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CHOTICE OF SAMPLING INTERVAL FOR PARAMETRIC IDENTIFICATIONT

I.Gustavsscn

ABSTRACT

The problem of choosing the sampling interval for identification
experiments, analysed by parametric methods, has been studied.
Optimal sampling rates have been determined under specific as-
sumptions concerning the structure of the system, the input
signal, the disturbances, the criterion of optimality and the
method of sampling. For some cases optima exist, for others the
best sampling rate is infinitely fast or the opposite. In those
cases an economical sampling rate can be recommended. The re-
sults can be summarized as follows. A sampling rate correspon-
ding to a Nyquist frequency twice to five times the highest
breakpoint frequency or resonance frequency is reasonable. The
higher value should be used for systems with poles close to-

gether or for systems with a high damping factor.
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1. INTRODUCTION.

One problem often arising in modern control theory

is how to choose the sampling rate. Because of the
increasing use of digital computers the problem will
be even more important in the future. When digital
equipment is used for process control the process va-
riables have to be sampled, and discrete-time models
must be used. The intuition says that the higher-
sampling rate, the better a discrete-time model rep-
resents a continuous-time system. However, this is

not true in general.

Tdentification is one field of control theory where
this problem exists, A simple problem formulation
may be to determine the sampling rate for which one
specific parameter can be estimated with minimum va-
riance, Partial answers have been given, e.g, in [3],
[7), [8], and {11]. In this paper the optimal samp-
ling rate is determined for some cases when specific
restrictions are given for the structure of the sys-
tem, the input signal, the disturbances, the crite-

rion of optimality and the method of sampling.

A canonical form to which any linear discrete-time
system with one input and one output with a gaussian
disturbance, which has a rational spectrum, can be

reduced, is

2%q My = B (g hue) + act g Het) (1.1)

where y{(t) is the output of the system,
u{t) is the input to the system, and
e(t) is a sequence of independent normal ran-
dom variables of zerc mean and variance

one.




4 LY
g >

A, B, and c” are polynomials of degree n of the
backward shift operator q“1

r

®o_1 -1 -
Alg )=1+aq +...+tagq n
L™ = b + b0 + + b gD (1.2)
0 1 [ n - »
e =1y . -1 -n
([ CCa ) =1 +cyq + ... +cg

This general form is difficult to handle and in the
foliowing C“(q"1) is restricted to be 1 or to be equal
to Ax(q-1). These cases are referrved to as the least
sguares structure case and the output white noise case
respectively. This means that the results are restric-
ted to cases when the disturbances can be modelled in

one of these two ways in the discrete model.

The problem of choice of sampling rate is closely re-
lated to the problem of choosing input signal. A
change of input signal may very likely cause a change
of the optimal sampling rate. This problem is not
treated., For simplicity the input signal is here cho-
sen to be discrete-time white noise. It is probable
that the results approximately hold also for white
noise approximants like PRBS,

Other factors influencing on the optimal sampling rate
are restrictions that may lie on the input or output
signals, e.g. E u?(t) < const., |u(t)| ¢ const.,

b yz(t) < const. Again for simplicity the restriction

E uz(t) = 1 is chosen.

Another problem is what optimality criterion should
really be used. When only one parameter is considered
unknown, the criterion can be the minimization of the
variance of the parameter estimate. When several pa-

rameters are unknown the problem is more difficult.




The solution, as always in identification problems,
depends on the primary purpose of the identification.
If the modelling is done for control purposes the
influence on the regulated system should be studied.
Another criterion would be to minimize the sum of va-
riances, that is the trace of the covariance matrix,
cf. [1]. The sum of relative errors of the estimates
is another measure, These criteria are studied for

the examples given.

Two cases are considered, N = const. and Nh = const.,

H

where N is the number of samples and h is the samp-
ling interval. Thus Nh is the total experiment time,
Texp' In order to calculate the elements of the in-
formation matrix asymptotic theory most often has to
be used. Thus N must be assumed to be a large number

for the calculations to hold,

The method of sampling also influences on the opti-
mal sampling rate. The sampling can be performed by
integrating the signals during the sampling interval
and averaging or by instantaneous reading at the
sampling events. Integrating sampling will for in-
stance change the variance of the noise of the sampled
model when the sampling rate is changed. Therefore on-
ly instantaneous sampling is considered. In chapter 3
it is shown that even the signal to noise ratio, and
not only the character of the disturbances, will in-

fluence on the optimal sampling rate.

The calculations performed are general and can prin-
cipally be used for any system and any input, but they
are often tedious and difficult to carry out. The most
important drawback is, however, that the process has
to be known in advance in order to calculate the opti-
mal sampling rate. This, of course, diminishes the
practical value of calculations like these. However,

the minima, when existing, are not very sharp, and




this fact can be used to obtain a sufficiently good
estimate of the best sampling rate from estimated
characteristics of the process like time constants,
gain etec. For instance it is possible to use rules

of thumb for certain types of systems. One rule is
that a too fast sampling rate is not as dangerous as
a too slow sampling rate. For systems with real poles
only, a useful sampling interval seems to be 0.5 -

- 1.5 times the shortest time constant of the system.
For a second order system with complex poles a rea-

sonable choice of the sampling interval is

where W, 1s the resonance frequency and k = 2-5,

When calculations like these are too laborious to car-~
ry out or other model structures are necessary, simu-
lations can be used to estimate the best sampling rate.
However, these simulations may be very time~consuming
if identification: has- to be performed by the maxi-
mum likelihood method, which is recommended because
simulations have shown that the estimate of the cova-
riance matrix obtained by this method is rather good.
No other identification method known to the author
gives an estimate of this matrix that has a comparable
accuracy, when the(f=polynomial is of first or higher

order.

Notice that sampling rates can be chosen from Bode
diagrams rather well, just by choosing a sampling rate
corresponding to a Nyquist frequency twice to five
times the highest breakpoint frequency or reso=:::
nance frequency. The higher value should be used for
systems with poles close together or for systems with

a high damping factor,




It is also interesting to compare the results with
the sampling interval recommended for correlation and
spectral analysis, e.g. in [6]. Their choice is

0.25 - 0.4 o f;1, where f;1 is the smallest "period™"
in the record, and this choice must be small enough
so that aliasing will not be a problem. These rules
give sampling intervals of the same magnituae as the

results in this paper.

In chapter 2 the output noise case 1is discussed. The
least squares structure case for a first order system
is considered in chapter 3.




2. OUTPUT WHITE NOISE CASE.

In this chapter the optimal sampling rate is detepr~
mined for different systems when they are disturbed
by output white noise only, i.e. the model is

X, -1
y(t) = .E:&L___l ult) + xe(t) (2.1)
A“(q—’])

A first order system is studied first. The results
from this study are then extended to the case of se-
veral distinct real poles. At last calculations are

done for a second order system with complex poles.

2.1, A First Order System.

For this case the system equation is

-1
y(t) = —29 (t) + re(t) (2.1.1)

1 + aq-1

From measurements of the process it is possible to
get unbiased estimates of the parameters a and b by
different methods, e.g. the maximum likelihood method
(5] and the tally principle [12], It is also possible
to derive the Cramér-Rao lower bounds for the varian-
ces of the estimates [2]. Assuming X known we find
that the inverse of the information matrix, i.e. the

covariance matrix, is bounded by




¢ 2 r o
E|2E rlde . 3E
5 | da EE] ab
-1 A
J = o (2|1-2)
N , oy 2
p[2e . 2c gf2e
Lda 3b . 9b
where
b -1
e(t) = y(t) - —3—— u(t) (2.1.3)
1 + ag .
N is the number of samples and
' oe (t) bq_2
= =7 ult)
da (1 + ag )
$ (2.1.4)
-1
3elt) _ _ _ g - ()
3b 1 + aq

Y

It is now possible to calculate 371 from (2.1.2) and
(2.1.4) for different input signals. This is particu-
larly easy if u(t) is white noise with variance one,

In that case we get

(53¢ 2 _1 bzn2 b22 dz _ b2(1+a2)
ol o B =37 P I
(22 2ni (1+az ') (1+az)” =z (1-a”)
d E'g_é. . ..?-E— - 1 % 2_1 - bzz g—% = ab
- lea b 251 | (taz 1) (l+az)? z  (1-a’)
g[2e 2 _ 7z z dz _ _1
b 27mi 1+az 1+az =z 1—a2

(2.1.5)



Thus we have, cf. [7}:

i <=
b2(1+a?) ab
(1-a2)3 (1-a%)?
-1 a2
J - =
N ab 1
(1-a2)? 1-a°
S -a?y? _ ali-a?)?
b2 b
2
_A° (2.1.6)
N
242
- all-a’y’ (1-a2)(1+a2)
b
and
- - T -1
Var{(e-ao>(e—eg) } 2 J (2.1.7)

where 6 is the estimate and 8, is the correct value
of the parameters, 6 is a vector. Notice that these
lower bounds for the variances can be obtained asymp-
totically by using the maximum likelihood method for
the identification [5] assuming that e(t) is nor-

mally distributed.

The discrete-time system (2.7.1) can be considered

as a discrete model of the continuous process

dx
dt

= - aXx + pu
(2.1.8)



sampled at uniform rate, sampling interval h, and with

white measurement noise on the output signal.

Then we have:

a = - oh
(2.1.9)
b = E(1-e_ah}
O
or
o= -3 In{-a}
h
; (2.1.10)
g = - bdn(-a)
h(1+a)

if u(t) is considered constant over the sampling in-
terval,

The problem is now whether there is an optimal samp~
ling rate or not. First choose the minimization of the
variances of the estimated parameters in the conti-
nuous model as criterion of optimality. Given (2,1.6)
and (2.1.10) it is possible to calculate the lower
bounds of the variances of the estimated parameters

~

a and é {91, We get

sl

Var{g)

@ Q@
2

Ja b

1o d -1

Q2
lva

&

(2.1.11)

[+
T

38
9a ab

Var(é)
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where
QL

ga ah

‘?..g... = 0

ab
, (2.1.12)

38 _ 2{1 + a ~ ain(-a)

da h a(1+a)2

88 . _ In(-a)
. 9b h(1+a)
And now

Var(a) = -%-_2- Var(a)

a™h
£
2 2

Var(g) = E§ 1+a- a&g(-a) Var(a) +

{ h a(l+a)

ﬁb&n(—a)[1 + a - aln(-a)
n2(1+a)|  a(1+4a)?

+ 2 }Cov(é,ﬁ) +

lnz(-a)

L 5 Var(b) (2.1.13)
he{(1+a)

+

Inserting a and b from (2.1.9) the variances will be

functions of A, N, a, B, and h. For instance
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“ 2 -2ah.3
Var(a) = ! AU (; = -
e—2ahh2 N é?(1_ -ah)Z
o
2 4 -a¢h,3 =-ah
N 52 (uh)2 e~ 2oh

Assuming the number of observations, N, fixed we can
compute the variances of & and é according to the for-
mulas of (2.1.13) for different sampling intervals h.
Considering the variances of o and é as functions of
ah we find that they have minima for certain values

of oh, The variances are plotted in Fig. 1. Notice
that for these figures and the following the scaling

factors

)«2 Az AZ
—_— oy — =

N Nh T

are often not considered. The minima do not occur
exactly for the same value of oh, but fairly close,
for e¢h = 1,15 and ah = 1.08 respectively. The func-
tions of ah that appear can be minimized analytically
and most often reduce: to the problem of searching
zeroes of a nonlinear equation. It 1s also easy to
study what happens for small oh and when oh tends to
infinity, and to investigate the characteristics of
the function (if there are several stationary points,

convexity etc.).

The criterion chosen was arbitrary., The parameters o
and 8 are perhaps not the primary parameters of inte-
rest, The gain, G = B/a, and the time constant,

T = 1/0, may be more interesting. However, it is easy
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to use the same method as outlined above for the cal-

culation of the variances of those parameters.

We have
G:....:._b_
o 14a
{ (2.1.15)
T:l:— h
o In(-a)
and
(36 . _ _ b
24 (‘I+a)2
I
Jab T+a
(2.1.18)
al . _h
Sa ainQ(—a)
..é_';.['..zo
3b

The variances of these parameters are given in Fig. 1
as functions of eh. The variance of T has the same mi~
nimum as that of «. However, there is a scaling factor
between them. The variance of G is decreasing for in-
creasing oh. The reason for this is obvious, because N
is fixed, and the best estimate of G will then occur
when the sampling points are spread out as much as pos-
sible so that the output of the system has time to
reach its stationary value. This means that a step res-
ponse is the best way of estimating the gain. Notice
the assumption that the input is constant during the
sampling interval.
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Now instead of N fixed, let Nh = Texp’ the total ex-
periment length, be fixed. For this case the varian-
ces plotted to the right in Fig. 1 are obtained. We
get the rule that the smaller sampling interval the
smaller variances. However, also in this case the re-
sults obtained may be valuable because they indicate
how fast we should sample out of ecconomical reasons.
A too fast sampling will give a tremendous computing
time for the identification, but the increase of ac-
curacy is small. Such a high sampling rate would not
be worthwhile.

2,2, Higher Order Systems with Distinct Real Poles.

So far only systems of first order with one real pole
have been considered. It is, however, easy to extend
these results to systems with several distinct real

poles. To do so we write the system as

n b.q—1

y(t) = ] ————— u(t) + 2e(t) (2.2.1)
1=1 1 + a;q

which is always possible in the case when the pulse

transfer function of the system is given by

b.;qn'I + ..+ b;lq--n
y(t) = T u(t) + re(t) (2.2.23
1+ a.q @+ +aqhm
19 . N

and all roots of the polynomial

1 - ]
P! a1zn 1 ol t a, = 0 {(2.2.3)




L

are real and distinct. Notice that the model (2.2.2)
is often used for identification purposes. Calcula-
tions given in Appendix A show that the lower bound

of the covariance matrix will be

- 1-1
2 2
b1(1+a1) b1bn(1+a1an) a1b1 anb1
2.3 **° 3 2.,2°"" ?
(1-a1) (1-a1an) (1-a1) (1—a1an)
2 2 :
bn(1+an) albn anbn
773 grr T 2.2
) (l—an) .(l—alan) (l_an)‘
go122n | (2.2.4)
N 1 1
AR
l—al l—alan
1
l-a

The matrix is symmetric.

Notice that in this case we get the variances of @,
Bi» 65 and T,, 1 =1, ..., n, (notations according to
Appendix A) easily but that it is a bit more tedious

to calculate the variances of the parameters of the

continuous model

t
ye) = — : S u() (2.2.5)

' 1
but it is possible, since o5 and Bi can be expressed

as functions of . and Bi. It is also easy to calcu-
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late the variance of the total gain G.

In Fig. 2 the variances of the parameters of the se-

cond order system

1.2(5+5) 0.2 . _1 : (2.2.6)

(s+1)(s+25) = s+1 8+25

are plotted as functions of the sampling interval h.
The number of sampling events, N, is assumed. fixed.
For the parameters Gqs Bps 81, 32, T1, TZ’ and G the
curves for constant Nh will have the same characte-
ristics as the curves to the right in Fig. 1. Notice
that the shortest time constant of the system is 0,04
sec., and that the minimum of the sum of relative er-
rors of TT’ TQ, and G occurs for approximately 0.086
sec., The relative error for a parameter & is defined
as vVar(8)/]e|. From this we conclude that it is the
shortest time constant of the system, that has the
greatest effect on the choice of sampling rate, if
all parameters are wanted with good accuracy.

As another example a difference approximation model
of a one dimensional heat diffusion process is used.
The exact transfer function from temperature change
in one end point of a heat rod to temperature change
in the middle point of the rod is, e.g. [10],
sinh 1%1
G(s) = ——— (2.2.7)

sinh Vst

where 1 is a factor depending on the length of the

rod and on the material it is made of.

" A difference approximation of this with 8 steps will

yield the transfer function
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641{'?”L
(s1+9.,74)(51+79.01)(s1+176.90)(s1+246.26)

(2.2.8)

G(s) =

The numerical value of t, that is used, 1857.8, comes
from a laboratory process, constructed at our insti-

tute by B. Leden [10]. (2.2.8) can then be fractioned
as

. 3.31u.1078 8.004.102 7.998+107°
6(s) = =5 - —5 + — -
§+5.243+10 s+4.253+10 5+9.522410
3.308+10"°
= (2.2.9)
s+1.326°10

The time constants are 190.7, 23.5, 10.5, and 7.5.se-
conds. Now assuming that white measurement noise is
the only disturbance on the process, the minimum va-
riances of different parameters can be computed. In
Fig. 3 the sum of relative errors are given for the
cases N = const. and Nh = const. and for different
parameter combinations. From these figures we conclude
that 5 seconds is a useful sampling interval irrespec-
tive of the parameter combination chosen. Again the
sampling interval chosen is of the same size as the
shortest time constant. As an example the optimum
sampling interval is 25 seconds for the longest time
constant., But with such a sampling rate the variance
of the shortest time constant is roughly 2500 times
the minimum value at 5 seconds. This means in prac-
tice that it cannot be found at the identification.
Generally speaking, the fact that identification by
parametric methods often gives low order models, is

at least partly explained by this phenomenon. Modes
corresponding to time constants which are several

times shorter than the sampling interval cannot be




found at the identification. This is analogous to
the aliasing effect when spectral analysis is used.

2.3. Second Order Systems with Complex Poles.

In order to handle general systems of the form (2.1),
we also have to compute optimal sampling rates for

second order systems with a transfer function of the

form

o2t d (2.3.1)
s + 2zws + w
or

> cs + d2 > - cs ; d - (2.3.2)
5° + 2as + a“ + b {s+a)° + b

The second parameter structure is used in first hand
because the transformation between the continuous sys-
tem and the sampled form of the system is simpler, Af=~
terwards it is easy to transform the covariance matrix
for the parameter combination a, b, ¢, and d to the

covariance matrix for the combination ¢, w, c, and 4.
In appendix B it is shown that the sampled form of
(2.3.2) is

-1 -2
b1q + bzq

_1 _2 (2.3-3)
1 + a,q + a,q

with
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-ah

- 2e cos{bh)

s
-—
i

=2ah
e

‘ - e~ 3p4 cos(bh))

ah

s+ sin(bh) - e “"bd cos(bh)}

For

-1 -2
b1q K bzq

y(t) — ult) + ae(t)

-1
T + a9 + asa

b, = b_1(a2+b2)_1{bde_2ah - e Mo (a?4p?)

b, = b1 (a2+b2) T (bd + e ®PfcaZ+b?) - adlsin(bh) -

(2.3.4)

- ad] -

{(2.3.5%5)

it is now possible to use the same technique as be-

fore to compute the Cramér-Rao lower bound for the

covariance matrix.

Let
baqh1 + bzq_2
e(t) = y(t) - =7 = u(t)
1 + a,q t a,q
and we get
pe(t) c;":’“(‘x>1c1“'1 + bzqmz)
= = =55 u(t)
Bas (1 + aq9q + a,q )
l
-1
2el(t) - . E1 - u(t)
Bbi 1 + aqq + azq

i

i

u

(2.3.6)

(2.3.7)
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The covariance matrix is

(2.3.8)

For u(t) white noise it is possible to compute the
elements of this matrix, by using techniques described
in [u1,

The problem is now to express the variances of a, b,
¢, and d as functions of the sampling interval. The
transformation from a, b, ¢, and d to a,;, a,; bq, and
b, is given by (2.3.4). The inverse of this transfor-

mation is difficult to handle and we use the following:

= -

3a, 8ay day day (32 2a sa da |
3a ab dc ad Ba1 3&2 8b1 ab2
332 Ba2 3a2 3&2 8b ab b ab
3a ob ac ad aa1 aa2 ab1 ab2
. = I (2.3.9)
Bb‘i Bb,] 3b1 Bb,‘ 3c ac ac aC
‘Ba 3b 3c ad aa1 3a2 ab1 3b2
Bb2 3b2 3b2 3b2 ad ad ad ad
’Ba b sc ad | _6a1 8a2 Bb1 Bbzd
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1, and qu exists if the func-

or W2 = I, i.e. Z = W
tions are sufficiently smooth., The derivatives of
a1, 85, b1, and b2 with respect to a, b, ¢, and d
respectively, that is the elements of the matrix W,

are given in Appendix B.

We get

1.=1,.,=1.T

= WOdT W) (2,3.10)
The variances of a, b, ¢, and d are now expressed as
functions of h, but it is difficult to study these
functions analytically. However, it 1is relatively

easy to compute them digitally for different values

of h. Examples of the results are shown in Fig. u-7

for three different systems and for fixed N.

As test systems the following ones have been chosen:

I 5 Fig, 4
8" + D.4s + 4
1 .
I1 5 Fig. b
s” + 237 + 4
1 .
111 5 Fig. 6
s + 3.65 + 4
Iv 5 1
s + 0.6 + 1
i 7 1
s + 1.2 + i
1
Vi 2
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which can be characterized by the damping factor, ¢,

and the resonance frequency, w, according to Table 1.

System z w hmax
I g.1 2 1.58
IT 0.5 2 1.81
117 0.9 2 3.60
IV 1 3.29
V 0.3 2 1.64
VI 0.3 by 0,82
Table 1 - Characteristics of

test .systems I-VI.

hmax is the maximum sampling interval, for which the
transformation of the poles of the continuous model
{(the left half plane) to the discrete model (the in-

ner of the unit circle) can be done without overlap-
ping.

In Fig. 4-6 the variances of é, 5, é, and d as func-
tions of h can be studied for fixed w, N = const.,

and varying z. The result is that the bigger z, the
smaller h required. Notice that if the experiment
time instead of the samples is fixed, the variances
of Fig. 4-6 should be multiplied by h. This means

that for small h the variances are approximately cons-
tant (ef. the top diagrams of Fig. 1). Notice that
for constant N, even the variance of G has a mini-
mum, It is also remarkable that for some of the para-
meters (a and b) several local minima sometimes exist.
The variances of b, ¢, and d have absoclute minima for
approximately the same h, but the-absolute mini-.

mum for the variance of a may occur for a somewhat
different sampling interval {(Table 2).
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System Var(a) Var(b) Var(c) Var(d)
Iv 2.46 1.27 1.17 1.28
v 1.23 0.63 0.58 0.64
VI 0.62 0.32 0.29 0.32

Table 2 - The sampling interval for which the respec-

tive variances have minima,

The consistency of the computations has been tested
in the following way. For ¢ = 1 the second order sys-
tem has two equal real poles., The method of chapter
2.2 has been used to compute the optimal sampling in-
terval for a second order system with two poles close
to the double pole of

1
52 + Us + 4
The result was that an optimal sampling interval was
found near 1/3 sec., which can be compared to Fig. 6
and Table 3, where we can see that the optimal samp-

ling intervals are of the same size for the case
g = 019.

If instead of model (2 3.2) the model (2.3.1) was used
and the variances of c and w were computed only one
minimum was found for the examples tested. Results are
shown in Fig. 7. The optimal sampling intervals are
given in Table 3.
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System g w Var(g) Var(;)
I . 2 1.32 8.90
IT 2 1.08 g0.u46
TII 2 0.40 0.29
Iv 1 2.21 1.23
v 2 1.10 0.62
VI 0.3 b4 0.55 0.31

Table 3 - Optimal sampling intervals for

respective variances.

From Tables 2?2 and 3 we conclude that the optimal
sampling interval for fixed g is proportional to 1/uw

where o is the resonance fregquency.

The calculations have been performed on a UNIVAC 1108
in double precision. Even though numerical difficul-
ties occured in the neighbourhood of hmax' These are
explained by the use of the inverses J-1 and W-1 in

(2.3.10). Both J and W have tendencies of being ill~

conditioned when h approaches hmax'
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3. LEAST SQUARES STRUCTURE CASE.

With the least squares structure means the represen-

tation
B (g™ 1

y(£) = Zpdt ult) + A —p——— e(t) : (3.1)
A (g ) A (q )

or

A% Nye) = B g Hule) + re(t) (3.2)

Because it is a bit more cumbersome to do computations
with this structure, only a first order case 1is consi=-
dered, that is

-1
yt) = =29 () + A —— . a(t) (3.3)

1 + aq_1 1 + aq_1

Let u(t) be discrete white noise with variance one.
The Cramér-Rao lower bound for the covariance matrix
will be (Appendix C)

7 =1
b? 4+ 32
1 A% 1 - a2 ’
J T e a (3;”)
N
0 1

which gives
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R 2 2
Var(a) = -+ 12_ a 5
N D" + 2
n 22
N
. Cov(a,b) = 0
Now we can proceed as in 2.1 and we get
A2 1 1= a? 1 1 - g72%h

Var(&) T = —_—
Noa’n? pPn’ N e7?ePn? g2 | -ahy2 .2
2

o
(3.56)

etc. These variances are not only depending on Az as

2 is also involved in

a multiplicative factor, but A
the function of h. In Fig. 8 - 9 variances of % and

g are plotted for three different values of X and for

N = const. and Nh = const. o and g8 have both been cho~

sen to one. Notice that the characteristics of the

curves may change remarkably with A. E.g. the vari-

ance of % with Nh = constant is ascending for x = 1.0,
has: a minimum for h = 0,92 for » = 0.1, but a maxi-

mum for h = 0.21 and a minimum for h = 0.51 for A =

0.5. It is also remarkable that for the case of least gqu-
ares: - structure it often happens that even if Nh =
const., the variance is increasing when h approaches

zero. This is not so for the output white noise case,

In this case it is also interesting to study the va-
riation of the output of the system with a minimum
variance controller, synthesized from the estimated
model,




26.

Assume the system is given by (3.1). This system is

modelled by the model
b g 1
y(t) = ““-"‘“g‘?“-:Tu(t) + A _-——-—:-:-1-e(t) (3.7)
1 + ag 1 + aq

The minimum variance strategy is given by [4]
(3.8)

y(t)

u(t) =

o

If this strategy is used for thée system (3.3) the
pulse transfer function for the closed loop system

will be
1
y(t) = A , e(t) (3.9)
1+ [a-b% g
o

that is the expected value of the output variance is

given by
(3.10)

P y2 - AZ w
1 - [a-bg}

Now if the modelling is performed many times, diffe-

rent estimates, ; and 5, will be obtained. Assuming
the mean values of ; and 5 the correct ones, and the
covariance matrix for the estimates known, it is pos-
sible to ecalculate the expected value of the output
variance considering the estimates, ; and ﬂ, as sto-

chastic variables,
By Taylor series expansion and averaging it is pos-

gsible to write the expression (3,10) as



27.

. A A 2 n
E{E yz} :_A2[1 + {var(a) - 22 cov(a,b) + éﬁ Var(b)}}
b b

(3.11)

if terms of higher order than two are neglected.

This means that it is possible to study the variation
of the expected output variance as a function of the

sampling interval. The relative variation of E y2 is

~ A ” 2 ~
Var(a) - 2% cov(a,b) + —‘1?- Var(b) (3.12)
b b

and is depending on i as well., The function is plot~
ted as a function of h for different values of A and
for N = const. and Nh = const. in Fig. 10. For Nh =
const. an optimal sampling rate exists. For N = const.
a rather slow sampling rate can be used, Notice that

A has been held constant for different sampling in-
tervals. But even if we let A vary so that the signal
to noise ratio is constant for all sampling rates for
this least squares structure case, the variances in-
crease when h approaches zero. In this case, however,
not all variances vary with the parameter A (Table 4),
For these cases only one stationary point existed,

when any.

N = const, Nh = const,.
- n Rel.var N n Rel.,var
A Var(T) Var(G) 9 Var(T) Var(G) 2
(Ey*©) (Ey©)
0.1 ] 1.37 N \ 0.93 1.90 1.26
0.5 1.37 X\ \ 0.93 | 1.85 1.33
1.0 | 1.37 \ \ 0.93 1,74 1.51

Table 4 - Optimal sampling interval for the least squares
structure case, signal/noise ratio = const.

( N\, denotes descending with increasing h)
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It must be emphasized that for this regulation prob~
lem only the relative variation of the expected out-
put variance due to the uncertainty of the parameters
has been studied. The effect of smaller sampling in-
terval on the absolute value of the prediction error

has not been inveolved.
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4, CONCLUSIONS.

The calculations have shown that an optimal sampling
rate often exists for the kind of problem studied
here or at least that an economical sampling rate
exists. The value of the results is reduced by the
fact that the system has to be known in advance in
order to be able to determine the optimal sampling
interval. Furthermore, the optimality criterion is
critical and has to be chosen apbropriately and in
accordance with the purpose of the identification.
It has also been shown that the disturbances influ-
ence on the optimal sampling rate, not only the cha-

racter of the disturbances but even the noise level,

It is hoped that the results give a feeling for the
problem and a relatively good estimate of the samp-
ling rate can be obtained from simple tests of the
system, like step responses. Another tool can be the
Bode diagram for the system. Rules of thumb like
sampling rate equal to the shortest time constant

may also be given. Notice, however, that all factors
involved in the problem of choosing the sampling rate
have not been discussed. For instance the effects of
different input signals and of disturbances of other
types than can be described by the least squares
structure or as output white noise have not been con-
sidered, A change from limited input signal to limi=-
ted output signal will also cause significant devia-

tions from the results given.
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APPENDIX A

The system is given by

-1
b:q

n

)

1=1 1 + a;q

-

y{t)

o u(t) + xe(t)

(A1)

With the same assumptions as for the first order case

(2.1) we get

n biq-1
e(t) = y(t) - § — u(t) (A.2)
iz1 1 + a.q
i
and
e(t) biq“2
= i u(t)
day (1 + a;q )
4 (A.3)
-1
ae(t) q
= - = u(t)
‘ 3b; 1+ a.q
White noise as input gives
b 2_2 b 22 dz b.b.{(1+a.a.)
E[QE_ o€ ] - ] i 3 R 2593
- T 1.2 2 B 3
aai Baj 2w (1+aiz ) (1+ajz) z (1 aiaj)
-1 2
4 E{ae Je ] 1 Z biz dz ) ajbi
- . =7 7 T T 7
sa . . . . -a.d.
a; abj 2wi 1+a]z (1+alz) z 1 alaj)
-1
plde  3e 21 2 i ii - ! (A1)
- . -1 - U
3bi Bbj 21 1+aiz 1+ajz z 1 aiaj



The corresponding continuous system is

izl 5 + 4.
R 1

where

o B

3a.
43

a8
3b

1]

r

1
""ﬁ' Zn(_ai)
h(1+ai)
( 4 .
[ SR, 1 = ‘J
hai
JL
\ 0 i3 3
i bij1 + a, = ailn(-ai)
2
h [ ai(1+ai)

_ 1 In(-aj)

h

1 + a.
X

143

(A.5)

(A.8)

(A7)



From this it is easy to see that if the covariance
matrix is known, the variances of @, and B. only de-
pend on a,

i
easy to compute. This is one benefit of using the

and bi and no other a:s or b:s, and are

structure (A.1) and splitting the system into its
modes. However, due to the inversion of the informa-
tion matrix, there will still be a connection between

the modes,.

We also have

5. b.
Gi = — = 1
Ot:i. 14 aj
d (A.8)
T. = J_ = - h
1 o. In(~a.)
L i 1
and
n b.
G = .Z —— (A.9)
i=1 1 + as
From these formulas we get
r b_
i . .
= o —————— 1=7]
BGi . (1 + ai)2
da.
] 0 ity
2 ) (A.10)
.._._.l_._. i=3
2G. 1 + a.
i_ i
ab. Pl
3 0 i3
\ \




h
?
9a.
a] 0
BTi
—— g
ab.
3
G ) bi
3a (1 + a.)?
i i
3G !
1 + a.

.

(A.11)

(A12)
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APPENDIX B

Let

6(s) = — cs + d2 . (B.1)
s 4+ 2as + a4+ b

be the transfer function for a continuous system of
second order. The system is sampled with a sampling
interval of h and it is assumed that the input signal
is constant during each sampling interval. The pulse
transfer function, H(q_1), for éystem (B.1) will be de-

termined, One way is to use the formula

-1 sh
H(g™ 1y = § 2 Le =1 1 aeey (B.2)
1

_ q"1e5h o

where the sum should be taken over the residues of
G(s)., After tedious but trivial calculations we get

-1 b1qn1 + bzq_z
H(q ') = i =5 (B.3)
1 + a,4q t asq
with
a; = - 2”05 (bh)
_ _—2ah
a, = e
by = b (a®+b?)  (bd + [c(a®+b?)-adle sin(bh) -

- bde“ahcos(bh)}

b, = b (aZ4b%) " T bde 28N - [c(asb?y~adie Hsin(bh) -

- bde—ahcos(bh)} (B.4)




Zhe-ahcos(bh)

ohe *'gin(bh)

_ Ehe_zah

~T(a24p2y1

b (-~ hlc(a+b?)-adle @ gin(bn) +

+ hbde ®Pcos(bh) + (2ac-dde ®sin(bh)} -

-1 - -
- 2ab (a2+b2) 2{bd + {c(a2+b2)—ad}e ahsin(bh) -

ah

- bde ““cos(bh)}



b~ 1¢a%+p2) M (a + hle(a?+p?)-adle Meos(bh) -

b

b

o

}

b_1(a2+b2)"1{de

d

=a
e

h
co

s(bh) + hbde”

ah

sin{bh

ah

) + 2bce *lsin(bh)} -

(a2+3b2)bm2(az+b2)—2{bd + [c(a2+b2)-ad]e_ahsin(bh) -

b

-1

-1

de

-ah

e

(a2

-ah

C

+b2

os(bh)}

sin(bh)

)“1[b _ ae—ah

sin(bh) - be

sin(bh) + hbde 2

ah

“1aZ+p?)" 1 {-2nbae~ 22N
(2ac-d)e a0
2ab™ " (a%+b2) 2 (bde™?
bde *cos(bh))

2bece

(a?+3b2)p 2 (a24b2) 2 (pde”

e

-ah

ah

~2ah

sin{(bh) - de

ah

+ hic(

- [ef

- hic(a?+b?)-adle”

cos(bh

2ah

sin(bh) - bde ®cos(bh)}

-ah

sin{bh)

ahcos(bh)l

a2+b2)-ad]e_ahsin(bh) -

hcos(bh)} -

a2+b2)—ad]e*ahsin(bh) -

ahcos(bh) -

ah

) + hbde ““‘sin(bH)} -

- {c(a2+b2)-ad} .



b1 aZsp?y?

-ah

- be cos(bh)]

[be

=2ah

+

L"D

ae

~ah

sin(bh) -



APPENDIX C

Let
y(t) + ay(t=-1) = bul(t-1) + re(t)
We get

e(t) = (1 - ag” Dy(t) = bg ™ lult)

l.€.
 ae(t) -1 bq 2 rqg !
= - q y(t)="J——_1~U.('t)-——Ej-E(t)
da 1+aq 1+aq
¥
eCt) - . g7 laed
{ b

If u(t) white noise and independent of e(t) we get

bzoag + Az 0 -1
Cov(a,b) 2z — =
N
i
0 cu
(1-a2)02 0 1
k81
No’(b2e242?)
4o 2 2 .2
0 Db 0" +X
u

where ci is the variance of u{(t).
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