pa det radiella avstandet
r for isotermen u=0.5 skall betecknas R0_5. Denna radie blir ett mdtt

pad temperaturstorningen runt &terinjekteringsbrunnen.

Avstadndet till uttagsbrunnen dr L. For att temperaturfdltet med god
approximation skall vara cylindersymmetriskt runt &terinjekterings-
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brunnen kravs att det av temperaturfordndringar pdverkade omrddet ej
kommer al1tfor ndra uttagsbrunnen. Foljande krav dr rimligt:

R <

ol —

0.5 (9.4.1.2)
Observera att den termiska rdckvidden R0 5 varierar med tiden. S& ldnge
som villkor 94.1.2 druppfyl1t kan man anvanda de aktuella resultaten
vilka forutsdtter cylindersymmetri.

Grdnsen (9.4.1.2) dr tilltagen med god marginal. Den torde kunna hdjas till
14t oss sdga R0 5 < 0.8L utan att stora fel introduceras.

9.4.2 Referensfall

Aterinjekteringen sker ofta intermittent och med variabel injektionstem-
peratur. Fluktuationerna dr emellertid enligt avsnitt 9.4.4 av sekundir
betydelse for rdackvidden av nedkylningen. Det avgtrande ar medelpumpflo-
det och medeltemperaturen pd injekterat vatten. For referensfallet an-
vandes darfor ett konstant pumpflode Qw (m3 vatten/s) och en konstant
inmatningstemperatur Tq.

Foljande data gdller for referensfallet:

H=10m D-20m
A=, =g = Ay = 2 WK
_ _ N 3
C=C =0 =2 Mm/meK (9.4.2.1)
C = 4.18 M/mS-K
w
-3 03 ) i 3.
Q, = 0.6-107> /s Vi = Oty = 19 000 m/ar

Temperaturerna T0 och T1 specificeras ej eftersom resultaten hela tiden
ges som dimensions10s temperaturstorning u.

Den termiska radien RT blir med formel 9.2.5:



Rty = 35.5m
(9.4.2.2)

Ry = 35.5- LI t =1 &r
ty

Den stationdra termiska influensradien Rf definieras enligt 9.5.1.2 av

QWCW
Rf 2—27‘_-(W (9.4.2.3)

9.9

Den ar enligt avsnitt 9.5.1.1 ett matt pd den maximala termiska rdckvidden,

da akviferen ej péverkas av markytan. Uppvdrmning fran markytan minskar
rackvidden. Pumpflodet QW dr valt sé att Rf biir exakt 100 m:

-3 6
_ 0.60126-10 ~-4.18-10" _
- 77 (257) = 100.0m (9.4.2.4)

R

Referensfallet &r ett relativt litet system. Energiuttaget per &r vid en
temperatursankning To_T1 = 50C blir:

Ey = (TO—T1)-QWCWty = 110 MWh/&r (9.4.2.5)

Berdknade temperaturfordelningar for referensfallet visas i figur 9.4.2.
Den dimensionsldsa temperaturstdrningen u(r,z,t) anges. Vardet u=0 ger
ostord temperatur T=T0, medan u=1 motsvarar den ldgre injektionstempera-
turen T1.

Radiella temperaturprofiler i akviferens mitt (z = D+H/2 = 25 m) visas i
figur 9.4.2 A. Den termiska rackvidden &r ungefar 30 m efter ett dr.
Detta stdmmer vdl med den termiska radien RTy = 35.5 m. Rdckvidden R0.5
okar till 45 m efter 5 &r. Efter 25 &r dr den 60 m. Okningen mellan 25
och 50 &r dr 3 m. Berdkningarna har utforts dnda till &r 500. Rackvidden
okar endast 2 m mellan &r 50 och &r 500. Stationdra forhdllanden har i
huvudsak intrdtt efter 25 &r. De mindre stdrningarna for storre radier
f&r dock en langre tidsskala. P& avsténdet r=100 m Okar storningen pd
foljande sdatt: u=0.00 for t=5 &r, u=0.05 for t=10 &r, u=0.14 for t=25 ar,
u=0.20 for t=50 ar och u=0.24 for t=500 &r.
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I figur 9.4.2 B visas temperaturen mitt i det tdckande jordlagret
(z=12.5 m). Stationdra forhd1llanden intrdder efter 5 till 25 &r. Ned-
kylningen 20 m under akviferen (z=50 m) visas i figur C. Denna process
ar langsammare.

I figur 9.4.2 D och E visas temperaturprofiler i vertikala snitt ndra
brunnen (r=7.5 m) och relativt 13ngt ut (r=90 m). De olika tidsskalorna
illustreras vdal. Ndra brunnen far man pd 5 ar en linjdr temperatur-
profil uppdt, medan processen neddt och ldngre ut dr mycket Tangsammare.

9.4.3 Variation av parametrar

07ika parametrar har for referensfallet (9.4.2.1) varierats en efter en.
Resultatet visas i figur 9.4.3. Den radiella temperaturprofilen i akvife-
rens mitt (z = D+H/2) visas efter 25 ar. For de tre figurerna 9.4.3 B-D
ddr akviferens hojd H varieras anges medeltemperaturen over akviferhoj-
den for varje radie.

I figur 9.4.3 A har tjockleken D p& det tackande jordlagret varierats
frén D=5 ti11 D=100. Profilerna for D=100 m och D=50 m sammanfaller. Den
termiska rackvidden Ry 5 Okar fran 40 m for D=5 m till 70 m for D > 50 m.
Effekten av markytan pd rdckvidden &r fdorsumbar under de 25 forsta aren
om D dr storre dn 50 m.

I figur 9.4.3 B har akviferens hojd H varierats frén 5 till 50 m. De
radiella profilerna efter 25 &r skiljer sig inte mycket at. For att ndr-
mare belysa vad som hdnder visas radiella profiler efter 5 och 10 &r i
figurerna C och D. Som man kan forvdanta sig blir rdckvidden betydligt
kortare i den maktigare akviferen, eftersom det utmatade vattnet for-
delas over storre hojd. Denna stora skillnad forsvinner emellertid
efterhand. Detta beror pd att rdckvidden i forsta hand styrs av det
nedkylda omradets exponering mot markytan. Rackvidden for tva akviferer
med olika hojd, vilka mottar sammar vattenmangder, blir dd pd lang sikt
ungefdr lika. Detta resonemang forutsdtter att den termiska rdckvidden
ar relativt stor jamfort med D.
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Figur 9.4.3. Parametervariation utifrdn referensfallet 9.4.2.1. Figurerna visar
radiella profiler efter 25 ar.
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Detta exempel visar att man mdste vara forsiktig ndrdet galler att dra
slutsatser om 1&ngsiktigt beteende av erfarenheter frén de forsta

dren.

Virmeledningsformidgan har varierats i figur E. Referensfallet ges av den
kurva som dr utmdrkt med 2. For den Ovre kurvan Ao = 1.0 har vdrmeled-
ningsformagan A i tdckande skikt minskats frén 2.0 till 1.0. Rack-
vidden okar med 10 m. Den undre kurvan Ay = 3.5 ger radiell profil d&

Ay okat frén 2.0 till 3.5. Rdckvidden minskar d& med 5 m.

I figur F har vdarmeledningsformégan i akviferplanet All varierats frén

2 ti11 20 W/m-K. De higa vdrdena representerar approximativt en extra
temperaturutspridning genom dispersionseffekter, vilka orsakas av in-
homogeniteter. Det hoga vardet A 20 ger en minskning av termisk rack-
vidd med 14 m

En allman slutsats dr att den termiska rdckvidden inte dr speciellt

kdanslig for variationer av vdarmeledningsfdrmagorna.

Pumpflddet Qw har varierats i figur G. Pumpfloden upp till 6 1/s har
medtagits. Hogre varden dr ofta aktuella. For dessa fall kan med god
precision de enklare analytiska uttrycken i avsnitt 9.5 anvandas. Den
termiska rdckvidden dr forstds starkt beroende av Qw'

De tvd viktigaste variablerna for rackvidden dr enligt ovanstdende
parametervariation pumpflodet QW och tjockleken D pd tdackande jord-
lager.

9.4.4 Variabel inmatning

Effekter av variabla inmatningsforhdlianden skall belysas med tva
exempel i detta avsnitt. I det forsta exemplet jamfores konstant och
intermittent pumpflode. I det andra exemplet jamfores konstant och

variabel inmatningstemperatur.

Referensfallet med data enligt (9.4.2.1) har det konstanta pumpflodet
Q

W - 0.6 liter/s. Detta fall jamfores med ett fall med samma data for-
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utom att pumpfliodet ar ZQW = 1.2 liter/s under forsta halvan av varje
arscykel och noll under den andra halvan av dret. Figur 9.4.4 visar be-
réknade radiella temperaturprofiler mitt i akviferen under det 25:e
dret. Kurvan i mitten ger profilen efter 25 &r vid konstant pumpflode.
De tva andra kurvorna ger profilen efter 25 och 25.5 &r for det inter-
mittenta fallet.

z=25m

constant injection

05 1

r rim}
0 50 100

Figur 9.4.4. Jamforelse mellan konstant och intermittent pumpfldde.
Data enligt (9.4.2.1).

Nara brunnen far man forstds klara skillnader. Dessa dampas radiellt
utdt. Den termiska rdckvidden R0.5 blir cirka 60 m i bdda fallen. Iso-
termen u=0.5 for det intermittenta fallet fluktuerar inom ett omr&de
pa ndgra meter runt virdet vid konstant utmatning.

Exemplet visar att den termiska ridckvidden for den aktuella typen av
grundvattensystem i huvudsak styrs av medelpumpflddet under arscykeln.
Det rdcker att studera fall med konstant pumpflode. Denna slutsats
gdller ej for system med &terladdning ddr det kalla vattnet tas till-
baka sommartid. Aterladdning behandlas i avsnitten 9.4.6-8.

Effekten av varierande inmatningstemperatur belyses med foljande
exempel, som utgdr frin referensfallet 9.4.2.1 med konstant pumpflode.
Den dimensionsl6sa inmatningstemperaturen Uin dr Tika med +1. Detta
fall jamfores med ett fall dar inmatningstemperaturen Usn varierar
kvartalsvis. Under kvartal 1, 2, 3 och 4 ir Usin 1ika med 1.5, 1.0,



0.5 respektive 1.0. Processen upprepas &r frén ar. Medelinmatningstem-
peraturen dr fortfarande +1. I figur 9.4.5 visas radiella temperatur-
profiler under det 26:e dret. Nara brunnen ut till cirka 30 m f&r man
kraftiga temperaturvariationer. Variationerna under &ret ir helt ut-
ddmpade for r > 50 m. Den termiska rdackvidden R0.5 ~ 60 m paverkas

ej av temperaturvariationerna.

15

_25 1iky

2512y in

r{m}

Figur 9.4.5. Jdmforelse mellan konstant och variabel inmatningstempera-
tur. Data enligt (9.4.2.1).

Fallet med periodisk inloppstemperatur behandlas analytiskt i avsnitt
9.5.1.4. Temperaturamplitudens dampning for okande r ges av formel
9.5.1.18. Den termiska rackvidden paverkas helt obetydligt av fluktua-
tioner i inloppstemperaturen om fgljande kriterium ar uppfyllt:

R0.5 > 2 . /ZRfdo (9.4.4.1)

Har ges Rf av formel 9.4.2.3 och dO av
at
d =/-29 (9.4.4.2)

Periodtiden to ar normalt ett &r.

I det f6ljande anvdndes alltid en konstant inmatningstemperatur.



9.4.5 Diagram for termisk rdckvidd

Enligt foregdende avsnitt bestdms termisk rackvidd RO.S av medelpump-
flodet och medelinjektionstemperaturen. Man kan anvdnda konstanta
varden. Dimensions16s inmatningstemperatur Uin blir lika med +1. 1
detta avsnitt skall den termiska rdckvidden R0.5 ges i dimensionslds
form i ett antal diagram.

Vid en dimensionsanalys av det givna rotationssymmetriska problemet enligt
figur 9.4.1 med konstant inmatning anvdndes H som skalningsldngd. Rick-
v1'dden~RO.5 blir d& proportionell mot H. Den blir en funktion av den
dimensionsldsa tiden at/HZ. Problemet fér foljande parametrar:

(9.4.5.1)

o, e h ke
H> A c”

‘%
> x? ¢

o

Den stationdra termiska rdckvidden Rf innehdller pumpflodet Qw enligt
formel 9.4.2.3. Rdckvidden ges s&ledes av en funktion som beror av ett
antal parametrar enligt fgljande:

59;5 L E_A D ill 39 ES . EE EQ) » (9.4.5.2)
H H2 > H*H? XA a2 C*C T

Rdackvidden R0 5/H ges i figur 9.4.6 A-N. Den viktigaste parametern ar
pumpflodet QW dvs. Rf/H. Rackvidden som funktion av dimensionslos tid
ges for foljande varden:

R
Wf =1, 2,5, 10, 20, 50, 100 (9.4.5.3)

For varje vdarde ges tvd diagram. I det forsta varieras D/H och i det
andra vdrmeledningsférmdgorna. Exakta parametervarden visas i figur
9.4.6 A-D.

Varmekapacitetskvoterna varieras ej i figurerna 9.4.6 A-N (Cb/C = CC/C =
= 0.8). For att belysa dessa parametrars betydelse har utifrén fallet
Rf/H:1D, D/H=1 enligt figur 9.4.6 G kapacitetskvoterna okats fran 0.8
till 1 och minskats till 2/3. Resultatet visas i figur 9.4.7. Kurvan

for utgadngsfallet enligt figur 9.4.6 G faller mitt emellan de tvd kur-

vorna. Skillnaderna mellan kurvorna dr smd. Vdrmekapaciteternas betydel-
se for rdckvidden ar ringa.
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Figur 9.4.6 A-D. Diagram for termisk rdckvidd R0 5 runt enskild brunn vid

ren utmatning.



9.18

o

Rys Ros
H
4 e As05—
/
4 3 ] ] e
/,__—%ﬂ— 3 L A2 ==
3 S —
03
e 01 5 / L 210
2 5 —
1 " / R
1 A
/ P
at
% 5 rr at
£ 0o 1 2 3 4 5
F
Ros
H
[ A —
/
6 =3
L
5 —"]
[
L S ——
] 0.1
p—
3 /
2
Ry
F-10
1
, 2
0 G 5 101
R
; A
6 bl A5
] |
[ / A=1
/::_’_’__—— Ap=2
L P | 7\,,=10 —
//
]
3 /
2 R
2f
H =10
1
at
0 )
0 5 10 H
H

Figur 9.4.6 E-H. Diagram for termisk rickvidd RO 5 runt enskild brunn vid
ren utmatning.

—+

=
ol



Rys
H
10 U E——
//
L—3 ]
T |
// H
I B—
// 01
]
R
T4]!=2o
2
) at
2
0 I 5 10 H
Ros
10 A i
[ A=05—
— ] |
I A=1
e e e N —

0 2
0 5 10 H
J
Rys
H
/ 3 7]
1
o
——=
/
L]
10 03
[ —
T 01
L
R¢
F—SO
2
t
0 ar
0 5 10 H?
K

Figur 9.4.6 I-K. Diagram for termisk rickvidd R0 5 runt enskild brunn vid

ren utmatning.



9.20 Ros

H
et
1 p—
/
| —— =1
12 — R PV | P am—
/2%5”, 7
10
8
6 R
/ o
&4
2
at
0 o7
0 1 2 3 L 5 6 7 8 9 H
Ros .
H
25
20
/
] | by
| H
15
03 i
/ ]
10
R
/ —t=100
5
|
l at
% 54 10 H
Ros
H
20 AES |
S P
e e el T R
— A=10
7
10 /
Rf_
/ H-=100
0 a
0 1 2 3 4 5 6 7 8 9 H

Figur 9.4.6 L-N. Diagram for termisk rackvidd R0 5 runt enskild brunn vid
ren utmatning.



9.21

Rus
A
6 T
b G 2 1 ____l____
c c 3

0 at

0 5 10 H

Figur 9.4.7. Termisk rdckvidd vid variation av varmekapaciteter. Utgdngs-
fallet ges av kurvan D/H=1 i figur 9.4.6 G.

Den dimensionsldsa tiden ar at/H2 = t/(Hz/a). Tidsskalan ges av Hz/a.

Tvéd numeriska exempel dr:

a=1.010"%més  W-10m HYa-3.2ar

0 (9.4.5.4)

H=50m H"/a = 79 é&r
Diagrammen ges for dimensions1ds tid fram till 5 & 10 enheter. I verk-
liga tider ger darfor diagrammen forloppet under en tidsperiod upp till
15 & 800 ar.

9.4.6 Aterladdning

Nedkylningen runt &terinjekteringsbrunnen och den termiska rdckvidden
kan minskas avsevdrt genom aterladdning sommartid. Vintertid pumpas
kallt vatten ut i &terinjekteringsbrunnen. Vid &terladdning sommartid
pumpas detta vatten tillbaka. Vattnet vdarmes till ostdrd temperatur TO
och pumpas ner via uttagsbrunnen.

For det aktuella problemet ddr en enskild brunn studeras blir pumpflddet
pulserande under &rscykeln. Vintertid injekteras nedkylt grundvatten.
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Vid &terladdningen pumpas vatten tilibaka. Pumpflodet QW ar dé negativt.
Aterladdningen antas vara balanserad sd att samma vattenmdngd pumpas ut
och tas tillbaka under varje &rscykel. I avsnitt 9.4.8 behandlas fallet
dd dubbelt sa mycket vatten pumpas tillbaka vid &terladdningen.

For att belysa vad som hdnder vid &terladdningen skall ett exempel med
data enligt referensfallet 9.4.2.1 behandlas i detalj. Pumpflodet Qw(t)
ar nu pulserande enligt foljande:

3 3

1.8-10" m”/s 0 < t-nt_ < 4 (ménad)
0 4 <tnt <6

Q,(t) = ¢ 1 8.1073 wd/s 6 < t-nt <10 (9.4.6.1)
0 10 < t-nt <12 "

(to=1 ar, n=0,1,...)

Utpumpning sker under fyra minader. Pumpflddet dr tredubblat jamfort
med det tidigare referensfallet. Samma vattenvolym pumpas s&ledes ut
under varjerérscykel. Efter tvd ménader sker &terpumpning under en
fyramanadersperiod.

Den termiska radien for utpumpningen under fyraminadersperioden ges av
(9.4.2.2):

RT =35.5m (9.4.6.2)

Temperaturfaltet for detta referensfall med dterladdning visas i figurer-
na 9.4.8 och 9.4.9. Figur 9.4.8 visar temperaturstorningen u(r,z,t) 1
mitten av dret, dvs. efter injektionsperioden. Figur 9.4.9 ger tempera-
turer i slutet av varje ar, dvs. efter 4terladdningsperioden dd vattnet
har pumpats tillbaka.

Figur 9.4.8 A visar radiell temperaturstdrning mitt i akviferen. Motsva-
rande fall utan dterpumpning ges av figur 9.4.2 A. Temperaturprofilen
efter det forsta drets utmatning dr vidsentligen densamma. Den termiska
rackvidden dr i bada fallen cirka 30 m. Réckvidden i &terladdnings-
fallet okar léngsamt upp till drygt 35 m efter 10 &r. Okningen mellan
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ar 10 och &r 25 dr inte mer dn en meter. Aterladdningen minskar rack-
vidden efter 25 &r fran 60 m till 37 m.

En viktig ldrdom av detta exempel dr att den termiska rdckvidden R0 5

stabiliserar sig till ett i huvudsak konstant vdrde redan efter nagra &r.

Figurerna 9.4.8 B-D visar temperaturprofiler radiellt i tackande jord-
lager (z=14.5 m) och lidngs tvd vertikala linjer (r=7.5 och 42.5 m).

Figur 9.4.9 A visar den radiella temperaturprofilen mitt i akviferen
efter dterpumpningsperioden. Efter de forsta dren dr Okningen av tempe-
raturstorningen relativt liten och langsam. Figurerna 9.4.9 B-C visar
profiler langs vertikala linjer ndra brunnen (r=12.5 m) och langre ut
(r=55 m). Efter &terpumpningen #r temperaturstrningen ligre i akvife-
ren @n i omgivande skikt.

Temperaturen p& det &terpumpade vattnet under de fyra ménderana av
aterladdning visas i figur 9.4.10 for olika &r. Detta vatten skall
varmas till T:TO, dvs. till u=0. Ytan under kurvorna ger den vdarmetill-
forsel som krdvs for &terladdningen. Medelvardet av u for &terpumpat
vatten under ett &r betecknas n. Det &terupptagna vattnet skall i
medeltal uppvdrmas n-(TO-T1) 9C. Storheten n anger erforderlig ter-
uppvarmningsgrad. Den visas for det aktuella fallet i figur 9.4.11.
Ateruppvdrmningsgraden n blir for &r 1, 2, 5 och 25 lika med 0.57, 0.64,
0.70 respektive 0.74.

Extraction temperature wu

1 A i I 1 1 1 L 1 1 A 1 1
1 ~25y |

051 —= fe—

3 T

i 2 F
J 1 \r

0 T r — r T . Y - T T T — t(days)
0 50 100

Figur 9.4.10. Temperatur hos upptaget vatten under &terladdningsperioden
for referensfallet med &terladdning. Data enligt (9.4.2.1)
och (9.4.6.1).
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Figur 9.4.11. Erforderlig ateruppvarmningsgrad for referensfallet med
dterladdning. Data enligt (9.4.2.1) och (9.4.6.1).

9.4.7 Parametervariation for &terladdningsfallet. Tumregel for termisk
rdckvidd.

0lika parametrar har varierats en efter en for referensfallet (9.4.2.1)
med balanserad dterladdning enligt (9.4.6.1). Resultatet ges i figur
9.4.12 A-F. Radiella temperaturprofiler i akviferens mitt ges for tiden
t = 25.5 4r, dvs. efter det 26:e &rets utpumpning. D& H varieras, anges
ett medelvdarde Over akviferens hdjd.

Tjockleken D p& tackande jordlager har varierats fran 5 till 50 m. Skill-
naderna i rackvidd blir smd. Akviferhojden H har varierats frén 5 til1 80 m.
I motsats till fallet utan &terladdning blir nu skillnaderna i rdckvidd
stora.

Figur 9.4.12 C visar att en dndring av vdrmeledningsfdrmdgan for under-
liggande skikt (Ab = 3.5 1 stdllet for Ap = 2) eller for tackande skikt
(AC = 1.0 i stdllet for Ae = 2) inte ndmnvart pdverkar rdckvidd. Refe-

rensfallets kurva faller emellan de tvd givna kurvorna.

Den radiella vdrmeledningsfdormiagan A har varierats fran 2 till 20.
Kurvorna blir forstas flackare, da AI' okas. Den termiska rdackvidden
R0.5 paverkas dock ej i ndgon storre grad eftersom kurvorna korsar
varandra ganska ndra det r-varde ddr u dr lika med 0.5.
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Figur 9.4.12 A-F. Radiella temperaturprofiler vid parametervariation for
referensfallet med &terladdning. Utgangsdata enligt
(9.4.2.1) och (9.4.6.1).
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Den viktigaste parametern for den termiska rédckvidden dar som tidigare
pumpflodet Qw, dvs. den vattenmangd som pumpas ut under varje arscykel.
I figurerna E och F ges profiler vid variation fran 0.2 QW till 100 Qw’
dar Qw ar referensfallets pumpfldde.

Medelvdrdet av temperaturen u pd uttaget vatten under &terladdningsperioden
ger erforderlig dterladdningsgrad n. Tabell 9.4.1 anger denna for ar 1, 3
och 25 for referensfallet och for ndgra av fallen fran parametervariationen.
Okningen av n dr efter de forsta &ren liten.

Ar 1 3 25
Referensfallet 0.57 0.64 0.74
D=5m 0.56 0.62 0.66
D=50m 0.58 0.67 0.76
i

H=5m i 0.4 0.52 0.62
H=20m 0.62 0.70 0.77
H=40m 0.68 0.75 0.83
H=280m 0.63 0.71 0.80
Xc = 1.0 i 0.60 0.69 0.78

o 20 0.43 0.51 0.61
0.2 Qw 0.47 0.55 0.62
10 Qw 0.58 0.69 0.79

Tabell 9.4.1. Erforderlig &terladdningsgrad n for referensfallet med
dterladdning och for ndgra fall fran parametervariationen.

Vid variation av H far man ett maximum for n vid H=40 m. Detta maximum
beror pd att det nedkylda omrddet har den mest kompakta formen for
detta H. Detta ger den ldgsta uppvdrmningen frin omgivningen.

I referensfallet pumpas 19 000 m3 vatten ut varje ar. I &terladdnings-
fallet pumpas samma volym vatten tillbaka varje &r. Den termiska radien
Ry for denna vattenvolym ar enligt (9.4.2.2) 35.5 m. Enligt figur 9.4.9 A
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dr den termiska rackvidden RD.S 30 m efter forsta &rets utmatning. Den
stiger sedan till drygt 35 m for &r 10 till 25. Den termiska radien
kan darfor i detta fall anvidndas som en uppskattning av termisk rack-
vidd fran 14t oss sdga &r 5. Med utgéngspunkt fran detta exempel upp-
stdlls foljande tumregel for att uppskatta rackvidden.

Givet ett fall med balanserad &terladdning. Yattenmangden wa (m3/ér)
utmatas varje &r. Vid &terladdningen pumpas samma vattenvolym tillbaka.
Den termiska radien f@r denna vattenvolym &r enligt formel 9.2.5:

v C

Rpy = o (9.4.7.1)

En uppskattning av den termiska rdckvidden R0 5 ar da

R0.5 =~ R (9.4.7.2)

Ty
Detta skall betraktas som en tumregel. Den termiska rackvidden avser
tiden dd utpumpningen dr fullbordad for aret. Uppskattningen gdller

for rdckvidden efter nigra &r. Under de forsta &ren overskattar formeln
rdackvidden.

I tabellerna 9.4.2 och 9.4.3 jamfores tumregeln med de virden som har
berdknats vid parametervariationerna. Tabell 9.4.2 ger rackvidd RO.S
for &r 25 (figur 9.4.12 B) och termisk radie RTy for olika akviferhgj-
der. Tabell 9.4.3 ger en jsmforelse for olika pumpf1dden a-Qw (figur
9.4.12 E-F).

H (m) 5 10 20 40 80
RTy (m) 50 35.5 25 18 13
Ry 5 (m) 41 36.5 28 21 16
ar 25

Tabell 9.4.2. Jdmforelse mellan termisk radie och termisk rackvidd fran
figur 9.4.12 B.
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Relativt

pumpfldde 0.2 1 2 5 10 20 50 100
RTy (m) 16 35.5 50 79 112 159 251 355
R0 5 (m) 16 3.5 53 85 121 167 267 370
ar 25

Tabell 9.4.3. Jamforelse mellan termisk radie och termisk rackvidd fran
figur 9.4.12 E-F.

Tumregelns maximala fel i dessa fall &r 20%. I de flesta fall ligger felet
runt 5%.

Det bor noteras att det inte finns ndgon motsvarande, lika enkel formel
for fallet utan balanserad dterladdning.

9.4.8 Dubbel &terladdning

Samma vattenvolym pumpas ut och tas tillbaka vid balanserad dterladdning.
Man kan tanka sig att oka &terladdningen genom att pumpa tillbaka mer
vatten. Detta skall belysas med ett exempel.

Data enligt referensfallet 9.4.2.1 anvdndes. Pumpflddet foljer aterladd-
ningsfallet enligt (9.4.6.1) med den skillnaden att pumpflodet vid
dterladdning fordubblas:

1.8-1073 m3/s 0 < t-nt <4 (manad)
0 4 < tent, <6 "
Wit =9-3.610 nds 6 <tent, <0 " (9.4.8.1)
0 10 < tent, <12
(t,=1dr, n=0,1, eel)

I figur 9.4.13 visas den radiella temperaturprofilen i akviferen efter
utmatning och efter dterpumpning for ar 26. De streckade linjerna ger
det tidigare fallet med balanserad &terladdning. Den termiska rdck-
vidden har minskat 3 m. Den fordubblade dterladdningen ger en relativt
liten forbattring.
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r(m)

Figur 9.4.13. Radiella temperaturprofi1ér for referensfallet med balan-
serad och dubbel &terladdning.

9.4.9 Temperaturstdrning vid markytan

Temperaturstorningar vid markytan fran det kalla aterinjekteringsvattnet
dr av intresse av miljoskdl. De hir angivna temperaturstorningarna ar
dverlagrade p& naturliga, ostorda temperaturer. Vid och ndra markytan har
man kraftiga temperaturvariationer under dygnet. Bl.a. for att undvika

de komplikationer som detta ger upphov till skall temperaturstérningar pa
en meters djup (z=1) anges.

Som exempel anvdndes referensfallet med data enligt (9.4.2.1). Tjockleken
D pd tackande jordskikt varieras. Temperatursdnkningen for grundvattnet
antas vara 5°C:

D=5, 20, 50m T,-T, = -5%¢ (9.4.9.1)

Temperaturstorningen pd en meters djup visas i figur 9.4.14 A-C.

Figur 9.4.14 A visar temperaturstorningen for ett tunt tickande skikt

(D=5 m). Den maximala temperaturstorningen blir -0.8°C. Detta innebir att
temperaturen p& en meters djup vid brunnen hela 3ret Tigger cirka 0.8°C
under den ostdrda marktemperaturen. Vid 60 meters avstind frén brunnen

har stdrningen reducerats till 20% av maximalvirdet. Entigt figur 9.4.14 B-C
dr maximal stdrning -0.22°C for D=20 m och -0.08°C for D=50 m.
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Figur 9.4.14. Temperaturstorning p& djupet 1 meter vid dterinjektering
av 5 grader kallare vatten. Data enligt (9.4.2.1) och

(9.4.9.1).
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Storningar anges fram till &r 100. Tidsskalan fram till stationdra for-
hallanden beror starkt p& D och r.

Den maximala temperaturstdrningen ar T1_To °C. Den intrdffar vid brunnen
dad kallt vatten med temperaturen T1 injekteras. En forsta uppskattning dr
att anta en linjdr fordelning for stortemperaturen frén z=D till z=0.

P& en meters djup ndra brunnen &r dd temperaturstdrningen omkring
(T1-TO)/D. For de tre djupen blir detta med data enligt (9.4.9.1)

-5/5 = -10C, -0.25%C och -0.1°C. De numeriskt berdknade virdena hamnade
ndgot under dessa uppskattningar. Temperaturstorningen kan enligt (9.1.1)
skrivas

T(r,1,t) - T, = | 2=1 5

(9.4.9.2)

Faktorn (T1—T0)/D ger en normalt Ovre grans for maximal temperaturstor-

ning pd en meters djup. Faktorn D-u anger storningens storlek rela-

z=1
tivt maximalvdrdesuppskattningen (T1-To)/D. Den visas i figur 9.4.15 A-C

for referensfallet (9.4.2.1) for de tre olika vdrdena p& D. Det dr samma
figurer som 9.4.14 A-C fransett att relativ stdrning nu anges. Figur
9.4.14 D visar referensfallet (9.4.2.1) med balanserad &terladdning enligt
(9.4.6.1).
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Figur 9.4.15 A-D. Temperaturstdrningsfaktor enligt (9.4.9.2) for referens-
fallet (9.4.2.1) utan aterladdning (A-C) och med &ter-
laddning (D).
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9.5 Formler for nedkylning kring enskild brunn

I detta avsnitt skall formler for nedkylningen kring en enskild brunn
anges. Det naturliga regionala grundvattenflodet forutsdtts vara for-
sumbart. Temperaturforloppet kring brunnen forutsdtts vara vdsentligen
rotationssymmetriskt. Andra brunnar fér dd ej ligga alltfor ndra den
aktuella brunnen. Ett lampligt kriterium hdarfdr dr (9.4.2). Nedkylningen
ges som vanligt i dimensionsids form u(r,z,t) enligt (9.1.1). Injektions-
temperaturen dr dd +1 (u=+1), medan ostdrd temperatur T&ngt frdn brunnen
dr noll (u=0). Ett fall med variabel inloppstemperatur tas upp. Pumpflo-
det Qw ar konstant.

En grundforutsdttning for de analytiska 1dsmingarna dr att den termiska
rackvidden R0.5 ar stor jamfort med akviferhojden H. Temperaturvariationer
over akviferhojden kan d& forsummas. Akviferens plan skall i detta av-
snitt ges av z=0. Temperaturen i akviferen ar d& u(r,0,t). Det tdckande
skiktet ges av z>0 och underliggande skikt av z<0.

Den andra grundforutsdttningen dr att radiell varmeledning i akviferens
plan kan forsummas. Detta dr en hdgst rimlig forenkling dd de radiella
profilerna i de aktuella fallen &r mycket flacka. Konvektiv vdrmetransport
i radiell led beaktas givetvis.

9.5.1 Forsta analytiska 1dsningen

Utover de ovan angivna forutsattningarna antages akviferen ligga s&
djupt ner att effekten av markytan kan forsummas. Kriterier for detta
anges nedan for den stationdra och den transienta 1dsningen. De nedan
angivha 10sningarna hdrror fran en dnnu ej dokumenterad studie av

J. Claesson.

9.5.1.1 Stationdr 10sning

I marken ovanfor akviferen, z>0, dr vdrmeledningsformagan Ac Under akvi-
feren, z<0, dr den M- 1 akviferplanet har man en energibalans mellan
konvektivt, radiellt f1dde och de vertikala varmefltdena nerifran och
uppifrén.



Den stationdra temperaturen Ug blir en funktion av r och z. Den ges av:

Re

uS(Y‘,Z) =m (9-5.1.1)

Hir ges langden Re enligt (9.4.2.3) av
Q,C

R WwW

£ :W (9.5.1.2)

Isotermer fOr den stationdra temperaturstérningen ug visas i figur 9.5.1.

0[N
:

[T u =04
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ug=1

2~
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Figur 9.5.1. Stationdr temperaturstdrning for akvifer enligt formel
9.5.1.1.

Temperaturstorningen langs akviferen och lings z-axeln vinkelrdt ut fran
akviferen blir:



R
us(r,O) = Zf >
'”R"Rf (9.5.1.3)
u (0,z) = f
st? z +Rf

Dessa temperaturer visas i figur 9.5.2.
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Figur 9.5.2. Radiell stationar temperaturprofil i akvifer us(r,O). Tem-

peraturprofilen ldangs z-axeln visas ocksd.
Den termiska rdckvidden RO 5 blir

R0.5 = Rfv/§ (9.5.1.4)
Detta ger en absolut ©vre grdans for R0 5 eftersom markytan dr forsummad
och stationdra forhdllanden galler. For ytligt Tiggande akviferer blir
stationdra rdckvidder vdsentligt mindre.

Den stationdra temperaturstorningen ug har samma utseende for alla parameter-
vdarden. Langderna skalas med Rf. Langden Rf dr sdledes ett mdtt pd den
stationdra termiska influensradien.

Den givna stationdra 1dsningen forutsatter att markytans pdverkan kan
forsummas. Effekten av markytan, ddr u skall vara noll dr ungefdr den-
samma som om man ansatte en negativ spegelidgsning pd avstdndet 2D i z-
led. Den stationdra 1dsningen kan med acceptabel approximation anvandas
for att bedomma termisk rdckvidd om foljande villkor &r uppfyllt:
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D>2 Rf (9.5.1.5)

9.5.1.2 Transient analytisk 16sning

Utdver antagandena i inledningen till avsnitt 9.5 och 9.5.1 forutsitts
att termiska egenskaper dr 1ika i Over- och underliggande skikt:

Ay = A Cb =C (ab =a) (9.5.1.6)

Vidare forsummas akviferens egen varmekapacitet. Detta senare villkor
krdver att den vertikala utstrdckningen av temperaturstorningen ir stor
relativt akviferhojden.

Effekten av markytan forsummas. Ett 1ampligt kriterium (breaking-point)
for detta ar foljande:
2
_ (2D+H)
t < tbp = (9.5.1.7)
c
Losningen som forsummar markytans inflytande gdiler med hygglig precision
fram till tiden t

bp*
-6 2
Exempel. H = 10 m a. = 1.0+10 © m%/s
Dad gdller:
D (m) | 5 10 20 50 100
tbp (ar) | 4 9 25 120 450

Exemplet visar att markytans inflytande kan forsummas under ménga &r da
det tdckande skiktet ej ar alltfor tunt.

Den transienta 10sningen ar:

act

R s-R
ulr,z,t) = gf . erfc<71_f_> (9.5.1.8)



s = /f s (Jz]+R)? (9.5.1.8")

Den forsta faktorn &r den stationdra 1dsningen us(r,z) enligt (9.5.1.1):

ulr,z,t) = us(r,z) . erfc(

1
/4T> (9.5.1.9)

Den andra faktorn ger tidsutvecklingen i varje punkt frdn u=0 till U=lg.
Har dr t' en dimensionslds tid:

. act

i (/r‘2+(lz|+Rf)2 - R

2 (9.5.1.10)
.f.‘

Tidsfunktionen i (9.5.1.9) visas i figur 9.5.3.

0 5/50 10/100 15/150 20/200 "
1 T -
ZOslt'SZOO
0=t'=20 L—1""|
Pl
/:{?\1 1
4 “nt — ==
8 —
[ P
O=t'=2
/
1
[ erfc ( W)
0 t'
0 05 10 15 20
erfc(IVEY) | 0.01 0.1 05 0.8 09 095 0.99
t 0.075 0182 110 7.80 317 127 3180
Figur 9.5.3. Tidsfunktion T6r den {Srsta transienta 13sningen enligt

formel 9.5.1.9.

Tidsskalan for dimensions1ds tid ar:

9.37
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¢ (»/r2+(lz|+Rf)2 - Rf)2
t' == t, = (9.5.1.11)
t1 1 a.

Vid tiden t=t1 har enligt formel 9.5.1.9 och figur 9.5.3 ungefédr halften
av det stationdra slutvdrdet uppndtts. Nedanstéende exempel visar den enorma
variationen i tidsskala.

Exempel. R = 100 m a_ = 1.01076 m2/s
(9.5.1.12)
z =20
Da gdller for ndgra radier.
r (m) g 10 25 50 100 200 400

t1 (ar) 0 0.01 0.3 4.4 54 430 3100

9.5.1.3 Formler for termisk ridckvidd

Temperaturstorningen radiellt ldngs akviferen ges av u{r,0.t). Denna kan
enligt (9.5.1.8) skrivas i foljande dimensionslosa form:

Vol+1 2
(9.5.1.13)
T
Re Re

Denna radiella temperaturstorning ges i figur 9.5.4,

Den termiska rdckvidden RO 5 ges av figur 9.5.4. Foljande formel kan med
mycket god precision anvindas:

R, . =R, - “T/TT\\2-1 CL Rt (9.5.1.14)
0.5 = Re T+0.577%) R -1
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u
1 |
N N\ T= Jg?
NN g
LAV AN
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N =
BN S S S S s==—un
| 005 %{ N N ~ e N e e N O
—0.005 I e
0 \ i N ™ —— N I
=L
0 1 2 3 A g=F
f
Figur 9.5.4. Radiell temperaturstdrning i akviferen enligt den forsta
analytiska 18sningen. Formel 9.5.1.13. (a=ac:ab).
Exempel. Med data enligt referensfallet (9.4.2.1) f&s:

Re = 100 m tyy = 25 dr
va t
L Y A YA (t =1 ar)
Rf ty ty y

Formel 9.5.1.14 kan anvdndas under de 25 forsta &ren:

t/ty 1 5 10 25

Ry s (m), formel 9.5.1.14 31,1 45.8 53.8 66
R0 5 (m), figur 9.4.2. A 29.3 46.2 53.3 60

Numeriskt berdknade rdckvidder enligt figur 9.4.2 A anges ocksd.
Overensstdmmelsen d@r mycket god. Felet efter 1 &r dr storre dn
efter 5 och 10 &r. Detta bor bero pd att akviferens egenkapaci-
tet forsummas. Vid grdnsen for formelns giltighet Gverskattas
rdckvidden med 10%. UOverskattningen beror p§ att markytans
effekt forsummas.
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9.5.1.4 Periodisk inmathingstemperatur

Den angivna 1dsningen enligt formel 9.5.1.8 gdller for fallet att inmat-
ningstemperaturen u(0,0,t) sattes till +1 vid t=0. Man har en stdrning
for en stegdndring av inloppstemperaturen. Genom superposition kan hdrur
temperaturforioppet for en godtyckiigt tidsvariabel inmatningstempera-
tur anges. Har skall vara fallet med en periodisk inmatningstemperatur
behandlas.

Temperaturen pd inmatat vatten varieras sinusformat

T(0,0,t) = Tzosin(glz)

(9.5.1.15)
tO

Den periodiska variationen kan vara overlagrad pd en konstant komponent
T(0,0,t) = T1.

Den periodiska temperaturen i marken blir:

Re =(s-R.)/d s-R
B £ £11% . (et 3TNf
T(r,Z,t) = T2 . S e 'S1n\‘f;' TQ—) (9.5.1.16)
Hir ges s av (9.5.1.8'). Ldngden d, ges av
at
_ c’o
d0 = = (9.5.1.17)
Temperaturens amplitud 1dngs akviferen blir:
R ~(/r4RZ - R,)/d
.. f e fof o (9.5.1.18)
2 612:”2

Normalt &ar d0 mycket mindre an Rf. Amplituden kommer dd att ddampas ut da
r dr mycket mindre an Rf. Amplituden kan d& med god precision skrivas
(d0 K Rey 1 K Rf):

-rz/(ZRfdo)
T, e (9.5.1.19)

Den periodiska variationen dampas s&ledes (kvadratiskt) exponentiellt med
Tangden /Eﬁ;&;. Variationer over akviferhdjden H har forsummats. Ddmpnings-
ldngden bor ddrfor vara ndgorlunda stor relativt H for att ovanstéende
formler skall galla.
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Exempel. I figur 9.4.5 visas for referensfallet (9.4.2.1) radiella tempera-
turprofiler d& inmatningstemperaturen varicrar under 3dret. Med
data enligt (9.4.2.1) blir dampningsldngden

/ZRfdo = /2.100-3.17 = 25 m

Vid r=25 skall amplituden for den periodiska delen ha dampats

1

med faktorn e ' = 0.37. Detta stdmmer kvalitativt med figur

9.4.5. For r=50 m dr dampningen e = 0.02.

9.5.2 Andra analytiska 16sningen

Utover de forutsdttningar som anges i inledningen till avsnitt 9.5 gores
foljande antaganden. Effekten av markytan forsummas. Tidskravet 9.5.1.7
skall vara uppfyllit:

t < tbp (9.5.2.1)
Vidare forsummas radiell vdarmeledning i Overliggande och underliggande
skikt. Den nedan angivna analytiska 10sningen beaktar sdledes vertikal
varmeledning Over och under akviferen. I akviferen beaktas konvektiv
varmetransport och akviferens varmekapacitet.

Forutsdttningarna for den forsta och den andra analytiska 18sningen
skiljer sig enligt foijande. Den forsta l1dsnigen forutsdtter samma
termiska egenskaper i Gver- och underliggande skikt. Vidare forsummas
akviferens varmekapcitet. Den andra 16sningen har ej dessa restrik-
tioner. I stdllet forsummas all horisontell varmeledning.

En analytisk 16sning till detta problem finns angiven i referens 146
for fallet med samma termiska data i Gver- och underliggande skikt. Den
nedan angivna 10sningen har ej denna restriktion.

Enbart temperaturen u(r,0,t) i akviferen skall anges. Den termiska radien
vid tiden t dr enligt formel 9.2.4:
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~+

QC
Ry = Ll g (9.5.2.2)

™

5

Eftersom radiell varmeledning forsummas blir u noll utanfér den termiska
radien:

u(r,0,t) =0 r >R (9.5.2.3)

Losnigen ges av:

2
t r \
u(r,0,t) = erfe(Y5 - — ) (0 <r<Rry) (9.5.2.4)
vt RT/R%-rZ/ = =T
Har ges tiden tm av:
t = H . ( 2C ¥ (9.5.2.5)
m - —————} . . .
#ACCC + VAbe
Med dimensionsldsa koordinater kan den radiella temperaturstdrningen
skrivas:
u(r,0,t) = erfclt - n? ) (0<ng ) (9.5.2.6)
\ ,/1_n2/ - -
-/ -
m T

Denna funktion av t och n ges i figur 9.5.5.

Den termiska rackvidden RO 5 kan direkt beraknas frén formel 9.5.2.6
(erfc(0.48) = 0.5):

R
- i} (9.5.2.7)

R -
0> e ijaaete

Exempel. For referensfallet med data enligt (9.4.2.1) fas:

tbp =25 ar tm = 3.17 ar

RT = 35.5 Vt/ty m (ty =1 &r)

Den termiska rdckvidden enligt formel 9.5.2.7 blir di for négra
tidpunkter:
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t/t 1 5 10 25

M

RD 5 (m), formel 9.5.2.7 26.5 44.4 54,3 69.9

R0 5 (m), figur 9.4.2 A 29.3 46.2 53.3 60
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Numeriskt berdknade rackvidder anges ocksd. Uverensstdmmelsen
ar god. Vid gransen for formelns giltighet Gverskattas rdck-
vidden med 15%. Overskattningen beror p& att horisontell

varmeledning forsummas.

— ::::::::::::::?—"“‘“~—:::::f__ —0.01 N\
VNS —_—— .
INERURNNRNNESS N
IR AN NN
T N NN NI [ Tos s NN
T NN RN Y e N
AN AN AN
NANVERNEVAYR RN AN
_230100\'50 25 0 6t AN N\ A\

AR\

NN RN
0 0

w {///
/

Figur 9.5.5. Radiell temperaturstorning enligt den andra analytiska

16sningen enligt formel 9.5.2.6. Kurvorna avser olika

T = Yt/t .
m

9.5.3 Akvifer ndra markytan

De foregdende 16sningarna forsummar effekten av markytan. Ett motsatt

antagande dr att markytan ligger sd pass ndra akviferen att vdarmefor-
Tusten uppdt vdsentligen kan betraktas som stationdr. For detta fall

skall en analytisk 16sning, vilken &r en generalisering av 10sningen i

foregdende avsnitt, anges. (J. Claesson, opublicerad studie.)
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Utover forutsdttningarna i inledningen til11 avsnitt 9.5 gores foljande
antaganden. Det tdckande jordskiktet dr relativt tunt jamfort med de
aktuella tiderna. Nirmare bestamt krivs:

_ (2D+H)?

t> tbp ma

w

(9.5.3.1)

C

Radiell vdrmeledning i Gver- och underliggande skikt forsummas. Det
overliggande skiktet antas ha en linjar temperaturprofil mellan akvifer
och markyta. Transient komponent av vertikal virmeledning forsummas
sdledes. Det tdckande skiktet verkar som ett virmemotstind mellan mark-
yta och akvifer.

Akviferen ligger vid z=0. Det tdckande skiktet ges av 0 < z < D och
underliggande skikt av z < 0.

Temperaturstdrningen radiellt i akviferen ges av filjande uttryck:

2
-(r/R.) It 2
© . erfc( ti . .> 0<r<R;
b RT;R%-r?

Den termiska radien RT ges av formel 9.5.2.2. For r > RT ar u(r,0,t) lika
med noll.

u(r,0,t) = e (9.5.3.2)

Tidsskala tb ges av:

2
2 4C
t, = H . (9.5.3.3)
b Abe
Radien Rc ar:
Q C (D+H/4)
=/ WM (9.5.3.4)
C Tr)\c

D& tiden gar mot odndligheten gir argumentet for erfc i 9.5.3.2 mot noll.
Den maximala stationdra temperaturstorningen blir d3:

-(r/R )

u(r,0,=) = e (9.5.3.5)
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Denna 16sning ar en balans mellan konvektiv radiell vdrmestromning i
akviferen och en stationar vertikal vdrmeforlust till markytan. Den

kan hirledas direkt ur varmebalanssambandet for varje radie r. Losningen
(9.5.3.5) visas i figur 9.5.6. I denna 1@sning forsummas vdrmeforlusten
nedit fran akviferen. Den ger en dvre grians for den verkliga radiella
temperaturstorningen. Den termiska rdckvidden blir:

Ry (=) = R+ /In(2) = R +0.83 (9.5.3.6)

r/Re

Figur 9.5.6. Maximal stationdr temperaturstdrning enligt formel 9.5.3.5
for akvifer nara markytan.

Med dimensionsidsa variabler kan temperaturstdrningen 9.5.3.2 skrivas:

2 2\
u(r,0,t) = e (r')7, erfc(r . (0<n<1) (9.5.3.7)
;1_n2) - -
Y"=RL T=¢—$—» n:%
C b T

Den forsta faktorn ges av figur 9.5.6 och den andra av figur 9.5.5.

Exempel. For referensfallet (9.4.2.1) erhdlles:

t, =25 ar R

35.5 v/t/ty (t, =1 4&r)

bp Y

12.7 ar

1]

Rc =9%.5m tb
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Losningen 9.5.3.7 kan tillampas for t > 25 &r.

For t = 50 &r och r = 75 m fis:

erfc(...) ~0.79
2
[ 75 —(rl) _
r' = 95 e = 0.53
u = 0.42

Motsvarande numeriskt berdknade virde ges i figur 9.4.1 A:
u = 0.38.
Den maximala termiska rdckvidden enligt (9.5.3.6) blir:

RO.S(m) =78 m

Motsvarande numeriskt berdknade virde blir enligt figur 9.4.1 A:
R0.5(500 ar) = 67 m. (Den termiska tickvidden har med god margi-
nal stabiliserat sig till stationirt virde for t = 500 ar. Se
tabell for exempel (9.5.1.12).)

Exemplet ovan visar att de enkla analytiska uttrycken ger relativt goda
uppskattningar av den termiska rdckvidden.

9.6 Langsiktig nedkylning vid uttagsbrunnen

I detta avsnitt skall formler och diagram for den l&ngsiktiga nedkyl-
ningen vid uttagsbrunnen anges for ett brunnspar.

Avstandet mellan brunnarna ar L. Regionalt naturligt grundvattenflide
forsummas. Vidare forsummas temperaturvariationer Gver akviferens hojd
och all varmeledning i horisontalplanet.

Vertikal vdarmeledning, akviferens varmekapacitet och konvektiv virmetrans-
port i akviferplanet beaktas. Grundvattenflgdet ir av bipoldr karaktdr i
horisontalplanet runt de tvd brunnarna.
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De givna formlerna baserar sig pd analytiska 10sningar av samma typ som

i avsnitt 9.5.2 och 9.5.3. Skillnaden dr att grundvattenflodet foljer ett
bipoldrt monster. Den forsta 10sningen for akvifer pd stort djup ges i
referens 146. Denna 10sning ar har generaliserad till att gdlla for

olika termiska data i Over- och underliggande skikt. Resultaten kommer
frén en dnnu ej publicerad studie av J. Claesson.

9.6.1 Akvifer pé& stort djup

Effekten av markytan forsummas. Detta ger tidskravet:

2
_ (2D+H)
t<tbp———_"a-c“°‘ (9.6.1.1)

Det vatten som strommar ldngs den raka sammanbindningslinjen mellan
brunnarna har den kortaste genomloppstiden fran injektionsbrunnen till
uttagsbrunnen. Lat t., (break-through time) ange tiden det tar for den
termiska storningen fran injektionsbrunnen att nd uttagsbrunnen. Den
ges av:

el

t, = (9.6.1.2)
bt 3QWCW

Dimensionslos tid definieras av

t
L=t (9.6.1.3)
Yot

Temperaturstorningen u vid upptagsbrunnen blir en funktion av <.

out
Eftersom horisontell varmeledning forsummas kan storningen fran injek-

tionsbrunnen (u].n = +1) ej n& uttagsbrunnen fore tiden t = tbt:

uout(r) =0 0 <t<1 (9.6.1.4)

Det forsta nedkylda vattnet, dvs. med u stérre @n noll, nar uttagsbrun-
nen vid tiden t=1. Detta vatten har strommat raka vdgen mellan brunnarna.
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Efter hand kommer nedkylt vatten med allt lingre termiska genomloppstider
att nd fram till uttagsbrunnen. Det nedkylda vatten som nar uttagsbrunnen
har vdrmts pd sin vdg mellan brunnarna genom den vertikala virmeledningen.

Temperaturstorningen for uttagsvattnet ges av foljande formel:

1 (o)

(1) =1 of f{ fols) }d (9.6.1.5)
u T = ertc  —— S 0.1,
out A ¥ @

(= 2> 1)
bt
fo(s) = 3 Sn(s) - srcos(s) (9.6.1.5")
sin”(s)

Funktionen fo anger genomloppstiden mellan brunnarna for olika strom-
Tinjer. Parametern y ges av:

Y = t_ (9.6.1.6)
Har ges t,. av (9.6.1.2) och toav (9.5.2.5).
Integralen (9.6.1.5) har berdknats numeriskt for olika t och y. Resultatet
ges i figur 9.6.1. Kurvan y=0 representerar fallet utan varmeforluster

till Over- och underliggande skikt.

Exempel. Data enligt referensfallet 9.4.2.1 gdller med foljande komplet-
teringar:

D =286 L=50m

Dessa data ger:

= 334 ar tbt = 0.661 &r
t =3.17 &r y = 0.457

Efter t=5 &r, dvs. 1 = 7.56, blir enligt figur 9.6.1 uttags-
temperaturen (fortsdttning pa sidan 9.50):
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Figur 9.6.1. TemperaturstGrning vid uttagsbrunnen
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Uout = 0.37

Uttagstemperaturen har dven bersdknats med datormodell enligt
avsnitt 9.3. Nedanstdende tabell ger resultatet for nigra tid-

punkter:

t (ar) 1.5 3 5 7.5 10 20
Uout? figur 9.6.1 0.1 0.29 0.37 0.43 0.47 0.50
Uout > datorberdkning 0.28 0.33 0.39 0.45 0.47 0.50

Overensstammelsen dr mycket god. Den storsta skillnaden erhdlles
i borjan. Detta beror pi att den analytiska 16sningen forsummar
horisontell varmeledning.

9.6.2 Akvifer ndra markytan

Akviferen forutsdtts 1ika forhallandevis nira markytan. Detta ger tids-
kravet:
¢t - (20 (9.6.2.1)
bp"—‘——*’“" - . .

ma
C

For det tackande skiktet antas en linjdr vertikal temperaturprofil pa
samma sdtt som i avsnitt 9.5.3.

Uttagstemperaturen dr som tidigare ostord for ¢ = t/tbt < 1 enligt
formel 9.6.1.4, Efter denna tid ges temperaturstorningen vid uttags-
brunnen av foljande uttryck:

-1
f (1)
0 -y, +f_(s) f (s)
() =1 Vot arf L0 1y (9.6.2.2)
Uout T g € "’”{Y /T—fo@‘} >
(T =L> 1)
Yot ~

Funktionen fo(s) ges av (9.6.1.5'). Parametern y ges nu av:
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t 2
bt 2 4c
y =V — t, = H" - (9.6.2.3)
ty b Abe
Den andra parametern Yy ges av:
2
2t m AL
Yy = ol - ¢ (9.6.2.4)
1 =~ CH{D+H/%) 3QWCW(D+H74)

Den dr ett mdtt pd varmeforiusten uppdt.

Uttagtemperaturen Uout beror nu av t, vy och Yq- Gransfallet y1=0 ges av
figur 9.6.1. Integralen 9.6.2.2 har berdknats numeriskt. I figur 9.6.2

A-E anges u som funktion av t for ndgra olika varden pa e Varje

out
diagram avser ett visst y.
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Figur 9.6.2 A. Temperaturstdrning vid uttagsbrunnen for akvifer pd litet
djup enligt formlerna 9.6.2.1-4.
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Figur 9.6.2 D, E. Temperaturstdrning vid uttagsbrunnen for akvifer pa
litet djup enligt formlerna 9.6.2.1-4.
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Den storsta nedkylningen erhdlles vid odndlig tid:

'YII 'fo(s)

m
Uyt () =% (j) e ds (9.6.2.5)

Denna maximala storning visas i figur 9.6.3.

Uyt
-t T
t=infinity
I T L2
051 v1 300, 0y 4+
0 I S — L —t e T N i W
0 0.5 1 15 2

Figur 9.6.3. Maximal temperaturstdrning vid uttagsbrunn efter ldng tid
for akvifer pa litet djup. Formel 9.6.2.5.



10. BERGVARME

10.1 Introduktion

Med bergvarmebrunnar avses hdr bergborrade brunnar som utnyttjas for

att ta ut vdrme frén berget. Vdarmen anvindes via en varmepump for upp-
varmning.

Man har olika typer av bergvdrmebrunnar. En typ ir ett system ddr
brunnsvattnet cirkulerar 1dngs brunnen i en uppdtgiende och en nedit-
gdende kanal utan att det sker nigot nettouttag av vatten fran brunnen.
Se figur 10.1. I detta fall pumpas vatten fr&n brunnens nedre del.
Vattnet dterfires, sedan varme avgivits ti11 virmepumpen, vid brunnens
ovre del. Vattnet i brunnen f&r en ligre temperatur dn omgivande berg.
Genom vdrmeledning i berget til1fgres brunnen virme.

100 -
150m

W
A\

/

N\

Lol
///;//;

[

Mm

Figur 10.1. Bergvdrmebrunn med ren virmeledning i berget kring brunnen.

Vattencirkulationen i brunnen kan ordnas pa olika sitt. Figur 10.1 visar
ett Oppet cirkulationssystem med en inre slang. En annan mojlighet ar
att ha ett slutet system, dar virmebirarfluiden leds i ett U-r&r upp och
ner langs brunnen. I detta fall kan man ha uttagstemperaturer under 0°c

om man utnyttjar en kylvdtska. Vattnet i brunnen uianfor U-roret fryses
da.
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En annan typ av bergvdrmebrunn eller energibrunn dr att bara ta upp
vatten som efter varmeavgivning avledes annorstades. Man har ett rent
grundvattensystem. En tredje typ dr en hybrid mellan dessa tva typer.
I brunnen cirkuleras vatten som ir kallare dn omgivande berg samtidigt
som en viss mingd vatten tas ut fran brunnen. En fjdrde typ ar ett
system dar man utnyttjar tvé vattenforande skikt pa olika djup. Vatten
tas fran det ena skiktet, utnyttjas, dvs. kyles, och &terfores till
det andra vattenférande skiktet. Man maste harvid blockera en direkt
vattenkontakt i brunnen mellan de tva skikten.

Referenserna 100 och 101 behandlar bergvarmesystem ur olika aspekter.
Vi skall i detta kapitel enbart analysera den fdrsta typen, dar man
har en kall brunn och ren virmeledning till denna frén omgivande berg.
For det rena grundvattenvarmesystemet behvs inga speciella termiska
analyser. Hybridsystemet med vdrmetillforsel bade genom vdrmeledning

i berget och genom ett nettouttag av grundvatten och den fjarde typen
dir man pumpar mellan olika vattenforande skikt tas ej upp.

For att kunna dimensionera ett uppvarmningssystem, som dr baserat pd

en bergvarmebrunn, mdste man kdnna sambandet mellan temperatursankningar
i brunnsvattnet och uttagen varmeeffekt. Syftet med detta kapitel ar

att for olika situationer ange dessa samband och ddrmed ge dimensione-
ringsregler.

1 formlerna och beridkningsreglerna tas ej hdnsyn till effekten av fria
grundvattenrorelser i eventuella spricksystem i berget. Sdsom visas i
avsnitt 10.3.13 dr detta en rimiig forenkling. I sprickigt berg med
stora grundvattenrorelser ger ansatsen i allmdnhet en konservativ
uppskattning av virmeuttaget. Fria vattenrdrelser ger ju normalt en
extra uppvarmning av det kalla omrddet runt brunnen.

I avsnitt 10.2 ges som en inledning resultat for ndgra konkreta fall.
Avsnitt 10.3 behandlar olika renodlade termiska delprocesser fGr en

enskild bergvarmebrunn. I det foljande avsnittet ges sedan dimensionerings-
regler, dir vdrmeuttag och vattentemperatur relateras till varandra.

Diarpé behandlas system, ddr vdrme dterfores sommartid och system i vilka
virmeuttag sker med brunnstemperaturer under 0°C. De anvinda dator-



modellerna presenteras i avsnitt 10.7.

I avsnitt 10.8 behandlas den termiska influensen mellan ndrliggande
bergvdarmebrunnar. Ddarefter anges dimensioneringsregler for dessa
system med flera brunnar i avsnitt 10.9.

Nedkylningen och temperaturpdverkan ndra markytan behandlas 1 avsnitt
10.10. Detta har intresse ur miljosynpunkt.

F61jande beteckningar anvindes genomgdende i detta kapitel. Berget har
virmeledningsformdgan » (W/mK), vdrmekapaciteten C (3/m3K) och temperatur-
ledningstalet a = A/C (mz/s). En Gversta del av brunnen ner till ett
djup Di ir viarmeisolerad. Virmeuttaget fran berget sker dver en brunns-
ldngd H. Brunnens totala djup dr sdledes Di + H = Hb' Se figur 10.2.
Borrhdlet har radien Ro' Vid markytan dr drsmedeltemperaturen TO.
Temperaturen i berget precis vid borrhdlskanten betecknas TR‘ Tempera-
turen i vattnet i brunnen eller i vdrmebararfluiden i U-rbret betecknas
Tf(f]uid). Effektuttaget fran brunnen ar Q (W), medan effektuttaget per
meter dr q=Q/H (W/m). Virmemotsténdet per meter brunn mellan vdrmebdrar-
fluid och bergvdgg betecknas my (K/(W/m)).

LA
Y

2R,

Figur 10.2. Anvanda beteckningar

10.2 Nagra exempel

Som en introduktion till de termiska analyserna i de fgljande avsnitten
skall vi se pd ndgra konkreta fall. Resultaten har erhd11its med de dator-
program och analysmetoder som redovisas i det foljande.
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Exempel 1. Givet en bergborrad brunn som dr 150 meter djup. Under
var och en av drets ménader har man ett foreskrivet konstant
effektuttag enligt figur 10.3 eller (10.2.3) nedan. Totalt
uttages 15 MWh per &r.

Foljande data galler:

A = 3.5 W/mK C = 2.16 MI/mK
H= 146 m D, =4m R, = 0.055 m (10.2.1)
T, = 7°¢C

Det geotermiska vdrmeflodet sdttes till 0.06 W/mz. Den ostdrda
marktemperaturen blir dd

T(z) = 7.0 + g§%§~z (°c) (10.2.2)

Hir dr z djupet fran marknivan. Effektuttaget Q(t) frén berget
skall vara:

Manad 1 2 3 4 5 6

Q (kW) 0.32 0.47 1.17 1.69 2.23 2.66

Manad 7 8 9 10 " 12

Q (kW) 2,98 2.78 2.43 1.91 1.24 0.67 (10.2.3)

Varmeuttaget startar den forsta juli &r 1. Virmeuttaget per

ar blir:

Ey = 15.0 Mkh (10.2.4)

For att erhalla den foreskrivna effekten mdste man hdlla en viss tids-
varierande temperatur vid brunnen. Figur 10.3 visar den erforderliga
temperaturen TR vid brunnsvdggen under forsta, femte och tjugofemte &ret.
Mellan brunnsvdggen och vdrmebdrarfluiden i brunnen har man ett ytterligare
temperaturfall. Den ldgsta uttagstemperaturen erhdlles i slutet av

Januari varje &r. Vi har enligt figur 10.3:
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&r ] 1 5 25 (10.2.5)
0o
TR,min(C)l 4.0 3.5 3.2
(kW)
3.0
2.0
1.0
juli ' ! ) ' " dec. T jan " ) ' ' 'juri

juli dec.  jon. juni

Figur 10.3. Exempel 1. Foreskrivet effektuttag och berdknade brunns-

temperaturer.

Temperaturfdltet utanfor brunnen ar rotationssymmetriskt. Figur 10.4
visar detta efter 4.5 &r och 24.5 ar.

0 50 o ) 50
0 L5y v 25y| ™
70°C
20°C
. 15
50 | 50
80
8
85
8
100 - 100-
90
9
; 150 %——

z{m) z(m}

Figur 10.4. Temperaturfalt runt brunnen for exempel 1 efter 4.5 och 24.5 ar.
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Efter 4.5 &r har man en pdverkan cirka 20 meter radiellt utdt. Denna
pdverkan har efter 24.5 dr nédtt cirka 60 meter. Isotermerna Overgdr
med Okande radie r i horisontella linjer. Temperaturen stiger i detta
ostorda omrdde 1injdrt neddt med den geotermiska gradienten

enligt formel 10.2.2.

Den radiella temperaturprofilen pd djupet z = 77 m visas i figur 10.5.
Den ©vre bilden avser mitt i vintern (1 januari) d& man har det
storsta varmeuttaget. Ndra brunnen dr temperaturgradienten mycket stor.

TIT1
9
Z=7Tm
8 L5ar
265ar — |
’, -
6 -
S .
4
3 T T r{m)
0 5 10 15
Q)
9
Z=7Tm
81 sar — ]
25ar — |
7 -/////’/,,,_.._.__________.__
6 T T rim)
0 5 10 15

Figur 10.5. Radiell temperaturprofil p& 77 meters djup for exempel 1
mitt i vintern (Gvre bilden) och mitt i sommaren (undre
bilden) under 5:e och 25:e aret.

Den undre bilden visar en mjukare temperaturprofil mitt i sommaren

(1 juli). Skillnaden mellan de tvé profilerna under &r 5 och &r 25
visar langtidseffekten av varmeuttaget. P& 20 &r sdnkes temperaturen
ungefdr en halv grad Celcius p& 15 meters avstdnd fran brunnen. Den
ostdrda temperaturen for z = 77 m &r enligt formel 10.2.2 T = 8.32 °C.
Kurvorna ndarmar sig asymptotiskt detta vdrde for stora radier.
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I figur 10.6 visas tvd isotermer mitt i vintern (t = 24.5 y) och

mitt i sommaren (t = 25 y). De tvd isotermerna skidr varandra p3 3-4
meters avstdnd fréan brunnen. Detta beror pd det varierande effekt-
uttaget under aret, vilket influerar omrédet nara brunnen. Utanfér

detta ndromréde med i storleksordningen 5 meters radie dr fluktuationerna
under dret vdsentligen utdadmpade. Det monotona temperaturfallet styrs

hdr bara av medeluttaget per &rscykel.

0 10 20
0 L L r{m)
z{m)
150 160 140 180 190
S0 A
Figur 10.7. Temperaturprofil rakt
ner under brunnen for
exempel 1.
100
150
z{m)

Figur 10.6. Sommar- (25 y) och vinter-
isotermer (24.5 y) for
exempel 1.

I figur 10.7 visas ndgra temperaturprofiler rakt ner fran brunnens botten
z = 150 m. Den streckade linjen visar den geotermiska gradienten. Tem-

peraturstorningen frdn brunnen avklingar i stort p& cirka 10 meter.
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Exempel 2. I exempel 1 var effektuttaget foreskrivet for varje
mdnad. I verkligheten fir man ett varierande effektuttag
kring ett ldmpligt valt manadsmedelvdrde.

For att illustrera detta tages data enligt exempel 1 ovan.
Under den kallaste manaden (januari) Overlagras for den femte
drscykeln en pulserande effekt kring det tidigare konstanta
virdet Q = 2,98 kW. Se figur 10.8 (overst). Den brunns-
temperatur TR som krdvs visas i den nedre figuren.

Jonuari S:e aret

0 7 1% 212223 2'5 {dagar]

1 januari - 5.e aret

; ' —rr ; 0
0 7 % nan 2 t [ dagar]

Figur 10.8. Overlagrat pulserande effektuttag och motsvarande brunns-
temperatur TR’ Data enligt exempel 1-2.

Exempel 3. For att illustrera influens mellan bergvarmebrunnar ser vi
péd ett fall med tre stycken brunnar. Sedda uppifran ligger
dessa pd Tinje med ett avstind B. Vi tar data enligt exempel 1
och foreskriver ett totalt effektuttag 3. Q(t), ddr Q(t) ges
av (10.2.3). Nedanstende tabell ger berdknad ldgsta uttags-
temperatur TR for ndgra brunnsavstind B.



Brunnsavstand ar

B(m) 1 5 25
5 3.6 2.2 1.2
10 4.0 2.9 1.9
20 4.0 3.3 2.5
o 4.0 3.5 3.2

Tabell. Ldgsta uttagstemperaturen TR(OC) for tre brunnar
pa linje. Data enligt exempel 1 med tredubblat effekt-
uttag.

10.3 Termiska delprocesser

For att fa en riktig forstdelse for de termiska processerna och de dir-
med forknippade analysmetoderna och dimensioneringsreglerna mdste man
forst analysera enkla, renodlade termiska forlopp. Dessa termiska del-
processer sammanlagras till de mer komplicerade, verkliga forloppen.

Vi skall i detta avsnitt studera fundamentala termiska delforlopp for en
enskild bergvdrmebrunn. Dessa analyser utvidgas i avsnitt 10.8 till ett
system av bergvarmebrunnar som influerar varandra.

10.3.1 Superposition

Genom att utnyttja superpositionsprincipen for varmeledning i ett fast
material kan ett komplicerat forlopp uppspaltas i enklare delprocesser.

Figur 10.9 illustrerar hur superpositionsprincipen kan anvandas. Vid berg-
varmebrunnen rader en tidsvariabel temperatur TR(t), medan temperaturen
vid markytan &r To' Den tidsvariabla brunnstemperaturen kan tiankas upp-
delad i en tidsoberoende del och en Gverlagrad tidsvariabel del:

TR(t) =Tpg * TR1(t) (10.3.1.1)
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T To T=0

TR (t) = TRo + Ted 1)

aft) Qe a, (t)

Figur 10.9. Uppdelning av ett temperaturforlopp for en bergvdrmebrunn
i en stationdr del och en tidsvariabel del.

Cen konstanta brunnstemperaturen TRO ger ett stationdrt temperatur-
forlopp. Temperaturen vid markytan &r To' Motsvarande stationara vdrme-
uttag ar QO. Den andra delen ger ett tidsvariabelt vdarmeuttag Qq(t).
For denna del dr markyttemperaturen 0. Summan av de tvd temperatur-
fdlten ger 10sningen ti11 den ursprungliga processen till vianster i
figur 10.9. Det totala vdrmeuttaget blir:

Q(t) = Q, + 0q(t) (10.3.1.2;

BegynnelsetemperaturfordeIningen i marken kan hanfdras till ndgon av
dellosningarna vid en superponering. Man mdste tillse att summan av del-
1osningarnas begynnelsetemperaturer blir lika med den totalt givna
temperaturfordelningen.

Varmeuttaget fran en bergvdrmebrunn varierar under &rscykeln. Man har

en tidsoberoende medeleffekt och en Overlagrad pulsation. Den stationdra
komponenten behandlas i avsnitt 10.3.2. Overlagrade periodiska forlopp
behandlas i avsnitt 10.3.8. Under en fOrsta tid sker en transient in-
svangning till den stationdra processen med en Gverlagrad 8rlig pulsation.
Denna transienta insvdngning, som visar sig ta i storleksordningen 20 &r,
behandlas i avsnitt 10.3.6.

Vid dimensionering dr det normalt smidigast att utgd frén ett givet
effektbehov Q(t). Man berdknar sedan de erforderliga brunnstemperaturerna
for att se om dessa ar mojliga att uppnd och acceptabla.

Den givna tidsfunktionen for effektbehovet kan ocksd genom super-
ponering uppdelas i enkla grundfdrlopp. Figur 10.10 visar hur en effekt-
puls kan ses som summan av tvd stegpulser.
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o
[=]
o

- -

h t, h

Figur 10.10. Uppdelning av en effektpuls i tvad stegpulser.

I avsnitt 10.3.6 och 10.3.7 analyseras en stegpuls, dvs. ett konstant
effektuttag som startar vid en viss tidpunkt. Det &r en av de funda-
mentala processerna. Ett godtyckligt forlopp Q(t) kan ses som en summa
(eller i grédnsen en integral) av effektpulser, vilka i sin tur enligt
figur 10.10 sammansdtts av stegpulser. Behdrskar vi stegpulsen, be-
harskar vi sdledes i princip varje foreskrivet effektforiopp Q(t).

10.3.2 Stationdrt vdrmeuttag

Forutsdttningen for temperaturforloppet vid stationart varmeuttag
illustreras i figur 10.11. Temperaturen i marken &r en funktion av av-
stand till brunnsaxeln och djup: T = T(r,z). Vid markytan rider den
konstanta temperaturen TO, medan temperaturen vid brunnen har det kon-
stanta vardet TR. Den oversta delen av brunnen ner till djupet Di ar
varmeisolerad.

Figur 10.11. Stationdrt temperaturforlopp for bergvdrmebrunn.

I ostord mark 1angt frén brunnen stiger temperaturen linjdrt nedadt pa

grund av den geotermiska gradienten. Lat qgeo (W/mz) beteckna det geo-
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termiska varmeflddet. L&ngt fran brunnengdller d& villkoret:

_ z .
T(r,z) = Ty * 9e0 " 1 d& r stort
dé z stort (10.3.2.1)

Forfinade randvillkor vid markytan och vid brunnen behandlas i av-
snitten 10.3.3, 10.3.9 och 10.3.11.

Det stationdra temperaturforloppet uppnas efter en 1ang tid med konstant
varmeuttag. I ett fall med variabelt vdrmeuttag under dret ligger det
stationdra temperaturfdltet som ett drsmedelvirde. Denna termiska del-
process dr av stort intresse ty den ger medeleffekt under &ret och hir-
med den totala vdrmemdngd som kan tas ut under varje &r. Denna effekt
kan tas ut under godtyckligt 1&ng tid utan ytterligare nedkylning av
marken. Varmen til1fdres frén markytan.

10.3.2.1 Temperaturfalt

Som exempel tar vi en 150 meter djup brunn och ett stationirt varme-
uttag som ger 15 MWh per &r:

A = 3.5 W/nk C=2.16-10% g/mik (my = 0)

Di =4m H=146m RO = 0.06 m

T, = 7% Igeo = 0-057 W/m?

Q=1712 W (E, = 15 Min) (10.3.2.2)

Det numeriskt berdknade temperaturfdltet utanfdr brunnen visas i figur
10.12. Den hidgra figuren visar temperaturfaltet ut till 150 meter

fran brunnen. Den stationdra temperaturen TR vid brunnen dr 4.55°C.

Vi ser att en temperatursdnkning ndgon tiondels grad n&r ut cirka 50
meter. Den vanstra figuren visar i stdrre detalj temperaturfaltet ut
till 30 meters radie. Observera att den radiella skalan ar fem ganger
storre @n den vertikala. Den vdnstra figuren ger temperaturfdltet efter
25 &r och sdledes inte exakt det stationidra faltet. Brunnstemperaturen
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T dr da 4.83 °C, dvs. 0.28 °C Gver det stationdra slutvirdet. Vi
ser att en temperatursankning med en grad under ostdrda forhallanden
ndr cirka 5 meter ut fran brunnen. Temperaturgradienten nira brunnen
dr mycket kraftig och den storre delen av temperatursinkningen dr
Tokaliserad till ett relativt Titet omrdde runt brunnen.

30 0 S0 100 150
rimy 0 : o
-
4.55°C

r{m)

50

100

Vi
8C
| 9
I
150

2{m} z{m}

Figur 10.12. Stationdrt temperaturfalt runt en brunn med data enligt
10.3.2.

Det stationdra temperaturfdltet d@r intressant vid en beddmning av miljo-
paverkan. Fransett omrddet ndrmast brunnen, dir dven variationer under
dret dr av betydelse, ges maximal temperaturstdrning av den stationira
16sningen. Ju ldngre bort fran brunnen man dr, desto lingre tid tar

det att uppnéd den stationdra, maximala storningen.

10.3.2.2 Effekt av geotermisk gradient

Den geotermiska gradienten med en Okande ostdrd temperatur neddt kan

ej fOrsummas, dd bergvarmebrunnarna dr s& pass djupa. Ostdrd mark-
temperatur stiger i exempel 10.3.2.2 fran 7 9C vid markytan till 9.5 oc
vid brunnens botten enligt formel 10.3.2.1.

Det i brunnen cirkulerade vattnet exponeras for denna okande temperatur.
For att forsta vad vi har att vdnta oss ser vi forst pa ett fall dir
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vattnet pumpas runt langs brunnen utan effektuttag (Q = 0). Vad
kommer att hdnda med temperaturen pd vattnet i brunnen? Vi f&r en
vasentligen konstant vattentemperatur ldngs hela brunnen efter ett
snabbt initialforlopp. Vattnets temperatur blir nigot medelvirde.
Det ar rimligt att anta att temperaturen blir vasentligen 1ika med
den ostdrda marktemperaturen p3 halva brunnsdjupet.

Brunnens medeldjup Dm ges av:

D =D, +_*21 (10.3.2.3

(10.3.2.4

Det visar sig att det enda som betyder nagot for sambandet mellan
brunnstemperatur och effektuttag dr denna medeltemperatur Tom i marken.

Problemet enligt figur 10.11 med ostdrd marktemperatur enligt 10.3.2.1
kan genom superposition uppdelas i tvad delar. Den férsta delen har
det givna effektuttaget och den ostérda temperaturen T__ Gverallt i

om
marken och vid markytan. Denna del har siledes ingen geotermisk
gradient:
Del It Toctsrd = Tom Tmarkyta = Tom

Q = givet effektuttag (10.3.2.5
Den resterande delen skall ta hand om den geotermiska gradienten.
Temperaturen for denna del blir noll pad djupet Dm och T0 - TOm vid mark-

ytan. Effektuttaget ar noll:

Del I1: Tootgrd = To 9ge0

Tmarkyta = To - T

om

Q=0 (10.3.2.6
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Data enligt exempel 10.3.2.2 ger:

D =77m Ty = 825 °c (10.3.2.7)

m 0

Figur 10.13 visar temperaturfdltet for den forsta delen. Den andra
delen visas i figur 10.14. Summan av dessa tvad temperaturfalt dr lika
med det som visas till vanster i figur 10.12.

0 1 1 h
0l 0 —.,—20 0 Oo 0 20 3?r(m)

50 S0

T2=4 82°C

100

150 // 150

100

z(m) z(m}

Figur 10.13. Temperaturfalt for Figur 10.14. Temperaturfilt for
exempel 10.3.2.2 med exempel 10.3.2.2 for den
ostord temperatur geotermiska stdrningen
Tom =8-25 °C enligt 10.3.2.6

De tva temperaturfdlten enligt figurerna 10.13 och 10.14 har var for

sig en enklare struktur @n det sammanlagrade fdltet enligt figur 10.12.
Den forsta delen enligt figur 10.13, ddr brunnen verkar mot omgivnings-
temperaturen Tom’ ger en temperaturstorning som dr proportionell mot
temperaturdifferensen TOm - TR mellan ostord mark och brunn. Den andra
delen enligt figur 10.14 ger ett temperaturfdlt kring brunnen som i

stort sett dr antisymmetriskt kring nivén z = Dm‘ Varme tillfores brunnen
vid den undre halvan, medan vasentligen samma vidrmemingder bortftres

vid den Gvre halvan. Denna antisymmetri skulle vara perfekt om mark-

ytan ej kom in som en storning.

Den erforderliga brunnstemperaturen blev enligt figur 10.12, vanster,
TR = 4.83 OC, medan den enklare 1Gsningen med omgivningstemperatur TOm
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enligt figur 10.13 ger TR = 4.82 °C. Skillnaden i sambandet mellan
brunnstemperatur och effektuttag blir maximalt ndgon promille i detta
exempel.

Detta gdller allmant med tillrdacklig noggrannhet. Vid berdkning av
varmeuttaget behGver man ej ha med det kompletta randvillkoret 10.3.2.1
med en geotermisk gradient. Det ricker att utnyttja temperaturen T

vid brunnens mittdjup. Denna temperatur skall anses rada bide vid
markytan och i ostord mark 1éngt frén brunnen. I det foljande skall
alltid enbart Tom utnyttjas.

10.3.2.3 Formel for stationart viarmeuttag

Genom att approximera brunnen med en mycket smal rotationsellipsoid
och utnyttja speglingsteknik for att ta hansyn till randvillkor vid
markytan kan f61jande samband mellan det stationira viarmeuttaget Q och
drivande temperaturdifferens Tom - Tp hdrledas (referens 7 och 2):

Q- (10.3.2.8)

Tn <__H__> - — ! —
RO /1.5 2(1+2DT/H)

Har ar T temperaturen vid brunnsviggen och T ostbrd marktemperatur
pd halva brunnsdJupet Harledningen forutsatter att R och D ar smi
relativt brunnsdjupet H.

Formeln kan forenklas till

27aH (T - T5)
Q=- e (10.3.2.9)
(Y S0 e 0
\2R0} H

eller

Qoo R (10.3.2.10)
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Den sista formeln 10.3.2.10 torde duga. Felet i dessa formler ar
maximalt ndgra procent.

Ldt oss ta exempel 10.3.2.2:

27 +3.5 146 - (8.25 - Tp)
1712 =
n (—16
\2-0.06/
_ o]
Tp = 4.46 °C

Detta skall jamforas med det numeriskt berdknade vardet TR = 4.55 °¢
enligt figur 10.12, hoger.

Formel 10.3.2.10 &r grundldggande eftersom den anger hur stor virmemingd
som kan uttas per drscykel vid en given drivande temperaturdifferens

Tom - TR' Observera att TR hdar dr den stationdra medeltemperaturen vid
brunnen. Uverlagrat kan man ha ett pulserande forlopp.

10.3.3 Effekt av ytliga jordskikt och variationer vid markytan

Vid markytan har vi haft det enkla randvillkoret med en given konstant
temperatur T0 eller Tom' I verkligheten dr situationen mer komplicerad
med en variabel lufttemperatur, sno, tjdle och ett Overgdngsmotstand

vid markytan som bl.a. beror p& vindforhdllanden. Temperaturfluktuation-
er dampas dock snabbt ut neddt i marken. P& ndgra meters djup rader

i stort en konstant temperatur &ret om. Influensen av dessa ytvariationer
for en bergvdrmebrunn med ett djup runt hundra meter blir helt for-
sumbart. Det enda vi behOver veta med ndgon precision ar marktempera-
turen Tom pad halva brunnsdjupet.

I ménga fall tdcks berget av ett ytligt markskikt med andra termiska
egenskaper dn berget. For att illustrera detta tar vi data enligt

exempel 1 i avsnitt 10.2. Ostord marktemperatur sidtter till TOm = 8.3 °c.
Alla data gdller f.6. fransett att den Gversta delen av marken ges

en ldgre vdrmeledningsformidga. Vi tar:
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1.5 W/meK 0 <z<D;
\ - Jord (10.3.3.1)

3.5 W/meK z> Djord

Berdknad ligsta uttagstemperatur under &r 1,5 och 25 ges i tabell 10.1

for ndgra olika vdrden pa D Den Gversta raden ger de ursprungliga

jord®
ostorda vdrdena enligt 10.2.5.

ar 1 ar 5 ar 25
D =0m 4.1 3.5 3.2
jord
Djord =4m 4.1 3.5 3.2
D. =10m 4.0 3.4 3.0
jord

Tabell 10.1. Ldgsta uttagstemperatur TR nin oc for exempel 1 i avsnitt 10.2
d& man har ett tackande jordskikt enligt 10.3.3.1. Mark-
temperaturen Tom ar 8.32 °C.

Vi ser att ett jordskikt pad ndgra meter ger en helt forsumbar @ndring.
Aven om det Gversta skiktet har 10 meters djup blir dndringen liten.

Vi kan allmint dra slutsatsen att forhdllandena vid markytan och i de
forsta metrarna neddt ej spelar ndgon roll for vdrmeuttaget. Det enda

vi behover dr medeltemperaturen Tom'

Speciellt spelar virmemotstdndet mellan markyta och Tuft ingen roll.
Detta varmemotstand 3r nimiigen i samma storleksordning som ett mark-

skikt med en tjocklek pd nédgon decimeter.
10.3.4 Varmeisolering av brunnens Oversta del
Den dversta delen av brunnen virmeisoleras for att skydda cirkulations-

vattnet frén nedkylning vintertid. Isoleringen gdr ner till djupet Di‘
Vi skall i detta avsnitt belysa hur varmeuttagskapaciteten beror av Di‘
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Data enligt exempel 1 i avsnitt 10.2 med marktemperaturen Tom =8.32 %
anvandes. Alla data utom Di hé&lles konstanta. Brunnsdjupet Di + H
kommer att variera nigot med Di' Tabell 10.2 visar berdknade ldgsta
uttagstemperatur under &r 1, 5 och 25 for Di =2, 4 och 10 m.

D, (m) tid (&r)
1 5 25
2 4.07 3.55 3.23 g
4 4.06 3.54 3.21
10 4.06 3.5 3.17

Tabell 10.2. Ldgsta uttagstemperatur °C vid variation av isolerdjupet Di'
Ovriga data enligt exempel 1 i avsnitt 10.2.

Vi ser att isolerdjupet Di har ytterst liten betydelse for vdrmeuttaget.
Observera att jamforelsen gores for konstant aktiv brunnslingd H.
Varmeisolering behdver bara géras till ndgon meters djup for att skydda
mot vinternedkylning. Ytterligare isolering nedét har ingen effekt.

10.3.5 Skikt med olika vdrmeledningsfdrmaga

D3 marken bestdr av skikt med olika varmeledningsformaga kommer varme-
uttaget att paverkas. For att illustrera detta har jamforelse for tvd
berdkningsfall gjorts.

[ det forsta fallet bestdr marken av homogent material med konstant
varmeledningsformdga » = 3.5 W/m K. I det andra fallet bestdr marken
av tvd skikt med olika vdrmeledningsformdga. Det forsta skiktet med

x = 2.5 W/m K strdcker sig ner till hdlften av den aktiva brunnsldngden,
z

77 m. Skikt tvd har varmeledningsformdgan A = 4.5 W/m K och stricker
sig fran z = 77 m ner ti1l stort djup.

Berdknar man medelvdrdet av de varmeledningstal som den aktiva delen
av brunnen direkt kanner av, erhdlles samma Amede1 for bdda berdknings-
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fallen. Se formel 10.3.5.1

D.+H

1
A = -
medel H 0.

Som marktemperatur ansdttes mede]temperaturen'%m - 8.32 %. Alla ovriga
data enligt exempel 1 avsnitt 10.2.

Tabell 10.3 visar 1dgsta brunnstemperaturen ar 1, 5 och 25 for de tva

berdkningsfallen
X W/m-K t=14&r t =5 4é&r t =25 &r
3.5 0<z<e (m) 4.06 3.54 3.21

2.5 0<z<77 (m) 4.05 3.53 3.19
4.5 77 <z < = (m)

Tabell 10.3. Ldgsta brunnstemperatur &r 1, 5och 25 for bergvdarmebrunn.
Marken bestdr i ena fallet av ett skikt med konstant vérme-
ledningstal och i amdra fallet av tvd skikt med olika
varmeledningstal.

Skillnaden mellan resultaten dr ytterst liten varfor man kan dra slut-
satsen att det dr medelvardet av vdrmeledningsformigan enligt formel
10.3.5.1 som bestdmmer vdrmeuttaget.

10.3.6 Konstant vdrmeuttag. Effekt pd l&ng sikt.

En av de fundamentala delprocesserna &r temperaturfdrloppet, d& man har
ett konstant effektuttag Q fran starttiden t=0. Se figur 10.15. Den
ostorda temperaturen i marken 3r Tom‘ Denna temperatur ansdttes ocksa
vid markytan.

Man far ett transient forlopp ddr marken kring brunnen nedkyles. Efter
hand ndrmar sig temperaturfdltet det stationdra fallet enligt avsnitt
10.3.2.

} x(z) dz (10.3.5.1)
j
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Vart huvudintresse dr att berdkna temperaturen TR(t) vid brunnen. for
att erhdlla effekten Q krdvs en temperatursankning Tom-TR(t). Denna
sankning okar efter hand upp mot det stationdra slutvdrdet.

/Tom

T*//

.

s

Figur 10.15. L&ngsiktig transient process med konstant varmeuttag Q
fran en starttid t=0.

1
)
EY

\5i<§l§§§\

N

R,

I ett verkligt fall varierar normalt effektuttaget under &ret. Man har
en medeleffekt och en overlagrad, pulserande effekt. Den hir studerade
transienta processen gdller for denna medeleffekt. Vi fédr reda pd hur
medeleffektuttaget under &ret ger en transient nedkylning fram till
stationdra forhallanden.

Den vid brunnen tidsvariabla temperatursankningen Tom-TR ar proportionell
mot effektuttagets storlek per meter brunn, Q/H. Den dr vidare omvint
proportionell mot vdrmeledningsformigan x. En dimensionsanalys av vir-
meledningsprocessen enligt figur 10.15 visar vidare att Tom-TR ar en
funktion av en dimensionsios tid t/t1. Man har tvd formparametrar RO/H
och Di/H' Parametern Di/H for isolerad ovre del dr av sekunddr betydelse
enligt avsnitt 10.3.4. Den forsummas hdar. Vi har da:

- Q
T Tr(t) = 58 + g(t/ty, Ro/H) (10.3.6.1)

Funktionen g ger den dimensionslGsa temperatursinkningen for att fa
effekten Q. Faktorn 2n dr medtagen for att bl.a. formel 10.3.6.2 skall
bli prydlig. Tiden t, (= H°/9) ges av (10.3.6.6).

I avsnitt 10.3.10 behandlas effekten vid variation av borrh&lsradien RO.
Foljande samband for tva borrhdlsdiametrar R0 och Ré gdller med mycket
god noggrannhet:
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9(t/ty » R/H) = olt/ty , RI/H) - In(R /R!) (10.3.6.2)
Parametern RO/H dr hdrigenom avklarad. Man behdver bara numeriskt med
dator berdkna g som funktion av dimensions1ds tid for en brunnsradie (och

ett brunnsdjup).

Lat oss ta foljande exempel:

A = 3.5 W/nK C = 2.16 MI/mK
H=98m Dy =2m ) R, = 0.05m
Q=1 kW . (10.3.6.3)

Den berdknade temperatursankningen Tom - TR vid brunnen visas i
figur 10.16.
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Figur 10.16. Transient brunnstemperatursankning for exempel 10.3.6.3.
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Kurvan &r mycket instruktiv. Vi far under de férsta timmarna en snabb
temperatursdnkning. Sénkningen under det forsta dygnet ar 1.15 °C. Under
den foljande veckan dndras temperaturen till 1.6 °C. Efter tvd manader

har sdnkningen okat till 2.0 °C och efter ett &r till 2.4°C. Under de
foljande 25 &ren sjunker temperaturen ytterligare till virdet 2.9 °c.
Processen &r dnnu ej helt stationdr. Efter hundra &r har vi virdet 3.02 °¢C
och efter femhundra &r 3.04 °C. Vi har siledes en stor spannvidd i
tidsskalor for den transienta processen. Man bor observera att denna

kurva vdsentligen gdller for alla transienta grundfall med olika
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Vart huvudintresse dr att berdkna temperaturen TR(t) vid brunnen. For
att erhdlla effekten Q krdvs en temperatursankning Tom-TR(t). Denna
sankning okar efter hand upp mot det stationdra slutvardet.

sTom

R,

Figur 10.15. Langsiktig transient process med konstant vdrmeuttag Q
frén en starttid t=0.

I ett verkligt fall varierar normalt effektuttaget under &ret. Man har
en medeleffekt och en Gverlagrad, pulserande effekt. Den hdr studerade
transienta processen gdller fér denna medeleffekt. Vi fér reda pd hur
medeleffektuttaget under &ret ger en transient nedkylning fram till
stationdra forhdllanden.

Den vid brunnen tidsvariabla temperatursankningen Tom-TR gr proportionell
mot effektuttagets storlek per meter brunn, Q/H. Den &r vidare omvdnt
proportionell mot vdrmeledningsformdgan A. En dimensionsanalys av vdr-
meledningsprocessen enligt figur 10.15 visar vidare att Tom-TR dr en
funktion av en dimensionslds tid t/t1. Man har tvad formparametrar RO/H
och Di/H. Parametern Di/H for isolerad ovre del dr av sekunddr betydelse
enligt avsnitt 10.3.4. Den forsummas har. Vi har da:

)
T TR(t) = =g = 9(t/ty, R,/H) (10.3.6.1)

Funktionen g ger den dimensionsldsa temperatursdnkningen for att fa
effekten Q. Faktorn 2m dr medtagen for att bl.a. formel 10.3.6.2 skall
bli prydlig. Tiden t, (= H°/92) ges av (10.3.6.6).

I avsnitt 10.3.10 behandlas effekten vid variation av borrhdlsradien Ro'
FG1jande samband for tvd borrhdlsdiametrar RO och Ré galler med mycket
god noggrannhet:
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9lt/ty » R/H) = glt/ty , Ro/H) - In(R /R) (10.3.6.2)
Parametern RO/H dr harigenom avklarad. Man behOver bara numeriskt med
dator berdkna g som funktion av dimensions1ds tid for en brunnsradie (och

ett brunnsdjup).

L3t oss ta foljande exempel:

X = 3.5 W/mK C = 2.16 MJ/mK
H=98m Di =2m RO = 0.05m
Q=1 ki _ (10.3.6.3)

Den berdaknade temperatursankningen TOm - TR vid brunnen visas i
figur 10.16.
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Figur 10.16. Transient brunnstemperatursdnkning for exempel 10.3.6.3.

Kurvan ar mycket instruktiv. Vi fdr under de forsta timmarna en snabb
temperatursankning. Sankningen under det forsta dygnet dr 1.15 C. Under
den foljande veckan andras temperaturen till 1.6 OC. Efter tva manader

har sdnkningen cdkat till 2.0 9C och efter ett ar till 2.4°C. Under de
foljande 25 &ren sjunker temperaturen ytterligare till vdrdet 2.9 °c.
Processen dr dnnu ej helt stationdr. Efter hundra &r har vi véardet 3.02 ¢
och efter femhundra &r 3.04 °C. Vi har siledes en stor spannvidd i
tidsskalor for den transienta processen. Man bor observera att denna

kurva vasentligen gdller for alla transienta grundfall med olika
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q, H, RO, Di’ X och a i enlighet med formlerna 10.3.6.1-2.

Den dimensionslidsa temperaturresponsen g visas i figur 10.17 for
fallet RO/H = 0.0005. Det ar frénsett skalfaktorer samma kurva som

i figur 10.16. Observera den logaritmiska tidsskalan. Tiden t1 ges av
formel 10.3.6.6.

git/t, 0.0005 1
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Figur 10.17. Temperaturresponsfunktion g for transient vdrmeuttag enligt
formel 10.3.6.1 och 10.3.6.6. RO/H = 0.0005.

For responsen g finns tva asymptotiska uttryck. For mycket stora tider
skall stationdra forhallanden rada. Approximativt gdller da formel
10.3.2.10. For korta tider har man vasentligen en radiell endimensionell
process kring brunnen. Temperatursankningen vid brunnen ges approximativt
av formel 10.3.7.3. Dessa tva asymptotiska approximationer ges av de tvd
streckade linjerna i figur 10.17. Vi ser att dessa tvd rdta linjer ger

en ganska god approximation av g.

Vi har nu foljande enkla approximativa uttryck for temperatursankningen:

1 (1(4at) \ .
~ Q ? n —-—'2 -y t = t.l
LI O L I (10.3.6.4)
[ H .

vy = 0.5772 (Eulers konstant)

Bryttiden t1 definieras av att de tvd uttrycken &r lika:
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1 _ 1 H
Ry )
eller med god approximation
2
_H
t1 iy (10.3.6.6)

Infor vi tiden t1 fdr vi foljande enkla uttryck for approximationerna

10.3.6.4:
HY 1. [t
In{ssg~] += In{_= tst
o ) () |
Tom = TR(V) = 55 0 1
[ H
In \TRO— tz t1 (10.3.6.7)

Det maximala felet sker vid bryttiden t = t1. For exempel 10.3.6.3 ger
d& approximationen ett fel pd 7%.

Approximationerna innebir en mycket stor forenkling. Fore bryttiden,

t < t1, kan man p& denna precisionsnivad rikna som om processen enbart
ar radiell runt brunnen utan att ta hansyn ti11 vertikala storeffekter.
Detta galler genom superposition for godtyckliga, tidsvariabla effekt-
pulser. Efter bryttiden, t > t1, kan man i denna approximation riakna
stationdrt.

For exempel 10.3.6.3 blir bryttiden

¢ . 98%.2.16 - 10°

9 .3.5

sek = 21 &r (10.3.6.8)

De aktuella bryttiderna t1 ar séledes tider i storleksordningen tiotals
ar.

Den transienta responsen 10.3.6.1 pd en stegpuls kan genom superposition
utnyttjas for att berdkna responsen for en godtyckligt varierande
effekt Q(t).
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Exempel. Vi tar foljande data:

x = 3.5W/m-K C=2.16- 106 J/m3 - K
Di =5m H=145m RO = 0.055 m
Q = 5KkW (10.3.6.9)

Den transienta températursénkningen Tom - TR(t) ges av
10.3.6.1-2 eller av det forenklade uttrycket 10.3.6.7. Ovan-
stdende data ger:

Q _ 0 HY
A n <_2R_o) _ 7.188
t1 = 45,7 ar
11.2- 0.79. In(t,/t) tst, = 45.7 3r
1 1
om TR(t) = 0
11.3(°C) tz t1

T.ex. far vi

t (ar) | 0.1 1 10 50

0
Tom - TR(t) (7c) I 6.5 8.3 10.1 1.3
Ett exaktare vdrde erhdlles ur formlerna 10.3.6.1-2. Vi mdste
rakna om relativ rorradie:

R R
\
2 =0.0005 (—O) - In <“-0'°—~55 —) - -0.28
145 + 0.0005

Vi har sdledes:

Tom - TR(t) = 1.57 .{g(t/t1 , 0.0005) + 0.30}

Ur figur 10.17 far vi g (t, = 45.7 &r).

1
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Vi far dé t.ex.

t(ar) | 0.1 1 10 50

[Xe]
~

T, - Talt) (°0) I 6.5 8.1 10.4

om

Vi ser att den forenklade formeln ovan ger ett maximalt
fel pa %%.

Den 1angsiktiga temperatursdankningen som krdvs for att upprdatthdlla
vart konstanta varmeuttag har en tidsskala t1 = H2/(9a). Denna tids-
skala gdller temperaturen vid brunnen. Det dr ocksd intressant att se
p& tidsskalan eller snarare tidsskalorna for nedkylningen runt brunnen.
Det visar sig att detta dr en process med mycket stora tidsskalor.
Detta belyses ndarmare i avsnitt 10.10.

10.3.7 Analys av effektpulser

Effektuttaget Q(t) varierar normalt med tiden. I avsnitt 5.3 anges en
enkel metod for att analysera tidsvariabla effektuttag frén ett ror i
mark. Effektuttaget skall vara konstant under givna tidsintervall.
Metoden baserar sig pd den analytiska 1dsningen for en stegpuls i det
tvddimensionella radiella fallet.

Metoden diskuteras i avsnitt 5.3. Flera exempel ges. Temperaturprofilen
och influensomrdde runt roret behandlas. Formler for brunnstemperaturen
TR(t) anges.

Varmeuttaget per meter brunn betecknas g(t):

alt) = KHQ (W/m) (10.3.7.1)
Variationer i djupled forsummas d& l1dsningen avser ett plan vinkelrdtt
mot brunnen. Tredimensionella effekter blir betydelsefulla for en effekt-

puls efter en viss tid. I foregdende avsnitt studeras en ren stegpuls.
Enligt formel 10.3.6.4 kan den tvadimensionella approximationen anvandas



10.27

fram till tiden t1 med ndgorlunda god precision. Tiden t definieras
av formel 10.3.6.6. Med normala data blir t1 i storleksordningen 20 &r.
Detta innebdr att den tvadimensionella analysen enligt avsnitt 5.3

utan vidare kan anvdandas for analys av effektpulser under en &rscykel.
Metoden kan dven tilldmpas p& 1angtidsforloppet under flera ar.

En ren stegpuls har konstant effektuttag q (W/m) fran en starttid
t = 0:

_J0 t¢ 0
q(t) = 1q £S5 0 (10.3.7.2)
Temperaturen vid brunnsviggen ges av formel 5.3.2.13 (R » RO):

2

5R

q [q./%t) _ )
TRq(t)z_‘hT)\ \]n<—R‘Z> Y) (ts 3 ) (10.3.7.3)

© y = 0.5772

Temperaturen dr negativ, eftersom 19sningen avser enbart stegpulsen.
Ostord temperatur ar harvid T = 0.

For att erhdlla verklig brunnstemperatur skall TRq(t), som hanfor sig
til1 effektuttaget q(t), adderas till ostdrd marktemperatur:

Tp(t) = T+ Tpolt) (10.3.7.4)

Formel 10.3.7.3 gdller ej under en forsta period 0 < t< 5R§/a. Denna
tidsgrdns blir for en bergvarmebrunn ndgon timme:

a=1.6-10"%n%s

5R(2)
Ro = 0.055 m = - 2.6 timmar (10.3.7.5)
Man kan sdnka tidsgrdnsen ner till, 18t oss saga, en timme utan storre

fel. For annu kortare tider bor formlerna i detta avsnitt ej anvdndas.

Varmeuttaget for en effektpuls som startar vid t = 0 och har langden tq1
ar:
t <0

q(t) = (10.3.7.6)

£t
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Under tiden fram till t= tq1 gdller stegpulsformeln 10.3.7.3. Av-
klingningen efter pulsen ges enligt formel 5.3.3.3 av det enkla ut-

trycket
(£ %)
N S P .0
I det alimanna fallet dr effekten q; i tidsintervallet tq i1 <t < tqi:
0 t <t
qo
14
P tqo‘ t < tq1
q t . <t<t
a(t)={ ¢ al 92 (10.3.7.8)

For en tid t, som ligger i det n:te intervallet, giller da enligt
formel 5.3.4.6:

qn / /4at
=._n P . )
TRl = = g (") - v)
o)

noqg; - Q- t-t . 1
) In (—L12h (10.3.7.9)

i1 4 tp

%

(9,0, ¥=0.5772 , tgyn1 T8 T <t )

Har ar tp en godtycklig referenstid. Formeln har en enkel struktur.
Den forsta termen dr en konstant ganger aktuellt virmeflode q,- For
varje d@ndring 95 - 954 av effekten erhdlles en term med logaritmen
av tiden t - tq,i—i'

[ avsnitt 5.3.4 ges ett exempel med kvartalsvis konstant effektuttag.

Exempel 1. I exempel 1, avsnitt 10.2, redovisas ett fall dir effekt-
uttaget dr foreskrivet manadsvis. Beriknade brunnstemperaturer
visas i figur 10.3. Dessa kan berdknas analytiskt med form-
Terna 10.3.7.9 och 10.3.7.4. For att illustrera metoden ut-
fores berdkningarna for de tre forsta midnaderna.
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Forst berdknas bidraget fran vdarmeuttaget, TRq(t), varefter
brunnstemperaturen erhdiles enligt formel 10.3.7.4. Ostord
marktemperatur TOm 5r 1ika med 8.32 °C. Virmeuttaget dr

2.19 W/m

manad 1: Q1(t) = 320 W qq =
manad 2: Qz(t) =470 W q, = 3.22 W/m
manad 3: Q3(t) =1170 W 93 = 8.01 W/m
Med tp = 1 mdnad erhalles

R _ . _2.19 / Tty
minad 1. T (t) = -2.19-0.183 - g5+ In \%E) =

t)
= -0.402 - 0.0498 1 /—~
g Int)

) ) . C2.19 4t
minad 2. Tp (t) = -3.22-0.183 : 1n< )

o
)
[am)

3.22-2.19 ( ,

\
170 )=
- -0.589 - 0.0498 Tn (&) - 0.0234 1n (li - 1)
t) T )
P p
minad 3. T, (t) = -8.01- 0.183 - 3——— Tn ( t)
© 'R . 15 T
3.22-2.19
g " (?* - ’) -
p
8.01-3.22 A
-~ " (f” .
p
- -1.47 - 0.0498 1n (-t} -0.0234 1n (JL AN
5,/ )

t

0.109 In <1L 2 2)
o ]
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Exempel 2.

Tabellen nedan visar brunnstemperaturen for nagra olika
tider t.

t/t, 0.5 1.0 1.5 2.0 2.5 3.0
TRq(t) (°c) -6.37 -0.40 -0.59 -0.62 -1.45 -1.54
Tp (1) (°c) 7.95 7.92  7.73 7.70 6.87 6.78

I ovanstdende exempel dr effektuttaget foreskrivet minadsvis.
For att illustrera hur en variation i effektuttag under en
manad kan analyseras tar vi foljande exempel som utgdr fran
exempel 1 ovan. Vdrmeledningsformdgan har sinkts fran 3.5 till
3.0.

Under en vintermdnad femte dret foreskrivs ett effektuttag

enligt figur 10.18. Detta effektuttag bestar av det tidigare
under madnaden konstanta uttaget plus en Gverlagrad pulsation.
Brunnstemperaturen frén det mdnadsvis konstanta uttaget be-
tecknas TRm(t). Brunnstemperaturen for den Gverlagrade pulsa-
tionen TRq(t) kan berdknas med ovan angivna metod. Total brunns-
temperatur blir:

TR(t) = Tpp(t) + Tp,(t) (10.3.7.10)

Medeleffekten under den aktuella ménaden &r 2 980 W. Den Gver-
lagrade effekten blir enligt figur 10.18 for de tva forsta
veckorna:

vecka 1: Q(t) = 2300-2980W q(t) = -4.66 W/m
vecka 2: Q(t) = 4 600 - 2 980 W aglt) = 11.1 W/m

Med tp = 1 vecka erhdlles da:

. N 4,66 [t
vecka 1: TRq(t) =4.66-0.171 + 37T In \f_) =

, t)
= 0.797 + 0.124 In <‘t*—/



Exempel 3.

. - [t
vecka 2: TRq(t) = -1.89 + 0.124 1n \tp/

\

-0.418 In (i - 1)

t
p
Tabellen nedan ger nagra varden under dessa tvd veckor:

t/tD l 0.25 0.5 1.0 1.5 2.0
- [¢]
Tagt) (°0)

0.63 0.71 0.80 -1.55  -1.31

Férloppet under hela minaden visas i figur 10.18.

(46)

QIkW] 4.0
3.0 e B A E R
(231

20

Tlc) 41

0 2 1% 2222324 2 dagar

Figur 10.18. Pulserat vdrmeuttag enligt exempel 2.

Foljande effektuttag med halvdagarspulser foreskrives:

40 (W/m) forsta halvan av varje dygn i sju
q(t) = dagar

0 for ovrigt
Speciellt dr effektuttaget noll efter de sju dygnen.
Foljande data gdaller:
A= 3.5 W/m K ¢ = 2.16 - 10 a/m® -

R0 = 0.055 m

10.31
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Effektpulsernas bidrag TRq till brunnstemperaturen ges av

formel 10.3.7.9 (tp = 1/2 dygn)
. - - - L
0<t( tp. TRq = =3.59 - 0.909 1n(tp)
. -0 - o ol
tp <tK 2tp. TRq =0 - 0.909 {1n(t ) 1n(t 1)f
p p
. - - - LI
2tp <t 3tp. TRq = -3.59 - 0.909 {1n(tp)
S - D+ - 2]
p p
- t
3t t 4t 0 T =0 - 0.909 I] ) -
b <tg tp Rq 0 1 n(tp)
S - 1) st - 2) —1n(%—-3)}
p p p
osv.
Tabellen nedan ger ndgra vdrden.
t/tp | 0.5 1.0 1.5 2.0 3.0 4.0
TRq(t) (OC) ] -2.96 -3.59 -1.00 -0.63 -3.96 -0.89

Brunnstemperaturen fran medeleffektuttaget q(t) = 20 W/m blir
for de 7 dagarna:

Tpg(t) = =1.797 - 0.455 In(%) 0<t<7 dagar
q tp

Denna temperatur ges av streckad linje i figur 10.19.

I figuren visas ocks& avklingningen efter pulstdget och efter
medelpulsen (streckad 1inje). Tvd dagar efter pulseringens
slut sammanfaller temperaturforloppen. D& gdller bade for
pulstéget och for medeleffekten:

t t

T, (t) = 0 - 0.455 {1n(t—) . YA 14)} t> 18t =9 dygn
Rg 5 o p
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alw/m]
“Hnn nnnn
20 v emmemcmeen medeluttag
pulserat uttag
a : - .
7 1 21 28 daogar
0 * . - :
14
-2
-3
-4+
Ta-Tom (€]

Figur 10.19. Effektuttag och brunnstemperatur for exempel 3.

10.3.8 Periodisk delprocess

En viktig delprocess dr ett periodiskt effektuttag:

. oog2nt
Q(t) = Q, - sin (?upo) (10.3.8.1)

Hir @r Q_ (W) effektens amplitud och to periodtiden. Fasen @, kan val-
jas godtyckligt.

Det totala effektuttaget kan bestd av en konstant komponent och en
eller flera periodiska komponenter. I detta avsnitt behandlas en ren
periodisk komponent enligt 10.3.8.1. Det totala forloppet erhilles som
vanligt genom superponering.

I avsnitten 5.2.2.2 och 5.2.3.2 behandlas det periodiska forloppet
utanfor ett ror eller en cylinder. Formler for hela temperaturfor-
loppet och for temperaturen TR vid brunnen anges. En periodisk kom-
ponent ger ett bidrag TRp ti11 total brunnstemperatur.

Foljande beteckningar anvinds:

at0 Rolﬁ_
do = T R‘ =T- (10.3.8.2)
o]
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Formel 5.2.3.10 ger

Q
- P 1 . /Zﬂt - ' \
TRp =~ 7mm * ARY) St % B(R*) )

(10.3.8.3)

Amplitudfunktionen A och fasfunktionen B ges i figur 5.2.3 och tabell

5.2.2.

I de aktuella tilldmpningarna &r R' normalt litet. Foljande approxi-

mation kan dd enligt formel 5.2.3.11 anvindas:

A(R") w{]n(Z/R')-Y)Z + 72/16

I

(R* < 0.1)
arctan <TﬁT?;é$7:?> (v = 0.5772)

B(R")

Exempel. Vi tar foljande data:

t,=14ar  a=1.6:10"° n¥s A = 3.5 W/mekK
R, = 0.055 m Q/H = 15 W/m

D& fas

d,=4.01m R' = 0.0194

Formel 5.2.3.11 kan anvandas:
A=4.13 B =0.191

Brunnstemperaturen blir da

= - '-_ZTT_t -
TRp 2.8 s1n(to + o, 0.191)

(5.2.3.11)

(10.3.8.4)

Amplituden blir sdledes 2.8°C vid brunnen. Fasfordrojningen

0.191 motsvarar tiden

0.191 _
5t to = 11 dagar




10.3.9 Brunnsdiameterns betydelse

Brunnshdlet har diametern ZRO. En storre diameter ger battre varme-
upptagningsformidga. Detta illustreras med nedanstdende exempel.

Exempel. Effektuttaget sdttes konstant frén starten t=0. Foljande
data gdller:

H=98m D. =2m

3.5 WmeK  C = 2.16 MI/mo-K (10.3.9.1)

>
I

Q(t) =1000UW , t>0

Brunnsradien RO varieras. Temperatursdnkningen vid brunns-
vaggen r=R0 relativt ostord mark dr Tom—TR(t). Tabell

10.4 visar med dator berdknade varden efter 1, 5, 30
och 100 &r.
RO (m) 1 &r 5 &r 30 & 100 &r

0.025 2.776  3.082 3.320 3.389
0.050 2.454  2.759  2.996  3.064
0.125 2.029 2.322 2.566 2.633

Tabell 10.4. Temperatursdankning Tom—TR(t) (°c) vid brunnen for
) négra brunnsradier. Data enligt 10.3.9.

Lat TR(t) och Tﬁ(t) vara brunnstemperaturen for tvd fall med brunns-
radierna R0 och Ré. De tvd fallen ar i Ovrigt lika. De har samma
effektuttag Q(t). Berget mellan radierna R, och Ré representerar ett
varmemotstdnd som ges av:

RI
m = o In (—9\ (K/ (W/m)) (10.3.9.2)

Detta vdrmemotstand multiplicerat med vdarmefiddet Q(t)/H bor vdsent-
ligen ge differensen Tﬁ—TR.

10.35
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Detta ger foljande samband for tvd fall som dr lika i allt utom
brunnsradie.

Ta(t) = Te(r) + 8L gy <-R§) (10.3.9.3)

Exemplet ovan ger for Ré = 0.025 m och R0 = 0.050 m:

1000 . (0.025)

TR(t) = Tp(t) + 55 5058 10 {5.05)

eller

TOm - TR(t) = TOm - Té(t) - 0.322

Detta stdmmer mycket vdl med tabell 10.4. I tabell 10.5 anges relativt fel
for formel 10.3.9.3 for exemplet ovan.

Ré (m) 1 &r 5 &r 30 &r 100 &r

0.025 0.0000 0.0003 0.0006 0.0009 RO = 0.05m
0.125 0.0000 0.0009 0.0019 0.0023

Tabell 10.5. Relativt fel for formel 10.3. 9.3. Data enligt 10.3.9.1.

Felet blir for det aktuella exemplet mindre &n 0.3 procent. Formeln
10.3.10.3, som ger effekten av brunnsradien Ro’ dr sdledes mycket
noggrann.
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10.3.10 Varmeledningsformdgans betydelse

Storleken p& bergets vdrmeledningsformdga A ar av stor betydelse for
effektuttaget eller for erforderlig temperatursankning.

I férsta hand ar bergvdrmebrunnens termiska prestanda direkt proportionella
mot A. Vid givet effektuttag dr erforderiig temperatursankning Tom_TR
omvant proportionell mot A. Omvdnt gdller vid given temperatursankning

att effektuttaget blir proportionellt mot r. For det stationdra fallet
gdller detta enligt formel 10.3.2.10. I transienta fall visas detta t.ex.

i formlerna 10.3.6.1 och 10.3.7.9.

For transienta processer kompliceras forhd1landena av att tiden i alla
formler multipliceras med a = »/C. Ett d@ndrat X motsvarar en dndring av
tidsskalan. Denna effekt dr dock sekundar.

Som exempel kan vi se pd den transienta l&ngtidseffekten vid konstant
virmeuttag. Med data enligt (10.3.6.3) blev temperaturs&nkningen vid
brunnen den som ges av figur 10.16. Antag nu att vdrmeledningsformégan
sankes fran x = 3.5 ti11 A = 3.0. Temperaturledningstalet a minskar da
ocksd med faktorn 3.0/3.5. Skalningen ges ur formel 10.3.6.1. Kurvan i
figur 10.16 skall okas med faktorn 3.5/3.0, medan tiden a@ndras med faktorn
3.0/3.5. L&t oss berdkna temperatursdnkningen efter sju ménader. Tiden

t' som skall anvandas i figur 10.16 ges av

3.5-t" =3.0-7 t' = 6 ménader
Figur 10.16 ger vardet 2.31 oc. Temperatursankningen blir sdledes

3.5.2.31/3.0 = 2.7 Oc. Exemplet visar att den direkta proportionaliteten
ar det viktiga, medan @ndringen av tidsskalan betyder mindre.

10.3.17 Effekt av grundvattenfldde

De olika analyserna och formlerna i de tidigare avsnitten har forutsatt
ren vérmeledning i berget runt brunnen. Stdrningar p& temperaturforloppet
beroende pd vattenrdrelser i spricksystem har forsummats.
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Effekten av grundvattenrdrelser skall hir belysas med hjdlp av en
viss analytisk 16sning. (J. Claesson, Bergvarmebrunn. Stationdr 16sning
med grundvattenfldde. Opublicerad studie.)

Grundvattenflodet i ett vattenforande berg beskrivs i en skala som
dr storre dn avsténden mellan enskilda sprickplan. Man betraktar det
vattenforande berget som ett homogent porost medium. Grundvattenflodet

ar a,, (m/s eller mera precist m3 vatten per m2

och s). Det sprickiga
berget tillskrivs en hydraulisk konduktivitet K. Man antar ett samband

av Darcy-typ:

Gy = Kol (10.3.11.1)
Har d@r I grundvattenytans lutning (m/m).

I berget antas nu rada ett konstant, horisontellt grundvattenflsde Gy Grund-
vattenytan Tigger relativt ytligt jamfort med hela brunnsdjupet. Gdller

ej detta blir storningen mindre &n den nedan angivna. Frdn bergvirme-
brunnen sker ett konstant effektuttag Q (W).Den analytiska 16sningen av-

ser det stationdra fallet. Figur 10.20 visar forutsdttningarna for den
analytiska 16sningen.

2NV
iy

Figur 10.20. Stationirt varmeuttag Q ur bergvdrmebrunn i berg med ett
horisontellt, stationdrt grundvattenflide Q-

Foljande samband r&der mellan effektuttaget Q och-temperatursidnkningen

Tom - TR vid brunnen:
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T~ Ta= ?é%ﬁ {1n (t%%) - P, <g)} (2 >> R) (10.3.11.2)

I harledningen forutsdatts att 1éngden g dr mycket storre &n brunns-
radien Ro' Langden & ges av:

2\
ww

L= (10.3.11.3)

Har ar Cw ~ 4.2 MJ/m3- K vattnets vdrmekapacitet.

Den forsta delen med logaritmtermen i formel 10.3.11.2 motsvarar det
tidigare.fa11et enligt formel 10.3.2.10. Storningen pd grund av grund-
vattenflddet ges av termen PW(H/Z). Korrektionen &r negativ eftersom
ett grundvattenfldde innebdr en uppvdrmning mot Tom av det kylda omrédet
kring brunnen.

Funktionen PW ges av:

My 3. g (HYy _ 1 g (3
Pu \m) =75 22) 7 B 25)
(10.3.11.4)
EQ(S) = In(s) + v + E1(s) y = 0.5772

Har dr E1(s) exponentialintegralen, vilken definieras av formel 5.3.2.2.
Tabeller och samband for denna funktion ges i referens 103 A.

For smi vidrden p& H/g dr foljande serieutveckling anvdndbar:

\ 2
N
P, (E}"TE'(I) 77’(@) - (10.3.11.5)
For stora varden pa H/% gdller:
H\ HY . Hoo oo
P, (i ~1n (?E) Ly -1 (3) (E’> 10) (10.3.11.6)

Figur 10.25 ger Pw som funktion av H/%.

Effekten av ett grundvattenflode kan belysas med foljande exempel med
normala bergdata

"

150 m R, = 0.055 m
1077 m/s I =103 m/m (10.3.11.7)
3.5 W/m-K
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PD 01 02505 10 20 50 100

15

1.0
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tn{H/1)
-3 -2 41 0 1 2 3

Figur 10.27. Korrektionsfunktion for effekt av grundvattenfldde
enligt formel 10.3.11.2.

Da gdller enligt formlerna 10.3.11.1 och 10.3.11.3:

q, = 10710 mss % = %A‘105 m (10.3.11.8)

Med hjdip av formel 10.3.11.5 erhilles

H -2
% ~10 Pw ~ 10

-5

Korrektionen Pw skall jamfdras med logaritmfaktorn i formel 10.3.11.2:

P
H O\ W -6
In (55~} = 7.22 —_—  ~ 10
<2Ro} 1n(H/(2RO))

Grundvattenflodet ger en korrektion i storleken 10_6. Grundvattenflodet
dr sdledes forsumbart i detta fall.

Ukas I till det extrema virdet 10_2, s8 minskar ¢ med faktorn 10.
Korrektionen blir i storleksordningen 10_3, dvs. fortfarande helt for-
sumbar. Slutsatsen av detta ir att effekten av grundvattenfldden dr helt
forsumbar vid normala vdrden pi bergets hydrauliska konduktivitet.
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L&t oss ta ett exempel med en mycket hog konduktivitet:

K=10"°ms I = g5 m/m (10.3.11.9)
D& erhdlles med tabell
g =235 _yegn
4.2 «-1/90
Ho_ _
7 1 Pw(1) = 0.124
P (1)
N -0.02
1n(H/(2RO))

Detta fall ger en pdverkan med 2%.

Som allmdn slutsats av detta gdller att effekten av naturliga grund-
vattenrorelser, som ar nigoriunda homogent utspridda Over bergvolymen
runt brunnen, dr forsumbar. Grundvattenfloden av annan typ som ger en
mer riktad pdverkan p& brunnen innefattas ej i denna beddmning. Man kan
t.ex. tdnka sig ett snett sprickplan med kraftig vattenforing, vilket
vintertid kyler bergvarmebrunnen.
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10.3.12 Virmemotstdnd mellan inre kanal, yttre annuldr kanal

och bergvdgg

Varmeoverforingen mellan fluidkanaler och omgivande mark beror pd
markvarmekollektorns utformning, fluidens egenskaper och fluid-
flodet i stromningskanalerna. I avsnitt 7.2.8 behandlas de olika
typer av varmemotstand som forekommer.

I detta avsnitt anges vdrmemotsténd for en markvdrmekollektor som
bestdr av en yttre annuldr kanal och en inre kanal enligt figur 10.22.
Sambandet mellan varmefloden, fluidtemperaturer och temperatur vid
bergvdggen beskrives med varmestromningskretsen i figur 10.22. Kret-
sen ritas som en Y-krets for att i senare avsnitt kunna jamforas med
andra kretsar. Motsténdet mot Ta blir i detta fall noll.

Figur 10.22. Tvdrsnitt av markvdrmekollektor bestdende av inre (core)

och yttre (annulus) kanal. Till hoger visas motsvarande
varmestromningskrets.

Varmemotstanden m, och my i figur 10.22 ges av foljande uttryck:

me = me o * mé e (10.3.12.1)

m =m

y fay (10.3.12.2)

m'

Delmotstanden m D Me o

o och mfay ges av (7.2.89, 110, 101, 104).
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Exempel. Givet en markvarmekollektor bestdende av ett borrhdl med en
centrerad plastslang med foljande data:

Brunnsradie RO = 0.05 m

PlastsTangens innerradie Rpi= 0.0176 m
Plastslangens ytterradie pr= 0.020 m
Plastens varmeledningsformaga A' = 0.43 W/mK

Varmebararfluiden dr i detta fall vatten. Vid aktuell tem-
peratur runt ett par plusgrader gdller foljande data for

vatten (fluid):

2.16-10% 3/m

A 0.57 W/mK C

f

= 1.8+1072 kg/mes - 1.0-10° kg/m®

Uf pf

Pr = Prandtls tal = 13.4

Pumpflodet genom kanalerna dr:

Vf = 0.50 1/s

enligt 7.2.85:

fe - 4:1.0:10°  0.50.107 o
re1.8.1073 Z2°0.0776

Eftersom Re > 10000 s& ar stromningen turbulent. Nusselts
tal kan dd berdknas enligt (7.2.92):

1/3

Nu = 0.023-(10084)%-8.(13.4)1/3 = g6.9

Varmemotsténdet mellan inre kanal och plastslang blir enligt
(7.2.89):

1

Mee = 7+0.57:86.9

= 0.0064 K/(W/m)
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Vdrmemotsténdet Gver plastslangen &r enligt (7.2.110):

1
2+m0.43

0.020

(50778

ma = ) = 0.0473 K/ {(W/m)

Vid berdkning av mfai ___________

Tigare ett par parametrar beriknas.

Reynolds tal for yttre kanal dr enligt (7.2.97):

= 2358

Re - 4:1.0°10°  0.50-107°
1 g3 2°(0.055 ¥ 0.020)

Reynolds tal ligger i gransomr&det 1000 < Re < 10000. I
detta intervall kan flodet vara turbulent eller laminart.

Parametern R* definieras enligt (7.2.97):

(=]

.020
.055

R* = = 0.3636

[

""""" yy®
e? och G; interpoleras fram ur tabell 7.2.22:

Nu.. = 6.93 0% = 0.658
11 1

Nu__ = 4.96 0% = 0.168
Yyy y

En rimlig ansats pa qy/qi = -10(q1./qy = -0.1). Detta ger en-
ligt (7.2.106-107): "

6.93

N3 = 75658710y = 0-915

4.96

Nuy = =5 Tss-(o0.T) = 4-879

Varmemotstanden mfai och mfay ges nu av (7.2.101) och
(7.2.104):
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eai = TrosTeo-gTg (1/0-363 - 1) = 1.067 K/ (W/m)

1

mfay = m (" - 0.363] = 0.0729 K/(W/m)

SamtTiga delmotstdnd ar nu kanda och m; och my kan berdknas
enligt (10.12.1-2):

=3
1l

0.0064 + 0.0473 + 1.069 = 1.12 K/(Wm)

m

y 0.0729 K/{(W/m).

Varmemotstdndet mellan inre och yttre kanal &r cirka 15 gang-
er storre @n det mellan yttre kanal och bergvdgg. Detta beror

framfor allt pd att delmotstdndet m dr mycket stort rela-

fai
tivt Ovriga motstand.

10.3.13 Vdrmemotstand mellan tvd kanaler i borrhdl och bergvigg

En vanligt forekommande markvarmekollektor dr en plastslang i form av
ett U-ror som ar nersdankt i borrhdlet, se figur 10.23.

\\

Figur 10.23. Markvarmekollektor med U-formad plastslang nedsankt
i borrhdlet.

Avstandet frén centrum av borrhdlet ut till slangarnas mittpunkter ar

b1R0 och bZRo' Avstandet mellan slangarnas mittpunkter ar b12Ro‘
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Slangens ytterradie betecknas Rp. Varmemotstéanden for denna typ av
kollektor &r berdknad genom att slangarna approximeras med linje-
kdllor, varefter det stationira varmeledningsproblemet 16ses med su-
perpositionsteknik.

Approximationen torde gdlla med acceptabel noggrannhet om slangarna
ej ligger alltfor ndra varandra. Ftt rimligt krav dar att avstdndet
mellan siangarnas ytterviggar ej understiger en slangradie . Villko-
ret kan skrivas:

3
b12 > ?-R /R (10.3.13.1)

Temperaturen TR vid bergvdggen dr stringt taget ett medelvirde runt
den cirkuldra borrhalsvaggen. I fallet d& slangarna omges med vatten
antages att vdrmetransporten pd grund av naturlig konvektion 3r for-
sumbar i jamforelse med den konduktiva varmeledningen genom vattnet.
Detta synes vara en rimlig approximation da vattentemperaturen 1igger
i omradet runt 0-8°C.

Sambanden mellan fluidtemperaturerna Tf1 och sz, temperaturen vid
bergviggen TR och varmefloden kan beskrivas med en varmestromnings-
krets av Y-typ, se figur 10.24.

T

q, m

Tr
m2

T, 2

Figur 10.24. Varmestromningskrets for tva kanaler i ett borrhal.

Skillnaden mellan temperaturen vid bergvdggen och fluidtemperaturer
kan d& skrivas:

Tr = Teqm myray + mys(aq + qy)

n

(10.3.13.2)

TR~ Tepm mpray +myn(aq + ay)
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Varmemotstanden My, My och m,, ges av:

My =M - M2

(10.3.13.3a)
My =Moo = Mo
M., = o (In(R_/R ) - X_L-—imm - b2)] +
11 211)\,I o’'p X1 + A 1
+ mF') + mfc
1 Apo- A 2
= _ - _ 1
Moy e [1n(RO/Rp) X, In(1 bz)J +
(10.3.13.3b)
+m! +m
p fc
] Ay - A
M2 T T 7, [in(byy) * X n(by,)]

Koordinaterna for slangarnas mittpunkter ar (x1,y1) respektive (xz,yz),
da origo @r placerad i centrum av borrhdlet. Parametrarna bq, b2 och
by, blir d& enligt figur 10.23:

NI
by =\ xy * ¥y /R,
72
b, = \/ 2w ys R (10.3.13.4)

Ur dessa fas parametern bHZZ

. 2 2 2"
by, = \/(1 - b)) (1 - b5) + by, (10.3.13.5)

Uttryck for M. ges av (7.2.89). Varmemotsténdet mé over plast-
slangen ges av (7.2.110)
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Exempel. Givet en tvaslangskollektor enligt figuren nedan. Avstén-
det mellan centrum av borrhdiet och mittpunkten pd slang-
arna dr for bada slangarna 0.6 Ro (b1 = b2 = 0.6). Slang-
arnas mittpunkter ligger pd en rdt linje genom borrhélets
centrum (b12 = 1.2).

Data for borrhdl, plastslang och fluid ar:
Borrhal: R0 =0.055m X = 3.5 W/mK A1 = 0.57 W/mK

b1 = 0.6 b, = 0.6 b12 = 1.2

Slang: Rpi = 0.0176 m pr = 0.020 m

A" = 0.43 W/mK  (PEM-slang)

Fluid: A, = 0.53 WmK  C. = 4.2-10% g/m
i £ f
(brinol-
vatten) b = 6.3:107 kg/mes o = 970 kg/m>  Pr = 51.5
Pump- 3 3
flode: Vf = 0.75<10 " m“/s = 0.75 liter/s

Reynolds tal berdknas med formel 7.2.85:

-3
4-970 0é75-10 = 4177

m+6.3+1077+2-0.0176

Re =

D& Re ligger mellan 2300 och 10000 kan flddet vara antingen
lamindrt eller turbulent. Antag att flodet &r turbulent. Da
erhdlles enligt (7.2.92):
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0.8, 173 _

Nu = 0.023-(4177) 51.5) 67.4

Formel 7.2.89 ger nu:

_ 1 _
Mee = 05677 ~ 0.0089 K/(W/m)

Vdrmemotstandet over plastslangen, mé, ges av (7.2.110):

0.020

In(50178

L
Mo = 27+0.43

) = 0.0473 K/(W/m)

Parametern bj, ges enligt (10.3.13.5) av:

bio = \/(1 - 0.6%)(1 - 0.6%) + (1.2)% = 1.36

Delmotsténden Myqs Moy och My, ges enligt (10.3.13.3b) av:

My = gregsy [100.055/0020) - 9:37 =35 1n(1 - (0.6)2)7 +
+0.0473 + 0.0089 = 0.249 K/(W/m)
M2 = M1
My = - wregey (n(1.2) + 527233 1n(1.36)) = 0.011
K/ (W/m)

Véardet pa my (= mZ) kan nu berdknas med formel 10.3.13.3a:
my = m, = 0.249 - 0,011 = 0.238 K/(W/m)

D& flodet antages lamindrt erhdlles ett annat virde pa Me. -
Varmemotsténdet my (= mz) blir for detta fall 0.379 K/(W/m).

For fallet da vattnet i borrh&let ar fruset (A, = 2.1 W/mK) erhdlles:

1

my =m, = 0.132 K/(W/m)

My = -0.008 K/ (W/m)

Notera att motstandet mis i detta fall &r negativt.
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10.3.14 Varmemotsténd for det allmdnna fallet med flera kanaler

i borrhdlet

I detta avsnitt behandlas varmemotst&nden mellan borrhalsvdggen och

ett godtyckligt antal fluidkanaler eller plastslangar. Sambanden mel-
lan varmefloden och temperaturer ges av ett ekvationssystem. Ekvation-
erna har harletts genom att varje fluidkanal representeras med en lin-
jekalla. Den totala véxelverkan mellan olika 1injekdllor berdknas med
superpositionsteknik. En detaljerad analys av de exakta forutsattning-
ar som kravs for denna approximation, samt en redovisning av berdkning-
arna for formlerna nedan kommer att redovisas i en annan skrift. Har
anges endast resultaten.

Figur 10.25 visar ett borrhdl med ndgra slangar (N = 4). Temperaturen
TR vid bergviaggen dr ett medelvdrde runt borrhalsvdggen.

Slangarna upptar effekterna Gqs Gps---0y med sorten W/m. Den totalt
uttagna effekten per meter borrhdl ges av summan:

N
a=1 aq (10.3.14.1)
1

Koordinaterna for mittpunkten i slang nummer i ges av (Xi’yi) och
ytterradien p& slangen ar Rpi' Avstdndet till origo betecknas biRo'

Avsténdet mellan tvd slangar i och j ges av bino’ se figur 10.25.

Figur 10.25. Borrh&l med fyra fluidkanaler. Beteckningar for avstand

och temperatur anges i figuren.



Enligt figur 10.25 gdller for avstanden:

—
- \’ 2 2 - 2 2 .
b'i - X‘i +‘y‘i /RO b'ij _\/(X'i ‘}'j) + (y1 ‘yJ) /Ro

(10.3.14.2)

Fluidtemperaturen hos kanal i betecknas Tfi (i =1,...,N). Varmeled-
ningsformdgan i borrhalet utanfor plastslangarna dr X1. I berget runt
borrhdlet &r varmeledningsformdgan A.

Sambandet mellan fluidfloden och temperatursankning mellan bergvagg
och varmebdrarfluid ges av féljande ekvationssystem:

To = Tq =My Fmp ap + e Mgy dy

Tp = Tgp=Myp Qg ¥ My Gy + oo + Moy Qy
(10.3.14.3)
TR = Teny™ My Gq + My Gy + o+ My dy
Varmemotstéanden ms och m;y ges av:
Ay - A
_ 1 2
Mg =z nRe/Rpg) - gy 1n(1 - 09b
*Moi ey
1 by - (10.3.14.4)
mij = - ?%X;'{1”(bij) ¥ X;‘i‘X'1“(bij)}

|
. 2 2 2
b = \/(1 - b5 (1 - b3) + b

Uttrycket for Me s och mpi ges av (7.2.89) respektive (7.2.110). Ofta
anvandes istdllet inversen till ekvationssystemet (10.3.14.3) vilket

ger uttryck for varmeflodena q; enligt:
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(T, -T,) =m

) -1
4 = myglTp - Tg R - Td o P (T - Ty

- -1
A = Mpg (T = T +mpplTp = T + o+ mpp (T - Ty

(10.3.14.5)

g
ay = Mg (Tp = Tep +mp(Tp - T + e m (T - Ty

dar m;} ar matriselementen hos inversen till matrisen mij' Dessa sam-
band utnyttjas i avsnitt 10.3.15.

Ett viktigt specialfall av ovanstdende allmanna fall ar da markvarme-
eller vice versa. Med antagandet att de tvd neddtgdende kanalerna har
samma fluidtemperatur samt dr placerade symmetriskt relativt den upp-
dtgdende, kan kopplingen mellan fluidkanaler och bergvagg represente-
ras med en vdrmestromningskrets enligt figur 10.26. De tva neddtga-
ende kanalerna dr identiska och representeras som en enda kanal i
varmestromningskretsen. Kretsen dr identisk med den som anvandes for

tvdslangsfallet i figur 10.24. Uttrycket for varmemotstandet my blir
dock annorlunda hdr eftersom detta nu inkluderar tvd slangar.
Ti=Te
2q, my
m12
AAA Tr
2Qq.+
m, 91*q2
Q2
Ttz

Figur 10.26. Treslangssystem, ddr tva av kanalerna (1 och 3) ligger
symmetriskt relativt den tredje (2). Hoger figur visar
motsvarande vdrmestromningskrets.

I figur 10.26 representeras de tvd identiska nedatgdende fluidkana-
lerna 1 och 3 med en kanal som hdr indiceras med 1. Uppdtgdende kanal
har index 2. Varmemotstdnden blir da:



]
My =g (myq +mys - 2mp5)
(10.3.14.6a)
Mo = Moy =My
A, - A
o 1 2 .
"1 T 7 {In(R /R p) - XX (1 - b7}
Tyt Meeq
A - A
o 1 2
"2 T 7y (R /R ) - IESY In(1 - by)}b +
* mﬁZ T Mo
(10.3.14.6b)
1 Ay -
Mip = = 7y 1In(by,) + FX Tn(b;,)}
: A - A

My3 = = 2oy (Inlbyg) + 5

Har ar Rp1 ytterradien hos slangarna i neddtgdende kanaler och R 5
ar ytterradien pa slangen i uppdtgdende kanal. Varmemotstanden LAY
och Meoq med index 1 avser slangmotstdnd respektive motstandet mellan

fluid och plastslang for en av de tvd neddtgdende kanalerna.

Varmemotstanden m51 och mﬁz berdknas med formel 7.2.110. Motsté&nden

Mee och Meep berdknas med formel 7.2.89. Dessa ar i allmanhet olika
eftersom fluidflodet dar hdlften sd stort i kanal 1 och 3 som i kanal
2.

De dimensionsldsa parametrarna b1, b2, b12, biZ’ b13 och b%3 ges av
(10.3.14.2) och (10.3.14.4).

Ovanstdende analys galler forstds dven for fallet d& man har omvand
pumpriktning med tvd uppatgdende kanaler.
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Exempel. Givet en treslangskollektor enligt figuren nedan. Slangarnas
mittpunkter (Xi’yi) ligger i hornen av en liksidig triangel
med tyngdpunkten i centrum av borrhdlet.

Positionen hos slangarna bestdmmes enligt figur 10.25 av
parametrarna:

byo = ban = 20.6+cos(30°) = 1.039

12 13

Ovriga data for plastslangen och fluid dr samma som i exemp-
let i avsnitt 10.3.13.

Vdrmemotstanden my och m, kan berdknas om delmotsténden Meeqs
Mecos mp1, mpz, Mygs Mooy My och mi3 ar kanda. Notera att

Me. skiljer sig for uppatgdende och nedatgdende kanaler efter-
som flodeshastigheten dr hdlften sa stor i den ena riktningen

som i den andra. Flodesforhallandena ges av Reynolds tal:

1l

Re1 2088 < 2300 —> laminart

n

Re2 4177 > 2300 —> eventuellt turbulent

Reynolds tal for kanal 2 Tligger i intervallet 2300 < Re, < 10000
och kan sdledes vara laminart eller turbulent. Antag att fl1o-
det dr turbulent. D& erhdlles enligt (7.2.91-92):

Nu1 =4 (for kanal 1 och 3)

Nu

5 67.4 (for kanal 2)
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g y . oy.
Med dessa varden berdknas Meeq och Meeo enligt (7.2.89):

m 0.1501 K/ (W/m)

fc

m 0.0089 K/ (W/m)

fc2
Véarden pa Myqs Mogs My och L beraknas enligt (10.3.14.6b)
analogt med exemplet i avsnitt 10.3.13. Samtliga delmotstand
sattes darefter in i (10.3.14.6a). De nya vdrmemotstdnden
ges av:

m %3(0.3902 + 0.0293 - 2-0.0293) = 0.180 K/(W/m)

m, 0.2489 - 0.0293 = 0.220 K/(W/m)

Mip = 0.0293 K/ (W/m)
For fallet da borrhdlet dr fruset (A1 = 2.1 W/mK) erhalles:

m, = 0.132 K/ (W/m) m, = 0.123 K/{W/m)

1

My = 0.0009 K/ (W/m)

10.3.15 Varmemotstandet ma mellan varmebdrarfluid och bergvdgg

I avsnitt 10.3.12-15 har varmemotstand for olika typer av markvarme-
kollektorer angivits. Dessa motsténd skall i detta avsnitt anviandas for
att erhdlla ett uttryck for det totala varmemotstandet Mo mellan fluid
och bergvidgg.

Fluidtemperaturen varierar i brunnen. Det visar sig att denna tempera-
turvariation i de flesta fall kan forsummas om man ansdtter en kons-
tant temperatur Tf‘en1igt (10.3.15.1) i samtliga fluidkanaler. Tempe-
raturen T, skall definieras som medelvadrdet mellan in- och utiopps-

f
temperatur:

(10.3.15.1)
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Varmemotstandet ™ mellan fluid och bergvéagg definieras av sambandet:
TR - Tf = Mpeq (10.3.15.2)

Felet som uppstdr pd grund av att fluidens temperaturvariation for-
summas dr mycket litet utom for fallet med 1dga pumpfloden. Detta
behandlas i avsnitt 10.3.17. Dar anges dven ett uttryck for det varme-
motstand mé som f3s om hansyn tages till fluidens temperaturvaria-
tion 1angs fluidkanalerna.

Uttrycket for me varierar beroende av vilken kollektor som anviandes.
Enligt figur 10.22 f3s for ett system med inre och yttre kanal (Ta =
TC = Tf):

m, =m (10.3.15.3)

For tva- och treslangssystem enligt avsnitt 10.3.13 och 10.3.14 g&ller

varmestromningskretsarna i figur 10.24 och 10.25 (Tf1 = sz = Tf).
Motsténdet mo seriekopplas med det parallellkopplade motsténdet av
m och m,:
m,m
- 172
Mp = Myy + 5;_1_55 (10.3.15.4)

D& borrhdlet har ett godtyckligt antal stromningskanaler giller ekva-
tionssystemet (10.3.14.3) med motstandsmatrisen mij' Inversen till
systemet ger uttryck for varmeflodet g, enligt (10.3.14.5).

Fluidtemperaturen Tfj dr nu lika for alla kanaler j. Summeras samt-
liga ekvationer i (10.3.14.5) fds det totala virmeflddet q:

NN
4; = (T - T¢) %= %z mis (10.3.15.5)

=1 1 1

Genom identifikationen med (10.15.2) erhdlles Mo

m 1) (10.3.15.6)

Varmemotstandet Mo dar i det allmdnna fallet inversen till summan av

1

elementen i den inverterade motstandsmatrisen m{j-



Exempel. Givet ett system enligt exemplet i avsnitt 10.14. Virme-
motstandet me blir da enligt (10.3.15.3):

_ 0.180 0.220 _
mR = 0.0293 + m = 0.128 K/(W/m)

Om slangarna omges med is i stallet for vatten blir vardet
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pa Me lika med 0.065 K/(W/m), d v s ungefdr hdalften s& stort.

10.3.16 Temperaturvariation langs neddtgéende och uppatgdende kanal

Temperaturen Tf hos varmebdrarfluiden varierar langs neddtgdende och
uppatgdende kanaler. I datormodellen, som beskrives i avsnitt 10.7,
tas hdnsyn till detta. For varje nivad 1dngs hela brunnen sker ett
varmeutbyte mellan fluidkanaler och bergvidgg. Denna koppling kan for
tvd- och treslangssystem samt for fallet med inre och yttre kanal
beksrivas med en varmestromningskrets enligt figur 10.27.

Varmefloden mellan fluidkanalerna och bergvaggen balanseras darefter
mot konvektiva floden langs kanalerna. Med randvillkoret att botten-
temperaturen dr lika for alla kanaler kan in- och utloppstemperatur
berdknas.

T“(Z)

TR (2)

Ti2(2)

Figur 10.27. Varmestromningskrets mellan fluidkanaler och bergvigg,
dd floden och temperaturer varierar med djupet z.

Tre exempel nedan visar numeriskt berdknade temperaturprofiler for
de typer av markvarmekollektorer som behandlas i avsnitt 10.3.12-
10.3.14.
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Exempel 1 behandlar fallet med en inre och en yttre kanal d& flodet
dr turbulent i inre och lamindrt i yttre kanal. Exempel 2 behandlar
en kollektor som bestdr av en U-slang dd fluidfiodet &r turbulent.
Exempel 3 behandlar en treslangskollektor, varvid langsamt respekti-
ve snabbt pumpfldde belyses. Vidare visas effekten av sd stort varme-
uttag att vattnet runt slangarna fryser till is.

Exempel 1. Markvarmekollektor med inre centrerad plastslang och ytt-

re kanal enligt figur 10.22. Data for bergvdarmebrunnen ar:

H=145m D.=5m A=3.5WmK C=2.1610% 3/mk
T =18.25% (10.3.15.1)

Ovriga data for borrhdl, plastslang och fluid (vatten) ges
av exemplet i avsnitt 10.3.12. Pumpflidde och varmeuttag ar:

Vf = 0.50 liter/s
g = 20 W/m

Figur 10.28 visar numeriskt berdknad temperaturprofil for
de tv& pumpriktningarna vid tiden 25 &r. Inlopps- och ut-
loppstemperatur blir i bada fallen 0.09% respektive 1.47%C.
Pumpriktningen spelar sdledes ingen roll.

Temperaturprofilerna d@r i det ndrmaste linjdra. Varmevax-
lingen mellan inre och yttre kanal dr mycket liten. Detta
beror framfor allt pd att dvergdngsmotstandet mellan plast-
slangens yttervdgg och varmebararfluiden i den yttre kana-
len dr mycket stort, dd strdmningen ar lamindr.



Exempel 2.

0 1.0T0) 0 1.0 T, (°C)
0 i L TR 1 L o 4. 1 L L 1 1 1
50 1 504
100 - 100
1L5_ L 1 L L L 145 1 L 1 L L 1 1
z (m) z (m)
Vf = 0.50 1/s Vf = 0.50 1/s
- 0 _ 0
Tfin = 0.09°C Tfin = 0.09°C
- 0 _ 0
Tfut = 1.47°C Tfut = 1.47°C

Figur 10.28. Numeriskt berdknade temperaturprofiler vid
neddtgdende stromning i inre kanal (vanster
figur) och ned&tgdende stromning i yttre
kanal (hoger figur).

Givet en markvdrmekollektor i form av en U-rorsformad
plastslang nedsankt i borrhalet, se figur 10.23. Data for
borrhdl och plastslang dr samma som i exempel 1 ovan.
Borrhdlslangden H dr Tika med 145 m. Plastslangarnas lage
samt data for vdrmebdararfluiden (brinol-vatten) ges av
exemplet i avsnitt 10.3.13.

Pumpflode och varmeuttag ar:

V., = 0.75 liter/s

f
q = 20 W/m
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Exempel 3.

Figur 10.29 visar berdknad fluidtemperatur vid tiden 25 &r.
Eftersom uppdt- och neddtgdende kanaler ligger symmetriskt
relativt mittpunkten i borrh&let s& blir profilen oberoen-
de av pumpriktningen. Fluidflddet antages vara turbulent.

-1.0
0
S0 _
Vf = 0.75 1/s
_ 0
Tfin = -0.80°C
_ 0
Tfut = 0.12°C
100 -
145
z (m)

Figur 10.29. Temperaturprofil for U-ror med en ned&tgéen-
de och en uppdtgdende fluidkanal.

Fluidtemperaturen Tigger under 0°C. Virmemotstandet mellan
fluiden och plastvédggens yttersida gor att temperaturen i
vattnet utanfor plastslangen ar stérre dan 0°C varfor vatt-

net ej fryser.

Givet en markvdrmekollektor som bestdr av tre plastslangar
enligt figuren till exemplet i avsnitt 10.3.14. En av
fluidkanalerna dr neddtgdende och tvd ar upp&tgdende. Da-
ta for fluid och plastslang ar samma som i exempel 2 ovan.
Slangarnas relativa ldgen ges i exemplet i avsnitt 10.3.14.
Temperaturprofiler ges vid tiden 25 &r for tre fall med
olika pumpfloden och varmeuttag. Vid tiden 25 &r 3r de tre-
dimensionella effekterna runt brunnen fullt utvecklade.
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Figur 10.30, vanster, visar temperaturprofiler ldngs nedat-
och uppdtgdende kanal da pumpflodet ar 0.75 liter/s. Streck-
ad temperaturprofil visar fallet d& pumpriktningen dr om-
vand. Flodet dr lamindrt i de tvd parallellkopplade kana-

lerna och turbulent i den tredje motkopplade.

Figur 10.30, higer, visar temperaturprofiler dd pumpflo-
det dr sdnkt till en tredejdel. Flodet ar dd laminart i

samtliga kanaler.

Fluidtemperaturen ligger i detta fall som ldgst, runt cir-
ka -2°c. Temperaturskillnaden mellan vattnet utanfor slang-
arna och in till fluiden dr emellertid sa stort att vatten-
temperaturen aldrig understiger 0%¢ varfor frysning ej upp-
st&r. Orsaken till den stora temperaturdifferensen ar att
tvergdngsmotsténdet mellan fluid och plastsiang dr mycket

stort vid laminart flode.

T, (°0)
-08 -0 0 0.4 -2.0 -1.0 0 T¢ (°0)
0 L 1 1 A L o 1 i 1 L i 1 Y e 1 1 i L 1
V=0750/s N\ Vi 20,25 /s !
1 \ !
\
| \
\ 1 N\
1\ ] ) \
50 \ 1 50 \
T\l Tof Th \ Ti2 '
! \ |
\ | \
\ f \ /
v f \ /
1004 v 4 100 - \ /
\ | /
V[ \ /
Vg N
\
I N,
1L5 1 1 V ' L 1&5 ’ 1 1 1 L 1 1 L i l\/ 1 i
zZ (m) z {m)
_ 0 _ o
Teiy = -0.787C Te., = -2.33%C
_ 0 _ 0
Tep = 0-14°C Teyp = -0-44°C

Figur 10.30. Temperaturprofiler langs fluidkanalerna vid

tvd olika pumpflioden. Streckade

omvand pumpriktning.

kurvor avser
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I figurerna ovan framgér att in- och utloppstemperatur ej
pdverkas av pumpriktningen vid tva decimalers precision.

Figur 10.31 visar fallet d& varmeuttaget 3r dubbelt si
stort som tidigare: q = 40 W/m. Pumpflodet dr 0.75 1/s.

Det dr turbulent i neddtgdende kanal och lamindrt i de tva
uppatgdende. Vattnet runt slangarna ar i detta fall fruset,
varvid vardet pd varmemotsténdet mellan slangar och berg

dr betydligt lagre (A1 = 2.1 W/mK).

"70 ‘60 Tf (OC)
0 1 1 1 1 1 ! 1 H 1 i

50

Vf = 0.75 1/s
_ 0

Tfin = -7.29°C
T.., = -5.45%¢C
fut :

100

145

z (m)

Figur 10.31. Treslangssystem med fruset borrhdl. Virmeut-
taget ar 40 W/m.

10.3.17 Vdrmemotstandet mé da hdnsyn tages till langsgdende
temperaturvariation i fluidkanalerna

I avsnitt 10.3.15 anges uttryck for virmemotsténdet ™R mellan fluid-
kanaler och bergvagg da man raknar med en konstant fluidtemperatur
Tf och konstant bergvaggstemperatur TR. Vid en exaktare analys skall
man ta hansyn till fluidens temperaturvariation langs stromnings-
kanalerna. I detta fall f&r man ett korrigerat varmemotsténd mé.
Varmemotstandet mé kan berdknas analytiskt under forutsattning att
temperaturen TR vid bergvdggen &r konstant och att markvirmekollektorn
dr av den typ som kan beskrivas med varmestromningskretsen i figur
10.27. T detta avsnitt anges uttrycket for mé. Harledningen kommer

att redovisas i en annan skrift.
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I avsnitt 10.3.18 visas med exempel att uttrycket for mé ger en nas-
tan perfekt overensstammelse med de resultat som fds vid direkt nu-
merisk berdkning, varvid TR varierar langs borrhdlet.

Sambandet 10.3.15.2 gdller fortfarande d& man anvdnder ett korrige-
rat vdrmemotsténd mé mellan fluid och bergvdgg:

TR - Tf = mé'q (10.3.17.1)
Som fluidtemperatur Tf utnyttjas fortfarande medelvardet (10.3.15.1):

1
Te —?(Tﬁ.n +Tfut] (10.3.17.2)

Det korrigerade varmemotstandet mé for kollektorn som beskrives av
en varmestromningskrets av Y-typ enligt figur 10.27 blir:

mé = Mpen coth(n) (10.3.17.3)
n -n

coth(n) = %
el - e

Resultatet ar markvardigt enkelt. Formel 10.3.17.3 gdller for de kol-
lektorer som beskrives i avsnitt 10.3.12 och 10.3.13, samt for den typ
av treslangskollektor (2 + 1) som beskrives i avsnitt (10.14).

Parametern n dr for system med inre och yttre kanal:

m
H y
n= 50— \/1 +4 -2 (10.3.17.4)
ZCfomy m,
, dar uttryck for m. och my ges av (10.3.12.1-2).
For tva- och treslangssystem ges n av
H M2
nssrey—\1+4 ——— (10.3.17.5)
2CfomR my +m,

Har ges mys My och my, av (10.3.13.3 -4) for tvaslangssystem och av
(10.3.14.6 ) for trekanalssytem. Varmemotstandet My ges av (10.3.15.4).
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Det kan noteras att varmestromningskretsen i figur 10.27 & identisk
med den i figur 10.22 om Mys My, LEPY och Mr utbytes mot m. s O, m

y

respektive my. Uttrycket (10.3.17.4) dr sdledes ett specialfall av

(10.3.17.5).

Korrektionsfaktorn n coth(n) visas i figur 10.32. Den g&r mot 1 d& n
gdr mot 0. For smd vdrden pd n gdller dpproximativt:

2

n coth(n) = 1 + 1 (n < 1.0)

3 < (10.3.17.6)

Faktorn n coth(n) ligger mellan 1 och 1.05 d& n ir mindre in 0.4.
Detta ger approximationen:

(n < 0.4) (10.3.17.7)

Villkoret n < 0.4 i (10.3.17.7) dr i de flesta fall uppfyllt. Endast
for mycket ldngsamma fluidfldden behover faktorn n coth(n) medtagas.

M coth{m)
2,0v||1|1111|11111

1.8 s
1.6 7

Vs /
1 ;5/////,

4
- Z
////,
p

12 A~

1,0 e

0 0.5 ' 1.0 1.5 2.0
3

Figur 10.32. Korrektionsfaktorn n coth(n) i formel 10.3.17.3)

Vid botten av brunnen, dar fluidkanalerna méts, har man fluidtempera-
turen Tb' Det explicita uttrycket for denna temperatur &r:

B

- (g - T osmry

-T (10.3.17.8)

R
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Hdr ges n av (10.3.17.4) eller (10.3.17.5). Exponenten B ges av:

H 2
B = . (10.3.17.9)
ZCfomR m, + m,

Omvand pumpriktning erhdlles genom att sdtta Vf negativt. Faktorn
eB/cosh(n) i formel (10.3.17.8) blir olika for de tv& pumpriktning-
arna. For sm& B8 och n erhdlles foljande serieutveckling:

B 32-2
cogh = = 1+3 + ___?_H_ + ... (10.3.17.10)

Detta ger foljande approximation:

g

e

N H m,I -m, H/Cfo
cosh(n)

1+ ( -
ZCfomR my + m, m, + m,

(10.3.17.11)

(B < 0.5 n < 0.5)
Man far tva korrektionstermer varvid den forsta innehaller faktorn
Vf och den andra V?. Den forsta korrektionstermen byter tecken vid
omvand pumpriktning, medan den andra ar ofdrdndrad.

Exempel. Givet ett treslangssystem enligt exemplet i avsnitt 10.14.
Varmemotsténdet Me blir enligt exemplet i avsnitt 10.3.15
lika med 0.128 K/(W/m). D& hansyn tages till langsgéende
temperaturvariation skall Me ersattas med mé enligt
(10.3.17.3). Vardet pd n ges d& for borrhdlslangden H =
145 m enligt (10.3.17.5) av:

1

145/ (2+4.2+10°

3
I}

PR ) . 0.0293 )
0.75°107°+0.128) \/1+4m

0.204

Med approximationen (10.3.17.6) fas foljande varde pa mé:

mp -= 0.128-(1 + (0.204)2/3) = 0.128(1 + 0.014) = 0.130 K/(W/m)

Vardet pd varmemotstandet forandras sdledes endast 1.4% da
temperaturvariationen i fluiden beaktas.
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10.3.18 Slutgiltiga formler for T och Tfut

fin
Vid en precis dimensionering behdver man kanna fluiden in- och utlopps-
temperatur, Tﬁn och Tfut' I detta avsnitt sammanfattas de slutgil-
tiga formlerna baserade p& de fdregdende avsnitten.

Skillnaden mellan in- och utloppstemperatur bestdms av varmeuttaget
Q (W) enligt energibalansen:

- @
Teoe = Tein = T (10.3.18.1)

, dar Cf dr varmekapaciteten hos varmebdrarfluiden och Vf (m?/s) ar
pumpflodet. Fluidtemperaturen Tf definieras enligt (10.3.15.1) som
medelvardet av in- och utloppstemperaturen:

_1
Te =3 (Tfin + Tfut) (10.3.18.2)
Ur (10.3.18.1) och (10.3.18.2) kan Tfin och Tfut 10sas ut:
T.o=71. -9
fin f ZCfo
(10.3.18.3)
Q
T =T, +
fut f ZCfo

Fluidtemperaturen Tf erhdlles enligt formler i avsnitt 10.3.15. For-
mel 10.3.15.2 anger att temperatursdnkningen mellan fluid och berg-
vagg ar:

TR - Tf = mpeq (n < 0.4) (10.3.18.4)

, dar mo ges av formel 10.3.15.3 och 10.3.15.4 for de typer av kollek-
tor som beskrives i avsnitt 10.3.12 - 10.3.14. Vd@rmeuttaget g = Q/H
(W/m) anges per meter borrhil.

For en enskild brunn beridknas TR enligt de formler som anges i av-
snitt 10.3.6, 10.3.7, 10.3.8 eller 10.4. For system med flera in-
fluerande brunnar berdknas TR enligt avsnitt 10.8 eller 10.9.



Formel 10.3.18.4 gdller med god noggrannhet utom for mycket langsa-
ma pumpfloden d& man mdste anvanda det korrigerade varmemotsténdet

R - Tf = m&-q (n>0.4) (10.3.18.5)
Uttryck for mé ges i avsnitt 10.3.17.

Kombineras (10.3.18.3) med (10.3.18.4) erh&lles filjande slutgiltiga
uttryck for in- och utloppstemperaturen:

_ Q Q
Teo =Tp = My*s - 50—
fin R R H 2Cfo
(10.3.18.6)
T S PR .
fut R R H 2cfvf

Exempel. Givet en treslangskollektor enligt exemplet i avsnitt
10.3.14. Slangarna ar nedsankta i ett borrhal med djupet
H = 145 m. Tvad av fluidkanalerna ar ned&tgdende. Virme-
uttag och pumpflode &dr konstanta och lika med:

g =20 W/m (Q = 20+145 = 2900 W)
Vf = 0.75 liter/s

In- och utloppstemperatur skall hdr berdknas vid tiden ett
ar.

Temperaturen TR vid bergvdggen ges vid denna tid av samban-
det 10.3.6.4 (t < t1), dar TOm = 8.25°C antas som markens
ostorda medeltemperatur.

-6 7
20 4+1.62+107°+3.154+10
8.25 - T, = — - {1n(—= } - 0.5772}
R~ Feq:3.5 (0.055)2

_ [¢]
TR = 3.46°C

FTuidtemperaturen Tf ges av sambandet (10.3.18.4)
(n = 0.204 < 0.4). Viardet pa mp berdknades i exemplet i
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avsnitt 10.3.15 ti11 0.128 K/(W/m). Fluidtemperaturen blir:

3.46 - T. = 0.128-20

f

T, = 0.90%

f

In- och utloppstemperaturen ges av (10.3.8.3):

T =0.90 - 2500 = 0.44%
2+4.2+10%+0.75+10

Ty = 0.90 + 2900 = 1.36°C
u 2+4.2+10°+0.7510

Bottentemperaturen Tb berdknas med formel 10.3.17.8:

e-0.18 o
Tb = 3.46 + (3.46 - 0.90) oS0 208) = 0.96°C

Vid omvand pumpriktning byter Vf tecken och exponenten -0.18
blir positiv. I detta fall blir Tb lika med 0.87°C.

Formlerna ovan for Tfin och Tfut bygger pd approximativa 1dsningar.
Dessa skall hdr jamforas med direkta numeriska berakningar vilka har
gjorts for tre exempel i avsnitt 10.3.16. Resultaten sammanfattas i
tabell 10.6.



Berdknings- n coth(n) v q 1 ér 25 ar
metod a7y |y [T T T T
fin fut fin fut
Exempel 1 | numerisk - 0.50 | 20 | 1.29% | 2.6°c| 0.0c | 1.47%
(10.3.18.4) 1 1.35 2.73 0.15 1.53
(:::::> (10.3.18.5) 1.092 1.21% 2.59 0.01 1.39
Exempel 2 | numerisk - 0.75 20 0.40 1.32 -0.80 0.12
(10.3.18.4) 1 0.43 1.35 -0.76 0.16
(10.3.18.5) 1.011 0.40 1.32 -0.79 0.13
Exempel 3 | numerisk - 0.75 20 0.42 1.34 -0.78 0.14
(10.3.18.4) 1 0.43 1.35 -0.76 0.17
(10.3.18.5) 1.014 0.40 1.32 -0.79 0.13
numerisk - 0.25 20 -1.14 1.62 -2.33 -0.44
(10.3.18.4) 1 -0.91 1.85 -2.08 -0.69
(10.3.18.5) 1.085 -1.16 1.60 -2.33 -0.43
numerisk - 0.75 40 -4.90 -3.06 | -7.29 -5.45
{10.3.18.4) 1 -4.79 -2.95 -7.17 -5.33
(10.3.18.5) 1.042 -4.90 -3.06 -7.28 -5.44

Tabell 10.6 In- och utloppstemperatur for exempel 1-3 i avsnitt 10.3.16. Jamforelse
mellan numeriskt beridknade vérden och de vdrder som fas med formlerna
10.3.18.4 och 10.3.18.5.

Den maximala avvikelsen fran numeriskt berdknad in- och utloppstem-
peratur fas for exempel 3 da pumpflodet dr 0.25 1/s och formel
10.3.18.4 anvindes. Felet ar 0.25°C eller 3% relativt temperatur-
sakningen mot ostord marktemperatur. Parametern n dr i detta fall
lika med 0.6 och uppfyller ej strikt kriteriet (n < 0.4) for att
formeln skall kunna anvandas. Anvidndes istdllet den i detta fall
korrekta formeln 10.3.18.5 f&s en perfekt Gverensstammelse med
numeriskt berdknade temperaturer.
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10.4 Dimensioneringsregler for en bergvarmebrunn

Med hjalp av analyserna av de termiska delprocesserna enligt avsnitt
10.3 kan dimensioneringsregler avseende en bergvdarmebrunns termiska
prestanda anges. I detta avsnitt behandlas en enskild brunn. Motsva-
rande dimensioneringsregler for ett system av bergvdrmebrunnar, som
termiskt péverkar varandra, ges i avsnitt 10.9. De extra komplika-
tionerna vid &terladdning av brunnen sommartid och vid uttagstempera-
turer under 0°C behandlas i avsnitt 10.5-6.

Utgéngspunkten for dimensioneringen dr ett givet effektuttag Q(t) (W),
vilket varierar med tiden pd ett foreskrivet sdtt. Normalt dr effekt-
uttagsfunktionen 1ika dr frdn &r. Med hjdlp av data for brunn och berg
berdknas den erforderliga brunnstemperaturen TR(t). Ar de erhdllna
uttagstemperaturerna 1ampliga, dr dimensioneringen avklarad. Om sd

ej dr fallet modifieras forutsdttningarna och nya uttagstemperaturer
berdknas. Man far iterera sig fram tills ett vdldimensionerat system
erhdlles. De viktigaste parametrarna som kan varieras @r brunnsdjupet
samt det foreskrivna effektuttagets tidsvariation och stdrsta viarde.

Dimensioneringen bestdms framfor allt av den ldgsta brunnstemperaturen
TRmin under 3rscykeln. Det primdra kriteriet dr att denna temperatur

ej far understiga en given nivd. I system som ej tal frysning i brunnen
maste TRmin vara storre dn 0°C med en viss sdakerhetsmarginal. Kravet

pé TRmin hanger ocksd samman med varmepumpens krav pd temperaturnivder
vid forangaren.

Dimensioneringsreglerna utgdr frdn givna effekter, varefter brunnstem-
peraturer berdknas. Man skulle i stdllet kunna utgd frdn givna uttags-
temperaturer och berdkna effekten. Detta dr emellertid ej tillrddligt
dd det ger en mycket mer komplicerad analys beroende p& att man ej kan
gdra samma direkta superposition av T1dsningar.

For dimensionering mdste man kdnna foljande primdra parametrar:

A bergets vdrmeledningsférmdga (W/m K)
a bergets temperaturledningstal (mz/s)

H aktivt brunnsdjup (m)
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2R brunnsdiameter (m)

m varmemotsténd per meter brunn mellan vdrmebdrarfluid i
brunnen och berget precis vid brunnen (K/(W/m))
TOm ostord bergtemperatur pd halva brunnsdjupet (°c)
Vid dimensioneringen bor det foreskrivna effektuttaget Q(t) renodlas till

en relativt enkel form. Mer komplicerade fall kan om s& erfordras kontroll-
raknas i efterhand.

Det arliga varmeuttaget EO (J) foreskrivs. Detta ger en foreskriven
medeleffekt Qo:

E

-_9 =13

Q=% t, 1 &r (10.4.1)
0

Vidare foreskrivs en overlagrad sinusformad effekt med amplituden Q1.

Effektuttaget frén dessa tvd bitar dr da:

Q + Q1°sin(%t> (1) (10.4.2)

Ti11l detta dverlagras slutligen en eller flera effektpulser vilka kan
representera ytterligare variationer under ett dyan eller maximal
effektbelastning under en kdldkndpp. (Energiuttaget fran dessa pulser
raknas vid sidan om medeleffekten Qo.) Vi nojer oss med att ge all-
minna formler for fallet med en effektpuls. Effektpulsen startar for
ar n vid tiden nt, * ty och pagér en tid t,. Den har storleken Q2.
Figur 10.33 visar utseendet pd den féreskrivna, dimensionerande effekt-
pulsen. Detta val av komponenter for effektuttaget bdr normalt ge en
tillrdcklig flexibilitet for en god dimensionering.

Den mot effekten (10.4.2) svarande brunnstemperaturen TR(t) erhdlles ur
formlerna 10.3.2.10 och 10.3.8.3. Dessa tvd bidrag och pulskomponenten
berdknas var for sig. L&t TRO beteckna bidraget fran det stationdra
uttaget Qo' Ti11 denna del hinfores ocksd den ostdrda temperaturnivan

T . Bidraget fran den sinusformade effekten betecknas TR1(t)' Slut-

om
ligen betecknas bidraget frén effektpulsen TRZ(t)' Den totala brunns-
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Figur 10.33. Typ av foreskrivet, dimensionerande effektuttag med en
medelniva Qo’ en periodisk del med amplituden Q1 och en
overlagrad effektpuls under en tid t2‘

temperaturen TR(t) erhd1les genom superponering:

Tp(t) = Tpo + Tpy(t) + Tpo(t) (10.4.3)

Den stationdra komponenten ges av formel 10.3.2.10:

_ _ 0 H
TRO = Tom m In (-Z_R;) (10.4.4)

Vid anvdndning av denna formel bortses fradn den transienta insvdngningen
till stationdrt uttag. Tar man hdnsyn till detta skall i stdllet formel
10.3.6.1 anvdndas. For exemplet (10.3.6.3) med figur 10.16 blir den
transienta temperatursankningen i storleksordningen 75% av stationdrt
virde efter ett &r. Efter fem &r har den transienta sdankningen uppndtt
storleksordningen 90% av stationdrt varde. Formel 10.4.4 bor ddrfor nor-
malt kunna anvdndas vid dimensionering.

Den sinusformade komponenten ges av formel 10.3.8.3:

Q
1 . . (2Tt ,
Ter(t) = = e AGRY) s1n<?0— - B(R"))
R (10.4.5)
R =2 -R 2z
d o at

0 Q



I det aktuella fallet dar periodtiden tO dr ett dr kan formlerna

5.2.3.11 anvandas for amplitudfunktionen A(R') och fasfunktionen
B(R'):

AR") = A1n(2/RY) - 12 + /16

(R™<0.1) (10.4.6)
= 0.5772
oo (/4 N v

B(R') = arctan \Tn(Z/77=7)

Exempel. L&t oss berdkna amplitudfunktion A och fasfunktionen B for

foljande fall:

A = 3.5 W/m-K C = 2.16 MI/mo+K

1
-

R0 = 0.055 m t ar

Dessa data ger

At
1.62.107% mé/s d,=/—2=4.03mn

QU
I

o
RO/?
R' = a - 0.0193
0
A=4.14 B =10.191

Fasfordrojningen i dagar blir:

t
0 .
>+ B = 11 dagar

Temperaturens minimum intrdffar sdledes 11 dagar efter maxi-
malt effektuttag Q,| .
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1 tabell 10.7 anges amplitudfunktionen A, fasfunktionen B och fasfordroj-

ningen raknad i tid, B-to;(Zn), for fyra praktiskt viktiga fall.

Effektpulser analyseras i avsnitt 10.3.7. Bidraget TR2 fran pulsen ges

under de

T

v

n tid di pulsen pdgér av formel 10.3.7.3:

da(t-nt -t_)\
0 a’y _
- ) y> (10.4.7)
o]
= 0.5772 (0 < t—nto—ta t

Q,
t) =- 4mH \]n\

(
R2 R

2)
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A= 3.5 WmeK | X =3.0WmK| x=3.5WnK]|x=23.0UWmK
RO = 0.055m RO = 0.055 m R0 = 0.075 m R0 = 0.075 m

A 4.14 4.06 3.84 3.76
B 0.191 0.194 0.206 0.210
Bet /(2n) | 11.1 11.3 12.0 12.2
(dagar)

C = 2.16 MI/mK t = 1ér

Tabell 10.7. Amplitudfunktion A, fasfunktion B och tidsfordrojning
Bto/(Zn) for sinusformad effektkomponent for ndgra prak-
tiskt viktiga fall. Formel 10.4.5-6.

Har anger n det aktuella &dret. Pulsen startar vid tiden nt0+ta. Den
pdgdr under tiden tZ‘ Effekten av pulsen frdn de foregdende aren har
ej medtagits eftersom den normalt dr forsumbar. Avklingningen efter
pulsen ges av ett uttryck av typen 10.3.7.7. Detta dr normalt av
mindre intresse d& temperaturen vid maximal belastning sokes.

Den totala temperaturen vid brunnen ges nu av de forhdllandevis enkla
uttrycken 10.4.3-7. De ger brunnstemperaturen TR under &ret och i synner-
het det lagsta vardet TRmin‘
Den storsta temperatursankningen frén den sinusformade effekten bestdms
av amplituden i formel 10.4.5.

Q1 t B(R')t

s b AR dat- o o
TRiumin =~ 7w - AR dat =ty s e e ——= (10.4.8)

Den storsta temperatursdnkningen fran effektpulsen uppnds vid dennas
slut:

T % g At :
R2,m1n = - m \‘In<—R?—) - '\{/ da t = nto+'ta+t2 (10.4.9)
(o]

Minimat enligt formel 10.4.8 dr relativt flackt. Ett viktigt special-
fall &r dd ovanstdende tvd minima i huvudsak sammanfaller i tiden.
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Ett ldmpligt krav dr

t B(R') t
0 0 27 _ .
Tt " ty -t < %5 to (t. =1 ar) (10.4.10)

Om detta tidskrav dr uppfyllt s& avviker TR1 vid tiden for pulsens

slut (ta + tz) maximalt 10% fran vardet enligt formel 10.4.8. Uttrycken
10.4.8 och 10.4.9 kan d& adderas. Den ldgsta uttagstemperaturen ges

dad av foljande uttryck:

Tamin = Tom = Q0" Ko = Qg =Ky = Q= (Ky + K5 In (t5/84,4))
(tdag = 1 dag) (10.4.11)
Konstanterna Ko, K1, K2 och Ké ges av:
Ky = e (InBaty, /RD) - 1) Ky = g (10.4.12)

Hir ges R'av (10.4.5) och A av (10.4.6). Formel 10.4.11-12 &r normalt
det grundlaggande uttrycket for dimensioneringen. Formeln &r giltig da
tidskravet 10.4.10 3r uppfyllt. Detta krav bortfaller, om man inte har
n&gon dimensionerande effektpuls under den tid d& sinuskomponenten ger
maximal effekt, dvs. om 02 ar 1ika med noll.

Konstanterna Ko’ K1, K2 och Ké har dimensionen K/W eller K/kW. De beror
pad parametrarna A, C, RO och H. I tabell 10.8 ges dessa fyra dimensioner-
ande effektuttagsfaktorer for ndgra praktiskt viktiga parameterkombina-
tioner.

Virmemotstandet mellan fluiden och berget vid brunnen dr mp (K/(W/m)).
Sambandet mellan temperaturen Tf i vdrmefluiden och temperaturen TR i
berget vid brunnen blir:

T - Tp - Q(Ht) g (10.4.13)
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A Gi/m K| Ro(m) | HOm) K (k) | Ky (k) | Ky (K/KH) | Ky (K/KW)
3.5 0.055 | 150 2.19 1.26 0.70 0.15
3.0 0.055 | 150 2.55 1.44 0.79 0.18
3.5 0.075 | 150 2.09 1.16 0.61 0.15
3.0 0.075 | 150 2.44 1.33 0.68 0.18
3.5 0.055 | 100 3.10 .88 .06 0.23
3.0 0.055 | 100 3.61 2.16 1.19 0.27
3.5 0.075 | 100 2.95 1.74 0.91 0.23
3.0 0.075 | 100 3.45 1.99 1.03 0.27

Tfmin

Tabell 10. 8. Dimensionerande effektuttagsfaktorer KO, K1, K2 och K2

i formel 10.4.12 for ndgra praktiskt viktiga parameter-
kombinationer. C = 2.16 MJ/m> - K

Detta ger da 10.4.10 &r uppfyllt

QO+Q1+QZ
m

= Tpmin = — W Mg

(10.4.14)

Exempel 1. L&t oss ta data enligt det forsta fallet i tabell 10.6:

A= 3.5 W/m-K C = 2.16 MI/ms -« K

(10.4.15)

Ro = 0.055 m H=150m

De dimensionerande effektuttagsfaktorerna ges i tabell 10.6.
Formel 10.4.11 for ldgsta uttagstemperatur (i berget vid
brunnen) blir:

Tom ™ TRmin

= 2.1900 + 1.2601 + Q2 (0.70 + 0.15 In (tz/t )

dag

Effektfaktorerna rdaknas i kW, medan tZ/tdaq anger effekt-
pulsens ldngd i dagar. )

Vi tar foljande dimensionerande effekter

Q, = 3 kW Q) = 2.5 kil Qy = 2 ki (10.4.16)
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-1

TOrrl Rmin = 6.57 + 3,15 + 1.40 + 0.3 1In (tZ/tdag)

(0]
9.7 + 1.4 + 0.3 1n (tz/tdag) (°c)

Bidraget fran pulsen blir i ndgra fall:

t, = 0.1 dag 0.7 %
t2 = 1 dag 1.4
t2 = 5 dagar 1.9
t2 = 30 dagar 2.4

Utan effektpuls (Q2 = 0) erhdlles:

~ B 0
Ton = Tpyin = 6-57 + 3.15= 9.7 %

Exempel 2. Dimensionerande utgdngsdata ges av 10.4.15-16 i exempel 1.
Effektpulsens langd t2 dr 5 dagar. Ostord bergtemperatur TOm
ir 8.3 °C. For dimensioneringen ges kravet:

T >-1.5%¢C (10.4.17)

Rmin =
Utgdngsdata ges enligt exempel 1 ovan

T =8.3- 6.57- 9.7 - 1.40 - 0.3 In(5) = -3.30%

Rmin

Dimensioneringskravet 10.4.17 uppfylies ej.
En mojlighet dr att ta bort effektpulsen. D3 fés:

B _ _ _ 0
TRmin = 8.3 - 6.57- 3.15=-1.4"C

Vi hamnar precis pa grdnsen for kravet 10.4.17. Detta betyder
att den aktuella bergvarmebrunnen under tiden for maximalt
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Exempel 3.

effektuttag, Q(t) = Qo + Qq» utnyttjas kontinuerligt utan
Overlagrad effektpuls. Systemet klarar under de givna for-
utsdttningarna ej denna sista belastningsdel.
Dimensioneringsreglerna skall tilldmpas p& exempel 1 i
avsnitt 10.2. Data ges av 10.2.1-4. Det minadsvis foreskrivna

effektuttaget ges i figur 10.3.

Medeleffektuttaget QO bestdms av det arliga vdrmeuttaget
15 Muh:

Qo = 1.71 kW
Maximal effekt under mdnad 7 dr 2.98 kY.
Amplituden for sinusvariation vdljes darfor till:

Q1 =2.98 - 1.71 = 1.22 kW

Dessa tvd komponenter bor rdcka for en férsta dimensionering.
Effektpuls medtages ej (Q2 =0).

Konstanterna Ky och Ky blir

Ko = 2.24 K/KW Ky = 1.29 K/ki

D3 bergtemperaturen Tom ar 8.3 °C fas

TRmin =8.3-1.71.2.24 - 1.22-1.29 = 2.9 °C

Denna temperatur skall jamforas med den numeriskt berdknade
enligt (10.2.5), vilken efter 25 &r ar 3.2 °C.
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10.5 Aterladdning sommartid

Ett sdtt att forbattra bergvarmebrunnens effektavgivning och minska
den l&ngsiktiga nedkylningen &ar att &terfora vdrme sommartid. Rdck-
vidden av nedkylningen i berget kring brunnen behandlas i avsnitt
10.10. Under perioder d& vdrme tilifores brunn och berg skall effekt-
uttaget Q(t) rdknas negativt.

For att belysa effekten av &terladdning skall vi forst ta ett renodlat
exempel. Vdrme uttages med konstant effekt Q(t) = Q0 under fyra manader.
Efter en period av tvd ménader utan uttag, Q(t) = 0, &terladdas systemet
med en konstant effekt, Q(t) = -a - Qo’ under fyra minader. Efter tvd
manaders vila borjar en ny likadan &rscykel. Se figur 10.34. De fyra

fallen o = 0, 1/2, 1 och 2 behandlas. Foljande data vdljes:
A = 3.5 Wm-K C=2.16 M/m°.K
B B _ _ 0
H=146m Di =4 m R0 = 0.055m Tom =8.3 °C
Q0 = 4.5 kU Q(t) enligt figur 10.27. (10.5.1)

a =0, 1/2,1,2

Qalt)
Qo

AL %" 127/-'t(mdnud)

-aQ,

0

Figur 10.34. Effektuttag for exempel som illustrerar effekten av dter-
laddning. Data enligt 10.5.1.

Temperatursankningen TOm - TR mellan ostord mark och brunnen kan t.ex.
berdknas enligt pulsanalystekniken i avsnitt 10.3.7. Formel 10.3.7.9 an-
vandes. Maximal temperatursdnkning, TRmin’ erhdlles vid uttagspulsens
slut (t - nt, =4 manader). Tabell 10.9 anger Tp . for &r 1, 3 och 10
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for de fyra vdrdena pd a. I tabellen anges ocksd temperaturen vid

slutet av dterladdningspulsen (t - net, =10 manader), Tomax - Detta
dr den hogsta inladdningstemperaturen.
0 0
TRmin (°C) TRmax (°C) n
ar 1 3 10 1 3 10 1 3 10
a=0 1.7 1.4 1.1 - - - 1 1 1
a=0.51.7 1.6 1.5. 11.3 1.2 11 1 1.04 1.06
a =1 1.7 1.9 1.9 4.6 14.6 14.7 1 1.08 1.13
a=2 1.7 2.4 2.7 21.2 21.6 21.9 1 1.17 1.30

Tabell 10.9. Ldgsta uttagstemperatur och hogsta dterladdningstemperatur
vid olika &terladdningsgrad (a). Data enligt (10.5.1) och
figur 10.27. Ett mdtt pd prestandaforbdttringen ges av n
(formel 10.5.2).

Tabell 10.9 visar att hojningen av TRmin ar relativt Titen. For balanserad

dterladdning (o = 1) stiger ldgsta temperaturen fran 1.4 till 1.9 ¢

tredje dret. For det tionde &ret sker en forbdttring fran 1.1 till 1.9 oc.

En fordubbladdterladdning ger en forbattring i storleksordningen 1 till

1.5 °c.

Ett mdtt pé prestandaforbattringen vid &terladdning dr kvoten mellan
temperatursankningen utan dterladdning och med &terladdning:

T =Ty
h o= _om . ?mln, a=0 (10.5.2)

T .
om Rmin, o

Tabell 10.9 ger n for det aktuella exemplet. Vid balanserad &terladdning
(a=1) blir forbdttringen runt 10%.

Temperaturforandringarna mellan &r 1, 3 och 10 i tabell 10.9 dr intressanta.
For « = 0 har man en Téngsam sankning. For balanserad &terladdning, o = 1,
stabiliserar sig temperaturerna snabbt. Efter tredje &ret sker visent-

ligen ingen foréndring mer. Vid fordubblad dterladdning har man &ter en
langsiktig variation. Detta fall kan ses som summan av ett balanserat

fall och en ren &terladdning, vilken har samma langtidsbeteende som det

rena uttaget.
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Dimensioneringsreglerna i avsnitt 10.4 kan direkt anvdandas for fall
med dterladdning. Medeluttaget Qo i formel 10.4.11 blir noll, om
samma varmemangd uttas och tillfores varje ar.

Lat oss jamfora foljande tvd fall med samma maximala effektuttag:

0,(t)

QO + Q1 +sin <EEE>

tO
(2
tO

(10.5.3)
Q(t) = (Q, + Q) -sin

Formel 10.4.11 kan anvédndas. Forhdllandet mellan storsta temperatur-
sankningar blir:

Tom ™ TRmi Q-1n( -)+QA(R')
_ _om Rmin, &
" Tom - Temin, b (Q, ) A( ) (10.5.4)

Data for berg och brunn enligt exempel 10.5.1 ger

00-7.16 + Q1-4.14
(QO+Q1)-4.14

n =

Speciellt ger Q1 = QO:
n=1.36 (10.5.5)

Man bor observera att de uttagna varmemangderna ej dr lika vid denna
jamforelse.

Genom att utnyttja formlerna for ett pulstdg i avsnitt 5.3.7 kan en
relativt allméngiltig formel for prestandaforbattringen vid &terladdning
anges.

Tvd renodlade fall jamfores. I det forsta fallet har man ett konstant

effektuttag under ett halvt &4r. I det andra fallet &terladdas systemet
under den andra halvan av aret:

10—-U3



10.82

Fall 1.
2Q 0<t-nt <t /2
Q(t) = © : ° 0 (10.5.6)
1] tO/Z <t - nto < to
(to =1 aY‘) (n = 0;1, )
Fall 2.
ZQO 0<t - ntO < t0/2

Q(t) = (10.5.6")
t/2 <t -t <t

Fall 1 &r ett pulstdg av den typ som visas i figur 5.3.8 (o = 1/2,

9, = QO/H). Temperatursdnkningen ges av formlerna 5.3.5.2-4. Fall 2 &r
vdsentligen ett pulstdg av samma typ. Medelnivan bortfaller dock

(a = 1/2, q, = 20 /8, T° = 0).

Ett madtt pd &terladdningens effekt dr att jamfora kvoten mellan maximal
temperatursdnkning utan &terladdning (fall 1) och med &terladdning
(fall 2) for ett visst &r n:

T -1, . .
no= on Rmin, 1 (10.5.7)

n
Tom - TRmin, 2
Det dr rimligt att gora jamforelsen for det femte aret.

Med beteckningar enligt avsnitt 5.3 erhdlles for det femte &ret:

Lo Ry o 1
[¢] ! 0
o b gy s e ?)
ne = . (10.5.8)
[¢]

2 . E E__ 1
5\at, * 2/

Funktion E5 ges i figur 5.3.12. Exponentialintegralen ges t.ex. av
5.3.2.2, 5.3.2.6 och approximationen 5.3.2.8. For nagra praktiskt
vanliga fall erhdlles:
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ty = 1ar c=2.16-10% a/m® -k
1 R, = 0.055m A= 3.5 U/m-K ng = 1.14
2 Ry = 0.055m A = 3.0 W/m-K ng = 1.14
3 Ry = 0.075 m A = 3.5 W/m-K ng = 1.16
4. R =0.075 @ A =3.0H/mK ng = 1.15

Dessa exempel visar att dterladdningen ger en forbdattring av prestanda
med cirka 15%.

10.6 Uttagstemperaturer under 0 °c.

I en Oppen bergvdarmebrunn ddr brunnsvattnet anvdnds som varmebdrare far
ej frysning ske. Detta begrdnsar effektuttaget. Ett alternativ dr att
ha ett slutet vdarmebdrarsystem, dar en vdatska cirkulerar t.ex. i ett
U-ror i brunnen. Utanfor cirkulationskanalerna har man vatten som
fryser till is vid vdrmeuttag under 0°C. Alternativt kan denna

volym fyllas med ett fast material.

De foregdende analyserna gdller fortfarande med foljande kompletteringar.
Den viktigaste fordndringen &r att de lokala vdrmemotstdnden m_ mellan
varmebdrare och berg vid brunnen pdverkas. Vidare skall man, d& brunns-
vattnet fryser, ta hansyn till dess frysvarme.

Lat oss forst analysera effekten av frysvdrme. Vattenmangden i brunnen
Vw ges av:
V. < TR K (10.6.1)
w e~ "o o

Exakta vdrden beror pd de inre kanalernas volymandel. Numeriskt gdller
t.ex.

=
1}

0.055 m H=150m v

[ZaN

1.4 m
(10.6.2)

=
It

0.075 m

s g
1}

150 m )

N

2.6 m
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Vattnets smdltvarme betecknas Lw (=333 MJ/m3 «K). L&t tfrys beteckna
den tid som krdvs for att frysa vattenvolymen VW med effekten Qo.
D& gdller:

QO 'tfrys =V, -Lw (10.6.3)

Ett numeriskt exempel dr:

Q. = 5 ki PSSR
0 tepys = 2:333 100 _ 37 tip (10.6.4)
3 y 5000

Yy

1"

2m

Frysning och smdltning av vattnet i brunnen representerar siledes

en varmemdngd som motsvarar nagot dygns uttag. Vid analyser av lingre
tidsperioder spelar brunnsvattnets frysvdrme ingen roll. Frysning av

de smd vattenmdngder som finns i sprickor i berget dr normalt betydelse-
16s.

Frysvarme behOver bara beaktas for korttidsanalyser under perioder av
frysning och smdltning av vattnet i brunnen.

10.7 Datormodell

En datormodell (Superposition Bore-hole Model) finns utvecklad for be-
rakning av det termiska forloppet i mark och brunn for en enskild berg-
varmebrunn och for ett system av bergvirmebrunnar som influerar varandra.
Modellen har anvdnts for datorberdkningarna i detta kapitel.

Foljande yttre forutsdttningar giller.

1. Vdrme uttages fradn omgivande mark via en eller flera vertikala eller
gradade bergvarmebrunnar.

2. Marken bestdr av homogent material.

3. Ingen konvektiv varmetransport i marken.

4. Inget uttag av vatten via brunnen. Enbart cirkulation.

Modellen tilldter dven att viarme inmatas.
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Berdkningsmodellen baserar sig pd superposition av dellgsningar som han-
for sig till de olika brunnarna. I ett givet fall har man ett visst uttag
av varme fran varje brunn. Detta vdrmefldde varierar frén brunn till
brunn. Vidare varierar det i tiden och med djupet. L&toss se pd temperatur-
forloppet frén den varierande effekten kring en av brunnarna. Detta
temperaturforlopp ar rotationssymmetriskt kring brunnen. Temperaturen
blir en funktion av djup, radiellt avstdnd och tid. For varje brunn far
vi ett rotationssymmetriskt forlopp. Temperaturen vid markytan ger ett
endimensionellt temperaturforlopp som beror av djup och tid. Det totala
temperaturforioppet ges nu som en superponering av temperaturfdrioppen
frén varje enskild brunn och av det endimensionella vertikala fdrloppet.

Som ett exempel kan vi ta ett fall med tre brunnar. Det komplicerade,
genuint tredimensionella forloppet kan ses som en superponering av tre
rotationssymmetriska problem. Antag vidare att brunnarna in-
matningsmissigt behandlas 1ika och att de Tigger pd samma avstdnd frén
varandra (1iksidig triangel). De tre temperaturfdrloppen sammanfaller
d&. Vi har ett cylindersymmetriskt problem, som skall superponeras till
de tre ldgena for brunnarna. Detta betyder en vdsentlig forenkling jam-
fort med den ursprungliga situationen med en genuint tredimensionell
process. Detta exempel kan generaliseras. For varje symmetrigrupp av
brunnar har vi ett cylindersymmetriskt problem. Det totala temperatur-
forloppet erhdlles genom en superposition dér bidragen fran alla brunnar
adderas.

Inom ramen for de fyra antagandena ovan simuleras med modellen tempera-
turforloppet vasentligen exakt. De cylindersymmetriska problemen och det
vertikala forloppet simuleras parallellt med explicita framdtdifferenser.
Temperaturforloppet ett steg framdt kan berdknas for varje symmetrigrupp
av brunnar d& man kanner varmeflodet frén brunnen. Detta flode bestams
av fluidtemperatur och av den totala temperaturen i marken vid brunnen

pd det aktuella djupet. Denna totala temperaturen erhdlles genom en
superposition med ett bidrag frén varje brunn (och ett bidrag fran den
vertikala 16sningen).

Fluidtemperaturen 13ngs neddt- och uppatgdende kanal bestdms genom
energibalans for varmebdrarfluiden. Man tar hdnsyn till varmeflcdet
frén mark och varmeutbytet mellan kanalerna.

Kopplingen representeras med en vdrmestromningskrets av den typ som
visas i figur 10.27, dar vdrmemotstanden ms m2 och m12 ges som indata
ti11 modellen.
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For varje nivéd i brunnen balanseras de konvektiva varmeflodena mellan
kanaler och bergvdgg mot den konvektiva varmetransporten i langsled.
Man far varierande temperatur fran inlopp till brunnens botten och
hdarifrdn tillbaka upp till markytan. De ©versta delarna av brunnen

varmeisoleras mot marken.

Det totala vattenflodet (m3/s) dr en given funktion av tiden. Det ar
noll under viloperioder. Vidare dr inmatningstemperaturen en given
funktion av tiden. Alternativt kan uttagen effekt specificeras. Er-
forderlig inmatningstemperatur berdknas da.

Det cirkulerande vattnet kan parallell- och seriekopplas pa olika satt
genom brunnarna. D& vérme dterladdas via brunnarna till marken ir ef-
fekten Q(t) negativ. Primdra indata ar varmebdrarfluidens volymflode
(m3/s) och inloppstemperaturen (alternativt uttagen effekt). Simule-
ring av 25 drscykler for en enskild brunn tar cirka 10 CPU-sekunder
pd en UNIVAC 1100/80. D& antalet brunnar ir stort okar tidsdtgangen
drastiskt. Maximalt fel for de datorberzkningar som redovisas i detta
kapitel bedoms vara n&gon procent.

10.8  Influens mellan ndrliggande bergvdrmebrunnar

10.8.1 Introduktion

NarTiggande bergvdrmebrunnar paverkar varandra termiskt. For ett system
med Nb stycken ndrliggande brunnar far man ldgre vdrmeuttagskapacitet dn
for Nb stycken oberoende brunnar. I detta kapitel skall denna influens
behandlas.

Forst behandlas vertikala brunnar. Direfter behandlas brunnar som bildar
en vinkel 6 med lodlinjen. Horisontellt avstind vid markytan mellan tva
brunnar betecknas B. Avstidndet mellan brunn i och brunn j dr Bij'

Influensen mellan brunnarna dr en utprdglad Téngtidseffekt. For brunns-
avstand som ar storre in 10 meter ir pdverkan efter det forsta arets
effektuttag mycket 1iten. Fluktuationerna i effektuttag och brunnstem-
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peratur under 3rscykeln ddmpas helt ut pd dessa 10 meter. For influensen
mellan brunnarna dr darfor enbart det konstanta medeleffektuttaget (eller
medelbrunnstemperaturen) under aret av betydelse.

Figurerna 10.35 och 10.36 illustrerar influensen mellan bergvarmebrunnar
for tvé berdkningsexempel. Isotermer i ett horisontellt tvir-

snitt visas. I det forsta exemplet enligt figur 10.35 har man 5x3=15
bergvdrmebrunnar. De &r 150 meter djupa. Avstdndet mellan brunnarna ar
20 meter. Energiuttaget per &r dr 225 MWh. Figuren visar isotermer

under det 25:e dret. Influensen mellan brunnarna ar kraftig.

Y-KOORDINAT (m])
80

60

40+

20

0 M T T v T T T T
0 20 L0 60 80 100 120
X-KOORDINAT (m)

Figur 10.35. Exempel p& influens for 15 bergvdrmebrunnar. Figuren visar
isotermer pd 77 meters djup under det 25:e dret.

Det andra exemplet avser ett system med tio brunnar som 1igger oregel-
bundet. Figur 10.30 visar isotermer pd125 meters djup efter 25 ar. Varme-

uttaget dr 250 Mih/&r. Detta exempel redovisas ndrmare i referens 14.

I avsnitt 10.8.2 behandlas ett antal brunnskonfigurationer dar brunns-
temperaturen under uttaget hdlls konstant. De erhdllna varmemdangderna
ger ett mdtt pd influensen mellan brunnarna. I avsnitt 10.8.3 studeras
olika fall ddr det totala effektuttaget dr konstant fran starten t=0.

I avsnitt 10.8.4 ges en dimensions1ds formuiering. Slutligen behandlas i
avsnitt 10.8.5 system med &terladdning.
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Y-KOORDINAT (m}
60

T
80

X ~KQORDINAT {m)

Figur 10.36. Exempel p& influens mellan 10 oregelbundet placerade berg-
varmebrunnar. Figuren visar isotermer psd 125 meters djup
under det 25:e 3ret.

10.8.2 Ndgra fall med given uttagstemperatur

I detta avsnitt skall berdkningsresultat for ett antal olika brunnskonfi-
gurationer redovisas. Berdkningarna dr utforda med datormodell enligt
avsnitt 10.7.

For att underldtta jamforelser har en enkel uttagsstrategi anvdnts. Uttag
sker under halva &ret med den konstanta brunnstemperaturen TR = 3%.
Under den andra halvan av &ret ir effektuttaget noll:

Vinterhalvéret: T, = 3°¢

R
(10.8.2.1)
Sommarhalvéret: Q(t) = 0
For berg och brunn anvindes fo1jande data:
= 3.5 W/mK C = 2.16 MI/moK
= 146 m D. =4 m R = 0.08m (10.8.2.2)
o i 0
= 8.3°C

om
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Brunnstemperaturen TR antas vara densamma for alla brunnar. Variationen i
djupled forsummas.

Energiuttaget for en enskild brunn med dessa data blir for ar 1, 5 och
25:

ar l 1 5 25

(10.8.2.3)
MWh I 18.3  16.3 15.3

10.8.2.1 Tva brunnar

Berdkningar for brunnsavstdnd B = 4, 10 och 20 m har utforts. Temperatur-
profiler pa 80 meters djup visas i figur 10.37. Temperaturen ges langs

en linje genom de tva brunnarna. Tiden dr slutet av uttagsperioden under
det 25:e dret.

QO TO
10 10
2=80m z=80m
t=245y t=245y

T
1
1
i
1
I
i
Il
i
1l
t
t
Il
{
'
1
1
I
I
I
]
)
0y
i

0 r(m 0
-20 -10 [ 10 20 -10 -

rim)

[-O% S

Figur 10.37. Temperaturprofil for tvd brunnar p& olika avstdnd. Djupet
dr 80 m. Data enligt 10.8.2.1-2.

Dd avstdndet B mellan brunnarna dr stort kan influensen fGrsummas. Den

ostdrda brunnens energiuttag enligt 10.8.2.3 erh&lles. Tabell 10.10 anger
energiuttaget per brunn och &r relativt vdardet for ostord brunn.



10.90

ar 1 5 25

4 0.903 0.832 0.802
B3 10 0.990 0.916 0.874
(m)

20 1.00  0.965 0.921

Tabell 10.10. Arsenergiuttag per brunn for tvd brunnar relativt ostdrd
brunn.

For tvd brunnar pd 4 meters avstdnd forsdmras prestanda pa grund av ter-
misk influens med upp till 20% &r 25. For avsténdet 20 meter &r motsva-
rande forsdmring 8%.

10.8.2.2 Tre brunnar

Tre brunnar Tigger pd linje eller i hornen p3 en 1iksidig triangel. Figur
10.38 visar temperaturprofilen for tre brunnar i linje i snitt genom dessa
pé djupet 80 meter. Brunnsavstdnden ar 4 respektive 10 meter. En Jjamforel -
se mellan Gvre och nedre kurva i respektive figur visar léngtidseffekten
av uttag. Den horisontellt streckade linjen visar den ostdrda temperaturen
pad 80 meters djup. Tiderna 4.5 resp. 24.5 &r dr under vintern. Brunns-
temperaturen dr 3%.

100 o
10 . 0

1
'
1
1
1
1l
'
'
|
\
'
‘
i

I
1
I
'
:
'
i
'
I
'
:
0

=3 SRR,

rim} 0

H
:
[} . °
-0 -4 4 20 -30 -20 -10 10 o

Figur 10.38. Temperaturprofiler for tre brunnar i linje med inbGrdes
avstéandet 4 resp. 10 meter.
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Figur 10.39 visar temperaturprofiler for fallet med tre brunnar placerade
i hornen av en liksidig triangel med sidan 10 meter. Djupet dr 80 meter
och tiden 24.5 ar.

TCD

10
10

R, S,

0 rim) 0 d r{m)
-20 -1 0 10 20 -10 0 8.66 15

Figur 10.39. Temperaturprofiler for tre brunnar i triangel vid tiden 24.5 ar.

Profilerna dr tagna enligt insprangd figur.

Tabell 10.1 anger energiuttaget per brunn och &r relativt vardet for en
ostord brunn.

linje triangel
ar 1 5 25 1 5 25
4 0.825 0.745 0.697 0.866 0.725 0.670
B 10 0.990 0.873  0.809 0.983 0.840 0.778
(m) 20 1.00 0.902 0.872 1.00 0.933 0.854

Tabel110.11. Arsenergiuttag per brunn for tre brunnar relativt ostord
brunn.

For det femte &ret blir prestandafdrsdmringen mellan 25% och 7%.

Studierna av tvé och tre brunnar finns redovisade mer i detalj i refe-
rens 15.



10.92

10.8.2.3 Sex brunnar

Nedanstdende skiss visar de sex brunnarnas placering. Virmeuttaget blir
olika for brunn 1 och brunn 2.

o ?1 02
|
_____ == = —=
|
) b o

Tabell 10.12 anger det &rliga viarmeuttaget per brunn relativt en ostord
brunn. Hdrvid ges ett medelvirde for de sex brunnarna. Motsvarande virden
ges dven fOr brunn 1 och 2. Genomsnittsvirdet erhilles genom viktning av
vardet for brunn 1 och brunn 2 (2xbrunn 1 + 4xbrunn 2). )

Medelvdrde Brunn 1 Brunn 2
&r | 1 5 25 1 5 25 1 5 25
41 0.726 0.542 0.483 | 0.659 0.479 0.427 .760 0.574 0.511
10y 0.970 0.730 0.620 | 0.962 0.681 0.574 975 0.755 0.644
(ﬁ) 20 | 0.990 0.886 0.743 | 0.999 0.856 0.700 .999 0.900 0.765
40| 1.000 0.981 0.888 | 1.000 0.977 0.861 .000 0.983 0.902
100 | 1.000 0.996 0.991 1.000 0.995 0.989 .000 0.995 0.991

Tabell 10.12. Arligt vdrmeuttag per brunn fGr sex brunnar relativt ostdrd
brunn.

Efter fem &r dr prestandaforsdmringen mellan 46 och 0.4% for de aktuella
brunnsavstanden. Vid ett brunnsavstidnd pd 20 meter blir prestandafdrsam-
ringen relativt ostord brunn 25% efter 25 &r.

10.8.2.4 Femtio brunnar

Placeringen av de femtio brunnarna visas i nedanstiende skiss. Lagena for
fyra speciella brunnar dr markerade.
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Tabell 10.13 och 10.14 anger det &rliga vdarmeuttaget per brunn relativt
en ostord brunn. I 10.13 anges ett medelvdrde for de femtio brunnarna,
medan tabell 10.14 avser brunn 1, 2, 3 och 4 enligt skissen ovan.

Medelvdrde

4 0.528 0.194 0.150
10 0.955 0.432 0.272
(m) 20 0.999 0.794 0.469
40 1.000 0.973 0.791

100 1.000 0.995 0.988

Tabell 10.13. Arligt vdrmeuttag per brunn relativt en ostord brunn.
Medelvardet for de femtio brunnarna avses.

Brunn 1 Brunn 2

4 0.412 0.079 0.062 0.440 0.142 0.1M1

10 0.945 0.278 0.146 0.945 0.35% 0.223

(g) 20 0.998 0.736 0.332 0.998 0.752 0.404
40 1.000 0.967 0.732 1.000 0.974 0.752

100 1.000 0.995 0.985 1.000 0.995 0.985
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Brunn 3 Brunn 4

ar 1 5 25 1 5 25

4 0.583 0.200 0.152 0.732 0.393 0.305

10 0.960 0.470 0.279 0.975 0.660 0.469

(g) 20 0.999 0.822 0.498 0.999 0.888 0.673
40 1.000 0.976 0.816 1.000 0.982 0.884

100 1.000 0.995 0.989 1.000 0.995 0.993

Tabell 10.14. Arligt vdrmeuttag per brunn relativt ostord brunn for
brunn 1, 2, 3 och 4 enligt skiss ovan.

Prestanda sjunker kraftigt om brunnarna ligger ndra varandra. Ett brunns-
avstdnd pad 4-10 meter duger ej. Dessa avsténd kan dock utnyttjas om ber-
get &terladdas. Se avsnitt 10.8.5. Med ett avstdnd pd 20 meter mellan
brunnarna blir prestandaforsamringen 20% efter 5 ar och 53% efter 25 ar.
Skillnaden mellan inre och yttre brunnar blir stor.

10.8.2.5 Stort falt med brunnar
Berdkningarna i de foregdende avsnitten visar att influensen mellan
brunnar tkar kraftigt med antalet brunnar. T.ex. gdller med avstdndet

B =20 m for ar 25:

antal brunnar I 2 3 6 50

virmeuttag relativt 0.921 0.854 0.743 0.469

ostord brunn

Gransfallet med ett mycket stort fdlt av bergvdrmebrunnar skall behandlas
i detta avsnitt.

Brunnarna tinkes 1igga i ett kvadratiskt monster med sidan B. Fdltet dr
sd stort att randeffekter kan forsummas. En brunn ser dd ett odndligt an-
tal brunnar &t alla h&ll. For varje brunn har man i horisontalplanet en
kvadrat med sidan B. Brunnen ligger i mitten av denna. Varmeflodet
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genom kvadratens rdnder dr noll av symmetriskdl. Man kan visa att detta
kvadratiska omrade kan ersdttas av ett cirkuldrt med samma area. Radien
ar Bi' D& galler sambandet:

wBi =B (10.8.2.4)

Brunnen omges av ett cylinderformat omrdde. Vid randen pi avsténdet Bi
fran brunnen dr vdrmeflodet genom cylindern noll. Figur 10.40 visar det
cylinderformade omrddet for en bergvirmebrunn i ett stort filt av
brunnar.

Figur 10.40. Cylinderformat omrdde kring bergvdrmebrunn i stort filt med
brunnar. Vdrmeflodet genom cylinderytan dr noll.

Tabell 10.15 anger &rligt varmeuttag for brunnen relativt en ostdrd brunn.
Resultatet ges ocksd i figur 10.35.

ar 1 5 25

4 | 0.408 0.022 0.018
10 | 0.949 0.236 0.078
oy 20| 1.000 0.778 0.278
40 | 1.000 0.984 0.759

60 1.000 0.993 0.925

Tabell 10.15. Arligt vdrmeuttag for brunn i stort fdlt av brunnar rela-
tivt en ostdrd brunn.
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Figur 10.41. Arligt vdrmeuttag for brunn i stort filt av brunnar uttryckt
i procent av vdrmeuttaget fr&n ostord brunn. Avsténdet mellan
brunnarna dr B = /7 - B..

10.8.3 Konstant medeleffektkomponent - temperaturresponsfunktion g

I avsnitt 10.3.6 behandlas for en brunn den fundamentala delprocessen

dd man har ett konstant effektuttag Q frén starten t=0. I ett tidsvaria-
belt fall representerar denna komponent medeleffektuttaget. Bidragen frin
variationerna i effektuttaget under &ret Gverlagras pad denna grundkompo-
nent.

For system med flera bergvirmebrunnar har man samma uppspaltning med en
komponent med konstant effektuttag Q0 fran starten t=0. Beloppet pa QO
anger det totala medeleffektuttaget under dret for alla brunnar. For

den Overlagrade pulserande komponenten dr det &rliga nettoviarmeuttaget
noll. Dess termiska rdckvidd runt en brunn ir begrinsad. Denna komponent
paverkar ddrfdr inte alls de andra brunnarna utom i fall di dessa ligger
mycket ndra varandra.

Den termiska influensen bestdms s&ledes enbart av medeleffektkomponenten.
I foregdende avsnitt har hela processen med medeleffektkomponent

och pulsation under 3ret behandlats tillsammans. I detta avsnitt skall
den rena medeleffektkomponenten analyseras.
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Effektuttaget for systemet med Nb brunnar ges av:

Q t>0
Q(t) = (10.8.3.1)
0 t <0

Vi starten t=0 réder den ostdrda temperaturen Tom i berget. Denna tem-
peratur réder hela tiden vid markytan. Temperaturen vid brunnarna (i
berget) antas vara densamma for alla brunnar. Variation 13ngs brunnarna

forsummas. Denna brunnstemperatur skall betecknas T, (t). Index o ar

(
Ro
medtaget for att markera att denna komponent avser drsmedeleffektuttaget
Qo' Medeltemperaturnivén TOm hanfores ocksd till TRO(t). Det givna prob-

lemet innehaller foljande parametrar:

Tom’ Q0’ Ro’ D;

, Hy, 2, a, B B
i

12> Bygs oo (10.8.3.2)

Hdr anger Bij horisontella avstdnd mellan brunnarna. For olika brunns-
konfigurationer far manett eller flera avstdnd som bestdmmer geometrin.

Temperatursankningen vid brunnen relativt ostord bergtemperatur ges av
Tom-TRO(t). Denna storhet kan uttryckas med dimensionslgsa parametrar.
For fallet med en brunn gors detta i avsnitt 10.3.6. Temperatursank-
ningen dr proportionell mot effektuttaget Qo och omvdant proportionell

mot A och H. Vid skalning med tiden t1 far man en dimensionslds tid t/t1.
Problemets Tangder enligt (10.8.3.2) ger ett antal skalade parametrar
RO/H, Di/H, B1Z/H osv. Parametern Di/H for ovre isolerad del dr enligt
avsnitt 10.3.4 av ringa betydelse. Som en generalisering av formel
10.3.6.1 till fallet med flera brunnar erhdlles:

QW 1

_ 0
t) ==+ 5oy 9(t/tys R/H, Bio/H, L) (10.8.3.3)

b

Tom-TRo(

t, = H2/(9a)

1

Funktionen g dr den dimensions1dsa temperaturresponsfunktionen svarande
mot effekten Qo' Faktorn 2n d@r medtagen for att formel 10.8.3.4 skall
bli prydlig. Antalet brunnar &ar Nb'

I avsnitt 10.3.10 behandlas effekten av brunnsradien Ro' For tva olika
brunnsradier R0 och Ré gdller med god noggrannhet:

H-U3
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g(t/t1, Ry/Hs onn) = glt/ty, RY/H, oon) - In(R /R!) (10.8.3.4)

Den dimensionsiosa temperatursdnkningsfunktionen g for medeleffektkompo-
nenten beskriver influensen mellan brunnarna. Den miste berdknas med

datormodell.

Det &r vart att notera att formel 10.8.3.3 dr en fundamental respons-
16sning for stegeffekten 10.8.3.1. I princip ger (10.8.3.3) en mgjlig-
het att berdkna brunnstemperaturen TR(t) for ett godtyckligt Q(t).

Antag att vdrmeuttaget &r stridckvis konstant:

4
0 t<o0
Q; 0<t< te1
Q, th. <t<t
Q(t) = 2 a1 Q2 (10.8.3.5)
Q, tQ,n_1 <t < th

Temperaturresponsen ges d& genom superposition av 16sningar av den
typ som anges i (10.8.3.3):

% -4

"z 90t - g q)/tys..) (10.8.3.6)

10.8.4 g-funktioner for system med vertikala brunnar

En parameterstudie av temperaturresponsfunktionen for 2 till 16 brunnar

redovisas i detta avsnitt.

Enligt foregéende avsnitt dr g en funktion av ett antal dimensionsligsa

parametrar:

g=g(t/t1, RO/H’ B/H,...) t1 =H
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Funktionen beror av brunnskonfigurationen och av brunnarnas inbordes
avstdnd (B/H osv.). Berdkningarna har gjorts pd dator med den enligt
avsnitt 10.7 beskrivna datormodelien for flera brunnar.

Den dimensionsldsa tiden ar t/t,. Referenstiden t, blir ej en utprdglad
bryttid som for fallet med en enskild brunn. Brunnsradien finns i para-
metern RO/H. Vid variation av brunnsradien gdller sambandet 10.8.3.4.
Enligt foregdende avsnitt saknar parametern Di/H betydelse for berdkning-
arna. De dimensionslGsa parametrarna har valts enligt nedan

Ro/H 0.0005 ‘ (10.8.4.1)

D;/H = 5/145
B/H = 0.05, 0.1, 0.15, 0.2, 0.3, =

-4.5

lIA

1n(t/t1)

IA

0 0.01

A

t/t1 <1

P& foljande sidor ges g-funktionen for ett antal brunnskonfigurationer.

Den streckade linjen anger g-funktionen for en enskild brunn. Brunnarnas
ldgen visas uppe till vanster i respektive figur. Har framgdr ocksd hur

avstandet B skall tolkas.

Vardet pd g-funktionen anger temperatursankningen relativt ostord mark-
temperatur for en brunn dérQo/@anNb) = 1°C. Detta erh3lles exempelvis
for en 150 meters brunn med foljande data, dar varmeuttaget dr 22 W/m.

Ro

0.075 m H =150 m (10.8.4.2)

» = 3.5 W/mK C = 2.16 MI/mK

QO/(NbH) = 22 W/m
Dessa data ger tidsskalan
ty = 48.9 ar
Enligt (10.8.3.3) blir temperatursankningen i brunnen

_ (o]
T TR _.1.g(t/t1, ..... ) °C

Temperatursdnkningen for detta fall ges sdledes direkt av g-funktionen.
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Figur 10.42 A-N. Temperaturresponsfunktion g(t/t1, R /H, B/H,...).

Denna ger den dimensionsidsa temperaturresponsen for’medeleffekten
enligt avsnitt 10.8.3.

Figur 10.42 B
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For en aktuell konfiguration kan nu brunnstemperéturen berdknas. Forst
anvindes kurvorna for att erhdlla vdrdet av den dimensionslidsa tempera-
tursankningen, g(t/t1, 0.0005,...). Denna omrdknas for aktuell brunns-
radie enligt formel 10.8.3.4 varefter temperatursdnkningen i brunnen
berdaknas med formel 10.8.3.3.

Exempel. Givet fyra brunnar vilka ligger i hdrnen p& en kvadrat med
kantlangden 15 meter. Brunnsradien RO dar 0.055 m och brunnens
aktiva langd H ar 150 meter. Varmeuttaget &r konstant och Tika
med 160 MWh/ar eller 30.4 W/m. Uvriga data anges nedan.

X = 3.5 W/mK C = 2.16 MI/mK N, =4

RO = 0.055 m B=15m QO = 4.150- 30.4 = 18 240 M

Detta ger:

, . 6 2
R,/H = 0.00037  B/H = 0.1 a = 1.62:10°% m%/s
ty = H2/(9a) = 1502/(9+1.62-107%) s - 48.9 ar
Q,/(2maHN,) = 1.38 Oc

Temperatursankningen i brunnen efter 25 &r skall berdknas.
Denna tid motsvarar den dimensionsidsa tiden t/t1 = 0.51. For
den mot ovanstdende konfiguration svarande g-funktionen avldses
vardet i figur 10.42D.

9(0.51,0.0005,...) = 9.1

Detta varde omriknas for aktuell brunnsraaie enligt (10.8.3.4).
g(0.51,0.00037,...) = 9.1 -1n(0.00037/0.0005)= 9.4
Temperatursankningen erhidlles enligt (10.8.3.3)

TonTr = 1-38 9.4 = 13.0%

Antag att vdrmeledningsférmagan dr 3.0 i stdllet for 3.5. D3
blir den dimensionsldsa tiden t/t1 = 0.43. Temperatursankningen
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berdknas p& samma satt som ovan och blir hir

B S .1.38 . =14.8 0
TomTg = 3.5/3.0-1.38 .9.2 =14.8 °C

Med ett konstant vdrmeuttag p& 160 MWh/ar krdvs efter 25 &r

en brunnstemperatursinkning pa 13.0°C d& marken vdrmelednings-

forméga X &r 3.5 W/mK. D3 A dr 3.0 krivs brunnstemperatur-
s ]

sankningen 14.8°C.

10.8.5 Aterladdning. Optimalt avst&nd*

Vinsten vid dterladdning av en bergvarmebrunn sommartid ar i enlighet med
avsnitt 10.5 mattlig. For system med flera bergvirmebrunnar ir &terladd-
ning mer aktuell p& grund av influensen mellan brunnarna. Denna influens
dr enligt foregdende avsnitt en Téngtidseffekt som beror av medeleffekt-
uttaget per &r. Vid en balanserad terladdning dar samma varmemangd
uttages och &terfdores per dr, blir medeleffektuttaget noll. Influensen
mellan brunnarna forsvinner helt utom d& dessa ligger ndra varandra.

Lat E0 och Ein vara uttagen respektive &terinmatad varmemdngd per &rs-
cykel. Vid balanserad dterladdning &r dessa lika. Om s& ej dar fallet,
kan analysen 3terféras pa det balanserade fallet genom en uppdelning

i ett rent uttagsfall, dar Eo'Ein tas ut och ett balanserat fall, dir
Ein tas ut och &terfores. Den rena uttagskomponenten har behandlats i
tidigare avsnitt. I den foljande diskussionen behandlas bara det balan-
serade fallet dir Eoinn'

Det ur analyssynpunkt enklaste fallet dr att det foreskrivna effektut-
taget varierar rent sinusformat:

Q(t) = Q,-sin(ZL) (10.8.5.1)
0

(*) Idén om ett optimalt roravstdnd emanerar fran uppfinnaren Ove Platell,
Sigtuna.
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Aterladdning dr mest aktuell for system med médnga brunnar, eftersom
influensen okar kraftigt med antalet brunnar. Vi antar for den fortsatta
analysen att vi har ett sddant system med 1&t oss sdga &tminstone 10
brunnar. Vi forutsdtter ocksé att de ligger i ett regelbundet monster
utan stora variationer i inbOrdes avstdnd. Approximativt kan dd for en
inre brunn problemet gdras cylindersymmetriskt. En cylinderregion runt
brunnen tillskrives denna. Cylinderns radie R1 valjes sd att den totala
bergvolymen ej &@ndras. For brunnar i ett kvadratiskt monster med ett
brunnsavstand B gdller d3:

B® = ¢ R1 (10.8.5.2)
Vid brunnens cylinderyta sdttes varmeflodet till noll av symmetriskal.
Processen for en inre brunn har omformulerats s& att den i huvudsak
blir den som behandlas i avsnitt 5.2.4. Brunnen ligger i centrum av en
utat isolerad cylinderregion med radien R1. Vid brunnen har man en

sinusformad effekt som pulserar in och ut. Se figur 5.2.10.

Effektens amplitud qq per meter brunn blir:

£

1
N

|

qy = (10.8.5.3)

o g

b

Sambandet mellan amplitud for brunnstemperatur och effekt ges i komp-
lexvard form av formel 5.2.4.4. Formeln avser bara den aktuella rent
periodiska processen. Brunnstemperaturen blir di:
Q
. AL 2nt

Top(t) = - g msm(ﬂ—)— B) (10.8.5.4)
Minustecknet beror pd att effektutfldde rdknas positivt i avsnitt 5.2.4.
Amplitudfunktionen A och fasfunktionen B beror pd o och r,, vilka defi-

1
nieras av formel 5.2.4.2:

/at
d = ~W—° ro = Ro-ld/—z_ rp= R f— (10.8.5.5)
0 0

Funktionerna A(ro,r1) och B(ro,r1) ges i figurerna 5.2.11-13. AmpTlituden
pé& temperaturen vid brunnen dr enligt 10.8.5.4:
Q Alrgary)

W 'T (10.8.5.6)
b
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Exempel. Givet ett stdrre filt med brunnar placerade i ett kvadratiskt
monster. Inbdrdes brunnsavstand ar B. Foljande data galler:

g%g = 30 W/m RO = 0.075 m

X = 3.0 W/meK C = 2.16 MI/m+K (10.8.5.7)
B=3,6,9,12,15m ty=1ar

D& gdller:

a = 1.39.1078 n?/s

r, = 0.0284 d, =3.73m
Bz3m: R, - 1.69 ry = 0.642
A=~4.9 (figur 9.2.11)
Temperaturamplituden blir d3

30 gl = 7.8%

B=6m: ry =1.28 A=3.3-5.3%
B=9m: r, =1.93 A= 3.5 > 5,6
B.z_12.m: r, = 2.57 A=~3.6 5.7
B.=_15m: r =3.21 A~ 3.7+ 5.9

For stora avstand mellan brunnarna pdverkar dessa ej varandra. Amplituden
A(ro,r1) blir Tika med det ostdrda fallet A(ro,w), vilket behandlas i
avsnitt 5.3.8. Motsvarande amplitud betecknas dir A(R'). Formel 5.2.3.11
kan anvdndas. Ett 1dmpligt kriterium pi att variationen under arscykeln
ej paverkar omgivande brunnar blir enligt figur 5.2.11:

cn LS
SRS (10.8.5.8)



1011

For brunnar i ett kvadratiskt gitter blir detta enligt 10.8.5.2:
B/ 2 >3 (10.8.5.9)
o

Kraven 10.8.5.8-9 kan tas som ett allmdnt kriterium for att brunnarna
ej influerar varandra. Observera forutsdttningen med balanserad dter-
laddning. Har man ett nettovarmeuttag per &r far man en influens.

Exempel. t_ = 1 ar C = 2.16 MI/mo+K

>
n

3.5 = B> 15m
(10.8.5.10)

>
It

3.0 = B> 14m

Funktionen A ger ett gott mdtt pd influensen mellan brunnarna vid balan-
serad aterladdning. Vid minskade B eller ry ges influensen av A enligt
figurer 5.2.11. Det dr intressant att notera att man har ett minimum for
ett visst avstdnd. Detta minimum diskuteras i avsnitt 5.2.4.2. I figur
5.2.14 anges ry som funktion av s for minimat. Detta minimum represen-

i ett regelbundet monster med balanserad &terladdning.

Exempel. L&t oss se pd exemplet ovan med data enligt (10.8.5.7). D&
erhalls:

ro = 0.0284
Figur 5.2.14 ger for det optimala avstdndet:

ry = 1.28 dvs. B =6.0m

For bergvdrmebrunnar med periodtiden to = 1 &r ligger "o i intervallet
0.02-0.03. Kriteriet for optimalt roravstédnd dr da att Y ligger i inter-
vallet 1.25 ti11 1.30. Exemplet ovan och figur 5.2.1%1 visar att tempera-
turamplituden vid optimalt avstand Tigger cirka 10% under vdrdet vid
stort roravstand. D& r1 minskas fran optimalt vdrde Okar temperaturamp-
lituden. Vérdet vid stort rdravsténd passeras vid ry = 0.8. Harefter oOkar
amplituden snabbt dd avstdndet minskas.
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Ldt oss sammanfatta denna diskussion. Givet ett system med bergvdrmebrun-
nar med dterladdning. Om det &rliga vdrmeuttaget skiljer sig fran den
dterladdade vdrmemdangden, skall den obalanserade delen analyseras enligt
tidigare avsnitt. Influensen mellan brunnar beror fér den balanserade
delen huvudsakligen av grundkomponenten (10.8.5.1). Korta effektpulser
och snabbare sinusvariationer behandlas p& samma sitt som for en ostdrd
brunn.

Lat oss nu se pd en inre brunn i ett system med relativt manga brunnar.
Brunnen tillskrivs en cylinderregion med radien R1 (R1 = B/V/7 for ett
kvadratiskt monster). Brunnstemperaturens amplitud for grundkomponenten
(10.8.5.1) ges av formlerna 10.8.5.4-5. Influensen mellan brunnarna
bestdms av R1 enligt foljande:

Forsumbar influens: ry = Ry é%L'Z 3

Mattlig influens: 0.8 < ry <3 (10.8.5.11)
Optimalt vdrde ry = 1.25-1.30
Stark influens: r £0.8

For det optimala vardet ry = 1.25-1.30 1igger temperaturamplituden for
grundkomponenten (10.8.5.1) cirka 10% under ostort virde.

For ett kvadratiskt monster med ett avsténd B mellan brunnarna blir
kriterierna 10.8.5.11:

Forsumbar influens: B 2 2 JET;
Mattlig influens: 0.6/5?0 SBX z/ﬁ‘o (10.8.5.12)

Optimalt virde B =~ 0.9«5?&

Stark influens: B < 0.6¢5€;
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Exempel. t_ = 1 4r C = 2.16 MI/mS-K

>
It

3.5 W/meK = ¢€¥; =7.15m

>
It

3.0 W/m-K = /Efo = 6.62 m
Detta ger om vi tar /Efb ~ 7 m

Forsumbar influens: B R 14 m
Mattlig influens: 4 <B< 14nm

Stark influens: BL4m

Optimalt avstand: B~6.3m

R

10.8.6 g-funktioner for system med sneda brunnar

I detta avsnitt behandlas ett antal brunnskonfigurationer med sneda
brunnar. En fordel med att brunnarna borras snett dr att en stor mark-
volym kan utnyttjas dven d& borrhdlen &ar placerade relativt ndra varand-
ra vid markytan.

Den dimensionsldsa temperaturresponsfunktionen g svarande mot medel-
effekten Q0 behandlas i avsnitt 10.8.3. Sasom for fallet med vertikala
brunnar beror funktionen av konfigurationen samt av de dimensionsldsa
parametrarna t/t1, RO/H och B/H. Dessa parametrar utnyttjas i avsnitt
10.8.4. For sneda brunnar tillkommer tvd vinkelparametrar 6 och ®. Se
figur 10.43. Dessa anger brunnens lutning relativt lodlinjen samt
orientering relativt x-axeln. For sneda brunnar &r g en funktion enligt
nedan:

g = g(t/t,, R/H, B/H, 8, @, ...)
dar

t, = H/(%)

12—-U3
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ra

Figur 10.43. Riktningsvinklarna 6 och ¢ for sned brunn.

P& foljande sidor ges g-funktionen for ett antal konfigurationer dir
parametrarna B/H och & varieras. Brunnarnas lutning 6 varieras mellan
0 och 30 grader. Brunnarnas riktningar ¢ relativt x-axeln dr fixerade
for varje enskild konfiguration. g-funktionerna dr berdknade med para-
metern Di/H Tika med 5/145 = 0.034. Betydelsen av denna parameter dr
som tidigare namnts mycket liten.

Brunnarnas relativa lagen forklaras i figurtext samt i insprangd figur.
Den nedersta streckade kurvan i varje figur anger g-funktionen for en
enskild vertikal brunn.
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Figur 10. 44 A-F. g-funktionen for brunnar placerade i linje. Avstéindet
vid markytan mellan tvd ndrliggande brunnar dr B. Brunnarnas lutning s
antar vardena 0, 10, 20 och 30 grader. Brunnarnas riktning visas med
streckade linjer i insprdangd figur.
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Figur 10.45 A-F. g-funktionen for brunnar placerade i en cirkel.
Radien pd cirkeln &r B vid markytan. Brunnarnas lutning o varieras
mellan 0 och 30 grader. Brunnarnas riktning visas med streckade
linjer i inspréngd figur.
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Figur 10.46 A-F. g-funktionen for brunnar placerade i en cirkel.
I mitten pd cirkeln 4r en vertikal brunn placerad. Radien p&
cirkeln &r B vid markytan. Cirkelbrunnarnas lutning @ varieras
mellan 0 och 30 grader. Brunnarnas riktning visas med streckade
Vinjer i inspranad figur.
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Figur 10.47 A-D. g-funktionen for 8 brunnar placerade i cirkel, ovre
figur, samt g-funktionen fér 7 brunnar i cirkel plus en vertikal
brunn i cirkelns mitt, nedre figur. (Kurvorna for A och B respektive
C och D sammanfaller. Se avsnitt 10.8.8.2)
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Figur 10.48 A. g-funktionen f6r 8 brunnar placerade i solfjdder-
konfiguration. Konfigurationen visas i ett vertikalt tvdrsnitt genom marken.
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Figur 10.48 B. g-funktionen for 8 sneda brunnar placerade ekvidistant

Tdangs en linje vid markytan. Avstiandet mellan tva ndrliggande brunnar
ar B vid markytan. Samtliga brunnar lutar 20°. Brunnarnas riktning
visas med streckade linjer i insprdangd figur.
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10.8.7 Effektuttag for inre och yttre brunnar

For ett system av bergvdarmebrunnar dr det av intresse att veta hur
effektuttaget fordelar sig pd de enskilda brunnarna. For att direkt
kunna jdmfora olika konfigurationer har vdrmeuttagsstrategien valts pd
ett annat satt an i de tidigare studierna.

Samtliga brunnar i ett system har en given konstant brunnstemperatur
TR som ej varierar i tiden. Vdrmeuttaget blir olika for brunnar med
olika ldgen i en given brunnskonfiguration. Inre brunnar ger mindre
effekt dn yttre brunnar. Foljande data anvdndes.

A= 3.5 WmK  C = 2.16 MI/mK
R,=0.086m  H=145m D =5n (10.8.7.1)
_ 0
T,To = 6%
Vdrmeuttag Medeleffekt
ar 5 28.1 Mih/ar 22 W/m
ar 25 | 25.5 MWh/ar 20 W/m

Tabell 10.16. Varmeuttaget for en enskild brunn med data enligt (10.8.7.1).
Brunnstemperatursankningen  relativt ostord mark dr 6°cC.

For system med flera brunnar jamfores varmeuttaget fran vissa av brun-
narna med varmeuttaget for en enskild brunn. Det relativa varmeuttaget
anges i procent i tabell 10.17-10.18. De konfigurationer som anvadnts

vid jamforelserna visas till Vanster i tabellen. Tabell 10.18 ger vdrme-
uttaget for sneda brunnar.
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Konfiguration B (m): Brunn: ar 5 ar 25
enligt figur:
1 2 14.5 1 65% 529
o [o] (o]
2 83 62
[o] o] o
r 29 1 91 69
2 94 78
o o o 14.5 1 49 35
T 2 62 46
© o o 3 72 56
o [} [e]
— 29 1 87 56
2 90 66
3 94 75
o o o 5 & us 1 43 26
: > 3 3 61 44
(o] o o (o] o} 71 54
LB_‘B e ©° o 29 1 86 49
3 90 65
6 94 74
(¢} (o] o] O3
1 > 14.5 1 42 26
[S) [ [¢) o) 2 58 40
3 71 52
[o] [o] (o] [o]
29 1 86 49
[o] [o] o o]
e 90 62
94 72

Tabell 10.17. Varmeuttag for nigra av brunnarna i ett antal olika
system. Vdrmeuttaget anges i procent relativt en
enskild brunn. Data enligt (10.8.7.1).
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Konfiguration B (m): e: Brunn: ar 5 ar 25
enligt figur:
4 2.9 10 65% 51%
. ° g 2 50 36
o
: 20_3_4>" 20 1 82 65
P 2 74 51
P
! 30 1 89 75
2 71 64
o 3.62 88 77
76 59
/ﬂo' 20" fo‘ ¢ Iﬂﬁ\ E‘\ R 61 47
1 .
34 7.25 1 92 82
83 66
73 57

13-U3

Tabell 10.18. Varmeuttag for n&gra av brunnarna i ett antal olika
system. Vdrmeuttaget anges i procent relativt en enskild
brunn. Data enligt (10.8.7.1).

10.8.8 Jamforelser mellan olika brunnskonfigurationer

I detta avsnitt redovisas ndgra fall dir olika system av bergvarme-

brunnar jamfores. Endast skillnader p& grund av medeleffektkomponenten

studeras. F6r n@rmare beskrivning av denna komponent hinvisas till av-

snitt 10.8.3. For berdkningarna anvindes nedanstdende data:

>
n

150 m

3.5 W/mK

C = 2.16 MI/mK

b

= H+D.
1

R0 = 0.055m

= 155 m)

(10.8.8.1)
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Detta ger:
- - -6 2
RO/H = 0.00037 a = 1.62-10 " m" /s
t - H2 _ 2 ‘6 _ 2
1= /(9a) = 150/(9+1.62-10 °) s = 48.9 ar

10.8.8.1 Borttagénde av inre brunnar

Ett system med tolv brunnar jamfGres med ett system med sexton brun-
nar enligt figuren nedan. De fyra centralhdlens betydelse skall stu-

deras.

Fall a. Telv brunnar placerade i en kvadrat: Nb = 12. Se vanster figur

nedan.

Fall b. Sexton brunnar placerade i en kvadrat: Nb = 16. Se hoger figur

nedan.

For badda fallen gdller att avstdndet mellan tvd narliggande brunnar
dr 15 meter. Varmeuttaget dr pd 54.2 kW eller 480 MWh/&ar. Detta motsva-
rar 30.4 W/m och 22.8 W/m for tolv- respektive sextonbrunnssystemet.

o] o] [e] [ o o [e] [e]
o o o o] (o] o]
o (o] (o] [¢] (o] o
o o o] o [o] [o] o o]
e Sy

B B
Fall a. Fall b.

Temperatursankningen efter 25 4&r skall berdknas for b&da fallen. Data
ges av (10.8.8.1). Ur dessa erhdlles

a. Q/(2mHN,) = 1.38 o

b. Q,/(2mHN) = 1.03 ¢



10.131

Virdet pd g-funktionen avldses i figur 10.42 J och H

a. g(0.51, 0.0005, ...) = 11.2

b. g(0.51, 0.0005, ...) = 13.9

Dessa vdrden omrdaknas for aktuell brunnsradie enligt (10.8.3.4) till
11.2 + 0.3 = 11.5 respektive 13.9 + 0.3 = 14.2.

Temperatursdnkningen i brunnen blir enligt formel 10.8.3.3

a. T - T.=1.38.11.5 = 15.8°C

1.03 -14.2 = 14.8°C

o
.
—
'
—
I

Den relativt 1illa skillnaden i temperaturer, 1 OC, visar att de fyra
centralhdlens bidrag till medeleffektuttaget dr ytterst litet efter 25 &r.
Centralhdlen ar dock vdsentliga for Overlagrade korttidspulser. For

dessa d@r bidraget till temperatursankningen direkt proportionellt mot
totala antalet meter brunn. Dimensioneras systemet for kortvariga
maxbelastningar dr sdledes de fyra mittbrunnarna av betydelse.

10.8.8.2 Med eller utan en centralbrunn

Givet tvd konfigurationer med vardera dtta brunnar. Se figuren nedan.
Forutsattningarna dr for Ovrigt helt identiska for de bada systemen.

Fall a. Atta sneda brunnar placerade i en cirkel med radien B = 1.5 me-
ter vid markytan. Se vanster figur pd& ndsta sida.

Fall b. Sju sneda brunnar placerade i en cirkel med radien 1.5 meter
vid markytan samt en vertikal brunn placerad i cirkelns mitt.
Se hoger figur pd ndsta sida.
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o o o
15m
-0 PRELIF o © O
o Q ' Q
VPN 9
Fall a. Fall b.

For bdda systemen gdller att alla sneda brunnar dr vinklade 20 grader
frén lodlinjen och riktade radiellt ut fran cirkelns mitt. Varmeuttaget
dr pd 320 Muh/&r eller 30.4 W/m. Uvriga data enligt nedan och (10.8.8.1).

= = 8. .30.4= W
Nb 8 QO 8.150. 30.4 = 36 480
B=1.5 8 = 20°
Detta ger

B/H = 0.01  Q./(2maiN,) =1.38 °C

Temperatursdnkningen i brunnen berdknas p& samma satt som i avsnitt
10.8.8.1. Vdrdet pd g-funktionen avldses i figur 10.47.

Efter 25 &r erhdlles

=
'

—f
I

g = 138 -9.7 =13.4 °C(8 brunnar)

=1.38 9.9 = 13.7 0C(7 + 1 brunnar)

o
—
1
-
1

Den obetydliga skillnaden i temperaturer, ca 2 procent, visar att de
bdda systemen dr 1ikvardiga vad det gdller influensen mellan brunnarna.

10.8.8.3 Atta kontra sex sneda brunnar
Ett system med dtta brunnar i cirkel jdmfores med ett system med sex

brunnar i cirkel. Samtliga brunnar lutar 20° radiellt ut fran cirkelns
mitt. Varmeuttaget d@r samma for bada systemen.
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Fall a. Samma system som i fall a avsnitt 10.8.8.2. Atta sneda brunnar
i cirkel enligt vdnster figur nedan. Brunnarna lutar 20 grader

fran lodlinjen.

Fall b. Sex sneda brunnar i cirkel enligt hoger figur nedan. Alla
data forutom antalet brunnar dr samma som i fall a; Nb = 6.
Varmeuttaget 320 MWh/&r motsvarar for sexbrunnsfallet 40.6 W/m.
Detta ger att Q /(2miHNy) = 1.85 °C.

© o
D L —— o @ AMma
N o Q
Fall a. Fall b.

Temperatursdnkningen i brunnen beraknas p& samma sdtt som i avsnitt
10.8.8.1. Efter 25 ar erhdlles

a. T =T, =1.38 +9.7 = 13.4 °C (8 brunnar)

om Ro

b. T - T 16.1 °C (6 brunnar)

om Ro = 1.85 «8.7

Systemet med sex brunnar krdver cirka 19 procent storre temperatur-
sdnkning i brunnen d& effektuttaget for bdda systemen dr 1ika. Utan
influens mellan brunnarna skulle motsvarande siffra vara 33 procent.

10.8.8.4 Variation av lutningsvinkeln

Tva system med &tta brunnar i cirkel jamfores. Den enda skillnaden
mellan systemen dr Tutningen 6 p& brunnarna.
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Fall a. Samma system som i fall a avsnitt 10.8.8.2. Atta sneda brunnar
i cirkel. Vinkeln & = 20 grader.

Fall b. Samma system som i fall a men med vinkeln & = 30 grader.

Skillnaden mellan systemen framgdr genom att direkt jamfora g-
funktionen for olika e. Efter 25 &r erhilles:

a. g(0.51, 0.00037,...) = 9.7

b. g{(0.51, 0.00037,...) = 8.5

Systemet i fall b ddr s = 30 grader krdver cirka 12 procent mindre
temperatursankning i brunnen efter 25 &r.

10.8.8.5 Cirkel kontra solfjdderkonfiguration

Ett system med &tta brunnar i cirkel jamfores med ett system med &tta
brunnar i solfjdderkonfiguration.

Fall a. Samma system som i fall a avsnitt 10.8.8.2. Atta brunnar
placerade i cirkel enligt vdnster figur nedan. Brunnarna lutar
20 grader fran lodlinjen.

Fall b. Atta brunnar i solfjdderkonfigurationen enligt hdger figur
nedan. Figuren visar brunnarnas lutning i ett vertikalt snitt
genom marken.

Brunnarna dr placerade ekvidistant ldngs en linje vid mark-
ytan. Avsténdet mellan tvd ndrliggande brunnar B = 3.75 meter.
Ovriga data dr samma som i fall a.

& B=3.75m
el o
15m
-----0 L St /ﬂo’ /é' 0° D w 26 E\
-D Q\

Fall a. Fall b.



Temperatursankningen i brunnen berdknas pad samma sdtt som i avsnitt
10.8.8.1. Efter 25 &r erhdlles

a. T - To=1.38 .9.7= 13.4°%

b. T - T, =1.38 .9.9 = 13.7 °C

Den obetydliga skillnaden i temperaturer, cirka 2 procent, visar att
de bida systemen ar likvdrdiga vad det gdller influensen mellan

brunnarna.

10.8.8.6 Sneda kontra vertikala borrhdl

Atta sneda borrhal i cirkel jimfores med &tta vertikala borrhdl i
cirkel. For systemet med vertikala borrhdl &r avstandet mellan borr-
h&len det som réder pad halva brunnsdjupet (Di + H/2) for systemet

med sneda borrhal.

Fall a. Atta sneda brunnar i cirkel. Se vdnster figur nedan. Alla data
forutom 6 ar samma som i fall a avsnitt 10.8.8.2. Lutningen
3r vald s& att cirkelns radie pd halva brunnsdjupet dr lika
med 15 meter. Detta ger att s dr 9.7 grader ty
1.5 + (D, + H/2) +sin(19.7°) = 15 m.

Fall b. Atta vertikala brunnar i cirkel. Se hoger figur nedan. Radien
pad cirkeln dr 15 meter. Uvriga data enligt (10.8.8.1).

15m
f !
| t
I
- . i nr/

H+0j

km--c—C-wesceciecc——--T--

Fall a. Fall b.

10.135
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Temperatursdnkningen i brunnen berdknas pd samma sdtt som i avsnitt
10.8.8.1. Efter 25 &r erhilles

a. T - T, =1.38 =12.8 = 17.7 %

It
f

1.38 +12.1 = 16.7 O

For fallet med vertikala brunnar krivs siledes en temperatursdnkning
i brunnen som dr 6 procent Tagre @n for fallet med sneda borrhal. Man
kan darfor fér sma vinklar, 8 = 100, approximera sneda borrhil med
vertikala borrha1. Villkoret dr att avstindet mellan brunnarna p4
halva brunnsdjupet ar lika fér bida systemen. D3 vinklarna ¢ ir stora
dr metoden ej Tdmplig.

10.8.8.7 En felaktigt riktad brunn

Tva fall med fyra sneda brunnar i cirkel Jjamfores. I det ena fallet
dr en av brunnarna borrad i fel riktning.

Fall a. Fyra sneda brunnar placerade i en cirkel med radien 1.5 meter.
Alla fyra brunnarna lutar vinkeln 20 grader och dr riktade
radiellt ut fran cirkelns mitt. Se vinster figur nedan.

Fall b. Fyra sneda brunnar placerade i en cirkel med radien 1.5 meter.
Alla brunnar Tutar 20 grader. Tre av brunnarna ir riktade
radiellt ut fran cirkelns mitt. Den fjarde brunnen r borrad
45 grader i fel riktning. Se hdger figur nedan.

For bdda systemen ir vdrmeuttaget 160 MWh/4r. Uvriga data som gdller
for bdda systemen ges nedan samt av (10.8.8.1).

- - - 20° -
Nb =4 B=1.5m 6 = 20 Qo =18.2 kW



10.137

QT]

————o [ o O ——-

—————0
———0

Fall a. Fall b.

Temperatursdnkningen i brunnen berdknas som i avsnitt 10.8.8.1. Efter
25 ar erhalles:

10.5 °C

[s1]
—
1
-
]

1}

‘R 1.38 '7-6

10.8 °c

o
—
[}
—
"

1.38 -7.8

Uen obetydliga skillnaden i temperaturer, cirka 3 procent, visar att en
felborrning av denna typ inte pdverkar systemets prestanda namnvdrt.

10.8.9 Optimal brunnskonfiguration

For ett system av bergvdrmebrunnar vill man veta hur borrh&len skall
placeras for att ge minsta mojliga inbordes influens. De parametrar
som kan varieras dar brunnarnas ldgen vid markytan och borriktningar,
d.v.s. lutningen o relativt Todlinjen och orienteringen ¢ relativt X-
axeln. I detta avsnitt anges optimal brunnsgeometri for tvd viktiga
grundfall.

1. Brunnar borrade inom ett Titet omrdde vid markytan
Samtliga brunnar &r borrade inom ett litet omrdde. De olika brunnarnas
exakta 1dgen vid markytan dr av underordnad betydelse. De kan exempelvis

ligga péd en cirkel sgsom i figur 10.49.

Optimal konfiguration erhdlles dd samtliga borrhal Tutas den maximala

vinkeln 8nax+ Riktningen vdljes sd att borrhélens spetsar Tigger jamnt
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fordelade runt i en cirkel vid botten. Denna cirkels radie blir vasent-

ligen Tika med (H+Di)'51n(emax)‘

=H+D) sin (B, )

Figur 10.49. Optimal konfiguration da borrh&lens maximala lutning ar
emax och dd dessa dr borrade inom ett litet omrade vid
markytan.

Man kan utan att forsamra systemet ndamnvart 13ta vissa av brunnarna

ha en mindre Tutning @n vinkeln Ornax " For att i detta fall ligga ndra
optimalitet dr kravet att brunnarnas spetsar ligger jamnt spridda inom
cirkeln. For de brunnar som dr maximalt gradade skall spetsarna for-
delas jamnt p& cirkelperiferin. Ovriga brunnsspetsar skall spridas jamnt
inom cirkeln.

Forutsattningen att brunnarna &r borrade inom ett litet omrade vid
markytan dr ndgot oprecist. Mera precist gdaller att detta omrade skall
vara litet jdmfort med cirkelomrddet vid borrh&lens spetsar. For ni-
got storre omraden vid ytan bor man givetvis efterstrava att sprida
brunnarna dven dar for att minska influensen.

2. Borrhal Tdngs en linje vid markytan

Borrhdlen ligger utspridda langs en linje vid markytan. Optimal kon-
figuration erhalles genom att vinkla samtliga borrhal den maximala
vinkeln emax och sprida borrhdlens spetsar jamnt sdsom i ovanstdende
fall. Brunnarna riktas sd att de vixelvis pekar &t ena och &t andra
hallet frén den gemensamma forbindningslinjen vid markytan. Borrh&lens
spetsar hamnar langs en kurva av travbanetyp. Se figur 10.50.
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Figur 10.50. Optimal konfiguration d& brunnarna ligger utspridda langs
en linje vid markytan och da maximala lutningen dr Omax®

10.9 Dimensionering for system av brunnar

Vid dimensionering av ett system av brunnar gdller till stora delar den
tidigare analysen for en brunn enligt avsnitt 10.4. De modifikationer
som krdavs for flera brunnar skall redovisas i detta avsnitt. Avsnitt
10.9.1 behandlar fallet med vertikala brunnar. I avsnitt 10.9.2 anges
de modifikationer som behdvs for sneda brunnar.

10.9.1 Vertikala brunnar

Avstandet eller avstanden mellan brunnarna &r en mycket viktig faktor.
I avsnitt 10.8.5 ges med formlerna 10.8.5.11-12 avstdndskriterier for
forsumbar, mattlig och stark influens mellan brunnarna for den drliga
variationerna av effektuttaget. Man bor observera att dessa kriterier
ej gdller for medeleffektuttaget. Kriterierna avser en inre brunn i ett
regelbundet brunnsmonster.

Mycket sm& brunnsavstidnd B som ger stark influens enligt formel 10.8.5.12
ir knappast aktuella. Ett sddant system med mdnga brunnar blir ett ror-
virmelager, om det anvands p& ett rimligt sdtt. Dessa behandlas i
kapitel 7. Avstdndet B mellan brunnarna forutsdtts uppfylla:

B> 0.6 /5?0 (10.9.1.1)

Numeriskt ger detta att brunnsavsténdet skall overstiga drygt 4 meter.

De tva fallen med mdttlig och forsumbar influens for variationer under
aret enligt formel 10.8.5.12 behandlas var for sig nedan.
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Brunnsavstandet B uppfyller:

Br2 vafb (10.9.1.2)
Dimensioneringen i avsnitt 10.4 galler d§ ofidrindrad fransett medel-
effektkomponenten Qo‘ Arlig sinusvariation och eventuella pulser be-

handlas exakt enligt avsnitt 10.4.

Formel 10.4.4 for brunnstemperaturens medeleffektkomponent ersitts av
formel 10.8.4.3:

=

o

A
2mAH

Too(t) =T -

om - W - 9(t/ty, R /H, B/H, ...)  (10.9.1.3)

b

Har ar Nb antalet brunnar. Den dimensionsl@sa responsfunktionen g
maste berdknas med datormodell. Variationen med brunnsradien ges av
formel 10.8.4.4.

Huvudformeln 10.4.10 gdller med ny tidsberoende faktor Ko:

Qo Q1
TRmin = Tom ~ N, ' Ko(t) - N, - K
Q (10.9.1.4)
2 1 -_—
W (K2 + K2~1n(t2/tdag)) (tdag—1 dag)

Konstanterna K1, K2 och Ké ges av 10.4.11, medan Ko(t) ges av:

1
Kolt) = 5+ alt/ty, ..) (10.9.1.5)

Ett krav for formel 10.9.1.4 &r att tidskriteriet (10.4.9) Hr uppfyllt
eller att puls saknas (QZ:O)'

For ett system med balanserad aterladdning &r QO 1ika med noll. Resul-
taten i avsnitten 10.4 och 10.5 &r d3 direkt tillampliga.

Exempel 1. I exemplet i avsnitt 10.8.4 beriknas temperatursankningen pd
grund av medeleffekten Q0 for ett system med fyra brunnar
vilka ligger i hornen pd en kvadrat. Antag att man forutom
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Q0 har dels en cykliskt Overiagrad sinuskomponent med period-
tiden ett dr och amplituden Q1=7 kW, dels en ©verlagrad effekt-
puls med ldngden fem dagar och storleken 02:5 kW. Effektut-
taget dr av den typ som visas i figur 10.33. Samtliga data en-
1igt exemplet i avsnitt 10.8.4 gdller. Ostord marktemperatur

. (6] :
TOm ar 8°C.
Den lagsta brunnstemperaturen under 25:e dret skall berdknas.
Denna temperatur erhalles med formel 10.9.4 ty villkor 10.9.2
ar uppfyllt:

B=15> 2/5%6 =14.3m

Enligt exemplet i avsnitt 10.8.4 dr medeleffektens bidrag till
brunnstemperatursankningen Tika med

o
(Qu/Ny) Ko (t) = 6.57C

Oversta raden i tabell 10.6 ger K,=1.26, K2:0.70 och Ké=
0.15 K/kW. Formel 10.9.4 ger:

T = 8-6.5-7/4+1.26-5/4+(0.70+0.15+1n(5)) = -1.9%

Rmin
Exempel 2. Givet ett system med sexton brunnar i kvadrat enligt figur 10.36H.
Effektuttaget dr renodlat. Under halva &ret har man den
konstanta effekten 200. Under andra halvan av dret dr uttags-

effekten noll. Arsuttaget dr 300 MWh. Foljande data gdller:

ZQO 0 <t - nt, < tO/Z

Q(t) = ] (10.9.1.6)
Lo t,/2 < tont <t
(tO =1ar) (h=20,1,...)
D, =5m H =145 m
R, = 0.055 m B=14.5m
A= 3.5H/mK C = 2.16 MI/mK
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QO = 34.2 k¥ EO = 300 MWh/&r
mp =0 K/(W/m) Nb =16

Detta ger

RO/H = (0.00038 B/H = 0.1

t/t1 24.5/45.7 = 0.536

1n(t/t1) = -0.624

Det totala effektuttaget bestdr av en konstant medeleffekt-
komponent samt en Gverlagrad periodisk komponent med medel-
uttaget noll.

QW]
20, /--
) /g """"""" / """ %
t18r)
0S5 10 15 20 IVVVVVWB 235 26 245
Qlw]
2Q, 1
R o ——— E 7
g o
A tlar}
0 1.0 2.0 VWWWWY 26 245

Figur 10. 51 Vdrmeuttag fran 16 bergvirmebrunnar. Data enligt
(10.9.1.6). Ovre figuren visar det exakta pul-
serande varmeuttaget medan den nedre figuren vi-
sar den approximation som anvinds for berdk-
ningarna.

Den ldgsta brunnstemperaturen under ar 25 skall berdknas.
Detta intrdffar vid tiden t = 24.5 &r. Temperatursdnkningen
pa grund av medeleffekten Q0 berdknas med hjdlp av g-funk-
tionen. Periodisk sinuskomponent medtas ej.
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For den Gverlagrade periodiska komponenten anvdnds enbart den
puls som tillhor den aktuella cykeln, t > 24 &r. Pulserna
fran tidigare cykler, t < 24 &r, har medelvdrdet noll och
deras paverkan pa brunnsmedeltemperaturen vid tiden 24.5 4ar
dr forsumbar. Virmeuttaget bestdr sdledes av de tre kompo-
nenterna: Qo = 34.2 kW, Q1 = 0 och Q2 = 34.2 kW.

Temperatursankningen i brunnen kan berdknas med formel 10.9.1.4
eftersom villkor 10.9.1.2 &r uppfyllt:

B =14.5> 2/5?; =14.3m

Temperatursdnkningen pd grund av medeleffekten QO erhd1les med
hjalp av g-funktionen. Denna ges for RO/H = 0.0005 av figur
10.424.

g(0.536, 0.0005, ...) = 14.1

Detta virde omriknas for aktuell brunnsradie enligt (10.4.8.4)

g(0.536, 0.00038, ...) = g(0.536, 0.0005, ...) -
1n(0.00038/0.0005) = 14.1 + 0.3 = 14.4

Medeleffektkomponentens bidrag till brunnstemperaturen blir
enligt (10.9.1.4-5)

. g(0.536, ...) = 9.7°%

= O

Q
0
‘—b . Ko(t) = N—E—

Bidraget frdn den extra pulsen Q2 ir enligt (10.9.1.4)
Q

0
Ny

. _ 0
. (K2+K2 ]n(tZ/tdag) = 3.3°¢C

Har ar t2 = 1/2 ar = 182.5 t

ges av tabell 10.4.12.

Koefficienterna K2 och K.

dag” 2

Den totala temperatursankningen efter 24.5 ar blir

- _ 0
Tom - TR =9.7 + 3.3 =13.0°C
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Det exakta pulserande effektuttaget dir samtliga halvarspul-
ser medtages skiljer sig fran ovanstdende resultat med mind-
re an 0.1°C.

0.6vat £ B £ 2vat (10.9.1.7)

Foregdende analys gdller fransett smirre modifikationer beroende p& den
arliga sinusvariationen med effektamplituden Q1. Konstanten K1 i formel
10.9.1.4 definierades tidigare av 10.4.11. Den skall nu ges av:

1
1= 7o Mrgsry)

r =7R V2 r

0 0 t
aty

(10.9.1.8)

1=R1\/aztﬂo

Funktion A ges av figur 5.2.11.

10.9.2 Sneda brunnar

For system med sneda brunnar varierar brunnarnas inbdrdes avstand med
djupet. Normalt &r brunnarna titt placerade vid markytan. De ar gradade
sd att avstdndet mellan dem Gkar med djupet. For dessa konfigurationer
dr influensen stark vid brunnarnas Gversta del.

Ar den starkt influerade delen liten relativt brunnarnas totaldjup, kan
formel 10.9.1.4 anvindas vid dimensionering. Koefficienterna i formeln
modifieras enligt nedan.

Ko(t): Denna koefficient berdknas utan modifikation. g-funktioner for
konfigurationer med sneda brunnar anges i avsnitt 10.8.6.

K1: Kriteriet for att formel 10.9.1.4 skall kunna anvandas vid be-
rakning av K1 dr att avstdndet mellan tva ndrliggande brunnar
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uppfyller villkor 10.9.1.1. D& vissa delar av brunnarna ej upp-
fyller detta villkor betraktas dessa delar som icke aktiva vad
det gdller vdrmeuttaget. Brunnslingden H reduceras med denna icke
aktiva del. Den nya reducerade brunnslingden betecknas Haktiv'
Figur 10.52 illustrerar ett fall med tv& sneda brunnar dar brunns-
ldngden reducerats. Markens temperaturledningstal a ir 1.62-107° m2/S
och periodtiden tO ar 1 &r. Kriterium 10.9.1.1 ger:

B> 0.6-/3?; =4.3m

Haktiv

Figur 10.52. Tva sneda brunnar dar aktiv brunnslingd reduceras
for periodisk komponent.

Koefficienten K1 ersdattes med H/H -K1. Detta ger en undre

aktiv
uppskattning av den ldgsta brunnstemperaturen T

Rmin®

KZ,Ké: Dessa koefficienter bor kunna berdknas utan reducering av brunns-
langden H om t2 dr mindre @n 30 dagar eftersom en puls med denna
langd har en rdckvidd som dr mindre dn tvd meter.

Dimensioneringsreglerna ovan kan anvindas dd g-funktionen ir kind. Denna

finns berdknad fdr ett antal olika brunnskonfigurationer i avsnitt 10.8.4
och 10.8.6.°

14—U3
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10.10 Temperaturpaverkan pd omgivande mark

En bergvarmebrunn kyler ner berget kring brunnen. Denna temperatur-
pédverkan dr av intresse ur miljosynpunkt. Speciellt &r man intresserad
av storningen vid markytan och i ytliga jordskikt. Den 1&ngsiktiga ned-
kylningsprocessen runt brunnar dr ocksd av intresse.

I de foregdende avsnitten har temperaturprofiler och isotermer visats for
olika fall. I avsnitt 10.2 behandlas i exempel 1-2 en brunn som dr 150
meter djup. Effektuttaget och erforderlig brunnstemperatur visas i figur
10.3. Figurerna 10.4-7 visar nedkyIningen. Vid vdrmeuttag dr temperatur-
gradienten mycket brant ndra brunnen. Enligt figur 10.5 stiger temperatu-
ren fran 4°C vid brunnen till 7°C cirka fyra meter ut fran denna. Mellan
4 och 15 meter stiger temperaturen till ytterligare en grad (&r 25).
Figur 10.18 visar hur brunnstemperaturen foljer ett variabelt effekt-
uttag.

Efter mycket 18ng tid av konstant varmeuttag fér man ett stationdrt
temperaturfdlt i marken runt brunnen. Detta behandlas i avsnitt 10.3.2.
Ett exempel visas i figur 10.12. Detta temperaturfdlt dr uppspaltat

i tvd delar med ‘en geotermisk del enligt figur 10.14. Detta stationdra
temperaturfdlt ar intressant eftersom det ger den maximala stdrningen
fransett omrddet narmast brunnen dar arliga fluktuationer marks. Som
konstant effektuttag skall drsmedeleffektuttaget anvdndas.

Figurerna 10. 35 och 10.36 visar isotermer for ett system av bergvdrme-
brunnar for ett horisontellt snitt undet det 25:e dret. Figur 10.37
visar temperaturprofiler for tvd brunnar pd olika avstand. Nagra exempel
for tre brunnar ges av figurerna 10.38 och 10.39.

10.10.1 Langsiktig nedkyining runt en bergvarmebrunn

De &rliga variationerna i effektuttaget ger en lokal pdverkan runt
brunnen. Detta behandlas i nédsta avsnitt. Den 18ngsiktiga nedkylningen
utanfor detta omrdde ndrmast brunnen styrs av det konstanta medeleffekt-
uttaget Qo for arscykeln.



For att visa den 1&ngsiktiga nedkylningen tar vi féljande exempel:

A= 3.5 Wm-K

H=146m

Q. =1712 ¥

0

(E

C

0

- 3.,

= 2.16 MJ/m” « K TOm
4 m R0 = 0.06 m
= 15 MWh/&r)

=8.25 °
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(10.10.1)

Temperaturforioppet har berdknats med dator for tusen &r. Figur 10.53

visar hur tvd isotermer ror sig fran &r 1 till &r 1000. Den vinstra

figuren visar isotermen T = 7.25 °C, dvs. en grads temperatursidnkning
relativt ostdrda forhallanden. Brunnstemperaturen TR anges ocksd i

figuren. Rdckvidden radiellt fran brunnen for denna isoterm ir efter
1, 5, 25, 100 och 1000 &r lika med 2, 4, 5.5, 11 respektive 13 m. Den
hogra figuren visar isotermen for T = 8.0 OC, dvs. en kvarts grads
temperatursédnkning relativt ostorda forhallanden. Observera att

radiell skala har @ndrats. Rickvidden for denna isoterm ar efter 1, 5
25, 100 och 1000 &r 1ika med 8, 18, 37, 58 och 74 m.

0 10 20
0 ) r{m)
ISOTERM T=7.25°C
50
13r 5 25 100 1000
T
100
150
tididn| 1 | s {10 |00 [1000
TR0 [550 512 | 481 6e65|ass
z(m)

00 50 100
ISOTERM T=8°C
50
18rS 25 100 1000
1001

150L/

z(m)

rim)

Figur 10.53. Langsiktig nedkylning runt en bergvirmebrunn. Data enligt
(10.10.1). Ostbrd bergtemperatur Tom ar 8.25 °c.
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Foljande exempel belyser ytterligare den langsiktiga temperatur-
storningen fran en bergvarmebrunn. Den aktuella brunnen dr 185 m

djup. Varmeuttaget dr 38 Mih per &r. P& 35 meters avstind fran brunnen
pd djupet 45 meter finns en kulvert. Se skiss i figur 10.54. Fr&gan

dr vilken temperaturstdrning man far vid kulverten. Temperaturstor-
ningen i marken ges av Tom - T(r,z,t). Figur 10.54 visar denna
radiel1t frén brunnen pa kulvertens nivid z = 45 m for tider frén 2
till 100 ar.

Tn-T1°C)

100 &r

50 r
b T=Tirzt)

45m
2 z=45m
6 B
35m Kulvert

Kulvert

T - T - r{m)
10 20 30 L0

Figur 10.54 Temperaturstdrningsprofiler i radiell riktning for
djupet z = 45 m.

Enligt figur 10.54 gdller att temperaturen vid kulverten ir helt opa-
verkad av bergvdrmebrunnen under de tvad forsta &ren. Efter10 &r har man
en sdnkning med 0.25 °C. Efter 25 &r har sdnkningen Gkat till 0.5 °C.
Efter 100 &r &r den 0.8 °C. Temperaturforloppet har berdknats for tusen
dr. Figur 10.55 visar temperatursinkningen vid kulverten. Stdrningen
har en mycket 138ng tidsskala. En stérning pd 1 °c uppnéds aldrig.
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Tm-T 17
10
r=35m
08 1 z=45m
06 1
04
tiadr) | 200 | 300 | 500 | 700 |1000
OZ | Tom=T 10870 | 0.895 (0913 | 0.920{0.925
0 20 30 40 50 60 70 8 9% 100

t(&r)

Figur 10. 55. Temperatursankning vid kulvert som funktion av tiden

Ovanstdende exempel visar att temperaturstorningarna pd lite storre

avstdnd frén brunnen &r smd. Tidsskalan for att uppnd den maximala sta-

tiondra storningen dr mycket stor.

For ett system med balanserad &terladdning forsvinner dessa stdrningar

med 1dng rdackvidd. Man har enbart de mer lokala variationerna runt brun-

nen enligt ndsta avsnitt.

10.10.2 Rdckvidd for temperaturfluktuationer under aret

Effektuttaget Q(t) varierar under &ret. Denna variation ger upphov till
ett variabelt temperaturfalt med en viss rdckvidd ut frén brunnen. Denna

del Overlagras den tidigare komponenten fran medeleffektuttaget.

Rackvidden for drsfluktuationerna analyseras enklast med den periodiska

grundkomponenten. Effektuttaget for denna delprocess dr

Q1) = qp-sin(EE )

[o]

(10.10.2.1)

Periodtiden t0=1 dr ger rackvidd for &rsvariationen. Denna periodiska
process utanfor ett ror behandlas i avsnitt 5.2.2.2.

Vid brunnen har
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temperaturen en viss amplitud. Denna amplitud dimpas ut&t. Formel 5.2.2.15
anger amplitudens variation med radien:

No(r') ( )
; 10.10.2.2
NO R
. I"l/? . RO/E— _ ato
ro= R = — d, = /-2
0 ) n

Faktorn 10.10.2.2 dr forstds lika med +1 for r=Ro. Funktionen N0 ges i
tabell 5.2.2 och figur 5.2.3. For smd och stora argument gdller approxi-
mationerna 5.2.2.13 respektive 5.2.2.14.
Exempel. Vi tar foljande data

R, = 0.055 m a = 1.6-107% n¥/s

Tre periodtider studeras:

to =1 &r, 15 dagar, 1 dag

Dampningsfaktorn (10.10.2.2) for temperaturens amplitud blir
for ndgra radier:

r (m) 0.055 0.10 0.20 0.50 1.0 2.0 5.0

t0=1 ar 1 0.96 0.70 0.49 0.33 0.19 0.062
to=15 dagar 1 0.78 0.53 0.26 0.10 0.022 0.00035
t0=1 dag 1 0.64 0.29 0.047 0.0031 0.00002 O

Rackvidd for effektpulser behandlas i avsnitt 5.3. Temperaturprofilen
frdn en stegpuls ges direkt av figur 5.3.6.
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10.10.3 Paverkan vid markytan

Temperaturpdverkan vid markytan och det Gversta skiktet av marken kompli-
ceras av de lokala randvillkoren och av eventuell sno och tjalbildning.
Det 3r svart och ofta ogorligt att i detalj berdkna de naturliga tempe-
raturforhdllandena niara markytan. For att komma forbi detta ser vi bara
p& storningar av de naturliga forhd1landena. Dessa dr mindre kdnsiiga

for de exakta randvillkoren.

De temperaturer och viarmefloden som anges nedan skall uppfattas som Gver-
lagrade pad det ostorda forloppet.

10.10.3.1 Exempel med en och tvé brunnar

For att belysa paverkan i de ytliga jordskikten skall tva berdkningsfall
refereras. Brunnen ges en undertemperatur pé 5°C relativt ostért berg.
Foljande data gdller:

A = 3.5 W/meK C = 2.16 MI/mS-K

R0 =0.08 m D. =4 m H=146m (10.10.3.1)

Figur 10.56 visar berdknad temperaturstdrning pé en meters djup under
markytan som funktion av avstdndet (s) radiellt ut fran brunnen.

Den maximala temperaturstorningen efter 100 &r dr -0.12°C. Pa radien
5=20 m dr storningen 20% av maximalvardet. Skillnaden mellan kurvorna
for 5 &r och 100 &r &r cirka 0.01°C.

Temperaturforioppet for tva brunnar med data enligt (10.10.3.1) visas
ocksd i figur 10.56 Avstdndet B mellan de tvad brunnarna dr 10 meter.
Temperaturen pd en meters djup visas ldangs det snitt som gér genom brun-
narna. Avstdndet s rdknas fran mittpunkten mellan brunnarna. Den ena
brunnen ligger sidledes vid s=5 m. Man har ingen topp hdr eftersom brunnen
ir virmeisolerad ner till 4 meters djup. Den storsta stdrningen efter

100 ar 4r -0.16°C. Stérningen har reducerats till 20% av detta vdrde
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Ts1,t) (°0)
~-Q2 ; T

—— Tv& brunnar

=~=En brunn

s(m)

Figur 10.56. Berdknad temperaturstdrning pd en meters djup for en och
tvd bergvarmebrunnar.

20 meter utanfdr brunnen (s=25 m). Stdrningen efter 5 &r avviker drygt
0.01°C fran stérningen efter 100 &r i det givna intervallet.

10.10.3.2 Formel for stdrvarmeflode vid markytan

En bergvdrmebrunn med ett &rsmedeleffektuttag Q0 ger upphov till ett
extra varmeflode ner genom markytan. Detta storvirmefldde blir en funk-
tion av radiellt avstdnd till brunnen och av tiden. Variationer i effekt-
uttaget under dret marks ej vid markytan.

L&t qo(r,t) (W/mz) beteckna detta stOrvdrmefldde pd grund av en bergvir-
mebrunn med effektuttaget Qo' Varmeflodet 9, blir proportionellt mot

QO. Féljande formel kan hirledas for q_ (J. Claesson, opublicerad studie):

(10.10.3.2)
/r-+H
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Hir dr erfc den s.k. complementary error funktion. Se kapitel 3.
Totala brunnsdjupet &r Hb (= H+Di)' Formeln &r méfkvérdigt enkel.

De tvd termerna har samma struktur. Med hjdlp av tabell odver erfc ar
det 1dtt att berdkna vdarmeflodet.

Temperaturstorningen p& ett mdttligt djup z kan uppskattas pé foljande
satt:

L0 -T(r,z,t) |
qo(rat) s A

eller

T(r,z,t) = -q (r,t) + % (z <Dy z<3m) (10.10.3.3)
Observera att detta &r en uppskattning av den avvikelse man far fran
ostorda naturliga forhallanden.

D& tiden g&r mot oandligen erhdlles ett stationdrt siutvdrde. Detta blir:

W 1

q (r,) = 50
0 2nH | r2+D% ¢2+H§

1
{ (10.10.3.4)

:

Detta dr det maximala varmeflddet vid markytan. Formeln ger ett mycket
enkelt uttryck for maximal pdverkan.

Det storsta flodet erhdlles vid sjdlva brunnen; r=0.
= q (0,%) = Do g0 (10.10.3.5)
qo,max QotYs>) = ZnHDi H cEee
Termen Di/H kan forsummas.
Exempel. Vi vdljer foljande data:

3.5 W/meK C = 2.16 MI/moeK

>
]

H =146 m D. =4m (10.10.3.6)

QO/H = 20 W/m



10.154

Det maximala vdrmeflddet blir enligt (10.10.3.5)

20 RN 2
qO(O,w) = m (1 m) = 0.77 W/m

Detta motsvarar pd en meters djup en temperaturstorning:

T _ . 0
T(0,1,=) =~ -0.77 "3 = -0.22°C

Nedanstdende tabell anger virmeflodet uttyckt i W/m2 for ndgra
radier och tider enligt formel 10.10.3.2.

-
r (m) 2.5 12.5 30 70 185

5ér 0.61 0.14 0.02 0.000 0.00000

25 ar 0.62 0.19 0.06 0.007 0.00000

100 ar 0.64 0.21 0.08 0.020 0.00090
1000 &r 0.65 0.22 0.08 0.026 0.0036
@ 0.65 0.22 0.08 0.026 0.0038

Exemplet ovan visar att storvirmeflodena blir smd. For stora radier tar
det hundratals &r innan stationara forhallanden uppnas.

10.10.3.3 Totalt varmeflode fran markytan

Den vdrme QO som tas ut via bergvdrmebrunnen erhdlles genom nedkylning
av berget och genom ett vdrmeflode genom markytan. Denna senare del
harror framst fran solen. Det dr intressant att se fordelning mellan
dessa tvé bidrag som en funktion av tiden.

Det totala vdrmeflodet genom markytan erhilles genom att integrera
qo(r,t). Observera att enbart storvirmeflodet p& grund av brunnen
utnyttjas.
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Q

markyta = J 27 gglrat)dr (10.10.3.7)
[e]

Har ges 9, av formel 10.10.3.2. Integralen kan berdknas explicit.

o BT e (PN e (BN
Qmarkyta = Q, H 11erfc \/IEE/ ierfc L 4at/j (10.10.3.8)
2
ierfc(s) = :%? e™® - s.erfc(s)

Detta forhdllandevis enkla uttryck anger vid varje tidpunkt den andel av
effektuttaget QO som kommer via markytan. Resterande andel hdrror frén

nedkylning av berget.
Exempel. L&t oss ta data enligt (10.10.3.6). For t=n &r erhdlles:

Jhat = 14.30-/n

) . (0.280 . (10.49\}
Qmarkyta = 286.0/n 11erfc s ierfc =)
Detta ger efter n ar:
ar | 5 10 25 50 100 200 500 1000
Qmarkyta
B 0.10 0.15 0.25 0.36 0.48 0.61 0.74 0.81

0

Exemplet ovan belyser val tidskalan for varmeflodet genom markytan. Efter
5 &r kommer 10% av effektuttaget Q0 via markytan, medan resterande 90%
fas genom nedkylning av berget runt brunnen. Efter 25, 100 och 1000 ar

ir andelen via markytan 25, 48 respektive 81%. Efter 1000 ar erhdlles
sdledes 20% av vdrmen genom nedkylning.
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10.11 Persondatoranpassad dimensionering med hjdlp av g-funktioner

I avsnitt 10.4 och 10.9 har dimensioneringsregler angivits for en enskild
och flera influerande brunnar. Dimensioneringen baserar sig dar pd

att effektuttaget kan delas upp i medeleffektkomponent QO, sinuskompo-
nent med amplituden Q1 och overlagrad effektpuls QZ'

I det allmanna fallet ar effektuttaget Q(t) en godtyckligt varieran-

de funktion av tiden. Om detta varierande effektuttag approximeras

med strdackvis konstanta virden kan temperaturen vid bergvdggen beridk-
nas genom superposition av g-funktioner. I detta avsnitt beskrivs denna
metod vilken dr speciellt lampas for persondatorer.

Effektuttaget ges i detta avsnitt som ett medelvirde per meter brunn:

g (t) = Q(t)/ (N H)  (W/m) (10.11.1)

dar Q(t), (W) anger totalt effektuttag och Nb H, (m) anger totala antalet
meter aktivt verkande brunnar.

Vdrmeuttaget dr strackvis konstant:

0 (= qo) t < tqo
a tgo <t <ty
9, tq1 <t < tgp
a(t) = < : (10.11.2)
a, tg a1 < E <t

Uttrycket 10.8.3.3 anger temperatursdnkningen vid borrh&lsviggen rela-
tivt ostord mark for en effektpuls q = QO/(NbH), viTken startar vid
tiden tqo = 0. For ett strackvis konstant effektuttag enligt (10.11.2)
ges temperatursankningen av ett uttryck av den typ som anges i formel
10.8.3.6. Med n&got annorlunda beteckningar blir denna formel:

Tg((t -t J/tR ML) (10.11.3)

q,i-1
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Responsfunktionen g finns tabulerad pd diskett for tiden mellan 5
timmar och 1000 ar som ett 20-tal punkter for var och en av de kurvor
som anges i avsnitt 10.8.4 och 10.8.6. Mellanliggande varden far be-
raknas med Tinjar- eller splineinterpolation. Observera att g-funk-
tionen hédr ar utraknad med parametern Ro/H = 0.0005. For annat varde
pd brunnsradien gdller ekvation 10.8.3.4.

D& temperaturen vid borrhdlsvaggen Tp @r kand kan fluidens medeltempe-
ratur Tf berdknas enligt formel 10.3.8.4 (eller 10.3.8.5):

Te=T

£ 7 'R T MR,

In- och utloppstemperatur beridknas darefter med uttrycken i (10.3.18.3).

10.12 Responstestmdtning for en bergvarmebrunn

Vid dimensionering av bergvarmebrunn enligt de tidigare angivna reglerna
dr de termiska parametrarna Tom’ A och Mo speciellt viktiga. I detta av-
snitt skall metoder for direkt mdtning av dessa behandlas.

1. Ostord markmedeltemperatur Tom

Den ostorda markmedeltemperaturen Tom skall matas innan brunnen tas i
drift. Temperaturen kan erhdllas genom att temperaturlogga pa ett antal
olika brunnsdjup och darefter berdkna medelvardet over brunnsdjupet.

Ett alternativ till temperaturloggning dr att mdata fluidens temperatur
dd denna pumpas genom brunnen utan ndgot varmeuttag. Denna temperatur
dar en god uppskattning av Tom‘

En komplikation dr att den varmemangd som motsvarar pumparbetet tillfores.
Man fé&r darfor en svagt ckande temperatur. Denna effekt kan om sd erford-
ras analyseras enligt nedanstdende metod.

2. Vdrmeledningsformdgan A och vdrmedvergangsmotstandet Mo

Parametrarna X och Mo kan mdtas med den metod som anges i referens 147.
Metoden baserar sig pd att man har ett konstant varmeuttag ¢. Fluidens
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temperatur uppmdtes som funktion av tiden. I borjan ar temperaturen via-
sentligen konstant. Detta beror p& att det tar en viss tid innan all
fluid har passerat genom brunnen. Efter denna tid borjar fluidtempera-
turen sjunka.

Detta sdtt att bestdmma termiska parametrar &r en tillampning av test-
probe metoden. I laboratoriesammanhang brukar man anvinda en probe med
langden cirka 10 cm. Hdr anvandes samma metod for en brunn med en langd

pd mer dn hundra meter.

Varmeuttaget ar renodlat. Man har ett effektsteg enligt avsnitt 10.3.7.
Sambandet mellan fluidtemperatur och varmefldde ges av formlerna 10.6.3.4
och 10.3.9.1. Ur dessa erhdlles temperatursankningen i fluiden relativt
ostord markmedeltemperatur:

1 1 4
Ton = Te = g Inlt) + qe(mg + —-4m(1n(R—S) - v)) (10.72.1)
0]
5R°
0

Varmeflodet q (W/m) ti11 borrhdlet strommar frén omgivande mark vid ra-
dien r = Ro. I uttryck 10.12.1 dr borrhdlet approximerat med en Tinje-
sdnka. Varmeflodet g fran marken sker d& vid borrhdlets centrum v = 0.
Approximationen kan anviandas efter tiden SRg/a, nar det relativa varme-
innehd1let i regionen 0 < r < R0 ar litet. Tidskriteriet behandlas ut-
forligt i avsnitt 7.2.2.3.

D3 utloppstemperaturen plottas som funktion av logaritmen av tiden er-
hdlles efter en kort forsta tidsperiod en rit linje. Lutningen ¢ (K)
pa linjen ger vdrmeledningsform§gan A.

Ur formel 10.12.1 fas:

= .4 _0
by g t > 3 (10.12.2)

I formel 10.12.1 & nu alla parametrar utom a = A/C och me kanda. Varme-
kapaciteten C erhalles ur tabell for aktuell bergart. Overgingsmotstéan-
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det Mo kan nu berdknas med formel 10.12.1. Varje mdatpunkt ger ett varde.
Lampligen vdljes ett medelvarde for olika tidpunkter.

Belastas brunnen med ett mycket stort konstant varmeuttag fryser grund-
vattnet mellan plastslang och bergvdgg. Under frysperioden, som kan vara
ndgra timmar, tas varmen vasentligen frdn grundvattnets smaltvdrme. Nar
allt grundvatten fryst till is sker ater vdrmeuttaget med vanlig vdrme-
ledning fran berget. Varmemotstéandet Ma dr emellertid forandrat eftersom
slangarna nu omges av is vars varmeledningsformdga dr drygt tre ganger
storre @n for vatten.

I exemplet nedan illustreras ovanstéende metod for bestamning av X och
mp -
Exempel. Givet ett borrhdl med foljande data :

- _ )
R0 = 0.055m TOm = 8.25°C
Varmeledningsformédgan A och varmemotstdndet Mo skall bestammas.
Varmeuttaget dr konstant enligt den Oversta av figurerna 10.57:

q =25 W/m t>0

Fluidtemperaturen uppmdatt som funktion av tiden visas i den
mittersta av figurerna 10.57.

Temperaturpunkterna harror ej frén nagot faltforsok. De ar en-
bart konstruerade i illustrativt syfte for detta exempel.

Temperaturpunkterna som uppfyller tidskravet i formel 10.2.2

kan anvdndas vid bestamning av A. Antag som en grov uppskattning
att A = 3.3 W/mK och € = 2.16-10% a/m (a = A/C = 1.53-107% m?/s).
Tidskriteriet blir da:

t > 5 (0.055)2/(1.53+107%) = 9.9-10% = 2.7 timmar

For tider storre dn 2.7 timmar plottas fluidtemperaturen mot
In(t). Resultatet visas i den nedre av figurerna 10.57.
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Figur 10.57. Foreskrivet varmeuttag och uppmdtt fluidtempera-
tur for exemplet ovan, samt temperaturen mot en
logaritmisk tidsskala.

Lutningen ¢(K) pd den rata linje som erhdlles bestammer A en-
Tigt 10.12.1:
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N = - g2rgT = 3.4 WK

Med detta A kan korrekt varmeledningstal berdknas,

a = 3.4/2.16"106 = ’|.57'1O_6 mz/s.

Alla storheter utom ma ar nu kanda i formel 10.12.1:

-6
_ 25,1 1y, 4°1.57°10
8.25 - To(t) = ooy n(t) + 25[mR t gyt in 5 }- 0.5772))
(0.055)
Varje temperaturpunkt ger ett vdrde pa mp:
t (s) 10000 20000 50000 100000 200000
Tf(%) 4.3 3.9 3.4 3.1 2.7

Mo K/(W/m) 0.101 0.100 0.099 0.095 0.094

Medelvdardet av dessa varmemotsténd blir:

ﬁR = 0.10 K/(W/m)

15—-U3






11. YTJORDVARME

Figur 1.5 visar ett ytjordvarmesystem. Via ytjordvarmeslangar tas vadrme
fran marken till en vdrmepump. Slangarna kan 1igga p& en knapp meters
djup. Marken ky]s under naturliga temperaturnivder. Detta ger upphov
till en vdrmetillforsel fran markytan. Man kan sdga att ytjordvarme-
slangar utnyttjar markytan som en solféngare eller en luftkollektor.
Harvid fungerar ytjordskiktet ner till nagra meters djup som ett varme-
lager. Vintertid fryser ofta marken ndra slangarna, varvid dven frys-
varmet utnyttjas.

I ytjordvérmeslangarna cirkulerar en vdrmebdrarfiuid, vars temperatur
betecknas Tf(t). Virmeflddet frén marken till en slang betecknas q(t).
Det har sorten W/m. Det rdknas negativt, d& varme avges fran slangen
ti1l marken. Genom att séanka Tf okar varmeuttaget g. Samtidigt sjunker
emellertid varmepumpens prestanda med temperaturen Tf pd den tillfdrda

varmen. Man har en viss grans T som ej far eller bor underskridas.

f,min
Varmeuttaget begriansas ocksd av miljopaverkan och i synnerhet av att

man ej kan frysa marken alitfor mycket.

Huvudsyftet med de termiska analyserna &r att ange sambanden mellan Tf(t)
och gq(t) i olika situationer.

Ett viktigt hjdlpmedel vid de termiska analyserna dr superposition. Se
avsnitt 3.5. Den totala temperaturprocessen kan dad uppdelas i enklare
fundamentalprocesser, vilka analyseras var for sig. Dessa sammansdttes
till det totala, mer komplexa temperaturforioppet. Genom att utnyttja
dessa analysmetoder far man en djupare forstielse for vad som sker.

Superpositionsprincipen galler ej da marken fryser. Den galler inte hel-
Ter d& man har sno, vilket innebar ett tidsvariabelt vdrmemotstand vid
markytan. Tjdlbildning och sn0 beaktas ej hdr. Analyserna blir, da man
tar hansyn till sno och tjdle, sa& besvarliga att man hela tiden fér ut-
nyttja rena numeriska datorsimuleringar. Mangden parametrar blir ett
problem. Omfattande studier, dar tjdle beaktas, har utforts vid Jord-
varmegruppen pa Chalmers. Se referens 164.

Tjdlbildning kan forsummas for mark med laga vattenhalter. Resultaten



nedan kan ocks& i huvudsak tilladmpas under den del av aret dd tjdle sak-
nas. I mdnga fall, i synnerhet soderover, sker ingen frysning. De ana-
lyser nedan som ror den lokala processen kring en slang eller flera
narliggande slangar gdller dven vid frysning forutsatt att hela det ak-
tuella naromradet ar helt fruset. Man skall d& utnyttja termiska data
for frusen mark.

Begransningen till fall utan tj&lbildning och sno innebar att resulta-
ten i detta kapitel inte blir heltdckande pd samma sdtt som de Bvriga
kapitlen.

Detta kapitel ar ett sammandrag av referens 9. I avsnitt 11.1. diskute-
ras superpositionsprincipen och den fundamentalldsning till vilken i
princip alla forlopp kan reduceras. Avsnitt 11.2 behandlar den statio-
ndra delprocessen. I det foljande avsnittet behandlas effekten av tem-
peraturvariationen vid markenytan. I avsnitt 11.4 och 11.5 behandlas effekt-
pulser och periodisk komponent. Effekt av grundvattenrorelser och infilt-
ration av regnvatten belyses i avsnitt 11.6. Temperaturforloppet i av-
snitten 11.1-6 avser ett vertikalt tvdrsnitt vinkelrdtt mot slangarna.
Som fluidtemperatur Tf bor man d& utnyttja medelvirdet mellan slangar-
nas inloppstemperatur och utloppstemperatur. I avsnitt 11.7 diskuteras
temperaturvariationen ldangs slangarna.

11.7 Superposition. Fundamentalldsning

Superpositionsprincipen behandlas i avsnitt 3.5. I figur 3.2 visas ett
belysande exempel. Man har tv& ytjordvdrmeslangar med de foreskrivna,
tidsberoende varmeuttagen q1(t) och qz(t) (W/m). Vid markytan har man
den foreskrivna temperaturen To(t). Processen uppdelas i tre delfor-
Topp. I den forsta delen sdttes varmeuttagen till noll. Denna del ger
d& den naturliga, ostdrda temperaturen i marken, vilken styrs av To(t).
Den andra delen har vdrmeuttaget q1(t) till den ena slangen, medan den
andra slangen har varmeuttaget noll. Den tredje delen tar hand om det
andra védrmeuttaget qz(t). Temperaturen vid markytan ar noll for de tva
sista komponenterna. Adderas de tre komponenterna erh&lles det totala
temperaturforloppet.

Del tva och del tre i figur 3.2 dr var for sig rena varmeuttag till en



enda slang. Det givna varmeuttaget q1(t) (eller qz(t)) kan i sin tur upp-
delas i enklare delkomponenter. Man har en tidsoberoende stationdr del.
Ti11 denna kan man Overlagra stegvis konstanta uttagspulser sdsom be-
skrives i avsnitt 5.3. Man kan ocksd utnyttja periodiska forlepp enligt
avsnitt 5.2.

I denna studie utgdr man frén givna védrmeuttag, varefter fluidtempera-
turer berdknas. Man kan tanka sig att i stdllet utgd fran fluidtempera-
turerna och ange varmeuttag. Detta bor emellertid undvikas, d& det le-
der till en mycket mer komplicerad analys.

Som en introduktion till analyserna av temperaturforlopp for ytjord-
varmesystem skall vi se pd den i viss mening mest grundldggande proces-
en, ddr man har ett konstant varmeuttag op (W/m) fran tiden t = 0.
Enbart temperaturstorningen pd grund av varmeuttaget behandlas hiar.
Temperaturen vid markytan dar dd noll hela tiden. Begynnelsetemperaturen
vid t = 0 i marken dr ocksd noll. Se figur 11.1.1.

Figur 11.1.1. Grundldggande temperaturforlopp for ett renodlat effekt-
steg.

Det visar sig att en karakteristisk tidsskala for denna process ar

ty = = (11.1.1)



Se avsnitt 11.4. Har ar a (mz/s) markens varmediffusivitet och D djupet
till ytjordvarmeslangen.

Temperaturen i marken utanfor slangen ges av fundamentalldsningen
(11.4.1). Den blir en funktion av den dimensionslosa tiden t/tD. Som
exempel vdljer vi foljande data:

D=1m R =0.02m

P 6 o (11.1.2)
A = 1.5 W/mK a = 0.7510 " m /s
q1=10 W/m

Den karakteristiska tiden tD blir da:

t

- 2211 5 s = 1 manad (11.1.2")

D 0.75-10"

I figur 11.1.2 visas temperaturfaltet for tiderna t/tD = 0.5, 1, 2

och =,
- ’0 ~qx(m) g l 0 ] x{m)
T=-1°C .
7 PR
+1 //(\ -2 +1 / ﬁ‘-\\-z \
\\ \%/ \ g }
7 t:(i.S‘rD % 1
z(m) z(m)
L T==1C Pl /‘\ﬁosc
+ / f(“\ﬁz \ + / ﬁ\\-z \
) (1%

t=2tD f =00
(Stejady-state)

z{(m} z(m)
Figur 11.1.2. Temperaturfdlt vid olika tidpunkter for renodlat effekt-

steg enligt figur 11.1.1. Data enligt (11.1.2).



Det skall noteras att alla andra fall med andra data an (11.1.2) ger
samma temperaturfalt enligt (11.4.1) fransett faktorn q1/k och skalning
av x och z med D. Varje tidsvariabelt varmeuttag q(t) kan uppfattas som
en summa av rena effektsteg. Se t ex avsnitt 10.3.7. Alla temperatur-
forlopp for flera slangar kan sdledes betraktas som en summa av funda-
mentallgsningen (11.4.1), vilken visas i figur 11.1.2.

I figur 11.1.3 visas isotermen T = -1°C for olika tidpunkter. Man bor
observera att T = -1°C innebdr att verklig temperatur ligger 19C under
den naturliga ostorda marktemperaturen.

- 1
1 . M x {m)

+1

\‘—
Pt

NS
3/
~=1

z(m)
Figur 11.1.3. Isotermen T = -1°C for tiderna t/tD = 0.5, 1, 2, = for
renodlat effektsteg enligt figur 11.1.1. Data enligt

(11.1.2).

I figur 11.1.4 visas temperaturprofiler 1dngs en vertikal linje genom
slangen. Temperaturen TR i marken strax utanfor slangen dr av speci-
ellt intresse, eftersom den dr direkt relaterad till fluidtemperaturen
i slangen genom ekvation 11.2.10. For det aktuella exemplet visas TR

i figur 11.1.5.
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Figur 11.1.4. Temperaturprofiler i ett snitt vertikalt genom slangen for
renodlat effektuttag enligt figur 11.1.1. Data enligt
(11.1.2).
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Figur 11.1.5. Temperatur i marken vid slangen for renodlat effektsteg
enligt figur 11.1.1. Data enligt (11.1.2).

D& vérmeuttaget upphor dtergdr efterhand temperaturen ti1l ostorda for-
h&llanden. I figur 11.1.6 visas avklingningen efter en mycket 1&ng puls.
Effektuttaget a4 antas ha ratt under tiden -«< t < 0., Data enligt
(11.1.2) antages. Vid tiden t = 0 r&der d& den stationdra temperaturen

(t = =) frén figur 11.1.2. Avklingningsforloppet kan betraktas som tv3
rena effektsteg +a, vid t = ~woch -44 vid £ = 0. Den vanstra bilden

i figur 11.1.6 visar avklingningen Tdngs vertikal Tinje genom slangen,
medan hdger figur anger avklingningen hos isotermen T = -0.5%C. vid ti-



den t = tD har denna isoterm forsvunnit, d v s den maximala tempera-
turstorningen ligger under 0.5°C.

0 7ioc) o2 - 0 1 2

0 x{m)
/“\ t_o
41 L] A N\—T"
L iy L —t=0.25¢,
[/ N
_L 3 ( / \ h t=0.5¢;
3 \ \/. ——-t=0.75tD
4 \_/
5
5
z(m) z(m)

Figur 11.1.6. Temperaturavklingning fran tiden t = 0 efter en lang
effektpuls. Data enligt (11.1.2). Vanster bild visar
temperaturprofiler vertikalt genom slangen och hoger
bild isotermen T = -0.5°C.

Figur 11.1.7 visar speciellt temperaturavklingningen vid slangen, TR(t).

Speciellt gdller:

TR(tD/30) = 0.36 TR(O)

Tp(tp/3) = 0.1 Tp(0) (11.1.3)

TR(t = 0.05 TR(O)

o)
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Figur 11.1.7. Temperaturavklingning i marken vid slangen efter en lang
effektpuls. Data enligt (11.1.2).

Enligt (11.1.3) och figur 11.1.7 &r temperaturavklingningen efter en
effektpuls mycket snabb. Efter en dag har temperaturen vid slangen
sjunkit med 64%. Efter 10 dagar &terstdr 10% av temperaturstdrningen.

Idén att man skall til1fora marken viarme sommartid for att sedan utnytt-
Jja den lagrade varmen vintertid har framforts. Vi kan emellertid redan
hdr dra den slutsatsen att detta inte 16nar sig, eftersom man har av-
klingningstider enligt (11.1.3). Efter det att varmetillforseln avbru-
tits tappar marken vid slangen temperaturnivd mycket snabbt. Efter 10
dagar dterstdr i storleksordningen 10% av den Gvertemperatur som man
hade vid uppladdningens slut.

11.2 Stationdrt varmeuttag
Det fdreskrivna vdrmeuttaget q(t) har en konstant medeleffektkomponent

q
0
9 (W/m) ger en huvudsakligen konstant uttagstemperatur TR efter den

samt Overlagrade korttidspulser av olika slag. Medeleffektpulsen

karakteristiska tiden tD. Se figur 11.1.5 (tD = 30 dagar). Man har for



medeleffektkomponenten, dd denna har verkat en tid tD, huvudsakligen
stationara forhd1landen nara slangen. Det tar allt langre tid att upp-
ng stationara forh&llanden ju langre bort man kommer frdan slangen. Har
dar vi dock i forsta hand intresserade av TR’ varfor tidskriteriet

t >t skall anvandas.

Det stationdra forloppet ar en viktig komponent eftersom den represen-
terar den konstanta baslasten. Denna del behandlas tamligen ingdende i
detta avsnitt.

11.2.1 En slang. Markens varmemotstand m

Det aktuella fallet med stationdrt varmeuttag med en slang i marken
illustreras i figur 11.2.1.

2 :n//qL(qo ﬁ/‘a%:/;
N

Figur 11.2.1. Stationdrt vdrmeuttag med en slang i marken.

Den stationdra temperaturen T{x,y) i marken ges av fdljande uttryck:

(11.2.1)

Uttrycket har erh&llits ur en linjesdnka vid slangen i (0,D) och en
Tinjekdlla i spegelpunkten (0, -D). Harigenom uppfylles automatiskt



11.10

randvillkoret T = 0 vid z = 0.

Vi dr speciellt intresserade av temperaturen i marken direkt utanfior
slangen, d v s pa cirkeln:

2

x¢ + (z - D)2 = R?

o (11.2.2)

Har ar Rp slangens ytterradie. Avstdndet ti11 spegelkdilan blir med
god approximation:

Wt (z+0)% =2 (R << D) (11.2.2")

S&ledes galler:

q R
. 0 p
TR ¥ e ln(ZD] (11.2.3)

Detta kan skrivas p& foljande satt:

0 - Tp =gqym (11.2.4)

g

Vinstra ledet anger temperaturfallet mellan ostord mark och slang. Hog-
ra ledet definierar markens varmemotstand mg:

_ 1 2D
mg -‘m]n(g) (11.2.5)

Varmemotstandet mg rdknas per meter slang. Det har sorten K/(W/m).

For grundfallet (11.1.2) galler f6ljande data:

D=1m R =0.02m
: p
- _ -6 2
A= 1.5 W/mK a =0.75-10 " m"/s (11.2.6)
9, = 10 W/m
Markens varmemotstdnd blir da:
mo= o (L) = 0.49 K/ (u/m) (11.1.7)
g Z2u°1.5 0.02 : e



Temperaturen vid slangen blir da:

Tp = - 10°0.49 = -4.9°% (11.2.8)
Man skall har som tidigare observera att ovanstdende berdkning bara
avser temperaturen fran effektpulsen. Om naturlig marktemperatur vid
slangen ar t ex 7.00C, sd blir den totala temperaturen i marken vid
stangen 7.0 - 4.9 = 2.1%.

Ibland har man en annan vdrmeledningsfdrmdga i marken ndarmast slangen.
Antag att vdrmeledningsformédgan ar A (W/mK) i ett litet cirkuldrt om-
rade med radien R1 runt slangen. Om R1 dr mindre dn D/3 ges markens
varmemotsténd med god approximation av foljande uttryck:

1
ZTIA1

R*J ( )
_ 11.2.9
RP

_ 1 2D
m —?ﬂ—)\*]n(ﬁ)*’ ]ﬂ[

9

11.2.2 Vdrmemotstand mp mellan fluid och mark

Lat Tf vara temperaturen i vdrmebararfluiden i slangen. Varmemotstan-
det mp (K/{W/m)) (pipe) mellan fluiden och marken strax utanfor slangen
definieras av:

Tq - Tf = q°mp (11.2.10)

Varmemotstéandet mp behandlas i detalj i avsnitt 7.2.8. Varmemotstandet
bestér av tre delar (fluid - rorvagg, rorvagg, rorvagg - mark):

m =m

b fo t mé +me (11.2.11)

Dessa behandlas i avsnitten 7.2.8.1, 7.2.8.3 respektive 7.2.8.4. Mot-
standet Mee beror pé& stromningshastigheten och i synnerhet pd om strom-

ningen ar turbulent eller Taminar.

Kombineras grundformlerna (11.2.10) och (11.2.4) erhdlles det allmanna
- uttrycket mellan drivande temperatur 0 - Tf och stationdrt flode 9yt

1.1
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“m +m)=q m !

0" (M, g o M * Aoy (11.2.12)

Det totala varmemotstdndet mellan markyta (T = 0) och fluid (Tf) ges

av summan av markens varmemotstand mg och vdrmemotstandet mp vid slang-
en.

11.2.3 Vdrmemotstand vid markytan

Randvillkoret vid markytan ar enligt figur 11.2.1, att temperaturen

ddr dr noll. Vdrmemotstandet mellan markytan och den fria luften har
forsummats. Antag nu att man har det allmannare randvillkoret med en

konstant varmedverforingskoefficient o (W/mZK) vid markytan:

3T

37 - aS(O -T) z=20

Problemet enligt figur 11.2.1 ar for Svrigt ofdrdndrat. Den stationara
temperaturen i marken for detta fall ges i referens 9.

Ur denna 16sning erhdlles ett modifierat varmemotstand mg for marken:
2 2D
my = 7y | 1n(§) + 9. (Dag/2) } (11.2.13)
Funktionen gs(a'), a' = Das/x, ges av:

g (a') = 2e2a‘°E1(2u') (11.2.13")
Funktionen E1 (exponential integral) definieras av (5.3.2.2). Tabeller

och samband for den finns i referens 103A. N&gra varden pé g anges i
tabell 11.2.1.

0.5 1 2 3 4 5 10

gs(a') | 1.19 0.72 0.47 0.29 0.22 0.18 0.10

Tabell 11.2.1. Funktionen g, enligt (11.2.13").



Effekten av vdrmemotstandet 1/oaS vid markytan ges av kvoten mellan 9
och logaritmtermen i (11.2.13).

Exempel 11.2.1. Data enligt (11.2.6). D3 gdller:

20

"p

2+1

In( 0.07

= 1n( ] = 4.61

Tva fall behandlas:

Da
S _ 3 _ _ 0.18 _
T =5 95 =0.18 => 4—.—61— = 0.04
Da
. i . 0.75 _
=1 g =075 = 0.6

Det forsta fallet innebdr att ytmotsténdet 1/oaS vid
markytan ar lika med 0.2D/x , d v s detsamma som for

11.13

0.2 m mark (D = 1 m). Detta ar ett rimligt normalt varde.

Ytmotstandet okar da mg med 4%. Det andra fallet ar
extremt, eftersom 1/&s = D/A innebdr att ytmotstéandet
dar lika stort som motsténdet for 1 m mark.

Exempel 11.2.1 visar att normala varmemotstdnd vid markytan i stort
kan forsummas. Ett undantag dr givetvis fallet med sng. I det foljande
skall ytmotstéandet vid markytan forsummas. Man har d& det enkla rand-
villkoret T = 0 enligt figur 11.1.1.

11.2.4 Tva slangar

Figur 11.2.2 visar fallet med tva siangar pd djupen D, och D,. Avstan-
det mellan slangarna ar B. Det foreskrivna, stationdra effektuttagen
ar a4 och a, (W/m).
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}/////

Figur 11.2.2. Stationdrt vérmeuttag med tvd slangar.

Den stationdra temperaturen i marken erhdlles genom superposition av
tvad uttryck av typen (11.2.1). L&t TR1 och TR2 vara temperaturen i

marken direkt utanfor de tv& slangarna. Man far ett ekvationssystem
for sambandet mellan varmeuttag (q1 och qz) och drivande temperatur-

differenser (0 - TR1 och 0 - TRZ):

0= Tpq = aqemqy + gpemyp
(11.2.14)
0 - Tpp = Qpemy + agemyy
De tre véarmemotsténden (K/(W/m)) ges av:
1 2D 1 2D
m, = = In(t—) m, = 5— In(z—)
1 2T Rm 2 2N sz
(11.2.15)
2
. =L]n B +401D2
12 27mA B

Viarmemotstanden Gver slangarna betecknas mp1 och mpz. D3 gdller:

R1T ™ 'F1 T 997y

(11.2.16)

R2 ~ 'f2 T 922
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Formlerna 11.2.14-16 ar de allmdnna sambanden mellan fluidtemperaturer
och stationdra varmeuttag.

Ett viktigt specialfall ar att fluidtemperaturerna Tf,| och sz ar lika.
Man kan for Tf1 = sz = Tf 10sa ut a4 och g, som funktion av Tf. Kov-
ten mellan flodena blir:

4 M ¥ My =My

_ (11.2.17)
2 Mt My~ Myp

Vi dr speciellt intresserade av sambandet mellan drivande uttagstempe-
ratur 0 - Tf och totalt védrmeuttag 4y * g, Ur (11.2.14) och (11.2.16)

erhdlles for T., = T

£1 7 Te2 = Tt

0 - Te = (q1 + q2)~m1+2 (11.2.18)

Har ges det totala varmemotstandet m (K/(W/m)) for de tva slang-

1+2
arna av:

2
- p1) (M2 * Ty) - M 11.2.19
M2 = - +m, +m ., - 2m (11.2.19)
2 p2 12

Varmeuttaget frén de tvd slangarna minskar d& avstandet B mellan dem
minskar. Det ar naturligt att jamfora varmeuttaget fran de tvd& slang-
arna pd ett avstand B med motsvarande uttag dd slangarna ligger langt
frén varandra (B = «), s& att de kan betraktas som termiskt oberoende.
Jamforelsen gores for samma fluidtemperatur Tf. L3t n vara varmeutta-
get relativt tvad oberoende slangar. D& gdller enligt (11.2.18):

m (B:w)
- ﬁligrgy——- (11.2.20)
1+2
Figur 11.2.3 visar n for fallet mp1 = mp2 = 0 och Rp1 = sz = 0.02D.

Den ena kurvan gdller tvad slangar pa samma djup B och den andra tvd
slangar i samma vertikalsnitt. I det senare fallet avser n varmeuttaget
relativt tvd oberoende slangar vilka b&da ligger p& djupet D. Med ovan-

11.15
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stdende forutsdttning blirn en funktion enbart av B/D.

m
1

0 B/D
0 S 10

Figur 11.2.3. Vdarmeuttag enligt (11.2.20) for tvd slangar relativt
tva oberoende slangar p& djupet D for falletm ., =

pl
m =0, R =R = 0.02D.

p2 p1 p2

Enligt den Gvre kurvan minskar varmeuttaget till n = 0.85 d& tva
slangar forldgges pd avsténdet B = D relativt tvd slangar pd stort av-
stdnd. Den undre kurvan avser tvd slangar i samma vertikalsnitt. Man
har ett flackt, teoretiskt optimum vid B = 5D for placering av den
undre slangen.

11.2.5 N slangar

I det allmédnna fallet har man N parallella slangar. L&t q; (W/m) vara
det stationara varmeuttaget till slang i. Denna Tigger vid x = X; och

z = Di' Den stationdra temperaturen i marken erh&lles genom att super-
ponera N bidrag av typen (11.2.1):

2 2
Nooq. (x - x.)¢ + (z - D.)
T(x,2) = ] _g;x Tn /x i i (11.2.21)
1

Jix - 502 + (2 +0,)2

i

Ur (11.2.21) kan temperaturerna TRi imarken strax utanfor slang i be-
stammas. Man fé&r hdrigenom ett ekvationssystem mellan TRi och ;- Mel-



Tan fluidtemperaturen Te; 1 slang i och TRi rader enligt (11.2.10)
bandet:
TRi = Ty = 957 (1
Ur dessa ekvationssystem erhdlles fdljande allmédnna samband mellan
fluidtemperaturer Tfi och varmeuttag 93 vid stationaritet:
)
0-T,. = q.em (M
5 0 i = 1,2,..0,N
Vdrmemotstanden m;j ges av:
120
Mg = Moy * oy (g ) (.
pi
1, VB T ADsD; L
mij = ?ﬁi’]n —5 i4 (11.2.
13
Har dar Bij avstandet mellan slang i och slang j:
- 2 2
By = Jix, - x3)° + (0 - D) (11.
Ett viktigt specialfall &r d& alla fluidtemperaturerna satts lika:
Tfi = T]c i=1,2,...N (11.
Analogt med (11.2.18) far man ett totalmotstand Mg N (K/(W/m))
avseende alla N slangar:
0 - Tf = (q1 Oyt qN)'m1+...+N (11.
Lat m;} beteckna elementen i den inversa matrisen till mij' Frén

(11.2.23) och (11.2.26) erh&lles da:

11.17

sam-

.2.21)
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(11.2.28)

Lat n sdsom i fallet N = 2 i formel 11.2.20 ange varmeuttaget for N
slangar relativt N oberoende slangar. Jamforelsen gors for samma Tf,
varvid n blir lika med kvoten av motsténdet (11.2.28) for stora avsténd
mellan slangarna och for de aktuella avsténden. I figur 11.2.4 visas

n for N slangar som ligger pa samma djup D. Avstandet mellan slangar-
na ar B. Vidare gdller: mpi =0, Ry = 0.02D. Det relativa varmeutta-

get n blir da en funktion enbart av B/D.

n N=1

1 ~N
— ] —_—
1
_74 =] ~ 1
0+
o
—
0 Z B/D
0 ) 1.0 15 2.0

Figur 11.2.4. Varmeuttag for N slangar relativt N oberoende siangar.
Slangarna ligger pd djupet D med 1ika avsténd B mellan

slangarna. Vidare gdller mpi =0, Rpi = 0.02D.

Figur 11.2.4 belyser vdl influensen mellan slangar. I fallet N = »
anvdndes resultaten i ndsta avsnitt. Enligt figuren ar influensen mel-
lan slangarna liten for B > 2D, medan den blir mycket kraftig for

B < 0.5D. For B = D sjunker n fran 1 for N = 1 till1 0.85 for N = 2,
ti11 0.70 for N = 4 och ti11 0.55 for N = o,
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11.2.6 0andlig svit av slangar

Fallet med en odndlig svit av slangar ar av intresse som gransfall for
ett ytjordvarmesystem med ménga paraliella slangar. Figur 11.2.5 visar
det betraktade fallet. Slangarna 1ligger pd djupet D med avstdndet B
mellan dem. Varmeuttaget till varje slang ar Gy-

7

T=0

,
7
Figur 11.2.5. 0dandlig svit av slangar.

I referens 9 anges det stationdra temperaturfdltet for detta fall. Har-

ur erhdlles markens varmemotstand mg. Foljande formel gdller:

0 - TR = qo-mg (11.2.29)

i ) - R

Den fdorsta Togaritmtermen ger mg for en oberoende slang enligt (11.2.5).
Den andra logaritmen ger influensen fré&n de dvriga slangarna. Nedansté-
ende tabell ger ndgra vdrden pé& korrektionstermen:

B/D I 0.1 0.25 0.5 0.75 1.0 2 4 10

sinh(21D/B)
1n(*~?ﬁﬁ7§————ﬂ| 58.0 21.2 9.3¢ 5,56 3.75 1.30 0.38 0.06

Korrektionstermen skall med data fran grundfallet (11.1.2) jamforas med:

(D) - (&) = e ‘ (11.2.30)
p
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11.2.7 Nérliggande slangar

For att oka varmedverforingen kan man anvanda flera slangar i ett knip-
pe, varvid dessa ligger i direkt kontakt med varandra. Man kan alter-
nativt ldgga tva eller flera fria slangar i samma dike. For att f& bas-
ta varmedverforing skall slangarna skiljas fran varandra s& mycket som
mojligt med restriktionen att forldggningsdjupet D vdsentligen bibeh§lls.
Avsténdet Bij mellan slangarna i samma dike blir smd relativt forlagg-
ningsdjupet D och samtidigt stdrre &n 13t oss sdga en och en halv slang-
diameter 3Rp. I detta avsnitt antas for enkelhetens skull att alla
slangar ar lika.

Figur 11.2.6 visar tva slangar i direkt kontakt eller pd ett kortare av-
stdnd B frén varandra. De tv& slangarna ligger vasentligen pd samma
djup D (B << D).

K

N\
AN\

90

N
\

7

Figur 11.2.6. Tva slangar i direkt kontakt eller pd ett kortare
avstand.

Formel 11.2.14-16 kan anvandas for de tvédslangarna med avstdndet B mel-
lan sig. Djupen dr lika: D,| = D2 = D. D& slangarna antas lika blir var-
meuttagen och temperaturerna lika for de tvad slangarna. L&t q, vara
vdrmeuttaget per slang. D& gdller for fallet B << D:

= o 2D 2D )
0-T¢=q, My + 95 7 {m(-R;] + In(g7) } (11.2.31)

Formeln kan med hygglig noggrannhet tillampas aven pd slangarna som
ligger i kontakt med varandra (B = 2Rp). Formel 11.2.31 gdller da for
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2RpsB<< D (11.2.31")

L&t n som ovan ange varmeuttaget for de tvd slangarna relativt tva
oberoende slangar vid samma Tf. Formlerna 11.2.31 och 11.2.12 ger da:

2D
anmp + 1n(§—J

n = P (11.2.32)
oo + 1n(2D) + (D
p Rp B

I tabell 11.2.2 ges n for ndgra vdrden pd B/D i fallet mp = 0 och

Rp = 0.02D och i fallet mp°k = 0.1+1.5 = 0.15 och Rp = 0.02D. Vi ser
att det lonar sig att separera slangarna fran varandra. Vdrmeuttag for
de tvd slangarna relativt en enda slang ges av 2n.

B/D | 0.04 0.10 0.20 0.30
n 0.54 0.61 0.67 0.71 m. =0

Tabell 11.2.2. Varmeuttag (11.2.32) for tvd slangar ndra varandra
relativt tvad ostorda slangar for Rp = 0.02D.

Tabellen visar att det bor 1dna sig att separera slangarna fran varand-
ra.

Figur 11.2.7 visar tre slangar som ligger ndra varandra. I det ena
fallet ligger de i hdrnen pd en liksidig triangel med sidan B och i
det andra pd en linje med avstandet B/2 mellan slangarna. Avstéandet B
forutsdtts vara Titet relativt forldaggningsdjupet D.
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y j/q[,& / y 9 9 %//
2 A

Figur 11.2.7. Tre ndrliggande slangar vilka ligger i hornen pd en lik-

sidig triangel eller pd en linje.

De allmanna formlerna i avsnitt 11.2.5 kan tilldmpas med N = 3. De tre
slangarna i triangeln ligger vasentligen p& samma djup (D1 = D2 = D3=D).
Temperaturer och fl1oden blir d& 1ika for de tre slangarna. Formlerna
11.2.23-25 ger:

et 12D b p 12D
0-Ts =4, my * 4, §;X{1n[§;J 2 ]n[B ))

(11.2.33)
< <D
2Rp B

D& slangarna ligger direkt mot varandra (B = 2Rp) skarmas for varje
slang en vinkelsektor pd 60°. Endast 5/6 av flddet dver en fri slang
passerar. Detta motsvarar att mp ckas till g—mp. D& slangarna ligger i
direkt kontakt rekommenderas darfor fgljande formel:

R L 2D 2D
0 - Tf = qO mp T + qo 2“)\(1n(¥) + 2 -In[ﬁj) (11.2.34)

I tabell 11.2.3 anges fran dessa formler vdrmeuttaget n for de tre

slangarna relativt tre oberoende slangar. Virmeuttaget for de tre slang-

arna relativt en slang ges av 3n.
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B/D | 0.04 0.10 0.20 0.30
n 0.37 0.43 0.50 0.55 m =20

Tabell 11.2.3. Vdarmeuttag for tre ndrliggande slangar i triangel
enligt figur 11.2.7 relativt tre oberoende slangar
for Rp = 0.02D.

Tabellen visar anyo - att det bor lona sig att skilja slangarna frén

varandra.

For tre slangar pa linje enligt figur 11.2.7 f&r man ett flode g, for
ytterslangarna och ett flaode q, for mittslangen. Formlerna 11.2.23-25
ger:

1 2D 2D 1 2D
£ q1-[mp + §gx{1”[§;J + 1”(§—J)] oyt 1”(—7§]

(11.2.35)

TS T N I
f = dprlmy + ?EK’]”[EEJ) + 24y Inlg)

Ur dessa ekvationer kan det totala varmeuttaget 2q1 * 4, 10sas ut.

Exempel 11.2.2. Givet tre slangar pad linje med foljande data:
D=1m Rp = 0.02 m B=0.1Tm
Te = -5% my = 0.1 K/(W/m)
A= 1.5 W/mK

Ekvationssystemet 11.2.35 blir da:

5

q1~(0.1 + 0.81) + q2°0.39
5

1)

q2°(0.1 +0.49) + q1'0.78

Detta ger

4.30 W/m
2.79 W/m

9
42
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Totalt erhdlles for de tre slangarna
2q1 +q, = 11.4 W/m

En ostord enskild slang ger vdrmeuttaget:

q. = = 8.5 W/m

11.2.8 Tva markskikt

I avsnitten ovan forutsdtts marken vara homogen med varmeledningsfor-
magan A. I detta avsnitt skall fallet d& marken bestdr av tvd skikt
behandlas. Marken bestdr av tvd lager 0 < z < H och H < z < ». Endast
fallet med en slang behandlas. Slangen ligger i det undre skiktet da

H <D och i det ovre d4 H > D. Det stationdra vdrmeuttaget ar dy- Var-
meledningsformdgan i det skikt dar slangen ligger betecknas A medan den
ar A i det andra skiktet. Se figur 11.2.8.

Figur 11.2.8. Stationdrt varmeuttag med en slang d& marken bestér
av tvad skikt.

I referens 9 anges den analytiskt berdknade stationdra temperaturen for
detta fall. Harur erhdlles markens varmemotstand mg (K/(W/m)):

mg = %mn(%’) + p(H/D, o)) (11.2.36)

Parametern o ges av:

A= k1

o :A+)\1

(11.2.37)
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Den varierar frén -1 till +1. Funktionen p(H/D, o) visas i figur 11.2.9.
p(H/D,0)
09

. \

N7

Figur 11.2.9. Funktionen p(H/D, o) i formel 11.2.36, vilken ger effek-
ten av det andra markskiktets annorlunda vdrmelednings-

formaga Mg

Funktionen p dr givetvis noll for ¢ = 0 (k1 = A). Gransfallen 2y = 0
och Ap=te sr intressanta i fallet H > D. Fallet A o= tew eller

o = -1 kan uppfattas s& att man hdller temperaturen noll vid z = H.
Fysikaliskt erh&lles detta om man har ett mycket kraftigt regionalt
grundvattenflode i skiktet z > H. Markens viarmemotsténd ges da av:

m 321117“"(?22%) + In [iuDl/Ta_/Hl)) (11.2.38)

(H> D, Ay = eller T = 0 for z = H)

I fallet A 0 eller ¢ = +1 gdller:



11.26

_1 2D tan(nD/(2H))
mg = —zn—x(]n[w};) + ]n( D/ (2R )) (11.2.39)
_ oT _ . _
(H>D, A o= 0 eller 7z 0 for z = H)

Exempel 11.2.3. Granitbergrund med 1.5 m tdckande sandjord. Foljande
data galler:

A = 0.9 W/nmK Ay = 3.5 W/mK

R = 0.02 H=1.5

b 02 m m
0<D<KH

Markens varmemotstand ges av (11.2.36):

2D
My = 7eos (Unlggg) * P(1.5/0> - 0.6))

Varmemotsténdet mg visas i nedanstédende figur for oli-

ka D.
mg (K/(W/m))

L]
0.7 // \\
0.65 \

D
05 1 15 (m)
Varmemotsténdet fé&r ett maximum vid D = 1.0 m. Det ar

075

06

i detta fall fordelaktigt att placera slangen nara det
undre skiktet med den hogre varmeledningsformégan.

Exempel 11.2.4. Givet foljande fall dar det Gvre skiktet har en lagre
varmeledningsforméga.

R =0.02 H=1n
D m m

i. 0<D<Tm

A= 0.9 WmK, X, = 2.7 W/mK

1



ii. D>1m

A E 0.9 W/mK, X o= 2.1 W/mK

Markens vdrmemotsténd enligt (11.2.36) visas i figuren

nedan for olika forlaggningsdjup D.

mg (K/(W/m))
07 //,f L
\ :
i
06 ¢
|
i
0.5 r
1 k
1
: .,
04 e D
05 1 15 (m)

Figuren visar att man far 1dgst varmemotstdnd da slang-
en placeras i det undre skiktet med den hogre virme-
Tedningsformdgan. Man bor ga ner en bit under gridnsen

z = H. Kurvan har ett flackt minimum for z = 1.5 m.

11.3 Ostord marktemperatur

Den naturliga ostorda marktemperaturen, d& man ej har ndgot varmeuttag,
betecknas Tn(z,t). Temperaturen imarken frén varmeuttagen vid slang-
arna betecknas Tq(x,z,t). Denna komponent har enligt avsnitt 11.1 tem-
peraturen noll vid markytan. Den totala temperaturen i marken ges av
summan:

Ttota](x,z,t) = Tn(z,t) + Tq(x,z,t) (11.3.1)
I de ovriga avsnitten i detta kapitel behandlas enbart komponenten Tq.
Speciellt anges fluidtemperaturen Tf(t) for varmeuttagskomponenten.

For att erhdlla den totala, verkliga fluidtemperaturen skall man ldcga
till den naturliga temperaturen Tn(D,t) vid slangen:

Te totar(t) = Telt) + T (D,t) (11.3.2)

11.27
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I detta avsnitt skall né&gra formler for Tn(z,t) anges.

Antag att temperaturen vid markytan varierar sinusformat enligt:

_ . 2nt
Ts(t) = TO + Tp swn[¥;— + QO] (11.3.3)
Har ar to sinusvariationens periodtid. Man far ett endimensionellt,
periodiskt temperaturfirlopp i marken 0 < z < . Enligt avsnitt 5.2.2.1
och formel 5.2.2.1 blir marktemperaturen, d& (11.3.3) ré&der vid mark-

ytan:
-z/d

- . Oginflm + , _Z_
Tn(z,t) = TO + Tp e s1n[t0 * 9, do] (11.3.4)

Intrédngningsdjupet d, ges av (5.2.2.2):
at
d =./—2 (11.3.5)

Pa djupet 3d0har ampTituden hos variationen vid markytan dampats till
Tp-e_3 = Tp/20. Tabell 11.3.1 anger d0 for manga periodtider.

2

t i T timme 1 dygn 1 vecka 1 mdnad 1 &r

d_ (m) 0.03 0.14 0.38 0.79 2.7

Tabell 11.3.1. Intrangningdjup dO for olika periodtider for
a = 0.75:107% n?/s.

Variationer vid markytan med tidsskala och periodtid pd upp till en
vecka ar helt utdampade vid slangdjup D runt en meter. For att erhiila

Tn(D,t) maste man givetvis ta med den drliga periodiska komponenten.

Temperaturvariationer med tidsskala mellan 1 vecka och ett halvt ar
kan behandlas genom att temperaturen vid markytan representeras av ett
eller flera temperatursteg. Dessa behandlas i avsnitt 5.1.1.3. Antag

att marktemperaturen gor en stegandring vid tiden t1:
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Ts(t) = (11.3.6)
Motsvarande marktemperatur ar d& enligt (5.1.6):

T, (z,t) =

T+ T, eerfo(——te—) to>t
0 1
da(t - t1)

Genom att superponera nagra temperatursteg pd den arliga periodiska
variationen enligt (11.3.3) kan den ostorda marktemperaturen erhdllas
med tillrdcklig noggrannhet. Man fér totalt ett uttryck av foljande typ:

-D/d
- . 0, ;. r2mt D
Tn(D,t) = TO + Tp e S]n(? + (1’)0 - a—o*] +

(11.3.7)
S |
Viéa(t - tk)

Har ar Tk den stegvisa temperaturandringen vid markytan vid tidpunkten
tk (t >t

+ g T erfc (

k)‘

11.4 Varmeuttagspulser

Den foreskrivna vdrmeuttagspulsen q(t) for en slang kan genom superpo-
sition betraktas som en summa av rena effektsteg. I avsnitt 11.4.1 be-
handlas detta renodlade fall. Det foljande avsnittet behandlar temperaturav-
kTingningen efter en puls, medan den allmdnna analysen med effektpulser
kortfattat redovisas i avsnitt 11.4.3.

11.4.1 Fundamentalldsning for renodlat effektsteg

Forutsdttningarna for det renodlade effektsteget anges i figur 11.1.1.
Man har ett konstant vdrmeuttag a4 fran tiden t = 0. Temperaturen vid
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markytan dr noll. Begynnelsetemperaturen i marken ar noll vid tiden
t =0.

Denna fundamentalldsning erh&lles med tva 1gsningar av typen (5.3.2.1):

q 2 2 2 2
L (N A I R N St L) D N CER D

T(x,z,t) =

Funktionen E1 (exponential integral) definieras av (5.3.2.2). Ldsningens
utseende visas i figurerna 11.1.2-5. Speciellt galler i marken vid slang-

en pad cirkeln x2 + (z - D)2 = Rg for Rp << D:

2
q R 2
_ 1 p 4D
TR(0) = - g Eylag) - B lggp)) (11.4.2)

2
(at/R) > 5)

I 16sningen (11.4.1-2) approximeras slangen med radien Rp med en linje-
kdlla. Varmeflodet frén denna &dr exakt q for t > 0. Vid avsténdet Rp

fran Tinjekdllan, dédr slangens ytterradie ligger, vixer varmeflodet

upp till 44 under en forsta tidsperiod. Losningen (11.4.1-2) gdaller darfor
inte under en forsta period. Det dr lampligt att anvanda foljande krav:
at/Rﬁ > 5. 1 borjan dr ocksd varmekapaciteten hos varmebararfluiden i
slangen betydelsefull, medan den kan forsummas efter denna forsta tids-
period. Allmant gdller for de analytiska studierna hdr att den forsta
tidsperioden 0 < t < 5R§/a ej beaktas.

Exempel 11.4.1. Normala data for en ytjordvdrmeslang ar i storleksord-

ningen:

R =0.02m a=0.75.10"% n?

p /s

Tidskriteriet for att 1dsningen (11.4.1) skall vara
tillamplig blir da:

2
C 2R 5e0.022

= 0.75 timmar.
& 0.75.1070
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I referens 9 visas att man kan anvinda foljande approximativa uttryck

for TR(t):
] %[ln{:—gtl - ) RERNE (:% > 5)
To(t) = i i (11.4.3)
y = 0.5772

Det maximala felet intrdaffar vid brytpunkten at/D2 = 1.78. Det &r runt
6%. Det oOvre uttrycket innebar att TR(t) ges av en effektpuls i en fri
omgivning. Man forsummar helt effekten av markytan. Motsvarande approxi-
mation for en bervarmebrunn ges av formel 10.3.7.3. Det undre uttrycket
dr det stationdra varmeuttaget enligt (11.2.4-5).

Approximationerna 11.4.3 &r basen for definitionen (11.1.1) av en karak-
teristisk tidsskala ty = 2D2/a. For tider t < tD (eller noga taget
t < 0.89 tD) kan effekten av markytan helt forsummas, medan TR erhdalles

ur den stationdra Tosningen for t > tD.

11.4.2 Temperaturavklingning efter en uttagspuls

Givet en uttagspuls under tiden - t1 <t <0
0 t <ty

q(t) = ay -ty <t <0 (11.4.4)

0 t>0
Under avklingningsperioden t > 0 kan processen betraktas som summan av
ett effektsteg a4 frén tiden t = -t1 och ett effektsteg -G4 frén ti-
den t = 0. Man far tvd termer av typen (11.4.1). I figur 11.1.6 visas

avklingningen i ett fall.

Temperaturen vid slangen ges enligt referens 9 av féljande uttryck:

17—-U3
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Tp(t) = - g5 (In(— 1) - 51[2“ E t1)) + Eq(5g)) (11.4.5)

For stora tider gdller approximationen:

4ty ty
TR(t) ~ - g_m.m (t > 3tD) (11.4.6)

I figur 11.4.1 visas )\TR(t)/q1 som funktion av t/tD och t1/tD.

_01 }

-03

Figur 11.4.1. Temperaturavklingningen (11.4.5) efter extractionspuls
enligt (11.4.4).

Exempel 11.4.2. Antag att ett ytjordvarmesystem laddas kraftigt under

tre sommarmanader:

t1 = 3 manader qq = -45 W/m

I ovrigt antas data enligt (11.1.2). D& gdller:

tD = 1 ménad
t q

1T _ 1 _ 0
T3 3o - 30



Figur 11.4.1 och formel 11.4.6 ger TR' Foljande tabell
ger nagra vdrden.

t (dagar) | 3 15 30 90
T, (°C) | 6 1.4 0.7 0.2

180
0.07

R

Exemplet ovan visar sasom tidigare framh&llits att det inte lonar sig
att ladda ett ytjordvdarmesystem pd sommaren for att erhdlla battre ut-
tagsvillkor under den foljande vinter.

11.4.3 Superponering av effektpulser

Antag nu att varmeuttaget ar strdckvis konstant:

9 t<t,
0 t, <t <t

q(t) = < (11.4.7)
a, tn <t < tn+1

Analys av effektpulser for en slang i en oandlig omgivning behandlas
allmant 1 avsnitt 5.3.4. Har skall motsvarande analys genomfiras dd man
tar hdansyn till markytan.

Effektpulsen (11.4.7) kan i tidsintervallet tn <t < thr,| betraktas som
en stegpuls 4ys vilken forutsdatts ha ratt under lang tid sd att station-
dra forhdllanden i huvudsak rader vid t = t1, en stegpuls 99 - 9, vid

tiden t = t1 o s v till en sista stegpuls 4, - vid t = tn. Den to-

q
n-1
tala temperaturen i marken vid slangen kan skrivas:

95 94,

o (11.4.8)

n
Tp(t) = g

- 2
(a_, = 0) ty * SR/a <t <t

1

11.33
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Det forsta stationdra bidraget ar enligt (11.2.3):

Trolt) = = g n(x2) (11.4.8")

De Ovriga bidragen ges av (11.4.3):

¢ da(t - t.) a(t - t.)
]
?{]”[*———E§—*l— )-v) ———67—“1"5 1.78
p
g (t-t.) 9 (11.4.8")
n(Z2) alt - t;)
p -T > 1.78

Det bor noteras att effektpulserna behandlas enligt stationar teori da
a(t - ti) > 1.7802.

Formlerna ovan avser en enda slang. Analysen blir mer komplicerad da
man har flera slangar som paverkar varandra termiskt. Vi skall ej gd
in narmare pd detta hadr. Pulsanalysen ovan kan tillampas for flera
slangar under en kortare period, innan de pdverkar varandra alltfor
kraftigt. For slangar som ligger p& ett avstand runt en meter fran va-
randra kan ovanstdende analys anvandas for pulser upp till cirka en

veckas tid. Medeleffektuttag kan & andra sidan behandlas stationart en-
ligt avsnitt 11.2.5.

Exempel 11.4.3. Givet ett manadsvis konstant effektbehov under &ret en-
1igt nedanstdende figur. Med en slanglangd pd 200 m
utan influens mellan olika slangdelar erhdlles d& to-
talt 12 MWh under ett ar. Detta kan motsvara behovet
for ett valisolerat smdhus. Maximalt vdrmeuttag under
den kallaste manaden dr 16.7 W/m. Foljande data antas:
A=1.5Wm  a=0.7510"° n/s D=1m

Uttagstemperaturen TR(t) vid slangarna erhdlles med for-

mel 11.4.8. Resultatet visas i nedanstaende figur.
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- t (months)
12
0 3 6 9 12
0 t {months)
/
\W
-5 -
~
Den ldgsta uttagstemperaturen TR = -7.9°C erhalles i slu-

tet av den femte ménaden. Det skall som vanligt obser-
veras att TR anger temperaturen utdver den naturliga
ostorda marktemperaturen. Se avsnitt 11.3. Vidare mds-

te man kdnna till det lokala motstdndet my mellan mark och
fluid i slangen for att kunna berdkna fluidtemperatu-

ren enligt formel 11.2.10.

Under arscykelns tre sista mdnader dr varmeuttaget noll.
Det dr vdart att notera att marktemperaturen da &r helt
&terstalld pd -0.05°C nar.

t (mdnad)| 9 9.1 9.5 10 11 12
Tr (°c) -1.7 -0.48 -0.21 -0.13  -0.07 -0.05

Exempel 11.4.4. Givet ett vdrmeuttag under en vecka enligt nedanstéende
figur. Den streckade kurvan anger ett konstant effekt-
uttag med samma medeleffekt 15 W/m. Under den foljande
veckan dr effektuttaget noll. I figuren visas rortempe-
raturen TR(t) berdknad enligt 11.4.8. Data enligt ovan-
stdende exempel anvandes. Den streckade kurvan avser me-
deleffektuttaget 15 W/m under en vecka.
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Exempel 11.4.5.

q(Wim)
30

151

t{days)
14 y

0 7 1

l't(days)

-5 Y

-10

Ldgsta uttagstemperatur blir -10%C for det variabla
varmeuttaget och -6.5°C for medeleffektuttaget. Vid av-
kTingningen under den andra veckan ar forloppet i stort
detsamma.

L3t oss nu betrakta en variation under en dag enligt
figuren nedan. Man har tre effektpulser med tva timmars
varaktighet och tva timmars uppeh&ll. Den streckade
kurvan ger medeleffektuttaget. Motsvarande slangtempera-
tur visas i figuren nedan. Ovriga data fran exempel
11.4.3 gdller. Tidskriteriet t > 5R§/a = 0.75 timmar @&r
uppfyllt eftersom pulserna varar i tva timmar. Det an-
givna forloppet under de forsta 45 minuterna efter var-
je stegdndring ar dock ej helt korrekt.



q(W/m)
30
20
i
- . r tth
0 0 12 24 36 48 (hours)
Tp {0
00 12 2k 36 48 t{hours)
]
//'4’-

-5
Den lagsta uttagstemperaturen blir -4.3C, medan mot-

svarande lagsta varde for konstant varmeuttag ar -2.8%.
Detta exempel visar effekten av korttidsvariationer med
en tidsskala av nagra timmar.

11.5 Periodiskt varmeuttag

Det foreskrivna varmeuttaget q(t) kan genom superposition uppdelas i en
stationdr komponent och olika effektsteg enligt foregdende avsnitt.
Till detta kan periodiska komponenter Gverlagras. Periodiska forlopp
behandlas allmant i avsnitt 5.2. Tillampning pd bergvéarmebrunnar behand-
las i avsnitt 10.3.8 och pd markvdrmelager i avsnitt 7.3.3.

Ett rent sinusvarierande effektuttag ges av:

a(t) = qpsin(Eh) (11.5.1)
0
Har ar tO periodtiden, vilken kan vara allt ifrdn ndgon timme till ett
&r. Amplituden ar aq (W/m). I den matematiska analysen anvandes en komp-
lexvard formalism:

2mit/t,
q(t) = qq-e (11.5.2)

Hela berdkningen sker i komplexvard form. De verkliga reellvdrda resul-
taten erhdlles ur realdel eller imagindrdel av temperaturer och floden.
Se avsnitt 5.2.
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Genom Fourier-analys kan varje periodiskt forlopp med periodtiden tO
betraktas som en summa av rena sinus- och cosinusvariationer av typen
(11.5.2) med periodtiderna to, tO/Z, t0/3 0 s v. Vi skall har bara be-
handla en ren komponent enligt (11.5.2).

Intrangningsdjupet d0 for ett periodiskt forlopp dr enligt (5.2.2.2):

ato
do = T (11.5.3)
Nedan anvéands dimensionslosa langder, vilka alla skalas med do’ Foljan-

de beteckningar anvindes:

R6 = Rp/?/do D' = 2D/7/d0 B' = B/?/do {11.5.4)

11.5.1 En slang

Figur 11.5.1 illustrerar ett periodiskt varmeuttag for en slang. Vid
markytan dr temperaturen noll. Detta &stadkommes genom att ansatta en
spegellinjekdlla ovanfor markan vid x = 0, z = -D.

Figur 11.5.1. Periodiskt varmeuttag varvid randvillkoret vid markytan
uppfylles med hjdlp av en spegelkidlla.

Temperaturen i marken vid slangen ges av (5.2.3.10) tillsammans med
ett uttryck av typen (5.2.2.9) for spegelkdllan. Totalt erhdlles foljan-
de uttryck:



q1 , i(Znt/to-B(R'))
Ta(t) = - 5 A(R') e +
(11.5.5)
1 i(2nt/t +o,(D'))
* oy No (D) e

For detaljer hanvisas till referens 9 (kapitel 7). Funktionerna A, B,
NO och b, anges i figur 5.2.3 och tabell 5.2.2. I de hdr aktuella till-
lsmpningarna kan ofta approximationerna (5.2.3.11) utnyttjas.

Exempel 11.5.1. Givet en slang med periodiskt vdrmeuttag. Foljande
data antages:

a = 10 W/m Rp =0.02m D=1m
A= 1.5 WmK a=0.75410"% n’/s
For ndgra periodtider erh3lles:
to 7 1 vecka
i(Znt/tO—0.37)) -7 1(2ﬂt/t0-14.3))
TR(t) = -3.1.e + 310 " e
(°c)
fo 7 1 manad
1(2ﬂt/to-0.22) i(Zﬂt/tO-2.9)
TR(t) = -3.7-e + 0.046-e
(°c)
b Tl
1(2ﬂt/t0-0.17) 1(2ﬂt/t0—1.1)
TR(t) = -5.7.e + 0.56¢e
(°c)

I reellvdrd form erhdlles (for imagindrdelen) i det sis-
ta fallet:
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Ta(t) = -5.1-sin(ZIE _ 0.17) + 0.56+sin(ZL - 1.7)
0 [0]

Effektuttaget ar i reellvdrd form (for imagindrdelen):

q(t) = q1-sin(2ﬂt/t0)

Antag att man for denna Tangsamt varierande process rak-
nar stationdrt vid varje tidpunkt. Detta ger slangtem-
peraturen:

(stationdr approximation)

I figur 11.5.2 visas uttagstemperaturen TR(t) for fal-
Tet t0 = 1 ar. De tvd streckade kurvorna visar bidragen
frén slangen och spegelslangen, medan den heldragna
kurvan anger total slangtemperatur enligt summan ovan.
Den prickade kurvan anger den stationdra approximation-

en.
Tr (°C)
+6

+3 sum of pipeand
mirror pipe y

74 3
sieady-state /A_pipe itself
approximation—~j

/\/mirror pipe

-6 . t(year)
1

°

Figur 11.5.2. Periodisk slangtemperatur for tO =1 ar
enligt exempel 11.5.1.



Exemplet ovan visar att spegelslangen, d v s markytans stdrning, kan
forsummas for periodtider upp till en manad. Den andra termen i (11.5.5)
bortfaller d3. Exemplet och figur 11.5.2 visar vidare att man kan rak-
na stationdrt for den &rliga periodiska variationen.

11.5.2 Tvé slangar

Figur 11.5.3 visar ett periodiskt varmeuttag for tva slangar. Dessa lig-
ger pd samma djup D och har samma vadrmeuttag.

T=0
//D E;/ q(t)/ /p/q(t)=/q1e/2"it/to/
S

Figur 11.5.3. Periodiskt varmeuttag med tvad slangar.

Slangtemperaturen TR fér nu bidrag fran den aktuella slangen och den
andra slangen samt fran de tv& spegelslangarna.

ap o i(emt/ -B(RY))
To(t) = - S (AR') +e +

i(ent/t_+ B'))
NO(B‘%e]( T * 4ol -
(11.5.6)

i(2nt/t +, (D))

NO(D')~e -

i(2nt/t_+o_(B")
NO(B")-e] "o ))

Hdr erhdlles B" ur avsténdet mellan en av slangarna och den andra spe-
gelslangen:

B" = /Z.\ 4D% + Bz/do : (11.5.7)

For fler d@n tva slangar kan utan svarighet analoga uttryck anges. Fal-
let med en odndlig svit av slangar behandlas i referens 9.
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11.5.3 Stationdrt och periodiskt forlopp

Genom att kombinera stationdrt och periodiskt forlopp kan en mer full-
standig analys goras. Vi skall har gora detta for ett enkelt fall med
en slang, dar en enda periodisk komponent beaktas.

Virmeuttaget och temperaturen vid markytan bestdr av en stationdr och
en periodisk komponent. Se figur 11.5.4. Genom fasen % kan markyttem-
peraturens maximum forldggas vid en godtycklig tidpunkt relativt var-
meuttagets maximum.

T=To+Ty «sin (2Tt/t5+Pq)

/|

q(h2g,+q, -sinl2mt/ty)

T

Figur 11.5.4. Stationdrt och periodiskt varmeuttag med periodisk varia-
tion vid markytan.

Den totala temperaturen TR(t) i marken vid slangen f&r ett bidrag
(11.2.3) fran det stationdra varmeuttaget dg- Temperaturen vid markytan
ger en ostord tamperatur i marken enligt (11.3.4). Det periodiska viar-
meuttaget ger ett bidrag enligt (11.5.5). Imagindrdelen av (11.5.5)
svarar mot imagindrdelen av varmeuttaget (11.5.2). Den totala tempera-
turen i marken vid slangen blir d&:

Y 2D -0/d,
TR(t) =T, - ?;X»1n(§—J+ T, e -sin(Znt/tO * g, - D/do) -
p
N (AR )-sin(2rtst B(R')) - N_(D')-sin(2nt/t_+ o (D')))
e (A )esin(2wt/ . - N sin(2nt/ ot %

(11.5.8)



11.43

Man skall observera att temperaturen ovan till skillnad fréan de fles-
ta ovriga formler i detta kapitel anger total verklig temperatur under
de givna betingelserna. Fluidtemperaturen erhdlles med hjdlp av (11.2.10):

Tf(t) = TR(t) -m -(qO + q1-sin(2nt/t0)) (11.5.9)

p

Exempel 11.5.2. Betrakta ett system dar effektuttaget ar direkt pro-
portionelit mot temperaturdifferensen mellan innetem-
peraturen T2 och utetemperaturen:

4 + q1'sin(2ﬂt/t0) = ot(T2 - TO - T1-sin(2ﬂT/tO + wo))
Sdledes gdller:

q. = a(T2 - T

[¢] O)

41 = @ T1 % =T

Foljande data gédlier:

6 m2

A= 1.5 W/mk a = 0.75.10"° m“/s
R =0.02m D=1m
p
t, =14 a = 1.0 W/mK
_ 0
T, = 20°C
T, = 13 T, = 7°C  (Grenoble)

Effekterna blir:

9 = 7 W/m P 7 W/m

Slangtemperaturen (11.5.8) blir da:

Tolt) = 13 - 3.42 - 4.86+sin(Z"C - 0.36) -
0
. comt N ALES
3.56-s1n[¥—— - 0.165) + O.42-s1n[E——-- 1.07)

c 0
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Denna temperatur med sina olika komponenter och varme-
uttaget g(t) visas i figur 11.5.5.

Tp(%)

natural temperature at pipe depth.

> total superposed
pipe temperature

year

steady state
heat extract]

eat extraction

15 QL) (W/m)

5 7+7-sin(2“Tt) W/m
0

T year
0

Figur 11.5.5. Slangtemperaturen TR(t) for exempel 11.5.2
tillsammans med sina olika komponenter.
Motsvarande varmeuttag visas i den undre
figuren.

Exempel 11.5.3. Det dr intressant att variera forlaggningsdjupet D.
For exempel 11.5.2 varieras D enligt:

D=0.4, 0.7, 1.0, 1.5, 2.0m

Motsvarande slangtemperaturer under arscykeln visas i
figur 11.5.6. Den ldgsta temperaturen ligger runt 1.5°C.



1,(%)
20 1R

Q0 T year
0 1

Figur 11.5.6. Slangtemperatur for exempel 11.5.2 da
forlaggningsdjupet D varieras.

Exempel 11.5.4. Det dr ocksd intressant att variera effektuttaget for
exempel 11.5.2. Foljande varden behandlas:

a = 0.5, 0.75, 1.0, 1.25, 1.5 W/mK

Motsvarande slangtemperaturer visas i figur 11.5.7.

Frysning i marken sker for a > 1.25 W/mK.
TR€°C)

R L

L L VI | 1}

PN = R

N ~ o
LSal

2

\\\’// t(year)

0 S 1
Figur 11.5.7. Slangtemperatur for exempel 11.5.2 d&
effektuttaget varieras.
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11.6 Effekt av grundvattenstromning och infiltration av regnvatten

Formler och resultat i de foregdende avsnitten dr givna med forutsatt-
ningen att man har en konduktiv varmeledning i marken utanfor slang-
arna. Konvektiv vdrmetransport pd grund av strommande grundvatten el-
ler infiltrerande regnvatten har ej beaktats. I detta avsnitt visas att
man normalt kan forsumma dessa konvektiva effekter.

11.6.1 Stationdr linjekdlla i strommande grundvatten

Utgangspunkt for analyserna nedan ir en stationdr linjekdlla i en kons-
tant grundvattenstrom. Situationen illustreras i figur 11.6.1. Linje-
kallan Tigger i origo x = 0, z = 0. Vdrmeuttaget 9 dr konstant. Den

konstanta grundvattenstromningen ar q i(mi/mz-s eller fidrenklat m/s).

wo
Hdr dr % enhetsvektorn i x-riktningen, medan o anger grundvattenfl1g-

dets storlek.

z
Lo -~
—_— ——qwox
— ’ D
Q5 .
- X

Figur 11.6.1. Konstant véarmeuttag 9, i en konstant grundvattenstrom
med storleken g (m3/m2's)
WO w :

Omgivande mark tankes oandligt utstrdckt i alla riktningar. Den station-
dra temperaturen i marken dr d& enligt referens 9 (kapitel 8):

T(x,z) = - i’—e g (X_* 2z (11.6.1)
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Den modifierade Besselfunktionen Ko(s) visas i figur 11.6.2. Parametern
£ har dimensionen ldngd. Den ges av

22
g = (11.6.2)
CWqW

Har dr Cw B 4.2'106 J/m3K vattnets volumetriska varmekapacitet.

Temperaturfaltet (11.6.1) ser olika ut uppstroms, nedstroms och vinkel-
ratt mot stromriktningen. L3t s beteckna dimensionslgst avstand till
slangen i dessa riktningar. D& gdller:

eS°K0(s) s =x/% ; x>0,z =0 (nedstroms)
-2 _ -S B _ .
T = e “+K (s) s = -x/% ; x < 0,z =0 (uppstroms)
qo 0
Ko(s) s=z]/e 3 x=0

(11.6.3)

Dessa tre kurvor visas i figur 11.6.2. L&ngt frén slangen ar tempera-
turen noll.Ndra slangen, d v s for sm& varden pd s, gdller approxima-
tionen:

K (s) = -1n(-§—) -y (s < 0.2) (11.6.4)

(y = 0.5772)
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¥=05772

fls)=K fs)+In(5)+y

o1

//
\
=

|
I \1\
051—esK os) ‘\\ : s
A t
A\ |
Ny |
3 ~
L] \ ~d | T
0 = ¥ s
0 1 2 3 4 5 6 7
Figur 11.6.2. Funktioner i samband med ytjordvarmeslang i strommande
grundvatten.
I marken strax utanfor slangen, x2 + z2 = Ri, ar temperaturen med app-
roximation (11.6.4):
To = - 20 (1n(2) - y) (11.6.5)
R 2T R Y e
p
2 >> R
(2 >> R)

Har forutsdtts att langden & dr mycket storre an slangens radie R .
For en slang i strommande grundvatten ger (11.6.5) foljande varmemot-
stdnd mellan slang och fri omgivning 1angt fréan slangen:

_ 1 2%
m —m[]n[?{—) -'Y) (11.6.6)
p
Formeln gdller dd slangen har en fri grundvattenstrom 3t alla hé&ll.

Langden % beror pa grundvattenstrommens storlek. Grundvattenstrommen
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q ges enligt Darcy's lag av

w0

Ao = KeI (11.6.7)

Hdr K den hydrauliska konduktivitetem (m/s) och I (m/m) tryckfallet
rdknat i meter vatten per meter. Normala varden p& K ligger fran 10'2
for en mycket genomsldpplig rullstensds ner till 10_6 och T&gre vdrden.
Tryckfallet kan ligga runt 10'3. Som exempel tar vi foljande data:

A= 1.5 W/m ¢, = 4.2:10° g/ I = 10 3n/m
(11.6.8)

Tabell 11.6.7 anger & for nagra olika varden pd den hydrauliska konduk-
tiviteten.

K (m/s) 102 1073 107 70 1070
q, (n/s) 107°  107® 1077 10 1077
¢ (m) 0.07 0.7 7.1 71 710

Tabell 11.6.71. Léangden & enligt (11.6.2) for olika hydraulisk kon-
duktivitet och grundvattenflode. Data enligt (11.6.8).

I de flesta fall som dr aktuella i ytjordvdrmesammanhang torde & vara
storre dn 13t oss sdga 10 meter.

Med hjdlp av 1dsningen (11.6.1) kan nu gransfallet far grundvattenytan
Tigger mycket ndra markytan behandlas. Figur 11.6.3 visar detta fall.
Grundvattenytan antas ligga dnda uppe vid marknivan. Detta ar ett ext-
remfall vilket ger den storsta effekten p& varmeuttaget. D& grundvatten-
ytan sdnks sjunker vdrmeuttaget vid i Gvrigt oforandrade forhdllanden.

I avsnitt 11.6.3 behandlas fallet d& grundvattenytan ligger under slang-
djupet D.
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- X
. . . . . -
- = Quwo X
. . N

Figur 11.6.3. Extremfall ddr grundvattenytan ligger mycket nara
markytan.

Temperaturen vid markytan skall vara noll. Detta &stadkommes genom att
ansdtta en spegelkdlla i x = 0, z = -D. Man far tvd bidrag av typen
(11.6.1) Markens varmemotstand blir d& (se referens 9):

mg = mx(n(E) - f(3Y)

(11.6.9)
)

Den forsta logaritmtermen ger det vanliga varmemotstandet i marken
enligt (11.2.5). Funktionen f(s) &r en korrektionsterm for grundvatten-
strommen:

fls) = K (s) + In(s/2) + v (11.6.10)
Denna funktion visas i figur 11.6.2.

Exempel 11.6.1. Givet foljande data:

D=1m Rp =0.02 m



For ndgra %-varden fas:

£z _10m

£(0.2) = 0.03 722~ 0.001
g=1m

f(2) = 0.31 0.0
2= 0.1m

£(20) =In(10) + y = 2.88 28 - 062

Exempel 11.6.1 visar att effekten av grundvattenflddet kan forsummas
for 2 > 10 m. For 2 = 1m, d v s dqy = 10'6 m/s enligt tabell 11.6.1,
blir storningen 5-10%. Den extrema hastigheten qy = 10_5 m/s ger en
halvering av vdrmemotstandet mg.

11.6.2 Infiltration av regnvatten

Infiltration av regnvatten ger en vertikal vattenstrdmning ner i mar-
ken. Denna ar tidsvariabel och ofta inhomogent fordelad pd grund av
sprickor m m. Har antages att man har en tidsoberoende, homogen, ver-
tikal stromning qwoi. Se figur 11.6.4.

Figur 11.6.4. Konstant vertikal infiltration av grundvatten for en
slang med konstant varmeuttag.
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Det visar sig att linjekdllan enligt (11.6.1) tillsammans med en lampligt
vald spegellinjekdlla ger den analytiska 1Gsningen for problemet en-

ligt figur 11.6.4. Se referens 9. Harur erhdlles foljande varmemotstand
for marken:

m, - (D) - £(3D) (11.6.11)
p

Markligt nog far formeln exakt samma utseende som (11.6.9) for fallet
med horisontell stromning. Funktionen f(s) definieras av (11.6.10) och
visas i figur 11.6.2.

Exempel 11.6.2. Givet féljande data;

D

1 R =10.02
m D m

A= LS WK C - 4.2-10% 3/m

Ett rimligt varde for regnvatteninfiltrationen dr:

q

wo - 0.5 m/ar.

D& galler:

g = 2-1.5 - 45

4.2'106°0.5/(3600°24°365)

f[%%l] = 0.002 (&Y = 4.61
p

0.002 _
Ter = 0.0004

Regnvatteninfiltrationen tkar sdledes varmeuttaget
med 0.04%.

Ett extremt varde for Yo ar:

Ao 5 m/ar



D4 erhalles:

& =4.5m f =0.10

Exemplet ovan visar att regnvatteninfiltrationens effekt pd varmeut-
taget kan forsummas. Man skall hdr observera att vi talar om den kon-
vektiva effekten. En @ndring av markens vattenhalt pdverkar ocksa
vdrmeledningsformagan X.

11.6.3 Grundvattenstromning i underliggande skikt

Grundvattenytan ligger normalt under slangarna. Figur 11.6.5 visar det-
ta fall. Man har ett konstant varmeuttag q, till en slang som ligger

pd djupet D. Grundvattenytan ligger pa djupet H ; H > D. I grundvatten-
skiktet, z > H, dr varmeledningsformégan X1.

Figur 11.6.5. Konstant varmeuttag 9 till en slang med ett underliggan-
de skikt med grundvattenstromning.

Enligt referens 9 kan markens varmemotstand mg skrivas:

1 2D
mg - W('"(@ - P (D/H, Ag/A, H C g, /3)) (11.6.12)

"
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Funktionen Pw ger effekten av grundvattenstromningen.
For gransfallet med en extremt kraftig grundvattenstrom galler:

D/H )

P, = 1n(§7?ﬂaﬁ7ﬁ7 g = (11.6.13)

Wo
(T =0 vid z = H)
Nedanstéende tabell ger ndgra varden i detta fall:

D/H |
P(D/H A/, )

0.2 0.5 0.7 0.95
0.07 0.45 1.00 2.95

0
0

Dessa varden skall jamforas med 1n(2D/Rp) som ar i storleksordningen
4.6. Hdrur kan vi allmdnt sdga att effekten av en grundvattenstrom ar
mindre dn 1% for D/H < 0.5. Detta gdller oberoende av hur stark strom-
men ar.

I referens 9 anges Pw for olika fall. En allman slutsats &r att
grundvattenstrommen maste vara mycket kraftig och ligga nira slangni-
van for att fa n&gon markbar effekt pad varmeuttaget.

11.7 Temperaturvariation ldngs slangarna

Temperaturvariationerna ldngs slangen eller slangarna har ej beaktats

i de foregdende avsnitten. I detta avsnitt skall dessa effekter behand-
Tas for det stationdra fallet. Nya faktorer som pdverkar virmeuttaget

ar pumpflodet Vf (m?/s) for vdrmebdrarfluiden i slangarna, slangarnas
13angd och olika typer av slangkonfigurationer med stromningi samma eller
motsatt riktning i angrdnsande slangar. H&r skall dock bara fallet med
en slang redovisas. For ovrigt hanvisas till referens 9. Dar behandlas
2, 3, 4 och N parallella slangar. Olika stromningskonfigurationer med
parallell och motriktad stromning i narliggande slangar jamfores.

Figur 11.7.1 visar en slang med langden L. Den ligger langs linjen
(x,y,z) = (0,y,D), 0 <y < L. Pumpflgdet i slangen &r Vf (m?/s). Var-



mebararfluidens varmekapacitet ar Cf (J/m?K). Fluidtemperaturen langs
slangen betecknas Tf(y). Temperaturen vid inloppet, y = 0, ar T
och vid utloppet, y = L, T

fin
fut”

L
-y
*'p
Y/
Tf in(‘l A / — 7)Tf ut
T,y /7
z

Figur 11.7.1. Stationart varmeuttag till en slang varvid fluid-
temperaturen varierar langs slangen.

Temperaturen vid markytan dr som vanligt noll. Det stationdra varmeut-

taget dr qg(y) (W/m). Vid varje tvirsektion kan de tvadimensionella sam-
banden utnyttjas. (I referens 9 visas att tredimensionella dndeffekter

kan forsummas.) Enligt (11.2.12) gdller:

0 - Tely) = (mg +m)-qly) (11.7.7)

Varmetillskottet q(y) (W/m) okar fluidtemperaturen:
de

aly) = Veleogym (11.7.2)

Dessa tva ekvationer ger en ordindr differentialekvation:

e 4

oy " yf-Tf(y) Tf(O) = Tein (11.7.3)
Har har ldngden Ve inforts:

e = mg +mo)CeVe (11.7.4)
Ldosningen ti11 (11.7.3) ar:

Tely) = Ty e (11.7.5)
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Utloppstemperaturen blir:

Ly,

Teut = Tein © (m

Lat 4 (W/m) beteckna medeleffektuttaget Gver slangdnden. Varmeba-
lans ger:

Loty = CeVe(Teye - Tein) (11

Lat m, (K/(W/m)) ange medelvirmemotstandet enligt foljande samband:

0-T,.. =m

fin t " (1

D3 erh&lls ur (11.7.6-8):

L

—L/Yf

(1 -e ]cfvf

Exempel 11.7.1. Foljande data gdller:

A= 1.5 W/mK D=1m mp =0
Rp = 0.02 m L=100m
Cq = 4.18-10° g/mk Ve = 0.5 1/s

D& erhdlles:

o 2
g = 75 o)

0.489 K/ (W/m)
- 6 -3 .
Ve = 0.49+4.18+107+0.5+10"" = 1024 m

Exponenten L/yf blir:

100

m =
Yot - e Mg 1s00

= 0.503 K/(W/m)
6.0.5.1073

Skillnaden mellan mg och me ar liten.

.7.6)

.7.7)

.7.8)

.7.9)
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Exempel 11.7.1 visar att L/yf ofta dr Titet. Man kan d& anvanda fol-
jande linjara approximation:

= -
Te(y) = T, (0 yf] (y <L <0.2y¢) (11.7.10)

Maximalt fel i denna approximation dr 2%. En motsvarande approxima-
tion for m, enligt (11.7.9) ger:

(11.7.11)

11.8 Temperaturpdverkan pd omgivande mark

Ytjordvdrmeslangarnas paverkan pd temperaturen i omgivande mark disku-
teras kortfattat i avsnitt 12.2.7. En mer omfattande studie redovisas
i referens 9 (kapitel 10, kapitel 3 och avsnitt 4.2). Har skall bara
ndgra sammanfattande slutsatser fran referens 9 redovisas.

Temperaturgradienterna @r stora ndra slangarna, dd vdrme uttages. Se

t ex figur 11.1.4. Runt 50% av temperaturfallet mellan slang och mark-
yta ligger i en cirkel runt slangen med radien D/5. Influensomrddet
kring en enskild slang ar relativt begransat. Se t ex figur 12.2.7.1.
Temperaturstorningen pa djupet z = D avtar snabbt med okande avstdnd
fran slangen. P& ett avstdnd 2D fré&n slangen aterstdr mindre an 10%

av temperaturstorningen. P& avstandet 5D aterstér 1-2%.

Temperaturstorningen fran ett rektangulart falt med ytjordvarmeslangar
kan uppskattas med relativt enkla formler enligt referens 9. Nagra re-
sultat ges i tabell 12.2.7.2. Allmant gdller att temperaturstdrningen
i marken dr forsumbar pd avstindet 5D fran den yttersta slangen i om-
radet fran djupet D upp till markytan.






12. TEMPERATURFORANDRINGAR I OMGIVANDE MARK

Markvarmesystem stdr de naturliga temperaturforh&llandena i marken.
Denna temperaturpdverkan dr av intresse ur miljosynpunkt. Speciellt

dr man intresserad av storleken pd stdorningen vid markytan och i

ytliga jordskikt. Rackvidd och tidsskala for den Téngsiktiga uppvarm-
ningen eller nedkylningen av marken runt systemet dr ocksd av intresse.
En annan viktig frdga ur miljosynpunkt dr fordandrinoar av grundvatten-
temperaturer.

I de fdregéende kapitlen 4 till 11 har dessa temperaturforandringar be-
handlats for manga olika speciella fall. I grundvattenvarmesystem &ter-
injekteras nedkylt grundvatten. Rdckvidden av denna nedkylning behandlas
i kapitel 9. Den léngsiktiga nedkylningen kring en bergvirmebrunn och pa-
verkan vid markytan behandlas i avsnitt 10.10. Temperaturpdverkan en bit
ifrén ytjordvarmeslangar behandlas i kapitel 11.

I avsnitt 12.1 ges ndgra forhdllandevis enkla formler for att uppskatta
temperaturstorningarna runt ett markvdarmelager. Formlerna gidller ej i den
ndrmaste omgivningen av varmelagret. I avsnitt 12.2 jamfores temperatur-
storningarna i ytliga jordskikt med de storningar man har runt en vanlig
byggnad.

12.1 Formler for temperaturstorning runt markvirmelager

Temperaturfordndringar i marken runt ett markvarmelager beror pd ménga
faktorer sasom lagrets form, storlek, vdarmeisoleringar, temperaturnivier
osv. Omrddet ndrmast vdarmelagret dr speciellt kdnsligt for dessa olika
variabler, medan storningen uppvisar ett enklare beteende lidngre bort
frén vdrmelagret. L&t L vara en ldngd som karakteriserar lagrets linedra
utstréckning. Det kan vara lagrets hojd, lsngd eller bredd. De formler
som ges i detta avsnitt dr approximativt giltiga pd avsténd frén lager-
ytan vilka dr storre dn cirka 2L. P& dessa avstdnd &r alla variationer

i temperatur under lagrets drscykel utddmpade. Temperaturstdrningen

styrs av Tagrets medeltemperaturer under &ret.

Varmelagret kan ha Overytan vid markytan eller under denna.

12.1
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Lagrets mittpunkt 1ligger pad djupet Z=Dm. Den arliga varmeforlusten
dividerad med &rets ldngd ger medelvarmeforlusten U (W) fran lagret.
Denna styr temperaturstfrningarna i marken runt lagret utom i ett nar-
omrade dar fluktuationer under &ret tillkommer.

I mdnga fall kan en mer eller mindre precis uppskattning av Qm goras.
Se kapitel 4. Vdirmelagret illustreras i figur 12.1.

Figur 12.1. Markvdrmelager med medelvirmeforiust Qm' Till hoger visas
en approximation till en punktkdlla.

Medelvarmeforlusten fordelar sig péd nigot sitt Sver viarmelagrets yta.

For en punkt i marken som ligger en bit fréan Tagret spelar den exakta
fordelningen av vdrmeflodet genom lagerytan en mindre roll. Man far
approximativt samma temperaturférlopp om hela varmetillskottet placeras

i en punkt mitt i lagret. Varmelagrets temperaturpdverkan pd omgivningen
approximeras med en punktkdlla i lagrets mittpunkt. Den hdgra bilden

i figur 12.1 illustrerar denna approximation. Temperaturen vid markytan
skall vara noll, eftersom enbart storningen frén markvarmelagret behandlas.
Denna stortemperatur dverlagras pd naturliga, ostorda marktemperaturer.

12.1.1 Transient temperaturfilt

Temperaturprocessen for stortemperaturen i marken en bit frén varmelagret
beskrivs approximativt av den punktkilla som definieras till hoger i
figur 12.1. Cylinderkoordinater med djupet z och radiellt avstand r
anvandes. I punkten 2=Dm, r=0 finns en punktkdalla med styrkan Qm (W),

Den verkar fran starttiden t=0. Vid denna tid ir stortemperaturen i
marken noll. Vid markytan z=0 skall temperaturen hela tiden vara noll.
Detta uppnds genom att ansitta en spegelpunktkilla med styrkan —Qm i

z = -Dm, r = 0.



Temperaturforloppet fran en punktkdalla som startar en tid t = 0 ges

i referens 102 E. Den transienta temperaturstorningen i marken utanfor

Tagret blir i denna approximation:

Qm 1 "
TQ(Y‘,Z,t) = m '{?+ erfc (

r, = /r2+(z-Dm)2 r =

2
r +(z+Dm

Funktionen erfc behandlas i avsnitt 3.6. Stortemperaturen har ett index

Q for att markera att det enbart ror sig om den komponent som hdrror

frén lagrets varmeflode Qm. Den dr Overlagrad pd naturliga marktempera-

turen.

Formel 12.1.1 dr en approximation som bor ge en relativt god uppskattning

av temperaturstorningen pd avstdnd frén lagerytan vilka dr storre dn cir-

ka 2 L. Approximation blir allt bdattre ju stdrre avsténdet till lagret

ar.

Varmeflddet Qm ir medelvdarmeforlusten frén lagret ut i marken.
varmelager med Gverytan i marknivdn skall den del

gdr direkt ut mot Tuften ej medraknas.

Exempel.

For ett

av varmeforlusten som

Ett cylinderformat bergrum har radien 10 m och hojden 20 m. Av-

stdndet mellan dess Overyta och markytan dr 10 m. Dess &rs-

medeltemperatur dr 55 oc. Bergrummet har behandlats i avsnitt

6.3.6, i vilket avsnitt vdarmeforiuster och isotermer i det

omgivande berget anges.
Vi har foljande data:
R=10m H=20m
T =55%

_ O
T0 =57C

A =3.6 Wm-K

C = 2.1 MI/m - K

10m

Den ackumulerade vdrmeforlusten fran bergrummet under de tio

12.3
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forsta dren dr enligt figur 6.3.6.1.
2
43 kWh/m=- K
Det genomsnittliga varmeflodet fréan bergrummet blir

Area = 1885 m° T - T =509

q - 431885 .50

n 0 kWh/ar = 46 kW

Formel 12.1.1 ger temperaturstorningen i berget.
a=1.71-107%n%s D =20m

m

Temperaturstorningen for t.ex. r=28 m, z=20 m och t=10 &r
bTlir:

T9(28,20,10 &r) = 11.7 oc

Funktionen erfc ges 1 avsnitt 3.6. Temperaturen i den betraktade
punkten &r

- _ )
T = TQ + To = 16.7 °C
EnTigt figur 6.3.6.5 dr det berdknade vérdet 15.0 °c.

Medelvarmeflodet frén bergrummet kan ocksd approximeras med det
stationdra varmeflddet. Detta dr enligt formel 4.3.1.

Qm = 3.6 (55-5) -10 - h(10/10, 20/10)
h(1,2) = 21
Qm = 38 kW

Med denna uppskattning av medelvdrmeflodet fran bergrummet blir
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temperaturstorningen i den aktuella punkten efter tio &r
enligt formel 12.1.1

Tq(28,20,10 &r) = 9.6 °c
Temperaturen i punkten dr

Q*t To = 14.6 oc

12.1.2 Maximal temperaturstdrning

Temperaturstorningen enligt formel 12.1.1 dkar med tiden mot ett
stationdrt sltutvdrde. Detta erh3lles for t = =,

Q
Tolraz.e) = 7% { 1 - !
Q [N
! /rz+(z-Dm)2 /rz+(z+Dm)2

1
[ (12.1.2)

Detta dr den maximala temperaturstorningen frén varmelagret. Den gdller
ej for omrddet ndrmast vdrmelagret. Tiden for att uppnd det stationdra
slutvardet okar kvadratiskt med avstdndet fran lagret. Detta behandlas
i avsnitt 12.1.5.

Exempel. Givet samma exempel som i foregdende avsnitt. Den maximala
storningen i punkten r = 28, z = 20 m kan berdknas enligt
formel 12.1.2. Det stationdra varmeflodet ar 38 kW

38000 ( 1 1

\
41:3.6 Y /og2(20-20)2  /28%+(20420)2

TQ(28,20,w) =

N’

= 12.8 °C
Den maximala temperaturen i den betraktade punkten &r

- _ 0
T = TQ + T0 =17.8 °C
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12.1.3 Varmeflode vid markytan

Storvarmeflodet vid markytan dr av speciellt intresse. Lat qo(r,t)
(w/mz) beteckna detta vdrmefldde. Det raknas positivt vid vdrmeflode
fran marken mot luften.

aTQ(r,z,t)

53 (12.1.3)

qo(rat) = A

Fran formel 12.1.1 erhdlles fdljande uttryck:

Q D 3
a (r,t) = —"5. ( i ) «f (1) (12.1.4)
0 2 d
27D 2 n2
r~+D
n
T = tat (12.1.5)
r2+DZ
m
Har ges fd(T) av
1 2 1 -1/12
fd(r) = erfc(=) + —=— « — e (12.1.6)
T T

m

Av skdl som framgdr i ndsta avsnitt skall vi kalla fd for dipolfunktionen.
Formel 12.1.4 gdller ej alltfor ndra vdrmelagret.

Varmeflodet qo(r,t) okas med tiden mot ett stationdrt slutvdrde:

Q D 3
q . (rye) = 2. . (12.1.7)
° 2n Di \ /r2+02/
m

Variationen med avstdndet frén lagrets centrumaxel ges av den andra
faktorn. Den forsta faktorn ger en nivéd p& varmeflodet. Det svarar emot
att varmeflodet Qm fordelas jamt Over en area ZﬂDi' Tabell 12.1 anger
varmef1ddets variation med radien. Observera att vdrden for smd r
eventuellt faller utanfor formelns giltighetsomrdde. Tabellen visar att
det maximala storvdrmeflodet avtar snabbt med radien.



R/D,, io 0.5 1 2 4 6 10
Qglrs=)

1 0.72 0.35  0.09  0.014 0.004 0.001
,(0,=)

Tabell 12.1 Storvdrmeflodets variation med avstandet frdn lagrets mitt-
axel enligt formel 12.16. Vdrdena for smd r faller eventuellt
utanfor formelns giltighetsomrédde.

Funktionen fd(r) ges i figur 12.2. I figuren ges ocksd approximationer
for smd och stora r.

f, (1)

1

05

2 e—1 Vg
/ot

0 ——— T v T T ——r—— T T T
0 0.5 10 15 20

Figur 12.2. Dipolfunktionen (12.1.6). Den anvands i formlerna 12.1.4 och
12.1.8.

Tidsfaktorn fq i formel 12.1.4 for vdrmeflodet vid markytan har ett
varde mellan 0 och 1. Den anger tidsforloppet for hur varmeflodet vid
en radie r vaxer frdn noll upp mot det stationdra slutvdrdet. Tidsfor-
loppet har samma form for alla radier men tidsskalan Okar kvadratiskt
med radien.

12.1.4 Dipolapproximation

Genom en s kallad dipolapproximation kan temperaturfdltet (12.1.1)
ytterligare férenklas. (J. Claesson, opublicerad studie). Denna gdller
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for punkter (r,z) som ligger forha1landevis 14ngt bort frén punkt-
kdllan vid r = 0, z = Dm. Foljande uttryck gdller:

T 12.1.8
( Z)

TQ(r’Z’t) = LISV

(/ r2+z2 > 3. Dm)

.= /‘Zk:\'c2 (12.1.9)

ro+z

Har ges fd(r) av det tidigare uttrycket enligt formel 12.1.6. Frinsett
kravet att punkten (r,z) ej far ligga alltfor nara lagrets yta krivs
ocksa

/r2+22>3-Dm (12.1.10)

Formel 12.1.8 anger stortemperaturen lingre bort fran varmelagret.
Formeln har en anmdrkningsvirt enkel struktur. Det stationira slutvérdet,
som ger maximal storning, blir

2
Qm 2Dm z

dm_ ° 372
m (r2+22)

(12.1.11)

TQ(r,z,w) o~

Detta dr ett s& kallat dipolfdlt. Det &r en approximation av (12.1.2) da
(12.1.10) &dr uppfyllt.

I varje punkt (r,z) ges tidsforloppet upp till stationdrt slutvirde av
tidsfaktorn fq i (12.1.8). Denna dipolfunktion visas i figur 12.2.
12.1.5 Tidsskala for temperaturstorning

Tidsfaktorn i formel 12.1.4 for virmeflodet vid markytan och i formel

12.1.8 for temperaturforloppet i marken utanfor ett minimiavstand 3Dm
fran punktkdilan ges av dipolfunktionen fd(T). Tidsvariabeln t definieras
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av 12.1.5 respektive 12.1.9. Dessa uttryck ger en tidsskala for
processen.

For varmeflodet vid markytan kan tidsvariabeln 1 skrivas:

t r +Dm
= /= tQ = (12.1.12)

Q

Detta uttryck tQ anger tidsskalan for olika radier r.

For dipolapproximationen av det transienta temperaturfdltet enligt
12.1.8-9 kan t skrivas:

2.2
_ t _r+z
T/ Y= 1 (12.1.13)

Vid t = 1 ar fd ungefdr en halv. Tiden t = tQ anger sdledes tidpunkten
dd ungefdr hdlften av det stationdra slutvdrdet har uppndtts.

Exempel.

a=1.0-10%n/s

D =20m 2 2
m > t. = EQNiEQ_E sek = 23 ar
r=50m Q 410
r=100m
= tQ = 80 ar
z=1m

De numeriska exemplen ovan visar att tidsskalan for att uppnd stationdra
forhallanden dr mycket stor. Observera att roten ur tiden ingdr i ut-
trycket for r. Vid t = 2 har enligt figqur 12.2 drygt 90% av stationart
varde uppndtts. Detta motsvarar tiden t = 4 tQ.

12.2 Temperaturstorningar ndara markytan

Temperaturstorningen, dvs. avvikelsen fran naturliga, ostdrda temperaturer,
frédn ett antal representativa markvdrmesystem skall i detta avsnitt an-
ges langs en horisontell Tinje p& djupet 1 m under markytan. Som jam-
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forelse ges exempel pd temperaturstorningar fran byggnader. Stérningens
betydelse for tjdiningsprocessen i marken illustreras med ndgra exempel.
En utforligare beskrivning ges i referens 23.

12.2.1 Byggnader

Temperaturstorningen i marken har bestamts for tvéd byggnadsstorlekar.
Det mindre huset kan vara ett enfamiljshus och det stdrre en industri-
byggnad.

Det mindre huset har grundmittet 8 x 12 m2. Huset har studerats med och
utan kdallare. For det kallarldsa huset har berdkningar utforts dels
for fallet dd huset dr oisolerat mot marken, dels for ett fall med en
isolering med védrmemotstdndet 1.25 K/(W/mz). Huset med kdllare &ar o-
isolerat. Kdllarens djup ar 2.5 m.

Det storre huset dr kallarldst. Dess grundmdtt ar 40 x 60 mz. Husets
centrala delar &ar oisolerade mot marken. De delar under huset som ligger
inom 5 m fran huskanten dr isolerade med varmemotstdndet 1.25 K/(W/mz).

Markens vdrmeledningsformdga dar 1.16 W/mK och dess varmekapacitet dr
2.8 MI/mK.

Husets och markytans drsmedeltemperatur dr 20 respektive 6 9C. Den
temperaturdifferens som styr storningen ar 14 °c. Storningen redovisas
ldngs en Tinje mitt for husets langsida, vinkelrdtt mot denna och pa
djupet 1 m.

Figur 12.2.1.1 ger berdknade temperaturstdrningar for det mindre huset.
For det kdllarldsa huset (a och b), ges storningen efter 1 &r samt den
slutliga, stationdra storningen. Skillnaden mellan dessa dr Overallt
mindre &n 0.5 °C.

For det oisolerade kdllarldsa huset (a) dr den stdrsta temperatur-
hojningen under huset cirka 11 °C. Utanfor huset dr den storsta hojningen
cirka 6 °C. For det isolerade huset (b) #r motsvarande virden 8 res-
pektive 4 oc.



T(x,0,1,t) {°C)

=4 x (m)
15

Figur 12.2.1.1 Temperaturstorning i marken frén en liten byggnad.
a: oisolerat kallarlost hus, b: isolerat kdllarliost hus,
c: hus med oisolerad kallare

For huset med kdllare (c) dar temperaturhdjningen vid kdllarvaggen 14 °c.
P& avstéandet 1 m utanfor vaggen dr storningen cirka 7 °c.

T(x,0,1,8) {°0
= T
104r
2k b
1ar
8 .
4L N
—— HUS —-\
0 . x {m)
0 20 40 60

Figur 12.2.1.2 Temperaturstorning i marken frén en stor byggnad.

Figur 12.2.1.2 ger temperaturstdrninger fran det stora huset. Skillnaden
mellan storningen efter 1 dr och den sltutliga stdrningen dr Gverallt
mindre dn 1.5 °C. Den storsta storningen under huset ar 13.5 9C. Vid hus-
kanten ar den storsta storningen 5 oc.
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12.2.2 Bergrumsvarmelager

Som exempel tas bergrumsvdrmelagret i Lyckebo. Lagret har tidigare be-
handlats i avsnitt 6.8. Lagret &r approximativt rotationssymmetriskt.
Dess form ges av en ring eller toroid med innerradien 20 m och ytter-
radien 38 m. Dess hojd dr 30 m och avstindet mellan dess overyta och
markytan dr 30 m.

Bergets vdrmeledningsformiga och vdrmekapacitet ar 3.1 W/mK respektive
2.16 MI/mK.

Lagrets temperatur varierar i intervallet 40 ti11 90 °C. Den ostirda &rs-
medeltemperaturen i berget ir 6 °C.

Tir 1t 0
30 T g g T

—ry
{——10
/s
&
‘ ‘/’/\ |
24 !
Ve /\\
. X
0.00 00 3 Radie (m)

0

=

Figur 12.2.2.1 Temperaturstdrning nira markytan for ett bergrumsvarmelager
(Lyckebo).

Figur 12.2.2.1 ger berdknad temperaturstdrning ps djupet 1 m lédngs en
linje i radiell riktning fran lagrets vertikala symmetrilinje. Den
maximala temperatursttrningen efter lang tid ir 2.4 °cC. Storningen ndra
lagrets symmetrilinje ar vid varje tidpunkt 1dgre @n den maximala stor-
ningen. Detta beror pd bergkdrnan i lagrets mitt. P& avsténdet 75 m fran
lagrets symmetrilinje 3r den maximala storningen cirka 1 Oc.
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12.2.3 Markvarmelager

Som exempel pé markvarmelager tas det planerade virmelagret i Stora
Skuggan (borrhdl i berg, referens 130). Lagret dr rotationssymmetriskt.
Dess radie dr 21.3 m och dess hojd dr 70 m. Lagrets Gveryta ar tickt
av en isolering med vdrmemotstandet 3.3 K/(W/mz). Ovanpd isoleringen
ligger ett skikt fylinadsmaterial. Avst&ndet mellan isoleringen och
markytan dr 2 m.

Bergets vdrmeledningsformdga och vdrmekapacitet ar 3.5 W/mK respektive
2.1 MI/m3K. Motsvarande virden for det tackande jordskiktet dr 1.0 W/mK
respektive 3.5 MJ/m3K.

Lagrets temperatur varierar i intervallet 25 ti11 45 °C i det undersokta
driftsfallet. Ostdrd temperatur i berget ar 6.6 °C.

Tie, 1,0 (°0
6

5 b

L"A

13\\Q§;
o \ t(m)

0 50 100 150 200

Figur 12.2.3.1 Temperaturstorning nidra markytan fran ett markvdrmelager
(Stora Skuggan).

Figur 12.2.3.1 ger temperaturstdrningen p& djupet 1 m ldngs en linje i
radiell riktning. Den kraftiga temperaturvariationen vid lagrets ytter-
radie beror pd att virmeisoleringen endast tidcker lagrets overyta.

Den maximala stérningen dr 5.5 °C vid lagrets ytterkant. Mitt Gver lagret
dr storningen drygt 4 °C. P& avstandet 50 m fran lagrets symmetriaxel
dr den maximala storningen cirka 1 oc.



12.14

12.2.4. Akvifervdrmelager

I det studerade fallet dr akviferens tjocklek 10 m. Avstandet mellan dess
ovre del och markytan dr 20 m. Markens varmeledningsforméga och virme-
kapacitet dr 2.0 W/mK respektive 2.0 MJ/m3K.

Under fyra ménader pumpas vatten med Gvertemperaturen 30 °C ned i
akviferen. Vattenflodet dr 1.8 &2/s. Under tvd mdnader dr vattenflodet
noll. F6ljande fyra ménader pumpas varmt vatten tillbaka frén akviferen.
Vattenflodet dr 1.8 2/s. Arscykeln avslutas med tvd mdnader utan pumpning.

HARAY]
15 t

- - : . 7 ~— r(m)
50 100

Figur 12.2.4.1 Temperaturstdrning ndara markytan vid vdrmelagring i ett
grundvattenforande skikt pd djupet 20 till 30 m.

Figur 12.2.4.1 ger temperaturstorningen p& djupet 1 m. Efter 100 &r &r
den storsta storningen cirka 1 9C. P& radien 60 m har storningen reducerats
til 0.2 °c.

12.2.5 Aterinjektering av kylt grundvatten
Kylt vatten dterinjekteras i ett grundvattenforande skikt vars tjocklek ar
10 m. Avsténdet mellan skiktets ©vre del och markytan dr 5 m. Markens

varmeledningsformdga och vdarmekapacitet dr 2.0 W/mK respektive 2.0 Md/m3K.

Vid &terinjekteringen har vattnets temperatur sdnkts 5 °C. Det kontinuerliga
vattenflodet dar 0.6 2/s.

Detta fall behandlas dven i avsnitt 9.4.9. Dar tas dven motsvarande fall
med akviferer pd storre djup upp.
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Figur 12.2.5.1 Temperaturstorning pa djupet 1 m vid &terinjektering av

vatten med undertemperaturen 5 °c.

Figur 12.2.5.1 ger temperaturstdrningen pd djupet 1 m. Den stdrsta stor-

ningen dr -0.8 9C. Det kan noteras att temperaturstérningen vid varje

given radie gar mot ett stationdrt varde. Enligt avsnitt 9.4.9 blir den

maximala storningen -0.22 och ~0.08 o, da tjockleken pd det tdckande

skiktet okas til1l 20 respektive 50 m.

12.2.6 Bergvarmebrunn

12.15

For att belysa temperaturstorningar frdn bergvdrmebrunnar skall berdknings-

exemplen avsnitt 10.10.3.1 refereras. Brunnen ges undertemperaturen 5 ¢

i forhd1lande till omgivningens drsmedeltemperatur.

Tis,5.8 0

-02

—— Tvd breenar

) -~=~En brumn
5
=
FIo
N
) =N
N
AN

Figur 12.2.6.1 Temperaturstorning p& djupet 1 m frén system med en och tva

bergvdrmebrunnar.
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Figur 12.2.6.1 ger temperaturstdrningen pa djupet 1 m fran system med
en och tvd bergvarmebrunnar. De tv& brunnarnas avstdnd &r 10 m. Den
maximala storningen dr -0.17 °C for de tva brunnarna och -0.12 °C for
en brunn.

12.2.7 Ytjordvarmesystem
Varme utvinnes ur horisontella slangar ndra markytan. Temperaturfdrloppet
i omradet runt slangarna samt mellan dessa och markytan dr komplicerat

pé grund av tjdlbildning och den starka kopplingen till markytan.

Har skall ej temperaturstérningen i omrddet ndra roren behandlas. Stor-
ningen anges endast for ndgot stdrre avsténd fran roren.

Betrakta ett ror pd djupet 1 m. Vdarmeuttaget dr 10 W/m. Markens vdrme-
ledningsforméga dar 1.5 W/mK.

d

il

101

-015

z{m)

Figur 12.2.7.1 Stationdr temperaturstorning vid varmeuttag via ett ror i
mark .

Figur 12.2.7.1 ger temperaturstorningen i ett vertikalt tvdarsnitt efter
langvarigt vérmeuttag. Storningen dr proportionell mot den uttagna varme-
effekten. Slangradien avgor vilken undertemperatur slangen méste ha for
att det onskade vdarmeuttaget skall erh&llas. Stérningen pd djupet 1 m
och 3.5 m fran slangen dr -0.15 °c.



12.17

I mdnga ytjordvarmesystem tdcker slangarna ett rektanguldrt omrdde.
L&t ytans bredd och ldngd vara 10 respektive 20 m. Roren ligger pd
djupet 1 m. Deras inbordes avstdnd ar 1 m. Varmeuttaget dr 10 W/m.
Detta berdkningsexempel behandlas ndgot utforligare i avsnitt 9 i
referens 23. Se dven referens 9.

Djup (m) 4 5 6 10 20 50

Temperatur (°C) | -3.5 -2.9 -2.5 -1.3 -.45 -.08

Tabell 12.2.7.1 Temperaturstorning rakt under ett rektanguldrt ut-

vinningsomrade.

Tabell 12.2.7.1 ger berdknad temperaturstorning langs en vertikal linje
genom rektangelns centrum.

Avsténd fran
rektangeln (m) 3 5 15

Temperatur (°C) -.40 -.20 -.03

Tabell 12.2.7.2 Temperaturstorning pa djupet 1 m utanfor ett rektanguldrt
utvinningsomrade.

Den berdknade storningen pd djupet 1 m langs en linje som gdr vinkelrdtt
fran mittpunkten péd rektangelns léngsida ges 1 tabell 12.2.7.2.

12.2.8 Paverkan pad tjalning

Temperaturstorningen fran markvarmesystem pdverkar det naturliga tjdlnings-
forloppet i omrddet nara markytan. Detta har studerats for jordarterna

latt mordn och lera vilkas vattenhalt dr Titen respektive stor. Vatten-
halten har stor betydelse for tjdldjupet.
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Foljande vdrden pd de termiska egenskaperna har anvints:

moran  lera

varmeledningsformdga, ofryst  W/mK 1.86 1.16
varmeledningsformidga, fryst W/mK 2.79 1.98
virmekapacitet, ofryst MI/m K 2.29  2.83
varmekapacitet, fryst MJ/m3K 1.80 1.96
smaltvarme Mi/m> 749 152,

Den valda lufttemperaturen har &rsmedelvirdet 6 °C och amplituden
14 °C, vilket motsvarar ett mellansvenskt klimat.

Snotackets inverkan har forsummats. Vid frysningen antages frysvarmet
frigdras linedrt i intervallet 0 tiT1 -1.0 °C.

Effekten pd det endimensionella tjdlforloppet av ett markvarmesystem
simuleras av ett givet virmeflode nedifrén. Virmeflddet valjes séd att
det for de tvd jordarterna motsvarar en temperaturhojning pd 0

(dvs. ostort), 2.5 och 5 °C/m.

Fallet med 2.5 °C/m ger d& en uppfattning om paverkan p& tjalprocessen
frén ett markvdrmesystem som ger storningen 2.5 ¢ pad djupet 1 m.

Figur 12.2.8.1 ger vertikala tempe}aturprofi1er i mordn for de tre
fallen. Temperaturerna visas vid tidpunkterna for hogsta och ldgsta luft-
temperatur. Inom frysningsintervallet &r profilerna dragna som streckade
rdta Tinjer. Temperaturerna galler for insvdngda forhallanden, dvs. nir
temperaturerna upprepas &r efter &r.

Figur 12.2.8.1 visar hur &rsvariationen av temperaturen dampas med
djupet. Vid djupet 4 m narmar sig temperaturprofilen de olika stdrning-
arnas temperaturokning med 0, 2.5 respektive 5 °c/m.

Figur 12.2.8.2 ger positionen av den frysta zonen i morin vid olika
tidpunkter under &ret.
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Figur 12.2.8.2 Fryst zon i mordn som funktion av tiden for de tre fallen.

Det storsta tjaldjupet 1.3 m under ostdrda forhallanden intriffar 8 till

9 minader efter hdgsta lufttemperaturen. Ungefdr samtidigt borjar tjdalen
smdlta uppifran. Knappt 11 ménader efter hdgsta lufttemperaturen smalter
den sista resten av tjalen pi djupet 1 m. Storsta tjaldjupet vid stdrningen
2.5 och 5.0 °C r 1.2 respektive 0.9 m. Vid den stdrsta storningen smilter
isen underifrén si snabbt att nagon tjilzon, beldgen helt under markytan,
knappt hinner bildas.
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Figur 12.2.8.3 Temperaturprofiler i lera for de tre fallen.

Figur 12.2.8.3 ger vertikala temperaturprofiler i lera for de tre fallen.
Temperaturerna visas vid tidpunkterna for hdgsta och Tdgsta lufttemperatur.
En jémforelse med figur 12.2.8.1 visar att intrdngningsdjupet for &rs-
variationen av lufttemperaturen dr mindre for lera &n fOor mordn.

Figur 12.2.8.4 visar for lera positionen av den frysta zonen vid olika
tidpunkter under dret. Det maximala tjdldjupet for de tre fallen 0, 2.5
och 5 0C/m ar 1.0, 0.8 respektive 0.7 m. Tjdldjupet i Tera &r mindre d&n
i moran pd grund av den storre vattenhalten och den ldgre vdrmelednings-
formdgan for lera.

5 0 2 4 6 8 0 % 3nader
\\\ \\
‘ AN

N \\\

\ / \ _ 0 %m (ostort)
19 L 1 — — —2.5%/nm

.......... 5 OC/m

20 * : -
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Figur 12.2.8.4 Fryst zon i lera som funktion av tiden for de tre fallen.
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12.2.9 Sammanfattning

For de studerade berdkningsexemplen &r den stirsta temperaturstorningen
pé& djupet 1 m:

Bergrumsvirmelager +2.4 %
Markvarmelager +5.5 9
Akvifervdarmelager +1.0 %
Aterinjektering av kylt grundvatten -0.8 °c
Bergvarmebrunn -0.17 °c
Ytjordvarmesystem

(4 m utanfor utvinningsytan) -0.4 O

Temperaturstorningen frén byggnader, som &r varmeisolerade mot marken
med motsténdet 1.25 K/(W/mz), dr maximalt cirka 2 °¢C pd djupet 1 m och
pd avstdndet 1 m utanfor husgrunden. Temperaturstorningen i motsvarande
punkt for ett hus med oisolerad killare ir cirka 7 °C.

Temperaturstdrningen nara markytan for de behandlade markvdrmesystemen
dr av samma storleksordning som eller mindre in temperaturstdrningen
utanfor byggnader.

Temperaturstorningens betydelse for tjdInedtringningen illustreras for

ett mellansvenskt klimat. Som exempel tas ett markvidrmesystem dir tem-
peraturstorningen utan tjdining dr +5 ¢ pd 1 meters djup. For en mordn-
jord medfor detta att det maximala tjaldjupet minskar frén 1.3 till 0.9 m.
For lera minskar tjdldjupet fran 1.0 till 0.7 m.
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13. OVERSIKT AV DATORPROGRAM

13.1 Introduktion

Ett antal datorprogram har utvecklats for simulering av termiska forlopp
for olika markvdarmesystem. En Oversikt av programmen ges i detta kapitel.
For mer detaljerade redovisningar hdnvisas till de foregéende kapitlen.

Manualer for datorprogrammen ges i referenserna 11, 17, 18 och 24.

Datorprogrammen har anvants vid utvdrdering, analyser och studier i
mdnga olika tillampade projekt. De resultat som ges i denna skrift har
kravt kanske ett tusental simuleringar med de olika modellerna. De har
ocksd overforts och utnyttjats av olika andra forskargrupper, institu-
tioner och ingenjorsbyrder. Programmen dr darfor forhdllandevis vdl tes-
tade. De dr tillgangliga for alla anvdndare.

De olika datormodellerna har likartad grundstruktur. Man har en global
virmeledningsprocess i marken i och kring sjdlva markvarmesystemet. Denna
process kopplas till olika mer lokala processer j systemet. Det totala
kopplade forloppet berdknas av datorprogrammen.

Markens termiska egenskaper kan varieras. Vdarmeisoleringar kan placeras
vid markytan och nere i marken p& valfria platser.

Varme fores till och fran markvarmesystemet med en vdrmebdrare som van-
1igtvis dr vatten. Vdrmebdrarens volymflode, flodesriktning och inlopps-
temperatur till systemet kan varieras fritt i tiden. Som utdata frén si-
muleringar erhlles bland annat vdrmebdrarens utloppstemperatur, ladd-
nings- och atervinningseffekter, varmebalanser for systemet under olika
tidsperioder samt marktemperaturer.

Samtliga program dr skrivna i FORTRAN. Angivna berdakningstider for de
olika programmen avser CPU-tid pd en UNIVAC 1100/80.

13.2 Bergrumsvdrmelager

Datormodellen Stratified Storage Temperature Model avser system for
lagring av vdrme i bergrum, gropar eller nedgréavda vattentankar. Se
avsnitt 6.2. Lagringsmediet kan vara vatten eller en blandning av
vatten och spriangsten. Vid pumpning cirkulerar vattnet genom hela
Tagrets hojd.
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Datorprogrammet finns i en version for cylindersymmetriska lager.
Manual ti11 detta program ges i referens 11. Programmet finns &ven
i en odokumenterad version for parallellepipedformade lager.

Programmet krdver cirka 100 kbytes i minnesutrymme. Simulering av en
drscykel tar 5 till 10 sekunder.

Datormodellen finns i omarbetat skick som subrutin i ett simulerings-
program for hela energisystem, TRNSYS. Modellen finns dven som subrutin
i ett optimeringsprogram for hela energisystem, MINSUN.

13.3 Markvdrmelager

Datormodellen Duct Storage Temperature Model avser markvarmelager. Se
avsnitt 7.5. En vdrmebdrare pumpas genom ett rorsystem i marken. Lagret
dr rotationssymmetriskt. Manual ges i referens 18.

Datorprogrammet kraver cirka 100 kbytes i minnesutrymme. Simulering av
en arscykel tar 5 till 10 sekunder.

Datormodellen finns i omarbetat skick som subrutin i ett simulerings-
program for hela energisystem, TRNSYS. Modellen finns dven som subrutin
i ett optimeringsprogram for hela energisystem, MINSUN.

13.4 Akvifervdarmelager och grundvattensystem

Grundversionen av datormodellen Aquifer Storage Temperature Model avser
ett rotationssymmetriskt akvifervdrmelager ddr vatten pumpas till och
fran akviferen via en brunn. Programmet redovisas ndrmare i kapitel 8.
Manual ges i referens 17. Programmet avser dven dterinjektering av

kylt grundvatten.

Programmet krdver cirka 100 kbytes i minnesutrymme. Simulering av ett &r
tar 5 till 10 sekunder.

Grundversionen har vidareutvecklats till att gdlla system av flera
brunnar. Den enklaste formen dar system med tvd brunnar. System med en
centrumbrunn och flera omgivande brunnar 1dngs en cirkelbdge runt .
centrumbrunnen kan ocksd simuleras. Se avsnitt 9.3.
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13.5 Bergvdarmebrunnar

Flera datormodeller finnes. Den enklaste beskriver varmeutvinning ur
en enda brunn. Fallet dr rotationssymmetriskt. Nettoflodet av vatten
frén brunnen ar noll.

En mer avancerad modell, Superposition Bore-hole Model, avser ett
valfritt antal vertikala brunnar. Se avsnitt 10.7. For varje enskild
brunn utnyttjas det tidigare programmet for en brunn. Genom superposi-
tion simuleras det totala tredimensionella temperaturforloppet. En spe-
ciell version av programmet avser ett antal sneda brunnar. Se avsnitt
10.8.6. Manual for de tvd versionerna med sneda eller vertikala brun-
nar ges av referens 24.

Programmen krdver 100 ti11 200 kbytes i minnesutrymme. Ett &rs simu-
lering tar mindre d@n 1 sekund fér modellerna med en brunn. Ett fall
med 120 brunnar kan for superpositionsmodellen ta cirka 6 minuter per
ar.

13.6 Ytjordvdrme

Varme utvinnes ur marken via en horisontell slang nira markytan. Dator-
modellen beskriver det termiska forloppet i ett vertikalt tvirsnitt
vinkelrdtt mot slangen. Marken kan frysa, varvid latent vdrme frigores.
Varme kan &terinjekteras till marken via slangen. I referens 19 redo-
visas en @ldre version av detta datorprogram.

Datorprogrammet krdaver 100 till 150 kbytes i minnesutrymme. Simulering
av en arscykel tar 20 till 60 sekunder.
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APPENDIX A. Datorprogram for periodisk modell enligt avsnitt 7.3.3
C AR R IR RN KRR AR R AR R AR AR RN AR AR RRNRRERNERRNARR
C #%% This program calculates the periodic part — ¥¥¥
C ¥#%  (amplitude and phase) for fluid temperature ¥*#
C #%¥%  or loading effect in a cylindrical heat *ER
C #%%  storage volume in the ground. i
c *h ¥ RER
c labd Mats Areskoug and Goéran Hellstrodm REX
c laid Dep. of Math. Phys., Lund University kel
C dd January 1985 ekl
C HEEX XX R XX KA T XA AR AR AR AA R RN N AR RX SRR AR AR X RRARARRRRRR

400

500

DIMENSION P(15)

COMPLEX RNOLL,I,DEN,RI,A,B,EXFII,EXFIF,EXFIQ,QQ,TFTF,ET
COMPLEX CV,CI,CG,CTM

CHARACTER ANS

READ(1,*) (P(K),K=1,15)
GO TO 650

CONTINUE

PI=3.1415926535
AI=PI*¥P(1)¥P(1)+2.*PI*¥P(1)*P(3)
AG=PI*¥P(1)*¥P(1)+2.*¥PI*¥P(1)*¥(P(2)-P(3))
V=PI¥P(1)%¥P(1)%¥pP(2)

AB=P(6)/P(7)

I1=(0.,1.)

RI=CSQRT(1)
DNOLL=SQRT(AA*P(9)/(2.%¥PI))
RNOLL=CSQRT(DNOLL¥*DNOLL+I*P(8)*P(8))
DEN=P(8)+RNOLL*P(5)*P(6)/(P(4)¥DNOLL)
A=P(6)%(I*V/(RNOLL¥RNOLL)+( (DNOLL/RNOLL ) *¥3)#*
&(AI/DEN+AG*RI/(P(8)*RI+RNOLL)))
AABS=CABS(A)
AARG=ATAN2(AIMAG(A),REAL(A))
B=P(6)*DNOLL*AI/(RNOLL¥DEN)
BABS=CABS(B)
BARG=ATAN2(AIMAG(B),REAL(B))
EXFII=CEXP(I¥P(11))

IF(P(12).NE.O.) GO TO 500

Q=P(13)

FIQ=P(14)

EXFIQ=CEXP(I¥*FIQ)
TETF=(Q*EXFIQ+B*P(10)*EXFII)/A
TF=CABS(TFTF)
FIF=ATAN2(AIMAG(TFTF),REAL(TFTF))
EXFIF=CEXP(I¥*FIF)

GO TO 550

TF=P(13)

FIF=P(14)

EXFIF=CEXP(I¥*FIF)
QQ=A¥TF*EXFIF-B¥P( 10)¥*EXFII
Q=CABS(QQ)
FIQ=ATAN2({AIMAG(QQ),REAL(QQ))
EXFIQ=CEXP(I¥*FIQ)

GO TO 550

A1



A2

550

619

612

617

613

614

615

616

600

620

621
700

CV=V¥P(6)* [ *TF*¥EXFIF/RNOLL*¥2
CVABS=CABS(CV)
CVARG=ATAN2(AIMAG(CV),REAL(CV))

CI=AT*P(6)*DNOLL*( (DNOLL/RNOLL ) *¥¥2¥TF*¥EXFIF-P(10)*¥EXFII)/
& (RNOLL¥DEN)

CIABS=CABS(CI)

CIARG=ATAN2(AIMAG(CI),REAL(CI))

CG=AG*P(6)*(DNOLL/RNOLL)*¥3%(RI/(P(8)*RI+RNOLL))*TF*EXFIF
CGABS=CABS(CG)
CGARG=ATAN2( AIMAG(CG),REAL(CG))

CTM=TF*EXFIF-P(8)*P(8)*Q*EXFIQ/(P(6)*V)
CMABS=CABS(CTM)
CMARG=ATAN2(AIMAG(CTM),REAL(CTM))

WRITE(1,619) P(10),P(11)

FORMAT(/' Air temperature v,
&F10.3, "¥CEXP(I¥*' ,F7.3,')")

WRITE(1,612) TF,FIF

FORMAT(' Fluid temperature 'y
&F10.3, '¥CEXP(I¥*' ,F7.3,"')")

WRITE(1,617) CMABS,CMARG

FORMAT(' Mean storage temperature: ,
&F10.3, "¥CEXP(I*' ,F7.3,")")

WRITE(1,613) Q,FIQ

FORMAT(' Loading effect, total: ',
&E10.3, '¥CEXP(I*' ,F7.3,")")

WRITE(1,614) CVABS,CVARG

FORMAT(' Loading effect, volume: ',
&E10.3,'¥CEXP(I¥*' ,F7.3,")")

WRITE(1,615) CIABS,CIARG

FORMAT(' Loading effect, surface: '
&E10.3, ' *¥CEXP(I*' F7.3,')")

WRITE(1,616) CGABS,CGARG

FORMAT(' Loading effect, ground: ',
&E10.3, '*¥CEXP(I*' F7.3,')")

CONTINUE
ITMAX=IFIX(P(9)/P(15))+1
WRITE(1,620)
FORMAT(/4X, 'Time(s)',3X, 'Airtemp(K)', 1X, 'Fluidtemp(K)"', 1X,
&'Stortemp(K)',2X, 'Effect(W)")
DO 700 J=0,ITMAX
T=J¥P(15)
ET=CEXP(2.*¥PI*I¥T/P(9))
TTI=REAL(P(10)¥EXFII*ET)
TTF=REAL(TF¥*CEXP(I¥FIF)*ET)
TTM=REAL (CMABS*CEXP( I*CMARG) *ET)
TQ=REAL(Q¥*CEXP(I¥*FIQ)*ET)
WRITE(1,621) T,TTI,TTF,TTM,TQ
FORMAT(2X,E10.3,3(2X,F10.3),2X,E10.3)
CONTINUE



650
651

502

652

660

665
670

671

680
681

900

WRITE(1,651)

FORMAT(' N(ew parameter value),R(un program),S{top program) or’

& ' D(isplay values) ?'/)
READ(1,502) ANS
FORMAT(A1)
IF(ANS.NE.'N') GO TO 660
WRITE(1,652)

FORMAT(' Give parameter number, parameter value'/)
READ(1,#*) IPP,VALUE

P(IPP)=VALUE

GO TO 650

IF(ANS.EQ.'R') GO TO 100

IF(ANS.EQ.'S') GO TO 900

WRITE(1,670) (P(K),K=1,11)
FORMAT(/, 15X, ' PARAMETER VALUES'/,15X,16(1H=),//,

&' Number Parameter Value Unit'//
&' 1. Storage volume: Radius 'LF10.3," m'/

&' 2. Storage volume: Height 'L,F10.3," m'/

&' 3. Insulation: Depth ',F10.3," m'/

&' ' Insulation: Therm. cond. ',F10.3," W/mK'/
&' 5. Insulation: Thickness ',E10.3,' m'/

&' 6. Ground: Therm. cond. ',F10.3,' W/mK'/
&' 7. Ground: Vol. heat capacity ',E10.3," J/m3K'/
&' 8. Ducts: Heat transfer length ',F10.3,' m'/

&' 9. Period ',E10.3," s'/

&' 10. Air temperature: Amplitude ',F10.3," K'/

&' 11 Air temperature: Phase ',F10.3,' rad')

IF(P(12).NE.0.) GO TO 680
WRITE(1,671) (P(K),K=13,15)

FORMAT(' 12. Given loading effect "/,
&' 13, Loading effect: Amplitude ',E10.3," W'/
&' 14, Loading effect: Phase ',F10.3,' rad'/
&' 15, Printing: Time interval ',E10.3,' s'//)
GO TO 650

WRITE(1,681) (P(K),K=13,15)

FORMAT(' 12. Given fluid temperature "W,
&' 13, Fluid temperature: Amplitude ',F10.3,' K'/
&' 14, Fluid temperature: Phase ',F10.3,' rad'/
&' 15, Printing: Time interval ',E10.3,' s'//)
GO TO 650

CONTINUE

END

A3
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Exempel. Indata

23.35,58.38,2.
0.1,0.25
3.5,2.2E6,2.98
31536000., 10.,0.
0.

569500. ,0.
2628000.

Resultatutskrift

Air temperature
Fluid temperature

Mean storage temperature:

Loading effect, total:
Loading effect, volume:
Loading effect, surface:
Loading effect, ground:
Time(s) Airtemp(K)
0.000E+00 10.000
2.628E+06 8.660
5.256E+06 5.000
7.884E+06 -0.000
1.051E+07 -5.000
1.314E+07 -8.660
1.57T7E+07 -10.000
1.840E+07 -8.660
2.102E+07 -5.000
2.365E+07 -0.000
2.628E+07 5.000
2.891E+07 8.660
3.154E+07 10.000
3.416E+07 8.660

10.000*CEXP(I* 0.000)
20.007*CEXP(I* -0.627)
11.869%CEXP(I* -1.423)
5.695E+05*¥CEXP(I¥* 0.000)
5.863E+05%CEXP(I* 0.105)
6.7UTE+O3*¥CEXP(T* -2.893)
6 .04OE+OL*CEXP(I¥% -1.688)
Fluidtemp(K) Stortemp(K) Effect(W)
16.202 1.751  5.695E+05
16.900 7.386 4,932E+05
18.267 11.042 2.8U48E+05
11.739 11.739 -U4.166E-04
2.065 9.291 -2.847E+05
-8.161 4.353 -4.932E+05
-16.202 -1.751 -5.695E+05
-19.900 -7.386 -U4.932E+05
-18.267 -11.042 -2.848E+05
-11.739 -11.739 -8.331E-04
-2.065 -9.291 2.847E+05
8.161 -4.353  4.932E+05
16.202 1.751 5.695E+05
19.900 7.386  4.932E+05



Denna skrift med karaktar av handbok behandlar termiska analyser
for markvarmesystem. Dessa utnyttjar marken som varmekalla eller
for direkt lagring av varme i jord och berg och grundvattenférande
skikt eller i undermarksforlagda vattenreservoarer.

For markvarmesystem finns det en mangd problem och fragestall-
ningar som ar férknippade med de termiska processernailagret eller
uttagssystemet och i omgivande mark. Frdgorna ror varmeforluster
och andra termiska prestanda, temperaturpaverkan pa omgivning-
en, lampliga roravstand, brunnskonfigurationer, &terladdning m m.

I skriften redovisas grundlaggande teori, termiska analyser, dator-
modeller och simuleringsprogram. Detta omfattande material har
tagits fram av en forskargrupp vid avdelningen for matematisk fysik,
Lunds Tekniska Hogskola, under &ren 1977 —1985. Arbetet har skett i
samarbete med konsulter, innovatoérer, forskare, byggare, geologer
m fl specialister. Skriften riktar sig till dessa specialistgrupper samt
den hogre undervisningen. Den ger bade en teoretisk bakgrund och
en praktisk handledning vid ingenjorsméssiga berakningar.
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