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SUBOPTIMAL LINEAR REGULATORS FOR LINEAR SYSTEMS WITH KNOWN
INITIAL-STATE STATISTICS.'

K. Martensson

ABSTRACT

For linear systems with quadratic loss the optimal control is
a linear feedback from all the state variables of the system.
If all the states are not measurable, it is sometimes possible
to construct a suboptimal linear regulator which is almost as
good as the full optimal. In this report an algorithm is de-
duced, which computes a suboptimal strategy when the statis-

tics of the initial state of the system is known.

T This work was supported by the Swedish Board for Technical
Development (Contract 69-631/U489).



1. INTRODUCTION.

When designing regulators for linear time-invariant systems, opti-
mal control theory may often be very useful. The desired qualities
of the regulator are then achieved from a suitable choice of a quad-
ratic cost function. This formulation of the problem will result in
a linear time-invariant feedback from the state of the system, and
it is thus necessary to get information about all the state variables

either through measurements or some kind of estimation.

In many situations, however, practical or economical reasons can
make it impossible to implement the optimal regulator. For example,
the instrumentation required to measure or estimate the state may
be too expensive. In this case a suboptimal regulator could satisfy

the demands on simplicity and low cost of the regulator.

The suboptimal strategy discussed in this paper is a linear time-
invariant feedback from a reduced number of state variables. Since
the optimization problem for such linear feedbacks generally will
depend on the initial state of the system, some further information
must be added. Here it is assumed that the initial state is a normal-
ly distributed random variable with known mean value and covariance.
The problem is then reduced to determine a linear feedback matrix
with a given structure, so that the mean value of the loss function
is minimized.

A similar approach has recently been published by Dabke [3], where
algebraic equations for the suboptimal strategy are deduced. How-
ever, these equations are possible to solve only for very simple prob-
lems unless a computer is used. The method proposed in this paper is
based on an algorithm for numerical minimization, and thus requires
a computer. In [1], [5], and [6] other approaches to the suboptimal
regulator problem are presented.



2. STATEMENT OF THE PROBLEM.

Consider the linear time-invariant system

& - Ax + Bu x(0) = xg (2.1)
dt
and the quadratic loss function
_ T T
V= f{x (s)le(s) + u (s)Qyuls)}ds (2.2)

0

x is the n dimensional state vector, u the r dimensional control
vector, A an n x n matrix and B an n x r matrix. Q is a nonnega-
tive definite symmetric n x n matrix and Q, a positive definite

symmetric r x r matrix. To guarantee the existence of an asympto-
tic stable optimal solution, it is assumed that the pair [A,B] is
stabilizable and the pair [A,Ql] detectable. The optimal solution

is then given by the linear time-invariant feedback

u(t) = - L*x(t) (2.3)
where
L* = Q;lB's* (2.4)

S*is the unique nonnegative definite symmetric solution of the sta-

tionary Riccati equation
ATs* + s*A - 5*BQ;'BTS™ + q, = 0 (2.5)
The minimum of the loss function is

V o= x(0)S*x(0) (2.6)

Notice that L* is independent of the initial state of the system.



Now consider an arbitrary linear time-invariant feedback
u(t) = - Lx(t)
The closed loop system then is

9 - (A - BL)x(t) x(0) = x

dt

and the cost corresponding to L is

V(L) = [ (X (s)Qx(s) + X' (s)LTQ,Lx(s) Jds 2.7)
0

Introduce the fundamental matrix ¢L(t; tO) associated with (A - BL).

oLl o) (A ) ( ) ( ) = I
= (A - BL)¢, (t; t 6 (tn3 o) =
dt L' 0 L0 0

The cost (2.7) then equals

V(L) = xL(0)S(L)x(0) (2.8)
where
oy T T
S(L) = | ¢1(s3 0){Q) + L'Q,L}¢;(s; 0)ds (2.9)
0

The existence of S(L) is guaranteed if the closed loop system
(A - BL) is asymptotic stable, and it is then easy to show that
S(L) is a unique nonnegative definite symmetric solution of the

algebraic equation

(A - BLY'S(L) + S(L)(A - BL) = - q - L'Q,L (2.10)



Subtracting (2.5) from (2.10) and rearranging the terms, equation
(2.11) is obtained.

(& - BLYT(S(L) - §%) + (S(L) - S¥)(A - BL) = - (L - L)TQ(L - L)
(2.11)

Analoguous to (2.9) an explicit expression of the solution is

S(L) - S* = [ ¢2(s30)(L - L*)TQ (L - L), (s30)ds (2.12)
L 2 L
0

and thus S(L) > S* when L $ L™,

Now assume that the feedback matrix L = (zij) should have a pre-
scribed structure, i.e. 2ij = 0, when feedback is not allowed from
state j to control variable i. With this structure, the feedback
that minimizes V(L) is not the same for different initial states
x(0) of the system, and thus the simplicity of the regulator is lost.
To get a unique solution independent of the initial state, it is
assumed that x(0) is a normally distributed n dimensional random

variable, characterized by the mean value

E{x(0)} =m (2.13)
and the covariance matrix

E{(X(U) - m) (x(0) - HQT} = R (2.14)

The feedback matrix L is then postulated to minimize the expected

value of the loss function
w(L) = E(x1(0)S(L)x(0)} (2.15)
or the expected value of the deviation from the optimal strategy

(L) = E{XI(O)(S(L) - s*)x(O)} (2.16)



(2.16) is a better choice although it requires the solution of the
optimal problem, since it will give some information about how effi-
cient the suboptimal strategy is. As x(0) is normally distributed,

(2.16) is equivalent to

(L) = m (S(L) - S¥)m + tnace[[S(L) - S*)R] (2.17)
or
u(L) = tnace{[S(L) - S*)(R + mmT)} (2.18)

If the mean value does not equal zero, it follows from (2.18) that
it can be included in the covariance matrix. In the following it
will then be assumed that m = 0. The problem can now be stated as

follows:

In the set of all stable linear time-invariant feedback matrices
L= (Eij) with a prescribed structure, find the one that minimizes

the loss function u(L).



3. NUMERICAL SOLUTION OF THE PROBLEM.

In this section an algorithm for numerical minimization of w(L)

is given. The method is straightforward, and is based on the
Fletcher-Reeves conjugate gradient minimization method [4], but
apply to any method which makes use both of the function values

and the gradient. It is assumed that the optimal solution S™ = (st)
of (2.5) is known, and the loss function (2.18) is chosen. To simp-
lify the notations, the argument L will be dropped from now on. The

function value is thus given by

n
u(lL) = trace((S - S)R) = § (545 - szj)rji (3.1)
1,321

where S = (Sij) is the unique nonnegative definite solution of
T ~ T
(A - BL)'S + S(A - BL) = - (Q + L'Q,L) (3.2)

There are many ways to solve this equation. If the order n of the

system is not too large, Kronecker products can be used to rewrite
(3.2) as a linear equation. Introduce S as an n(n+1)/2 dimensional
vector containing the upper triangular part of S.

8T = ( )
S - Sll, 812’ e 0y slrl, 822, LRCEUNE Y S2n, 833, ° 00y Snn

and a as a vector of the same dimension containing the upper triangu-
lar part of Q = Ql + ﬁTQZL.

Then § is the solution of the linear equation
Ag = - § | (3.3)

where 4 is an n(n+1)/2 x n(n+1)/2 matrix composed from the elements
of (A - BL) according to the rules given by the Kronecker product.
The solution of (3.2) is then reduced to the solution of a system

of linear equations in n(n+l)/2 variables.

To get the gradient, (3.1) is differentiated with respect to Qij'



au o s
—= ] i (3.4)
3L 39S 9% ..

ij psq=l "Tpq ij

which reduces to

—= J . B (3.5)
L. . _ L.,
1] p.q-l 1j

The derivatives

9s

k..
1]

are obtained from differentiating equation (3.2) with respect to

Lx..
1]
T 23S oL)T T, T.T as , S 35 oL
A - B'S - L'B + A - BL - SB —— =
k.. 9L, . 9L 9L oL 9L
1] 1] 1] 1] 1] 1]
T
= - |2k ] Q,L - LTg, 2= (3.6)
L. . oL..
ij ij
Introduce
X.. = 2k (3.7)
..
1]
as an r x n matrix with zeroes in all entries except for X4 = 1.

(3.6) is then equivalent to

T 23S 95

T T T T
+ (A - BL) = (SB - L'Q)X.. + X:.(SB - L'Q,)
3%.. 3R.. 27713 713 2

ij ij (3.8)

(A - BL)




If feedback is not allowed from state i to control variable j, i.e.

Eij = 0, it follows that Xij is a null matrix, and then

Notice, however, that the same composed matrix A is used to compute
both S and all the derivatives

9S

The computations are then reduced to the solution of a number of
linear systems of equations with different right hand sides. Sum-

marizing, the following algorithm is obtained:

1. Guess an initial value of L so that A - BL is stable.

2. Compose the matrix 4 and compute S and azs "
ij°
3. Compute p and azu .
1]

4. Use the function value and the gradient in the minimization al-
gorithm to get a new estimation of the minimizing feedback mat-

rix L.

5. Return to 2 if the minimum is not reached.

The algorithm has been implemented on a CDC 3600 and found to work
well.



4. COMPUTED EXAMPLES.

A. One-Dimensional Heat Diffusion Process.

The linear system

-32 16 0 16 0
X | 16 -32 16 |x+ | o0 0 |u (4.1)
dt 0 16 -32 0 16

is obtained from a difference approximation of a one-dimensional
heat diffusion process (Fig. 1). The state variables describe the

temperature at equally spaced points, and u, is the control vari-

1
able.
u' X| XZL X3 u2
—1 ] | ] Je——
Fig. 1
u, is assumed to be an exponentially decreasing disturbance,
uy(t) = e_l'stuz(O), entering with a normally distributed initial

value u2(0). The purpose of the regulator is to keep the tempera-

ture xz(t) close to zero.

Introducing the disturbance uz(t) as a new state variable Xy, the

system equation is

-32 16 0 0 16

ax _ | 16 -32 16 0 | .| 0], .2)
dt 0 16 -32 16 0
0 0 0 -1.6 0

The loss function is chosen as

V= [ {10:5 + u’}ds (4.3)
0



10.

which results in the optimal feedback matrix
L*= (0.41, 0.91, 0.41, 0.43) (4.4)

The initial disturbances are characterized by the mean value

m = 0 and the covariance matrix

(4.5)

o O o O
o O O O
o O o o
O o o

Since the system equations are very well conditioned, it was
thought that a linear feedback from X, Or X5 Or both should be
almost as good as an optimal feedback. The computed suboptimal

strategies are

L, = (0, 4.55, 0, 0)
Ly = (0, 0, 1.19, 0)
L,y = (0, -2.25, 1.80, 0)

The performance of the strategies are almost identical, and Ly
can then be considered as the best choice since it requires the
least amplification gain. In Fig. 2 the time histories for xl(t)
and xz(t) are shown for the three different strategies, L~, Lys
and Ea = (0, 0, 0.41, 0). In the latter the optimal amplification

of x, is used. In Fig. 3 contour levels of u are plotted versus

3

the feedback matrix coefficients 112 and 213.
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— '=(0.41, 0.91, 041, 043)
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Fig. 2 - Closed loop response for different feedback matrices.
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Fig. 3 - Contours with constant value of u(L). The different subop strategies
are indicated. O - L = (0, -2.25, 1.80, 0), 0 - L = (0, 0, 1.19, 0),
A - L = (0, u'55, O, O)o
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B. A Multivariable System.

The following example originates from Athans [2], and has also

been used in [6] to design minimax controllers.

6
—=>03 8 | 23, | 3 O O

) ¥ U

mj

1

Fig. 4 - A string of three vehicles.

Consider the three vehicles shown in Fig. 4. If all the masses and
friction coefficients equal one, the system is described by the 1li-

near equations

\ 4 3

sy, [-1 0 o o0 o0)fsy, 1 0 0

8w, 1 0 -1 0 0fféw 0 0 offsf)
S ley,l =0 0 -1 0 ofley,| + o 1 oflsf, (4.6)
dt

6w, 0 0 1 0 -1f|éw, 0 0 offsf,

5y, 0 0 0 0 -1sy, 0 0 1

\ \ \ 7 \ /

where 6yi are the velocity deviations from the desired string velo-
city, Gwi the deviations from the desired spacing and éfi the incre-
mental forces acting on the vehicles. The purpose of the regulator
is to keep the spacing between the vehicles constant. A suitable

choice of the loss function is

V= [ (106w + 1065 + 6f
0

2 + 6f2

2
1 o * Gfa}ds %.7)

which results in the optimal feedback matrix
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1.26 2.49 -0.82 0.67 -0.44
L*¥ = |-0.82 -1.83 1.64 1.83 -0.82 (4.8)
-0.44 -0.67 -0.82 -2.49 1.26

The magnitude of the entries in L indicate that the incremental
forces éfi are mainly influenced by the velocity deviation 8Y; of
the same vehicle, and of the spacing deviation of the vehicle
next to it. A suboptimal feedback thus should have the structure

x 0 0 0 7
L=0 X 0 (4.9)
0 0 0 X

The disturbances on the system are assumed to appear as deviations
from the desired positions of the vehicles. If these are assumed
to be independent and normally distributed with mean value 0 and
variance 1, the two-dimensional random variable (5w1(0), 6w2(0))

is normally distributed with mean value
E{(Gwl(O), dwz(o))} = (0,0) (4.10)
and covariance matrix

7 =1
E{(swl(O), 6w2(0))T(6wl(0), 8u,(0))} = [-1 2} (4.11)

The covariance of the initial state of the system then is

0 0o o 0o o0
0 0 -1 0
R =10 0 0 0 0 (4.12)
0 -1 0 0
o o o0 o0 0
and the suboptimal strategy
1.49 2.29 0 0 0
L= {0 -1.84 3.37 1.84 O (4.13)

0 0 0 -2.29 1.49
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Fig. 5 - Response of the optimal ( — ) and suboptimal (----)

regulator after the initial disturbance 6wy = 0.3

6w2 = -0.1.
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The behaviour of the closed loop system A - BL and of the optimal
system is shown in Fig. 5. Initial disturbances are Gwl(O) = 0.3
and 6w2(0) = -0.1. Except for the state variable 6y3, the perfor-
mance of the suboptimal regulator is close to the optimal one. The
deviation in 8y4 is due to the lack of information from vehicle 1
to vehicle 3. In the first instant, number 3 tries to increase the
distance to vehicle 2, and it has no information about the distance
between the other two, which in this case is too large. The overall
performance of the suboptimal regulator can, however, be considered

as quite satisfactory.
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