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9.1

9. GRUNDVATTENVARME, GEOTERMI

Varme fran grundvatten ar en viktig naturvarmekal la. Grundvattentempera-

turen ligger normalt i stort sett konstant vid eller nagot over luftens

arsmedeltemperatur. Grundvattenvarme ar darfor en attraktiv varmekal-

la for varmepumpar.

I vissa omraden i Sverige finns grundvatten pa stora djup. Detta geoter-

malvatten har hbgre temperatur ar normalt grundvatten. Ett exempel ar

geotermiprojektet i Lund, dar varme fran 25-gradigt vatten pa 700 meters

djup utnyttjas i stor skala for Lunds fjarrvarmefbrsbrjning. De termis-

ka analysmetoderna for grundvatten kan direkt tillampas pa de for svenska

fbrhallanden aktuella geotermisystemen, eftersom temperaturerna pa geo-

termalvattnet ar relativt mattliga. Vi skall har behandla grundvatten-

v'a'rme och geotermi i ett sammanhang.

9.1 Aterinjektering av nedkylt grundvatten

Varmeinnehal let i grundvattnet eller geotermalvattnet ner t i l l 0 C kan an-

va'ndas som varmekalla till en va'rmepump. Ett normalt system har tva eller

eventuellt fler brunnar. Grundvattnet tas upp ur den ena brunnen. Det ut-

nyttjas, dvs nedkyles, och aterinjekteras i den andra brunnen. Det kalla

vattnet ger en nedkylning kring aterinjekteringsbrunnen.

Man ar intresserad av nedkylningens storlek, rackvidd och tidsutveckling

for att kunna dimensionera ett system sa att det inte ger oacceptabla

mi 1 jostbrningar exempelvis pa grundvattentakter. Nedkylningen innebar

ocksa en risk for att temperaturen pa det upptagna grundvattnet efter

hand sjunker ner t i l l oanvandbara nivaer. For att undvika en sadan ter-

misk kortslutning mellan aterinjekteringsbrunn och uttagsbrunn maste av-

standet mellan brunnarna valjas tillrackligt stort. Man maste veta hur

nedkylningen efter hand utvecklar sig for att kunna gbra ett optimalt

val av brunnsavstand. Ett annat problem ar influens mellan olika grund-

vattenvarmesystem.

Nedkylningen kring aterinjekteringsbrunnen och eventuell temperatur-

sankning for upptaget grundvatten behandlas i detta kapitel. Temperatur-

fbrloppet ar starkt avhangigt av strbmningsmbnstret for grundvattnet.

Detta paverkas av manga faktorer sasom akviferens eller akviferernas

geometri, inhomogeniteter, regionalt grundvattenflbde, brunnarnas
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lagen och pumpflbden. Har skall enbart nagra fbrhallandevis enkla

strbmningsmbnster behandlas.

Avstandet mellan brunnarna betecknas L. Grundvattenflbdet ges av vektorn

q . Den antas sakna vertikal komponent. Dess dimension a'r m/s eller noga
^ ? -5taget m vatten/m -s. Pumpflbdet till en brunn a'r Q (m vatten/s).

Det raknas negativt vid uttag av vatten. Vattnets volymetriska varme-

kapacitet a'r GW (^4.2 MJ/m3 • K).

Den naturliga ostbrda temperaturen i marken a'r T . Temperaturen pa ater-

injekterat vatten betecknas T,. Den dimensionslbsa temperaturstbrningen

i marken ges av:

T-T
u = 5__ (9.1.1)

VTo

Ostbrd marktemperatur ges av u = 0, medan u = 1 ger maximal stbrning

(T=T,). I allmanhet anges i det fbljande temperaturen sasom dimensions-

Ibs stbrning u. Verkliga temperaturer ges av (9.1.1).

De viktiga begreppen termisk hastighet och termisk radie behandlas i avsnitt

9.2 (och.8.1.4). De anvanda datormodel lerna presenteras kortfattat i avsnitt

9.3. En omfattande studie av nedkylningen kring en enskild brunn redo-

visas i avsnitt 9.4. Temperaturfbrloppet runt aterinjekteringsbrunnen

fbrutsatts vara rotationssymmetriskt. I det fbljande avsnittet anges

nagra analytiska uttryck for termisk rackvidd kring den enskilda brunnen.

I avsnitt 9.6 behandlas temperatursa'nkningen i uttagsbrunnen for ett

brunnspar.

Akviferen har den konstanta tjockleken H. Den har stor utstrackning i hori-

sontalled. Det t'a'ckande skiktets tjocklek D a'r mycket stor for de geo-

termiska systemen. De termiska parametrarna i akvifer och i under- och

bverliggande skikt betecknas pa samma s'a'tt som i kapitel 8 i enlighet med

figur 8.0.1.

9.2 Termisk hastighet och termisk radie

Det strbmmande grundvattnet ger en konvektiv transport av va'rme.

Tempera turf a'ltet T i akviferen fbrflyttas. Overlagrat pa denna varme-

transport sker va'rmel edning. Den konvektiva fbrflyttningen styrs av
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grundvattenflbdet q till storlek och riktning. Lat Vy (m/s) beteckna

den termiska hastigheten, dvs. den hastighet med vilken temperatur-

fa'ltet fbrskjutes pa grund av grundvattenflbdet q . Da galler

v q (9.2.1)

Har ar C varmekapaciteten for rent vatten och C varmekapaciteten for

akviferen med sin blandning av vatten och jordmateriel . Faktorn C /C

1 igger mellan 1 och 2.

Den termiska hastighetsvektorn Vy anger till riktning och storlek hur

t.ex. en temperaturfront rbr sig. Ekvation 9.2.1 ar en energibalansekva-

tion. Lat oss se pa en skarp temperaturfront med temperatursteget T.-T .

Pa en tid dt har fronten fbrflyttats strackan v-J-dt. Denna del har a'ndrat

temperatur fran T till T. . Energin till detta kommer fran grundvattnet.

Man har energibalansen:

(TrT0)CjvT|dt = (TrT0)CwJqwJdt (9.2.2)

Detta ger definitionen 9.2.1 for termisk hastighet, eftersom denna har

samma riktning som grundvattenflbdet.

Den konvektiva och diffusiva varmestrbmningsprocessen i akviferen kan

sos som tva bverlagrade processer. Det termiska hastighetsfal tet Vy

anyer i varje punkt vid varje tidpunkt den konvektiva fbrskjutningen

av temperaturfaltet. D'verlagrat pa detta sker en temperaturspridning

genom varmeledning.

Vid injektering av vatten i en brunn ar grundvattenstrbmningen lokalt

kring brunnen radiell. Man far, sa lange stbrningar kan fbrsummas, ett

rent radiellt fbrlopp enligt formel 9.4.1.1. Antag nu att vatten med

temperaturenT injekteras fran tiden t=0. En termisk front med spranget

T.-T kommer att rbra sig utat. Genom varmeledning blir fronten efterhand

mindre skarp. Den termiska radien R_ definieras av energibalansen:

, R2 H.C.(TrTo) = Qwt-Cw.(TrTo) (9.2.3)
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Ha'r a'r Q -t volymen av det utpumpade vattnet.

Den termiska radien blir

/V (t)-C
D (4.) _ /_W _ W

l) ~

Ha'r a'r V den utpumpade vattenma'ngden .

Termisk radie for ett ars utpumpning a'r:

Ha'r a'r V under aret total t utpumpad vattenniangd. Om pumpflbdet a'r

konstant, blir vattenvolymen Q -t .

Lat q vara storleken pa det regionala grundvattenflbdet. Motsvarande

termiska hastighet blir:

Lat L_ beteckna den termiska fbrskjutningen under ett ar pa grund av det

regionala grundvattenflbdet:

( t y = 1 a r ) (9.2.7)

Det regionala grundvattenflbdets belopp ges enligt Darcys lag av

qw = K-I (9.2.8)

Ha'r a'r K akviferens hydrauliska konduktivitet (m/s) och I tryckfallet

raknat i meter vattenpelare per meter.

Storheterna R och L. a'r viktiga vid analyser av nedkylningen kring

aterinjekteringsbrunnen. Om LT a'r mycket mindre an R-,- , kan det regio-

nala grundvattenflbdet fbrsummas. Detta inneb'a'r en kraftig fbrenkling

av analysen. Om avstandet L mellan brunnarna a'r i samma storleksordning

som R,- finns risk for termisk kortslutning. Om L-,. a'r stor relativt

Rj domineras processen av det regionala flbdet.
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9.3 Da tor-modeller

Samma datormodeller anvandes for varmelagring i akviferer och for grund-
vattensystem. Grundversionen avser det rotationssymnietriska problemet

kring en brunn. Denna model] redovisas i avsnittet om datormodeller i

kapitel 8. Manual ges av referens 17.

For mer komplicerade strbmningsmbnster pager utveckling av en relativt

allman datorrnodel 1. Modellen ar avsedd for analys av de termiska pro-

cesserna. Grundvattenstrbmningen ar given av brunnarnas la'gen och pump-

flbden samt av eventuellt regionalt flbde. Strbmningen sker i akviferens

plan. Strbmbilden genereras av konforma koordinater. Man kan ha'rvid ha

ett antal brunnar i olika la'gen och ett regionalt grundvattenflbde.

Den konforma avbildningen for ett brunnspar utan regionalt grundvatten-

flbde ger sa kallade bipolara koordinater. Denna version av datormo-

dellerna anvands vid de numeriska berakningarna for ett brunnspar. I

en studie av ett akvifervarmelager i Jbnkbping, vilken redovisas i

kapitel 8, fbrekommer en centrumbrunn och en cirkelkrans med yttre brun-

nar. I detta fall anvandes de konforma koordinater som svarar mot

ett sadant .brunnsmonster och darmed fbrknippad strbmningsbild.

I akviferplanet ra'knar man i de ortogonala koordinater som ges av den

konforma avbildningen. Grundvattenstrbmningen fbljer den ena av dessa

koordinater. Den tredje koordinaten ges av den vertikala z-axeln.

Termiska egenskaper kan variera i z-led. Inloppstemperaturen ar tids-

variabel.

I de ha'r aktuella problemen genomfbrs rakningar for stora omraden under

langa tider. Ett speciellt problem vid numerisk simulering av den kopp-

lade konvektiva och diffusive varmeledningsprocessen ar sa kallad nume-

risk dispersion. Denna innebar att berakningen ger en alltfbr stor tem-

peraturspridning. Numerisk dispersion undvikes helt genom en ny, a'nnu

ej dokumenterad berakningsteknik. Metoden bygger pa en slags entropi-

konservation for den konvektiva delen av varmestrbmningsprocessen.



Berakningarna bedbms for de givna resultaten genomgaende ha ett maximalt

fel pa 5%. Denna bedbmning baserar sig bl.a. pa jamfbrelser med de

analytiska Ibsningar som ges i 9.5.1 och 9.5.2.

Bera'kning for 25 ar for ett rotationssymmetriskt problem, sasom referens-

fallet enligt avsnitt 9.4.2, kraver nagra minuters CPU-tid pa en UNIVAC

1100/80. Harvid anvandes runt 500 gitterceller i akvifer och under- och

bverliggande mark. En genuint tredimensionel 1 berakning t.ex. for ett

brunnspar kraver langre tid. Datortiden blir runt 2 minuter per arscykel,

da nagot tusental gitterceller anvandes. Ofta anvandes ett finare gitter

for de fbrsta aren. En ny kbrning for en la'ngre tidsperiod gores sedan

med ett grbvre gitter.

En allma'n erfarenhet ar att man maste anpassa cell indelningen till den

aktuella processen.

9.4 Parameterstudie av nedkylning kring enskild brunn

I detta avsnitt fbrutsatts att grundvattenflbdet ar rent radiellt ut

fran brunnen. Det kan variera i tiden. Temperaturfbrloppet blir rotations-

symmetriskt runt brunnen.

9.4.1 Rotationssymmetri kring brunnen

Akviferen fbrutsatts homogen. Densitetsdrivna grundvattenflbden fbrsummas,

eftersom temperaturskillnaderna i vattnet ar sma. Grundvattenflbdet runt

brunnen blir da rent radiellt, om regionalt grundvattenflode kan fbrsummas,

och om uttagsbrunnen ligger till rack!igt langt bort.

Figur 9.4.1 illustrerar det aktuella fallet. Brunnen ligger la'ngs z-axeln.

Vatten aterinjekteras ja'mt fbrdelat over hela akviferskiktet D < z < D+H.

Radiellt avstand till brunnen ar r.
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D

Tin(t)
^ aquifer;

Figur 9.4.1. Rotationssymmetriskt fbrlopp kring aterinjekteringsbrunn.

Pumpflbdet Q (t) (m3/s) ar normalt variabelt i tiden. Det kan vara posi-

tivt, negativt eller noil. Temperaturen Tin(t) pa inmatat vatten ar en

given funktion av tiden. Den ar givetvis bara definierad da QW ar posi-

tiv. Grundvattenflbdet q (m vatten/m ,s) blir:

n l^-^
(9.4.1.1)

2-nHr

Har ar f enhetsvektorn i radiell riktning.

Temperaturen blir en funktion av r, z och t: T = T(r,z,t). I akviferen sker

en kopplad konvektiv och diffusiv varmestrbmningsprocess. I bverliggande

(cap rock) och underliggande (bedrock) skikt har man ren varmeledning.

Ostbrd temperatur i akviferen ar TQ. Arsfluktuationer vid marken kan

fbrsummas utom for mycket tunna tackande skikt (D < 5m). Vid markytan

ansatts darfbr den konstanta temperaturen TQ. En konstant aterinjek-
tionstemperatur betecknas T^ Dimensionslbs temperaturstbrning u(r,z,t)

definieras av forme! 9.1.1.

Isotermen u=0.5 anger de punkter da'r man har en temperaturstbrning pa

50% raknad mellan TQ och Tr Stbrningen har normalt stbrst rackvidd

ungefar mitt i akviferen. Det stbrsta va'rdet pa det radiella avstandet

r for isotermen u=0.5 skall betecknas RQ 5- Denna radie blir ett matt

pa temperaturstbrningen runt aterinjekteringsbrunnen.

Avstandet till uttagsbrunnen ar L. For att temperaturfaltet med god

approximation skall vara cylindersymmetriskt runt aterinjekterings-

2-U3



brunnen kra'vs att det av temperaturfbra'ndringar paverkade omradet ej

komtner alltfbr na'ra uttagsbrunnen. Foljande krav a'r rimligt:

R0.5 < \)

Observera att den termiska ra'ckvidden R,, r varierar med tiden. Sa lange

som villkor 9.4.1.2 a'ruppfyllt kan man anva'nda de aktuella resultaten

vilka fbrutsatter cylindersymmetri.

Gransen (9.4.1.2) a'r tilltagen med god marginal. Den torde kunna hbjas till

Tat oss saga R- _ < 0.8L utan att stora fel introduceras.

9.4.2 Referensfal1

Aterinjekteringen sker ofta intermittent och med variabel injektionstem-

peratur. Fluktuationerna a'r emellertid enligt avsnitt 9.4.4 av sekundar

betydelse for rackvidden av nedkylningen. Det avgorande 'a'r medelpumpflb-
det och medeltemperaturen pa injekterat vatten. For referensfallet an-

va'ndes da'rfbr ett konste

inmatningstemperatur T..

Fbljande data ga'ller for referensfallet:

o
va'ndes da'rfbr ett konstant pumpflbde Q (m vatten/s) och en konstant

H = 10 m D = 20 m

A = X = A = A, = 2 W/m-K1 1 c b

C = Cc = Cb = 2 MJ/m3-K (9.4.2.1)

Cw = 4.18 MJ/m3-K

Qw ~ 0.6-10"3 m3/s Vw = Qw-t = 19 000 m3/ar

Temperaturerna T och T. specificeras ej eftersom resultaten hela tiden

ges som dimensionslos temperaturstbrning u.

Den termiska radien R,- blir med forme! 9.2.5:
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R = 35.5 m

(9.4.2.2)

RT = 35.5- ~ m t = 1 ar
\ \l **

Den stationara termiska influensradien Rf definieras enligt 9.5.1.2 av

Q C
R = ,w w (9423)f 2n(Ac+Ab)

Den ar enligt avsnitt 9.5.1.1 ett matt pa den maximala termiska rackvidden,

da akviferen ej paverkas av markytan. Uppvarmning fran markytan minskar

rackvidden. Pumpflbdet Q ar valt sa att Rf blir exakt 100 m:

Rf = ; 2 . j . . = 100.0 m 0.4.2.4)

Referensfallet ar ett relativt litet system. Energiuttaget per ar vid en

temperatursa'nkning T -T. = 5°C blir:

Ey = ̂ o^l^Vw^ = 11° MWh/ar (9.4.2.5)

Beraknade temperaturfbrdelningar for referensfallet visas i figur 9.4.2.

Den dimensionslbsa temperaturstbrningen u(r,z,t) anges. Vardet u=0 ger

ostbrd temperatur T=T , medan u=1 motsvarar den lagre injektionstempera-

turen T,.

Radiella temperaturprofiler i akviferens mitt (z = D+H/2 = 25 m) visas i

figur 9.4.2 A. Den termiska rackvidden ar ungefar 30 m efter ett ar.

Detta stammer va'T med den termiska radien RT = 35.5 m. Rackvidden R- 5

bkar till 45 m efter 5 ar. Efter 25 ar ar den 60 m. Qkningen mellan 25

och 50 ar ar 3 m. Berakningarna har utfbrts anda till ar 500. Rackvidden

bkar endast 2 m mellan ar 50 och ar 500. Stationara fbrhallanden har i

huvudsak intratt efter 25 ar. De mindre stbrningarna for stbrre radier

far dock en la'ngre tidsskala. Pa avstandet r=100 m bkar stbrningen pa

fbljande satt: u=0.00 for t=5 ar, u=0.05 for t=10 ar, u=0.14 for t=25 ar,

u=0.20 for t=50 ar och u=0.24 for t=500 ar.



9.1.0

r(m) 0

Figur 9.4.2. Dimensionslbs temperaturstorning u for referensfallet (9.4.2.1]
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I figur 9.4.2 B visas temperaturen mitt i det tackande jordlagret

(z=12.5 m). Stationara fbrhallanden intrader efter 5 till 25 ar. Ned-

kylningen 20 m under akviferen (z=50 m) visas i figur C. Denna process

ar langsammare.

I figur 9.4.2 D och E visas temperaturprofiler i vertikala snitt na'ra

brunnen (r=7.5 m) och relativt langt ut (r=90 m). De olika tidsskalorna

illustreras val. Na'ra brunnen far man pa 5 ar en linjar temperatur-

profil uppat, medan processen nedat och la'ngre ut ar mycket langsammare.

9.4.3 Variation av parametrar

Olika parametrar har for referensfallet (9.4.2.1) varierats en efter en.

Resultatet visas i figur 9.4.3. Den radiella temperaturprofiTen i akvife-

rens mitt (z = D+H/2) visas efter 25 ar. For de tre figurerna 9.4.3 B-D

da'r akviferens hbjd H varieras anges medeltemperaturen over akviferhbj-

den for varje radie.

I figur 9.4.3 A har tjockleken D pa det tackande jordlagret varierats

fran D=5 till D=100. Profilerna for D=100 m och D=50 m sammanfal1er. Den

termiska rackvidden R~ 5 bkar fran 40 m for D=5 m till 70 m for D >_ 50 m.

Effekten av markytan pa rackvidden ar fbrsumbar under de 25 fbrsta aren

om D ar stbrre an 50 m.

I figur 9.4.3 B har akviferens hbjd H varierats fran 5 till 50 m. De

radiella profilerna efter 25 ar skiljer sig inte mycket at. For att na'r-

mare belysa vad som ha'nder visas radiella profiler efter 5 och 10 ar i

figurerna C och D. Som man kan fbrvanta sig blir rackvidden betydligt

kortare i den maktigare akviferen, eftersom det utmatade vattnet fbr-
delas over stb'rre hbjd. Denna stora skillnad fbrsvinner emellertid

efterhand. Detta beror pa att rackvidden i fbrsta hand styrs av det

nedkylda omradets exponering mot markytan. Rackvidden for tva akviferer

med olika hbjd, vilka mottar sammar vattenma'ngder, blir da pa lang sikt

ungefar lika. Detta resonemang fbrutsatter att den termiska rackvidden

ar relativt stor jamfbrt med D.
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r (m) 0

D=20m
t=25y

100

t=5years ^=10 years

100

= 25y
z = 2 5 m

rlml 0

t = 2 5 y

Figur 9.4.3. Parametervariation utifran referensfallet 9.4.2.1. Figurerna visar
radiella profiler efter 25 ar.
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Detta exempel visar att man maste vara fbrsiktig nardetgaller att dra

slutsatser om langsiktigt beteende av erfarenheter fran de fbrsta

aren.

Va'rmeledningsfbrmagan har varierats i figur E. Referensfallet ges av den

kurva som ar utma'rkt med 2. For den bvre kurvan A = 1 . 0 har Varmeled-

ningsfbrmagan A i ta'ckande skikt minskats fran 2.0 till 1.0. Ra'ck-

vidden bkar med 10 m. Den undre kurvan A, = 3.5 ger radiell profil da

A, bkat fran 2.0 till 3.5. Rackvidden minskar da med 5 m.

1 figur F har Varmeledningsfbrmagan i akviferplanet A varierats fran

2 till 20 W/m-K. De hbga va'rdena representerar approximativt en extra

temperaturutspridning genom dispersionseffekter, vilka orsakas av in-

homogeniteter. Det hbga va'rdet A = 2 0 ger en minskning av termisk ra'ck-

vidd med 14 m

En allma'n slutsats ar att den termiska rackvidden inte ar speciellt

kanslig for variationer av va'rmeledningsfbrmagorna.

Pumpflbdet Q har varierats i figur G. Pumpflbden upp till 6 1/s har

medtagits. Hbgre varden ar ofta aktuella. For dessa fall kan med god
precision de enklare analytiska uttrycken i avsnitt 9.5 anvandas. Den

termiska rackvidden ar fbrstas starkt beroende av Q .

De tva viktigaste variablerna for rackvidden ar enligt ovanstaende

paramel

lager.

parametervariation pumpflbdet Q och tjockleken D pa tackande jord-

9.4.4 Variabel inmatning

Effekter av variable inmatningsfbrhallanden skall belysas med tva

exempel i detta avsnitt. I det fbrsta exemplet ja'mfbres konstant och

intermittent pumpflbde. I det andra exemplet ja'mfbres konstant och

variabel inmatningstemperatur.

Referensfallet med data enligt (9.4.2.1) har det konstanta pumpflbdet

Q = 0.6 liter/s. Detta fall ja'mfbres med ett fall med samma data for-
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utom att pumpflbdet ar 2Q = 1.2 liter/s under fbrsta halvan av varje

arscykel och noil under den andra halvan av aret. Figur 9.4.4 visar be-

raknade radiella temperaturprofiler mitt i akviferen under det 25:e
aret. Kurvan i mitten ger profilen efter 25 ar vid konstant pumpflbde.

De tva andra kurvorna ger profilen efter 25 och 25.5 ar for det inter-

mittenta fallet.

0.5

z = 2 5 m

.-constant injection

(2Q..01

r ( m )
50 100

Figur 9.4.4. Jamfbrelse mellan konstant och intermittent pumpflode.

Data enligt (9.4.2.1).

Nara brunnen far man fbrstas klara skillnader. Dessa da'mpas radiellt

utat. Den termiska rackvidden R., g blir cirka 60 m i bada fallen. Iso-

termen u=0.5 for det intermittenta fallet fluktuerar inom ett omrade

pa nagra meter runt va'rdet vid konstant utmatning.

Exemplet visar att den termiska rackvidden for den aktuella typen av

grundvattensystem i huvudsak styrs av medelpumpflbdet under arscykeln.

Det ra'cker att studera fall med konstant pumpflode. Denna slutsats

ga'ller ej for system med aterladdning da'r det kail a vattnet tas till-

baka sommartid. Aterladdning behandlas i avsnitten 9.4.6-8.

Effekten av varierande inmatningstemperatur belyses med fbljande

exempel, son utgar frSn referensfallet 9.4.2.1 med konstant pumpflode.

Den dimensionslbsa inmatningstemperaturen u. ar lika med +1. Detta

fall jamfbres med ett fall da'r inmatningstemperaturen u. varierar

kvartalsvis. Under kvartal 1, 2, 3 och 4 a'r u. lika med 1.5, 1.0,
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0.5 respektive 1.0. Processen upprepas ar fran ar. Medelinmatningstem-

peraturen ar fortfarande +1. I figur 9.4.5 visas radiella temperatur-

profiler under det 26:e aret. Nara brunnen ut till cirka 30 m far man

kraftiga temperaturvariationer. Variationerna under aret ar helt ut-

dampade for r >_ 50 m. Den termiska rackvidden RQ 5 ̂  60 m paverkas

ej av temperaturvariationerna.

Figur 9.4.5. Jamfbrelse mellan konstant och variabel inmatningstempera-

tur. Data enligt (9.4.2.1).

Pallet med periodisk inloppstemperatur behandlas analytiskt i avsnitt

9.5.1.4. Temperaturamplitudens dampning for okande r ges av forme!

9.5.1.18. Den termiska rackvidden paverkas helt obetydligt av fluktua-

tioner i inloppstemperaturen om fb'ljande kriterium ar uppfyllt:

R0.5 x ' rtnfuo

Har ges Rf av formel 9.4.2.3 och dQ av

/alT

(9.4.4.1

(9.4.4.2)

Periodtiden t ar normalt ett ar.

I det fb'ljande anvandes alltid en konstant inmatningstemperatur.
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9.4.5 Diagram for termisk ra'ckvidd

Enligt fbregaende avsnitt besta'ms termisk rackvidd R~ _ av medelpump-

flbdet och medelinjektionstemperaturen. Man kan anvanda konstanta

varden. Dimensionslbs inmatningstemperatur u. blir lika med +1. I

detta avsnitt skall den termiska rackvidden R. 5 ges i dimensionslbs

form i ett antal diagram.

Vid en dimensionsanalys av det givna rotationssymmetriska problemet enligt

figur 9.4.1 med konstant inmatning anva'ndes H som skalningslangd. Rack-

vidden Rn j- blir da proportionel 1 mot H. Den blir en funktion av den
U • 0 r\a tiden at/H . Problemet far fb'ljande parametrar:

Rf D . A n Xc Xb . Cc Cb , ,
H ' H ' "T"' A ' A ' T"' ~C~ la.^.b.u

Den stationara termiska rackvidden Rf innehaller pumpflbdet Q enligt

formel 9.4.2.3. Rackvidden ges saledes av en funktion som beror av ett

antal parametrar enligt fbljande:

Kn r R,- n A A A (j (j

- - -

Rackvidden R. ./H ges i figur 9.4.6 A-N. Den viktigaste parametern a'r

pumpflodet Q dvs. R^/H. Rackvidden som funktion av dimensionslbs tid

ges for fbljande varden:

Rf
-~ = 1, 2, 5, 10, 20, 50, 100 (9.4.5.3)

For varje va'rde ges tva diagram. I det fbrsta varieras D/H och i det

andra varmeledningsfbrmagorna. Exakta parameterva'rden visas i figur

9.4.6 A-D.

Varmekapacitetskvoterna varieras ej i figurerna 9.4.6 A-N (C, /C = C /C =

= 0.8). For att belysa dessa parametrars betydelse har utifran fallet

Rf/H=10, D/H=1 enligt figur 9.4.6 G kapacitetskvoterna bkats fran 0.8

til l 1 och minskats till 2/3. Resultatet visas i figur 9.4.7. Kurvan

for utgangsfallet enligt figur 9.4.6 G faller mitt emellan de tva kur-

vorna. Skillnaderna mellan kurvorna a'r sma. Varmekapaciteternas betydel-
se for rackvidden a'r ringa.
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Parametervarden for diagram A:N

c c,
c - b - 0 8

C C u'

A C E, G I, K, M:

i i b c 1

X X X

D n r H 1 1 N •D, U, r, n, J, L, H.

X X X .
at . i i c b _ 1
,,2 Kurvd A - I x X X

X X X,

Kurva A c = 0 . 5 -y- = 0.5 -y1 = —

xb X , i Xc
Kurva Xb=z — - z x " X

X i 1- Xc Xb
Kurva X -1 0 x 10 x x

at
0 1 2 3 4 5 6 H'

D
Figur 9.4.6 A-D. Diagram for termisk rackvidd R Q _ 5 runt enskild brunn v:d

ren utmatning.



Figur 9.4.6 E-H. Diagram for termisk rackvidd RQ 5 runt enskild brunn vid

ren utmatning.
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Figur 9.4.6 I-K. Diagram for termisk rackvidd Rn r runt enskild brunn vid0.5
ren utmatning.
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10

0 1
Jit

Figur 9.4.6 L-N. Diagram for termisk rackvidd R_ _ runt enski ld brunn vid
ren u t m a t n i n g .
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10 H2

Figur 9 .4 .7 . Termisk rackvidd vid variation av varmekapaciteter. Utgangs-

fallet ges av kurvan D/H=1 i figur 9.4.6 G.

2 2 2Den dimensionslbsa tiden ar at/H = t / (H /a) . Tidsskalan ges av H /a.

Tva numeriska exempel ar:

a = 1.0-10"6 m2 /s H = 10 m

H = 50 m

H /a = 3.2 ar

H2/a = 79 ar
(9 .4 .5 .4)

Diagrammen ges for dimensionslbs tid fram till 5 a 10 enheter. I verk-
liga tider ger da'rfbr diagrammen fbrloppet under en tidsperiod upp till

15 a 800 ar.

9.4.6 Aterladdning

Nedkylningen runt aterinjekteringsbrunnen och den termiska rackvidden

kan minskas avsevart genom aterladdning sommartid. Vintertid pumpas
kallt vatten ut i aterinjekteringsbrunnen. Vid aterladdning sommartid

pumpas detta vatten ti l lbaka. Vattnet va'rmes till ostbrd temperatur TC

och pumpas ner via uttagsbrunnen.

For det aktuella problemet dar en enski ld brunn studeras blir pumpflbdet
pulserande under arscykeln. Vintertid injekteras nedkylt grundvatten.
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Vid aterladdningen pumpas vatten tillbaka. Pumpflbdet Q ar da negativt.

Aterladdningen antas vara balanserad sa att samma vattenma'ngd pumpas ut

och tas tillbaka under varje arscykel. I avsnitt 9.4.8 behandlas fallet

da dubbelt sa mycket vatten pumpas tillbaka vid aterladdningen.

For att belysa vad som ha'nder vid aterladdningen skall ett exempel med

data enligt referensfallet 9.4.2.'

ar nu pulserande enligt fbljande:

data enligt referensfallet 9.4.2.1 behandlas i detalj. Pumpflbdet Q (t)w

'1.8-10'3 m3 /s

0

-1.8-10"3 m3/s

0

0

4

6

10

(t

<

<

<

<

o~

t-nt

t-nt

t-nt

t-nt

1 ar,

0

0

0

0

r

<

<

<

<

") =

4

6

10

12

3,1

(manad)
11

n

11

,...)

(9.4.6.1;

Utpumpning sker under fyra manader. Pumpflbdet ar tredubblat jamfbrt

med det tidigare referensfallet. Samma vattenvolym pumpas saledes ut

under varje arscykel. Efter tva manader sker aterpumpning under en

fyramanaders period.

Den termiska radien for utpumpningen under fyramanadersperioden ges av

(9.4.2.2):

RT = 35.5 in (9.4.6.2)

Temperaturfaltet for detta referensfall med aterladdning visas i figurer-

na 9.4.8 och 9.4.9. Figur 9.4.8 visar temperaturstbrningen u(r,z,t) i

mitten av aret, dvs. efter injektionsperioden. Figur 9.4.9 ger tempera-

turer i slutet av varje ar, dvs. efter aterladdningsperioden da vattnet

har pumpats tillbaka.

Figur 9.4.8 A visar radiell temperaturstbrning mitt i akviferen. Motsva-

rande fall utan aterpumpning ges av figur 9.4.2 A. Temperaturprofilen

efter det fbrsta arets utmatning ar vasentligen densamma. Den termiska

rackvidden ar i bada fallen cirka 30 m. Rackvidden i aterladdnings-

fallet okar langsamt upp till drygt 35 m efter 10 ar. Okningen mellan
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Figur 9.4.8. Temperaturfal t efter injektionsperioden for referensfallet

med aterladdning. Data enligt (9.4.2.1) och (9.4.6.1)
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Figur 9.4.9. Temperaturfalt efter aterladdningsperioden for referens-

fallet med aterladdning. Data enligt (9.4.2.1) och (9.4.6.1).
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ar 10 och ar 25 ar inte mer an en meter. Aterladdningen minskar rack-

vidden efter 25 ar fran 60 m till 37 m.

En viktig lardom av detta exempel ar att den termiska rackvidden R., r

stabiliserar sig till ett i huvudsak konstant va'rde redan efter nagra ar.

Figurerna 9.4.8 B-D visar temperaturprofiler radiellt i tackande jord-

lager (z=14.5 m) och langs tva vertikala linjer (r=7.5 och 42.5 m).

Figur 9.4.9 A visar den radiella temperaturprof ilen mitt i akviferen

efter aterpumpningsperioden. Efter de fbrsta aren ar bkningen av tenipe-

raturstbrningen relativt liten och langsam. Figurerna 9.4.9 B-C visar

profiler langs vertikala linjer na'ra brunnen (r=12.5 m) och langre ut

(r=55 m). Efter aterpumpningen ar temperaturstbrningen lagre i akvife-

ren an i omgivande skikt.

Temperaturen pa det aterpumpade vattnet under de fyra manderana av

aterladdning visas i figur 9.4.10 for olika ar. Detta vatten skall

varmas till T=T , dvs. till u=0. Ytan under kurvorna ger den varmetill-

fbrsel som kra'vs for aterladdningen. Medelvardet av u for aterpumpat

vatten under ett ar betecknas n. Det aterupptagna vattnet skall i

medeltal uppvarmas n-(T -T.) °C. Storheten n anger erforderlig ater-

uppvarmningsgrad. Den visas for det aktuella fallet i figur 9.4.11.

Ateruppvarmningsgraden n blir for ar 1, 2, 5 och 25 lika med 0.57, 0.64,

0.70 respektive 0.74.

Extraction temperature u

50 100
t(days)

Figur 9.4.10. Teraperatur hos upptaget vatten under aterladdningsperioden

for referensfallet med aterladdning. Data enligt (9 .4 .2 .1)
och (9.4.6.1) .
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Figur 9.4.11. Erforderlig ateruppvarmningsgrad for referensfallet med

aterladdning. Data enligt (9.4.2.1) och (9.4.6.1).

9.4.7 Parametervariation for aterladdningsfallet. Tumregel for termisk
rackvidd.

Olika parametrar har varierats en efter en for referensfallet (9.4.2.1)

med balanserad aterladdning enligt (9.4.6.1). Resultatet ges i figur

9.4.12 A-F. Radiella temperaturprofiler i akviferens mitt ges for tiden

t = 25.5 ar, dvs. efter det 26:e arets utpumpning. Da H varieras, anges
ett medelvarde over akviferens hbjd.

Tjockleken D pa tackande jordlager har varierats fran 5 till 50 m. Skill-

naderna i rackvidd blir sma. Akviferhbjden H har varierats fran 5 till 80 m.

I motsats till fallet utan aterladdning blir nu skillnaderna i rackvidd
stora.

Figur 9.4.12 C visar att en andring av varmeledningsformagan for under-
liggande skikt (Afa = 3.5 i stallet for \ = 2) eller for tackande skikt

(AC = 1.0 i stallet for AC = 2) inte namnvart paverkar rackvidd. Refe-
rensfallets kurva faller emellan de tva givna kurvorna.

Den radiella varmeledningsformagan A har varierats fran 2 till 20.

Kurvorna blir fbrstas flackare, da A^ okas. Den termiska rackvidden
Rg 5 paverkas dock ej i nagon stbrre grad eftersom kurvorna korsar
varandra ganska na'ra det r-varde da'r u ar lika med 0.5.
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t = 2 S 5 y

rlml 0

t=2S.5y

t = 2 5 S y
z=25m

Figur 9.4.12 A-F. Radiella temperaturprofiler vid parametervariation for

referensfal let med aterladdning. Utgangsdat.a enligt

(9.4.2.1) och (9.4.6.1).



Den viktigaste parametern for den termiska rackvidden ar som tidigare

pumpflbdet Q , dvs. den vattenmangd som pumpas ut under varje arscykel.

I figurerna E och F ges profiler vid variation fran 0.2 Q till 100 Q ,

da'r Q ar referensfallets pumpflbde.

Medelvardet av temperaturen u pa uttaget vatten under aterladdningsperloden

ger erforderlig aterladdningsgrad n. Tabell 9.4.1 anger denna for ar 1, 3

och 25 for referensfallet och for nagra av fallen fran parametervariationen.

Dkningen av n ar efter de fb'rsta aren liten.

Ar

Referensfallet

D =

D =

H =

H =

H =

H =

x
c

A
I 1

0.2

10

5 m

50 m

5 m

0

0

0

0

20 m 0

40 m 0

80 m 0
t

= 1.0

= 20

Qw
Q

0

0

0

0

1

.57

.56

.58

.41

.62

.68

.63

.60

.43

.47

.58

3

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

64

62

67

52

70

75

71

69

51

55

69

0

0

0

0

0

0

0

0

0

0

0

25

.74

.66

.76

.62

.77

.83

.80

.78

.61

.62

.79

label! 9.4.1. Erforderlig aterladdningsgrad n for referensfallet med

aterladdning och for nagra fall fran parametervariationen.

Vid variation av H far man ett maximum for n vid H=40 m. Detta maximum

beror pa att det nedkylda omradet har den mest kompakta formen for

detta H. Detta ger den la'gsta uppva'rmningen fran omgivningen.

I referensfallet purapas 19 000 m vatten ut varje ar. I aterladdnings-

fallet pumpas samma volym vatten tillbaka varje ar. Den termiska radien

RT for denna vattenvolym ar enligt (9.4.2.2) 35.5 m. Enligt figur 9.4.9 A
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a'r den termiska ra'ckvidden RQ g 30 m efter fbrsta arets utmatning. Den

stiger sedan till drygt 35 m for ar 10 till 25. Den termiska radien

kan da'rfor i detta fall anva'ndas som en uppskattning av termisk ra'ck-

vidd fra"n lat oss saga ar 5. Med utgangspunkt fran detta exempel upp-

stalls fb'ljande tumregel for att uppskatta rackvidden.

Givet ett fall med balanserad Sterladdning. Vattenmangden Vwy (m3/ar)

utmatas varje ar. Vid aterladdningen pumpas samma vattenvolym tillbaka.

Den termiska radien for denna vattenvolym a'r enligt forme! 9.2.5:

R.Ty •irHC

En uppskattning av den termiska rackvidden Rn ,- ar da0.5

R0.5 RTy

(9.4.7.

(9.4.7.2)

Detta skall betraktas som en tumrege"!. Den termiska rackvidden avser

tiden da utpumpningen ar fullbordad for aret. Uppskattningen galler

for rackvidden efter nagra ar. Under de fbrsta aren overskattar forme!n

rackvidden.

I tabellerna 9.4.2 och 9.4.3 jamfbres tumregeln med de va'rden som har

beraknats vid parametervariationerna. label 1 9.4.2 ger rackvidd Rg 5

for ar 25 (figur 9.4.12 B) och termisk radie RT for olika akviferhbj-

der. Tabell 9.4.3 ger en ja'mfbrelse for olika pumpflbden a-Q (figur

9.4.12 E-F).

H (m)

RTy (m)

RO 5 (m)
ar 25

5

50

41

10

35.5

36.5

20

25

28

40

18

21

80

13

16

Tabell 9.4.2. Ja'mfbrelse mellan termisk radie och termisk rackvidd fran

figur 9.4.12 B.
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Relativt
pumpflbde

RTy (m)

R0.5 (m)
ar 25

0.2

16

16

1

35.5

36.5

2

50

53

5

79

85

10

112

121

20

159

167

50

251

267

100

355

370

label 1 9.4.3. Jamfbrelse mellan termisk radie och termisk rackvidd fran

figur 9.4.12 E-F.

Tumregelns maximal a fel i dessa fall ar

runt 5%.

i. I de fiesta fall ligger felet

Det bbr noteras att det inte finns nagon motsvarande, lika enkel forme!

for fallet utan balanserad aterladdning.

9.4.8 Dubbel aterladdning

Samma vattenvolym pumpas ut och tas tillbaka vid balanserad aterladdning.

Man kan ta'nka sig att oka aterladdningen genom att pumpa tillbaka mer

vatten. Detta skall belysas med ett exempel.

Data enligt referensfallet 9.4.2.1 anvandes. Pumpflbdet fbljer aterladd-

ningsfallet enligt (9.4.6.1) med den skillnaden att pumpflbdet vid

aterladdning fbrdubblas:

1.8-10"3 m3/s

-3.6-10"3 m3/s

0 < t-ntQ < 4 (manad)

4 < t-ntQ < 6

6 < t-ntQ < 10

10 < t-ntQ < 12
(t0= 1 ar, n = 0, 1, ...)

(9.4.8.1;

I figur 9.4.13 visas den radiella temperaturprofilen i akviferen efter

utmatning och efter aterpumpning for ar 26. De streckade linjerna ger

det tidigare fallet med balanserad aterladdning. Den termiska ra'ck-

vidden har minskat 3 m. Den fbrdubblade aterladdningen ger en relativt

1iten fbrbattring.
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0.5

25.5y

-(Q«.-2QW
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Figur 9.4.13. Radiella temperaturprofiler for referensfallet med balan-

serad och dubbel aterladdning.

9.4.9 Temperaturstbrning vid markytan

Temperaturstbrningar vid markytan fran det kalla aterinjekteringsvattnet

ar av intresse av miljbskal. De ha'r angivna temperaturstbrningarna ar

bverlagrade pa naturliga, ostorda temperaturer. Vid och na'ra markytan bar

man kraftiga temperaturvariationer under dygnet. Bl.a. for att undvika

de komplikationer som detta ger upphov till skall temperaturstbrningar pa

en meters djup (z=1) anges.

Sotn exempel anvandes referensfal let med data enligt (9.4.2.1). Tjockleken

D pa tackande jordskikt varieras. Temperatursankningen for grundvattnet

antas vara 5°C:

D = 5, 20, 50 m = -5°C (9.4.9.1)

Temperaturstbrningen pa en meters djup visas i figur 9.4.14 A-C.

Figur 9.4.14 A visar temperaturstorningen for ett tunt tackande skikt

(D=5 m) . Den maximala temperaturstorningen blir -0.8°C. Detta innebar att

temperaturen pa en meters djup vid brunnen hela aret ligger cirka 0.8 C

under den ostorda marktemperaturen. Vid 60 meters avstand fran brunnen

har stbrningen reducerats till 20% av maximal vardet. Enligt figur 9.4.14 B-C

ar maximal stbrning -0.22°C for D=20 m och -0.08°C for D=50 ID.
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-0.2

0.0

= 20m

100
rim)

-005-

0.00

C

Figur 9.4.14. Teniperaturstbrning pa djupet 1 meter vid aterinjektering

av 5 grader kallare vatten. Data enligt (9 .4 .2 .1 ) och

(9.4.9.1) .
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Stbrningar anges fram till ar 100. Tidsskalan fram till stationara fbr-

hallanden beror starkt pa D och r.

Den maximala temperaturstbrningen ar T,-T °C. Den intraffar vid brunnen

da kallt vatten med temperaturen T. injekteras. En fbrsta uppskattning ar

att anta en linjar fbrdelning for stbrtemperaturen fran z=D till z=0.

Pa en meters djup nara brunnen ar da temperaturstbrningen omkring

(T1-T0)/D. For de tre djupen blir detta med data enligt (9.4.9.1)

-5/5 = -1°C, -0.25°C och -0.1°C. De numeriskt beraknade vardena hamnade

nagot under dessa uppskattningar. Temperaturstbrningen kan enligt (9.1.1)

skrivas

T(r,1,t) - (9.4.9.2)

Faktorn (T.-T )/D ger en normalt bvre grans for maximal temperaturstbr-

ning pa en meters djup. Faktorn D-u z=1 anger stbrningens storlek rela-

tivt maximalvardesuppskattningen (T.-T )/D. Den visas i figur 9.4.15 A-C

for referensfallet (9.4.2.1) for de tre olika vardena pa D. Det ar samma

figurer som 9.4.14 A-C fransett att relativ stbrning nu anges. Figur

9.4.14 D visar referensfallet (9.4.2.1) med balanserad aterladdning enligt

(9.4.6.1).

Figur 9.4.15 A-D. Temperaturstbrningsfaktor enligt (9.4.9.2) for referens-

fallet (9.4.2.1) utan aterladdning (A-C) och med ater-

laddning (D).
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9.5 Formler for nedkylning kring enskild brunn

I detta avsnitt skall formler for nedkylningen kring en enskild brunn

anges. Det naturliga regionala grundvattenflbdet fbrutsatts vara fbr-

sutnbart. Temperaturfbrloppet kring brunnen fbrutsatts vara va'sentligen

rotationssymmetriskt. Andra brunnar far da ej ligga alltfbr nara den
aktuella brunnen. Ett lampligt kriterium ha'rfbr a'r (9.4.2). Nedkylningen

ges som vanligt i dimensionslbs form u(r,z,t) enligt (9.1.1). Injektions-

temperaturen a'r da +1 (u=+1), medan ostbrd temperatur langt fran brunnen

a'r noil (u=0). Ett fall med variabel inloppstemperatur tas upp. Pumpflb-

det Q a'r konstant.

En grundfbrutsa'ttning for de analytiska Ibsningarna a'r att den termiska

ra'ckvidden RQ ,- a'r stor ja'mfbrt med akviferhbjden H. Temperaturvariationer

over akviferhbjden kan da fbrsummas. Akviferens plan skall i detta av-

snitt ges av z=0. Temperaturen i akviferen a'r da u(r,0,t). Det tackande

skiktet ges av z>0 och underliggande skikt av z<0.

Den andra grundfbrutsa'ttningen a'r att radiell va'rmeledning i akviferens

plan kan forsummas. Detta a'r en hbgst rimlig fbrenkling da de radiella

profilerna i de aktuella fallen a'r mycket flacka. Konvektiv va'rmetransport

i radiell led beaktas givetvis.

9.5.1 Fbrsta analytiska Ibsningen

Utbver de ovan angivna fbrutsattningarna antages akviferen ligga sa

djupt ner att effekten av markytan kan forsummas. Kriterier for detta

anges nedan for den stationara och den transienta losningen. De nedan

angivna Ibsningarna ha'rrbr fran en a'nnu ej dokumenterad studie av

J. Claesson.

9.5.1.1 Stationar Ibsning

I marken ovanfbr akviferen, z>0, a'r varmeledningsfbrmagan x . Under akvi-

feren, z<0, a'r den X, . I akviferplanet har man en energibalans mellan
konvektivt, radiellt flbde och de vertikala varmeflbdena nerifran och

uppifran.
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Den stationara temperaturen u blir en funktion av r och z. Den ges av:

(9.5.1.1;

Ha'r ges langden R_ enligt (9.4.2.3) av

R -
Kf " 2 (9.5.1.2)

Isotermer for den stationara temperaturstbrningen u visas i figur 9.5.1,

Figur 9.5.1. Stationar temperaturstbrning for akvifer enligt formel

9.5.1.1.

Temperaturstbrningen Tangs akviferen och langs z-axeln vinkelrat ut fran

akviferen blir:
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u (r,0) =
5 /r2+R2

us(0,z) =

Dessa temperaturer visas i figur 9.5.2.

(9.5.1.3)

Figur 9.5.2. Radiell stationar temperaturprofil i akvifer u (r,0). Tem-

peraturprofilen langs z-axeln visas ocksa.

Den termiska rackvidden RQ ,- blir

0.5 (9.5.1.4)

Detta ger en absolut bvre grans for Rn r, eftersom markytan a'r forsummad
U . 0

och stationa'ra fbrhallanden galler. For ytligt liggande akviferer blir

stationara rackvidder vasentligt mindre.

Den stationara temperaturstbrningen u bar samma utseende for alia parameter-

varden. Langderna skalas tried R.. Langden R,; a'r saledes ett matt pa den

stationara termiska influensradien.

Den givna stationara Ibsningen forutsatter att markytans paverkan kan

fbrsummas. Effekten av markytan, da'r u skall vara noil a'r ungefa'r den-

samma som om man ansatte en negativ spegellbsning pa avstandet 2D i z-

led. Den stationara Ibsningen kan med acceptabel approximation anva'ndas

for att bedb'mma termisk rackvidd om fbljande villkor a'r uppfyllt:
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D > 2 R (9.5.1.5)

9.5.1.2 Transient analytisk Ibsning

Utbver antagandena i inledningen till avsnitt 9.5 och 9.5.1 fbrutsa'tts

att termiska egenskaper a'r lika i over- och underl iggande skikt:

= C (ab = ac) (9.5.1.6)

Vidare fbrsummas akviferens egen va'rmekapacitet. Detta senare villkor

kra'ver att den vertikala utstra'ckningen av temperaturstbrningen a'r stor

relativt akviferhbjden.

Effekten av markytan fbrsummas. Ett lampligt kriterium (breaking-jxn'nt)

for detta a'r fb'ljande:

< <9-5-'-"
Lbsningen som fbrsummar markytans inflytande ga'ller med hygglig precision

fram till tiden t, .

Exempel. H = 10 m = 1.0-1 0"6 m2/s

Da ga'ller:

D (m)

t (ar)

5

4

10

9

20

25

50

120

100

450

Exemplet visar att markytans inflytande kan fbrsummas under manga ar

det ta'ckande skiktet ej a'r alltfbr tunt.

Den transienta Ibsningen a'r:

(9.5.1.8)
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s = zl+FL (9.5.1.8')

Den fbrsta faktorn a'r den stationara Ibsningen u (r,z) enligt (9.5.1.1):

u(r,z,t) = us(r,z) • erfc,-j== (9.5.1.9)

Den andra faktorn ger tidsutvecklingen i varje punkt fran u=0 till u=u .

Har a'r t 1 en dimensionslbs tid:

act
t 1 = -, r (9.5.1.10)

(/r2+(|z +Rf)2 - Rf)2

Tidsfunktionen i (9.5.1.9) visas i figur 9.5.3.

5/50 10/100 15/150

erfc(1/i/4F)

t:

0.01

0.075

0.1

0.182

0.5

110

0.8

7.80

0.9

317

0.95

127

0.99

3180

20/200
t'

t'

7igur 9.0.3. Tidsfunkcion for den fbrsta transienta losningen enligt

formel 9.5.1.9.

Tidsskalan for dimensionslbs tid a'r:



9.38

j+R,7 - Rf)
t = —-t L_ (9.5.1.11)

1 ac

Vid tiden t=t. har enligt formel 9.5.1.9och figur 9.5.3 ungefar halften

av det stationara slutvardet uppnatts. Nedanstaende exempel visar den enorma

variationen i tidsskala.

Exempel. Rf = 100 m ac = 1.0-10"6 m2/s

(9.5.1.12)
z = 0

Da galler for nagra radier.

r (m)

t, (ar)

0

0

10

0.01

25

0.3

50

.4.4

100

54

200

480

400

3100

9.5.1.3 Formler for termisk ra'ckvidd

Temperaturstbrningen radiellt langs akviferen ges av u(r,0.t). Denna kan

enligt (9.5.1.8) skrivas i fbljande dimensionslb'sa form:

u(r,0,t) = -^= - erfc(-̂ ±p

(9.5.1.13)

r c
P - p— T = —pKf Kf

Denna radiella temperaturstbrning ges i figur 9.5.4.

Den termiska rackvidden RO g ges av figur 9.5.4. Fbljande formel kan med

mycket god precision anvandas:

R0.5
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Figur 9.5.4. Radiell ternperaturstbrning i akviferen enligt den fbrsta

analytiska Ibsningen. Formel 9.5.1.13. (a=a =3u).

Exetnpel. Med data enligt referensfallet (9 .4 .2 .1) fas:

Rf = 100 m tbp = 25 ar

(ty = 1 ar)T = —^JL- /y- = 0.056/̂ -

Formel 9.5.1.14 kan anvandas under de 25 fbrsta aren:

t/t.

RQ 5 (m), formel 9.5.1.14

RO 5 (m), figur 9.4.2. A

10 25

31.1 45.8 53.8 66

29.3 46.2 53.3 60

Numeriskt beraknade rackvidder enligt figur 9.4.2 A anges ocksa.

Uverensstammelsen ar mycket god. Felet efter 1 ar ar stbrre an

efter 5 och 10 ar. Detta bbr bero pa att akviferens egenkapaci-

tet fbrsummas. Vid gransen for formelns giltighet b'verskattas

rackvidden tried 10%. Dverskattningen beror pa att markytans
effekt fbrsummas.

4-U3



9.40

9.5.1.4 Periodisk inmatningstemperatur

Den angivna Ibsningen enligt forme! 9.5.1.8 galler for fallet att inmat-

ningstemperaturen u(0,0,t) sattes till +1 vid t=0. Man har en stbrning
for en stegandring av inloppstemperaturen. Genom superposition kan harur

temperaturfbrloppet for en godtyckligt tidsvariabel inmatningstempera-

tur anges. Har skall vara fallet med en periodisk inmatningstemperatur

behandlas.

Temperaturen pa inmatat vatten varieras sinusformat

T(0,0,t) = T2-sin(—-) (9.5.1.15)

Den periodiska variationen kan vara overlagrad pa en konstant komponent

T(0,0,t) = T

Den periodiska temperaturen i marken blir:

Rf -(s-Rf)/d /2 t s-R
T(r,z,t) = T? • -f e f ^sin^-^r1) (9.5.1.16)

o o

Har ges s av (9. 5. 1.8'). Langden d ges av

d = 7̂ -9. (9.5.1.17)

Temperaturens amplitud langs akviferen blir:

f -(/r2+R? - Rf)/d
T2.-=L=.e f f ° (9.5.1.18)

R

Normalt a'r d mycket mindre an R-. Amplituden kommer da att dampas ut da

r a'r mycket mindre an R,. Amplituden kan da med god precision skrivas

(d « R, r « R):

-r2/(2Rd
(9.5.1.19)

Den periodiska variationen dampas saledes (kvadratiskt) exponentiellt med

langden /2 R -d . Variationer over akviferhbjden H har forsummats. Dampnings-

langden bbr darfbr vara nagorlunda stor relativt H for att ovanstaende

formler skall gall a.
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Exempel. I figur 9.4.5 visas for referensfallet (9.4.2.1) radiella tempera-

turprofiler da inmatningstemperaturen vuri^rar under aret. Med

data enligt (9.4.2.1) blir dampningslangden

/2RfdQ = /2-100-3.17 = 25 m

Vid r=25 skall amplituden for den periodiska del en ha dampats

med faktorn e = 0.37. Detta stammer kvalitativt med figur
-49.4.5. For r=50 m ar dampningen e = 0.02.

9.5.2 Andra analytiska Ibsningen

Utbver de fbrutsattningar som anges i inledningen till avsnitt 9.5 gores
fbljande antaganden. Effekten av markytan fbrsutnmas. Tidskravet 9.5.1.7

skall vara uppfyllt:

t < t b p (9.5.2.1)

Vidare fbrsummas radiell varmeledning i bverliggande och underliggande

skikt. Den nedan angivna analytiska Ibsningen beaktar saledes vertikal

varmeledning over och under akviferen. I akviferen beaktas konvektiv

varmetransport och akviferens varmekapacitet.

Fbrutsattningarna for den fbrsta och den andra analytiska Ibsningen

skiljer sig enligt fbljande. Den fbrsta Ibsnigen fbrutsatter samma

termiska egenskaper i over- och underliggande skikt. Vidare fbrsummas

akviferens varmekapcitet. Den andra Ibsningen har ej dessa restrik-

tioner. I stallet fbrsummas all horisontell varmeledning.

En analytisk Ibsning till detta problem finns angiven i referens 146

for fallet med samma termiska data i over- och underliggande skikt. Den

nedan angivna Ibsningen har ej denna restriktion.

Enbart temperaturen u(r,0,t) i akviferen skall anges. Den termiska radien

vid tiden t air enligt formel 9.2.4:
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/Q C t
RT = /-̂  (9.5.2.2)

Eftersom radiell varmeledning fbrsummas blir u noil utanfbr den termiska

radien:

u(r,0,t) = 0 r > RT (9.5.2.3)

Lbsnigen ges av:

u(r,0,t) = erfcf/^- • ~ ) (0 < r < RT) (9.5.2.4)
V ^m R /R2-r2/ '

Har ges tiden t av:

(9-5-2-5)c c b ,
Med dimensionslbsa koordinater kan den radiella temperaturstorningen

skrivas:

/ 2 \) = erfc T • -7=2= ( 0 < n < 1 ) (9.5.2.6)

V

Denna funktion av T och n ges i figur 9.5.5.

Den termiska rackvidden RQ g kan direkt beraknas fran formel 9.5.2.6

(erfc(0.48) = 0.5):

RT
Rn r = .. ' (9 .5 .2 .7)

U < b /1/2+/1/4+4.34-t/tm

Exempel. For referensfallet med data enligt (9.4.2.1) fas:

tb = 25 ar tm = 3.17 ar

RT = 35.5 /E7T m (t = 1 ar)

Den termiska rackvidden enligt formel 9.5.2.7 blir da for nagra
tidpunkter:
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t7ty 1 5 10 25

RQ 5 (m), formel 9.5.2.7

5 (m), figur 9.4.2 A

26.5 44.4 54.3 69.9

29.3 46.2 53.3 60

0.5

Numeriskt bera'knade rackvidder anges ocksa. Dverensstammelsen

ar god. Vid gransen for formelns giltighet bverskattas ra'ck-

vidden med 15%. Qverskattningen beror pa att horisontell

varmeledninq fbrsummas.

200100 50 25

VIV VI '
o
Figur 9.5.5. Radiell temperaturstbrning enligt den andra analytiska

Ibsningen enligt formel 9.5.2.6. Kurvorna avser olika

T = /t/tm.

9.5.3 Akvifer na'ra markytan

De fbregaende Ibsningarna fbrsummar effekten av markytan. Ett motsatt

antagande ar att markytan ligger sa pass na'ra akviferen att varmefbr-

lusten uppat vasentligen kan betraktas som stationar. For detta fall

skall en analytisk Ibsning, vilken ar en generalisering av Ibsningen i

fbregaende avsnitt, anges. (J. Claesson, opublicerad studie.)
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Utbver fbrutsattningarna i inledningen till avsnitt 9.5 gores fbljande

antaganden. Det tackande jordskiktet ar relativt tunt jamfbrt med de

aktuella tiderna. Narmare bestamt kravs:

Radie!1 varmeledning i over- och under!iggande skikt fbrsummas. Det

bverliggande skiktet antas ha en linjar temperaturprofil mellan akvifer

och markyta. Transient komponent av vertika! varmeledning fbrsummas

saledes. Det tackande skiktet verkar som ett va'rmemotstand mellan mark-

yta och akvifer.

Akviferen ligger vid z=0. Det tackande skiktet ges av 0 < z < D och

under!iggande skikt av z < 0.

Temperaturstbrningen radiellt i akviferen ges av fbljande uttryck:

-(r/Rj2
• e r fc l / -

\

b
u(r,0,t) = e c er fc f / f : 7^=7-) 0<r<RT (9 .5 .3 .2)

Den termiska radien R,- ges av forme! 9.5.2.2. For r > Rj ar u(r,0,t) lika

med nol! .

Tidsskala t, ges av:

2
2 (9.5.3.3)

b b

Radien R ar:

R = /_!UL (9 .5 .3 .4)
C IT A

Da tiden gar mot oandligheten gar argumentet for erfc i 9.5.3.2 mot noil.

Den maximala stationara temperaturstbrningen blir da:

-(r/Rj2
u(r,0,») = e c (9.5.3.5)
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Denna Ibsning ar en balans mellan konvektiv radiell varmestrbmning i

akviferen och en stationar vertikal varmefbrlust till markytan. Den

kan harledas direkt ur varmebal anssambandet for varje radie r. Lbsningen

(9.5.3.5) visas i figur 9.5.6. I denna Ibsning fbrsummas varmefbrlusten

nedat fran akviferen. Den ger en bvre grans for den verkliga radiella

temperaturstbrningen. Den termiska rackvidden blir:

R0.5^ = R ln(2) = Rc-0.83 (9.5.3.6)

OS-

0
r/Rr

Figur 9.5.6. Maximal stationar temperaturstbrning enligt formel 9.5.3.5

for akvifer n'a'ra markytan.

Med dimensionslbsa variabler kan temperaturstbrningen 9.5.3.2 skrivas:

u(r,0,t) = e" erfcl T
/1-r/

r

(0 < n < D (9.5.3.7)

"c ub 'T

Den fbrsta faktorn ges av figur 9.5.6 och den andra av figur 9.5.5.

Exempel. For referensfallet (9.4.2.1) erhalles:

t, = 25 ar RT = 35.5bp I (ty = 1 ar)

RC = 94.5 m tb = 12.7 ar



9.46

Lbsningen 9.5.3.7 kan tillampas for t > 25 ar.

For t = 50 ar och r = 75 m fa's:

n =
35.5-/50

0.30

r' - 75 p-(r') - n K
~ 9475" ~

u ̂  0.42

Motsvarande numeriskt beraknade varde ges i figur 9.4.1 A:

u = 0.38.

Den maximala termiska rackvidden enligt (9 .5 .3 .6) blir:

R0-5H = 78 m

Motsvarande numeriskt beraknade varde blir enligt figur 9.4.1 A:

Rg c(500 ar) = 67 m. (Den termiska tackvidden har med god margi-

nal stabiliserat sig till stationart varde for t = 500 ar. Se

tabell for exempel (9.5.1.12).)

Exemplet ovan visar att de enkla analytiska uttrycken ger relativt goda

uppskattningar av den termiska ra'ckvidden.

9.6 Langsiktig nedkylning vid uttagsbrunnen

I detta avsnitt skall formler och diagram for den langsiktiga nedkyl-

ningen vid uttagsbrunnen anges for ett brunnspar.

Avstandet mellan brunnarna ar L. Regionalt naturligt grundvattenflbde

fbrsummas. Vidare fbrsummas temperaturvariationer over akviferens hbjd

och all varmeledning i horisontalplanet.

Vertikal varmeledning, akviferens varmekapacitet och konvektiv varmetrans-

port i akviferplanet beaktas. Grundvattenflbdet ar av bipolar karaktar i

horisontalplanet runt de tva brunnarna.
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De givna formlerna baserar sig pa analytiska Ibsningar av samma typ som

i avsnitt 9.5.2 och 9.5.3. Skillnaden ar att grundvattenflbdet fbljer ett

bipolart monster. Den fbrsta Ibsningen for akvifer pa stort djup ges i

referens 146. Denna Ibsning ar har generaliserad till att ga'lla for

olika termiska data i over- och underliggande skikt. Resultaten kommer

fran en annu ej publicerad studie av J. Claesson.

9.6.1 Akvifer pa stort djup

Effekten av markytan fbrsummas. Detta ger tidskravet:

Det vatten som strbmmar langs den raka sammanbindningsl injen mellan

brunnarna har den kortaste genomloppstiden fran injektionsbrunnen till

uttagsbrunnen. Lat tbt (break-through time) ange tiden det tar for den

termiska stbrningen fran injektionsbrunnen att na uttagsbrunnen. Den

ges av:

(9.6.1.2)

Dimensionslbs tid definieras av

T = J- (9.6.1.3)
bt

Temperaturstbrningen u . vid upptagsbrunnen blir en funktion av i.

Eftersom horisontell varmeledning fbrsummas kan stbrningen fran injek-

tionsbrunnen (u. = +1) ej na uttagsbrunnen fore tiden t = t̂ :

u t(t) = 0 0 < T < 1 (9.6.1.4)

Det fbrsta nedkylda vattnet, dvs. med u stbrre an noil, nar uttagsbrun-

nen vid tiden x = 1. Detta vatten har strbmmat raka va'gen mellan brunnarna.
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Efter hand kommer nedkylt vatten med allt la'ngre termiska genomloppstider

att na fram till uttagsbrunnen. Det nedkylda vatten som nar uttagsbrunnen

har varmts pa sin va'g mellan brunnarna genom den vertikala varmeledningen.

Teraperaturstbrningen for uttagsvattnet ges av fbljande forme!:

(9.6.1.5)

f (s) = 3 S1'n(s) I s'cos(si (9.6.1.51)
0 sin3(s)

Funktionen f anger genomloppstiden mellan brunnarna for olika strbm-

linjer. Parametern y ges av:

(9.6.1.6)
L.m

Har ges tbt av (9.6.1.2) och tm av (9.5.2.5).

Integralen (9.6.1.5) har beraknats numeriskt for olika T och y. Resultatet

ges i figur 9.6.1. Kurvan y=0 representerar fallet utan varmefbrluster

till over- och under!iggande skikt.

Exempel. Data enligt referensfallet 9.4.2.1 ga'ller med fbljande komplet-

teringar:

D = 86 L = 50 m

Dessa data ger:

t. = 334 ar tbt = 0.661 ar

t̂  = 3.17 ar y = 0.457

Efter t=5 ar, dvs. T. = 7.56, blir enligt figur 9.6.1 uttags-

temperaturen (fortsattning pa sidan 9.50):



9.49

Figur 9.6.1. Temperaturstbrning vid uttagsbrunnen for akvifer pa stort

djup enligt formlerna 9.6.1.5, 6, 3, 2 och 1.
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"out - °'37

Uttagstemperaturen bar a'ven beraknats med datormodell enligt

avsnitt 9.3. Nedanstaende tabell ger resultatet for nSgra tid-

punkter:

t (ar)

uout'

uout'

figur 9.6.1

datorberakning

1

0

0

.5

.18

.28

3

0

0

.29

.33

5

0

0

.37

.39

7

0

0

.5

.43

.45

10

0.47

0.47

20

0.50

0.50

Overensstammelsen ar mycket god. Den stb'rsta skillnaden erhalles

i bb'rjan. Detta beror pa att den analytiska Ibsningen fbrsummar

horisontell varmeledning.

9.6.2 Akvifer na'ra markytan

Akviferen forutsatts lika fbrhallandevis na'ra markytan. Detta ger tids-

kravet:

t > t. = (9.6.2.1)
Dp Tr3

For det tackande skiktet antas en linja'r vertikal temperaturprof il pa

samma satt som i avsnitt 9.5.3.

Uttagstemperaturen ar som tidigare ostbrd for T = t/t, . < 1 enligt

formel 9.6.1.4. Efter denna tid ges temperaturstorningen vid uttags-

brunnen av fbljande uttryck:

Funktionen f (s) ges av (9.6.1.5'). Parametern y ges nu av:
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b

Den andra parametern y, ges av:

9.51

4C

CH(D+H/4) 3QwCw(D+H/4)

Den a'r ett matt pa varmefb'Husten uppat.

(9.6.2.3)

(9.6.2.4)

Uttagtemperaturen u . beror nu av T, y och YI• Gransfallet y,=0 ges av

figur 9.6.1. Integralen 9.6.2.2 bar beraknats numeriskt. I figur 9.6.2

A-E anges u . som funktion av T for nagra olika varden pa TI. Varje

diagram avser ett visst y-

Uout

0 1 500 1000

Figur 9.6.2 A. Temperaturstorning vid uttagsbrunnen for akvifer pa litet

djup enligt formlerna 9.6.2.1-4.
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0 1 10 50

0 1 10 100 500 1000

Figur 9.6.2 B, C. Temperaturstbrning vid uttagsbrunnen for akvifer pa

litet djup enligt formlerna 9.6.2.1-4.



0 1 100 BOO 1000

0 1 50 100 500 1000 tbt

Figur 9.6.2 D, E. Temperaturstbrning vid uttagsbrunnen for akvifer pa

litet djup enligt formlerna 9.6.2.1-4.
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Den stbrsta nedkylningen erhalles vid oandl ig tid:

IT -Y,-fn(s)
(9.6.2.5)

Denna maximala storning visas i figur 9.6.3.

0.5- •

0 0.5 1

Figur 9.6.3. Maximal temperaturstbrning vid uttagsbrunn efter lang tid

for akvifer pa litet djup. Forme! 9.6.2.5.
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10. BERGVARME

10.1 Introduktion

Med bergva'rmebrunnar avses ha'r bergborrade brunnar som utnyttjas for

att ta ut va'rme fran berget. Va'rmen anva'ndes via en varmepump for upp-

va'rmning.

Man har olika typer av bergva'rmebrunnar. En typ a'r ett system da'r

brunnsvattnet cirkulerar langs brunnen i en uppatgaende och en nedat-

gaende kanal utan att det sker nagot nettouttag av vatten fran brunnen.

Se figur 10.1. I detta fall pumpas vatten fran brunnens nedre del.

Vattnet Sterfbres, sedan varme avgivits till va'rmepumpen, vid brunnens

bvre del. Vattnet i brunnen far en la'gre temperatur an omgivande berg.

Genom va'rmeledning i berget tillfb'res brunnen varme.

0.11m

Figur 10.1. Bergvarmebrunn med ren va'rmeledning i berget kring brunnen.

Vattencirkulationen i brunnen kan ordnas pa olika sa'tt. Figur 10.1 visar

ett b'ppet cirkulationssystem med en inre slang. En annan mb'jlighet a'r

att ha ett slutet system, da'r varmeba'rarfluiden leds i ett U-rbr upp och

ner langs brunnen. I detta fall kan man ha uttagstemperaturer under 0 C

om man utnyttjar en kylvatska. Vattnet i brunnen utanfb'r U-rbret fryses
da.

5-U3



10.2

En annan typ av bergvarmebrunn eller energibrunn ar att bara ta upp

vatten som efter varmeavgivning avledes annorstades. Man bar ett rent

grundvattensystem. En tredje typ ar en hybrid mellan dessa tva typer.

I brunnen cirkuleras vatten som ar kallare an omgivande berg samtidigt

son en viss m'a'ngd vatten tas ut fran brunnen. En fja'rde typ ar ett
system dar man utnyttjar tva vattenfbrande skikt pa olika djup. Vatten

tas fran det ena skiktet, utnyttjas, dvs. kyles, och aterfbres till

det andra vattenfbrande skiktet. Man maste ha'rvid blockera en direkt
vattenkontakt i brunnen mellan de tva skikten.

Referenserna 100 och 101 behandlar bergva'rmesystem ur olika aspekter.

Vi skall i detta kapitel enbart analysera den fbrsta typen, da'r man

har en kail brunn och ren va'rmeledning till denna fran omgivande berg.

For det rena grundvattenvarmesystemet behbvs inga speciella termiska

analyser. Hybridsystemet med varmetillfbrsel bade genom varmeledning

i berget och genom ett nettouttag av grundvatten och den fja'rde typen

da'r man pumpar mellan olika vattenfbrande skikt tas ej upp.

For att kunna dimensionera ett uppvarmningssystem, som ar baserat pa

en bergva'rmebrunn, maste man ka'nna sambandet mellan temperatursankningar

i brunnsvattnet och uttagen va'rmeeffekt. Syftet med detta kapitel ar

att for olika situationer ange dessa samband och da'rmed ge dimensione-
ringsregler.

I formlerna och berakningsreglerna tas ej ha'nsyn till effekten av fria

grundvattenrbrelser i eventuella spricksystem i berget. Sasom visas i

avsnitt 10.3.13 ar detta en rimlig fbrenkling. I sprickigt berg med

stora grundvattenrbrelser ger ansatsen i allmanhet en konservativ
uppskattning av varmeuttaget. Fria vattenrbrelser ger ju normalt en

extra uppva'rmning av det kalla omradet runt brunnen.

I avsnitt 10.2 ges som en inledning resultat for nagra konkreta fall.

Avsnitt 10.3 behandlar olika renodlade termiska delprocesser for en

enskild bergva'rmebrunn. I det fbljande avsnittet ges sedan dimensionerings-

regler, da'r varmeuttag och vattentemperatur relateras till varandra.

D'a'rpa behandlas system, da'r va'rme aterfbres sommartid och system i vilka

varmeuttag sker med brunnstemperaturer under 0 C. De anvanda dator-
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modellerna presenteras i avsnitt 10.7.

I avsnitt 10.8 behandlas den termiska influensen mellan narliggande

bergvarmebrunnar. Darefter anges dimensioneringsregler for dessa

system med flera brunnar i avsnitt 10.9.

Nedkylningen och temperaturpaverkan na'ra markytan behandlas i avsnitt

10.10. Detta har intresse ur miljbsynpunkt.

Fbljande beteckningar anvandes genomgaende i detta kapitel. Berget har
varmeledningsformagan X (U/mK), varmekapaciteten C (J/rn^K) och temperatur-

o
ledningstalet a = x/C (m/s). En bversta del av brunnen ner till ett

djup D. a'r varmeisolerad. Varmeuttaget fran berget sker over en brunns-

langd H. Brunnens totala djup a'r saledes D^ + H = Hb. Se figur 10.2.
Borrhalet har radien R . Vid markytan a'r arsmedel tempera turen T .

Temperaturen i berget precis vid borrhalskanten betecknas T^. Tempera-

turen i vattnet i brunnen eller i v'a'rmeba'rarfluiden i U-rbret betecknas

Tf(fluid). Effektuttaget fran brunnen a'r 0 (W), medan effektuttaget per

meter a'r q=Q/H (W/m). Va'rmemotstandet per meter brunn mellan va'rmebarar-

fluid och bergvagg betecknas mR (K/(W/m)).

TD - T, = nip-q

Hb = H + D.

Figur 10.2. Anvanda beteckningar

10.2 Nagra exempel

Som en introduktion till de termiska analyserna i de foljande avsnitten

skall vi se pa nagra konkreta fall. Resultaten har erhallits med de dator-
program och analysmetoder som redovisas i det foljande.
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Exempel 1. Givet en bergborrad brunn som ar 150 meter djup. Under

var och en av arets manader har man ett fbreskrivet konstant

effektuttag enligt figur 10.3 eller (10.2.3) nedan. Totalt

uttages 15 MWh per ar.

Fbljande data galler:

A = 3.5 W/mK C = 2.16 MJ/m3K

H = 146 m Di = 4 m RQ = 0.055 m (10.2.1)

To = 7°C

2
Det geotermiska varmeflbdet sattes till 0.06 W/m . Den ostbrda

marktemperaturen blir da

T(Z) = 7.0 + ̂ j- 2 (°C) (10.2.2)

Har ar z djupet fran marknivin. Effektuttaget Q( t ) fran berget

skall vara:

Manad

Q ( kW)

Manad

Q (kW)

1

0.32

7

2.98

2

0.47

8

2.78

3

1.17

9

2.43

4

1.69

10

1.91

5

2.23

11

1.24

6

2.66

12

0.67 ;10.2.3)

Varmeuttaget startar den fbrsta juli ar 1. Varmeuttaget per

ar bl ir:

E = 15.0 MWh (10.2.4)

For att erhalla den fbreskrivna effekten maste man halla en viss tids-

varierande temperatur vid brunnen. Figur 10.3 visar den erforderliga

temperaturen TQ vid brunnsvaggen under fbrsta, femte och tjugofemte aret.

Mel Ian brunnsvaggen och varmebararfluiden i brunnen har man ett ytterligare

temperaturfall. Den la'gsta uttagstemperaturen erhalles i slutet av

januari varje ar. Vi har enligt figur 10.3:
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ar

T f°rl'R.min1 LJ

1

4.0

5

3.5

25

3.2

(10.2.5)

(kW)
3.0-

2.0-

LO-

dec. Jan.

dec. jaa

Figur 10.3. Exempel 1. Fbreskrivet effektuttag och beraknade brunns-

temperaturer.

Temperaturfaltet utanfbr brunnen ar rotationssymmetriskt. Figur 10.4

visar detta efter 4.5 ar och 24.5 ar.

r(m)

150-

r(m)

Z(m)

Figur 10.4. Temperaturfal t runt brunnen for exempel 1 efter 4.5 och 24.5 ar.
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Efter 4.5 ar bar man en paverkan cirka 20 meter radiellt utat. Denna

paverkan har efter 24.5 ar natt cirka 60 meter. Isotermerna overgar

med bkande radie r i horisontella linjer. Temperaturen stiger i detta
ostbrda omrade linjart nedat med den geotermiska gradienten

enligt forme! 10.2.2.

Den radiella temperaturprofiTen pa djupet z = 77 m visas i figur 10.5.

Den bvre bilden avser mitt i vintern (1 januari) da man har det

stb'rsta varmeuttaget. Nara brunnen ar temperaturgradienten mycket stor.

Till

rim)

0 5 10 15

Figur 10.5. Radiell temperaturprofil pa 77 meters djup for exempel 1

mitt i vintern (bvre bilden) och mitt i sommaren (undre
bilden) under 5:e och 25:e aret.

Den undre bilden visar en mjukare temperaturprofil mitt i sommaren

(1 juli). Skillnaden mellan de tva profilerna under ar 5 och ar 25
visar langtidseffekten av varmeuttaget. Pa 20 ar sa'nkes temperaturen

ungefar en halv grad Celcius pa 15 meters avstand fran brunnen. Den

ostorda temperaturen for z = 77 m ar enligt forme! 10.2.2 T = 8.32 °C.

Kurvorna na'rmar sig asymptotiskt detta va'rde for stora radier.
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I figur 10.6 visas tva isotermer mitt i vintern (t = 24.5 y) och

mitt i sommaren (t = 25 y). De tva isotermerna skar varandra p& 3-4

meters avstand fran brunnen. Detta beror pa det varierande effekt-

uttaget under aret, vilket influerar omradet nara brunnen. Utanfb'r

detta naromrade med i storleksordningen 5 meters radie a'r fluktuationerna

under aret vasentligen utdampade. Det monotona temperaturfallet styrs

ha'r bara av medeluttaget per arscykel.

r(m) T(t]
11
10 -
9 -
8 -
7 -

6 2(m)

150 160 1M) 180 190

Figur 10.7. Temperaturprofil rakt

ner under brunnen for

exempel 1.

Figur 10.6. Sommar- (25 y) och vinter-

isotermer (24.5 y) for

exempel 1.

1 figur 10.7 visas nagra temperaturprofiler rakt ner fran brunnens botten

2 = 150 m. Den streckade linjen visar den geotermiska gradienten. Tem-

peraturstbrningen fran brunnen avklingar i stort pa cirka 10 meter.
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Exempel 2. I exempel 1 var effektuttaget fb'reskrivet for varje

manad. I verkligheten far man ett varierande effektuttag

kring ett lampligt valt manadsmedelvarde.

For att illustrera detta tages data enligt exempel 1 ovan.
Under den kallaste manaden (januari) bverlagras for den femte

Jirscykeln en pulserande effekt kring det tidigare konstanta

vardet Q = 2.98 kW. Se figur 10.8 (bverst). Den brunns-

temperatur TD som kravs visas i den nedre figuren.
K

Slkwl

Januari 5:e iiref

[dagar]

TR[T1

28 t[ dagar]

Figur 10.8. Overlagrat pulserande effektuttag och motsvarande brunns-

temperatur !„. Data enligt exempel 1-2.

Exempel 3. For att illustrera influens mellan bergvarmebrunnar ser vi

pa ett fall med tre stycken brunnar. Sedda uppifran ligger

dessa pa linje med ett avstand B. Vi tar data enligt exempel 1

och fbreskriver ett totalt effektuttag 3 -Q(t), da'r Q(t) ges

av (10.2.3). Nedanstaende tabell ger beraknad la'gsta uttags-

temperatur Tp for nagra brunnsavstand B.
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Brunnsavstand

B(m)

5

10

20

»

1

3.6

4 .0

4.0

4 .0

ar

5

2.2

2.9

3.3

3.5

25

1.2

1.9

2.5

3 . 2

label 1. La'gsta uttagstemperaturen !„( C) for tre brunnar

pa linje. Data enligt exempel 1 med tredubblat effekt-

uttag.

10.3 Termiska delprocesser

For att fa en riktig fbrstaelse for de termiska processerna och de da'r-

med fbrknippade analysmetoderna och dimensioneringsreglerna maste man

fbrst analysera enkla, renodlade termiska fbrlopp. Dessa termiska del-

processer sammanlagras till de mer komplicerade, verkliga fbrloppen.

Vi skall i detta avsnitt studera fundamentala termiska delfbrlopp for en

enskild bergvarmebrunn. Dessa analyser utvidgas i avsnitt 10.8 till ett

system av bergvarmebrunnar som influerar varandra.

10.3.1 Superposition

Genom att utnyttja superpositionsprincipen for varmeledning i ett fast

material kan ett komplicerat fbrlopp uppspaltas i enklare delprocesser.

Figur 10.9 illustrerar hur superpositionsprincipen kan anvandas. Vid berg-

varmebrunnen rader en tidsvariabel temperatur TD(t), medan temperaturen
K

vid markytan ar T . Den t idsvariabla brunnstemperaturen kan tankas upp-

delad i en tidsoberoende del och en bverlagrad tidsvariabel del:

TR(t) = T R Q + T R 1 ( t ) (10.3.1.1)
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TR(t)

h-am

T=O

TR,( t )

— Q,(t)

Figur 10.9. Uppdelning av ett temperaturfbrlopp for en bergva'rmebrunn

i en stationar del och en tidsvariabel del.

Den konstanta brunnstemperaturen Tp,, ger ett stationa'rt temperatur-

forlopp. Temperaturen vid markytan a'r T . Motsvarande stationa'ra v'a'rme-

uttag a'r Q . Den andra delen ger ett tidsvariabel t varmeuttag Q<|(t).

For denna del a'r markyttemperaturen 0. Summan av de tva temperatur-

falten ger losningen till den ursprungliga processen till vanster i

figur 10.9. Det totala varmeuttaget blir:

Q(t) = [10.3.1.2:

Begynnelsetemperaturfbrdelningen i marken kan ha'nfbras till nagon av

delIbsningarna vid en superponering. Man maste tillse att summan av del-

Ibsningarnas begynnelsetemperaturer blir lika med den totalt givna

temperaturfbrdelningen.

Varmeuttaget fran en bergvarmebrunn varierar under arscykeln. Man har

en tidsoberoende medeleffekt och en bverlagrad pulsation. Den stationa'ra

komponenten behandlas i avsnitt 10.3.2. Overlagrade periodiska fbrlopp

behandlas i avsnitt 10.3.8. Under en fbrsta tid sker en transient in-

svangning till den stationara processen med en bverlagrad arlig pulsation.

Denna transienta insva'ngning, som visar sig ta i storleksordningen 20 ar,

behandlas i avsnitt 10.3.6.

Vid dimensionering a'r det normalt smidigast att utga fran ett givet

effektbehov Q(t). Man bera'knar sedan de erforderliga brunnstemperaturerna

for att se om dessa a'r mbjliga att uppna och acceptable.

Den givna tidsfunktionen for effektbehovet kan ocksa genom super-

ponering uppdelas i enkla grundfbrlopp. Figur 10.10 visar hur en effekt-

puls kan ses som summan av tva stegpulser.
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Figur 10.10. Uppdelning av en effektpuls i tva stegpulser.

I avsnitt 10.3.6 och 10.3.7 analyseras en stegpuls, dvs. ett konstant

effektuttag som startar vid en viss tidpunkt. Det a'r en av de funda-

mentala processerna. Ett godtyckligt fbrlopp Q(t) kan ses som en summa

(eller i gra'nsen en integral) av effektpulser, vilka i sin tur enligt

figur 10.10 sammansa'tts av stegpulser. Beharskar vi stegpulsen, be-

harskar vi saledes i princip varje fbreskrivet effektfbrlopp Q(t).

10.3.2 Stationart varmeuttag

Fbrutsa'ttningen for temperaturfbrl oppet vid stationart varmeuttag

illustreras i figur 10.11. Temperaturen i marken a'r en funktion av av-
stand till brunnsaxeln och djup: T = T(r,z). Vid markytan rader den

konstanta temperaturen T , medan temperaturen vid brunnen bar det kon-

stanta vardet T,,. Den bversta delen av brunnen ner till djupet D. a'r

va'rmeisolerad.

ft /-TO

T(r,1}

Figur 10.11. Stationart tempera turfbrlopp for bergva'rmebrunn.

I ostbrd mark langt fran brunnen stiger temperaturen linjart nedat pa
o

grund av den geotermiska gradienten. Lat q (W/m ) beteckna det geo-
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termiska varmeflbdet. Langt fran brunnen galler da villkoret:

T(r,z) = TQ + qgeQ.^ da r stort

da 2 stort (10.3.2.1)

Fbrfinade randvillkor vid markytan och vid brunnen behandlas i av-

snitten 10.3.3, 10.3.9 och 10.3.11.

Det stationara temperaturfbrloppet uppnas efter en lang tid med konstant

va'rmeuttag. I ett fall med variabelt va'rmeuttag under aret ligger det

stationara temperaturfa'l tet som ett arsmedel va'rde. Denna termiska del-

process ar av stort intresse ty den ger medeleffekt under aret och har-

med den total a varmemangd som kan tas ut under varje ar. Denna effekt

kan tas ut under godtyckligt lang tid utan ytterligare nedkylning av

marken. Va'rmen till fores fran markytan.

10.3.2.1 Temperaturfa'l t

Som exempel tar vi en 150 meter djup brunn och ett stationart va'rme-

uttag som ger 15 MWh per ar:

A = 3.5 W/mK C = 2.16 • 1O6 J/m3K (m = 0)
K

Di = 4 m H = 146 tn RQ = 0.06 m

T0 = 7°C qgeo = 0.057 W/m2

Q = 1712 W (Ey = 15 MWh) (10.3.2.2)

Det numeriskt bera'knade temperaturfa'l tet utanfbr brunnen visas i figur

10.12. Den hbgra figuren visar temperaturfa'l tet ut till 150 meter

fran brunnen. Den stationara temperaturen !„ vid brunnen ar 4.55°C.

Vi ser att en temperatursa'nkning nagon tiondels grad nar ut cirka 50

meter. Den vanstra figuren visar i stbrre detalj temperaturfa'l tet ut

till 30 meters radie. Observera att den radiella skalan ar fern ganger

stbrre an den vertikala. Den vanstra figuren ger temperaturfa'l tet efter

25 ar och saledes inte exakt det stationara fa'ltet. Brunnstemperaturen
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TD a'r da 4.83 °C, dvs. 0.28 °C over det stationara slutva'rdet. Vi
K

ser att en temperatursankning med en grad under ostbrda fbrhallanden

nar cirka 5 meter ut fran brunnen. Temperaturgradlenten nara brunnen

a'r mycket kraftig och den stbrre del en av temperatursa'nkningen a'r

lokaliserad till ett relativt litet omrade runt brunnen.

50 WO 150 rlm

Figur 10.12. Stationart temperaturfalt runt en brunn med data enligt

10.3.2.

Det stationara temperaturfaltet a'r intressant vid en bedomning av miljb-

paverkan. Fransett omradet na'rmast brunnen, da'r a'ven variationer under

aret a'r av betydelse, ges maximal temperaturstbrning av den stationara

Ibsningen. Ju la'ngre bort fran brunnen man a'r, desto la'ngre tid tar

det att uppna den stationara, maximala stbrningen.

10.3.2.2 Effekt av geotermisk gradient

Den geotermiska gradienten med en bkande ostbrd temperatur nedat kan

ej forsummas, da bergvarmebrunnarna a'r sa pass djupa. Ostbrd mark-

temperatur stiger i exempel 10.3.2.2 fran 7 °C vid markytan till 9.5 °C

vid brunnens botten enligt formel 10.3.2.1.

Det i brunnen cirkulerade vattnet exponeras for denna bkande temperatur.

For att fbrsta vad vi har att va'nta oss ser vi fbrst pa ett fall da'r
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vattnet pumpas runt Tangs brunnen utan effektuttag (Q = 0). Vad

komrner att ha'nda med temperaturen pa vattnet i brunnen? Vi far en

vasentligen konstant vattentemperatur Tangs heTa brunnen efter ett

snabbt initiaTforlopp. Vattnets temperatur blir nagot medelvarde.

Det a'r rimligt att anta att temperaturen blir vasentligen lika med

den ostbrda marktemperaturen pa halva brunnsdjupet.

Brunnens medeldjup D ges av:

Dm = Di + 2 (10.3.2.3

Den ostbrda marktemperaturen pa detta djup a'r enligt formel 10.3.2.1

Det visar sig att det enda som betyder nagot for sambandet melTan

brunnstemperatur och effektuttag a'r denna medel temperatur T i marken.

ProbTemet enligt figur 10.11 med ostbrd marktemperatur enligt 10.3.2.1

kan genom superposition uppdelas i tva delar. Den fb'rsta delen har

det givna effektuttaget och den ostbrda temperaturen TQm bverallt i

marken och vid markytan. Denna del har saledes ingen geotermisk

gradient:

e ' ostbrd ~ om markyta ~ om

Q = givet effektuttag (10.3.2.5

Den resterande delen skall ta hand om den geotermiska gradienten.

Temperaturen for denna del bl

ytan. Effektuttaget a'r noil:

Temperaturen for denna del blir noil pa djupet D och T - T vid mark-

z-D
Del II: T ... , = T + q . - - T = qostord o Mgeo \m Mgeo A

Tmarkyta =

Q = 0 (10.3.2.6
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Data enligt exempel 10 .3 .2 .2 ger:

Dm = 77 m = 8 .25 (10 .3 .2 .7 )

Figur 10.13 visar temperaturfaltet for den fb'rsta delen. Den andra
delen v isas i figur 10.14. Summan av dessa tva temperaturfa'l t a'r l ika

med det som visas till va'nster i figur 10.12.

0 10 20 10 20

Figur 10.13. Temperaturfalt for

exempel 10.3.2.2 med

ostord temperatur

Figur 10.14. Temperaturfalt for
exempel 10.3.2.2 for den

geotermiska stbrningen
enligt 10.3.2.6

De tva temperaturfal ten enligt figurerna 10.13 och 10.14 har var for

sig en enklare struktur an det sammanlagrade fa'ltet enligt figur 10.12.

Den fb'rsta delen enligt figur 10.13, d'a'r brunnen verkar mot orngivnings-

temperaturen T , ger en temperaturstbrning som a'r proportionel 1 mot

temperaturdifferensen T n mellan ostord mark och brunn. Den andra

delen enligt figur 10.14 ger ett temperaturfal t kring brunnen som i

stort sett a'r antisymmetriskt kring nivan z = D . Va'rme til If ores brunnen

vid den undre ha! van, medan vasentligen samma varinemangder bortfbres

vid den bvre halvan. Denna antisymmetri skulle vara perfekt om mark-

ytan ej kom in som en stbrning.

Den erforderliga brunnstemperaturen blev enligt figur 10.12, vanster,

Tn = 4.83 °C, medan den enklare Ibsningen med omgivningstemperatur T
K 'om
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enligt figur 10.13 ger TD = 4.82 °C. Skil lnaden i sambandet rnellan
K

brunnstemperatur och effektuttag blir maximalt nagon promille i detta

exempel.

Detta galler allmant med tillracklig noggrannhet. Vid berakning av

varmeuttaget behover man ej ha med det kompletta randvillkoret 10.3.2.1

med en geotermisk gradient. Det racker att utnyttja temperaturen T

vid brunnens mittdjup. Denna temperatur skall anses rada bade vid

markytan och i ostbrd mark langt fran brunnen. I det fbljande skall

alltid enbart T utnyttjas.

10.3.2.3 Forme! for stationart varmeuttag

Genom att approximera brunnen med en mycket smal rotationsellipsoid

och utnyttja speglingsteknik for att ta ha'nsyn till randvillkor vid

markytan kan fbljande samband mellan det stationara varmeuttaget Q och

drivande temperaturdifferens T - TD harledas (referens 7 och 2):om K

(T - T )
™ - - - (10.3.2.

in
2(H2Di/H)

Har a'r T^ temperaturen vid brunnsvaggen och T ostbrd marktemperatur

pa halva brunnsdjupet. Harledningen fbrutsatter att R och D. a'r sma

relativt brunnsdjupet H.

Formeln kan fbrenklas till

2TIAH (T - TR)
(10.3.2.9)

ln - 0.01

eller

2TTAH (T - TD)
- ™ — Jl. (10.3.2.10)

In (^
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Den sista formeln 10.3.2.10 torde duga. Felet i dessa formler ar

maximal t nagra procent.

Lat oss ta exempel 10.3.2.2:

- 3 . 5 • 146 • (8.25 - Tp)
1712 =

In ' 146

2 - 0 . 0 6

TR = 4.46 °C

Detta skall jamfbras med det numeriskt beraknade vardet TR = 4.55 °C

enligt figur 10.12, hbger.

Formel 10.3.2.10 ar grundlaggande eftersom den anger hur stor varmemangd
som kan uttas per arscykel vid en given drivande temperaturdifferens

T - Tn. Observera att Tn har ar den stationara medeltemperaturen vidom K K
brunnen. Dverlagrat kan man ha ett pulserande fbrlopp.

10.3.3 Effekt av ytliga jordskikt och variationer vid markytan

Vid markytan har vi haft det enkla randvillkoret med en given konstant

temperatur T eller T . I verkl.igheten ar situationen mer komplicerad
med en variabel lufttemperatur, snb, tjale och ett bvergangsmotstand

vid markytan som bl.a. beror pa vindfbrhallanden. Temperaturfluktuation-

er dampas dock snabbt ut nedat i marken. Pa nagra meters djup rader

i stort en konstant temperatur aret om. Influensen av dessa ytvariationer

for en bergva'rmebrunn med ett djup runt hundra meter blir helt fbr-

sumbart. Det enda vi behbver veta med nagon precision ar marktempera-

turen T pa halva brunnsdjupet.

I manga fall tacks berget av ett ytligt markskikt med andra termiska

egenskaper an berget. For att illustrera detta tar vi data enligt

exempel 1 i avsnitt 10.2. Ostbrd marktemperatur sa'tter till T = 8.3 °C.

Alia data ga'ller f.b. fransett att den bversta delen av marken ges

en la'gre va'rmel edn ingsf brmaga. Vi tar:

6-U3
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1.5 W/m.K 0 < z < D jord

3.5 W/m.K z > D jord

[10.3.3.1)

Beraknad la'gsta uttagstemperatur under ar 1,5 och 25 ges i tabell 10.1

for nagra olika va'rden pa D.

ostbrda vardena enligt 10.2.5.

for nagra olika va'rden pa D. ,. Den bversta raden ger de ursprungliga

ar 1 ar 5 ar 25

D = 0 m
jord

Djord = 4 m

Djord = 10 m

4.1 3.5 3.2

4.1 3.5 3.2

4.0 3.4 3.0

label! 10.1. Lagsta uttagstemperatur TR min for exempel 1 i avsnitt 10.2

da man har ett tackande jordskikt enligt 10.3.3.1. Mark-

temperaturen T ar 8.32 °C.

Vi ser att ett jordskikt pa nagra meter ger en helt fbrsumbar andring.

Rven om det bversta skiktet har 10 meters djup bl i r a'ndringen liten.

Vi kan allmant dra slutsatsen att fbrhallandena vid markytan och i de

fbrsta metrarna nedat ej spelar nagon roll for varmeuttaget. Det enda

vi behbver ar medeltemperaturen Tom

Speciellt spelar va'rmemotstandet mellan markyta och luft ingen roll.

Detta varmemotstand ar na'mligen i samma storleksordning som ett mark-

skikt med en tjocklek pa nagon decimeter.

10.3.4 Va'rmeisolering av brunnens bversta del

Den bversta delen av brunnen va'rmei sol eras for att skydda cirkulations-

vattnet fran nedkylning vintertid. Isoleringen gar ner till djupet D^.

Vi skall i detta avsnitt belysa hur va'rmeuttagskapaciteten beror av D..
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Data enligt exempel 1 i avsnitt 10.2 med marktemperaturen T = 8.32 C

anvandes. Alia data utom D^ halles konstanta. Brunnsdjupet D. + H

kommer att variera nagot med D-. Tabell 10.2 visar bera'knade la'gsta

uttagstemperatur under ar 1, 5 och 25 for D. = 2, 4 och 10 m.

Mm)

2

4

10

tid (ar)

1 5

4.07 3 .55

4.06 3.54

4.04 3.51

25

3.23

3 .21

3 . 1 7

Tabell 10.2. Lagsta uttagstemperatur Cvid variation av isolerdjupet D..

'Ovriga data enligt exempel 1 i avsnitt 10.2.

Vi ser att isolerdjupet D. har ytterst liten betydelse for va'rmeuttaget.

Observera att jamfbrelsen gores for konstant aktiv brunnslangd H.

Varmeisolering behbver bara gbras till nagon meters djup for att skydda

mot vinternedkylning. Ytterligare isolering nedat har ingen effekt.

10.3.5 Skikt med olika va'rmel edningsfbrmaga

Da marken bestar av skikt med olika va'rmel edningsfbrmaga kommer va'rme-

uttaget att paverkas. For att illustrera detta har jamfb'relse for tva

bera'kningsfall gjorts.

I det fbrsta fallet bestar marken av homogent material med konstant

varmeledningsfbrmaga A = 3.5 W/m K. I det andra fallet bestar marken

av tva skikt med olika varmeledningsfbrmaga. Det fbrsta skiktet med

x = 2.5 W/m K stra'cker sig ner till half ten av den aktiva brunnsla'ngden,

z = 77 m. Skikt tva har varmeledningsfbrmagan A = 4.5 W/m K och stra'cker

sig fran z = 77 m ner till stort djup.

Beraknar man mede1 va'rdet av de va'rmel edningstal som den aktiva del en

av brunnen direkt ka'nner av, erhalles samma A , -, for bada bera'knings-
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fallen. Se formel 10.3.5.1

D.+H

Amedel dz
'10.3.5.

Som marktemperatur ansattes medeltemperaturen T = 8.32 C. Alia bvriga

data enligt exempel 1 avsnitt 10.2.

label 1 10.3 visar lagsta brunnstemperaturen ar 1, 5 och 25 for de tva

berakningsfallen

X W / m - K

3.5 0 < z < »

2.5 0 < 2 < 77

4.5 77 < z < »

(m)

(m)

(m)

t = 1 ar

4.06

4.05

t = 5 ar

3.54

3.53

t = 25 ar

3.21

3.19

label! 10.3. Lagsta brunnstemperatur ar 1, 5 och 25 for bergvarmebrunn.

Marken bestar i ena fallet av ett skikt med konstant varme-

ledningstal och i antira fallet av tva skikt med olika

varmeledningstal.

Skillnaden mellan resultaten ar ytterst liten varfbr man kan dra slut-

satsen att det ar medel vardet av varmeledningsfbrmagan enligt formel

10.3.5.1 som bestammer varmeuttaget.

10.3.6 Konstant varmeuttag. Effekt pa lang sikt.

En av de fundamental del processerna ar temperaturfb'rloppet, da man har

ett konstant effektuttag Q fran starttiden t=0. Se figur 10.15. Den

ostorda temperaturen i marken ar T . Denna temperatur ansattes ocksa

vid markytan.

Man far ett transient fbrlopp da'r marken kring brunnen nedkyles. Efter

hand na'rmar sig temperaturfaltet det stationara fallet enligt avsnitt

10.3.2.
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Vart huvudintresse ar att berakna temperaturen T.,(t) vid' brunnen. For

att erhalla effekten Q kra'vs en temperatursankning T -Tn(t). Denna

sankning bkar efter hand upp mot det stationara slutvardet.

Q(t) =
Q t > 0

0 t < 0

Figur 10.15. Langsiktig transient process med konstant varmeuttag Q

fran en starttid t=0.

I ett verkligt fall varierar normalt effektuttaget under aret. Man har

en medeleffekt och en bverlagrad, pulserande effekt. Den har studerade

transienta processen ga'ller for denna medeleffekt. Vi far reda pa hur

medeleffektuttaget under aret ger en transient nedkylning fram till

stationara fb'rhal landen.

Den vid brunnen tidsvariabla temperatursankningen T -TR ar proportionel1

mot effektuttagets storlek per meter brunn, Q/H. Den ar vidare omvant

proportionel 1 mot va'rmeledningsfbrmagan X. En dimensionsanalys av va'r-

meledningsprocessen enligt figur 10.15 visar vidare att T -TD ar enom K
funktion av en dimensionslos tid t/t^. Man har tva formparametrar R /H

och D./H. Parametern D./H for isolerad bvre del ar av sekundar betydelse

enligt avsnitt 10.3.4. Den fbrsummas har. Vi har da:

2TTXH
g(t/tr RQ/H) (10.3.6.1)

Funktionen g ger den dimensionslbsa temperatursankningen for att fa

effekten Q. Faktorn 2ir ar medtagen for att bl.a. forme! 10.3.6.2 skall
bli prydlig. Tiden t1 (= H /9a) ges av (10.3.6.6).

I avsnitt 10.3.10 behandlas effekten vid variation av borrhalsradien R

Fbljande samband for tva borrhal sdiametrar R och R' ga'ller med mycket

god noggrannhet:
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g(t/t1 , RQ /H) = g(t/t1 , R^ (10.3.6.2)

Parametern R /H ar harigenom avklarad. Man behover bara numeriskt med

dator berakna g som funktion av dimensionslbs tid for en brunnsradie (och

ett brunnsdjup).

Lat oss ta fbljande exempel:

A = 3.5 W/mK C = 2.16 MJ/m°K

H = 98 m

Q = 1 kW

Di = 2 m RO = 0.05 m

[10.3.6.3)

Den beraknade temperatursankningen T - Tp vid brunnen visas i

figur 10.16.

T«-5
3

I 2 3 i 5 6 (10 20 30
Idag 7dagar

1 3"i, i fiTa 9 ibii I s~
2 man. tar

15 20 I 100 200 300 400

25ar SOOar

Figur 10.16. Transient brunnstemperatursankning for exempel 10.3.6.3.

Kurvan ar mycket instruktiv. Vi far under de fbrsta timmarna en snabb

temperatursankning. Sankningen under det fbrsta dygnet ar 1.15 C. Under

den fbljande veckan andras temperaturen till 1.6 °C. Efter tva manader

har sankningen bkat till 2.0 °C och efter ett ar till 2.4°C. Under de

fbljande 25 aren sjunker temperaturen ytterligare till va'rdet 2.9 C.

Processen ar annu ej helt stationar. Efter hundra ar har vi va'rdet 3.02 C

och efter femhundra ar 3.04 °C. Vi har saledes en stor spannvidd i

tidsskalor for den transienta processen. Man bbr observera att denna

kurva vasentligen ga'ller for alia transienta grundfall med olika
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Vart huvudintresse a'r att berakna temperaturen Tn(t) vid brunnen. For

att erhalla effekten 0 kra'vs en temperatursa'nkning T -TD(t). Dennaom K
sankning b'kar efter hand upp mot det stationa'ra slutva'rdet.

Q(t) =
Q t > 0

0 t < 0

Figur 10.15. Langsiktig transient process med konstant va'rmeuttag Q

fran en starttid t=0.

I ett verkligt fall varierar normalt effektuttaget under aret. Man bar

en medeleffekt och en bverlagrad, pulserande effekt. Den har studerade

transienta processen galler for denna medeleffekt. Vi far reda pa bur

medeleffektuttaget under aret ger en transient nedkylning fram till

stationara fbrhallanden.

Den vid brunnen tidsvariabla temperatursankningen T -TD a'r proportionellom K
mot effektuttagets storlek per meter brunn, Q/H. Den a'r vidare omva'nt

proportionel1 mot varmeledningsfbrmagan X. En dimensionsanalys av var-

meledningsprocessen enligt figur 10.15 visar vidare att T -TD a'r enom K
funktion av en dimensionslbs tid t/ti. Man har tva formparametrar R /H

och D./H. Parametern D./H for isolerad bvre del a'r av sekundar betydelse

enligt avsnitt 10.3.4. Den fb'rsumtnas ha'r. Vi har da:

TonfTR(t> =
Q

2irAH
g(t/tr RQ/H) (10.3.6.1)

Funktionen g ger den dimensionslbsa temperatursankningen for att fa

effekten Q. Faktorn 2w a'r medtagen for att bl.a. formel 10.3.6.2 skall
O

bli prydlig. Tiden t'1 (= H /9a) ges av (10.3.6.6).

I avsnitt 10.3.10 behandlas effekten vid variation av borrhalsradien R

Fbljande samband for tva borrhal sdiametrar R och R' ga'ller med mycket

god noggrannhet:
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9(t/t1 , RQ /H) = g(t/t1 , R^ ;10.3.6.2)

Parametern R /H ar harigenom avklarad. Man behbver bara numeriskt med

dator berakna g som funktion av dimensionslbs tid for en brunnsradie (och

ett brunnsdjup).

Lat oss ta fbljande exempel:

X = 3.5 W/mK C = 2.16 MJ/nTK

H = 98 m Di = 2 m RQ = 0.05 m

Q = 1 kW [10.3.6.3)

Den beraknade temperatursankningen T - TD vid brunnen visas i
Om K

figur 10.16.
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Figur 10.16. Transient brunnstemperatursankning for exempel 10.3.6.3.

Kurvan ar mycket instruktiv. Vi far under de fb'rsta timmarna en snabb

temperatursankning. Sankningen under det fb'rsta dygnet ar 1.15 °C. Under

den foljande veckan andras temperaturen till 1.6 °C. Efter tva manader

har sankningen bkat till 2.0 °C och efter ett ar till 2.4°C. Under de

fbljande 25 aren sjunker temperaturen ytterligare till vardet 2.9 °C.

Processen ar annu ej helt stationar. Efter hundra ar har vi vardet 3.02 °C

och efter femhundra ar 3.04 °C. Vi har saledes en stor spannvidd i

tidsskalor for den transienta processen. Man bbr observera att denna

kurva vasentligen galler for alia transienta grundfall med olika
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Q, H, R , D.J, X och a i enlighet med formlerna 10.3.6.1-2.

Den dimensionslbsa temperaturresponsen g visas i figur 10.17 for

fallet RQ/H = 0.0005. Det a'r fransett skalfaktorer samma kurva som

i figur 10.16. Observera den logaritmiska tidsskalan. Tiden t. ges av
forme! 10.3.6.6.

gitn,, o.ooosi
10"'

-9 -8 -7 -6 -5 -<. -3 -2 -1 0 I 2 3

Figur 10.17. Temperaturresponsfunktion g for transient varrneuttag enligt

formel 10.3.6.1 och 10.3.6.6. R /H = 0.0005.

For responsen g finns tva asymptotiska uttryck. For mycket stora tider

skall stationara fbrhallanden rada. Approximativt qaller da formel

10.3.2.10. For korta tider bar man vasentligen en radiell endimensionell

process kring brunnen. Temperaturs'a'nkningen vid brunnen ges approximativt

av formel 10.3.7.3. Dessa tva asymptotiska approximationer ges av de tva

streckade linjerna i figur 10.17. Vi ser att dessa tva ra'ta linjer ger

en ganska god approximation av g.

Vi har nu fb'ljande enkla approximative uttryck for temperatursankningen:

Tom • TR(t) = [ 1 0 . 3 . 6 . 4 )

Y = 0.5772 ( E u l e r s kons t an t )

Bryt t iden t. def in ieras av att de tva uttrycken a'r l i k a :
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In ~- t 6 t (10.3.6.7)

dn (Jf)- r) = I n - ) dO.3.6.5)
"

eller med god approximation

w2
t1 = ̂  (10 .3 .6 .6 )

Infb'r vi tiden t. far vi fbljande enkla uttryck for approximationerna

10.3.6.4:

fom " TR

Det maximala felet sker vid bryttiden t = t.. For exempel 10.3.6.3 ger

da approximationen ett fel pa 7%.

Approximationerna innebar en mycket stor fbrenkling. Fore bryttiden,

t < t-, kan man pa denna precisionsniva rakna som om processen enbart

ar radial 1 runt brunnen utan att ta ha'nsyn till vertikala stbreffekter.

Detta ga'ller genom superposition for godtyckliga, tidsvariabla effekt-

pulser. Efter bryttiden, t > t., kan man i denna approximation rakna

stationart.

For exempel 10.3.6.3 blir bryttiden

t. = 98 '2'16 '10 sek = 21 ar (10.3.6.8)
9 -3.5

De aktuella bryttiderna t, ar saledes tider i storleksordningen tiotals

ar.

Den transienta responsen 10.3.6.1 pa en stegpuls kan genom superposition

utnyttjas for att berakna responsen for en godtyckligt varierande
effekt Q(t).



Exempel. Vi tar foljande data:

X = 3.5 W/m • K C = 2.16 • 106 J/m3 • K

10.25

D i = 5 m H = 145 m RQ = 0 .055 m

Q = 5 kW [10 .3 .6 .9)

Den transienta temperatursankningen T - Tn(t) ges av

10.3.6.1-2 eller av det fbrenklade uttrycket 10.3.6.7. Ovan-

staende data ger:

Q = 1.57 °C
2irXH

t1 = 45.7 ar

In

^

184

- TR ( t ) =

11.3- 0 .79 . ln(t./t) t 5 t = 45. 7 ar

T.ex. far vi

t (ar)

Tom - V t } (°C)

0.1

6.5

1

8.3

10

10.1

50

11.3

Ett exaktare varde erhalles ur formlerna 10.3 .6 .1-2 . Vi maste

ra'kna om relativ rbrradie:

R /R \f = 0.0005 In (-—l ° \ = In 0.055

145 • 0 .0005
- = -0- 28

Vi har saledes:

Tom " TR ( t ) = 1 '57

Ur figur 10.17 far vi g (t, = 45.7 ar).
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Vi far da t.ex.

t(ar)

T - T (t) (°C)

0.1

6.5

1 10 50

8.1 9.7 10.4

Vi ser att den fbrenklade formeln ovan ger ett maximalt

fel pa 9%.

Den langsiktiga temperatursankningen som kravs for att uppratthalla
o

vart konstanta varmeuttag har en tidsskala t. = H /(9a). Denna tids-

skala galler temperaturen vid brunnen. Det ar ocksa intressant att se

pa tidsskalan ellersnarare tidsskalorna for nedkylningen runt brunnen.

Det visar sig att detta ar en process med mycket stora tidsskalor.

Detta belyses narmare i avsnitt 10.10.

10.3.7 Analys av effektpulser

Effektuttaget Q(t) varierar normalt med tiden. I avsnitt 5.3 anges en

enkel metod for att analysera tidsvariabla effektuttag fran ett rbr i
mark. Effektuttaget skall vara konstant under givna tidsinterval1.

Metoden baserar sig pa den analytiska losningen for en stegpuls i det

tvadimensionella radiella fallet.

Metoden diskuteras i avsnitt 5.3. Flera exempel ges. Temperaturprofilen

och influensomrade runt rbret behandlas. Formler for brunnstemperaturen

TR(t) anges.

Va'rmeuttaget per meter brunn betecknas q(t):

q(t) = ̂fi (W/m) (10.3.7.1)

Variationer i djupled fbrsummas da losningen avser ett plan vinkelratt

mot brunnen. Tredimensionella effekter blir betydelsefulla for en effekt-

puls efter en viss tid. I fbregaende avsnitt studeras en ren stegpuls.
Enligt formel 10.3.6.4 kan den tvadimensionella approximationen anvandas
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fram till tiden t. med nagorlunda god precision. Tiden t^ definieras

av forme! 10.3.6.6. Med normala data blir t. i storleksordningen 20 ar.

Detta innebar att den tvadimensionella analysen enligt avsnitt 5.3

utan vidare kan anvandas for analys av effektpulser under en arscykel.

Metoden kan aven tillampas pa langtidsfbrloppet under flera ar.

En ren stegpuls bar konstant effektuttag q (W/m) fran en starttid

t = 0:

(10.3.7.2)

Temperaturen vid brunnsvaggen ges av forme! 5.3.2.13 (R -* R ):

5RZ

{t>^ (io-3-7-3)
y = 0.5772

Temperaturen ar negativ, eftersom Ibsningen avser enbart stegpu!sen.

Ostbrd temperatur ar harvid T = 0.

For att erhalla verklig brunnstemperatur skall TR (t), som hanfbr sig

till effektuttaget q(t), adderas till ostbrd marktemperatur:

V^^om* VtJ (10.3.7.4)

2
Formel 10.3.7.3 ga'ller ej under en fbrsta period 0 < t < 5R /a. Denna

tidsgrans blir for en bergvarmebrunn nagon timme:

a = 1.6 • 10"6 m2/s

5R2
R o = 0.055m -T- 2-etimmar (10.3.7.5)

Man kan sa'nka tidsgransen ner till, lat oss saga, en timme utan stbrre

f el . For a'nnu kortare tider bbr formlerna i detta avsnitt ej anvandas.

Varmeuttaget for en effektpuls som startar vid t = 0 och har langden t_-|

ar:

q(t) =
q 0 < t < t !

q (10.3.7.6)
0 t > t ,, t < 0
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Under tiden fram till t= t galler stegpulsformeln 10.3.7.3. Av-

klingningen efter pulsen ges enligt formel 5.3.3.3 av det enkla ut-
trycket

2

In (r-r-j ( t > t , + 5--^) (10.3.7.7)

I det allmanna fallet ar effekten q. i tidsintervallet t ._,, < t < t . :

t < t
qo

t < t < t ,
qo q1

V t < Vq(t) = [10.3.7.8)

For en tid t, som ligger i det n:te intervallet, galler da enligt

formel 5.3.4.6:

q, / /4at }

"/;'T
"o

(10.3.7.9)

(qo = 0, y=0.5772 ,

Har ar t en godtycklig referenstid. Formeln har en enkel struktur.

Den fbrsta termen ar en konstant ganger aktuellt varmeflbde q . For

varje andring q. - q - _ i av effekten erhalles en term med logaritmen
av tiden t - t - _ ^ •

I avsnitt 5.3.4 ges ett exempel med kvartalsvis konstant effektuttag.

Exempel 1. I exempel 1, avsnitt 10.2, redovisas ett fall da'r effekt-

uttaget ar fbreskrivet manadsvis. Beraknade brunnstemperaturer

visas i figur 10.3. Dessa kan beraknas analytiskt med form-
lerna 10.3.7.9 och 10.3.7.4. For att illustrera metoden ut-

fbres berakningarna for de tre fbrsta manaderna.
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Fbrst beraknas bidraget fran varmeuttaget, T n (t), varefterKq
brunnstemperaturen erhalles enligt forme! 10.3.7.4. Ostbrd

mark tempera tur T a'r lika med 8 .32 °C. Va'rmeuttaget a'r

manad 1: Q^t) = 320 W q1 = 2.19 W/m

manad 2: Q2( t ) = 470 W q2 = 3 .22 W/m

manad 3: Q 3 ( t ) =1170 W q3 = 8.01 W/m

Med t = 1 manad erhalles

9
manad 1. TRq(t) = -2.19- 0.183 -

= -0.402 - 0.0498 In

manad 2. T (t) = -3.22 -0.183 -

3.22-2.19

= -0.589 - 0.0498 In - - 0.0234 In
p

o -i q / t \d 3. T (t) = -8.01 • 0.183 - ̂ ~ In fij -

P

3.22-2.19 , / t

p

8.01-3.22 , / t

= -1.47 - 0.0498 In -- -0 .0234 In
p

0.109 In i - 2)
P '



10.30

Tabellen nedan visar brunnstemperaturen for nagra olika

tider t.

t/tn

TR q ( t )

TR (t)

0.5 1.0 1.5 2.0 2.5 3.0

-0.37 -0.40 -0.59 -0 .62 -1.45 -1.54

7.95 7 .92 7.73 7 .70 6.87 6.78

Exempel 2. I ovanstaende exempel ar effektuttaget fbreskrivet manadsvis.

For att illustrera hur en variation i effektuttag under en

manad kan analyseras tar vi fbljande exempel som utgar fran

exempel 1 ovan. Varmeledningsfbrmagan har sankts fran 3.5 till

3.0.

Under en vintermanad femte aret fbreskrivs ett effektuttag

enligt figur 10.18. Detta effektuttag bestar av det tidigare

under manaden konstanta uttaget plus en bverlagrad pulsation.

Brunnstemperaturen fran det manadsvis konstanta uttaget be-

tecknas TD (t). Brunnstemperaturen for den bverlagrade pulsa-Km
tionen TD (t) kan beraknas med ovan angivna metod. Total brunns-Kq
temperatur blir:

TR^= V^ +TRq(t) (10.3.7.10)

Medeleffekten under den aktuella manaden a'r 2 980 W. Den bver-

lagrade effekten blir enligt figur 10.18 for de tva fbrsta

veckorna:

vecka 1: Q(t) = 2 300 - 2 980 W q(t) = -4.66 W/m

vecka 2: Q ( t ) = 4 600 - 2 980 W q(t) = 11.1 W/m

Med t = 1 vecka erhalles da:

vecka 1: TR (t) = 4.66 • 0 .171 + î | in (_Lj
• V p/

= 0.797 + 0.124 In ^ *
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vecka 2: TD (t) = -1.89 + 0.124 In
"

-0.418 In (~ - 1j

label 1 en nedan ger nagra varden under dessa tva veckor:

t/tp
TRq(t) (°C)

0.25

0.63

0.5

0.71

1.0

0.80

1.5

-1.55

2.0

-1.81

Forloppet under hela manaden visas i figur 10.18.

] 4.0

3.0

2.0

TR[-c] 4

2-

28 dagar

Figur 10.18. Pulserat varmeuttag enligt exempel 2.

Exempel 3. Fbljande effektuttag med halvdagarspulser fbreskrives:

40 (W/m) forsta halvan av varje dygn i sju

q(t) -
0

dagar

for bvrigt

Speciellt ar effektuttaget noil efter de sju dygnen.

Fbljande data galler:

X = 3.5 W/m K C = 2.16 • 105 J/m3 - K

RQ = 0.055 m
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Effektpulsernas bidrag TD till brunnstemperaturen ges avKq
forme! 10.3.7 .9 (t = 1/2 dygn)

0 < t x< t : TR = -3.59 - 0.909 In(-ji-)

t < t x< 2t : TD = 0 - 0.909 (ln(|-) - ln(i- - 1P P Kq [ t t

2t < t <; 3t : TD = -3.59 - 0.909 ^ln(^-) -
P P Rq I t

- ln(f- - 1) + 1n(f- - 2)}
P P J

3t < t <: 4t : Tn = 0 -p P "q
H

- ln(|- - 1) + ln(|- - 2) - ln(|- - 3)
L L L

P P P

O S V .

Tabellen nedan ger nagra varden.

t/t 0.5 1.0 1.5 2.0 3.0 4.0

TRq(t) -2.96 -3.59 -1.00 -0.63 -3.96 -0.89

Brunnstemperaturen fran medeleffektuttaget q(t) = 20 W/m blir

for de 7 daaarna:

TD (t) = -1.797 - 0.455 ln(|~) 0 < t < 7 dagar
Rq tp

Denna temperatur ges av streckad linje i figur 10.19.

I figuren visas ocksa avklingningen efter pulstaget och efter

medelpulsen (streckad linje). Tva dagar efter pulseringens

slut sammanfaller tetnperaturfbrloppen. Da ga'ller bade for

pulstaget och for medeleffekten:

T (t) = 0 - 0.455 (in(f-) - ln(f- - 14)} t > 18 t = 9 dygn
KH I >>. rn J P
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q [ W / m l

28 dagar

Figur 10.19. Effektuttag och brunnstemperatur for exempel 3.

10.3.8 Periodisk delprocess

En viktig delprocess a'r ett periodiskt effektuttag:

Q(t) = Q p- sin (10.3.8.1)

Har a'r Q (W) effektens amplitud och t periodtiden. Fasen ip kan val

jas godtyckligt.

Det totala effektuttaget kan besta av en konstant komponent och en

eller flera periodiska komponenter. I detta avsnitt behandlas en ren

periodisk komponent enligt 10.3.8.1. Det totala fbrloppet erhalles som

vanligt genom superponering.

I avsnitten 5.2.2.2 och 5.2.3.2 behandlas det periodiska fbrloppet

utanfbr ett rbr eller en cylinder. Formler for hela temperaturfbr-

loppet och for temperaturen TD vid brunnen anges. En periodisk kom-
K

ponent ger ett bidrag TD till total brunnstemperatur.Kp

Fbljande beteckningar anvands:

/at
R 1 = [10.3.8.2)

7-U3
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Forme! 5 .2.3.10 ger

Amplitudfunktionen A och fasfunktionen B ges i figur 5.2.3 och tabell

5.2.2.

I de aktuella tillampningarna ar R 1 normalt litet. Foljande approxi-

mation kan da enligt forme! 5.2.3.11 anvandas:

A ( R ' ) = A l n ( 2 / R ' ) - y ) 2 + Tr2/16

( R 1 < 0 .1) (5 .2 .3 .11 ;

B ( R ' ) = arctan . (Y = 0.5772)

Exempel. Vi tar foljande data:

tQ = 1 ar a = 1.6-10"6 m2/s \ 3.5 W/m-K (10.3.8.4)

RQ = 0.055 m Q /H = 15 W/m

Da fas

dQ = 4 .01 m R' = 0.0194

Forme! 5.2.3.11 kan anvandas:

A = 4.13 B = 0.191

Brunnstempera turen blir da

TRp = - 2.8.sin(^ + cpo - 0.191)

Arnplituden blir saledes 2.8°C vid brunnen. Fasfbrdrbjningen

0.191 motsvarar tiden

* 2 • t = 11 dagar
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10.3.9 Brunnsdiameterns betydelse

Brunnshalet bar diametern 2RQ. En stbrre diameter ger ba'ttre varme-

upptagningsfbrmaga. Detta illustreras med nedanstaende exempel.

Exempel. Effektuttaget sattes konstant fran starten t=0. Fbljande

data galler:

H = 98 m Di = 2 m

A = 3.5 W/m-K C = 2.16 MJ/m -K [10.3.

Q(t) = 1000 W , t > 0

Brunnsradien RQ varieras. Temperatursankningen vid brunns-

vaggen r=RQ relativt ostbrd mark ar T -TR(t). Tabell

10.4 visar med dator beraknade varden efter 1, 5, 30
och 100 ar.

R0 (m) 1 ar 5 ar 30 ar 100 ar

0.025

0.050

0.125

2.776 3.082 3.320 3.389

2.454 2.759 2.996 3.064

2.029 2.322 2.566 2.633

Tabell 10.4. Temperatursankning T -TD(t) (°C) vid brunnen for
„ Ulll K

nagra brunnsradier. Data enligt 10.3.9.

Lat TR(t) och T̂ (t) vara brunnstemperaturen for tva fall med brunns-

radierna RQ och R^. De tva fallen ar i bvrigt lika. De bar samma

effektuttag Q(t). Berget mellan radierna RQ och R 1 representerar ett
varmemotstand som ges av:

in (10.3.9.2)

Detta varmemotstand mul tip! icerat med varmeflbdet Q(t)/H bbr va'sent-
ligen ge differensen T'-Tn.

K K



10.36

Detta ger fbljande samband for tva fall som ar lika i allt utom
brunnsradie.

[ 10 .3 .9 .3 )

Exemplet ovan ger for R^ = 0.025 m och R = 0 .050 m:

T' f t ) - T I t)TR(t) - TR( t )
100°

inIn

eller

om - 0.322

Detta stammer mycket va'l med tabell 10.4. I tabell 10.5 anges relativt. fel

for formel 10.3.9.3 for exemplet ovan.

R; (m)
0.025

0.125

1 ar

0.0000

0.0000

5 ar

0.0003

0.0009

30 ar

0.0006

0.0019

100 ar

0.0009

0.0023

RQ = 0.05 m

Tabell 10.5. Relativt fel for formel 10.3. 9.3. Data enligt 10.3 .9 .1 .

Felet blir for det aktuella exemplet mindre an 0.3 procent. Formeln

10.3.10.3, som ger effekten av brunnsradien R , ar saledes mycket

noggrann.
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10.3.10 Varmeledningsfb'rmagans betydelse

Storleken pa bergets varmeledningsfbrmaga A ar av stor betydel se for

effektuttaget eller for erforderl ig temperatursankning.

I fb'rsta hand ar bergva'rmebrunnens termiska prestanda direkt proportionella

mot A. Vid givet effektuttag ar erforderl ig temperatursa'nkning T -T^
omva'nt proportionell mot A. Omva'nt galler vid given temperatursa'nkning

att effektuttaget blir proportionellt mot A. For det stationa'ra fallet

galler detta enligt formel 10.3.2.10. I transienta fall visas detta t.ex.

i formlerna 10.3.6.1 och 10.3.7.9.

For transienta processer kompliceras fb'rhallandena av att tiden i alia

formler mul tipl iceras med a = A/C. Ett a'ndrat A motsvarar en andring av

tidsskalan. Denna effekt ar dock sekunda'r.

Som exempel kan vi se pa den transienta langtidseffekten vid konstant

varmeuttag. Med data enligt (10.3.6.3) blev temperatursankningen vid
brunnen den som ges av figur 10.16. Antag nu att varmeledningsfbrmagan

sa'nkes fran A = 3.5 till A = 3.0. Temperaturledningstalet a minskar da

ocksa med faktorn 3.0/3.5. Skalningen ges ur formel 10.3.6.1. Kurvan i
figur 10.16 skall okas med faktorn 3.5/3.0, medan tiden a'ndras med faktorn

3.0/3.5. Lat oss berakna temperatursankningen efter sju manader. Tiden

t' som skall anvandas i figur 10.16 ges av

3.5 • t 1 = 3.0 -7 t 1 = 6 manader

Figur 10.16 ger va'rdet 2.31 °C. Temperatursankningen blir saledes

3.5- 2.31/3.0 = 2.7 °C. Exemplet visar att den direkta proportional iteten

ar det viktiga, medan andringen av tidsskalan betyder mindre.

10.3.11 Effekt av grundvattenflbde

De olika analyserna och formlerna i de tidigare avsnitten har fbrutsatt
ren va'rmeledning i berget runt brunnen. Stb'rningar p£ tempera turf brloppet

beroende pa vattenrbrelser i spricksystem har fbrsummats.
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Effekten av grundvattenrbrel ser skall ha'r belysas med hja'lp av en

viss analytisk Ibsning. (J. Claesson, Bergvarmebrunn. Stationer Ibsning

med grundvattenflbde. Opublicerad studie.)

Grundvattenflbdet i ett vattenfbrande berg beskrivs i en skala som

ar stbrre an avstanden mellan enskilda sprickplan. Man betraktar det

vattenfbrande berget som ett homogent porbst medium. Grundvattenflbdet
3 2ar qw (m/s eller mera precist m vatten per m och s). Det sprickiga

berget tillskrivs en hydraulisk konduktivitet K. Man antar ett samband
av Darcy-typ:

Ha'r ar I grundvattenytans lutning (m/m).

I berget antas nu rada ett konstant, horisontellt grundvattenflbde q . Grund-

vattenytan ligger relativt ytligt jamfbrt med hela brunnsdjupet. Galler

ej detta blir stbrningen mindre an den nedan angivna. Fran bergvarme-

brunnen sker ett konstant effektuttag Q (W).Den analytiska Ibsningen av-

ser det stationara fallet. Figur 10.20 visar fbrutsattningarna for den
analytiska Ibsningen.

Figur 10.20. Stationart varmeuttag Q ur bergvarmebrunn i berg med ett

horisontellt, Stationart grundvattenflbde q .

Fbljande samband rader mellan effektuttaget Q och-temperatursankningen

T™ ~ TD vid brunnen:om K
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(10-3.11.2)

I harledningen fbrutsatts att langden i ar mycket stbrre an brunns-

radien R . Langden i ges av:

(10.3.11 .3)

Har ar C =* 4.2 MJ/m • K vattnets varmekapacitet.w

Den fb'rsta delen med logaritmtermen i forme! 10.3.11.2 motsvarar det

tidigare fallet enligt formel 10.3.2.10. Stbrningen pa grund av grund-

vattenflbdet ges av termen P (H/£). Korrektionen ar negativ eftersom

ett grundvattenflbde innebar en uppvarmning mot T av det kylda omradet

kring brunnen.

Funktionen P ges av:

- 1 E (™]
2 ^ZtJ

(10.3.11.4)

E £ ( s ) = ln(s) + y + E^s) Y = 0.5772

Har ar E.(s) exponentialintegralen, vilken definieras av formel 5.3.2.2.

Tabeller och samband for denna funktion ges i referens 103 A.

For sma va'rden pa H/s, ar fbljande serieutveckl ing anv'a'ndbar:

For stora va'rden pa H/«. galler:

Pw(l) ̂ "(^) + Y - l l n ( 3 ) (i>lo) (10.3.11.6)

Figur 10.25 ger P som funktion av H/n.
W

Effekten av ett grundvattenflbde kan belysas med fbljande exempel med

normal a bergdata

H = 150 m R = 0 .055 mo
K = 10~7 m/s I = 10"3 m/m (10.3.11.7)

X = 3 .5 U/m-K
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Pw(-r) °'1 °-.25 °:5 1;° 2-° 5:° 1?-° H/l

1.0

- 3 - 2 - 1 0 1 2 3
ln(H/t)

Figur 10.21. Korrektionsfunktion for effekt av grundvattenflb'de

enligt forme! 10.3.11 .2.

Da galler enligt formlerna 10.3.11.1 och 10.3.11.3:

qw = 1(T10 m/s «. = - • 105 m (10.3.11.8)

Med hja'lp av forme! 10.3.11.5 erhalles

Korrektionen P skal! jamforas med logaritmfaktorn i forme! 10.3.11.2:

, 00= 7.22
ln(H/(2Ro»

10-6

Grundvattenflodet ger en korrektion i storleken 10" . Grundvattenflodet

a'r saledes fbrsumbart i detta fall.

_ 0

Okas I till det extrema vardet 10 , sa minskar i, med faktorn 10.

Korrektionen blir i storleksordningen 10~3, dvs. fortfarande belt for-

sumbar. Slutsatsen av detta a'r att effekten av grundvattenflbden a'r hel t

fbrsumbar vid normala va'rden pa bergets hydrauliska konduktivitet.



10.41

Lat oss ta ett exempel rued en mycket hog konduktivitet:

K = 1(T6 m/s I = L m/m (10.3.11 .9)

Da erhalles med tabell

2 -3.5 = 150 m
4.2 • 1/90

M = 1 F

P,,(Dw
W — = 0.02

ln(H/(2RQ))

Detta fall ger en paverkan med 2%.

Som allman slutsats av detta ga'ller att effekten av naturliga grund-

vattenrbrelser, son ar nagorlunda homogent utspridda over bergvolymen

runt brunnen, ar forsumbar. Grundvattenflbden av annan typ som ger en

mer riktad paverkan pa brunnen innefattas ej i denna bedbmning. Man kan

t.ex. tanka sig ett snett sprickplan med kraftig vattenfbring, vilket

vintertid kyler bergvarmebrunnen.
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10.3.12 Varmemotstand mellan inre kanal, yttre annular kanal

och bergvagg

Varmebverfbringen mellan fluidkanaler och omgivande mark beror pa

markvarmekol1ektorns utformning, fluidens egenskaper och fluid-

flodet i strbmningskanalerna. I avsnitt 7.2.8 behandlas de olika

typer av varmemotstand som fbrekommer.

I detta avsnitt anges varmemotstand for en markvarmekollektor som

bestar av en yttre annular kanal och en inre kanal enligt figur 10.22.

Sambandet mellan varmeflbden, fluidtemperaturer och temperatur vid

bergvaggen beskrives med varmestrbmningskretsen i figur 10.22. Kret-

sen ritas som en Y-krets for att i senare avsnitt kunna jamfbras med

andra kretsar. Motstandet mot T blir i detta fall noil.a

Figur 10.22. Tvarsnitt av markvarmekollektor bestaende av inre (c_ore)

och yttre (jinnulus) kanal. Till hbger visas motsvarande

varmestrbmningskrets.

Varmemotstanden m. och m i figur 10.22 ges av fbljande uttryck:

m. = m, + m' + m, .i fc p fai

fay

(10.3.12.1)

(10.3.12.2)

Delmotstanden mfc, m' mfai och mfg ges av (7.2.89, 110, 101, 104).
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Exempel. Givet en markvarmekol1ektor bestaende av ett borrhal med en

centrerad plastslang med foljande data:

Brunnsradie R = 0.055 m

Plastslangens innerradie R •= 0.0176 m

Plastslangens ytterradie R = 0.020 m

Plastens varmeledningsfbrmaga X' = 0.43 W/mK

Varmebararfluiden ar i detta fall vatten. Vid aktuell tem-

peratur runt ett par plusgrader galler foljande data for

vatten (fjuid):

Xf = 0.57 W/mK Cf = 2.16-105 J/m3K

Uf = 1.8-10"3 kg/m-s pf = 1.0-103 kg/m3

Pr = Prandtls tal = 13.4

Pumpflb'det genom kanalerna ar:

Vf = 0.50 1/s

Med ovanstaende data beraknas Reynolds tal for inre kanal^

enligt 7.2.85:

= 4.1.Q.103 0.5Q.1Q-3 = 4
r\ T o n n i T C ivut-j^- 0 -,n-3 2-0.0176

TT'1 .8-10

Eftersom Re > 10000 sa ar strbmningen turbulent. Nusselts

tal kan da beraknas enligt (7.2.92):

Nu = 0.023-(10084)°-8-(13.4)1/3 = 86.9

Varmemotstandet mellan inre kanal och plastslang blir enligt

(7.2.89):

mfc = ..0.57-86.9 = °-0064
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Varmemotstandet over plastslangen ar enligt (7.2.110):

1 n non
= 0.0473 K/(W/m)

Vid bera'kning av m, . och m- for yttre kanal maste ytter-

ligare ett par parametrar beraknas.

Reynolds tal for yttre kanal ar enligt (7.2.97):

4*1 0*10 o 50'inRp = H ' -U IU . u-ou lu_ ^
n-1.8'10'3 2-(0.055 + 0.020)

Reynolds tal ligger i gransomrldet 1000 < Re < 10000. I

detta interval! kan flodet vara turbulent eller lamina'rt.

Parametern R* definieras enligt (7.2.97):

n* . 0.020 _ „ ,,..,
° n ncc~ 0.0636

Om flodet antages vara larnina'rt kan varden pa Nu.., Nu ,

0* och 0* interpoleras fram ur tabell 7.2.22:

NU..J = 6.93 0* = 0.658

Nu = 4.96 0* = 0.168

En rimlig ansats pa q /q. =-10(q./q = -0.1). Detta ger en-

ligt (7.2.106-107):

Nui = 1 -06658.(-10)

4 = 4'879y 1 - 0.168-(-0.1)

Varmemotstanden m,- . och m. ges nu av (7.2.101) och

(7.2.104):
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m 1
fai TT-O.57-0.916 [1/0.363 - 1) = 1.067 K/(W/m)

1
fay TT-0.57-4.88 (1 - 0.363) = 0.0729 K/(W/m)

Samtliga delmotstand a'r nu k'a'nda och m. och m kan beraknas

enligt (10.12.1-2):

m. = 0.0064 + 0.0473 + 1.069 = 1.12 K/(W/m)

m = 0.0729 K/(W/m).

Varmemotstandet mellan inre och yttre kanal ar cirka 15 gang-

er stbrre an det mellan yttre kanal och bergva'gg. Detta beror

framfb'r allt pa att delmotstandet m, . ar mycket stort rela-T an
tivt ovriga motstand.

10.3.13 Varmemotstand mellan tva kanaler i borrhil och bergvagg

En vanligt fbrekommande markvarmekollektor ar en plastslang i form av

ett U-ror som ar nersankt i borrhalet, se figur 10.23.

Figur 10.23. Markvarmekollektor med U-formad plastslang nedsankt

i borrhalet.

Avstandet fran centrum av borrhalet ut till slangarnas mittpunkter a'r

b^R och b^R . Avstandet mellan slangarnas mittpunkter a'r b^R .
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Slangens ytterradie betecknas R . Va'rmemotstanden for denna typ av

kollektor ar beraknad genom att slangarna approximeras med linje-

kallor, varefter det station'a'ra varmeledningsproblemet loses med su-

perpositionsteknik.

Approximationen torde g'a'lla med acceptabel noggrannhet orn slangarna

ej ligger alltfor n'a'ra varandra. Ett rimligt krav a'r att avstandet

mellan slangarnas yttervaggar ej understiger en slangradie . Villko-

ret kan skrivas:

b12 > | Rp/RQ (10.3.13.1)

Temperaturen TR vid bergvaggen a'r str'a'ngt taget ett medelvarde runt

den cirkul'a'ra borrhalsva'ggen. I fallet da slangarna omges med vatten

antages att v'a'rmetransporten pa grund av naturlig konvektion a'r fbr-

sumbar i j'a'mforelse med den konduktiva v'a'rmeledningen genom vattnet.

Detta synes vara en rimlig approximation da vattentemperaturen ligger

i omradet runt 0-8°C.

Sambanden mellan f luidtemperaturerna Tf1 och T,,,, temperaturen vid

bergvaggen TR och va'rmefIbden kan beskrivas med en varmestrbmnings-

krets av Y-typ, se figur 10.24.

Figur 10.24. Va'rmestrb'mningskrets for tva kanaler i ett borrhal.

Skillnaden mellan temperaturen vid bergvaggen och fluidtemperaturer

kan da skrivas:

TR - Tf1= m^q^ + m12(q1 + q2)

(10.3.13.2)

TR " Tf2= rrt2'c|2 + m12^1 + °2^
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Varmemotstanden m,, rru och m-2 ges av:

m,, = m«.

ITU
(10.3.13.3a)

x1 - x

mp + mfc

m22

(10.3.13.35)

mp + mf c

"12

Koordinaterna for slangarnas mittpunkter ar (x̂ ŷ  respektive (x2,y2)

da origo ar placerad i centrum av borrhalet. Parametrarna b-, b, och

b blir da enligt figur 10.23:

b1 = V X? + y1 /Ro

(10.3.13.4)

/R0

Ur dessa fas parametern b'.,-:

b'12 = y (1 - b2)(1 - b2) + b22 (10.3.13.5)

Uttryck for mf ges av (7.2.89). Varmemotstandet m' over plast-

slangen ges av (7.2.110)
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Exempel. Givet en tvaslangskollektor enligt figuren nedan. Avstan-

det mellan centrum av borrhalet och mittpunkten pa slang-

arna ar for bada slangarna 0.6 R (b., = b~ = 0.6). Slang-

arnas mittpunkter ligger pa en rat linje genotn borrhalets

centrum (b12 = 1.2).

Data for borrhal, plastslang och fluid ar:

Borrhal: RQ = 0.055 m A = 3.5 W/mK = 0.57 W/mK

b1 = 0.6 b2 = 0.6 b12 = 1.2

Slang: R . = 0.0176 m R 0.020 m

X1 = 0.43 W/mK (PEM-slang)

Fluid: Xf = 0.53 W/mK Cf = 4.2-106 J/m3K
(brinol-
vatten) ^ = 6>3.10-3 |<g/m.s Pf = 970 kg/m3 Pr = 51.5

Pump- , -
flbde: Vf = 0.75-10~J mJ/s = 0.75 liter/s

Reynolds tal beraknas med formel 7.2.85:

-3Re = 4.970-0 75.1Q-

TT-6. 3-10" -2-0.0176

Da Re ligger mellan 2300 och 10000 kan flbdet vara antingen

laminart eller turbulent. Antag att flbdet ar turbulent. Da

erhalles enligt (7.2.92):
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Nu = 0 .023- (4177)° - 8 (51 .5) 1 / 3 = 67.4

Forme! 7.2.89 ger nu:

mfc = ..0.53-67.4 = °-0089

Varmemotstandet over plastslangen, m', ges av (7.2.110):

mp = 2*.0.43 ln[§7& = °'0473 K/(W/m)

Parametern b,j~ ges enligt (10.3.13.5) av:

b.j2 = \/(1 - 0.62)(1 - 0.62) + (1.2)2 = 1.36

Delmotstanden m--, ITU., och m.,,, ges enligt (10.3.13.3b) av:

2TT-0.57 Hn(0.055/0.020) - °;g ; \'\1 - (0.6)2 ) ]

+ 0.0473 + 0.0089 = 0.249 K / (W/m)

m22 = m^

m12 = " 2TT-0 57 ( l n ( 1 - 2 ) + o 's / + 3 * 5 l n ( 1 - 3 6 ) ) = 0.011
K/ (W/m)

Vardet pa m. (= nip) kan nu beraknas med formel 10.3.13.3a:

m1 = m2 = 0.249 - 0.011 = 0.238 K/(W/m)

Da flbdet antages laminart erhalles ett annat varde pa m, .

Varmemotstandet m1 (= m2) blir for detta fall 0.379 K/(W/m)

For fallet da vattnet i borrhalet ar fruset (X. = 2.1 W/mK) erhalles:

m1 = m2 = 0.132 K/(W/m)

m12 = -0.008 K/(W/m)

Notera att motstandet m.,,, i detta fall ar negativt.

8-U3
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10.3.14 Varmemotstand for det allmanna fallet med flera kanaler

i borrhalet

I detta avsnitt behandlas varmemotstanden mellan borrhalsvaggen och

ett godtyckligt antal fluidkanaler eller plastslangar. Sambanden mel-

lan varmeflb'den och temperaturer ges av ett ekvationssystem. Ekvation-

erna har harletts genom att varje fluidkanal representeras med en lin-

jekalla. Den totala vaxelverkan mellan olika 1 injeka'l lor beraknas med

superpositionsteknik. En detaljerad analys av de exakta fbrutsattning-

ar som kravs for denna approximation, samt en redovisning av berakning-

arna for formlerna nedan kommer att redovisas i en annan skrift. Har
anges endast resultaten.

Figur 10.25 visar ett borrhil med nagra slangar (N = 4). Tetnperaturen

Tp vid bergvaggen ar ett medelvarde runt borrhalsvaggen.

Slangarna upptar effekterna q,,, q-j.-.q., med sorten W/m. Den totalt

uttagna effekten per meter borrhal ges av summan:

N
q = 1 (10.3.14.1)

Koordinaterna for mittpunkten i slang nummer i ges av (x.,y.' och
ytterradien pa slangen ar R .. Avstandet till origo betecknas b.R ,

Avstandet mellan tva slangar i och j ges av b,.R , se figur 10.25.

Figur 10.25. Borrhal med fyra fluidkanaler. Beteckningar for avstand

och temperatur anges i figuren.
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Enligt figur 10.25 galler for avstanden:

J I I I

b1 =\/x^y2 /RO blj =^(x. -yj)2 + (yt -y/ /R0

(i,j = 1,...,N) (10.3.14.2)

Fluidtemperaturen hos kanal i betecknas T^ (i = 1,...,N). Varmeled-

ningsfbrmagan i borrhalet utanfbr plastslangarna ar \^. I berget runt

borrhalet ar varmeledningsfbrmagan X.

Sambandet mellan fluidflbden och temperatursankning mellan bergvagg

och varmebararfluid ges av fbljande ekvationssystem:

TR * Vm11

TR - Tf2

(10.3.14.3)

R - fN

Varmemotstanden m . . och m . . ges av:

mii = if

mpi + mfci

(10.3.14.4)

Uttrycket for mf . och m . ges av (7.2.89) respektive (7.2.110). Ofta

anvandes istallet inversen t i l l ekvationssystemet (10.3.14.3) vilket

ger uttryck for varmefIbdena q. enligt:
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mil(TR = m12(TR m1N(TR

- Tf1 - Tf2) - TfN

mN1(TR mN2(TR - Tf2)

(10.3.14.5)

dar m. . ar matriselementen hos inversen t i l l matrisen m.... Dessa sam-

band utnyttjas i avsnitt 10.3.15.

Ett viktigt specialfall av ovanstaende allma'nna fall ar da markvarme-

kollektorn bestar av tva nedatgaende_och_en_uppatgaende fluidkanal^

eller vice versa. Med antagandet att de tva nedatgaende kanalerna har

samma fluidtemperatur samt ar placerade symmetriskt relativt den upp-

atgaende, kan kopplingen mellan fluidkanaler och bergvagg represente-

ras med en varmestromningskrets enligt figur 10.26. De tva nedatga-

ende kanalerna ar identiska och representeras som en enda kanal i

va'rmestrbmningskretsen. Kretsen ar identisk med den som anvandes for

tvaslangsfallet i figur 10.24. Uttrycket for varmemotstandet m. blir

dock annorlunda har eftersom detta nu inkluderar tva slangar.

Figur 10.26. Treslangssystem, dar tva av kanalerna (1 och 3) ligger

symmetriskt relativt den tredje (2). Hb'ger figur visar

motsvarande varmestromningskrets.

I figur 10.26 representeras de tva identiska nedatgaende fluidkana-

lerna 1 och 3 med en kanal som har indiceras med 1. Uppatgaende kanal

har index 2. Varmemotstinden blir da:
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1
m1 = 7 (m11 + m13

m,, = nipo - m.,,,

"'11

mfc1

(10.3.14.6a)

m22

mp2 + mfc2
(10.3.14.6b)

X - X
,) + T^-TT- ln(b' )}

A,. i" A I L.

Har ar R ., ytterradien hos slangarna i nedatgaende kanaler och R ~

ar ytterradien pS slangen i uppatgaende kanal. Varmemotstanden m .

och m- 1 med index 1 avser slangmotstand respektive motstandet mellan

fluid och plastslang for en av de tva nedatgaende kanalerna.

Varmemotstanden m 1 - och m'o beraknas med formel 7.2.110. Motstanden

mf , och mf 2 beraknas med formel 7.2.89. Dessa ar i allmanhet olika

eftersom fluidflb'det ar halften si stort i kanal 1 och 3 som i kanal

2.

De dimensionslbsa parametrarna b.,, b,,, b^, bi,, b-^ och bi, ges av

(10.3.14.2) och (10.3.14.4).

Ovanstaende analys galler fb'rstas aven for fallet da man har ornvand

pumpriktning med tva uppatgaende kanaler.
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Exempel. Givet en treslangskollektor enligt figuren nedan. Slangarnas
mittpunkter (x.,y.) ligger i hbrnen av en liksidig triangel

med tyngdpunkten i centrum av borrhalet.

Positionen hos slangarna bestammes enligt figur 10.25 av

parametrarna:

b-, = by = b, = 0.6

b12 = b13 = 2-0.6-cos(30°) = 1.039

D'vriga data for plastslangen och fluid ar samma som i exemp-

let i avsnitt 10.3.13.

Varmemotstanden m.. och ITU kan beraknas om delmotstanden m, ..

mfc2> mpV mp2' m11' m22' m12 och m13 ai

m, skiljer sig for uppatgaende och nedatgaende kanaler efter-
som flbdeshastigheten ar halften sa stor i den ena riktningen
som i den andra. Flbdesfbrhal landena ges av Reynolds tal:

Re1 = 2088 < 2300 -> laminart

Re2 = 4177 > 2300 -> eventuellt turbulent

Reynolds tal for kanal 2 ligger i interval let 2300 < Re2 < 10000

och kan saledes vara laminart eller turbulent. Antag att flo-

det ar turbulent. Da erhalles enligt (7.2.91-92):

Nu1 = 4 (for kanal 1 och 3)

Nu2 = 67.4 (for kanal 2)
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Med dessa v'a'rden beraknas m,; . och m* ~ enligt (7.2.89):

mfc1 = 0.1501 K/(W/m)

mfc2 = 0.0089 K/(W/m)

V'a'rden pi m.,,, m^, m-|o oc'n ml3 beraknas enligt (10.3.14.6b)
analogt med exemplet i avsnitt 10.3.13. Samtliga delmotstand

s'a'ttes d'a'refter in i (10.3.14.6a). De nya varmemotstanden

ges av:

m1 = -£-• (0.3902 + 0.0293 - 2-0.0293) = 0.180 K/(W/m)

m2 = 0.2489 - 0.0293 = 0.220 K/(W/m)

m12 = 0.0293 K/(W/m)

For fallet da borrhalet ar fruset (\ = 2.1 W/mK) erhalles:

m1 = 0.132 K/(W/m) m2 = 0.123 K/(W/m)

m12 = 0.0009 K/(W/m)

10.3.15 Varmemotstandet m,, mellan varmebararfluid och bergv'a'gg

I avsnitt 10.3.12-15 har va'rmemotstand for olika typer av markv'a'rme-

kollektorer angivits. Dessa motstand skall i detta avsnitt anv'a'ndas for

att erhalla ett uttryck for det totala va'rmemotstandet m,, mellan fluid

och bergv'a'gg.

Fluidtemperaturen varierar i brunnen. Det visar sig att denna tempera-

turvariation i de fiesta fall kan fb'rsummas om man ans'a'tter en kons-

tant temperatur T, enligt (10.3.15.1) i samtliga fluidkanaler. Tempe-

raturen T, :

temperatur:

raturen T, skall definieras som medelv'a'rdet mellan in- och utlopps-

Tf = 7 (Jfin + Tfut) (10.3.15.1)
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Varmemotstandet itu mellan fluid och bergvagg definieras av sambandet:

TR - Tf = mR-q (10.3.15.2)

Felet som uppstar pa grund av att fluidens temperaturvariation fbr-

summas ar mycket litet utom for fallet med laga pumpflbden. Detta

behandlas i avsnitt 10.3.17. Da'r anges aven ett uttryck for det varme-

motstand mR som fas om hansyn tages till fluidens temperaturvaria-

tion langs fluidkanalerna.

Uttrycket for mR varierar beroende av vilken kollektor som anvandes.

Enligt figur 10.22 fas for ett system med inre och yttre kanal (T =

Tc = V:

mR = my (10.3.15.3)

For tva- och treslangssystem enligt avsnitt 10.3.13 och 10.3.14 ga'ller

varmestrbmningskretsarna i figur 10.24 och 10.25 (T,;., = T,- = T,).

Motstandet m-2 seriekopplas med det parallellkopplade motstandet av

m- och nij,:

m.m,,
m = m + (10.3.15.4)

Da borrhalet har ett godtyckligt antal strbmningskanaler galler ekva-

tionssystemet (10.3.14.3) med motstandsmatrisen m... Inversen t i l l

systemet ger uttryck for varmeflbdet q. enligt (10.3.14.5).

Fluidtemperaturen T,. ar nu lika for alia kanaler j. Summeras samt-

liga ekvationer i (10.3.14.5) fas det totala varmeflbdet q:

N N .
q, = (TR - T ) I I mT (10.3.15.5)

= = 1J

Genom identif ikationen med (10.15.2) erhalles mn:
K

H H
I mT ) (10.3.15.6)

1

Varmemotstandet mn ar i det allmanna fallet inversen t i l l summan av
K 1

elementen i den inverterade motstandsmatrisen mj",!-
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Exempel. Givet ett system enligt exemplet i avsnitt 10.14. Va'rme-

motstandet mR blir da enligt (10.3.15.3):

mR = 0.0293 + p-]gQ + n',?n = °-128 K/(W/m)

Om slangarna omges med is i stall et for vatten blir va'rdet

pa m,, lika med 0.065 K/(W/m), d v s ungefar halften sa stort.

10.3.16 Temperaturvariation Tangs nedatgaende och uppatgaende kanal

Temperaturen T, hos varmebararfluiden varierar Tangs nedatgaende och

uppatgaende kanaler. I datormodellen, son beskrives i avsnitt 10.7,

tas hansyn till detta. For varje niva Tangs hela brunnen sker ett

varmeutbyte mellan fluidkanaler och bergvagg. Denna koppling kan for

tva- och treslangssystem samt for fallet med inre och yttre kanal

beksrivas med en varmestromningskrets enligt figur 10.27.

Varmeflbden mellan fluidkanalerna och bergvaggen balanseras darefter

mot konvektiva flbden Tangs kanalerna. Med randvillkoret att botten-
temperaturen ar lika for alia kanaler kan in- och utloppstemperatur

beraknas.

TR(Z)

Tf2(z)

Figur 10.27. Varmestromningskrets mellan fluidkanaler och bergvagg,

da flbden och temperaturer varierar med djupet z.

Tre exempel nedan visar numeriskt beraknade temperaturprofiler for

de typer av markvarmekollektorer som behandlas i avsnitt 10.3.12-
10.3.14.



10.58

Exempel 1 behandlar fallet med en inre och en yttre kanal da flb'det

ar turbulent i inre och laminart i yttre kanal. Exempel 2 behandlar

en kollektor som bestar av en U-slang da fluidflbdet ar turbulent.

Exempel 3 behandlar en treslangskollektor, varvid langsamt respekti-

ve snabbt pumpflbde belyses. Vidare visas effekten av sa stort v'a'rme-

uttag att vattnet runt slangarna fryser ti l l is.

Exempel 1. Markvarmekollektor med inre centrerad plastslang och ytt-

re kanal enligt figur 10.22. Data for bergvarmebrunnen ar:

H = 145 m Di = 5 m X = 3.5 W/mK C = 2.16-106 J/m3K

TQra = 8.25 °C (10.3.15.1)

Qvriga data for borrhal, plastslang och fluid (vatten) ges

av exemplet i avsnitt 10.3.12. Pumpflode och varmeuttag ar:

Vf = 0.50 liter/s

q = 20 W/m

Figur 10.28 visar numeriskt beraknad temperaturprofil for

de tva pumpriktningarna vid tiden 25 ar. Inlopps- och ut-

loppstemperatur blir i bada fallen 0.09°C respektive 1.47°C.

Pumpriktningen spelar saledes ingen roll.

Temperaturprofilerna ar i det narmaste linjara. Varmevax-

lingen mellan inre och yttre kanal ar mycket liten. Detta

beror framfbr allt pa att bvergangsmotstandet mellan plast-

slangens yttervagg och varmebararfluiden i den yttre kana-

len ar mycket stort, da strb'mningen ar laminar.
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V f = 0.50 1/s

Tfin = °-09°C

T f u t = 1 . 4 7 ° C

50-

1.0 T, l °C)

100-

145
z (m)

Vf = 0.50 1/s

Tfin = °-09°C

Tfut= 1- 4 7° C

Figur 10.28. Numeriskt beraknade temperaturprofiler vid

nedatgaende strbmning i inre kanal (vanster

figur) och nedatgaende strbmning i yttre

kanal (hbger figur).

Exempel 2. Givet en tnarkva'rmekollektor i form av en U-rbrsformad

plastslang nedsankt i borrhalet, se figur 10.23. Data for

borrhal och plastslang ar samma som i exempel 1 ovan.

Borrhalslangden H ar lika med 145 m. Plastslangarnas la'ge

samt data for varmebararfluiden (brinol-vatten) ges av

exemplet i avsnitt 10.3.13.

Pumpflbde och varmeuttag ar:

Vf = 0.75 1

q - 20 W/m

Vf = 0.75 liter/s
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Figur 10.29 visar bera'knad fluidtemperatur vid tiden 25 ar.

Eftersom uppat- och nedatgaende kanaler ligger symmetriskt

relativt mittpunkten i borrhalet sa blir profilen oberoen-

de av pumpriktningen. Fluidflbdet antages vara turbulent.

-1.0

50-

100-

0 T, (°C)

Vf = 0.75 1/s

T,. = -0.80°Cfin

, .fut = 0.12°C

145
z (m)

Figur 10.29. Temperaturprofi1 fbr U-rbr med en nedatgaen-

de och en uppatgaende fluidkanal.

Fluidtemperaturen ligger under 0 C. Varmemotstandet mellan

fluiden och plastvaggens yttersida gbr att temperaturen i

vattnet utanfbr plastslangen ar stb'rre an 0 C varfbr vatt-

net ej fryser.

Exempel 3. Givet en markvarmekollektor som bestar av tre plastslangar

enligt figuren t i l l exemplet i avsnitt 10.3.14. En av

fluidkanalerna ar nedatgaende och tva ar uppatgaende. Da-

ta for fluid och plastslang ar samma som i exempel 2 ovan.

Slangarnas relative lagen ges i exemplet i avsnitt 10.3.14.

Temperaturprofiler ges vid tiden 25 ar fbr tre fall med

olika pumpflbden och varmeuttag. Vid tiden 25 ar ar de tre-

dimensionella effekterna runt brunnen fullt utvecklade.
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Figur 10.30, v'a'nster, visar temperaturprofiler Tangs nedat-

och uppatgaende kanal da pumpflbdet a'r 0.75 liter/s. Streck-

ad temperaturprofil visar fallet da pumpriktningen a'r om-

v'a'nd. Flbdet a'r lamin'a'rt i de tva parallellkopplade kana-

lerna och turbulent i den tredje motkopplade.

Figur 10.30, hbger, visar temperaturprofiler da pumpflb-

det a'r sa'nkt t i l l en tredejdel. Flbdet a'r da lamina'rt i

samtliga kanaler.

Fluidtemperaturen ligger i detta fall som lagst, runt cir-

ka -2°C. Temperaturskillnaden mellan vattnet utanfbr slang-

arna och in t i l l fluiden a'r emellertid sa stort att vatten-

temperaturen aldrig understiger 0 C varfbr frysning ej upp-

stir. Orsaken till den stora temperaturdifferensen a'r att

bvergangsmotstandet mellan fluid och plastslang a'r mycket

stort vid laminart flbde.

50 -

-2.0 -1.0 0 T,

100-

H5
z (m)

T

145
z (m)

fin

Tfut

fin

'fut

-2.33°C

= -0.44°C

Figur 10.30. Temperaturprofiler langs fluidkanalerna vid

tva olika pumpflbden. Streckade kurvor avser

omvand pumpriktning.
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I figurerna ovan framgar att in- och utloppstetnperatur ej

paverkas av pumpriktningen vid tva decimalers precision.

Figur 10.31 visar fallet da varmeuttaget ar dubbelt sa

stort som tidigare: q = 40 W/m. Pumpflbdet ar 0.75 1/s.

Det ar turbulent i nedatgaende kanal och laminart i de tva

uppatgaende. Vattnet runt slangarna ar i detta fall fruset,

varvid vardet pa varmemotstandet mellan slangar och berg

ar betydligt lagre (\ = 2.1 W/mK).

-7 0

Vf = 0.75 1/s

Tfin = -7'29°

fut

Figur 10.31. Treslangssystem med fruset borrhal. Varmeut-

taget ar 40 W/m.

10.3.17 Varmemotstandet mA da hansyn tages t i l l langsgaende

temperaturvariation i fluidkanalerna

I avsnitt 10.3.15 anges uttryck for varmemotstandet m^ mellan fluid-

kanaler och bergvagg da man r'a'knar med en konstant fluidtemperatur

T,. och konstant bergvaggstemperatur TR. Vid en exaktare analys skall

man ta hansyn till fluidens temperaturvariation la'ngs strb'mnings-

kanalerna. I detta fall far man ett korrigerat va'rmemotstand mA.

Varmemotstandet mJ, kan beraknas analytiskt under fbrutsattning att
K

temperaturen TR vid bergvaggen ar konstant och att markvarmekollektorn

ar av den typ som kan beskrivas med varmestrbmningskretsen i figur

10.27. I detta avsnitt anges uttrycket for m' . Harledningen kommer

att redovisas i en annan skrift.
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I avsnitt 10.3.18 visas med exempel att uttrycket for mR ger en nas-

tan perfekt bverensstammelse med de resultat som fas vid direkt nu-

merisk berakning, varvid !„ varierar Va'ngs borrhalet.

Sambandet 10.3.15.2 galler fortfarande da man anvander ett korrige-

rat varmemotstand mi me! Ian fluid och bergvagg:

TR - Tf = mR-q (10.3.17.1)

Som f luidtemperatur T, utnyttjas fortfarande medelvardet (10.3.15.1):

T + T ) (10.3.17.2)

Det korrigerade varmemotstandet mi for kollektorn som beskrives av
K

en varmestromningskrets av Y-typ enligt figur 10.27 blir:

m^ = nyn coth(n) (10.3.17.3)

Resultatet ar markvardigt enkelt. Formel 10.3.17.3 galler for de kol-

lektorer som beskrives i avsnitt 10.3.12 och 10.3.13, samt for den typ

av treslangskollektor (2 + 1) som beskrives i avsnitt (10.14).

Parametern n ar for system med inre och yttre kanal:

i + 4 ̂ V (10.3.17.4)-
2CfVfmy m.

, dar uttryck for m^ och m ges av (10.3.12.1-2).

For tva- och treslangssystem ges ri av

dO.3.17.5,

Ha'r ges m., m~ och m-,, av (10.3.13.3 -4) for tvaslangssystem och av

(10.3.14.6) for trekanalssytem. Varmemotstandet mR ges av (10.3.15.4).
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Det kan noteras att varmestrbmningskretsen i figur 10.27 ar identisk

med den i figur 10.22 om m*, ITU, m,̂  ocn nip utbytes mot m., 0, m

respektive m . Uttrycket (10.3.17.4) ar saledes ett specialfall av

(10.3.17.5).

Korrektionsfaktorn n coth(n) visas i figur 10.32. Den gar mot 1 da n

gar mot 0. For sma varden pa n galler approximative

n coth(n) - 1 + (n < 1.0) (10.3.17.6)

Faktorn n coth(n) ligger mellan 1 och 1.05 da n ar mindre an 0.4.

Detta ger approximationen:

= mR (n < 0.4) (10.3.17.7)

Villkoret n < 0.4 i (10.3.17.7) ar i de fiesta fall uppfyllt. Endast

for mycket langsamma fluidflb'den behbver faktorn n coth(n) medtagas.

2.0

1.8

1.6

1.4

1.2

1 0

/
/—T]

1.0 1.5 2.0

Figur 10.32. Korrektionsfaktorn n coth(n) i forme! 10.3.17.3)

Vid botten av brunnen, da'r fluidkanalerna mots, har man fluidtempera-

turen T.. Det explicita uttrycket for denna temperatur ar:

Tb = TR
e

cosh(n)
(10.3.17.£
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Har ges n av (10.3.17.4) eller (10.3.17.5). Exponenten B ges av:

H m1 " m2
2CfVfmR' m1 + v\ (10.3.17.9)

Omva'nd pumpriktning erhalles genom att sa'tta Vf negativt. Faktorn
n '

e /cosh(n) i formel (10.3.17.8) blir olika for de tva pumpriktning-

arna. For sma B och n. erhalles fbljande serieutveckling:

(10.3.17.10)

Detta ger fbljande approximation:

m., - in, H/CfV,- do.3.17.11

(B < 0.5 n < 0.5)

Man far tva korrektionstermer varvid den fbrsta innehaller faktorn
2

V, och den andra V,. Den forsta korrektionstermen byter tecken vid

omv'a'nd pumpriktning, medan den andra ar oforandrad.

Exempel. Givet ett treslangssystem enligt exemplet i avsnitt 10.14.

Varmemotstandet mR blir enligt exemplet i avsnitt 10.3.15

lika med 0.128 K/(W/m). Da hansyn tages till langsgaende

temperaturvariation skall m,, ersattas med m^ enligt

(10.3.17.3). Vardet pa n ges da for borrhalslangden H =

145 m enligt (10.3.17.5) av:

n = 145/ (2-4 .2-10 6 -0 .75-10" 3 ' 0 .128) - \ / 1 + 4- °-0293
0.180 + 0.220

= 0.204

Med approximationen (10.3.17.6) fas foljande varde pa mi:

m^ •= 0.128-(1 + (0.204)2/3) = 0.128(1 + 0.014) = 0.130 K/(W/rt

Vardet pa varmemotstindet fbrandras sSledes endast 1.4% da

temperaturvariationen i fluiden beaktas.

9-U3
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10.3.18 Slutgiltiga formler for Tfi och Tf t

Vid en precis dimensionering behbver man kanna fluiden in- och utlopps-

temperatur, T,. och T- .. I detta avsnitt samtnanfattas de slutgil-

tiga formlerna baserade pa de fbregaende avsnitten.

Skillnaden mellan in- och utloppstemperatur bestams av varmeuttaget

Q (W) enligt energibalansen:

Tfut - Tfin = "Ĉ  (10.3.18.1)

, da'r C.: ar varmekapaciteten hos varmebararf luiden och V, (tn^/s) ar

pumpflbdet. Fluidtemperaturen T- definieras enligt (10.3.15.1) som

medelvardet av in- och utloppstemperaturen:

Tf = ̂ Tfin + W (10.3.18.2)

Ur (10.3.18.1) och (10.3.18.2) kan Tfin och Tfut losas ut:

T - T Q'fin 'f 7C^

T = T + V
fut f 2CfVf

(10.3.18.3)

Fluidtemperaturen T, erhalles enligt formler i avsnitt 10.3.15. For-

mel 10.3.15.2 anger att temperatursankningen mellan fluid och berg-

vagg ar:

TR - Tf = mR-q (n < 0.4) (10.3.18.4)

, da'r in,, ges av formel 10.3.15.3 och 10.3.15.4 for de typer av kollek-

tor som beskrives i avsnitt 10.3.12 - 10.3.14. Varmeuttaget q = Q/H

(W/m) anges per meter borrhal.

For en enskild brunn beraknas !„ enligt de formler som anges i av-

snitt 10.3.6, 10.3.7, 10.3.8 eller 10.4. For system med flera in-

fluerande brunnar beraknas TR enligt avsnitt 10.8 eller 10.9.
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Formel 10.3.18.4 galler med god noggrannhet utom for mycket langsa-

ma pumpflbden da man maste anva'nda det korrigerade varmemotstandet

mR:

TR - Tf = mR-q (n > 0.4) (10.3.18.5)

Uttryck for m^ ges i avsnitt 10.3.17.

Kombineras (10.3.18.3) med (10.3.18.4) erhalles foljande slutgiltiga

uttryck for in- och utloppstemperaturen:

Q Q
'fin ~ !R " mR'"H "

Tfut TR " V"H +

(10.3.18.6)

Exempel. Givet en treslangskollektor enligt exemplet i avsnitt

10.3.14. Slangarna 'a'r nedsankta i ett borrhal med djupet

H = 145 m. Tvi av fluidkanalerna 'a'r nedatgaende. Varme-

uttag och pumpflbde a'r konstanta och lika med:

q = 20 W/m (Q = 20-145 = 2900 W)

Vf = 0.75 liter/s

In- och utloppstemperatur skall har ber'a'knas vid tiden ett

ar.

Temperaturen T~ vid bergvaggen ges vid denna tid av samban-

det 10.3.6.4 (t < t^, dar TQm = 8.25°C antas som markens

ostbrda medeltemperatur.

"̂  " - " ̂/>-o •* -]54.-|Q',

(0.055)̂

TR = 3.46°C

Fluidtemperaturen T, ges av sambandet (10.3.18.4)

(n = 0.204 < 0.4). Vardet pa mR beraknades i exemplet i
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avsnitt 10.3.15 till 0.128 K/(W/m). Fluidtemperaturen blir:

3.46 - Tf = 0.128-20

Tf = 0.90°C

In- och utloppstemperaturen ges av (10.3.8.3):

V =0.90 =0.44°C
Tin 2-4.2-10 -0.75-10"

T = o.90 + 2900 , 1>3fioc
TUI 2-4.2-10-0.75-10"

Bottentemperaturen T. beraknas med formel 10.3.17.8:

-0.18
T - 3.46 +(3.46- 0.90)

Vid omvand pumpriktning byter V,; tecken och exponenten -0.18

blir positiv. I detta fall blir Tb lika med 0.87°C.

Formlerna ovan for T,. och T, . bygger pa approximativa Ibsningar.

Dessa skall har jamforas med direkta numeriska berakningar vilka har

gjorts for tre exempel i avsnitt 10.3.16. Resultaten sammanfattas i

tabell 10.6.
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Exempel 1

0
Exempel 2

0
Exempel 3

/0~"\

Beraknings-
nietod

numeri sk

(10 .3 .18 .4 )

(10 .3 .18 .5)

numerisk

(10.3.18.4)

(10.3.18.5)

numerisk

(10.3.18.4)

(10.3.18.5)

numerisk

(10.3.18.4)

(10.3.18.5)

numerisk

(10.3.18.4)

(10.3.18.5)

n coth(ri)

-

1

1.092

-

1

1.011

-

1

1.014

-

1

1.085

-

1

1.042

Vf
d/s)

0.50

0.75

0.75

0.25

0.75

q
(W/m)

20

20

20

20

40

1 ar

f in

1.29°C

1.35

1.21

0.40

0.43

0.40

0.42

0.43

0.40

-1.14

-0.91

-1.16

-4.90

-4.79

-4.90

' fut

2.67°C

2.73

2 .59

1.32

1.35

1.32

1.34

1.35

1.32

1.62

1.85

1.60

-3.06

-2.95

-3.06

25 ar

T f in

0.09°C

0.15

0.01

-0.80

-0.76

-0.79

-0.78

-0.76

-0.79

-2 .33

-2.08

-2.33

-7.29

-7.17

-7.28

' fu t

1.47°C

1.53

1.39

0.12

0.16

0.13

0.14

0.17

0.13

-0.44

-0.69

-0.43

-5.45

-5.33

-5.44

Tabell 10.6 In- och utloppstemperatur for exempel 1-3 i avsnitt 10.3.16. Jamfb'relse

mellan nuneriskt ber'a'knade varden och de varden som fas med formlerna

10.3.18.4 och 10.3.18.5.

Den maximala avvikelsen fran numeriskt ber'a'knad in- och utloppstem-

peratur fas for exempel 3 da pumpflbdet ar 0.25 1/s och formel

10.3.18.4 anvandes. Felet ar 0.25°C eller 3% relativt temperatur-

s'a'kningen mot ostbrd marktemperatur. Parametern n ar i detta fall

lika med 0.6 och uppfyller ej strikt kriteriet (n < 0.4} for att

formeln skall kunna anvandas. Anvandes ist'a'llet den i detta fall

korrekta formeln 10.3.18.5 fas en perfekt overensstammelse med

numeriskt ber'a'knade temperaturer.
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10.4 Dimensioneringsregler for en bergva'rmebrunn

Med hjalp av analyserna av de termiska delprocesserna enligt avsnitt

10.3 kan dimensioneringsregler avseende en bergva'rmebrunns termiska

prestanda anges. I detta avsnitt behandlas en enskild brunn. Motsva-

rande dimensioneringsregler for ett system av bergva'rmebrunnar, som

termiskt paverkar varandra, ges i avsnitt 10.9. De extra komplika-

tionerna vid aterladdning av brunnen sommartid och vid uttagstempera-

turer under 0°C behandlas i avsnitt 10.5-6.

Utgangspunkten for dimensioneringen a'r ett givet effektuttag Q(t) (W),

vilket varierar med tiden pa ett fbreskrivet sa'tt. Normalt a'r effekt-

uttagsfunktionen lika ar fran ar. Med hjalp av data for brunn och berg

bera'knas den erforderliga brunnsteraperaturen Tn(t). Ar de erhallna

uttagstemperaturerna la'mpliga, a'r dimensioneringen avklarad. Om sa
ej a'r fallet modifieras forutsattningarna och nya uttagstemperaturer

beraknas. Man far iterera sig fram tills ett valdimensionerat system

erhalles. De viktigaste parametrarna som kan varieras a'r brunnsdjupet

samt det fb'reskrivna effektuttagets tidsvariation och stb'rsta va'rde.

Dimensioneringen besta'ms framfbr allt av den la'gsta brunnstemperaturen

Tp . under arscykeln. Det prima'ra kriteriet a'r att denna temperatur
ej far understiga en given niva. I system som ej tal frysning i brunnen

maste Tn . vara stbrre an 0 C med en viss sa'kerhetsmarginal. Kravet

pa Tn • hanger ocksS samman med varmepumpens krav pa temperaturnivaer

vid fbrangaren.

Dimensioneringsreglerna utgar fran givna effekter, varefter brunnstem-

peraturer beraknas. Man skulle i stallet kunna utga fran givna uttags-

temperaturer och berakna effekten. Detta a'r emellertid ej tillradligt

da det ger en mycket mer komplicerad analys beroende pa att man ej kan

gdra samma direkta superposition av Ibsningar.

For dimensionering maste man ka'nna fbljande prima'ra parametrar:

X bergets va'rmeledningsfb'rmaga (W/m K)

2
a bergets temperaturledningstal (m /s)

H aktivt brunnsdjup (m)
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2R brunnsdiameter (m)

m va'rmemotstand per meter brunn mellan varmebararfluid i

brunnen och berget precis vid brunnen (K/(W/m))

T ostbrd bergtemperatur pa hal va brunnsdjupet (°C)

Vid dimensioneringen bbr det fbreskrivna effektuttaget Q(t) renodlas till

en relativt enkel form. Mer komplicerade fall kan om sa erfordras kontroll-
ra'knas i efterhand.

Det arliga varmeuttaget E (J ) foreskrivs. Detta ger en fbreskriven

medeleffekt Q :

Q o=^ t o = 1 a r (10.4.1)

Vidare foreskrivs en bverlagrad sinusformad effekt med amplituden Q..

Effektuttaget fran dessa tva bitar a'r da:

(W) (10.4.2)

Till detta bverlagras slutligen en eller flera effektpulser vilka kan

representera ytterligare variationer under ett dygn eller maximal
effektbelastning under en kbldknapp. (Energiuttaget fran dessa pulser

ra'knas vid sidan om medeleffekten Q .) Vi nbjer oss med att ge all-

manna formler for fallet med en effektpuls. Effektpulsen startar for

ar n vid tiden nt + t och pagar en tid t,. Den har storleken CL.o a t. c.
Figur 10.33 visar utseendet pa den fbreskrivna, dimensionerande effekt-

pulsen. Detta val av komponenter for effektuttaget bbr normalt ge en

tillracklig flexibilitet for en god dimensionering.

Den mot effekten (10.4.2) svarande brunnstemperaturen TD(t) erhalles ur
K

formlerna 10.3.2.10 och 10.3.8.3. Dessa tva bidrag och pulskomponenten

beraknas var for sig. Lat Tn beteckna bidraget frSn det stationara
KO

uttaget Q . Till denna del hanfbres ocksa den ostorda tempera turnivan

T . Bidraget fran den sinusformade effekten betecknas TD,(t). Slut-om K i
ligen betecknas bidraget fran effektpulsen T t ) . Den totala brunns-
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Figur 10.33. Typ av fb'reskrivet, dimensionerande effektuttag med en

medelniva Q , en periodisk del med amplituden Q. och en

bverlagrad effektpuls under en tid t~.

temperaturen TD(t) erhalles genom superponering:
K

TR(t) = TRo + TR1 ( t ) +TR2(t) (10'4-3)

Den stationara komponenten ges av forme! 10.3.2.10:

TRo Tom [10.4.4)

Vid anvandning av denna forme! bortses fran den transienta insvangningen

till stationart uttag. Tar man ha'nsyn till detta skall i stallet forme!

10.3.6.1 anvandas. For exemplet (10.3.6.3) med figur 10.16 blir den

transienta temperatursankningen i storleksordningen 75% av stationart

va'rde efter ett ar. Efter fern ar har den transienta sankningen uppnatt

storleksordningen 90% av stationart va'rde. Formel 10.4.4 bor da'rfbr nor-

malt kunna anvandas vid dimensionering.

Den sinusformade komponenten ges av formel 10.3.8.3:

(10.4.5)

R' = = Ro at
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I det aktuella fallet da'r periodtiden t ar ett ar kan formlerna

5.2.3.11 anvandas for amplitudfunktionen A(R') och fasfunktionen

B(R'):

A(R') = /fln(2/R') - y)2 + n2/16

(R' < °'1^ (10.4.6)
/ „„ x Y= 0.5772

B(R') =

Exempel. Lat oss berakna amplitudfunktion A och fasfunktionen B for

fbljande fall:

A = 3.5 W/m-K C = 2.16 MJ/m3-K

RQ = 0.055 m tQ = 1 ar

Dessa data ger

, „ /at"
a = 1.62-10" m /s d = /—- = 4.03 m

0 IT

R /?
R 1 = -j— = 0.0193

o

A = 4.14 B = 0.191

Fasfbrdrbjningen i dagar blir:

t
- 2 ^ - 6 = 11 dagar

Temperaturens minimum intraffar saledes 11 dagar efter maxi-

mal t effektuttag Q,.

I tabell 10.7 anges ampl itudfunktionen A, fasfunktionen B och fasfbrdrbj-

ningen ra'knad i tid, B-t /(2-rr), for fyra praktiskt viktiga fall.

Effektpulser analyseras i avsnitt 10.3.7. Bidraget 1^ fran pulsen ges

under den tid da pulsen pagar av formel 10.3.7.3:

Q, , ̂ (t-nvtj, , ; i o_ 4_ ? )

Y = 0.5772 (0 < t-ntQ-ta
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A

B

B-t o / (2Tr)

(dagar)

X = 3.5 W/m-K

RQ = 0.055 m

4.14

0.191

11.1

x = 3.0 W/nrK

RO = 0.055 m

4.06

0.194

11.3

X = 3.5 W/m-K

RQ = 0.075 m

3.84

0.206

12.0

X = 3.0 W/m-K

RQ = 0.075 m

3.76

0.210

12.2

C = 2.16 MJ/nTK tQ = 1 ar

Tabell 10.7. Amplitudfunktion A, fasfunktion B och tidsfbrdrbjning

Bt /(2ir) for sinusformad effektkomponent for nagra prak-

tiskt viktiga fall. Formel 10.4.5-6.

Ha'r anger n det aktuella aret. Pulsen startar vid tiden nt +t . Deno a
ar under tiden !„. Effekten av pulsen fran de fbregaende aren har

ej medtagits eftersom den normalt ar fbrsumbar. Avklingningen efter

pulsen ges av ett uttryck av typen 10.3.7.7. Detta ar normalt av

mindre intresse da temperaturen vid maximal belastning sbkes.

Den totala temperaturen vid brunnen ges nu av de fbrhallandevis enkla

uttrycken 10.4.3-7. De c

het det lagsta vardet Tt

uttrycken 10.4.3-7. De ger brunnstemperaturen TD under aret och i synner-
K

Rmin"

Den stbrsta temperatursankningen fran den sinusformade effekten besta'ms

av amplituden i formel 10.4.5.

R1,min 2TTXH
A(R')

t B(R')t
;10.4.8)

Den stbrsta temperatursankningen frSn effektpulsen uppnas vid dennas

slut:

TR2,min
4at

da t = nt +t +t,o a 2 [10.4.9)

Minimal enligt formel 10.4.8 ar relativt flackt. Ett viktigt special-

fall ar da ovanstaende tva minima i huvudsak sammanfaller i tiden.



10.75

Ett lampl igt krav a'r

ô B< R I) *o
4 2ir li '„ (to = 1 ̂ )

Om detta tidskrav a'r uppfyllt sa avviker T^ vid tiden for pulsens

slut (t, + t,) maximalt 10% fran vardet enligt formel 10.4.8. Uttryckena c.
10.4.8 och 10.4.9 kan da adderas. Den lagsta uttagstemperaturen ges

da av fb'ljande uttryck:

TRmin - Tom - V Ko - V K1 - V CK2 + K2 ln (VW}

(10.4.11)

Konstanterna K , K., Kp och Ki ges av:

KI = O-TU A(R')2TTXH '" V2RJ "1 " 2TTAH

Har ges R' av (10.4.5) och A av (10.4.6). Formel 10.4.11-12 a'r normal t

det grundlaggande uttrycket for dimensioneringen. Formeln a'r giltig da

tidskravet 10.4.10 aruppfyllt. Detta krav bortfaller, om man inte har

nagon dimensionerande effektpuls under den tid da sinuskomponenten ger

maximal effekt, dvs. om Q« a'r lika med noil.

Konstanterna K , K,, K2 och Ki har dimensionen K/W eller K/kW. De beror

pa parametrarna X, C, R och H. I tabell 10.8 ges dessa fyra dimensioner-

ande effektuttagsfaktorer for nagra praktiskt viktiga pararneterkombina-

tioner.

Varmemotstandet mellan fluiden och berget vid brunnen a'r m^ (K/(U/m)).

Sambandet mellan temperaturen 1^ i varmefluiden och temperaturen T^ i

berget vid brunnen blir:

TR - Tf = £(£! - m R (10.4.13)
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x(W/m K)

3.5

3.0

3.5

3.0

3.5

3.0

3.5

3.0

R0(m)

0.055

0.055

0.075

0.075

0.055

0.055

0.075

0.075

H(m)

150

150

150

150

100

100

100

100

K0 (K/kW)

2.19

2.55

2.09

2.44

3.10

3.61

2.95

3.45

K1 (K/kW)

1.26

1.44

1.16

1.33

1.88

2.16

1.74

1.99

K2 (K/kW)

0.70

0.79

0.61

0.68

1.06

1.19

0.91

1.03

K2 (K/kW)

0.15

0.18

0.15

0.18

0.23

0.27

0.23

0.27

Tabell 10.8. Dimensionerande effektuttagsfaktorer K , K., K« och K2

i formel 10.4.12 for nagra praktiskt viktiga parameter-

kombinationer. C = 2.16 MJ/m3 • K

Detta ger da 10.4.10 a'r uppfyllt

Q0+Q1+Q2
fmin Rntin H "R

Exempel 1. Lit oss ta data enligt det fb'rsta fallet i tabell 10.6:

3X = 3.5 W/m - K C = 2.16 MJ/m° • K

RQ = 0.055 m H = 150 m
[10.4.15)

De dimensionerande effektuttagsfaktorerna ges i tabell 10.6.

Formel 10.4.11 for lagsta uttagstemperatur (i berget vid
brunnen) blir:

om 1n

Effektfaktorerna raknas i kU, medan t^/t , anger effekt-

pulsens langd i dagar.

Vi tar fbljande dimensionerande effekter

QQ = 3 kW Q1 = 2.5 kW Q2 = 2 kW
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Da fas:

= 9.7 + 1.4 + 0.3 In (t2/td ) (°C)

Bidraget fran pulsen blir i nagra fall:

t2 = 0.1 dag 0.7 °C

t2 = 1 dag 1.4

t2 = 5 dagar 1 .9

t2 = 30 dagar 2.4

Utan effektpuls (Q2 = 0) erhalles:

- n .om RrrnnT - Tn . = 6.57 + 3.15 = 9.7 °C

Exempel 2. Dimensionerande utgangsdata ges av 10.4.15-16 i exempel 1.

Effektpulsens langd t~ ar 5 dagar. Ostbrd bergtemperatur T

ar 8.3 C. For dimensioneringen ges kravet:

-1.5°C (10.4.17)

Utgangsdata ges enligt exempel 1 ovan

TRtnin = 8'3 " 6' 57 " 9' 7 " 1'40 " °'3 ln(5)

Dimensioneringskravet 10.4.17 uppfylles e j .

En mbjlighet ar att ta bort effektpulsen. Da fas:

8.3- 6.57- 3.15= -1.4°C

Vi hamnar precis pa gransen for kravet 10.4.17. Detta betyder

att den aktuella bergvarmebrunnen under tiden for maximalt
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effektuttag, Q(t) =* Q + Q,, utnyttjas kontinuerl igt utan

bverlagrad effektpuls. Systemet klarar under de givna fb'r-

utsattningarna ej denna si'sta belastningsdel.

Exempel 3. Dlmensioneringsreglerna skall tillampas pa exempel 1 i

avsnitt 10.2. Data ges av 10.2.1-4. Det manadsvis fbreskrivna

effektuttaget ges i figur 10.3.

Medeleffektuttaget Q bestams av det arliga varmeuttaget

15 MWh:

Q0 = 1.71 kW

Maximal effekt under manad 7 ar 2.98 kW.

Amplituden for sinusvariation valjes darfbr till:

Q1 = 2.98 - 1.71 = 1.22 kW

Dessa tva komponenter bbr racka for en forsta dimensionering.

Effektpuls medtages ej (0~ = 0).

Konstanterna K och K. blir

KQ = 2.24 K/kW K1 = 1.29 K/kW

Da bergtemperaturen T ar 8.3 C fas

TRmin = 8'3 " 1'71 ' 2'24 " 1'22 ' 1'29 = 2'9 °C

Denna temperatur skall jamfbras med den numeriskt beraknade
enligt (10.2.5), vilken efter 25 ar ar 3.2 °C.
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10.5 Aterladdning sommartid

Ett sa'tt att fbrbattra bergvarmebrunnens effektavgivning och minska

den langsiktiga nedkylningen a'r att aterfbra varme sommartid. Ra'ck-

vidden av nedkylningen i berget kring brunnen behandlas i avsnitt

10.10. Under perioder da varme tillfbres brunn och berg skall effekt-

uttaget Q(t) raknas negativt.

For att belysa effekten av aterladdning skall vi forst ta ett renodlat

exempel. Varme uttages med konstant effekt Q(t) = Q under fyra manader.

Efter en period av tva manader utan uttag, Q(t) = 0, aterladdas systemet

med en konstant effekt, Q(t) = -a • Q , under fyra manader. Efter tva

manaders Vila bbrjar en ny likadan arscykel. Se figur 10.34. De fyra

fallen a = 0, 1/2, 1 och 2 behandlas. Fbljande data va'ljes:

X = 3.5 W/m - K C = 2.16 MJ/nT • K

H = 146 m Di = 4 m Ro = 0-055 m T o m=8.3 UC

QQ = 4.5 kU Q(t) enligt figur 10.27. ( 1 0 . 5 . 1 )

a = 0, 1/2, 1, 2

Qlt)

10
12

-aQ0

/ f

^ • t l m a n a d )

Figur 10.34. Effektuttag for exempel som illustrerar effekten av ater-

laddning. Data enligt 10.5.1.

Temperatursankningen Tom - Tn mellan ostbrd mark och brunnen kan t.ex.
K

beraknas enligt pulsanalystekniken i avsnitt 10.3.7. Formel 10.3.7.9 an-

va'ndes. Maximal temperatursankning, TR . , erhalles vid uttagspulsens

slut (t - nt = 4 manader). Tabell 10.9 anger TRmin for ar 1, 3 och 10
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for de fyra vardena pa a. I tabellen anges ocksa temperaturen vid

slutet av aterladdningspulsen (t - n-t = 10 manader), Tp . Detta

ar den hbgsta inladdningstemperaturen.

ar

a = 0

a = 0.5

a = 1

a = 2

TRmin (°C>

1 3 10

1.7 1.4 1.1

1.7 1.6 1.5 .

1.7 1.9 1.9

1.7 2.4 2.7

W (°C>

1 3 10

-

11.3 11.2 11.1

14.6 14.6 14.7

21 .2 21.6 21.9

n

1 3 10

1 1 1

1 1 . 04 1 . 06

1 1 . 08 1.13

1 1.17 1.30

Tabell 10.9. La'gsta uttagstemperatur och hbgsta aterladdningstemperatur

vid olika aterladdningsgrad (a). Data enligt (10.5.1) och
figur 10.27. Ett matt pa prestandafbrbattringen ges av n

(forme! 10.5.2).

Tabell 10.9 visar att hbjningen av Tp • ar relativt liten. For balanserad

aterladdning (a = 1) stiger lagsta temperaturen fran 1.4 till 1.9 °C

tredje aret. For det tionde aret sker en fbrbattring fran 1.1 till 1.9 °C.

En fb'rdubblad aterladdning ger en fb'rbattring i storleksordningen 1 till

Ett mcitt pa prestandafbrbattringen vid aterladdning ar kvoten mellan

temperatursankningen utan aterladdning och med aterladdning:

om Rmin, g=0
11 T ~̂~Tom Rmin, a

(10.5.2)

Tabell 10.9 ger n for det aktuella exemplet. Vid balanserad aterladdning
(a=1) blir fbrbattringen runt 10%.

Temperaturfbrandringarna mellan ar 1, 3 och 10 i tabell 10.9 ar intressanta.

For a = 0 har man en langsam sankning. For balanserad aterladdning, a = 1,

stabiliserar sig temperaturerna snabbt. Efter tredje aret sker va'sent-
ligen ingen fbrandring mer. Vid fbrdubblad aterladdning har man ater en

langsiktig variation. Detta fall kan ses som summan av ett balanserat

fall och en ren aterladdning, vilken har samma langtidsbeteende som det

rena uttaget.
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Dimensioneringsreglerna i avsnitt 10.4 kan direkt anvandas for fall

med aterladdning. Medeluttaget Q i formel 10.4.11 blir noil, om

samma varmemangd uttas och tillfbres varje ar.

Lat oss jamfbra fbljande tva fall med samma maximal a effektuttag:

(10.5.3)

Qb(t) = ( Q + Q

Formel 10.4.11 kan anva'ndas. Forhallandet mellan stbrsta temperatur-
sankningar blir:

Data for berg och brunn enligt exempel 10.5.1 ger

Q 0 -7 .16 + Q r4.14

Speciellt ger Q. = Q :

n = 1.36 (10 .5 .5)

Man bbr observera att de uttagna varmemangderna ej ar lika vid denna

jamfbrelse.

Genom att utnyttja formlerna for ett pulstag i avsnitt 5.3.7 kan en

relativt allmangiltig formel for prestandafbrbattringen vi.d aterladdning

anges.

TvS renodlade fall jamfbres. I det fbrsta fallet har man ett konstant

effektuttag under ett halvt ar. I det andra fallet aterladdas systemet

under den andra halvan av aret:

10-U3
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Fall 1.

2Q 0 < t - nt < t /2
Q(t ) = 1 ° • ° ° (10 .5 .6)

i ° V2 < * - nto < to

(t0 = 1 ar) (n = 0,1,...!

Fall 2.

2Q 0 < t - nt < t /2
Q(t) = J ° ° ° (10 .5 .6 ' )

1 -2(^o V2 < * - nto < '0

Fall 1 ar ett pulstag av den typ som visas i figur 5.3.8 (a = 1/2,

q = Q0/H). Temperatursankningen ges av formlerna 5.3.5.2-4. Fall 2 ar

vasentligen ett pulstag av samma typ. Medelnivan bortfaller dock

(a = 1/2, qo = 2Qo/H, T° = 0).

Ett matt pa aterladdningens effekt ar att jamfbra kvoten mellan maximal

temperatursankning utan aterladdning (fall 1) och med aterladdning

(fall 2) for ett visst ar n:

(10.5.7)
T - T
om Rmin, 2

Det air rimligt att gora jamfbrelsen for det femte aret.

Med beteckningar enligt avsnitt 5.3 erhalles for det femte aret:

R2 R2
1 ( ° N ' 1°

T' 2J
n, = - - — (10.5.8)

-5 VatQ ' 2

Funktion Eg ges i figur 5.3.12. Exponentialintegralen ges t.ex. av

5.3.2.2, 5.3.2.6 och approximationen 5.3.2.8. For nagra praktiskt

vanliga fall erhalles:
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tQ = 1 ar C = 2.16 • 106 J/m3 • K

RQ = 0 .055 m X = 3 . 5 W / m - K

2. RQ = 0 .055 m X = 3 . 0 W / m - K

3. R = 0.075 m X = 3.5 W/m • K nc = 1.16o b

4. RQ = 0 .075 m x = 3.0 W/m - K ng = 1.15

Dessa exempel visar att aterladdningen ger en fbrbattring av prestanda

med cirka 15%.

10.6 Uttagstemperaturer under 0 °C.

I en bppen bergvarmebrunn dar brunnsvattnet anvands som varmebarare far

ej frysning ske. Detta begransar effektuttaget. Ett alternativ ar att

ha ett slutet varmebararsystem, dar en va'tska cirkulerar t.ex. i ett

U-rbr i brunnen. Utanfbr cirkulationskanalerna har man vatten som

fryser till is vid varmeuttag under 0°C. Alternativt kan denna

volym fyllas med ett fast material.

De foregaende analyserna ga'ller fortfarande med fbljande kompletteringar.

Den viktigaste fbrandringen ar att de lokala varmemotstanden m mellan

varmebarare och berg vid brunnen paverkas. Vidare skall man, da brunns-

vattnet fryser, ta ha'nsyn till dess frysvarme.

Lat oss fbrst analysera effekten av frysvarme. Vattenmangden i brunnen

Vw ges av:

v < ^ ' H (10.6.1)

Exakta va'rden beror pa de inre kanalernas volymandel . Numeriskt ga'ller

t.ex.

R = 0.055 m H = 150 m V < 1.4 m3

° w ~ (10 .6 .2 )

RQ = 0.075 m H = 150 m VM < 2.6 m3
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Vattnets sma'ltvarme betecknas LW (=333 MJ/m3 -K). Lat tf beteckna

den tid som kravs for att frysa vattenvolymen Vw med effekten Q .

Da galler:

Q • t, = V • L (10.6.3)
vo frys w w

Ett numeriskt exempel a'r:

0 = 5 kW , ,-,„ . Jo
0 tf = 2.333-10

Trys 5000
Vw =

Frysning och smaltning av vattnet i brunnen representerar saledes

en va'rmemangd son motsvarar nagot dygns uttag. Vid analyser av la'ngre

tidsperioder spelar brunnsvattnets frysvarme ingen roll. Frysning av

de sma vattenmangder som finns i sprickor i berget a'r normal t betydelse-

Ibs.

Frysvarme behbver bara beaktas for korttidsanalyser under perioder av

frysning och smaltning av vattnet i brunnen.

10.7 Datormodell

En datormodell (Superposition Bore-hole Model) finns utvecklad for be-

rakning av det termiska fbrloppet i mark och brunn for en enskild berg-

va'rmebrunn och for ett system av bergvarmebrunnar som influerar varandra.

Modellen har anvants for datorberakm'ngarna i detta kapitel.

Fbljande yttre fbrutsattningar galler.

1. Va'rme uttages fran omgivande mark via en eller flera vertikala eller
gradade bergvarmebrunnar.

2. Marken bestar av homogent material.

3. Ingen konvektiv varmetransport i marken.

4. Inget uttag av vatten via brunnen. Enbart cirkulation.

Modellen tillater aven att varme inmatas.
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Berakningsmodellen baserar sig pa superposition av dellbsningar som ha'n-

fbr sig till de olika brunnarna. I ett givet fall har man ett visst uttag

av va'rme fran varje brunn. Detta varmeflbde varierar fran brunn till

brunn. Vidare varierar det i tiden och med djupet. Latoss se pa temperatur-

fbrloppet fran den varierande effekten kring en av brunnarna. Detta

temperaturfbrlopp a'r rotationssymmetriskt kring brunnen. Temperaturen

blir en funktion av djup, radiellt avstand och tid. For varje brunn far

vi ett rotationssymmetriskt fbrlopp. Temperaturen vid markytan ger ett

endimensionel 11 temperaturfbrlopp som beror av djup och tid. Det totala

tempera turfbrloppet ges nu som en superponering av temperaturfbrloppen

fran varje enskild brunn och av det endimensionella vertikala fbrloppet.

Som ett exempel kan vi ta ett fall med tre brunnar. Det komplicerade,

genuint tredimensionella fbrloppet kan ses som en superponering av tre

rotationssymmetriska problem. Antag vidare att brunnarna in-

rnatningsmassigt behandlas lika och att de ligger pa samma avstand fran

varandra (liksidig triangel). De tre temperaturfbrloppen sammanfaller

da. Vi har ett cyl indersymmetriskt problem, som skall superponeras till

de tre lagena for brunnarna. Detta betyder en vasentlig fbrenkling jam-

fort med den ursprungliga situationen med en genuint tredimensionell

process. Detta exempel kan general iseras. For varje symmetrigrupp av
brunnar har vi ett cylindersymmetriskt problem. Det totala temperatur-

fbrloppet erhalles genom en superposition da'r bidragen fran alia brunnar

adderas.

Inom ramen for de fyra antagandena ovan simuleras med model 1 en tempera-

turfbrloppet va'sentligen exakt. De cyl indersymmetriska problemen och det

vertikala fbrloppet simuleras parallellt med explicita framatdifferenser.

Tempera turfbrloppet ett steg framat kan beraknas for varje symmetrigrupp

av brunnar da man ka'nner varmeflbdet fran brunnen. Detta flbde bestams

av fluidtemperatur och av den totala temperaturen i marken vid brunnen
pa det aktuella djupet. Denna totala temperaturen erhalles genom en

superposition med ett bidrag fran varje brunn (och ett bidrag fran den

vertikala Ibsningen).

Fluidtemperaturen la'ngs nedat- och uppatgaende kanal bestams genom

energibalans for va'rmeb'a'rarf luiden. Man tar hansyn till varmeflbdet

fran mark och v'a'rmeutbytet mellan kanalerna.

Kopplingen representeras med en v'a'rmestrbmningskrets av den typ som

visas i figur 10.27, d'a'r varmemotstanden m., nu och m^ ges som indata

t i l l model 1 en.
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For varje niva i brunnen balanseras de konvektiva varmefIbdena mellan
kanaler och bergvagg mot den konvektiva varmetransporten i langsled.

Man far varierande temperatur fran inlopp till brunnens botten och

h'a'rifran tillbaka upp t i l l markytan. De b'versta delarna av brunnen

va'rmeisoleras mot marken.

Det totala vattenflbdet (m/s) a'r en given funktion av tiden. Det a'r
noil under viloperioder. Vidare a'r inmatningstemperaturen en given

funktion av tiden. Alternativt kan uttagen effekt specificeras. Er-

forderlig inmatningstemperatur bera'knas da.

Det cirkulerande vattnet kan parallel!- och seriekopplas pa olika sa'tt

genom brunnarna. Da v'a'rme aterladdas via brunnarna t i l l marken a'r ef-

fekten Q(t) negativ. Primara indata ar varmebararf luidens volymflbde

(m /s) och inloppstemperaturen (alternativt uttagen effekt). Simule-

ring av 25 arscykler for en enskild brunn tar cirka 10 CPU-sekunder

pa en UNIVAC 1100/80. Da antalet brunnar a'r stort bkar tidsatgangen

drastiskt. Maximalt fel for de datorberakningar som redovisas i detta

kapitel bedoms vara nagon procent.

10.8 Influens mellan na'rliggande bergvarmebrunnar

10.8.1 Introduktion

Na'rliggande bergvarmebrunnar paverkar varandra termiskt. For ett system

med Nb stycken na'rliggande brunnar far man lagre va'rmeuttagskapacitet an

for Nb stycken oberoende brunnar. I detta kapitel skall denna influens
behandlas.

Fb'rst behandlas vertikala brunnar. Da'refter behandlas brunnar som bildar

en vinkel e med lodlinjen. Horisontellt avstand vid markytan mellan tva

brunnar betecknas B. Avstandet mellan brunn i och brunn j a'r B...

Influensen mellan brunnarna a'r en utpra'glad langtidseffekt. For brunns-
avstand som a'r stb'rre an 10 meter a'r paverkan efter det fb'rsta arets

effektuttag mycket liten. Fluktuationerna i effektuttag och brunnstem-
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peratur under arscykeln da'mpas helt ut pa dessa 10 meter. For influensen

mellan brunnarna ar da'rfb'r enbart det konstanta medeleffektuttaget (eller

medelbrunnstemperaturen) under aret av betydelse.

Figurerna 10.35 och 10.36 illustrerar influensen mellan bergva'rmebrunnar

for tva bera'kningsexempel. Isotermer i ett horisontellt tvar-

snitt visas. I det fbrsta exemplet enligt figur 10.35 har man 5x3=15

bergva'rmebrunnar. De a'r 150 meter djupa. Avstandet mellan brunnarna a'r

20 meter. Energiuttaget per ar a'r 225 MWh. Figuren visar isotermer

under det 25:e aret. Influensen mellan brunnarna a'r kraftig.

Y-KOORDINAT (m)
80-

60-

40 -

20n

20 60 80 100 120
X-KOORDINAT (ml

Figur 10.35. Exempel pa influens for 15 bergva'rmebrunnar. Figuren visar

isotermer pa 77 meters djup under det 25:e aret.

Det andra exemplet avser ett system med tio brunnar som ligger oregel-

bundet. Figur 10.30 visar isotermer pa125 meters djup efter 25 ar. Va'rme-

uttaget a'r 250 MUh/ar. Detta exempel redovisas na'rmare i referens 14.

I avsnitt 10.8.2 behandlas ett antal brunnskonfigurationer da'r brunns-

temperaturen under uttaget halls konstant. De erhallna va'rmemanqderna

ger ett matt pa influensen mellan brunnarna. I avsnitt 10.8.3 studeras

olika fall da'r det totala effektuttaget a'r konstant fran starten t=0.

I avsnitt 10.8.4 ges en dimensionslbs formulering. Slutligen behandlas i

avsnitt 10.8.5 system med aterladdning.
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Y-KOORDINAT (ml
60

40-

20-

X-KOORDINAT!m)

Figur 10.36. Exempel pa influens mellan 10 oregelbundet placerade berg-
varmebrunnar. Figuren visar isotermer pa 125 meters djup

under det 25:e aret.

10.8.2 Nagra fall med given uttagstemperatur

I detta avsnitt skall berakningsresultat for ett antal olika brunnskonfi-

gurationer redovisas. Berakningarna ar utforda med datormodell enligt

avsnitt 10.7.

For att underlatta jamfbrelser har en enkel uttagsstrategi anvants. Uttag
sker under halva aret med den konstanta brunnstemperaturen Tn = 3 C.

Under den andra halvan av Sret ar effektuttaget noil:

Vinterhalvaret: TD = 3UC
K

Sommarhalvaret: Q(t) = 0
[10.8.2.1)

For berg och brunn anvandes fbljande data:

A = 3.5 W/m-K
H = 146 m

Tom = 8'3°C

C = 2.16 MJ/m-K

i = 4 m RQ = 0.08 m [10.8.2.2)
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Brunnstemperaturen TR antas vara densamma for alia brunnar. Variationen i

djupled fbrsummas.

Energiuttaget for en enskild brunn med dessa data blir for ar 1, 5 och

25:

ar

MWh

25
[10.8.2.3)

18.3 16.3 15.3

10.8.2.1 Tva brunnar

Berakningar for brunnsavstand B = 4, 10 och 20 m har utfb'rts. Temperatur-

profiler pa 80 meters djup visas i figur 10.37. Temperaturen ges langs

en linje genom de tva brunnarna. Tiden ar slutet av uttagsperioden under

det 25:e aret.

TCC)

-10 - 2 0 2

Figur 10.37. Temperaturprofil for tva brunnar pa olika avstand. Djupet

ar 80 m. Data enligt 10.8.2.1-2.

Da avstandet B mellan brunnarna ar stort kan influensen fbrsummas. Den

ostb'rda brunnens energiuttag enligt 10.8.2.3 erhalles. Tabell 10.10 anger
energiuttaget per brunn och Sr relativt va'rdet for ostbrd brunn.
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B
(m)

ar

4

10

20

1

0.903

0.990

1.00

5

0.832

0.916

0.965

25

0.802

0.874

0.921

label! .10.10. Arsenergiuttag per brunn for tva brunnar relativt ostbrd

brunn.

For tva brunnar pa 4 meters avstand fbrsamras prestanda pa grund av ter-

misk influens med upp till 20% ar 25. For avstandet 20 meter ar motsva-

rande fbrsamring 8%.

10.8.2.2 Tre brunnar

Tre brunnar ligger pa linje eller i hbrnen pa en liksidig triangel. Figur

10.38 visartemperaturprofilen for tre brunnar i linje i snitt genom dessa

pa djupet 80 meter. Brunnsavstanden ar 4 respektive 10 meter. En jamfbrel-

se me!Ian bvre och nedre kurva i respektive figur visar langtidseffekten

av uttag. Den horisontellt streckade linjen visar den ostbrda temperaturen

pa 80 meters djup. Tiderna 4.5 resp. 24.5 ar ar under vintern. Brunns-

temperaturen ar 3°C.

TIT)

Figur 10.38. Temperaturprofiler for tre brunnar i linje med inbbrdes

avstandet 4 resp. 10 meter.
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Figur 10.39 visar temperaturprofiler for fallet med tre brunnar placerade
i hbrnen av en liksidig triangel med sidan 10 meter. Djupet ar 80 meter
och tiden 24.5 ar.

TCO TIT)

Figur 10.39. Temperaturprofiler for tre brunnar i triangel vid tiden 24.5 ar.

Profilerna ar tagna enligt insprangd figur.

Tabell 10.11 anger energiuttaget per brunn och ar relativt vardet for en

ostbrd brunn.

ar

4

B 10

M 20

1 inje

1 5 25

0.825 0.745 0.697

0.990 0.873 0.809

1.00 0.902 0.872

triangel

1 5 25

0.866 0.725 0.670

0.983 0.840 0.778

1.00 0.933 0.854

Tabell10.11. Arsenergiuttag per brunn for tre brunnar relativt ostbrd

brunn.

For det femte aret blir prestandafbrsamringen mellan 25% och 7%.

Studierna av tva och tre brunnar finns redovisade mer i detalj i refe-

rens 15.
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10.8.2.3 Sex brunnar

Nedanstaende skiss visar de sex brunnarnas placering. Varmeuttaget blir

olika for brunn 1 och brunn 2.

Tabell 10.12 anger det arliga varmeuttaget per brunn relativt en ostbrd

brunn. Ha'rvid ges ett medelvarde for de sex brunnarna. Motsvarande varden

ges a'ven for brunn 1 och 2. Genomsnittsvardet erhalles genom viktning av

vardet for brunn 1 och brunn 2 (2*brunn 1 + 4*brunn 2).

ar

4

10

M 20

40

100

Medel varde

1 5 25

0.726 0.542 0.483

0.970 0.730 0.620

0.990 0.886 0.743

1.000 0.981 0.888

1.000 0.996 0.991

Brunn 1

1 5 25

0.659 0.479 0.427

0.962 0.681 0.574

0.999 0.856 0.700

1.000 0.977 0.861

1.000 0.995 0.989

Brunn 2

1 5 25

0.760 0.574 0.511

0.975 0.755 0.644

0.999 0.900 0.765

1.000 0.983 0.902

1.000 0.995 0.991

label! 10.12. Arligt varmeuttag per brunn for sex brunnar relativt ostbrd

brunn.

Efter fern ar ar prestandaforsamrlngen mellan 46 och 0.4% for de aktuella

brunnsavstanden. Vid ett brunnsavstand pa 20 meter blir prestandafbrsa'm-

ringen relativt ostbrd brunn 25% after 25 ar.

10.8.2.4 Femtio brunnar

Placeringen av de femtio brunnarna visas i nedanstaende skiss. La'gena for

fyra speciella brunnar ar markerade.
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-o — o e---en-o — o — o — e — o-

label! 10.1 3 och 10 .14 anger det arliga varmeuttaget per brunn relativt
en ostbrd brunn. I 1 0 . 1 3 a n g e s ett medelvarde for de femtio brunnarna,

medan tabell 1 0 . 1 4 a v s e r brunn 1, 2, 3 och 4 enligt skissen ovan.

Medelvarde

ar

4

10

20

40

100

1

0.528

0.955

0.999

1.000

1.000

5

0.194

0.432

0.794

0.973

0.995

25

0.150

0.272

0.469

0.791

0.988

label! 10.13. Arligt varmeuttag per brunn relativt en ostbrd brunn.

Medelvardet for de femtio brunnarna avses.

ar

4

10

(m) 20

40

100

Brunn 1

1

0.412

0.945

0.998

1.000

1.000

5

0.079

0.278

0.736

0.967

0.995

25

0.062

0.146

0.332

0.732

0.985

Brunn 2

1

0.440

0.945

0.998

1.000

1.000

5

0.142

0.356

0.752

0.974

0.995

25

0 .111

0.223

0.404

0.752

0.985



10.94

ar

4

10

B on
(m) 2°

40

100

Brunn 3

1

0.583

0.960

0.999

1.000

1.000

5

0.200

0.470

0.822

0.976

0.995

25

0.152

0.279

0.498

0.816

0.989

Brunn 4

1

0.732

0.975

0.999

1.000

1.000

5

0.393

0.660

0.888

0.982

0.995

25

0.305

0.469

0.673

0.884

0.993

label! 10.14. Arligt varmeuttag per brunn relativt ostb'rd brunn for

brunn 1, 2, 3 och 4 enligt skiss ovan.

Prestanda sjunker kraftigt om brunnarna ligger na'ra varandra. Ett brunns-

avstand pa 4-10 meter duger ej. Dessa avstand kan dock utnyttjas om ber-

get aterladdas. Se avsnitt 10.8.5. Med ett avstand pa 20 meter mellan

brunnarna blir prestandafbrsamringen 20% efter 5 ar och 53% efter 25 ar.

Skillnaden mellan inre och yttre brunnar blir stor.

10.8.2.5 Stort fait med brunnar

Berakningarna i de fbregaende avsnitten visar att influensen mellan

brunnar bkar kraftigt med antalet brunnar. T.ex. galler med avstandet

B = 20 m for ar 25:

antal brunnar

varmeuttag relativt
ostord brunn

50

0.921 0.854 0.743 0.469

Gra'nsfallet med ett mycket stort fait av bergvarmebrunnar skall behandlas

i detta avsnitt.

Brunnarna ta'nkes ligga i ett kvadratiskt monster med sidan B. Fa'ltet ar
sa stort att randeffekter kan fbrsummas. En brunn ser da ett oandligt an-
tal brunnar at alia hall. For varje brunn har man i horisontalplanet en
kvadrat med sidan B. Brunnen ligger i mitten av denna. Varmeflbdet
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genom kvadratens rander a'r noil av symmetriska'l. Han kan visa att detta

kvadratiska omrade kan ersa'ttas av ett cirkulart med samma area. Radien

a'r B.. Da galler sambandet:

i,BZ = B2 (10.8.2.4)

Brunnen omges av ett cylinderformat omrade. Vid randen pa avstandet B^

fran brunnen a'r varmeflbdet genom cylindern noil. Figur 10.40 visar det

cylinderformade omradet for en bergvarmebrunn i ett stort fait av

brunnar.

Xxy
X
X

^
X

X
X
y
X
Xx
X

v^^

H

!
^u \ ^

''" ~"̂

X
^xx̂x
X

X>c
Xx
x^
x
y(^
x
X

Figur 10.40. Cylinderformat omrade kring bergvarmebrunn i stort fait med

brunnar. Va'rmeflb'det genom cylinderytan a'r noil.

label! 10.15 anger arligt varmeuttag for brunnen relativt en ostbrd brunn.

Resultatet ges ocksa i figur 10.35.

ar

B
(m)

4

10

20

40

60

1

0.408

0.949

1.000

1.000

1.000

5

0.022

0.236

0.778

0.984

0.993

25

0.018

0.078

0.278

0.759

0.925

label! 10.15. Arligt varmeuttag for brunn i stort fait av brunnar rela-

tivt en ostbrd brunn.
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100-

30

Figur 10.41. Arligt varmeuttag for brunn i stort fait av brunnar uttryckt

i procent av varmeuttaget fran ostbrd brunn. Avstandet mellan

brunnarna ar B = A"- B..

10.8.3 Konstant medeleffektkomponent - temperaturresponsfunktion g

I avsnitt 10.3.6 behandlas for en brunn den fundamentala delprocessen

da man har ett konstant effektuttag Q fran starten t=0. I ett tidsvaria-

belt fall representerar denna komponent medeleffektuttaget. Bidragen frSn

variationerna i effektuttaget under aret bverlagras pa denna grundkompo-

nent.

For system med flera bergvarmebrunnar har man samma uppspaltning med en

komponent med konstant effektuttag Q0 fran starten t=0. Beloppet pa Q

anger det totala medeleffektuttaget under aret for alia brunnar. For

den bverlagrade pulserande komponenten ar det arliga nettovarmeuttaget

noil. Dess termiska rackvidd runt en brunn ar begransad. Denna komponent

paverkar darfb'r inte alls de andra brunnarna utom i fall da dessa ligger

mycket na'ra varandra.

Den termiska influensen bestams saledes enbart av medeleffektkomponenten.

I foregaende avsnitt har hela processen med medeleffektkomponent

och pulsation under a>et behandlats tillsammans. I detta avsnitt skall

den rena medeleffektkomponenten analyseras.
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Effektuttaget for systemet med N, brunnar ges av:

QQ t> 0

Q(t) = •{ (10.8.3.1)

0 t < 0

Vi starter t=0 rader den ostbrda temperaturen T i berget. Denna tem-

peratur rader hela tiden vid markytan. Temperaturen vid brunnarna (i

berget) antas vara densamma for alia brunnar. Variation la'ngs brunnarna

forsummas. Denna brunnstemperatur skall betecknas TD (t). Index o a'r
KO

medtaget for att markera att denna komponent avser arsmedeleffektuttaget

Q . Medeltemperaturnivan T ha'nfbres ocksa till TD (t). Det givna prob-o om KO
lemet Innehaller fbljande parametrar:

Tom' V V Di' H' A'a' B12' B13> ••• (10.8.3.2)

Har anger B.. horisontella avstand mellan brunnarna. For olika brunns-

konfigurationer far manetteller flera avstand som bestammer geometrin.

Temperatursankningen vid brunnen relativt ostbrd bergtemperatur ges av

"L -Tn (t). Denna storhet kan uttryckas med dimensionslbsa parametrar.om KO
For fallet med en brunn gbrs detta i avsnitt 10.3.6. Temperatursank-

ningen a'r proportionell mot effektuttaget Q och omva'nt proportionell

mot A och H. Vid skalning med tiden t^ far man en dimensionslbs tid t/t,.

Problemets la'ngder enligt (10.8.3.2) ger ett antal skalade parametrar

R /H, D./H, B.^/H osv. Parametern D./H for bvre isolerad del a'r enligt

avsnitt 10.3.4 av ringa betydelse. Som en generalisering av forme!

10.3.6.1 till fallet med flera brunnar erhalles:

Tom-TRo(t) = V

t = H2/(9a)

Funktionen g a'r den dimensionslbsa temperaturresponsfunktionen svarande

mot effekten Q . Faktorn 2-rr a'r medt

bli prydlig. Antalet brunnar a'r N, .

mot effekten Q . Faktorn 2-rr a'r medtagen for att forme! 10.8.3.4 skall

I avsnitt 10.3.10 behandlas effekten av brunnsradien R . For tva olika

brunnsradier R och R 1 ga'ller med god noggrannhet:

I1-U3
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g(t/tr RQ/H, ...) = g(t/tr !T/H, ... (10.8 .3 .4)

Den dimensionslbsa temperatursa'nkninqsfunktionen g for medeleffektkompo-

nenten beskriver influensen mellan brunnarna. Den maste beraknas med

datormodel 1 .

Det 'a'r vart att notera att formel 10.8.3.3 a'r en fundamental respons-

losning for stegeffekten 10.8.3.1. I princip ger (10.8.3.3) en mojlig-

het att ber'a'kna brunnstemperaturen TR(t) for ett godtyckligt Q(t).

Antag att va'rmeuttaget a'r str'a'ckvis konstant:

Q(t) =

t < 0

CQ2

< t < t

[10.8.3.5)

"Qn

Temperaturresponsen ges da genom superposition av Ibsningar av den

typ som anges i (10.8.3.3):

Tom - V i-1

q.n-l

(Q0 = 0, tQo = 0)

10.8.4 g-funktioner for system med vertikala brunnar

En parameterstudie av temperaturresponsfunktionen for 2 till 16 brunnar

redovisas i detta avsnitt.

Enligt fbregaende avsnitt a'r g en funktion av ett antal dimensionslbsa

parametrar:

g = g(t/tr RQ/H, B/H,...; = HV(9a)
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Funktionen beror av brunnskonfigurationen och av brunnarnas inbbrdes

avstand (B/H osv.). Bera'kningarna har gjorts pa dator med den enligt

avsnitt 10.7 beskrivna datormodellen for flera brunnar.

Den dimensionslb'sa tiden a'r t/tr Referenstiden t1 blir ej en utpraglad

bryttid som for fallet tned en enskild brunn. Brunnsradien finns i para-

metern R./H. Vid variation av brunnsradien galler sambandet 10.8.3.4.

Enligt fbregaende avsnitt saknar parametern D./H betydelse for berakning-

arna. De dimensionslbsa parametrarna har valts enligt nedan

RQ/H = 0.0005 (10.8.4.1!

D.J/H = 5/145

B/H = 0.05, 0.1, 0.15, 0.2, 0.3, »

-4.5 & Inft/t^ < 0 0.01 ^ t/t1 < 1

Pa fbljande sidor ges g-funktionen for ett antal brunnskonfigurationer.

Den streckade linjen anger g-funktionen for en enskild brunn. Brunnarnas

la'gen visas uppe till vanster i respektive figur. Har framgar ocksa hur

avstandet B skall tolkas.

Va'rdet pa g-funktionen anger temperatursankningen relativt ostbrd mark-

temperatur for en brunn da'r Q0/(2irXHN|_|) = 1°C. Detta erhalles exempelvis

for en 150 meters brunn med fbljande data, da'r varmeuttaget a'r 22 W/m.

RQ = 0.075 m H = 150 m (10.8.4.2)

A = 3.5 W/mK C = 2.16 MJ/m3K

Q0/(NbH) = 22 W/m

Dessa data ger tidsskalan

t1 = 48.9 ar

Enligt (10.8.3.3) blir temperatursankningen i brunnen

°C

Temperatursankningen for detta fall ges saledes direkt av g-funktionen.
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For en aktuell konf iguration kan nu brunnstemperaturen beraknas. Fbrst

anva'ndes kurvorna for att erhalla va'rdet av den ditnensionslbsa tempera-

tursankningen , g(t/t., 0.0005,...)- Denna omra'knas for aktuell brunns-

radie enligt formel 10.8.3.4 varefter temperatursa'nkningen i brunnen

beraknas med formel 10.8.3.3.

Exempel . Givet fyra brunnar vilka ligger i hb'rnen pa en kvadrat med

kantlangden 15 meter. Brunnsradien R a'r 0.055 m och brunnens

aktiva la'ngd H a'r 150 meter. Varmeuttaget a'r konstant och lika

med 160 MWh/ar eller 30.4 w/m. Qvriga data anges nedan.

A = 3.5 W/mK C = 2.16 MJ/m3K \ 4

RQ = 0.055 m B = 15 m QQ = 4-150- 30.4 = 18 240 W

Detta ger:

RQ/H = 0.00037 B/H = 0 . 1 a = 1.62-10"6 m2 /s

t1 = H 2 / (9a) = 150 2 / (9 -1 .62 -10" 6 ) s = 48.9 ar

= 1.38°C

Temperatursankningen i brunnen efter 25 ar skall beraknas.

Denna tid motsvarar den dimensionslbsa tiden t/t, = 0.51. For

den mot ovanstaende konfiguration svarande g-funktionen avlases

vardet i figur 10.42D.

9(0.51,0.0005,...) = 9.1

Detta va'rde omraknas for aktuell brunnsraaie enligt (10.8.3.4).

g(0.51,0.00037,...) = 9.1 -ln( 0.00037/0.0005)= 9.4

Temperatursankningen erhalles enligt (10.8.3.3)

T o m - T R= 1 - 3 8 - 9 - 4 = 13.0°C

Antag att varmeledningsfbrmagan a'r 3.0 i stallet for 3.5. Da

blir den dimensionslbsa tiden t/t. = 0.43. Temperatursankningen
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beraknas pa samma satt som ovan och blir har

T -TD = 3.5/3.0-1.38 .9.2 =14.8 °com K

Med ett konstant varmeuttag pa160MWh/ar kra'vs efter 25 ar
en brunnstemperatursankning pa13.0°C da marken varmelednings-

fbrmaga A ar 3.5 W/mK. Da A ar 3.0 kravs brunnstemperatur-
sa'nkningen 14.8 C.

10.8.5 Aterladdning. Optimalt avstand*

Vinsten vid aterladdning av en bergvarmebrunn sommartid ar i enlighet med

avsnitt 10.5 mattlig. For system med flera bergvarmebrunnar ar aterladd-

ning mer aktuell pa grund av influensen mellan brunnarna. Denna influens

ar enligt fbregaende avsnitt en langtidseffekt som beror av medeleffekt-

uttaget per ar. Vid en balanserad aterladdning da'r samma varmemangd

uttages och aterfbres per ar, blir medeleffektuttaget noil. Influensen
mellan brunnarna fbrsvinner helt utom da dessa ligger na'ra varandra.

Lat E och E. vara uttagen respektive aterinmatad varmemangd per ars-

cykel. Vid balanserad aterladdning ar dessa lika. Om sa ej ar fallet,

kan analysen aterfbras pa det balanserade fallet genom en uppdelning

i ett rent uttagsfall, da'r E -E. tas ut och ett balanserat fall, da'r

E- n tas ut och aterfbres. Den rena uttagskomponenten har behandlats i
tidigare avsnitt. I den fbljande diskussionen behandlas bara det balan-
serade fallet da'r E =E. .o in

Det ur analyssynpunkt enklaste fallet ar att det fbreskrivna effektut-
taget varierar rent sinusformat:

Q(t) = Q s i n ) (10.8.5.1)

Iden om ett optimalt rbravstand emanerar fran uppfinnaren Ove Platell,
Sigtuna.



10.109

Aterladdning a'r mest aktuell for system tried manga brunnar, eftersom
influensen bkar kraftigt med antalet brunnar. Vi antar for den fortsatta

analysen att vi bar ett sadant system med Tat oss saga atminstone 10

brunnar. Vi fbrutsatter ocksa att de ligger i ett regelbundet monster

utan stora variationer i inbbrdes avstand. Approximativt kan da for en

inre brunn problemet gb'ras cyl indersymmetriskt. En cyl inderregion runt

brunnen tillskrives denna. Cylinderns radie FL valjes sa att den totala

bergvolymen ej andras. For brunnar i ett kvadratiskt monster med ett
brunnsavstand B galler da:

B2 = TT R^ (10.8.5.2)

Vid brunnens cylinderyta sa'ttes varmeflbdet till noil av symmetriskal .

Processen for en inre brunn har omformulerats sa att den i huvudsak

blir den som behandlas i avsnitt 5.2.4. Brunnen ligger i centrum av en
utat isolerad cyl inderregion med radien R. . Vid brunnen har man en

sinusformad effekt som pulserar in och ut. Se figur 5.2.10.

Effektens amplitud q. per meter brunn blir:

Q,
(10.8.5.3)

'b

Sambandet me! Ian amplitud for brunnstemperatur och effekt ges i komp-

lexvard form av formel 5.2.4.4. Formeln avser bara den aktuella rent

periodiska processen. Brunnstemperaturen blir da:

Minustecknet beror pa att effektutflbde ra'knas positivt i avsnitt 5.2.4.

Amplitudfunktionen A och fasfunktionen B beror pa r och r., vilka defi-

nieras av formel 5.2.4.2:

ro = Ro ' cF r1 = R1 'f (10.8.5.5)

Funktionerna A(r ,r.) och B(r ,r.) ges i figurerna 5.2.11-13. Amplituden

pa temperaturen vid brunnen a'r enligt 10.8.5.4:

Q« A(r ,r.)
mr ' — 7 i (10 .8 .5 .6 )
nnb Z1TA
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Exempel . Givet ett stbrre fait med brunnar placerade i ett kvadratiskt

monster. Inbbrdes brunnsavstand a'r B. Fb'ljande data galler:

7™- = 30 W/m R = 0 .075 m
HN, 0b

X = 3.0 W/m-K C = 2.16 MJ/m3-K (10.8.5.7)

B = 3, 6, 9, 12, 1 5 m tQ = 1 ar

Da galler:

a = 1.39-10"6 m2 /s

rQ = 0.0284 dQ = 3.73 m

B_;_3_m : R I = 1.69 r, = 0.642

A ^ 4.9 (figur 9 .2 .11 )

Temperaturampl ituden blir da

30 . 9 = 7.8°C

_6_m : r., = 1.28 A ̂  3.3 ^ 5.3°C

9 m : r, = 1.93 A ̂  3.5 ^ 5.6°C

12 m: r, = 2 .57 A ̂  3.6 ^ 5.7°C

15 m: r, = 3.21 A ̂  3.7 + 5.9°C

For stora avstand mellan brunnarna paverkar dessa ej varandra. Amp! ituden

A(r ,r.) blir lika med det ostorda fallet A(r ,~), vilket behandlas i

avsnitt 5.3.8. Motsvarande amplitud betecknas dar A ( R ' ) . Forme! 5 .2 .3 .11

kan anvandas. Ett lampligt kriterium pa att variationen under arscykeln

ej paverkar omgivande brunnar blir enligt figur 5.2.11:

r. = R. • J~ > 3 (10.8.5.8)1 1 ato
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For brunnar i ett kvadrat iskt gitter blir detta enligt 10.8 .5 .2 :

T > 3 (10 .8 .5 .9 )

Kraven 10.8.5.8-9 kan tas som ett allma'nt kriterium for att brunnarna

ej influerar varandra. Observera fbrutsattningen med balanserad ater-
laddning. Har man ett nettovarmeuttaq per ar far man en influens.

Exempel. tQ = 1 ar C = 2.16 MJ/m3-K

X = 3.5 =» B > 15 m

(10 .8 .5 .10 )
\ 3.0 =» B > 14 m

Funktionen A ger ett gott matt pa influensen mellan brunnarna vid balan-

serad aterladdning. Vid minskade B eller r. ges influensen av A enligt

figurer 5.2.11. Det ar intressant att notera att man har ett minimum for

ett visst avstand. Detta minimum diskuteras i avsnitt 5.2.4.2. I figur

5.2.14 anges r. som funktion av r for minimat. Detta minimum represen-

terar ett optimaH brunnsavstand for ett system med manga bergvarmebrunnar

i ett regelbundet monster med balanserad aterladdning.

Exempel. Lat oss se pa exemclet ovan med data enligt (10.8.5.7). Da

erhalls:

rQ = 0.0284

Figur 5.2.14 ger for det optimala avstandet:

r. = 1.28 dvs. B = 6.0 m

For bergvarmebrunnar med periodtiden t = 1 ar ligger r i interval!et

0.02-0.03. Kriteriet for optimalt rbravstand ar da att r, ligger i inter-

vallet 1.25 till 1.30. Exemplet ovan och figur 5.2.11 visar att tempera-

turampl ituden vid optimalt avstand ligger cirka 10% under va'rdet vid

stort roravstand. Da r. minskas fran optimalt varde bkar temperaturamp-

1 ituden. Va'rdet vid stort rbravstand passeras vid r. ̂  0.8. Harefter bkar

amplituden snabbt da avstandet minskas.
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Lat oss sammanfatta denna diskussion. Givet ett system med bergvarmebrun-

nar med aterladdning. Om det arliga varmeuttaget skiljer sig fran den

aterladdade varmemangden, skall den obalanserade delen analyseras enligt
tidigare avsnitt. Influensen mellan brunnar beror for den balanserade

delen huvudsakl igen av grundkomponenten (10.8.5.1). Korta effektpulser

och snabbare sinusvariationer behandlas pa samma satt som for en ostb'rd
brunn.

Lat oss nu se pa en inre brunn i ett system med relativt manga brunnar.

Brunnen tillskrivs en cyl inderregion med radien R. (R. = B//JT for ett

kvadratiskt monster). Brunnstemperaturens amplitud for grundkomponenten

(10.8.5.1) ges av formlerna 10.8.5.4-5. Influensen mellan brunnarna

bes tarns av R. enligt fb'ljande:

/ 9
Fbrsumbar influens: r, = R, . — r- ,1 1 ato

Matt! ig influens: 0.8 £ r] £ 3 (10.8.5.111

Optimalt varde r. ̂  1.25-1.30

Stark influens: r, X 0.8

For det optimala vardet r. = 1.25-1.30 ligger temperaturamplituden for

grundkomponenten (10 .8 .5 .1 ) cirka 10% under ostbrt varde.

For ett kvadratiskt monster med ett avstand B mellan brunnarna blir

kriterierna 10.8.5.11:

Fbrsumbar influens: B £ 2 /aT

Mattlig influens: 0.6^ato <, B X 2/aTo (10.8 .5 .12)

Optimalt varde B =* 0.9/aT

Stark influens: B <, 0.6/aT
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Exempel. t = 1 ar C = 2.16 MJ/m3-K

X = 3.5 W/m-K =* /at = 7.15 m

A = 3.0 W/m-K => /at = 6.62 m

Detta ger om vi tar Tat ^ 7 m:

Forsumbar influens: B /L 14 m

Mattlig influens: 4 < B < 14 m

Stark influens: B £ 4 m

Optimalt avstand: B ̂  6.3 m

10.8.6 g-funktioner for system med sneda brunnar

I detta avsnitt behandlas ett antal brunnskonf igurationer med sneda

brunnar. En fbrdel med att brunnarna borras snett ar att en stor mark-

volym kan utnyttjas a'ven da borrhalen ar placerade relativt nara varand-

ra vid markytan.

Den dimensionslbsa temperaturresponsfunktionen g svarande mot medel-

effekten Q behandlas i avsnitt 10.8.3. Sasom for fallet med vertikala

brunnar beror funktionen av konf igurationen samt av de dimensionslbsa

parametrarna t/t., R /H och B/H. Dessa parametrar utnyttjas i avsnitt

10.8.4. For sneda brunnar tillkommer tva vinkel parametrar 9 och ip. Se

figur 10.43. Dessa anger brunnens lutning relativt lodlinjen samt

orientering relativt x-axeln. For sneda brunnar ar g en funktion enligt

nedan:

g = g(t/tr RQ/H, B/H, e, <p,

dar

= H2/(9a)
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Figur 10.43. Riktningsvinklarna e och ip for sned brunn.

Pa fbljande sidor ges g-funktionen for ett antal konfigurationer dar

parametrarna B/H och e varieras. Brunnarnas lutning e varieras mellan

0 och 30 grader. Brunnarnas riktningar <p relativt x-axeln ar fixerade

for varje enskild konfiguration. g-funktionerna ar beraknade med para-

metern D./H lika med 5/145 = 0.034. Betydelsen av denna parameter ar

som tidigare na'mnts mycket liten.

Brunnarnas relativa lagen fbrklaras i figurtext samt i insprangd figur.

Den nedersta streckade kurvan i varje figur anger g-funktionen for en

enskild vertikal brunn.
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Figur 10. 44A-F. g-funktionen for brunnar placerade i linje. Avstandct
vid markytan mellan tva narliggande brunnar a'r B. Brunnarnas lutning 8
antar vardena 0, 10, 20 och 30 grader. Brunnarnas riktning visas med
streckade linjer i insprangd figur.
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Figur 10.45 A-F. g-funktionen for brunnar placerade i en cirkel.
Radien pa cirkeln a'r B vid markytan. Brunnarnas lutning 6 varieras
mellan 0 och 30 grader. Brunnarnas riktning visas med streckade
linjer i insprangd figur.
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Figur 10.46 A-F. g-funktionen for brunnar placerade i en cirkel.
I mitten pa cirkeln ar en vertikal brunn placerad. Radien pa
cirkeln arB vid markytan. Cirkelbrunnarnas lutning o varieras
mellan 0 och 30 grader. Brunnarnas riktning visas nied streckade
linjer i insprangd figur.
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C och D sammanfaller. Se avsnitt 10.8.8.2).
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Figur 10.48 B. g-funktionen for 8 sneda brunnar placerade ekvidistant
langs en linje vid markytan. AvstSndet mellan tva na'rl iggande brunnar
a> B vid markytan. Samtliga brunnar lutar 20°. Brunnarnas riktning
v isas med streckade linjer i insprangd figur.
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10.8.7 Effektuttag for inre och yttre brunnar

For ett system av bergvarmebrunnar ar det av intresse att veta hur

effektuttaget fbrdelar sig pa de enskilda brunnarna. For att direkt
kunna jamfbra olika konfigurationer har varmeuttagsstrategien valts p
ett annat sa'tt an i de tidigare studierna.

Samtliga brunnar i ett system har en given konstant brunnstemperatur
!„ som ej varierar i tiden. Varmeuttaget blir ol ika for brunnar med

olika lagen i en given brunnskonfiguration. Inre brunnar ger mindre
effekt an yttre brunnar. Fbljande data anvandes.

A = 3.5 W/mK C = 2.16 MJ/rri K

RQ = 0 .055 m H = 145 m D^ = 5 m

Tom'TR = 6 C

[ 10 .8 .7 .1 )

Varmeuttag

ar 5

ar 25

28.1 MWh/ar

25.5 MWh/ar

Medel effekt

22 W/m

20 W/m

Tabell 10.16. Varmeuttaget for en enskild brunn med data enligt (10.8.7.1).
Brunnstemperatursankningen relativt ostord mark ar 6°C.

For system med flera brunnar jamfbres varmeuttaget fran v issa av brun-
narna med varmeuttaget for en enskild brunn. Det relative varmeuttaget

anges i procent i tabell 10.17-10.18. De konf igurationer som anvants
vid jamfbrelserna visas till vanster i tabellen. Tabell 10.18 ger varme-
uttaget for sneda brunnar.
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Konf iguration B (m): Brunn:

enligt figur:

1 2
0 0 0

o o o
B

0 0 O3

1 2
0 0 0

O p O

B

-

4 5 6
o o o o o

1 2 3
O O 0 O O

o o o o o

' B

3
O O O O

1 2
o o o o

o o o o

o o o o
B

14.5

29

14.5

29

14.5

29

14.5

29

1

2

1

2

1

2

3

1

2

3

1

3

6

1

3

6

1

2

3

1

2

3

ar 5

65%

83

91

94

49

62

72

87

90

94

43

61

71

86

90

94

42

58

71

86

90

94

ar 25

52%

62

69

78

. 35

46

56

56

66

75

26

44

54

49

65

74

26

40

52

49

62

72

label 1 10.17. Varmeuttag for nagra av brunnarna i ett antal olika

system. Varmeuttaget anges i procent relativt en

enski ld brunn. Data enligt (10 .8 .7 .1 ) .
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Konfiguration

enligt figur:

,

O '

"XD
B

.-o
P '\

a

A=yf ha' /io* o* cT

( / I 4

B (m) : e: Brunn:

\

\9

3.62

\5

10

20

30

1

2

1

2

1

2

1

3

4

1

3

4

ar 5

65%

50

82

74

89

71

88

76

61

92

83

73

ar 25

51%

36

65

51

75

64

77

59

47

82

66

57

Tabell 10.18. Varmeuttag for nagra av brunnarna i ett antal olika

system. Va'rmeuttaget anges i procent relativt en enskild

brunn. Data enligt (10.8.7.1).

10.8.8 Jamfbrelser mellan olika brunnskonfigurationer

I detta avsnitt redovisas nagra fall da'r olika system av bergva'rme-

brunnar jamfbres. Endast skillnader pa grund av medeleffektkomponenten

studeras. For narmare beskrivning av denna komponent hanvisas till av-

snitt 10.8.3. For berakningarna anvandes nedanstaende data:

= 3.5 W/mK C = 2.16 MJ/mJK RQ = 0.055 m

H = 150 m Di = 5 m (Hfa = H+Di = 155 m)

(10.8.8.1)

13-U3
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Detta ger:

RQ/H = 0.00037 a = 1.62-10"6 m2/s

t, = H2/(9a) = 1502/(9-1.62-10~6) s = 48.9 ar

10.8.8.1 Borttagande av inre brunnar

Ett system med tolv brunnar jamfores med ett system med sexton brun-

nar enligt figuren nedan. De fyra centralhalens betydelse skall stu-

deras.

Fall a. Tolv brunnar placerade i en kvadrat: N, = 12. Se vanster figur
nedan.

Fall b. Sexton brunnar placerade i en kvadrat: N, = 16. Se hoger figur
nedan.

For bada fallen galler att avstandet mellan tva narliggande brunnar

ar 15 meter. Varmeuttaget ar pa 54.2 kW eller 480 MWh/ar. Detta motsva-

rar 30.4 W/m och 22.8 W/m for tolv- respektive sextonbrunnssystemet.

o o o o o o o o

O o O O O O

O o O O O O

o o o o o o o o
B B

Fall a. Fall b.

Temperatursankningen efter 25 ar skall beraknas for bada fallen. Data

ges av (10.8.8.1). Ur dessa erhalles

a. Q0 / (2TrXHNb ) = 1.38 °C

b. Qo / (2TrXHNb ) = 1.03 °C
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Va'rdet pa g-funktionen avlases i figur 10 .42 J och H

a. g(0.51, 0.0005, ...) = 11.2

b. g (0 .51 , 0.0005, ...) = 13.9

Dessa varden omraknas for aktuell brunnsradie enligt (10.8.3.4) till

11.2 + 0.3 = 11.5 respektive 13.9 + 0.3 = 14.2.

Temperatursankningen i brunnen blir enligt forme! 10.8.3.3

a. T - TD = 1.38 -11.5 = 15.8°Com R

b. Tom - TR = 1.03 -14.2 = 14.8°C

Den relativt l i l l a skillnaden i temperaturer, 1 C, visar att de fyra

centralhalens bidrag till medeleffektuttaget ar ytterst litet efter 25 ar.

Centralhalen ar dock vasentliga for bverlagrade korttidspulser. For

dessa ar bidraget till temperatursankningen direkt proportionel1t mot

totala antalet meter brunn. Dimensioneras systemet for kortvariga

maxbelastningar ar saledes de fyra mittbrunnarna av betydelse.

10.8.8.2 Med eller utan en centralbrunn

Givet tva konfigurationer med vardera atta brunnar. Se figuren nedan.

Fbrutsattningarna ar for bvrigt helt identiska for de bada systemen.

Fall a. Atta sneda brunnar placerade i en cirkel med radien B = 1.5 me-

ter vid markytan. Se vanster figur pa na'sta sida.

Fall b. Sju sneda brunnar placerade i en cirkel med radien 1.5 meter

vid markytan samt en vertikal brunn placerad i cirkelns mitt.

Se hbger figur pa na'sta sida.
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o
'o a

o a
9

Fall a. Fall b.

For bada systemen galler att alia sneda brunnar a'r vinklade 20 grader

fran lodlinjen och riktade radielH ut fran cirkelns mitt. Varmeuttaget

ar pa 320 MWh/ar eller30.4 W/m. Ovriga data enligt nedan och (10.8.8.1)

Nb = 8 QQ = 8.150. 30.4= 36 480 W

B = 1.5 6 = 20°

Detta ger

B/H = 0.01 Q0/(2irAHNb) =1-38 °C

Temperatursa'nkningen i brunnen beraknas pa samma sa'tt som i avsnitt
10.8.8.1. Va'rdet pa g-funktionen avlases i figur 10.47.

Efter 25 Sr erhalles

a. TQm - TR = 1.38 -9.7 = 13.4 °C(8 brunnar)

b. T - TD = 1.38 -9.9 = 13.7 °C(7 + 1 brunnar)om K

Den obetydliga skillnaden i temperaturer, ca 2 procent, visar att de

bada systemen a'r likva'rdiga vad det galler influensen mellan brunnarna.

10.8.8.3 Atta kontra sex sneda brunnar

Ett system med atta brunnar i cirkel jamfores med ett system med sex

brunnar i cirkel. Samtliga brunnar lutar 20° radiellt ut fran cirkelns

mitt. Varmeuttaget a'r samma for bada systemen.
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Fall a. Samma system som i fall a avsnitt 10.8.8.2. Atta sneda brunnar

i cirkel enligt vanster figur nedan. Brunnarna lutar 20 grader

fran lodlinjen.

Fall b. Sex sneda brunnar i cirkel enligt hb'ger figur nedan. Alia

data fbrutom antalet brunnar ar samma som i fall a; Nu = 6.

Varmeuttaget 320 MWh/ar motsvarar for sexbrunnsfallet 40.6 W/m.

Detta ger att Qo/(2irXHNj.j) = 1.85 °C.

o
o a

o Q
P P Q

Fall a. Fall b.

Temperatursankningen i brunnen beraknas pa samma satt som i avsnitt

10.8.8.1. Efter 25 ar erhalles

a- T m - TD = 1.38 -9.7 = 13.4 °C (8 brunnar)
Olli KU

b- T - TDn = 1-85 -8.7 = 16.1 °C (6 brunnar)om KO

Systemet med sex brunnar kra'ver cirka 19 procent stbrre temperatur-

sankning i brunnen da effektuttaget for bada systemen ar lika. Utan

influens mellan brunnarna skulle motsvarande siffra vara 33 procent.

10.8.8.4 Variation av lutningsvinkeln 6

Tva system med atta brunnar i cirkel jamfores. Den enda skillnaden

mellan systemen ar lutningen e pa brunnarna.
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Fall a. Samma system som i fall a avsnitt 10.8.8.2. Atta sneda brunnar

i cirkel. Vinkeln e = 20 grader.

Fall b. Samma system som i fall a men med vinkeln e = 30 grader.

Skillnaden mellan systetnen framgar genom att direkt jamfb'ra g-

funktionen for olika e. Efter 25 ar erhalles:

a. g(0.51, 0.00037,...) = 9.7

b. g(0.51, 0.00037,. . . ) = 8.5

Systemet i fall b dar e = 30 grader kra'ver cirka 12 procent mindre

temperatursankning i brunnen efter 25 ar.

10.8.8.5 Cirkel kontra solf ja'derkonf iguration

Ett system med atta brunnar i cirkel jamfores med ett system med atta

brunnar i solf ja'derkonf iguration.

Fall a. Samma system som i fall a avsnitt 10.8.8.2. Atta brunnar

placerade i cirkel enligt vanster figur nedan. Brunnarna lutar

20 grader fran lodlinjen.

Fall b. Atta brunnar i solf ja'derkonf igurationen enligt hbger figur

nedan. Figuren visar brunnarnas lutning i ett vertikalt snitt

genom marken.

Brunnarna ar placerade ekvidistant la'ngs en linje vid mark-

ytan. Avstandet mellan tva na'rliggande brunnar B = 3.75 meter.

Ovriga data ar samma som i fall a.

O

b ° o-
1.5m

B = 3 . 7 5 m

o Q

Fall a. Fall b.

10'\\°
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Temperatursankningen i brunnen beraknas pa samma satt som i avsnitt

10.8.8.1. Efter 25 ar erhalles

a T - T = 1.38 . 9 7 = 13.4 °C

Den obetydliga skillnaden i temperaturer, cirka 2 procent, visar att

de bada systemen ar likvardiga vad det galler influensen mellan

brunnarna.

10.8.8.6 Sneda kontra vertikala borrhal

Atta sneda borrhal i cirkel jamfbres med atta vertikala borrhal i

cirkel. For systemet med vertikala borrhal ar avstandet mellan borr-

hal en det som rader pa halva brunnsdjupet (D. + H/2) for systemet

med sneda borrhal.

Fall a. Atta sneda brunnar i cirkel. Se vanster figur nedan. Alia data

fb'rutom e ar samma som i fall a avsnitt 10.8.8.2. Lutningen

ar vald sa att cirkelns radie pa halva brunnsdjupet ar lika

med 15 meter. Detta ger att 6 ar 9.7 grader ty

1.5 + (D. + H/2) • sin( 9.7°) = 15 m.

Fall b. Atta vertikala brunnar i cirkel. Se hbger figur nedan. Radien

pa cirkeln ar 15 meter. Dvriga data enligt (10.8.8.1).

15m

H»Dj

15m

H*Di

Fall a. Fall b.
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Temperatursankningen i brunnen beraknas pS samma satt som i avsnitt

10.8.8.1. Efter 25 ar erhailes

b. TQm - TR = 1.38 • 12.1 = 16.7 °C

For fallet med vertikala brunnar kravs saledes en temperatursankning

i brunnen som ar 6 procent lagre an for fallet med sneda borrhal . Man

kan da'rfor for sma vinklar, 9 s 10 , approximera sneda borrhal med

vertikala borrhal. Villkoret ar att avstandet mellan brunnarna pa

halva brunnsdjupet ar lika for bada systemen. Da vinklarna 6 ar stora

ar metoden ej lamplig.

10.8.8.7 En felaktigt riktad brunn

Tva fall med fyra sneda brunnar i cirkel jamfb'res. I det ena fallet

ar en av brunnarna borrad i fel riktning.

Fall a. Fyra sneda brunnar placerade i en cirkel med radien 1.5 meter.

Alia fyra brunnarna lutar vinkeln 20 grader och ar riktade

radiellt ut fran cirkelns mitt. Se vanster figur nedan.

Fall b. Fyra sneda brunnar placerade i en cirkel med radien 1.5 meter.

Alia brunnar lutar 20 grader. Tre av brunnarna ar riktade

radiellt ut fran cirkelns mitt. Den fja'rde brunnen ar borrad

45 grader i fel riktning. Se hbger figur nedan.

For bada systemen ar varmeuttaget 160 MWh/ar. Dvriga data som ga'ller

for bada systemen ges nedan samt av (10.8.8.1).

Nfa = 4 B = 1.5 m 9 = 20° QQ = 18.2 kW
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Fall a.

Temperatursankningen i brunnen beraknas som i avsnitt 10.8.8.1. Efter

25 ar erhalles:

b' T o m - T R = 1 - 3 8 -7'8= 1 ° - 8 C

ben obetydliga skillnaden i temperaturer, cirka 3 procent, visar att en

felborrning av denna typ inte paverkar systemets prestanda namnvart.

10.8.9 Optimal brunnskonfiguration

For ett system av bergvarmebrunnar vill man veta hur borrhalen skall

placeras for att ge nrinsta mbjliga inbb'rdes inflifens. De parametrar

som kan varieras ar brunnarnas la'gen vid markytan och borriktningar,

d.v.s. lutningen e relativt lodlinjen och orienteringen ip relativt x-

axeln. I detta avsnitt anges optimal brunnsgeometri for tva viktiga

grundfall.

1. Brunnar borrade inom ett litet omrade vid markytan

Samtliga brunnar ar borrade inom ett litet omrade. De olika brunnarnas

exakta lagen vid markytan ar av underordnad betydelse. De kan exempelvis

ligga pa en cirkel sasom i figur 10.49.

Optimal konfiguration erhalles da samtliga borrhal lutas den maximala

vinkeln 9 . Riktningen valjes sa att borrhalens spetsar ligger ja'mnt
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fbrdelade runt i en cirkel vid botten. Denna cirkels radie blir va'sent-

ligen lika med (H+D.)-sin(e ).i max

Figur 10.49. Optimal konfiguration da borrhalens maximala lutning ar

6 och da dessa ar borrade inom ett litet omrade vid

markytan.

Man kan utan att fbrsamra systemet namnvart 1 ata vissa av brunnarna

ha en mindre lutning an vinkeln e . For att i detta fall ligga naramax
optimal itet ar kravet att brunnarnas spetsar 1 igger jamnt spridda inom

cirkeln. For de brunnar som ar maximalt gradade skall spetsarna fbr-

delas ja'rmt pa cirkelperiferin. Ovriga brunnsspetsar skall spridas jarnnt

inom cirkeln.

Forutsattningen att brunnarna ar borrade inom ett litet omrade vid

markytan ar nagot oprecist. Mera precist galler att detta omrade skall

vara litet jamfbrt med cirkelomradet vid borrhalens spetsar. For na-

got stbrre omraden vid ytan bbr man givetvis efterstrava att sprida

brunnarna a'ven da'r for att minska influensen.

2. Borrhal langs en linje vid markytan

Borrhalen 1igger utspridda langs en linje vid markytan. Optimal kon-

figuration erhalles genom att vinkla samtliga borrhal den maximala

vinkeln 8 och sprida borrhalens spetsar jamnt sasom i ovanstaendemax
fall. Brunnarna riktas sa att de vaxelvis pekar at ena och at andra

hallet fran den gemensamma forbindningslinjen vid markytan. Borrhalens

spetsar hamnar langs en kurva av travbanetyp. Se figur 10.50.
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Figur 10.50. Optimal konfiguration da brunnarna ligger utspridda Tangs

en linje vid markytan och da maximala lutningen ar max

10.9 Dimensionering for system av brunnar

Vid dimensionering av ett system av brunnar galler till stora delar den

tidigare analysen for en brunn enligt avsnitt 10.4. De modifikationer

som kra'vs for flera brunnar skall redovisas i detta avsnitt. Avsnitt

10.9.1 behandlar fallet med vertikala brunnar. I avsnitt 10.9.2 anges

de modif ikationer som behb'vs for sneda brunnar.

10.9.1 Vertikala brunnar

Avstandet eller avstanden mellan brunnarna ar en mycket viktig faktor.

I avsnitt 10.8.5 ges med formlerna 10.8.5.11-12 avstandskriterier for

fb'rsumbar, mattlig och stark influens mellan brunnarna for den arliga

variationerna av effektuttaget. Man bbr observera att dessa kriterier

ej galler for medeleffektuttaget. Kriterierna avser en inre brunn i ett

regelbundet brunnsmonster.

Mycket sma brunnsavstand B som ger stark influens enligt formel 10.8.5.12

ar knappast aktuella. Ett sadant system med manga brunnar blir ett rbr-

varmelager, om det anvands pa ett rimligt satt. Dessa behandlas i

kapitel 7. Avstandet B mellan brunnarna fbrutsatts uppfylla:

B > 0.6 /at [10.9.1.1)

Numeriskt ger detta att brunnsavstandet skall b'verstiga drygt 4 meter.

De tva fallen med mattlig och forsumbar influens for variationer under

aret enligt formel 10.8.5.12 behandlas var for sig nedan.
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Forsumbar_influens for arstidsvarlationer

Brunnsavstandet B uppfyller:

B >. 2 VaTQ ( 1 0 . 9 . 1 . 2 )

Dimensioneringen i avsnitt 10.4 galler da ofbrandrad fransett medel-

effektkomponenten Q . Arlig sinusve

handlas exakt enligt avsnitt 10.4.

effektkomponenten Q . Arlig sinusvariation och eventuella pulser be-

Formel 10.4.4 for brunnstemperaturens medeleffektkomponent ersatts av

forme! 10.8.4.3:

TRQ(t) = Tom - . ̂  • g(t/tr Ro/H, B/H, ...) (10.9.1.3)

Ha'r ar N. antalet brunnar. Den dimensionslosa responsfunktionen g
maste beraknas med datormodell. Variationen med brunnsradien ges av

forme! 10.8.4.4.

Huvudformeln 10.4.10 galler med ny tidsberoende faktor K :

TRmin " Tom ' W ' ̂  ' W ' K1 '
Qb b (10 .9 .1 .4 )

- Tif • « K 2 + ^-^(ytdag^ C tdag = 1 d^

Konstanterna K, , K? och K' ges av 10.4.11, medan K (t) ges av:

K 0 ( t ) = 2 ^ - g(t/t r . . . ) ( 1 0 . 9 . 1 . 5 )

Ett krav for formel 10.9.1.4 ar att tidskriteriet (10.4.9) ar uppfyllt

eller att puls saknas (Q2=0).

For ett system med balanserad aterladdning ar Q lika med noil. Resul-
taten i avsnitten 10.4 och 10.5 ar da direkt tillampliga.

Exempel 1. I exempl et i avsnitt 10.8.4 beraknas temperatursankningen pa

grund av medel effekten Q for ett system med fyra brunnar
vilka ligger i hbrnen pa en kvadrat. Antag att man forutom
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Q har dels en cykliskt bverlagrad sinuskomponent med period-
tiden ett ar och amplituden Q.=7 kW, dels en overlagrad effekt-

puls med langden fern dagar och storleken 0~=5 kW. Effektut-

taget ar av den typ som visas i figur 10.33. Samtliga data en-

ligt exemplet i avsnitt 10.8.4 galler. Ostbrd marktemperatur

Tom Sr 8°C'

Den la'gsta brunnstemperaturen under 25:e aret skall beraknas.

Denna temperatur erhalles med formel 10.9.4 ty villkor 10.9.2

ar uppfyllt:

B = 15 > 2v/ato = 14.3 m

Enligt exemplet i avsnitt 10.8.4 ar medeleffektens bidrag till

brunnstemperatursankningen lika med

(Q0/Nb)-Ko(t) = 6.5°C

Oversta raden i tabell 10.6 ger K,=1.26, K 2=0.70 och K' =

0.15 K/kW. Forrnel 10.9.4 ger:

TRmin = 8 -6 .5 -7 /4 -1 .26 -5 /4 - (0 .70+0 .15 - l n (5 ) ) = -1.9°C

Exempel 2. Givet ett system med sexton brunnar i kvadrat enligt figur 10.36H.

Effektuttaget ar renodlat. Under halva aret har man den

konstanta effekten 2Q . Under andra halvan av aret ar uttags-

effekten noil. Arsuttaget ar 300 MWh. Fb'l jande data ga'ller:

Q(t) =
2QQ 0 < t - nt0 < to/2

0 t0/2 < t-nto < tfl

(t0 = 1 ar) (n = 0, 1, ...]

D. = 5 m H = 145 m

RQ = 0.055 m B = 14.5 m

X = 3.5 W/mK C = 2.16 MJ/m3K
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QQ = 34.2 kW

m R = 0 K/(W/m)

Detta ger

EQ = 300 MWh/ar

= 16

RQ/H = 0.00038 B/H = 0.1

t/t1 = 24.5/45.7 = 0.536

= -0.624

Det totala effektuttaget bestar av en konstant medeleffekt-

komponent samt en bverlagrad periodisk komponent med medel-

uttaget noil.

QIWI

2Q0

Q.

0.5 1.0 1.5 2.0
-AA/VWvV

23 23.5 2<. 24.5
- t l o r l

Q I W I

24 24.5
t l o r l

Figur 10.51. Varmeuttag fran 16 bergvarmebrunnar. Data enligt

(10.9.1.6). Ovre figuren visar det exakta pul-

serande va'rmeuttaget medan den nedre figuren vi-

sar den approximation som anvands for bera'k-

ningarna.

Den la'gsta brunnstemperaturen under ar 25 skall beraknas.

Detta intraffar vid tiden t = 24.5 ar. Temperatursankningen

pa grund av medeleffekten Q beraknas med hjalp av g-funk-

tionen. Periodisk sinuskomponent medtas ej.
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For den bverlagrade periodiska komponenten anvands enbart den

puls som tillhbr den aktuella cykeln, t > 24 ar. Pulserna

fran tidigare cykler, t < 24 ar, har medelvardet noil och

deras paverkan pa brunnsmedeltemperaturen vid tiden 24.5 ar

ar fbrsumbar. Varmeuttaget bestir saledes av de tre kompo-

nenterna: QQ = 34.2 kW, Q1 = 0 och Q2 = 34.2 kW.

Temperatursa'nkningen i brunnen kan beraknas med forme! 10.9.1.4

eftersom villkor 10.9.1.2 ar uppfyllt:

B = 14.5 > 2/aTQ = 14.3 m

Temperatursa'nkningen pa grund av medeleffekten Q erhalles med

hjalp av g-funktionen. Denna ges for R /H = 0.0005 av figur

10.42H.

g(0 .536, 0.0005, ...) = 14.1

Detta va'rde omraknas for aktuell brunnsradie enligt (10.4.8.4)

g(0.536, 0.00038, ...) = g(0.536, 0.0005, ...) -

ln(0.00038/0.0005) = 14.1 + 0.3 = 14.4

Medeleffektkomponentens bidrag till brunnstemperaturen blir

enligt (10 .9 .1 .4 -5 )

F° ' Ko^ = V 27AH ' 9(°'536 ' • • • ) = 9 - 7 ° C

Bidraget fran den extra pulsen Q. ar enligt (10 .9 .1 .4 )

Wb • (K2+K2 ^(V^ag) = 3 '3°C

Har ar t0 = 1/2 ar = 182.5 t , . Koefficienterna K0 och K'
L. Qciy i- t-

ges av tabell 10.4.12.

Den totala temperatursa'nkningen efter 24.5 ar blir

Tom - TR = 9'7 + 3'3 = 13'



10.144

Det exakta pulserande effektuttaget dar samtliga halvarspul-

ser medtages skiljer sig fran ovanstaende resultat med mind-

re an 0.1°C.

Mattljg_influens for arstidsvariationer

Brunnsavstandet B uppfyller:

0.6\/aTo < B < 2v6ro (10.9.1.7)

Fbregaende analys galler fransett smarre modif ikationer beroende pa den
arliga sinusvariationen med effektampl ituden Q.. Konstanten K, i formel

10.9.1.4 definierades tidigare av 10.4.11. Den skall nu ges av:

K1

Funktion A ges av figur 5.2.11.

10.9.2 Sneda brunnar

For system med sneda brunnar varierar brunnarnas inbbrdes avstSnd med

djupet. Normalt ar brunnarna tatt placerade vid markytan. De ar gradade

sa att avstandet niellan dem bkar med djupet. For dessa konfigurationer

ar influensen stark vid brunnarnas bversta del.

Ar den starkt influerade delen liten relativt brunnarnas totaldjup, kan

formel 10.9.1.4 anvandas vid dimensionering. Koefficienterna i formeln
modifieras enligt nedan.

K (t): Denna koefficient beraknas utan modifikation. g-funktioner for

konfigurationer med sneda brunnar anges i avsnitt 10.8.6.

K.: Kriteriet for att formel 10.9.1.4 skall kunna anvandas vid be-

rakning av K. ar att avstandet mellan tva narliggande brunnar
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uppfy l l e r v i l l k o r 10.9.1.1. DS vissa delar av b runna rna ej upp-
f y l l e r detta v i l l k o r betraktas dessa de lar som icke ak t iva vad
det ga'ller varmeuttaget . B r u n n s l a n g d e n H reduceras med denna icke
akt iva del • Den nya reducerade b r u n n s l a n g d e n betecknas H , ̂  .

F i g u r 10.52 i l l u s t r e r a r ett f a l l med tva sneda b runna r da'r brunns-
—Ft ?

langden reducerats. Markens temperaturledningstal a ar 1.62'10 m /s

och periodtiden t ar 1 ar. Kriterium 10.9.1.1 ger:

> 0.6-/aT = 4.3 m

4.3 m

Haktiv

Figur 10.52. Tva sneda brunnar da'r aktiv brunnslangd reduceras

for periodisk komponent.

Koefficienten K. ersattes med H/H i,4.-v'K«. Detta ger en undre

uppskattning av den la'gsta brunnstemperaturen T_ . .

K2,IC: Dessa koefficienter bb'r kunna beraknas utan reducering av brunns-

langden H om tg ar mindre an 30 dagar eftersom en puls med denna

langd har en rackvidd som ar mindre an tva meter.

Dimensioneringsreglerna ovan kan anvandas da g-funktionen ar kand. Denna

finns beraknad for ett antal olika brunnskonfigurationer i avsnitt 10.8.4

och 10.8.6.

14-U3
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10.10 Temperaturpaverkan pa omgivande mark

En bergvarmebrunn kyler ner berget kring brunnen. Denna temperatur-

paverkan ar av intresse ur miljosynpunkt. Speciellt ar man intresserad

av stb'rningen vid markytan och i ytliga jordskikt. Den langsiktiga ned-

kylningsprocessen runt brunnar ar ocksa av intresse.

I de fbregaende avsnitten har temperaturprofiler och isotermer visats for

olika fall. I avsnitt 10.2 behandlas i exempel 1-2 en brunn som ar 150

meter djup. Effektuttaget och erforderlig brunnstemperatur visas i figur

10.3. Figurerna 10.4-7 visar nedkylningen. Vid varmeuttag ar temperatur-

gradienten mycket brant na'ra brunnen. Enligt figur 10.5 stiger temperatu-

ren fran 4 C vid brunnen till 7 C cirka fyra meter ut fran denna. Mellan

4 och 15 meter stiger temperaturen till ytterligare en grad (ar 25).

Figur 10.18 visar hur brunnstemperaturen fbljer ett variabelt effekt-

uttag.

Efter mycket lang tid av konstant varmeuttag far man ett stationart

temperaturfalt i marken runt brunnen. Detta behandlas i avsnitt 10.3.2.
Ett exempel visas i figur 10.12. Detta temperaturfalt ar uppspaltat

i tva delar med en geotermisk del enligt figur 10.14. Detta stationara

temperaturfalt ar intressant eftersom det ger den maximal a storningen

fransett omradet narmast brunnen dar arliga fluktuationer marks. Som

konstant effektuttag skall arsmedeleffektuttaget anvandas.

Figurerna 10. 35 och 10.36 visar isotermer for ett system av bergvarme-

brunnar for ett horisontellt snitt undet det 25:e aret. Figur 10.37

visar temperaturprofiler for tva brunnar pa olika avstand. Nagra exempel

for tre brunnar ges av figurerna 10.38 och 10.39.

10.10.1 Langsiktig nedkylning runt en bergvarmebrunn

De arliga variationerna i effektuttaget ger en lokal pSverkan runt

brunnen. Detta behandlas i na'sta avsnitt. Den langsiktiga nedkylningen

utanfbr detta omrade narmast brunnen styrs av det konstanta medeleffekt-

uttaget QQ for arscykeln.
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For att visa den langsiktiga nedkylningen tar vi fbljande exempel:

X = 3.5 W/m • K C = 2.16 MJ/m° • K = 8.25 °C

H = 146 m Di = 4 m R = 0.06 m (10.10.1;

QQ = 1712 VJ (EQ = 15 MWh/ar)

Temperaturfbrloppet har beraknats med dator for tusen ar. Figur 10.53

visar hur tva isotermer ror sig fran Sr 1 till ar 1000. Den vanstra

figuren visar isotermen T = 7.25 °C, dvs. en grads temperatursankning

relativt ostbrda fbrhallanden. Brunnstemperaturen T^ anges ocksa i

figuren. Rackvidden radiellt fran brunnen for denna isoterm ar efter

1, 5, 25, 100 och 1000 ar lika med 2, 4, 5.5, 11 respektive 13 m. Den

hbgra figuren visar isotermen for T = 8.0 C, dvs. en kvarts grads

temperatursankning relativt ostbrda fbrhallanden. Observera att

radiell skala har andrats. Rackvidden for denna isoterm ar efter 1, 5,

25, 100 och 1000 ar lika med 8, 18, 37, 58 och 74 m.

0
0

50

100

150

10 20

ISOTERM T=7.25°C

llr 5 25 100 1000

tidlSrl

TR(tl

1

5.50

5

5.12

10

4.81

100

t.65

1000

1.58

r(rn)
0

zlm)

r(m)

z(m)

Figur 10.53. Langsiktig nedkylning runt en bergvarmebrunn. Data enligt

(10.10.1). Ostbrd bergtemperatur T ar 8.25 C.



10.148

Fbljande exempel belyser ytterligare den langsiktiga temperatur-

stbrningen fran en bergvarmebrunn. Den aktuella brunnen a'r 185 m

djup. Varmeuttaget a'r 38 MWh per ar. Pa 35 meters avstand fran brunnen

pa djupet 45 meter finns en kulvert. Se skiss i figur 10.54. Fr&gan

a'r vilken temperaturstbrning man far vid kulverten. Temperaturstbr-

ningen i marken ges av T - T(r,z,t). Figur 10.54 visar denna

radiellt fran brunnen pa kulvertens niva z = 45 m for tider fran 2

till 100 ar.

r(m)

Figur 10.54 Temperaturstbrningsprofiler i radiell riktning for

djupet z = 45 m.

Enligt figur 10.54 ga'ller att temperaturen vid kulverten a'r belt opa-

verkad av bergvarmebrunnen under de tva fbrsta aren. EfterlO ar har man

en sankning med 0.25 °C. Efter 25 ar har sa'nkningen bkat till 0.5 °C.

Efter 100 ar a'r den 0.8 C. Temperaturf brl oppet har bera'knats for tusen

ar. Figur 10.55 visar temperatursankningen vid kulverten. Stbrningen

har en mycket lang tidsskala. En stbrning pa 1 °C uppnas aldrig.
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-T m

0.8-

0.6

0.4

0.2

10 20 30 40 50 60 70 80 90 100
t(lr)

Figur 10. 55. Temperatursankning vid kulvert som funktion av tiden

Ovanstaende exempel visar att temperaturstbrningarna pa lite stbrre
avstand fran brunnen ar sma. Tidsskalan for att uppna den maximala sta-

tionara stb'rningen ar mycket stor.

For ett system med balanserad aterladdning fbrsvinner dessa storningar
med lang rackvidd. Man har enbart de mer lokala variationerna runt brun-

nen enligt nasta avsnitt.

10.10.2 Rackvidd for temperaturfluktuationer under aret

Effektuttaget Q(t) varierar under aret. Denna variation ger upphov till
ett variabelt temperaturfalt med en viss rackvidd ut fran brunnen. Denna

del bverlagras den tidigare komponenten fran nedeleffektuttaget.

Rackvidden for arsf1uktuationerna analyseras enklast med den periodiska
grundkomponenten. Effektuttaget for denna del process ar

Q(t) = Qrsin(
o

[10.10.2.

Periodtiden t =1 ar ger rackvidd for arsvariationen. Denna periodiska
process utanfbr ett rbr behandlas i avsnitt 5.2.2.2. Vid brunnen har
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temperaturen en v iss amplitud. Denna amplitud da'mpas utat. Formel 5 .2 .2 .15

anger amplitudens variation med radien:

NQ ( r ' )
[10 .10 .2 .2 )

r/T R /T /at
R 1 =

do =

Faktorn 10.10.2.2 ar forstas lika med +1 for r=R . Funktionen N ges i

tabell 5.2.2 och figur 5.2.3. For sma och stora argument galler approxi-

mationerna 5.2 .2 .13 respektive 5.2.2.14.

Exempel. Vi tar fbljande data

RQ = 0.055 m a = 1.6-10"6 m2/s

Tre periodtider studeras:

t = 1 ar, 15 dagar, 1 dag

Dampningsfaktorn (10.10.2.2) for temperaturens amplitud blir

for nagra radier:

r (m)

t =1
0

V15
V1

ar

dagar

dag

0.055

1

1

1

0.10

0.96

0.78

0.64

0

0

0

0

.20

.70

.53

.29

0

0

0

0

.50

.49

.26

.047

1.0

0.33

0.10

0.0031

2

0

0

0

.0

.19

.022

.00002

5.0

0.062

0.00035

0

Rackvidd for effektpulser behandlas i avsnitt 5.3. Temperaturprofilen

fran en stegpuls ges direkt av figur 5.3.6.
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10.10.3 Paverkan vid markytan

Temperaturpaverkan vid markytan och det bversta skiktet av marken kompli-

ceras av de "lokala randvillkoren och av eventuell snb och tjalbildning.

Det ar svart och ofta ogbrligt att i detalj berakna de naturliga tempe-

raturfbrhcHlandena na'ra markytan. For att komma fbrbi detta ser vi bara

pa stbrningar av de naturliga fbrhallandena. Dessa ar mindre kansliga

for de exakta randvillkoren.

De temperaturer och varmeflbden som anges nedan skall uppfattas som bver-

lagrade pa det ostbrda fbrloppet.

10.10.3.1 Exempel med en och tva brunnar

For att belysa paverkan i de ytliga jordskikten skall tva berakningsfall

refereras. Brunnen ge;

Fbljande data galler:

refereras. Brunnen ges en undertemperatur pa 5°C relativt ostbrt berg.

X = 3.5 W/m-K C = 2.16 MJ/m3-K

H = 146 m (10.10.3.1

Tom - TR = 5°C

Figur 10.56 visar beraknad temperaturstbrning pa en meters djup under

markytan som funktion av avstandet (s) radiellt ut fran brunnen.

Den maximala temperaturstbrningen efter 100 ar ar -0.12 C. Pa radien

s=20 m ar stbrningen 20% av maximalvardet. Skillnaden mellan kurvorna

for 5 ar och 100 ar ar cirka 0.01°C.

Temperaturfbrloppet for tva brunnar med data enligt (10.10.3.1) visas

ocksa i figur 10.56 Avstandet B mellan de tva brunnarna ar 10 meter.

Temperaturen pa en meters djup visas la'ngs det snitt som gar genom brun-

narna. Avstandet s ra'knas fran mittpunkten mellan brunnarna. Den ena

brunnen ligger saledes vid s=5 m. Man har ingen topp ha'r eftersom brunnen

ar varmeisolerad ner till 4 meters djup. Den stbrsta stbrningen efter

100 ar ar -0.16°C. Stbrningen har reducerats till 20% av detta varde
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T(s,1,t) (t)
-02

s(m)

Figur 10.56. Beraknad temperaturstorning pa en meters djup for en och

tva bergvarmebrunnar.

20 meter utanfor brunnen (s=25 m). Stbrningen efter 5 ar avviker drygt

0.01°C frlin stbrningen efter 100 ar i det givna intervallet.

10.10.3.2 Forme! for storvarmeflbde vid markytan

En bergvarmebrunn med ett §rsmedeleffektuttag QQ ger upphov till ett

extra varmeflbde ner genom markytan. Detta stbrvarmeflbde blir en funk-
tion av radiellt avstand till brunnen och av tiden. Variationer i effekt-

uttaget under aret marks ej vid markytan.

Lat q (r,t) (W/m2) beteckna detta storvarmeflbde pa grund av en bergvar-
mebrunn med effektuttaget QQ. Varmeflbdet qQ blir proportionellt mot
Q . Fbljande forme! kan harledas for qQ (J. Claesson, opubl icerad studie):

Q,
qo(r,t) erfc

(10.10.3.2)

. erfc
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Ha'r a'r erfc den s.k. complementary error funktion. Se kapitel 3.

Totala brunnsdjupet a'r H, (= H+D.). Formeln a'r ma'rkvardigt enkel .

De tva termerna har samma struktur. Med hja'lp av tabell over erfc a'r

det latt att berakna varmeflbdet.

Temperaturstbrningen pa ett mattligt djup z kan uppskattas pa fb'ljande

sa'tt:

qo(r.t) -

eller

T(r,z,t) ̂  -qn(r,t) • y ( z < D . , z < 3 m ) (10.10.3.3)
0 A 1

Observera att detta a'r en uppskattning av den avvikelse man far fran

ostbrda naturliga fbrhallanden.

Da tiden gar mot oandligen erhalles ett stationart slutv'a'rde. Detta blir:

Q. r 1 1
(10.10.3.4)

b

Detta a'r det maximal a varmeflbdet vid markytan. Formeln ger ett mycket

enkelt uttryck for maximal paverkan.

Det storsta flbdet erhalles vid sjalva brunnen; r=0.

Q ( D . ,
q = q (0,00) = ° J i - .H (10 .10 .3 .5 )

o,max o <iiTHU.j ^ HJ

Termen D./H kan fbrsummas.

Exempel. Vi va'ljer fbljande data:

X = 3.5 W/m-K C = 2.16 MJ/m3-K

H = 146 m D. = 4 m (10.10.3.6)

QQ/H = 20 W/m
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Det maximala varmeflbdet blir enligt (10.10.3.5)

Detta motsvarar pa en meters djup en temperaturstbrning:

T(0,1,») =* -0.77 •— = -0.22°C

2 „..
Nedanstaende tabell anger varmeflbdet uttyckt i W/m for nagra

radier och tider enligt formel 10.10.3.2.

r (m)

5

25

100

1000

0=

ar

ar

ar

ar

2

0

0

0

0

0

.5

.61

.62

.64

.65

.65

12

0.

0.

0.

0.

0.

.5

14

19

21

22

22

0

0

0

0

0

30

.02

.06

.08

.08

.08

0

0

0

0

0

70

.000

.007

.020

.026

.026

0

0

0

0

0

185

.00000

.00000

.00090

.0036

.0038

Exemplet ovan visar att storva'rmeflbdena blir sma. For stora radier tar

det hundratals ar innan stationara fbrhallanden uppnas.

10.10.3.3 Totalt varmeflbde fran markytan

Den va'rme Q som tas ut via bergvarmebrunnen erhalles genom nedkylning

av berget och genom ett varmeflode genom markytan. Denna senare del

harrb'r fra'mst fran solen. Det ar intressant att se fbrdelning mellan

dessa tva bidrag som en funktion av tiden.

Det total a varmeflbdet genom markytan erhalles genom att integrera

qQ(r,t). Observera att enbart stbrvarmeflbdet pa grund av brunnen

utnyttjas.
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•Wkyta " £ ""' ' V'"•'"' (10.10.3.7)

Har ges q av formel 10.10.3.2. Integralen kan beraknas explicit.

?S~? ! / D - \ Hh \
Q . . =Q • -^i- ierfc (—1- - ierfc —^ (10.10 .3 .8 )markyta yo H ' ( — ' l "

2
ierfc(s) = — e s - s-er fc(s)

/IT

Detta forhal landevis enkla uttryck anger vid varje tidpunkt den andel av

effektuttaget Q som kommer via markytan. Resterande andel ha'rror fran

nedkylning av berget.

Exempel. Lat oss ta data enligt (10.10.3.6). For t=n ar erhalles:

Aat = 14.30-/fT

Detta ger efter n ar:

ar

^markyta
n

5

0.10

10

0.15

25

0.25

50

0.36

100

0.48

200

0.61

500

0.74

1000

0.81

Exemplet ovan belyser val tidskalan for va'rmeflb'det genom markytan. Efter

5 ar kommer 10% av effektuttaget Q via markytan, medan resterande 90%

fas genom nedkylning av berget runt brunnen. Efter 25, 100 och 1000 ar

ar andelen via markytan 25, 48 respektive 81%. Efter 1000 ar erhalles

saledes 20% av va'rmen genom nedkylning.
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10.11 Persondatoranpassad dimensionering med hjalp av g-funktioner

I avsnitt 10.4 och 10.9 har dimensioneringsregler angivits for en enskild

och flera influerande brunnar. Dimensioneringen baserar sig dar pa

att effektuttaget kan delas upp i medeleffektkomponent Q , sinuskompo-

nent med amplituden CL och b'verlagrad effektpuls Qo-

I det allmanna fallet ar effektuttaget Q(t) en godtyckligt varieran-

de funktion av tiden. Om detta varierande effektuttag approximeras

med strackvis konstanta varden kan temperaturen vid bergvaggen berak-

nas genom superposition av g-funktioner. I detta avsnitt beskrivs denna

metod vilken ar speciellt lampas for persondatorer.

Effektuttaget ges i detta avsnitt som ett medelvarde per meter brunn:

q (t) = Q(t)/(Nb-H) (W/m) (10.11.1)

dar Q(t), (W) anger totalt effektuttag och N.H, (m) anger totala antalet

meter aktivt verkande brunnar.

Varmeuttaget ar strackvis konstant:

0 (= q ) t < t

q(t) =
(10.11.2)

Uttrycket 10.8.3.3 anger temperatursankningen vid borrhalsvaggen rela-

tivt ostb'rd mark for en effektpuls q = Q /(N. H), vilken startar vid

tiden t = 0. For ett strackvis konstant effektuttag enligt (10.11.2)

ges temperatursankningen av ett uttryck av den typ som anges i formel

10.8.3.6. Med nagot annorlunda beteckningar blir denna formel:

Tom - TR = g((t - t^^^/t^R^H...) (10.11.3)
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Responsfunktionen g finns tabulerad pa diskett for tiden mellan 5

timmar och 1000 ar som ett 20-tal punkter for var och en av de kurvor

som anges i avsnitt 10.8.4 och 10.8.6. Mel lanl iggande varden far be-

r'a'knas med linjar- eller spl ineinterpolation. Observera att g-funk-

tionen ha'r ar utraknad med parametern R /H = 0.0005. For annat v'a'rde

pa brunnsradien galler ekvation 10.8.3.4.

Da temperaturen vid borrhalsvaggen Tr, ar kand kan fluidens medeltempe-

ratur Tf beraknas enligt formel 10.3.8.4 (eller 10.3.8.5):

Tf = TR - mR^n

In- och utloppstemperatur beraknas darefter med uttrycken i (10.3.18.3).

10.12 Responstestmatning for en bergvarmebrunn

Vid dimensionering av bergvarmebrunn enligt de tidigare angivna reglerna

ar de termiska parametrarna T __ , X och mD speciellt viktiga. I detta av-om K
snitt skall metoder for direkt matning av dessa behandlas.

1. Ostb'rd markmedeltemperatur T

Den ostb'rda markmedeltemperaturen T skall matas innan brunnen tas i

drift. Temperaturen kan erhallas genom att temperaturlogga pa ett antal

olika brunnsdjup och darefter berakna medelvardet over brunnsdjupet .

Ett alternativ t i l l temperaturloggning ar att mata fluidens temperatur

da denna pumpas genom brunnen utan nagot varmeuttag. Denna temperatur

ar en god uppskattning av T

En komplikation ar att den varmemangd som motsvarar pumparbetet til If ores.

Man far darfbr en svagt bkande temperatur. Denna effekt kan om sa erford-

ras analyseras enligt nedanstaende metod.

2. Va'rmel edni ngsf brmagan X och varmeovergangsmotstandet m^,

Parametrarna X och m,, kan matas med den metod som anges i referens 147.

Metoden baserar sig pa att man har ett konstant varmeuttag q . Fluidens



10.158

temperatur uppmates som funktion av tiden. I borjan ar temperaturen va-

sentligen konstant. Detta beror pa att det tar en viss tid innan all

fluid har passerat genom brunnen. Efter denna tid bbrjar fluidtempera-

turen sjunka.

Detta satt att bestamma termiska parametrar ar en tillampning av test-

probe metoden. I 1aboratoriesammanhang brukar man anvanda en probe med

langden cirka 10 cm. Har anvandes samma metod for en brunn med en la'ngd

pa mer an hundra meter.

Varmeuttaget ar renodlat. Man har ett effektsteg enligt avsnitt 10.3.7.

Sambandet mellan fluidtemperatur och varmeflbde ges av formlerna 10.6.3.4

och 10.3.9.1. Ur dessa erhalles temperatursankningen i fluiden relativt

ostbrd markmedeltemperatur:

om f 4ir X R 4nX p2
o

5R2
Y = 0.5772 t > —~ a

Varmeflbdet q (W/m) ti l l borrhalet strbmmar fran omgivande mark vid ra-

dien r = R . I uttryck 10.12.1 ar borrhalet approximerat med en linje-

sanka. Varmeflbdet q fran marken sker da vid borrhalets centrum r = 0.
2

Approximationen kan anvandas efter tiden 5R /a, nar det relativa varme-

innehallet i regionen 0 < r < R ar litet. Tidskriteriet behandlas ut-

fbrligt i avsnitt 7.2.2.3.

Da utloppstemperaturen plottas som funktion av logaritmen av tiden er-

halles efter en kort fbrsta tidsperiod en rat linje. Lutningen <j> (K)

pa linjen ger varmeledningsfbrmlgan X.

Ur formel 10.12.1 fas:

5R2
t > —- (10.12.2)

4lT<t>

I formel 10.12.1 ar nu alia parametrar utom a = X/C och m,, kanda. Varme-

kapaciteten C erhalles ur tabell for aktuell bergart. Overgangsmotstan-
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det rrin kan nu beraknas med formel 10.12.1. Varje matpunkt ger ett varde.

Lampligen va'ljes ett medelvarde for olika tidpunkter.

Belastas brunnen med ett mycket stort konstant varmeuttag fryser grund-

vattnet mellan plastslang och bergvagg. Under frysperioden, som kan vara

nagra timmar, tas varmen vasentligen fran grundvattnets smaltvarme. War

allt grundvatten fryst t i l l is sker ater varmeuttaget med vanlig v'a'rme-

ledning fran berget. Varmemotstandet m,, ar emellertid fbrandrat eftersom

slangarna nu omges av is vars varmeledningsfbrmaga ar drygt tre ganger

stbrre an for vatten.

I exemplet nedan illustreras ovanstaende metod for bestamning av X och

V

Exempel. Givet ett borrhal med fbljande data :

Ro = °'055 m Tom = 8'25°C

Varmeledningsfbrmagan X och varmemotstandet m,, skall bestammas.

Varmeuttaget ar konstant enligt den bversta av figurerna 10.57:

q = 25 W/m t > 0

Fluidtemperaturen uppmatt som funktion av tiden visas i den

mittersta av figurerna 10.57.

Temperaturpunkterna ha'rrbr ej fran nagot faltfbrsbk. De ar en-

bart konstruerade i illustrativt syfte for detta exempel.

Temperaturpunkterna som uppfyller tidskravet i formel 10.2.2

kan anvandas vid bestamning av X. Antag som en grov uppskattning

att X = 3.3 W/mK och C = 2.16-106 J/m3K (a = X/C = 1.53-10"6 m2/s).

Tidskriteriet blir da:

t > 5 (0.055)2/(1.53-10"6) = 9.9-103s = 2.7 timmar

For tider stbrre an 2.7 timmar plottas fluidtemperaturen mot

ln(t). Resultatet visas i den nedre av figurerna 10.57.
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q (w /m)

25-

Tf CO

4.0-

3.0-

2.0-

100000 200000 t (s)

0 10000 20000 50000 100000 200000 t (s)

4.0-

3.0-

2.0-
9.0 10.0 11.0 12.0 Ii = l n l t )

Figur 10.57. Fbreskrivet varmeuttag och uppmatt fluidtempera-

tur for exemplet ovan, samt temperaturen mot en

logaritmisk tidsskala.

Lutningen <j>(K) pa den rata linje som erhalles bestammer X en-

ligt 10.12.1:
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25
4ir(-0.59)X = - -(-0.59) = 3 '4 W/mK

Med detta X kan korrekt varmeledningstal beraknas,

a = 3.4/2.16-106 = 1.57-10"6 m2/s.

Al ia storheter utom mR ar nu kanda i forme! 10.12.1:

8.25 - T (t) = H'J,. ln(t) + 25[mR + .J, .(in 4 '1 '57 '1g )- 0.5772])
(0.055)

Varje temperaturpunkt ger ett v'a'rde pa

t (s)

Tf(°C)

mR K/(W/m)

10000

4.3

0.101

20000

3.9

0.100

50000

3.4

0.099

100000

3.1

0.095

200000

2.7

0.094

Medelvardet av dessa varmemotstand blir:

mR = 0.10 K / (W/m)

15-U3
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11. YTJORDVARME

Figur 1.5 visar ett ytjordvarmesystem. Via ytjordvarmeslangar tas varme

fran marken t i l l en varmepump. Slangarna kan ligga pa en knapp meters

djup. Marken kyls under naturliga temperaturnivaer. Detta ger upphov

t i l l en varmetillfbrsel fran markytan. Man kan saga att ytjordvartne-

slangar utnyttjar markytan som en solfangare eller en luftkollektor.

Ha'rvid fungerar ytjordskiktet ner till nagra meters djup som ett varme-

lager. Vintertid fryser ofta marken n'a'ra slangarna, varvid a'ven frys-

varmet utnyttjas.

I ytjordvarmeslangarna cirkulerar en varmebararfluid, vars temperatur

betecknas T,(t). Varmeflbdet fran marken till en slang betecknas q(t).

Det har sorten W/m. Det raknas negativt, da va'rme avges fran slangen

t i l l marken. Genom att sanka T, b'kar varmeuttaget q. Samtidigt sjunker

emellertid varmepumpens prestanda med temperaturen T, pa den tillfb'rda

varmen. Man har en viss grans T, . som ej far eller bbr underskridas.

Varmeuttaget begransas ocksa av mi 1jbpaverkan och i synnerhet av att

man ej kan frysa marken alltfbr mycket.

Huvudsyftet med de termiska analyserna ar att ange sambanden mellan T^ft

och q(t) i olika situationer.

Ett viktigt hjalpmedel vid de termiska analyserna ar superposition. Se

avsnitt 3.5. Den totala temperaturprocessen kan da uppdelas i enklare

fundamentalprocesser, vilka analyseras var for sig. Dessa sammansattes

ti l l det totala, mer komplexa temperaturfbrloppet. Genom att utnyttja

dessa analysmetoder far man en djupare fbrstaelse for vad som sker.

Superpositionsprincipen galler ej da marken fryser. Den ga'ller inte hel-

ler da man har snb, vilket innebar ett tidsvariabelt varmemotstand vid

markytan. Tjalbildning och snb beaktas ej har. Analyserna blir, da man

tar ha'nsyn t i l l snb och tjale, sa besvarliga att man hela tiden far ut-

nyttja rena numeriska datorsimuleringar. Mangden parametrar blir ett

problem. Omfattande studier, da'r tjale beaktas, har utfbrts vid Jord-

varmegruppen pa Chalmers. Se referens 164.

Tjalbildning kan fbrsummas for mark med laga vattenhalter. Resultaten
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nedan kan ocksa i huvudsak tilla'mpas under den del av aret da tj'a'le sak-

nas. I manga fall, i synnerhet sbderbver, sker ingen frysning. De ana-

lyser nedan som rbr den lokala processen kring en slang eller flera

n'a'rliggande slangar galler a'ven vid frysning fbrutsatt att hela det ak-

tuella n'a'romradet ar helt fruset. Man skall da utnyttja termiska data

for frusen mark.

Begransningen t i l l fall utan tj'a'lbildning och snb inneba'r att resulta-

ten i detta kapitel inte blir helta'ckande pa samma s'a'tt som de bvriga

kapitlen.

Detta kapitel ar ett sammandrag av referens 9. I avsnitt 11.1. diskute-

ras Superpositionsprincipen och den fundamentallbsning till vilken i

princip alia fbrlopp kan reduceras. Avsnitt 11.2 behandlar den statio-

n'a'ra delprocessen. I det fbljande avsnittet behandlas effekten av tem-
peraturvariationen vid markenytan. I avsnitt 11.4 och 11.5 behandlas effekt-

pulser och periodisk komponent. Effekt av grundvattenrbrelser och infilt-

ration av regnvatten belyses i avsnitt 11.6. Tetnperaturfbrloppet i av-

snitten 11.1-6 avser ett vertikalt tva'rsnitt vinkelratt mot slangarna.

Som fluidtemperatur T, bbr man da utnyttja medelv'a'rdet mellan slangar-

nas inloppstemperatur och utloppstemperatur. I avsnitt 11.7 diskuteras

temperaturvariationen langs slangarna.

11.1 Superposition. Fundamentallosning

Superpositionsprincipen behandlas i avsnitt 3.5. I figur 3.2 visas ett

belysande exempel. Man har tva ytjordvarmeslangar med de fbreskrivna,

tidsberoende varmeuttagen q<|(t) och q0(t) (W/m). Vid markytan har man

den fbreskrivna temperaturen T (t). Processen uppdelas i tre delfbr-

lopp. I den fbrsta del en sattes varmeuttagen till noil. Denna del ger

da den naturliga, ostbrda temperaturen i marken, vilken styrs av T (t).

Den andra delen har va'rmeuttaget q-,(t) t i l l den ena slangen, medan den

andra slangen har va'rmeuttaget noil. Den tredje delen tar hand om det

andra va'rmeuttaget qo(t). Temperaturen vid markytan ar noil for de tva

sista komponenterna. Adderas de tre komponenterna erhalles det totala

temperaturfbrloppet.

Del tva och del tre i figur 3.2 ar var for sig rena varmeuttag t i l l en
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enda slang. Det givna varmeuttaget q,(t) (eller q2(t)) kan i sin tur upp-

delas i enklare delkomponenter. Man har en tidsoberoende stationa'r del.

Till denna kan man bverlagra stegvis konstanta uttagspulser sasom be-

skrives i avsnitt 5.3. Man kan ocksa utnyttja periodiska fb'rlopp enligt

avsnitt 5.2.

I denna studie utgar man fran givna varmeuttag, varefter f luidtempera-

turer beraknas. Man kan ta'nka sig att i stallet utga fran fluidtempera-

turerna och ange varmeuttag. Detta bijr emellertid undvikas, da det le-

der t i l l en mycket mer komplicerad analys.

Som en introduktion t i l l analyserna av temperaturf b'rlopp for ytjord-

v'a'rmesystem skall vi se pa den i viss mening mest grundlaggande proces-

sen, da'r man har ett konstant varmeuttag q^ (W/m) fran tiden t = 0.

Enbart temperaturstb'rningen pa grund av varmeuttaget behandlas har.

Temperaturen vid markytan a'r da noil hela tiden. Begynnel setemperaturen

vid t = 0 i marker a'r ocksa noil. Se figur 11.1.1.

Figur 11.1.1. Grundlaggande temperaturforlopp for ett renodlat effekt-

steg.

Det visar sig att en karakteristisk tidsskala for denna process a'r

D " "T" (11.1.1)
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Se avsnitt 11.4. Har ar a (m /s) markens varmediffusivitet och D djupet

t i l l ytjordvarmeslangen.

Temperaturen i marken utanfb'r slangen ges av fundamentallb'sningen

(11.4.1). Den blir en funktion av den dimensionslbsa tiden t/tp. Som

exempel valjer vi fbljande data:

D = 1 m

X = 1.5 W/mK

q1 =10 W/m

R = 0.02 m

a = 0.75-10"6 m2/s
(11.1.2)

Den karakteristiska tiden t blir da:

tn =
D

.1

0.75.10'
r s = 1 manad (11.1.2')

I figur 11.1.2 visas temperaturfaltet for tiderna t/tQ = 0.5, 1, 2

och co.

0 *

s
r(

^\ —

T=-
IN
N\-2

^3

~^t=(

rr

5tD

-1

x(m)

z(m)

+1

-T=-1'C

,-2

t=2tn

-x(m)

-1

<r=-rc-

r=TD

-x(m)

z(m)

I ° i x(m)

z(m) z(m)
Figur 11.1.2. Temperaturfalt vid olika tidpunkter for renodlat effekt-

steg enligt figur 11.1.1. Data enligt (11.1.2).
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Det skall noteras att alia andra fall med andra data an (11.1.2) ger

satnma temperaturfalt enligt (11.4.1) fransett faktorn q./X och skalning

av x och z med D. Varje tidsvariabelt va'rmeuttag q(t) kan uppfattas som

en sumtna av rena effektsteg. Se t ex avsnitt 10.3.7. Alia temperatur-

fb'rlopp for flera slangar kan saledes betraktas som en summa av funda-

mental losningen (11.4.1), vilken visas i figur 11.1.2.

I figur 11.1.3 visas isotermen T = -1 C for olika tidpunkter. Man bbr

observera att T = -1°C innebar att verklig temperatur ligger 1°C under

den naturliga ostbrda marktemperaturen.

x(m)

z(m)
Figur 11.1.3. Isotermen T = - 1 C for tiderna t/tp = 0.5, 1, 2, <=° for

renodlat effektsteg enligt figur 11.1.1. Data enligt

(11.1.2).

I figur 11.1.4 visas temperaturprofiler Va'ngs en vertikal linje genom

slangen. Temperaturen Tn i marken strax utanfbr slangen a'r av speci-

ellt intresse, eftersom den a'r direkt relaterad t i l l fluidtemperaturen

i slangen genom ekvation 11.2.10. For det aktuella exemplet visas T^

i figur 11.1.5.
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T(°C)

-5

Figur 11.1.4. Temperaturprofiler i ett snitt vertikalt genom slangen for

renodlat effektuttag enligt figur 11.1.1. Data enligt
(11.1.2).

TR(°C)

-3

-4

" 1

V
^

3 1

I

I
I

i

l̂

0 2

~—

3 30 40 50 60 7 ) 8 3 9( t (doys)

Figur 11.1.5. Temperatur i marken vid slangen for renodlat effektsteg

enligt figur 11.1.1. Data enligt (11.1.2).

Da varmeuttaget upphbr itergir efterhand temperaturen t i l l ostbrda fbr-

hallanden. I figur 11.1.6 visas avklingningen efter en mycket ling puls.

Effektuttaget q., antas ha ratt under tiden -<=°< t < 0. Data enligt

(11.1.2) antages. Vid tiden t = 0 rider da den stationara temperaturen

(t = °°) frin figur 11.1.2. Avklingningsfbrloppet kan betraktas som tvi

rena effektsteg +q1 vid t = -°°och -q1 vid t = 0. Den vanstra bilden
i figur 11.1.6 visar avkl ingningen la'ngs vertikal linje genom slangen,

medan hbger figur anger avkl ingningen hos isotermen T = -0.5°C. Vid ti-
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den t = tn har denna isotertn fbrsvunnit, d v s den maximala tempera-

turstbrningen ligger under 0.5 C.

z(m)

Figur 11.1.6. Temperaturavklingning fran tiden t = 0 efter en lang

effektpuls. Data enligt (11.1.2). Vanster bild visar

temperaturprofiler vertikalt genom slangen och hbger

bild isotermen T = -0.5 C.

Figur 11.1.7 visar speciellt temperaturavklingningen vid slangen, TR(t).

Speciellt galler:

TR(tD/30) = 0.36 TR(0)

TR(tD/3) = 0.1 TR(0)

TR(tD) = 0.05 TR(0)

(11.1.3)



t(days)

Figur 11.1.7. Temperaturavklingning i marken vid slangen efter en lang

effektpuls. Data enligt (11.1.2).

Enligt (11.1.3) och figur 11.1.7 a'r temperaturavkl ingningen efter en

effektpuls rnycket snabb. Efter en dag har temperaturen vid slangen
sjunkit med 64%. Efter 10 dagar aterstar 10% av temperaturstbrningen.

Iden att man skall til Ifbra marken varme sommartid for att sedan utnytt-

ja den lagrade varmen vintertid har framfbrts. Vi kan emellertid redan

har dra den slutsatsen att detta inte Ibnar sig, eftersom man har av-

klingningstider enligt (11.1.3). Efter det att varmetillfbrseln avbru-

tits tappar marken vid slangen temperaturniva mycket snabbt. Efter 10

dagar aterstar i storleksordningen 10% av den bvertemperatur som man

hade vid uppladdningens slut.

11.2 Stationart varmeuttag

Det fbreskrivna varmeuttaget q(t) har en konstant medeleff ektkomponent

q samt bverlagrade korttidspulser av olika slag. Medeleffektpulsen

q (W/m) ger en huvudsakligen konstant uttagstemperatur efter den

karakteristiska tiden tQ. Se figur 11.1.5 (tD= 30 dagar). Man har for
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medeleffektkomponentfin, da denna har verkat en tid t,,, huvudsakligen

stationara fbrhlllanden nara slangen. Det tar allt langre tid att upp-

na stationara fbrhallanden ju langre bort man kommer fran slangen. Har

a'r vi dock i fbrsta hand intresserade av !„, varfbr tidskriteriet

t > skall anvandas.

Det stationara fbrloppet a'r en viktig komponent eftersom den represen-

terar den konstanta baslasten. Denna del behandlas tamligen ingaende i

detta avsnitt.

11.2.1 En slang. Markens varmemotstand m

Det aktuella fallet med stationart varmeuttag med en slang i marken

illustreras i figur 11.2.1.

Figur 11.2.1. Stationart varmeuttag med en slang i rnarken.

Den stationara temperaturen T(x,y) i marken ges av fbljande uttryck:

T(x,z) = ̂ -ln (z - D)2

\/x + (z + D)2

(11.2.1)

Uttrycket har erhallits ur en linjesanka vid slangen i (0,D) och en

linjekalla i spegelpunkten (0, -D). Harigenom uppfylles automatiskt
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randvilIkoret T = 0 vid z = 0.

Vi ar speciellt intresserade av tetnperaturen i marken direkt utanfbr

slangen, d v s pa cirkeln:

x2 + (z - D)2 = R2 (11.2.2)

Har ar R slangens ytterradie. Avstandet t i l l spegelka'llan blir med

god approximation:

Vx2 + (z + D)2 = 2D (Rp « D) (11.2.2')

Saledes galler:

TR - ̂x ln^ (11.2.3)

Detta kan skrivas pa fbljande satt:

0 -T R =q o-m g (11.2.4)

Vanstra ledet anger temperaturfallet mellan ostbrd mark och slang. Hbg-

ra ledet definierar markens varrnemotstSnd rn :

(11.2.5)

Varmemotstandet m ra'knas per meter slang. Det har sorten K/(W/m).

For grundfallet (11.1.2) galler fbljande data:

D = 1 m R = 0.02 m

X = 1.5 W/mK a = 0.75-10"6 m2/s (11.2.6)

q = 10 W/m
0

Markens varmemotstlnd blir da:

mg = 25 ln^70T^ = °'49 K/(w/m) (11.1.7)
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Temperaturen vid slangen blir da:

TR = - 10-0.49 = -4.9°C (11.2.8)

Man skall har som tidigare observera att ovanstaende berakning bara

avser temperaturen fran effektpulsen. Om naturlig marktemperatur vid

slangen a'r t ex 7.0°C, si blir den totala temperaturen i marken vid

slangen 7.0 - 4.9 = 2.1°C.

Ibland har man en annan varmeledningsfbrmaga i marken narmast slangen.

Antag att varmeledningsfbrmagan a'r A. (W/mK) i ett litet cirkulart om-

ride med radien R.. runt slangen. Om R- a'r mindre an D/3 ges markens

varmemotstand med god approximation av fbljande uttryck:

11.2.2 Varmemotstand m mellan fluid och mark

Lit T, vara temperaturen i v'a'rmebararf luiden i slangen. Varmemotstan-

det m (K/(W/m)) (pipe) mellan fluiden och marken strax utanfbr slangen

definieras av:

TR - Tf = q-mp (11.2.10)

V'a'rmemotstindet m behandlas i detalj i avsnitt 7.2.8. V'a'rmemotstindet

bestir av tre delar (fluid - rbrvagg, rbrvagg, rbrvagg - mark):

m = m f + m ' + m (11.2.11)

Dessa behandlas i avsnitten 7.2.8.1, 7.2.8.3 respektive 7.2.8.4. Mot-

stindet m- beror pa strbmningshastigheten och i synnerhet pi om strbm-

ningen a'r turbulent eller laminar.

Kombineras grundformlerna (11.2.10) och (11.2.4) erhilles det allm'a'nna

uttrycket mellan drivande temperatur 0 - T, och stationart flbde q :
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1 pn
0 - Tf = qo.(mp + mg) = qQ mp + q^ In(̂ ) (11.2.12)

Det totala varmemotstandet mellan markyta (T = 0) och fluid (I,) ges

av summan av markens va'rmemotstand m och varmemotstandet m vid slang-

en.

11.2.3 Va'rmemotstand vid markytan

Randvil Ikoret vid markytan a'r enligt figur 11.2.1, att temperaturen

d'a'r a'r noil. Varmemotstandet mellan markytan och den fria luften har

fbrsummats. Antag nu att man har det allmannare randvillkoret med en
2

konstant varmebverfbringskoefficient a (W/m K) vid markytan:

-X|I=«s(0-T) z = 0

Problemet enligt figur 11.2.1 ar for bvrigt ofbra'ndrat. Den stationara

temperaturen i marken for detta fall ges i referens 9.

Ur denna Ibsning erhalles ett modifierat varmemotstand m for marken:

mq = 2?X f ln^ + 9s(Das/A)} (11.2.13)
P

Funktionen g (a1), a' = Da A, ges av:

gs(a') = 2e2a'-E1(2o!1) (11.2.13')

Funktionen E- (exponential integral) definieras av (5.3.2.2). Tabeller

fc

tabell 11.2.1.

och samband for den finns i referens 103A. Nagra va'rden pa g anges i

Da
a ' = -,-i

g s ( a ' )

0.5

1.19

1 2 3 4 5 10

0.72 0.41 0.29 0.22 0.18 0.10

Tabell 11.2.1. Funktionen gs enligt (11.2.131)-
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Effekten av va'rmernotstandet 1/a vid markytan ges av kvoten mellan g

och logaritmtermen i (11.2.13).

Exempel 11.2.1. Data enligt (11.2.6). Da g'a'ller:

ln[f ) = In(ĵ L) = 4.61

Tva fall behandlas:

Da 1fi

. - 0.04

Det fb'rsta fallet inneba'r att ytmotstandet 1/a vid

markytan 'a'r lika med 0.2D/X , d v s detsamma som for

0.2 m mark (D = 1 m). Detta a'r ett rimligt normalt varde.

Ytmotstandet okar da m med 4%. Det andra fallet a'r

extremt, eftersom 1/a = D/X inneb'a'r att ytmotstandet

'a'r lika stort som motstandet for 1 m mark.

Exempel 11.2.1 visar att normala varmemotstand vid markytan i stort

kan fbrsummas. Ett undantag a'r givetvis fallet med snb. I det fbljande

skall ytmotstandet vid markytan fbrsummas. Man har da det enkla rand-

villkoret T = 0 enligt figur 11.1.1.

11.2.4 Tva slangar

Figur 11.2.2 visar fallet med tva slangar pa djupen D- och Do. Avstan-

det mellan slangarna a'r B. Det fbreskrivna, station'a'ra effektuttagen

a'r q,, och q^ (W/m).
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Figur 11.2.2. Stationart varmeuttag med tva slangar.

Den stationara temperaturen i marken erhalles genom superposition av

tva uttryck av typen (11.2.1). Lat TR,. och TR2 vara temperaturen i

marken direkt utanfbr de tva slangarna. Man far ett ekvationssystem

for sambandet me!Ian varmeuttag (q^ och q2) och drivande temperatur-

differenser (0 - TR1 och 0 - TR2):

0 - TR1

(11.2.14)

0 -

De tre varmemotstanden (K/(W/m)) ges av:

"1 2TTA " | LRln(f-)
p1

12 In

(11.2.15)

Varmemotstanden over slangarna betecknas m , och m „• Da galler:

TR1 - Tf1

ITR2 - Tf2 = q2 'mp2

(11.2.16)
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Formlerna 11.2.14-16 a'r de alltnanna sambanden mellan fluidtetnperaturer

och stationara varmeuttag.

Ett viktigt specialfall a'r att fluidtemperaturerna T^ och T^ a'r lika.

Man kan for T.. = I — = T, losa ut q,, och q2 som funktion av T,. Kov-

ten me!Ian flbdena blir:

(11.2.17)
mp1 - m12

Vi a'r speciellt intresserade av sambandet mellan drivande uttagstempe-

ratur 0 - Tf och totalt varmeuttag q1 + q2- Ur (11.2.14) och (11.2.16)

erhalles for T-,. = !„„ = T,:

0 - Tf = (q-, + q2)'m1+2 (11.2.18)

Har ges det totala varmemotstandet m,,̂  (K/(W/m)) for de tva slang-

arna av:

(m. + m ,)(m? + m , ) - m
m = ' PI ^ P I _ L£ fii 2 191
1+2 m1 + m 1 + m2 + m 2 - 2m12 u ;

Varmeuttaget fran de tva slangarna minskar da avstandet B mellan dem

minskar. Det ar naturligt att jamfb'ra varmeuttaget fran de tvS slang-

arna pa ett avstand B med motsvarande uttag da slangarna ligger langt

fran varandra (B = °°), sa att de kan betraktas som termiskt oberoende.

Jamfbrelsen gores for samma f luidtemperatur T,,. Lit n vara varmeutta-

get relativt tva oberoende slangar. Da galler enligt (11.2.18):

m1 2(B = o>)
n = - - (11.2.20)

Figur 11.2.3 visar n for fallet m . = m 2 = 0 och R , = R 2 = 0.02D.

Den ena kurvan galler tva slangar pa samma djup B och den andra tva

slangar i samma vertikalsnitt. I det senare fallet avser n varmeuttaget

relativt tva oberoende slangar vilka bada ligger pa djupet D. Med ovan-

16-U3
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staende fbrutsattning b l i r n en funktion enbart av B/D.

0.5

B/D
0 5 10

Figur 11.2.3. Varmeuttag enligt (11.2.20) for tva slangar relativt

tva oberoende slangar pa djupet D for fallet mn1 =

m
Rp1 = Rp2 = °-02D'

Enligt den bvre kurvan minskar varmeuttaget till n = 0.85 da tva

slangar fbrlagges pa avstandet B = D relativt tva slangar pa stort av-

stand. Den undre kurvan avser tva slangar i samma vertikalsnitt. Man

har ett flackt, teoretiskt optimum vid B = 5D for placering av den

undre slangen.

11.2.5 N slangar

I det allma'nna fallet har man N parallella slangar. LStq- (W/m) vara

det stationara varmeuttaget t i l l slang i. Denna ligger vid x = x. och

z = D•. Den stationara temperaturen i marken erhalles genom att super-

ponera N bidrag av typen (11.2.1):

N q. /(x - x.)2 +

T(x'2' = I . 2̂ 1 ln / ?

1=1 7(x - x )2 +

(11.2.21)

+ D.
Ur (11.2.21) kan temperaturerna TD. imarken strax utanfbr slang i be-

K1

stammas. Man far harigenom ett ekvationssystem mellan !„• och q.. Mel-
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Ian fluidtemperaturen T^. i slang i och T^. rider enligt (11.2.10) sam-

bandet:

TRi - Tf. =q..m p. (11.2.2V

Ur dessa ekvationssystem erhalles fbljande allmanna satnband mellan

fluidtemperaturer T,. och varmeuttag q. vid stationaritet:

0 - T = I q -m (11.2.23)
f1 = J 1J =

Varmemotstanden m. . ges av:

2D

/B2 + 4D D

J J

Har ar B.. avstandet mellan slang i och slang j:

B̂ . = /(x. - Xj)2 + (Di - Dj)2 (11.2.25')

Ett viktigt specialfall ar da alia f luidtemperaturerna sa'tts lika:

Tf. = Tf i = 1,2,... N (11.2.26)

Analogt med (11.2.18) far man ett totalmotstand m1+ +N (K/(W/m))

avseende alia N slangar:

0 - Tf = (qi + q2 + ... + q N ) - m 1 + _ _ _ + N (11.2.27)

-1Lat m.. beteckna elementen i den inversa matrisen till m... Fran

(11.2.23) och (11.2.26) erhalles da:
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1
1+...+N N N

I I
i=1 j=1

(11.2.28)

Lat n sasom i fallet N = 2 i forme! 11.2.20 ange varmeuttaget for N

slangar relativt N oberoende slangar. Jamfb'relsen gb'rs for samma Tf,

varvid n blir lika med kvoten av motstandet (11.2.28) for stora avstand

mellan slangarna och for de aktuella avstanden. I figur 11.2.4 visas

n for N slangar som ligger pa samma djup D. Avstandet mellan slangar-

na ar B. Vidare galler: m . = 0, R . = 0.02D. Det relativa varmeutta-

get n blir da en funktion enbart av B/D.

Figur 11.2.4. Varmeuttag for N slangar relativt N oberoende slangar.

Slangarna ligger pa djupet D med lika avstand B mellan

slangarna. Vidare galler m . = 0, R . = 0.02D.

Figur 11.2.4 belyser va'l influensen mellan slangar. I fallet N = °°

anvandes resultaten i nasta avsnitt. Enligt figuren ar influensen mel-

lan slangarna liten for B > 2D, medan den blir mycket kraftig for

B < 0.5D. For B = D sjunker n fran 1 for N = 1 till 0.85 for N = 2,

till 0.70 for N = 4 och till 0.55 for N = °°.
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11.2.6 Oandlig svit av slangar

Pallet med en oandlig svit av slangar ar av intresse som gransfall for

ett ytjordvarmesystem med manga parallella slangar. Figur 11.2.5 visar

det betraktade fallet. Slangarna ligger pa djupet D med avstandet B

mellan dem. Varmeuttaget t i l l varje slang ar q .

T = 0

Figur 11.2.5. Oandlig svit av slangar.

I referens 9 anges det stationara temperaturf altet for detta fall. Ha'r-

ur erhalles markens varmemotstand m . Fbljande formel galler:

0 - TR = Vmg (11.2.29)

Den fbrsta logaritmtermen ger m for en oberoende slang enligt (11.2.5).

Den andra logaritmen ger influensen fran de b'vriga slangarna. Nedansta-

ende tabell ger nagra varden pa korrektionstermen:

B/D

n r s inh (2TTD/B ) - ,
lnl 2TTD/B >

0.1

58.0

0.25

21.2

0.5

9.34

0.75

5.56

1.0

3.75

2

1.30

4 10

0.38 0.06

Korrektionstermen skall med data fran grundfallet (11.1.2) jamfbras med:

= 4.6 (11.2.30)
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11.2.7 Narliggande slangar

For att oka v'a'rmebverfbringen Ran man anvanda flera slangar i ett knip-
pe, varvid dessa ligger i direkt kontakt med varandra. Man kan alter-

nativt lagga tva eller flera fria slangar i samma dike. For att fa ba's-
ta varmebverfbring skall slangarna skiljas fran varandra sa mycket som
mbjligt med restriktionen att fbrlaggningsdjupet D vasentligen bibehalls.
Avstandet B.. mellan slangarna i samma dike blir sma relativt fbrl'a'gg-
ningsdjupet D och samtidigt stbrre an lit oss saga en och en halv slang-

diameter 3R . I detta avsnitt antas for enkelhetens skull att alia
slangar a'r lika.

Figur 11.2.6 visar tva slangar i direkt kontakt eller pa ett kortare av-
stand B fran varandra. De tva slangarna ligger vasentligen pa samma
djup D (B « D).

Figur 11.2.6. Tvct slangar i direkt kontakt eller
avstind.

ett kortare

Fortnel 11.2.14-16 kan anvandas for de tvaslangarna med avstandet B mel-

lan sig. Djupen a'r lika: D,, = Dg - D. Da slangarna antas lika blir var-

meuttagen och temperaturerna lika for de tva slangarna. Lit q vara
varmeuttaget per slang. Da ga'ller for fallet B « D:

(11.2.31)

Formeln kan med hygglig noggrannhet tillampas aven pi slangarna som
ligger i kontakt.med varandra (B = 2R ). Formel 11.2.31 ga'ller da for
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2R < B « D (11.2.3V)

Lat n som ovan ange varmeuttaget for de tva slangarna relativt tva

oberoende slangar vid samma T,. Formlerna 11.2.31 och 11.2.12 ger da:

2iTXm + ln(|̂ )

n = - 2 - (11.2.32)

I tabell 11.2.2 ges n for nagra va'rden pa B/D i fallet m = 0 och

R = 0.02D och i fallet m -X = 0.1-1.5 = 0.15 och R = 0.02D. Vi ser

att det lonar sig att separera slangarna fran varandra. Va'rmeuttag for

de tva slangarna relativt en enda slang ges av 2n.

B/D

n

n

0.04

0.54

0.59

0.10

0.61

0.65

0.20

0.67

0.71

0.30

0.71

0.75

m = 0

X-m = 0.15
P

label! 11.2.2. Va'rmeuttag (11.2.32) for tva slangar nara varandra

relativt tva ostorda slangar for R = 0.02D.-

Tabellen visar att det bbr lona sig att separera slangarna fran varand-

Figur 11.2.7 visar tre slangar som ligger nara varandra. I det ena

fallet ligger de i hornen pa en liksidig triangel med sidan B och i

det andra pa en linje med avstandet B/2 mellan slangarna. Avstandet B

fb'rutsatts vara litet relativt forlaggningsdjupet D.
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Figur 11.2.7. Tre narliggande slangar vilka ligger i hbrnen

sidig triangel eller pa en linje.

en lik-

De allmanna formlerna i avsnitt 11.2.5 kan tilVampas med N = 3. De tre

slangarna i triangeln ligger vasentligen pa samma djup (D^ - D^ - 0^=0)

Temperaturer och flbden blir da lika for de tre slangarna. Formlerna

11.2.23-25 ger:

0 - Tf = 1
:Fx̂ 2 ln(

(11.2.33)

2Rp < « D

Da slangarna ligger direkt mot varandra (B = 2R ) skarmas for varje

slang en vinkelsektor pa 60°. Endast 5/6 av flb'det over en fri slang

passerar. Detta motsvarar att m okas till -F- m Da slangarna ligger i

direkt kontakt rekommenderas da'rfbr fbljande formel:

°- Tf = (11.2.34)

I tabell 11.2.3 anges fran dessa formler varmeuttaget n for de tre

slangarna relativt tre oberoende slangar. Varmeuttaget for de tre slang-

arna relativt en slang ges av 3r|.
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B/D

n

n

0.04

0.37

0.39

0.10

0.43

0.48

0.20

0.50

0.55

0.30

0.55

0.59

nip = 0

X-rn = 0.15

Tabell 11.2.3. Varmeuttag for tre na'rl iggande slangar i triangel

enligt figur 11.2.7 relativt tre oberoende slangar

for R = 0.02D.

Tabellen visar anyo att det bbr Ibna sig att skilja slangarna fran

varandra.

For tre slangar pa linje enligt figur 11.2.7 far man ett flb'de q,, for

ytterslangarna och ett flbde q~ for mittslangen. Formlerna 11.2.23-25

ger:

0 - T f =

°- Tf =

(11.2.35)

Ur dessa ekvationer kan det totala varmeuttaget 2q^ + q^ Ibsas ut.

Exempel 11.2.2. Givet tre slangar pa linje med fbljande data:

D = 1 m R = 0.02 m B = 0.1 m

Tf = -5°C m = 0.1 K/(W/m)

X = 1.5 W/mK

Ekvationssystemet 11.2.35 blir da:

5 = q1-(0.1 + 0.81) + q2-0.39

5 = q2-(0.1 + 0.49) + q.,-0.78

Detta ger

q1 = 4.30 W/m

q2 = 2.79 W/m
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Totalt erhalles for de tre slangarna

2q1 + q2 = 11.4 W/m

En ostbrd enskild slang ger varmeuttaget:

= 5
0 0.1 + 1 in[2'1

11.2.8 Tva markskikt

I avsnitten ovan fbrutsatts marker: vara homogen med varmeledningsfbr-

magan X. I detta avsnitt skall fallet da tnarken bestar av tva skikt

behandlas. Marken bestar av tva lager 0 < 2 < H och H < z < °°. Endast

fallet med en slang behandlas. Slangen ligger i det undre skiktet da

H < D och i det bvre da H > D. Det stationara varmeuttaget ar q . Var-

meledningsfbrmagan i det skikt dar slangen ligger betecknas X medan den

ar x. i det andra skiktet. Se figur 11.2.8.

T=0 T = 0

V
\H

D < H

Figur 11.2.8. Stationart varmeuttag med en slang da marken bestar

av tva skikt.

I referens 9 anges den analytiskt beraknade stationara temperaturen for

detta fall. H'a'rur erhalles markens varmemotstand m (K/(W/m)):

mg = (11.2.36)

Parametern a ges av:

X- X1

•\ (11.2.37)
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Den varierar fran -1 till +1. Funktionen p(H/D, a) visas i figur 11.2.9.

p(H/D,o)
0.9 0.7 o=0.5 0=10

Figur 11.2.9. Funktionen p(H/D, a) i formel 11.2.36, vilken ger effek-

ten av det andra markskiktets annorlunda varmelednings-

fbrmaga X-, .

Funktionen p ar givetvis noil for a = 0 (X^ = X). Gransfallen X-j = 0

och X,, = + <*> ar intressanta i fallet H > D. Fallet X1 = + °° eller

a = -1 kan uppfattas sa att man nailer temperaturen noil vid z = H.

Fysikaliskt erhalles detta om man bar ett tnycket kraftigt regionalt

grundvattenf lode i skiktet z > H. Markens varmemotstand ges da av:

2D-
D/H

(11.2.38)

(H > D, X =°° eller T = 0 for z = H)

I fallet X1 = 0 eller a = +1 galler:
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(11.2.39)

3TH > D, X1 = 0 eller |̂  = 0 for z = H)

Exempel 11.2.3. Granitbergrund med 1.5 m tackande sandjord. Fb'ljande

data galler:

X = 0.9 W/mK

R = 0.02 m

0 < D < H

X1 = 3.5 W/mK

H = 1.5 m

Markens varmemotstand ges av (11.2.36):

g 2-1T-0.9 p(1.5/D, - 0.6))

Varmemotstandet m visas i nedanstaende figur for oli-

ka D.

me.

n 7 -

n A-

/
/

^-r\

0.5 1 1.5 (m)
Varmemotstandet far ett maximum vid D = 1.0 m. Det a'r

i detta fall fordelaktigt att placera slangen nara det

undre skiktet med den hbgre varmeledningsformagan.

Exempel 11.2.4. Givet foljande fall dar det bvre skiktet har en lagre

varmeledningsformaga.

R = 0.02 m H = 1 m

i. 0 < D < 1 m

X = 0.9 W/mK, X1 = 2.1 W/mK
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11 . D > 1 m

X =0.9 W/mK, X = 2.1 W/mK

Markens varmemotstand enligt (11.2.36) visas i figuren

nedan for olika fbrlaggningsdjup D.

0.7

0.6

0.5

0.4 D
0.5 1 1.5 (m)

Figuren visar att man far lagst varmemotstand da slang-

en placeras i det undre skiktet med den hbgre varme-

ledningsfbrmagan. Man bb'r ga ner en bit under gransen

z = H. Kurvan har ett flackt minimum for z = 1.5 m.

11.3 Ostbrd marktemperatur

Den naturliga ostbrda marktemperaturen, da man ej har nagot varmeuttag,

betecknas T (z,t). Temperaturen imarken fran varmeuttagen vid slang-

arna betecknas T (x,z,t). Denna komponent har enligt avsnitt 11.1 tem-

peraturen noil vid markytan. Den total a temperaturen i marken ges av

summan:

(11.3.1]

I de bvriga avsnitten i detta kapitel behandlas enbart komponenten T .

Speciellt anges f luidtemperaturen T,;(t) for varmeuttagskomponenten.

For att erhalla den totala, verkliga f luidtemperaturen skall man la'gga

till den naturliga temperaturen T (D,t) vid slangen:

Tf, total
(11.3.2)
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I detta avsnitt skall nagra formler for T (z,t) anges.

Antag att temperaturen vid markytan varierar sinusformat enligt:

Ts(t) = TQ + T •sin(|̂ . + cpo] (11.3.3)
o

Har ar t sinusvariationens periodtid. Man far ett endimensionellt,

periodiskt temperaturforlopp i marken 0 < z < «,. Enligt avsnitt 5.2.2.1

och formel 5.2.2.1 blir marktemperaturen, da (11.3.3) rader vid mark-

ytan:
-z/d 2

T (z,t) = T + T -e -sin(j^— + cp - -3—) (11.3.4)
o o

Intrangningsdjupet d ges av (5.2.2.2):

Pa djupet 3d har ampl ituden hos variationen vid markytan dampats t i l l
-3T -e = T /20. label 1 11.3.1 anger d for manga periodtider.

t 1 timme 1 dygn 1 vecka 1 manad 1 ar

do 0.03 0.14 0.38 0.79 2.7

Tabell 11.3.1. Intrangningdjup d for olika periodtider for

a = 0.75-10"6 m2/s.

Variationer vid rnarkytan med tidsskala och periodtid pa upp t i l l en

vecka ar helt utdampade vid slangdjup D runt en meter. For att erhalla

T (D,t) maste man givetvis ta med den arliga periodiska komponenten.

Temperaturvariationer med tidsskala mellan 1 vecka och ett halvt ar

kan behandlas genom att temperaturen vid markytan representeras av ett

eller flera temperatursteg. Dessa behandlas i avsnitt 5.1.1.3. Antag

att marktemperaturen gbr en stegandring vid tiden t-:
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t <

Ts(t) = < (11.3.6)

Motsvarande marktemperatur a'r da enligt (5.1.6):

t > t1

Genom att superponera nagra temperatursteg pa den arliga periodiska

variationen enligt (11.3.3) kan den ostijrda marktemperaturen erhallas

med tillra'cklig noggrannhet. Man far totalt ett uttryck av fbljande typ:

Tn(D.t) = TQ + Tp.e
-D/d

(11.3.7)

T -erfc [ D

k k \/4a(t - t,

Har a'r T. den stegvisa temperaturandringen vid markytan vid tidpunkten

tk (t >tk).

11.4 Varmeuttagspulser

Den foreskrivna varmeuttagspulsen q(t) for en slang kan genom superpo-

sition betraktas som en summa av rena effektsteg. I avsnitt 11.4.1 be-

handlas detta renodlade fall. Det fbljande avsnittet behandlar temperaturav-

klingningen efter en puls, medan den allmanna analysen med effektpulser

kortfattat redovisas i avsnitt 11.4.3.

11.4.1 FundamentalIbsning for renodlat effektsteg

Fbrutsattningarna for det renodlade effektsteget anges i figur 11.1.1.

Man har ett konstant varmeuttag q^ fran tiden t = 0. Temperaturen vid



11.30

markytan ar noil. Begynnel setemperaturen i marken ar noil vid tiden

t = 0.

Denna fundamental Ibsning erhalles med tva Ibsningar av typen (5.3.2.1):

= — *2 + (z - D)2- rx2 + (z + D)2
- -

-,-,
4at - 1 - 4H - J J

Funktionen E^ (exponential integral) definieras av (5.3.2.2). Lbsningens

utseende visas i figurerna 11.1.2-5. Speciellt galler i marken vid slang-
? ? ?

en pa cirkeln x + (z - D) = R for R « D:

R2

V

(at/R2 > 5)

Ilosningen (11.4.1-2) approximeras slangen med radien R med en linje-

ka'lla. Vartneflbdet fran denna ar exakt q. for t > 0. Vid avstandet R

frin 1 injeka'llan, dar slangens ytterradie ligger, vaxer varmeflbdet

upp till q., under en fbrsta tidsperiod. Lbsningen (11.4.1-2) galler darfbr

inte under en fbrsta period. Det a'r lampligt att anvanda fbljande krav:
2at/R > 5. I bbrjan a'r ocksa v'a'rmekapaciteten hos v'a'rmeb'a'rarfluiden i

slangen betydelseful1, medan den kan fbrsummas efter denna fbrsta tids-

period. Allmant galler for de analytiska studierna h'a'r att den fbrsta
2

tidsperioden 0 < t < 5R /a ej beaktas.

Exempel 11.4.1. Normal a data for en ytjordv'a'rmeslang a'r i storleksord-

ningen:

R = 0.02 m a = 0.75-10'6 m2/s
P

Tidskriteriet for att Ibsningen (11.4.1) skall vara

ti 11'a'mpl ig bl ir da:
•)

5R 2
t > -± = 5'°-02 = 0.75 timmar.

a 0.75-10"b
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I referens 9 visas att man kan anvanda fbljande approximativa uttryck

for TR(t):

TR(t) - <

- Ql flnf4at] vl at < 1 78 (Q >&TT"). *• *• 9 J I J ~T - ' • ' ° l.TrWA <: Z «i

P P

q1 2D at
' 2?X ln(lH T2 - 1'78

5)

(11.4.3)

Y = 0.5772

2
Det maximal a felet intraffar vid brytpunkten at/D = 1.78. Det a'r runt

6%. Det bvre uttrycket innebar att TR(t) ges av en effektpuls i en fri

omgivning. Man fbrsummar helt effekten av markytan. Motsvarande approxi-

mation for en bervarmebrunn ges av formel 10.3.7.3. Det undre uttrycket

ar det stationara varmeuttaget enligt (11.2.4-5).

Approximationerna 11.4.3 a'r basen for definitionen (11.1.1) av en karak-
2

teristisk tidsskala tp = 2D /a. For tider t < tp (eller noga taget

t < 0.89 tn) kan effekten av markytan helt fbrsummas, medan TD erhalles
U K

ur den stationara Ibsningen for t > t,,.

11.4.2 Temperaturavklingning efter en uttagspuls

Givet en uttagspuls under tiden - t-. < t < 0:

0 t < -t1

q(t) = <; qi -t1 < t < 0 (11.4.4)

0 t > 0

Under avklingningsperioden t > 0 kan processen betraktas som summan av

ett effektsteg +q1 fran tiden t = -t1 och ett effektsteg -q^ fran ti-

den t = 0. Man far tva termer av typen (11.4.1). I figur 11.1.6 visas

avklingningen i ett fall.

Temperaturen vid slangen ges enligt referens 9 av fbljande uttryck:

I7-U3
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For stora tider galler approximationen:

( t > 3
(11.4.6)

I figur 11.4.1 visas XT.,(t)/q- som funktion av t/tp och

-0.3

Figur 11.4.1. Temperaturavklingningen (11.4.5) efter extractionspuls

enligt (11.4.4).

Exempel 11.4.2. Antag att ett ytjordvarmesystem laddas kraftigt under

tre sommarminader:

= 3 manader = -45 W/m

I b'vrigt antas data enligt (11.1.2). Da ga'ller:

t., = 1 manad

- 3
J

- 3 0 C-- -JU L
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Figur 11.4.1 och formel 11.4.6 ger TR. Foljande tabell

ger nagra varden.

t (dagar)

TR (°0

3

6

15

1.4

30

0.7

90

0.2

180

0.07

Exemplet ovan visar sasom tidigare framhallits att det inte Ibnar sig

att ladda ett ytjordv'a'rmesystem pa sommaren for att erhalla battre ut-

tagsvillkor under den fbljande vinter.

11.4.3 Superponering av effektpulser

Antag nu att varmeuttaget ar strackvis konstant:

q(t) =

t <

(11.4.7)

Analys av effektpulser for en slang i en oandlig omgivning behandlas

allmant i avsnitt 5.3.4. Har skall motsvarande analys genomfbras da man

tar ha'nsyn t i l l markytan.

Effektpulsen (11.4.7) kan i tldsintervallet t < t < t +« betraktas son

en stegpuls q , vilken fbrutsatts ha ratt under ling tid si att station-,

ara fbrhallanden i huvudsak rader vid t = t,

tiden t = t o s v till en sista stegpuls q

, en stegpuls

- q

- q vid

, vid t = t . Den to-

tala temperaturen i marken vid slangen kan skrivas:

(11.4.8)

= 0)
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Det fb'rsta stationara bidraget ar enligt (11.2.3):

n[|̂l (11.4.

De bvriga bidragen ges av (11.4.3):

fi. ,4a(t - tj . . a(t - t.)
5—— < 1.78
DZ

(11.4.

a(t - ̂

D2
> 1.78

Det bbr noteras att effektpulserna behandlas enligt stationar teori da

a(t - t.) > 1.78D2.

Formlerna ovan avser en enda slang. Analyser blir mer komplicerad da

man bar flera slangar som paverkar varandra termiskt. Vi skall ej ga

in narmare pa detta h'a'r. Pulsanalysen ovan kan till'a'mpas for flera

slangar under en kortare period, innan de paverkar varandra alltfb'r

kraftigt. For slangar som ligger pa ett avstand runt en meter fran va-

randra kan ovanstaende analys anvandas for pulser upp t i l l cirka en

veckas tid. Medeleffektuttag kan a andra sidan behandlas stationart en-

ligt avsnitt 11.2.5.

Exempel 11.4.3. Givet ett manadsvis konstant effektbehov under aret en-

ligt nedanstiende figur. Med en slanglangd pa 200 m

utan influens tnellan olika slangdelar erhalles da to-

talt 12 MWh under ett ar. Detta kan motsvara behovet

for ett valisolerat smahus. Maximalt varmeuttag under

den kallaste manaden ar 16.7 W/m. Fbljande data antas:

X = 1.5 W/m a = 0.75-10'6 m2/s D = 1 m

Uttagstemperaturen Tn(t) vid slangarna erhalles med for-

me! 11.4.8. Resultatet visas i nedanstSende figur.
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-5

12

t (months)

t(months)

Den lagsta uttagstemperaturen T^ = -7.9 C erhalles i slu-

tet av den femte manaden. Det skall som vanligt obser-

veras att T^ anger temperaturen utbver den naturliga

ostijrda marktemperaturen. Se avsnitt 11.3. Vidare mas-

te man kanna t i l l det lokala motstandet m mellan mark och

fluid i slangen for att kunna berakna fluldtemperatu-

ren enligt formel 11.2.10.

Under arscykelns tre sista manader ar varmeuttaget noil.

Det ar vart att notera att marktemperaturen da ar helt

aterstalld pa -0.05°C nar.

t (manad) 9.1 9.5 10 11 12

-1.7 -0.48 -0.21 -0.13 -0.07 -0.05

Exempel 11.4.4. Givet ett varmeuttag under en vecka enligt nedanstaende

figur. Den streckade kurvan anger ett konstant effekt-

uttag med samma medeleffekt 15 W/m. Under den foljande

veckan ar effektuttaget noil. I figuren visas rortempe-

raturen T^(t) beraknad enligt 11.4.8. Data enligt ovan-

staende exempel anvandes. Den streckade kurvan avser me-

deleffektuttaget 15 W/m under en vecka.
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q(W/m)

30-

n

_j nn
CO

-5

-10

14

14

t(days)

V,

Lagsta uttagstemperatur blir -10 C for det variabla

varmeuttaget och -6.5 C for medeleffektuttaget. Vid av-

klingningen under den andra veckan a'r fbrloppet i stort

detsamma.

Exempel 11.4.5. Lit oss nu betrakta en variation under en dag enligt

figuren nedan. Man har tre effektpulser med tva timmars

varaktighet och tva timmars uppehall. Den streckade

kurvan ger medeleffektuttaget. Motsvarande slangtempera-

tur visas i figuren nedan. Ovriga data fran exempel

11.4.3 ga'ller. Tidskriteriet t > 5R^/a = 0.75 timmar a'r

uppfyllt eftersom pulserna varar i tva timmar. Det an-

givna forloppet under de fb'rsta 45 minuterna efter var-

je stegandring a'r dock ej helt korrekt.
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q(W/m)

20

10- - - -
—

-• -

-

- "|

° 0 12 24 36 4

TR CO

n° 12 24 36 4f

/
\
/lr\

/
/

-

I

-

/

-

\

' /
1

f '

t(hours)

t(hours)

Den lagsta uttagstemperaturen blir -4.3UC, medan mot-

svarande lagsta varde for konstant varmeuttag ar -2.8 C.

Detta exempel visar effekten av korttidsvariationer med

en tidsskala av nagra timmar.

11.5 Periodiskt varmeuttag

Det fbreskrivna varmeuttaget q(t) kan genom superposition uppdelas i en

stationar komponent och olika effektsteg enligt fbregaende avsnitt.

Till detta kan periodiska komponenter bverlagras. Periodiska fbrlopp

behandlas allmant i avsnitt 5.2. Tillampning pa bergvarmebrunnar behand-

las i avsnitt 10.3.8 och pa markvarmelager i avsnitt 7.3.3.

Ett rent sinusvarierande effektuttag ges av:

q(t) = (11.5.1;

Har ar t periodtiden, vilken kan vara allt ifrin nagon timnte t i l l ett

ar. Amplituden ar q. (W/m). I den matematiska analysen anvandes en komp-

lexvard formalism:

q(t) = q-,-6 (11.5.2)

Hela berakningen sker i komplexvard form. De verkliga reellv'a'rda resul-

taten erhalles ur realdel eller imaginardel av temperaturer och flbden.

Se avsnitt 5.2.
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Genom Fourier-analys kan varje periodiskt fb'rlopp tned periodtiden t

betraktas som en summa av rena sinus- och cosinusvariationer av typen
(11.5.2) med periodtiderna t , t /2, t /

handla en ren komponent enligt (11.5.2).

(11.5.2) med periodtiderna t , t /2, t /3 o s v. Vi skall h'a'r bara be-

Intrangningsdjupet d for ett periodiskt fb'rlopp a'r enligt (5.2.2.2):

o V IT (11.5.3)

Nedan anvands dimensionslbsa la'ngder, vilka alia skalas med d . Fbljan-

de beteckningar anvandes:

R 1 = R /27dQ D' = 2D/27dQ B' = B/27dQ (11.5.4)

11.5.1 En slang

Figur 11.5.1 illustrerar ett periodiskt varmeuttag for en slang. Vid

markytan a'r temperaturen noil. Detta astadkommes genom att ansatta en

spegell injek'a'lla ovanfbr markan vid x = 0, z = -D.

Figur 11.5.1. Periodiskt varmeuttag varvid randvillkoret vid markytan

uppfylles med hja'lp av en spegelka'l la.

Temperaturen i marken vid slangen ges av (5.2.3.10) tillsammans med

ett uttryck av typen (5.2.2.9) for spegelk'a'llan. Totalt erhalles foljan-

de uttryck:
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i(2nt/t -B(R'

(11.5.5)

q, i(2irt/t +* (D1))

1

For detaljer hanvisas t i l l referens 9 (kapitel 7). Funktionerna A, B,

N och 4> anges i figur 5.2.3 och tabell 5.2.2. I de har aktuella t i l l

lampningarna kan ofta approximationerna (5.2.3.11) utnyttjas.

Exempel 11.5.1. Givet en slang med periodiskt varmeuttag. Fbljande

data antages:

q1 = 10 W/m R = 0.02 m D = 1 m

X = 1.5 W/mK a = 0.75-10"5 m2/s

For nagra periodtider erhalles:

t = 1 vecka

-0.37)) 7 i(2Trt/t -14.3);"
TR(t) = -3.1-e + 3-10"-e

t = 1 manad

-0.22) i(2Trt/tn-2.9)
T(t) = -3.7-e + 0.046-e °

t0 = 1 ar

i(2TTt/tn-0.17) i(2irt/tn-1.1)
T(t) = -5.1-e ° + 0.56-e °

I reellvard form erhalles (for imaginardelen) i det sis-

ta fallet:
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TR(t) = -5.1'Sin(^- - 0.17] + 0.56-sin(^- - 1.1)
o o

Effektuttaget ar i reellvard form (for imaginardelen):

q(t) = qi-sin(2TTt/to)

Antag att man for denna langsamt varierande process ra'k-

nar stationart vid varje tidpunkt. Detta ger slangtem-

peraturen:

Tp(t) ~- -

(stationar approximation)

I figur 11.5.2 visas uttagstemperaturen Tn(t) for fal-

let t = 1 ar. De tva streckade kurvorna visar bidragen

frSn slangen och spegelslangen, medan den heldragna

kurvan anger total slangtemperatur enligt summan ovan.

Den prickade kurvan anger den stationara approximation-

en.
TR CO

-3

-6

sum of pipe and
mirror
steady- state
approximation-^-*

0.5 1
t(year)

Figur 11.5.2. Periodisk slangtemperatur for t = 1 ar

enligt exempel 11.5.1.
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Exemplet ovan visar att spegelslangen, d v s markytans storning, kan

fbrsummas for periodtider upp t i l l en manad. Den andra termen i (11.5.5)

bortfaller da. Exemplet och figur 11.5.2 visar vidare att man kan r'a'k-

na stationart for den arliga periodiska variationen.

11.5.2 Tva slangar

Figur 11.5.3 visar ett periodiskt varmeuttag for tva slangar. Dessa lig-

ger pa samma djup D och har samma varmeuttag.

>T = 0

/ B/ /

Figur 11.5.3. Periodiskt varmeuttag med tva slangar.

Slangtemperaturen !„ far nu bidrag fran den aktuella slangen och den

andra slangen samt fran de tva spegelslangarna.

N0(B')-e

N0(D')-e

N0(B")-e

i(2TTt/t -B

i (2 i r t / t + d> ( B 1
0 0

^

i (2 i r t / t +<t) ( D 1 ) )o vo

i ( 2T i t / t o +4 , o (B" ) )

(11.5.6)

Har erhalles B" ur avstandet mellan en av siangarna och den andra spe-

gelslangen:

B" = /2-\/4D2 + B2/d (11.5.7)

For fler an tva slangar kan utan svarighet analoga uttryck anges. Pal-

let med en oandlig svit av slangar behandlas i referens 9.
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11.5.3 Stationart och periodiskt fbrlopp

Genom att kombinera stationart och periodiskt fbrlopp kan en mer full-

standig analys gbras. Vi skall ha'r gbra detta for ett enkelt fall tned

en slang, da'r en enda periodisk komponent beaktas.

Varmeuttaget och temperaturen vid markytan bestir av en stationar och

en periodisk komponent. Se figur 11.5.4. Genom fasen cp kan markyttem-

peraturens maximum fbrlaggas vid en godtycklig tidpunkt relativt var-

meuttagets maximum.

-sin

Figur 11.5.4. Stationart och periodiskt varmeuttag med periodisk varia-

tion vid markytan.

Den total a temperaturen T,,(t) i marken vid slangen far ett bidrag

(11.2.3) fran det stationara varmeuttaget q . Temperaturen vid markytan

ger en ostbrd tamperatur i marken enligt (11.3.4). Det periodiska var-

meuttaget ger ett bidrag enligt (11.5.5). Imagina'rdelen av (11.5.5)

svarar mot imaginardelen av varmeuttaget (11.5.2). Den totala tempera-

turen i marken vid slangen blir da:

Tp( t ) = T
?n -D/dn

(4£)+ T, e ° -s in (2TTt / t + ™ - D/dJ -

2TTX
(A(R') -s in(2i r t / t0 - •sin(2irt/t

(11.5.8)
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Man skall observera att temperaturen ovan t i l l skillnad fran de fies-

ta bvriga formler i detta kapitel anger total verklig temperatur under

de givna betingelserna. Fluidtemperaturen erhalles med hjalp av (11.2.10):

Tf(t) = TR(t) - ry(qo + q,, - (11.5.9)

Exempel 11.5.2. Betrakta ett system dar effektuttaget ar direkt pro-

portionellt mot temperaturdifferensen mellan innetem-

peraturen !„ och utetemperaturen:

qo + q1'Sin(2irt/t0) = a( - TQ - -sin(27rT/to + cpj

Siledes galler:

= « T

Fbljande data galler:

X = 1.5 W/mK

R = 0.02 m

t0 = 1 ar

T = 20°C

TQ = 1 3 C

a = 0.75-10"6 m2/s

D = 1 m

a = 1.0 W/mK

T1 = 7°C (Grenoble)

Effekterna blir:

q = 7 W/m = 7 W/m

Slangtemperaturen (11.5.8) blir da:

TR(t) = 13 - 3.42 - 4.86-sin(|̂  - 0.36) -
o

3.56-sin(|̂  - 0.165) + 0.42-sin(~ - 1.07)
o o
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Derma temperatur med sina olika komponenter och varme-

uttaget q(t) visas i figur 11.5.5.

Figur 11.5.5. Slangtemperaturen Tn(t) for exempel 11.5.2

tillsammans med sina olika komponenter.

Motsvarande varmeuttag visas i den undre

figuren.

Exempel 11.5.3. Det a'r intressant att variera fbrlaggningsdjupet D.

For exempel 11.5.2 varieras D enligt:

D = 0.4, 0.7, 1.0, 1.5, 2.0 m

Motsvarande slangtemperaturer under arscykeln visas i

figur 11.5.6. Den lagsta temperaturen ligger runt 1.5°C.
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TD(°C)

Figur 11.5.6. Slangtemperatur for exempel 11.5.2 da

forlaggningsdjupet D varieras.

Exempel 11.5.4. Det ar ocksa intressant att variera effektuttaget for

exempel 11.5.2. Fbljande varden behandlas:

a = 0.5, 0.75, 1.0, 1.25, 1.5 W/mK

Motsvarande slangtemperaturer visas i figur 11.5.7.

Frysning i marken sker for a > 1.25 W/mK."

t(year)

0 1

Figur 11.5.7. Slangtemperatur for exempel 11.5.2 da

effektuttaget varieras.



11.46

11.6 Effekt av grundvattenstrbmning och infiltration av regnvatten

Formler och resultat i de fbregaende avsnitten ar givna med fbrutsatt-

ningen att man har en konduktiv va'rmeledning i marken utanfbr slang-

arna. Konvektiv varmetransport pa grund av strbmmande grundvatten el-

ler infiltrerande regnvatten har ej beaktats. I detta avsnitt visas att

man normalt kan fbrsumma dessa konvektiva effekter.

11.6.1 Stationar linjekalla i strbmmande grundvatten

Utgangspunkt for analyserna nedan ar en Stationar linjekalla i en kons-

tant grundvattenstrbm. Situationen illustreras i figur 11.6.1. Linje-

kallan ligger i origo x = 0, z = 0. V'a'rmeuttaget q ar konstant. Den
3 2konstanta grundvattenstrbmningen ar q x(m /m -s eller fbrenklat m/s).

Har ar x enhetsvektorn i x-riktningen, medan q anger grundvattenfIb-
dets storlek.

Figur 11.6.1. Konstant varmeuttag q i en konstant grundvattenstrbm
3 2med storleken q (m /m -s).

Omgivande mark ta'nkes oandligt utstrackt i alia riktningar. Den station-

a'ra temperaturen i marken ar da enligt referens 9 (kapitel 8):

T(x,z; (11.6.1)
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Den modif ierade Besselfunktionen K (s) visas i figur 11.6.2. Parameters

i har dimensionen Ta'ngd. Den ges av

a = 2A (11.6.2)

C -3

Har ar C - 4.2-10 J/m K vattnets volumetriska varmekapacitet.

Temperaturfaltet (11.6.1) ser olika ut uppstrbms, nedstrbms och vinkel

ratt mot strbmriktningen. Lat s beteckna dimensionslost avstand till

slangen i dessa riktningar. Da galler:

e -K (s) s = x/fc ; x > 0,z = 0 (nedstrbms)

e"S'Ko(s) s = -x/Ji ; x < 0,z = 0 (uppstrbms)

KQ(s) s = ; x = 0

(11.6.3)

Dessa tre kurvor visas i figur 11.6.2. Langt fran slangen ar tempera-

turen noil. Na'ra slangen, d v s for sma varden pa s, galler approxima-

tionen:

KQ(s) - -l (s < 0.2) (11.6.4)

(y = 0.5772)

18-U3
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0 1 2 3 4 5 6 7

Figur 11.6.2. Funktioner i samband med ytjordvarmeslang i strbmmande

grundvatten.

2 2 2I marken strax utanfbr slangen, x + z = R , a'r temperaturen med app-

roximation (11.6.4):

'R 2irX
(11.6.5)

Ha'r fbrutsatts att langden I a'r mycket stb'rre an slangens radie R .

For en slang i strommande grundvatten ger (11.6.5) foljande va'rmemot-

stand mellan slang och fri omgivning langt fran slangen:

Formeln ga'ller da slangen har en fri grundvattenstrbm at alia hall.

Langden Jl beror pa grundvattenstrbmmens storlek. Grundvattenstrbmmen
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q ges enligt Darcy's lag av

Har K den hydraul iska konduktivitetem (m/s) och I (m/m) tryckfallet
_2

ra'knat i meter vatten per meter. Normala varden pa K ligger fran 10

for en mycket genotnslappl ig rullstensas ner till 10" och la'gre varden.

Tryckfallet kan ligga runt 10" . Som exempel tar vi fb'ljande data:

X = 1.5 W/m Cw = 4.2-106 J/m3K I = 10~3m/m

(11.6.8)

label 1 11.6.1 anger i for nSgra olika varden pa den hydrauliska konduk-

tiviteten.

K (m/s)

qw (m/s)

a (m)

10~2

10"5

0.07

10'3

10'b

0.7

ID"4

ID"7

7.1

io-5

10~8

71

10"6

1C'9

710

Tabell 11.6.1. Langden X, enligt (11.6.2) for olika hydraulisk kon-

duktivitet och grundvattenflode. Data enligt (11.6.8).

I de fiesta fall som a'r aktuella i ytjordvarmesammanhang torde a vara

stb'rre an lit oss saga 10 meter.

Med hj'a'lp av Ibsningen (11.6.1) kan nu gransfallet far grundvattenytan

ligger mycket n'a'ra markytan behandlas. Figur 11.6.3 visar detta fall.

Grundvattenytan antas ligga a'nda uppe vid marknivan. Detta a'r ett ext-

remfall vilket ger den stbrsta effekten pa varmeuttaget. Da grundvatten-

ytan s'a'nks sjunker varmeuttaget vid i bvrigt ofbrandrade fbrhallanden.

I avsnitt 11.6.3 behandlas fallet da grundvattenytan ligger under slang-

djupet D.
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T=0

• I w o *

Figur 11.6.3. Extremfall dar grundvattenytan ligger mycket n'a'ra

markytan.

Temperaturen vid markytan skall vara noil. Detta astadkommes genom att

ansatta en spegelkalla i x = 0, z = -D. Man far tva bidrag av typen

(11.6.1) Markens varmemotstSnd blir da (se referens 9):

(11.6.9)

Den fbrsta logaritmtermen ger det vanliga varmemotstandet i marken

enligt (11.2.5). Funktionen f(s) a'r en korrektionsterm for grundvatten-

strbmmen:

f(s) = KQ(s) + ln(s/2)

Denna funktion visas i figur 11.6.2.

(11.6.10)

Exempel 11.6.1. Givet foljande data:

D = 1 m

Da fas:

R = 0.02 m

l̂ J = 4.61
P
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For nagra jl-varden fas:

H = 10 m

f (0 .2) = 0.03

f i?\ n TI\\L-l U . O I

Si = 0.1 m

f (20) =ln(10) + y = 2.8!

^ ~- 0-001

0-31 „ 0 07
4.61 ~ U'U/

D 2.88 _ n
3 T-RT - °

Exempel 11.6.1 visar att effekten av grundvattenf lodet kan fbrsummas

m/s enligt tabell 11.6.1,for i > 10 m. For i = 1 m, d v s q - 10"

blir stb'rningen 5-10%. Den extrema hastigheten q - 10

halvering av varmemotstandet m .

" m/s ger en

11.6.2 Infiltration av regnvatten

Infiltration av regnvatten ger en vertikal vattenstrb'mning ner i mar-

ken. Denna a'r tidsvariabel och ofta inhomogent fbrdelad pa grund av

sprickor m m. Har antages att man bar en tidsoberoende, homogen, ver-
tikal stromning q z. Se figur 11.6.4.

:-T.-:
Figur 11.6.4. Konstant vertikal infiltration av grundvatten for en

slang med konstant varmeuttag.
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Det visar sig att linjekallan enligt (11.6.1) tillsammans med en lampligt

vald spegel 1 injekal la ger den analytiska Ibsningen for problemet en-

ligt figur 11.6.4. Se referens 9. H'a'rur erhalles fbljande varmemotstand

for marken:

Markligt nog far formeln exakt samma utseende som (11.6.9) for fallet

med horisontell strbmning. Funktionen f(s) definieras av (11.6.10) och

visas i figur 11.6.2.

Exempel 11.6.2. Givet fbljande data;

D = 1 m R = 0.02 m

X = 1.5 W/mK Cw = 4.2-106 J/m3K

Ett rimligt varde for regnvatteninfiltrationen a'r:

qwo = 0.5 m/ar.

galler:

2-1. <- , -
4.2-10°-0.5/(3600-24-365)

= o.002

= 45 m

Îp = 0.0004

Regnvatteninfiltrationen bkar saledes varmeuttaget

med 0.04%.

Ett extremt varde for q a'r:

= 5 m/Sr
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Da erhalles:

£ = 4.5 m f = 0.10

0.10
4.61 = 0.02

Exemplet ovan visar att regnvatteninfiltrationens effekt pa varmeut-

taget kan fbrsummas. Man skall ha'r observera att vi talar om den kon-

vektiva effekten. En andring av markens vattenhalt paverkar ocksa

varmeledningsfbrmagan X.

11.6.3 Grundvattenstrb'mning i underl iggande skikt

Grundvattenytan ligger normalt under slangarna. Figur 11.6.5 visar det-

ta fall. Man har ett konstant varmeuttag q till en slang som ligger

pa djupet D. Grundvattenytan ligger pa djupet H ; H > D. I grundvatten-

skiktet, z > H, a'r varmeledningsfbrmagan X..

Figur 11.6.5. Konstant varmeuttag q till en slang med ett underliggan-

de skikt med grundvattenstrbmning.

Enligt referens 9 kan markens varmemotstand m skrivas:

(11.6.12)



11.54

Funktionen P ger effekten av grundvattenstrb'mningen.

Fb'r gransfallet med en extremt kraftig grundvattenstrbm galler:

(T = 0 vid z = H)

Nedanstaende tabell ger nagra varden i detta fall:

D/H

Pw (D/H, X .J /X , »)

0

0

0.2

0.07

0.5

0.45

0.7

1.00

0.95

2.95

Dessa varden skall jamfbras med ln(2D/R ) som ar i storleksordningen

4.6. Harur kan vi allmant saga att effekten av en grundvattenstrbm ar

mindre an 1% for D/H < 0.5. Detta galler oberoende av hur stark strbm-

men ar.

I referens 9 anges P for olika fall. En allma'n slutsats ar att

grundvattenstrbmmen maste vara mycket kraftig och ligga n'a'ra slangni-

vln for att fa nagon markbar effekt pa varmeuttaget.

11.7 Temperaturvariation langs slangarna

Temperaturvariationerna Tangs slangen eller slangarna har ej beaktats

i de fbregaende avsnitten. I detta avsnitt skall dessa effekter behand-

las for det stationara fallet. Nya faktorer som paverkar varmeuttaget

ar pumpflbdet V, (m^/s) for varmebararfluiden i slangarna, slangarnas

la'ngd och olika typer av slangkonfigurationer med strbmning i samma eller

motsatt riktning i angransande slangar. Har skall dock bara fallet med

en slang redovisas. For tivrigt hanvisas t i l l referens 9. Da'r behandlas
2, 3, 4 och N parallella slangar. Olika strbmningskonfigurationer med

parallell och motriktad strbmning i narliggande slangar jamfbres.

Figur 11.7.1 visar en slang med langden L. Den ligger langs linjen

(x,y,z) = (0,y,D), 0 < y < L. Pumpflbdet i slangen ar Vf (rn^/s). Var-
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3
mebararfluidens varmekapacitet ar Cf (J/m,K). Fluidtemperaturen langs

slangen betecknas T,(y). Temperaturen vid inloppet, y = 0, ar T,.

och vid utloppet, y = L, T, ^.

x D

L
-H—y

//

Figur 11.7.1. Stationart varmeuttag t i l l en slang varvid fluid-

temperaturen varierar langs slangen.

Temperaturen vid markytan ar som vanligt noil. Det stationara varmeut-

taget ar q(y) (W/m). Vid varje tvarsektion kan de tvadimensionella sam-

banden utnyttjas. (I referens 9 visas att tredimensionella andeffekter

kan fbrsummas.) Enligt (11.2.12) ga'ller:

0 - Tf(y) = (mg + mp)-q(y) (11.7.1)

VarmetilIskottet q(y) (W/m) bkar fluidtemperaturen:

q(Y) = W^ (11.7.2)

Dessa tva ekvationer ger en ordinar differentialekvation:

^=-^'Tf(y) Tf(0)-Tfin (11.7.3)

Har har langden y^ infbrts:

yf = (mg + mp)CfVf (11.7.4)

Lbsningen till (11.7.3) ar:

-y/yf
Tf(y) = Tf.n-e f (11.7.5)
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Utloppstemperaturen blir:

-L/yf
Tfut = Tfin e < 1 1 -

lit q (W/m) beteckna medeleffektuttaget over slanganden. Varmeba-

lans ger:

L-"n, = WTfut - W < 1 1 -

Lat mt (K/(W/m)) ange medelvarmemotstandet enligt fbljande samband:

°- Tfin=V% (11-

Da erhalls ur (11.7.6-8):

m t = L (11.7.9)
<-/ jt

(1 - e T)CfVf

Exempel 11.7.1. Fbljande data ga'ller:

A = 1.5 W/mK D = 1 m m = 0

R = 0.02 m L = 100 m

Cf = 4.18-106 J/m3K Vf = 0.5 1/s

Da erhalles:

mg = 2T5 ln = °-489

yf = 0.49-4.18-106-0.5-10"3 = 1024 m

Exponenten l/y blir:

L _ 100
yT " T024

100 = 0.503 K/(W/m)
- e °'1)-4.18-106-0.5-10"3

Skillnaden mellan m och m. ar liten.
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Exempel 11.7.1 visar att L/y, ofta ar litet. Man kan da anvanda fbl-

jande linjara approximation:

Tf(y) - Tf.n(l - £-) (y < L < 0.2yf] (11.7.10)

Maximalt fel i denna approximation ar 2%. En motsvarande approxima-

tion for m. enligt (11.7.9) ger:

= mg

11.8 Temperaturpaverkan pa omgivande mark

Ytjordvarmeslangarnas paverkan pa temperaturen i omgivande mark disku-

teras kortfattat i avsnitt 12.2.7. En mer omfattande studie reciovisas

i referens 9 (kapitel 10, kapitel 3 och avsnitt 4.2). H'a'r skall bara

nagra samtnanfattande slutsatser fran referens 9 redovisas.

Temperaturgradienterna ar stora nara slangarna, da varme uttages. Se

t ex figur 11.1.4. Runt 50% av temperaturfallet mellan slang och mark-

yta ligger i en cirkel runt slangen med radien D/5. Influensomradet

kring en enskild slang a'r relativt begransat. Se t ex figur 12.2.7.1.

Temperaturstbrningen pa djupet z = D avtar snabbt med bkande avstand

fran slangen. Pa ett avstand 2D fran slangen aterstar mindre an 10%

av temperaturstbrningen. Pa avstandet 5D aterstar 1-2%.

Temperaturstbrningen fran ett rektangulart fait med ytjordva'rmeslangar

kan uppskattas med relativt enkla formler enligt referens 9. Nagra re-

sultat ges i tabell 12.2.7.2. Allma'nt galler att temperaturstbrningen

i marken ar fbrsumbar pa avstandet 5D fran den yttersta slangen i om-

radet fran djupet D upp t i l l markytan.
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12. TEMPERATURF'ORA'NDRINGAR I OMGIVANDE MARK

Markva'rmesystem stbr de naturliga temperaturfbrhallandena i marker.

Denna temperaturpaverkan a'r av intresse ur miljbsynpunkt. Speciellt

a'r man intresserad av storleken pa stijrningen vid markytan och i

ytliga jordskikt. Ra'ckvidd och tidsskala for den langsiktiga uppva'rm-

ningen eller nedkylningen av marken runt systemet a'r ocksa av intresse.

En annan viktig fraga ur mil jbsynpunkt a'r fbrandrinaar av grundvatten-

temperaturer.

I de fbregaende kapitlen 4 till 11 har dessa temperaturfbra'ndringar be-

handlats for manga olika specie!la fall. I grundvattenvarmesystem ater-

injekteras nedkylt grundvatten. Ra'ckvidden av denna nedkylning behandlas

i kapitel 9. Den langsiktiga nedkylningen kring en bergva'rmebrunn och pa-

verkan vid markytan behandlas i avsnitt 10.10. Temperaturpaverkan en bit

ifran ytjordvarnieslangar behandlas i kapitel 11.

I avsnitt 12.1 ges nagra fbrhallandevis enkla formler for att uppskatta

temperaturstbrningarna runt ett markva'rmelager. Formlerna ga'ller ej i den

na'rmaste omgivningen av va'rmelagret. I avsnitt 12.2 jamfbres temperatur-

stbrningarna i ytliga jordskikt med de stbrningar man har runt en vanlig

byggnad.

12.1 Formler for temperaturstbrning runt markva'rmelager

Temperaturfbra'ndringar i marken runt ett markva'rmelager beror pa manga

faktorer sasom lagrets form, storlek, varmeisoleringar, temperaturnivaer

osv. Omradet na'rmast va'rmelagret a'r speciellt ka'nsligt for dessa olika

variabler, medan stbrningen uppvisar ett enklare beteende la'ngre bort

fran va'rmelagret. Lat L vara en la'ngd som karakteriserar lagrets lineara

utstrackning. Det kan vara lagrets hbjd, la'ngd eller bredd. De formler

som ges i detta avsnitt a'r approximativt giltiga pa avstand fran lager-

ytan vilka a'r stbrre an cirka 21. Pa dessa avstand a'r alia variationer

i temperatur under lagrets arscykel utda'mpade. Temperaturstbrningen

styrs av lagrets medeltemperaturer under aret.

Va'rmelagret kan ha bverytan vid markytan eller under denna.
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Lagrets mittpunkt ligger pa djupet z=D . Den arliga varmefbrlusten
dividerad med arets langd ger medelvarmefbrlusten Q (W) fran lagret.

Denna styr temperaturstbrningarna i marken runt lagret utom i ett nar-

omrade dar fluktuationer under aret tillkommer.

I manga fall kan en mer eller mindre precis uppskattning av Q gbras.

Se kapitel 4. Varmelagret illustreras i figur 12.1.

T=O

Figur 12.1. Markvarmelager med medelvarmefbrlust Q . Till hbger visas
en approximation till en punktkalla.

Medel varmefbrl usten fbrdelar sig pa nagot sa'tt over varmelagrets yta.
For en punkt i marken som ligger en bit fran lagret spelar den exakta

fbrdelningen av varmeflbdet genom lagerytan en mindre roll. Man far

approximativt samma temperaturfbrlopp om hela varmetillskottet placeras
i en punkt mitt i lagret. Varmelagrets temperaturpaverkan pa omgivningen

approximeras med en punktkalla i lagrets mittpunkt. Den hbgra bilden

i figur 12.1 illustrerar denna approximation. Temperaturen vid markytan

skall vara noil, eftersom enbart stbrningen fran markvarmelagret behandlas.

Denna stbrtemperatur bverlagras pa naturliga, ostbrda marktemperaturer.

12.1.1 Transient temperaturfalt

Temperaturprocessen for stbrtemperaturen i marken en bit fran varmelagret

beskrivs approximativt av den punktkalla som definieras till hbger i

figur 12.1. Cylinderkoordinater med djupet z och radiellt avstand r

anvandes. I punkten z=D , r=0 finns en punktkalla med styrkan Q (W).
Den verkar fran starttiden t=0. Vid denna tid a'r stbrtemperaturen i

marken noil. Vid markytan z=0 skall temperaturen hela tiden vara noil.

Detta uppnas genom att ansatta en spegelpunktkalla med styrkan -Q i

z = -Dm, r = 0.
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Temperaturfbrloppet fran en punktkalla som startar en tid t = 0 ges

i referens 102 E. Den transienta temperaturstbrningen i marken utanfbr

lagret blir i denna approximation:

m ;

4-rrA

V2+(z-Dj2

+

r

( r+ }W

- /r2+(

- prfrr_ errc

:z+oj2

(
\- \/AaV '

.12.1.'

/ ? , _ , ? / 9 , . , ?
+ ' ' v"~ "m - MI

Funktionen erfc behandlas i avsnitt 3.6. Stbrtemperaturen har ett index

Q for att markera att det enbart rbr sig om den komponent som ha'rrbr

fran lagrets va'rmeflbde Q . Den a'r bverlagrad pa naturliga marktempera-

turen.

Formel 12.1.1 a'r en approximation som bbr ge en relativt god uppskattning

av temperaturstbrningen pa avstand fran lagerytan vilka a'r stbrre an cir-

ka 2 L. Approximation blir allt ba'ttre ju stbrre avstandet till lagret

a'r.

Va'rmeflbdet Qm a'r medel va'rmefbrlusten fran lagret ut i marken. For ett

va'rmelager med bverytan i marknivan skall den del av va'rmefbrlusten som

gar direkt ut mot luften ej medra'knas.

Exempel. Ett cylinderformat bergrum har radien 10 m och hbjden 20 m. Av-

standet mellan dess bveryta och markytan a'r 10 m. Dess ars-

medeltemperatur a'r 55 °C. Bergrummet har behandlats i avsnitt

6.3.6, i vilket avsnitt varmefbrluster och isotermer i det

omgivande berget anges.

Vi har fbljande data:

R = 1 0 m H = 2 0 m D = 1 0 m

T = 55 °r T - 5 °r
m SD L 'o ~ 3

A = 3.6 W/m • K C = 2.1 MJ/m3 • K

Den ackumulerade va'rmefbrlusten fran berqrummet under de tio
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fbrsta aren a'r enligt figur 6.3.6.1.

43 kWh/m2-K

Det genomsnittliga varmeflbdet fran bergrummet blir

Area = 1885 m2 Tm ' T0 = 50 °C

43 •1885 •50
m 10

Forme! 12.1.1 ger temperaturstorningen i berget.

a = 1.71 •10~6 m2/s D = 20 m

Temperaturstorningen for t.ex. r=28 m, z=20 m och t=10 ar

blir:

r+ = 28 m r_ = 49 m

Tg(28,20,10 ar) = 11.7 °C

Funktionen erfc ges i avsnitt 3.6. Temperaturen i den betraktade

punkten a'r

T = TQ + To = 16.7 °C

Enligt figur 6.3.6.5 a'r det bera'knade va'rdet 15.0 °C.

Medelvarmeflbdet fran bergrummet kan ocksa approximeras med det

stationara va'rmeflodet. Detta a'r enligt formel 4.3.1.

Qm = 3.6 (55-5) - 1 0 -11(10/10, 20/10)

h(1,2) = 21

Qm = 38 kW

Med denna uppskattning av medelvarmeflbdet fran bergrummet blir
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temperaturstbrningen i den aktuella punkten efter tio ar

enligt forme! 12.1.1

10(28,20,10 ar) = 9.6 °C

Temperaturen i punkten ar

= 14.6 °C

12.1.2 Maximal temperaturstbrning

Temperaturstbrningen enl igt formel 12.1.1 bkar med tiden mot ett

stationart slutva'rde. Detta erhalles for t = °°.

M? 1\\L.\.

Detta ar den maximala temperaturstb'rningen fran varmelagret. Den galler

ej for omradet narmast varmelagret. Tiden for att uppna det stationara

slutvardet okar kvadratiskt med avstandet fran lagret. Detta behandlas

i avsnitt 12.1.5.

Exempel . Givet samma exempel som i fbregaende avsnitt. Den maximala

stbrningen i punkten r = 28, z = 20 m kan beraknas enl igt

formel 12.1.2. Det stationara varmeflbdet ar 38 kW

TQ(28,20,c.) =

4ir-3.6 /282+(20-20)2 /282+(20+20)2

= 12.8 °C

Den m a x i m a l a temperaturen i den betraktade punk ten ar

= V T o = 1 7 ' 8 ° C

I9-U3
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12.1.3 Varmeflbde vid markytan

Stbrvarmeflbdet vid markytan ar av speciellt intresse. Lat q (r,t)
(W/m) beteckna detta varmeflbde. Det raknas positivt vid varmeflbde

fran marken mot luften.

3Tn(r,z,t)
x

3Z z = 0 [12.1.3)

Fran formel 12 .1 .1 erhalles fbljande uttryck:

qn(r,t) = -JU • f m ) . f . ( T ) (12 .1 .4 )

Har ges fjdr) av

frtd) = erfc(J-) +-?-.! e'1/T (12.1.6)
d /T T

Av ska! som framgar i nasta avsnitt skall vi kalla f . for dipolfunktionen.

Formel 12.1.4 ga'ller ej alltfbr nara va'rmelagret.

Varmeflbdet q (r,t) okas med tiden mot ett stationart slutvarde:

D N3
(12.1-7)

Variationen med avstandet fran lagrets centrumaxel ges av den andra
faktorn. Den fbrsta faktorn ger en niva pa varmeflbdet. Det svarar emot

p
att varmeflbdet Q fbrdelas jamt over en area 2irD . Tabell 12.1 anger
varmeflbdets variation med radien. Observera att va'rden for sma r
eventuellt faller utanfbr formelns gil tighetsomrade. Tabellen visar att

det maximal a stbrvarmef Ibdet avtar snabbt med radien.
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R/Dm
q0(r,-)

qo(0,~)

0

1

0.5

0.72

1

0.35

2

0.09

4

0.014

6

0.004

10

0.001

Tabell 12.1 Stbrvarmeflbdets variation med avstandet fran lagrets mitt-

axel enligt forme! 12.16. Vardena for sma r faller eventuellt

utanfbr formelns giltighetsomrade.

Funktionen f^d) ges i figur 12.2. I figuren ges ocksa approximationer
for sma och stora T.

frt(i)

0.5

0 0.5 1.0 1.5 20

Figur 12.2. Dipolfunktionen (12.1.6). Den anvands i formlerna 12.1.4 och

12.1.8.

Tidsfaktorn fd i formel 12.1.4 for varmeflbdet vid markytan har ett

va'rde mellan 0 och 1. Den anger tidsfbrloppet for hur varmeflb'det vid

en radie r va'xer fran noil upp mot det stationara slutvardet. Tidsfbr-

loppet har samma form for alia radier men tidsskalan bkar kvadratiskt
med radien.

12.1.4 Dlpolapproximation

Genom en sa kallad dipolapproximation kan tempera turf a'ltet (12.1.1)

ytterligare fbrenklas. (J. Claesson, opublicerad studie). Denna ga'ller



for punkter (r,z) som ligger fbrhallandevis langt bort fran punkt-

kallan vid r = 0, z = D . Fbljande uttryck galler:

Tn(r,z,t) 0.7-̂ 5- -- S-̂ ,, f (T) (12.1.8)
Q 4irXD 3/2 d

4at
2

3 • Dm)

r +z

Har ges fj(i) av det tidigare uttrycket enligt formel 12.1.6. Fransett

kravet att punkten (r,z) ej far ligga alltfor nara lagrets yta kravs

ocksa

/r2+z2 > 3 . Dm (12.1.10)

Formel 12.1.8 anger stbrtemperaturen la'ngre bort fran varmelagret.

Formeln har en anmarkningsvart enkel struktur. Det stationara slutvardet,

som ger maximal storming, blir
2

Q™ 2Dm Z (12.1.11)

Detta a'r ett sa kallat dipolfa'lt. Det ar en approximation av (12.1.2) da

(12.1.10) ar uppfyllt.

I varje punkt (r,z) ges tidsfbrloppet upp till stationart slutva'rde av

tidsfaktorn f . i (12.1.8). Denna dipolfunktion visas i figur 12.2.

12.1.5 Tidsskala for temperaturstbrning

Tidsfaktorn i formel 12.1.4 for va'rmeflbdet vid markytan och i formel

12.1.8 for temperaturfbrloppet i marken utanfor ett minimiavstand 3D

fran punktkallan ges av dipolfunktionen f^d). Tidsvariabeln T definieras
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av 12.1.5 respektive 12.1.9. Dessa uttryck ger en tidsskala for

processen.

For varmeflbdet vid markytan kan tidsvariabeln T skrivas:

f- r2+D2
tg = -3—- (12.1.12)

"Q

Detta uttryck tg anger tidsskalan for olika radier r.

For dipolapproximationen av det transienta temperaturfa 1tet enligt

12.1.8-9 kan T skrivas:

_2._2
tg = -̂ -£f- (12.1.13)

v

Vid T = 1 ar f , ungefar en halv. Tiden t = t,, anger saledes tidpunkten

da ungefar halften av det stationara slutvardet har uppnatts.

Exempel.

a = 1.0 • 10~6 m2/s

D = 20 m 9n2 Kn2
m ^ t = 20 +5° sek = 23 Ir
r = 50 m Q 4 - 1 0

r = 100 m
=> tn = 80 ar

z = 1 m g

De numeriska exemplen ovan visar att tidsskalan for att uppna stationara

fbrhallanden ar mycket stor. Observera att roten ur tiden ingar i ut-

trycket for T. Vid T = 2 har enligt figur 12.2 drygt 90% av stationart

va'rde uppnatts. Detta motsvarar tiden t = 4 t,,.

12.2 Temperaturstbrningar na'ra markytan

Temperaturstbrningen, dvs. avvikelsen fran naturliga, ostbrda temperaturer,

fran ett antal representative markvarmesystem skaTl i detta avsnitt an-

ges la'ngs en horisontell linje pa djupet 1 m under markytan. Som jam-
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fbrelse ges exempel pa temperaturstb'rningar fran byggnader. Storningens

betydelse for tjalningsprocessen i marken illustreras med nagra exempel.

En utforligare beskrivning ges i referens 23.

12.2.1 Byggnader

Temperaturstb'rningen i marken har bestamts for tva byggnadsstorlekar.

Det mindre huset kan vara ett enfamiljshus och det stbrre en industri-

byggnad.

2
Det mindre huset har grundmattet 8 x 12 m . Huset har studerats med och

utan kallare. For det kallarlbsa huset har berakningar utfbrts dels

for fallet da huset ar oisolerat mot marken, dels for ett fall med en
2

isolering med varmemotstandet 1.25 K/(W/m ). Huset med kallare ar o-

isolerat. Kallarens djup ar 2.5 m.

2
Det storre huset ar kallarlbst. Dess grundmatt ar 40 x 60 m . Husets

centrala delar ar oisolerade mot marken. De delar under huset som ligger
2

inom 5 m fran huskanten ar isolerade med varmemotstandet 1.25 K/(W/m ).

Markens varmeledningsfbrmaga ar 1.16 W/mK och dess varmekapacitet ar
2.8 MJ/m3K.

Husets och markytans arsmedeltemperatur ar 20 respektive 6 °C. Den

temperaturdifferens som styr stbrningen ar 14 °C. Stbrningen redovisas

langs en linje mitt for husets langsida, vinkelratt mot denna och pa

djupet 1 m.

Figur 12.2.1.1 ger beraknade temperaturstbrningar for det mindre huset.

For det kallarlosa huset (a och b), ges stbrningen efter 1 ar samt den

slutliga, stationara stbrningen. Skillnaden mellan dessa ar bverallt
mindre an 0.5 °C.

For det oisolerade kallarlbsa huset (a) ar den storsta temperatur-

hbjningen under huset cirka 11 °C. Utanfbr huset ar den storsta hojningen

cirka 6 °C. For det isolerade huset (b) ar motsvarande va'rden 8 res-

pektive 4 °C.
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T(x,0,1,t) CO

10 15
x (m)

Figur 12.2.1.1 Temperaturstorning i marken fran en liten byggnad.

a: oisolerat kallarlbst hus, b: isolerat kallarlost hus,

c: hus med oisolerad kallare

For huset med ka'llare (c) ar temperaturhbjningen vid kallarvaggen 14 °C.

Pa avstandet 1 m utanfbr va'ggen ar stbrningen cirka 7 °C.

T(x,0,1,t) (°0

x(m)
0 20 40 60

Figur 12.2.1.2 Temperaturstorning i marken fran en stor byggnad.

Figur 12.2.1.2 ger temperaturstorningen fran det stora huset. Skillnaden

mellan stbrningen efter 1 ar och den slutliga stbrningen ar bverallt

mindre an 1.5 °C. Den stbrsta stbrningen under huset ar 13.5 °C. Vid hus-

kanten ar den stbrsta stbrningen 5 °C.
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12.2.2 Bergrumsva'rmelager

Som exempel tas bergrumsvarmelagret i Lyckebo. Lagret har tidigare be-

handlats i avsnitt 6.8. Lagret a'r approximativt rotationssymmetriskt.

Dess form ges av en ring eller toroid med innerradien 20 m och ytter-

radien 38 m. Dess hbjd a'r 30 m och avstandet mellan dess overyta och

markytan a'r 30 m.

Bergets va'rmeledningsfbrmaga och va'rmekapacitet a'r 3.1 W/mK respektive
2.16 MJ/m3K.

Lagrets temperatur varierar i intervallet 40 till 90 °C. Den ostbrda ars-

medeltemperaturen i berget a'r 6 °C.

Figur 12.2.2.1 Temperaturstbrning na'ra markytan for ett bergrumsvarmelager

(Lyckebo).

Figur 12.2.2.1 ger beraknad temperaturstbrning pa djupet 1 m Tangs en

linje i radiell riktning fran lagrets vertikala symmetrilinje. Den

maximala temperaturstbrningen efter lang tid a'r 2.4 °C. Stbrningen nara

lagrets symmetril inje a'r vid varje tidpunkt la'gre an den maximala stb'r-

ningen. Detta beror pa bergka'rnan i lagrets mitt. Pa avstandet 75 m fran

lagrets symmetril inje a'r den maximala stbrningen cirka 1 C.
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12.2.3 Markva'rmelager

Som exempel pa markva'rmelager tas det planerade varmelagret i Stora

Skuggan (borrhal i berg, referens 130). Lagret a'r rotationssymmetriskt.

Dess radie a'r 21.3 m och dess hbjd a'r 70 m. Lagrets bveryta a'r ta'ckt
o

av en isolering med va'rniemotstandet 3.3 K/(W/m ). Ovanpa isoleringen

ligger ett skikt fyllnadsmaterial. Avstandet mellan isoleringen och

markytan a'r 2 m.

Bergets varmeledningsfbrmaga och va'rmekapacitet a'r 3.5 W/mK respektive

2.1 MJ/m3K. Motsvarande va'rden for det ta'ckande jordskiktet a'r 1.0 W/mK

respektive 3.5 MJ/m3K.

Lagrets temperatur varierar i intervallet 25 till 45 °C i det undersbkta
driftsfal let. Ostord temperatur i berget a'r 6.6 °C.

Figur 12.2.3.1 Temperaturstbrning nara markytan fran ett markvarnielager

(Stora Skuggan).

Figur 12.2.3.1 ger temperaturstbrningen pa djupet 1 m la'ngs en linje i

radiell riktning. Den kraftiga temperaturvariationen vid lagrets ytter-
radie beror pa att va'rmeisoleringen endast tacker lagrets bveryta.

Den maximala stbrningen a'r 5.5 C vid lagrets ytterkant. Mitt over lagret

a'r stbrningen drygt 4 °C. PS avstandet 50 m fran lagrets symmetriaxel

a'r den maximala stbrningen cirka 1 °C.
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12.2.4. Akviferva'rmelager

I det studerade fallet a'r akviferens tjocklek 10 m. Avstandet mellan dess

bvre del och markytan a'r 20 m. Markens varmeledningsfornlaga och va'rme-

kapacitet a'r 2.0 W/mK respektive 2.0 MJ/m3K.

Under fyra manader pumpas vatten med bvertemperaturen 30 C ned i

akviferen. Vattenflbdet a'r 1.8 5,/s. Under tva manader a'r vattenflbdet

noil. Fbljande fyra manader pumpas varmt vatten tillbaka fran akviferen.

Vattenflbdet a'r 1.8 8,/s. Arscykeln avslutas med tva manader utan pumpning.

r(m)
100

Figur 12.2.4.1 Temperaturstbrning na'ra markytan vid va'rmelagring i ett

grundvattenfbrande skikt pa djupet 20 till 30 m.

Figur 12.2.4.1 ger temperaturstbrningen pa djupet 1 m. Efter 100 ar a'r

den stbrsta stbrningen cirka 1 °C. Pa radien 60 m har stbrningen reducerats

till 0.2 °C.

12.2.5 Aterinjektering av kylt grundvatten

Kylt vatten aterinjekteras i ett grundvattenfbrande skikt vars tjocklek a'r

10 m. Avstandet mellan skiktets bvre del och markytan a'r 5 m. Markens

varmeledningsfornlaga och va'rmekapacitet a'r 2.0 W/mK respektive 2.0 MJ/m K.

Vid aterinjekteringen har vattnets temperatur sa'nkts 5 °C. Det kontinuerl iga

vattenflbdet a'r 0.6 n/s.

Detta fall behandlas a'ven i avsnitt 9.4.9. Da'r tas a'ven motsvarande fall

med akviferer pa stbrre djup upp.
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Figur 12.2.5.1 Temperaturstorning pa djupet 1 m vid aterinjektering av

vatten med undertemperaturen 5 C.

Figur 12.2.5.1 ger temperaturstbrningen pa djupet 1 m. Den storsta stbr-

ningen ar -0.8 °C. Det kan noteras att temperaturstbrningen vid varje

given radie gar mot ett stationart va'rde. Enligt avsnitt 9.4.9 blir den

maximala stbrningen -0.22 och -0.08 °C, da tjockleken pa det tackande

skiktet okas till 20 respektive 50 m.

12.2.6 Bergvarmebrunn

For att belysa temperaturstbrningar fran bergvarmebrunnar skall beraknings-

exemplen avsnitt 10.10.3.1 refereras. Brunnen ges undertemperaturen 5 °C

i fbrhallande till omgivningens arsmedeltemperatur.

Figur 12.2.6.1 Temperaturstorning pa djupet 1 m fran system med en och tva

bergvarmebrunnar.
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Figur 12.2.6.1 ger temperaturstbrningen pa djupet 1 m fran system med

en och tva bergvarmebrunnar. De tva brunnarnas avstand a'r 10 m. Den

maximala stbrningen ar -0.17 °C for de tva brunnarna och -0.12 °C for
en brunn.

12.2.7 Ytjordva'rmesystem

Va'rme utvinnes ur horisontella slangar nara markytan. Temperaturfbrloppet

i omradet runt slangarna samt mellan dessa och markytan a'r kompl icerat

pa grund av tj'a'lbildning och den starka kopplingen till markytan.

Ha'r skall ej temperaturstorningen i omradet nara rbren behandlas. Stbr-

ningen anges endast for nagot stb'rre avstand fran rbren.

Betrakta ett rbr pa djupet 1 m. Varmeuttaget a'r 10 W/m. Markens varme-

ledningsfbrmaga a'r 1.5 W/mK.

.6 -4 -2

2(m)

Figur 12.2.7.1 Stationa'r temperaturstbrning vid varmeuttag via ett rbr i

mark.

Figur 12.2.7.1 ger temperaturstorningen i ett vertikalt tvarsnitt efter

langvarigt varmeuttag. Stbrningen a'r proportionell mot den uttagna va'rme-

effekten. Slangradien avgbr vilken undertemperatur slangen maste ha for
att det onskade va'rmeuttaget skall erhallas. Stbrningen pa djupet 1 m
och 3.5 m fran slanaen a'r -0.15 °C.
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I manga ytjordva'rmesystem ta'cker slangarna ett rektangula'rt omrade.

Lat ytans bredd och la'ngd vara 10 respektive 20 m. Rb'ren ligger pa

djupet 1 m. Deras inbb'rdes avstand ar 1 m. Va'rmeuttaget ar 10 W/m.

Detta berakningsexempel behandlas nagot utfbrligare i avsnitt 9 i

referens 23. Se a've n referens 9.

Djup (m)

Temperatur ( C)

4

- 3 .5

5 6 10 2 0 5 0

-2.9 -2.5 -1.3 - .45 -.08

label! 12.2.7.1 Temperaturstb'rning rakt under ett rektangula'rt ut-

vinningsomrade.

label! 12.2.7.1 ger beraknad temperaturstbrning la'ngs en vertikal linje

genom rektangelns centrum.

Avstand fran
rektangeln (m)

Temperatur (°C)

3 5 15

-.40 -.20 -.03

Tabell 12.2.7.2 Temperaturstbrning pa djupet 1 m utanfbr ett rektangula'rt

utvinningsomrade.

Den bera'knade stbrningen pS djupet 1 m la'ngs en linje som gar vinkelra'tt

fran mittpunkten pa rektangelns langsida ges i tabell 12.2.7.2.

12.2.8 Paverkan pa tjalning

Temperaturstorningen fran markvarmesystem paverkar det naturliga tjalnings-

fbrloppet i omradet nara markytan. Detta har studerats for jordarterna

la'tt mora'n och lera vilkas vattenhalt ar liten respektive stor. Vatten-

halten har stor betydelse for tja'ldjupet.
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Fbljande va'rden pa de termiska egenskaperna har anvants:

moran lera

varmeledningsfbrmaga, ofryst W/mK 1.86 1.16

va'rmel edningsfbrmaga, fryst W/mK 2.79 1.98

varmekapacitet, ofryst MJ/m3K 2.29 2.83

varmekapacitet, fryst MJ/m3K 1.80 1.96

smaltvarme MJ/m3 74.9 152.

Den valda lufttemperaturen har arsmedel vardet 6 °C och amplituden
14 °C, vilket motsvarar ett mellansvenskt klimat.

Snbtackets inverkan har fb'rsummats. Vid frysningen antages frysvarmet

frigbras lineart i intervallet 0 till -1.0 °C.

Effekten pa det endimensionella tjalfbrloppet av ett markvarmesystem

simuleras av ett givet varmeflode nedifran. Varmeflbdet valjes sa att

det for de tva jordarterna motsvarar en temperaturhbjning pa 0

(dvs. ostbrt) , 2.5 och 5 °C/m.

Pallet med 2.5 C/m ger da en uppfattning om paverkan pa tjalprocessen

fran ett markva'rmesystem som ger storningen 2.5 °C pa djupet 1 m.

Figur 12.2.8.1 ger vertikala temperaturprofiler i moran for de tre

fallen. Temperaturerna visas vid tidpunkterna for hbgsta och la'gsta luft-

temperatur. Inom frysningsintervallet ar profilerna dragna som streckade

ra'ta linjer. Temperaturerna galler for insvangda fbrhallanden, dvs. nar

temperaturerna upprepas ar efter ar.

Figur 12.2.8.1 visar hur arsvariationen av temperaturen da'mpas med

djupet. Vid djupet 4 m na'rmar sig temperaturprofilen de olika stbrning-

arnas temperaturbkning med 0, 2.5 respektive 5 °C/m.

Figur 12.2.8.2 ger positionen av den frysta zonen i moran vid olika

tidpunkter under aret.
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0 C/m (ostort)

5 °C/m

Figur 12.2.8.1 Temperaturprofiler i moran vid tre olika stbrningar.

0 2 4 6

djup (m)

mlnader

0 °C/m (ostort )

_ — — 2.5 "C/n

5 °C/m

Figur 12.2.8.2 Fryst zon i moran som funktion av tiden for de tre fallen.

Det stbrsta tjaldjupet 1.3 m under ostbrda fbrhallanden intraffar 8 till

9 manader efter hbgsta lufttemperaturen. Ungefar samtidigt bbrjar tja'len

smalta uppifran. Knappt 11 manader efter hbgsta lufttemperaturen smalter

den sista resten av tja'len pa djupet 1 m. Stbrsta tjaldjupet vid stbrningen

2.5 och 5.0 °C a'r 1.2 respektive 0.9 m. Vid den stbrsta stbrningen smalter

isen underifran sa snabbt att nagon tjalzon, belagen helt under markytan,

knappt hinner bildas.
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!00 200
Tlz. t l r t )

0 C/m (os tor t )

2.5 "C/m

5 "C/ra

Figur 12.2.8.3 Temperaturprofiler i lera for de tre fallen.

Figur 12.2.8.3 ger vertikala temperaturprofiler i lera for de tre fallen.

Temperaturerna visas vid tidpunkterna for hb'gsta och lagsta lufttemperatur.

En jamfb'relse med figur 12.2.8.1 visar att intra'ngningsdjupet for ars-

variationen av lufttemperaturen a'r mindre for lera an for mora'n.

Figur 12.2.8.4 visar for lera positionen av den frysta zonen vid olika

tidpunkter under aret. Det maximala tjaldjupet for de tre fallen 0, 2.5

och 5 °C/m a'r 1.0, 0.8 respektive 0.7 m. Tjaldjupet i lera a'r mindre an

i mora'n pa grund av den stb'rre vattenhalten och den lagre va'rmelednings-
fbrmagan for lera.

0

1.0

2.0

10 12 manadsr

• 0 C/m (os tor t )

2.5 "c/m

djup (m)

Figur 12.2.8.4 Fryst zon i lera som funktion av tiden for de tre fallen.
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12.2.9 Sammanfattning

For de studerade bera'kningsexemplen a'r den stbrsta temperaturstbrningen

pa djupet 1 tn:

Bergrumsvarmelager +2.4 °C

Markvarmelager +5.5 C
Akviferva'rmelager +1.0 °C

Aterinjektering av kylt grundvatten -0.8 °C
Bergvarmebrunn -0.17 °C

Ytjordvarmesystem

(4 m utanfbr utvinningsytan) -0.4 °C

Temperaturstbrningen fran byggnader, som a'r varmeisolerade mot marken

med motstandet 1.25 K/(W/m2), a'r maximalt cirka 2 °C pa djupet 1 m och
pa avstandet 1 m utanfor husgrunden. Temperaturstbrningen i motsvarande

punkt for ett hus med oisolerad ka'llare a'r cirka 7 °C.

Temperaturstbrningen na'ra markytan for de behandlade markva'rmesystemen

a'r av samma storleksordning som eller mindre an temperaturstorningen

utanfor byggnader.

Temperaturstbrningens betydelse for tjalnedtra'ngningen illustreras for

ett mellansvenskt klimat. Som exempel tas ett markvarmesystem dar tem-

peraturstbrningen utan tjalning a'r +5 °C pa 1 meters djup. For en moran-

jord medfbr detta att det maximala tjaldjupet minskar fran 1.3 till 0.9 m.

For lera minskar tjaldjupet fran 1.0 till 0.7 m.

20-U3
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13. OVERS IKT AV DATORPROGRAM

13.1 Introduktion

Ett antal datorprogram har utvecklats for simulering av termiska fbrlopp

for olika markvarmesystem. En bversikt av programmed ges i detta kapitel.

For mer detaljerade redovisningar hanvisas till de fbregaende kapitlen.

Manualer for datorprogrammen ges i referenserna 11, 17, 18 och 24.

Datorprogrammen har anvants vid utvardering, analyser och studier i

manga olika tillampade projekt. De resultat som ges i denna skrift har

kra'vt kanske ett tusental simuleringar med de olika modellerna. De har

ocksa bverfbrts och utnyttjats av olika andra forskargrupper, institu-

tioner och ingenjbrsbyraer. Programmen ar darfbr fbrhallandevis val tes-
tade. De ar tillgangliga for alia anvandare.

De olika datortnodellerna har likartad grundstruktur. Man har en global
varmeledningsprocess i marken i och kring sja'lva markvarmesystemet. Denna

process kopplas till olika mer lokala processer i systemet. Det totala

kopplade fbrloppet beraknas av datorprogrammen.

Markens termiska egenskaper kan varieras. Varmeisoleringar kan placeras

vid markytan och nere i marken pa valfria platser.

Varme fores till och fran markvarmesystemet med en varmebarare som van-
ligtvis ar vatten. Varmebara.rens volymflbde, flbdesriktning och inlopps-

temperatur till systemet kan varieras fritt i tiden. Som utdata fran si-

muleringar erhalles bland annat va'rmeb'a'rarens utloppstemperatur, ladd-

nings- och atervinningseffekter, va'rmebalanser for systemet under olika

tidsperioder samt marktemperaturer.

Samtliga program ar skrivna i FORTRAN. Angivna berakningstider for de

olika programmen avser CPU-tid pa en UNIVAC 1100/80.

13.2 Bergrumsva'rmelager

Datormodellen Stratified Storage Temperature Model avser system for

lagring av va'rme i bergrum, gropar eller nedgravda vattentankar. Se

avsnitt 6.2. Lagringsmediet kan vara vatten eller en blandning av

vatten och sprangsten. Vid pumpning cirkulerar vattnet genom hela

lagrets hbjd.



13.2

Datorprogrammet finns i en version for cylindersymmetriska lager.
Manual till detta program ges i referens 11. Programmet finns a'ven

i en odokumenterad version for pa rail ellepipedformade lager.

Programmet kra'ver cirka 100 kbytes i minnesutrymme. Simulering av en

arscykel tar 5 till 10 sekunder.

Datormodellen finns i omarbetat skick som subrutin i ett simulerings-

program for hela energisystem, TRNSYS. Modellen finns a'ven som subrutin

i ett optimeringsprogram for hela energisystem, MINSUN.

13.3 Markva'rmelager

Datormodellen Duct Storage Temperature Model avser markvarmelager. Se

avsnitt 7.5. En varmebarare pumpas genom ett rbrsystem i marken. Lagret

a'r rotationssymmetriskt. Manual ges i referens 18.

Datorprogrammet kra'ver cirka 100 kbytes i minnesutrymme. Simulering av

en arscykel tar 5 till 10 sekunder.

Datormodellen finns i omarbetat skick som subrutin i ett simulerings-

program for hela energisystem, TRNSYS. Modellen finns a'ven som subrutin

i ett optimeringsprogram for hela energisystem, MINSUN.

13.4 Akvifervarmelager och grundvattensystem

Grundversionen av datormodellen Aquifer Storage Temperature Model avser

ett rotationssymmetriskt akvifervarmelager dar vatten pumpas till och

fran akviferen via en brunn. Programmet redovisas na'rmare i kapitel 8.

Manual ges i referens 17. Programmet avser a'ven aterinjektering av

kylt grundvatten.

Programmet kra'ver cirka 100 kbytes i minnesutrymme. Simulering av ett ar

tar 5 till 10 sekunder.

Grundversionen har vidareutvecklats till att galla system av flera

brunnar. Den enklaste formen a'r system med tva brunnar. System med en

centrumbrunn och flera omgivande brunnar la'ngs en cirkelbage runt
centrumbrunnen kan ocksa simuleras. Se avsnitt 9.3.
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13.5 Bergvarmebrunnar

Flera datormodeller finnes. Den enklaste beskriver varmeutvinning ur

en enda brunn. Pallet ar rotationssymmetriskt. Nettoflbdet av vatten

fran brunnen ar nol 1.

En mer avancerad model!, Superposition Bore-hole Model, avser ett

valfritt antal vertikala brunnar. Se avsnitt 10.7. For varje enskild
brunn utnyttjas det tidigare programmet for en brunn. Genom superposi-

tion simuleras det totala tredimensionella temperaturfbrloppet. En spe-
ciell version av programmet avser ett antal sneda brunnar. Se avsnitt

10.8.6. Manual for de tva versionerna med sneda eller vertikala brun-
nar ges av referens 24.

Programmen kraver 100 till 200 kbytes i minnesutrymme. Ett ars simu-

lering tar mindre an 1 sekund for modellerna med en brunn. Ett fall
med 120 brunnar kan for superpositionsmodellen ta cirka 6 minuter per

ar.

13.6 Ytjordvarme

Va'rme utvinnes ur marken via en horisontell slang na'ra markytan. Dator-
modellen beskriver det termiska forloppet i ett vertikalt tvarsnitt

vinkelratt mot slangen. Marken kan frysa, varvid latent varme frigbres.

Va'rme kan aterinjekteras till marken via slangen. I referens 19 redo-

visas en a'ldre version av detta datorprogram.

Datorprogrammet kraver 100 till 150 kbytes i minnesutrymme. Simulering

av en arscykel tar 20 till 60 sekunder.
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APPENDIX A. Datorprogram for periodisk modell enligt avsnitt 7.3.3

C
100
C

C
400

C
500

x**************x#x*****x******#******************* **
***
***
***
***
***

This program calculates the periodic part ***
(amplitude and phase) for fluid temperature ***
or loading effect in a cylindrical heat
storage volume in the ground.

***
***
***

Mats Areskoug and Goran Hellstrom
Dep. of Math. Phys., Lund University

January 1985

XXX

XXX

XXX

X**

XXX

DIMENSION P( 15)
COMPLEX RNOLL,I,DEN,RI,A,B,EXFII,EXFIF,EXFIQ,QQ,TFTF,ET
COMPLEX CV,CI,CG,CTM
CHARACTER ANS

READ(1,*)
GO TO 650

CONTINUE

(P(K),K=1,15)

PI=3. 1415926535
AI=PI*P(1)*P(1)+2.*PI*P(1)*P(3)
AG=PI*P(1)*P(1)+2.*PI*P(1)*(P(2)-P(3))
V=PI*P(1)*P(1)*P(2)
AA-P(6)/P(7)
I=(0.,1.)
RI=CSQRT(I)
DMOLL=SQRT(AA*P(9)/(2.*PI))
RNOLL=CSQRT ( DNOLL*DNOLL+I *P ( 8 ) *P ( 8 ) )
DEN=P(8)+RNOLL*P(5)*P(6)/(P(4)*DNOLL)
A=P(6)*(I*V/(RNOLL*RNOLL)+((DNOLL/RNOLL)**3)*
&(AI/DEN+AG*RI/(P(8)*RI+RNOLL)))
AABS=CABS(A)
AARG=ATAN2(AIMAG(A),REAL(A))
B=P(6)*DNOLL*AI/(RNOLL*DEN)
BABS=CABS(B)
BARG=ATAN2(AIMAG(B),REAL(B))
EXFII=CEXP(I*P( 11))

IF(P( 12).NE.O.) GO TO 500

Q=P(13)
FIQ=P(14)
EXFIQ=CEXP(I*FIQ)
TFTF=(Q*EXFIQ+B*P( 10)*EXFII)/A
TF=CABS(TFTF)
FIF=ATAN2(AIMAG(TFTF),REAL(TFTF))
EXFIF=CEXP(I*FIF)
GO TO 550

TF=P(13)
FIF=P(14)
EXFIF=CEXP(I*FIF)
QQ=A*TF*EXFIF-B*P( 10)*EXFII
Q=CABS(QQ)
FIQ=ATAN2(AIMAG(QQ),REAL(QQ))
EXFIQ=CEXP(I*FIQ)
GO TO 550
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C
550 CV=V*P(6)*I*TF*EXFIF/RNOLL**2

CVABS=CABS(CV)
CVARG=ATAN2(AIMAG(CV),REAL(CV))

C
CI=AI*P(6)*DNOLL*((DNOLL/RNOLL)**2*TF*EXFIF-P(10)*EXFII)/
& (RNOLL*DEN)
CIABS=CABS(CI)
CIARG=ATAN2(AIMAG(CI),REAL(CI))

C
CG=AG*P(6)*(DNOLL/RNOLL)**3*(RI/(P(8)*RI+RNOLL))*TF*EXFIF
CGABS=CABS(CG)
CGARG=ATAN2(AIMAG(CG),REAL(CG))

C
CTM=TF*EXFIF-P(8)*P(8)*Q*EXFIQ/(P(6)*V)
CMABS=CABS(CTM)
CMARG=ATAN2(AIMAG(CTM),REAL(CTM))

C
WRITE(1,619) P(10),P(11)

619 FORMAT(/' Air temperature ',
&F10.3,'*CEXP(I*',F7.3,')')
WRITE(1,612) TF,FIF

612 FORMATC Fluid temperature ',
8cF10.3,'*CEXP(I*' ,F7.3, ')')
WRITE(1,617) CMABS.CMARG

617 FORMATC Mean storage temperature: ',
&F10.3,'*CEXP(I*',F7.3,')')
WRITE(1,613) Q.FIQ

613 FORMAT(' Loading effect, total: ',
&E10.3,'*CEXP(I*',F7.3,')')
WRITE(1,614) CVABS,CVARG

614 FORMATC Loading effect, volume: ',
&E10.3,'*CEXP(I*',F7.3,')')
WRITE(1,615) CIABS,CIARG

615 FORMATC Loading effect, surface: ',
&E10.3,'*CEXP(I*',F7.3, ' )' )
WRITE(1,616) CGABS,CGARG

616 FORMATC Loading effect, ground: ',
&E10.3,'*CEXP(I*',F7.3,')')

C
600 CONTINUE

ITMAX=IFIX(P(9)/P(15))+1
WRITE(1,620)

620 FORMAT(/4X,'Time(s)',3X,'Airtemp(K)',1X,'Fluidtemp(K)',1X,
&'Stortemp(K)',2X,'Effect(W)')
DO 700 J=0,ITMAX

T=J*P(15)
ET=CEXP(2.*PI*I*T/P(9))
TTI=REAL(P(10)*EXFII*ET)
TTF=REAL(TF*CEXP(I*FIF)*ET)
TTM=REAL(CMABS*CEXP(I*CMARG)*ET)
TQ=REAL(Q*CEXP(I*FIQ)*ET)
WRITE(1,621) T,TTI,TTF,TTM,TQ

621 FORMAT(2X,E10.3,3(2X,F10.3),2X,E10.3)
700 CONTINUE
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C
650
651

502

652

660

C
665
670

671

680
681

C
900

WRITECI ,651)
FORMAT(' N(ew parameter value),R(un program),S(top program) or'
& ' D(isplay values) ?'/)
READ(1,502) ANS
FORMAT(A1 )
IF(ANS.NE.'N1) GO TO 660
WRITE(1,652)
FORMAT(' Give parameter number, parameter value'/)
READ(1,*) IPP,VALUE
P(IPP)=VAIUE
GO TO 650
IF(ANS.EQ.'R') GO TO 100
IF(ANS.EQ.'S') GO TO 900

WRITE(1,670) (P(K),K=1,11)
FORMAT(/,15X,'PARAMETER VALUES'/,15X,16(
i' Number Parameter
i1 1. Storage volume: Radius ',
Sc' 2. Storage volume: Height ',
Sc' 3. Insulation: Depth ',
Sc' 4. Insulation: Therm, cond. ',
Sc' 5. Insulation: Thickness ',
Sc' 6. Ground: Therm, cond. ',
Sc' 7. Ground: Vol. heat capacity ',
Sc' 8. Ducts: Heat transfer length ',
Sc' 9. Period ' ,
Sc' 10. Air temperature: Amplitude ' ,
4' 11. Air temperature: Phase ',
IF(P(12).ME.O.) GO TO 680
WRITE(1,671) (P(K),K=13,15)
FORMATC 12. Given loading effect

Sc' 13. Loading effect: Amplitude ',
8=' 14. Loading effect: Phase ',
&' 15. Printing: Time interval ',
GO TO 650
WRITE(1,681) (P(K),K=13,15)
FORMATC 12. Given fluid temperature

Sc' 13. Fluid temperature: Amplitude ',
Sc' 14. Fluid temperature: Phase ',
Sc' 15. Printing: Time interval '.
GO TO 650

CONTINUE
END

Value
F10 .3 , '
F 1 0 . 3 , 1

F10.3 , '
F 1 0 . 3 , '
E 1 0 . 3 , 1

F10.3, '
E 1 0 . 3 , '
F 1 0 . 3 , '
E 1 0 . 3 , 1

F 1 0 . 3 , '
F10 .3 , 1

• t/

E 1 0 . 3 , '
F10.3, '
E 1 0 . 3 , '

' , /

F 1 0 . 3 , '
F10.3, '
E 1 0 . 3 , '

U n i t ' / /
m V
mV
m ' /
W / m K V
mV
W / m K V
J/m3KV
raV
s ' /
KV
rad' )

/
J

WV
rad ' /
s ' / / )

/

' K V
rad ' /
s ' / / )
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Exempel. Indata

23.35,58.38,2.
0.1,0.25
3.5,2.2E6,2.98
31536000.,10.,0.
0.
569500.,0.
2628000.

Resultatutskrift

Air temperature 10.000*CEXP(I* 0.000)
Fluid temperature 20.007*CEXP(I* -0.627)
Mean storage temperature: 11.869*CEXP(I* -1.423)
Loading effect, total: 5.695E+05*CEXP(I* 0.000)
Loading effect, volume: 5.863E+05*CEXP(I* 0.105)
Loading effect, surface: 6.747E+03*CEXP(I* -2.893)
Loading effect, ground: 6.040E+04*CEXP(I* -1.688)

Time(s) Airtemp(K) Fluidtemp(K) Stortemp(K) Effect(W)

0.
2.
5.
7.
1 .
1 .
1.
1 .
2.
2.
2.
2.
3.
3.

OOOEn
628En
256En
884En
051 EH
314EH
577En
840En
102En
365En
628En
891 EH
154En

i-OO
h06
h06
1-06
K07
i-07
i-07
0̂7

i-07
H07
0̂7
n07
K07

10.
8.
5,
-0.
-5.
-8.

-10.
-8.
-5,
-0.
5.
8.
10.

416E+07 8.

.000

.660

.000

.000

.000

.660

.000

.660

.000

.000

.000

.660

.000
,660

16.
19.
18.
1 1 .
2.
-8.

-16.
-19.
-18.
-11.
-2.
8.
16.
19.

202
900
267
739
065
161
202
900
267
739
065
161
202
900

1
7

11
1 1
9
4

-1
-7

-11
-11
-9
-4

1
7

.751

.386

.042

.739

.291

.353

.751

.386

.042

.739

.291
-353
.751
.386

5.
4,
2,
-4,
-2.
-4
-5,
-4,
-2.
-8,
2,
4.
5.
4,

.695E+05

.932E+05

.848EH-05

. 166E-04

.847E+05

.932EH-05

.695E+05

.932E+05

.848E+05

.331E-04

.847E+05

.932E+05

.695E+05

.932E+05



Denna skrift med karaktar av handbok behandlar termiska analyser
for markva'rmesystem. Dessa utnyttjar marken som varmeka'lla eller
for direkt lagring av varme i jord och berg och grundvattenfbrande
skikt eller i undermarksforlagda vattenreservoarer.

For markva'rmesystem finns det en ma'ngd problem och fragestall-
ningar som arforknippade med de termiska processerna i lagret eller
uttagssystemet och i omgivande mark. Fragorna ror varmeforluster
och andra termiska prestanda, temperaturpaverkan pa omgivning-
en, lampliga roravstand, brunnskonfigurationer, aterladdning m m.

I skriften redovisas grundlaggande teori, termiska analyser, dator-
modeller och simuleringsprogram. Detta omfattande material har
tag its fram aven forskargrupp vid avdelningen for matematiskfysik,
LundsTekniska Hogskola, under aren 1977 — 1985. Arbetet har skett i
samarbete med konsulter, innovatorer, forskare, byggare, geologer
m fl specialister. Skriften riktar sig till dessa specialistgrupper samt
den hogre undervisningen. Den ger bade en teoretisk bakgrund och
en praktisk handledning vid ingenjorsmassiga berakningar.
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DEL III: NA7URVARMEKALLOR (718:1985)
9. Grundvattenvarme, geotermi
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13. Oversikt av datorprogram
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