
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Feedback Linux Scheduling and a Simulation Tool for Wireless Control

Ohlin, Martin

2006

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Ohlin, M. (2006). Feedback Linux Scheduling and a Simulation Tool for Wireless Control. [Licentiate Thesis,
Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology, Lund
University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/cf394763-41e1-49c1-8f83-a6d91479933f

Feedback Linux Scheduling
and a Simulation Tool for

Wireless Control

Martin Ohlin

Department of Automatic Control

Lund University

Lund, June 2006

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--3240--SE

c© 2006 by Martin Ohlin. All rights reserved.
Printed in Sweden,
Lund University, Lund 2006

Abstract

Computing systems are becoming more and more complex and power-
ful. It is nowadays not uncommon to run several server applications on
the same physical platform. This gives rise to a need for resource reser-
vation techniques, so that administrators may prioritize some tasks, or
customers, over others. This thesis gives an introduction to the Linux
kernel 2.6 task scheduler, and scheduling related operating system
concepts such as priority, nice value, interactivity and task states. The
thesis also presents an implementation of a scheduling mechanism,
that in a non-intrusive way introduces per task CPU bandwidth reser-
vations in the Linux operating system.
The MATLAB/Simulink-based simulator TrueTime is given a short

introduction, and the wireless capabilities of the tool are described in
more detail. TrueTime is a tool for co-simulation of real-time tasks, net-
work communication, and continuous-time plant dynamics. The model-
ing of the common medium access control (MAC) layers of IEEE 802.11
and IEEE 802.15.4 is described, along with the radio model used. True-
Time’s capabilities to simulate local clocks with drift, Dynamic Voltage
Scaling, and battery powered devices are also presented.

3

4

Acknowledgments

There is a large number of people who have helped me putting this
thesis together. Some did it knowingly, others by just being there. Peo-
ple who know me probably also know that out of them all, I value my
wife Mari-Kristin and my son Rasmus the most. May they always have
the highest priority in my world.
I would like to thank all the people at the department for the

friendly and helpful atmosphere you provide. I would especially like
to thank my supervisor Karl-Erik Årzén for his many ideas and also
his support for mine throughout this work; Anton Cervin for being my
co-supervisor, our discussions about real-time and TrueTime, and of
course for his creation of the first EU script. Oskar Nilsson has been
the perfect room mate since the day I started at the department and
deserves a special thanks. Our discussions have ranged from the highly
relevant to the totally irrelevant, but have always been fun. Without
him, I would probably not be the proud owner of an mp3 player con-
verted to a heart-rate monitor. Peter Alriksson, the guy next door,
deserves a thank you for all the times he has interrupted our room’s
work-loaded atmosphere with a pleasant discussion about his newest
idea or a raving about something else. Anders Blomdell and Leif Ander-
sson are great persons to look up to in many ways and deserve a lot of
credit for keeping our computer environment in such a mint condition.
They seem to have an endless knowledge of computer-related stuff, but
also succeed in many other areas. Together with Rolf Braun, they are
a breath of fresh air in an otherwise rather theoretic department. To
all of the people not mentioned – You are not forgotten.
Finally, I would like to thank my family again for all their encour-

agement and support in everything I do.

Martin

5

6

Contents

1. Introduction . 9
1.1 Motivation . 9
1.2 Outline and Related Publications 10

2. Controlling Linux in a Nice Way 12
2.1 Introduction . 12
2.2 Objective of Control 14
2.3 Linux Scheduling Overview 15
2.4 Policy, Priority and Nice Value 15
2.5 Interactive or not? . 17
2.6 Scheduling of Tasks 21
2.7 Model of the System 24
2.8 Control Structure . 28
2.9 Controller Implementation 29
2.10 Usage . 30
2.11 Experiments . 32
2.12 Taking the State Into Account 36
2.13 Related Work . 40
2.14 Conclusions . 41

3. A Simulation Tool for Wireless Control 42
3.1 Introduction . 42
3.2 Wireless Networks . 43
3.3 The TrueTime Simulator 45
3.4 The TrueTime Wireless Network 48
3.5 Implementation Details 55

7

Contents

3.6 Other New Simulation Features 59
3.7 Simulation Case Studies 62
3.8 Related Work . 68
3.9 Conclusions . 69

4. Future Work . 71
4.1 The Nice Controller 71
4.2 The TrueTime Simulator 72

5. Bibliography . 73

8

1

Introduction

1.1 Motivation

This thesis consists of two separate parts. They will each be given a
short introduction here and a more detailed one in the corresponding
chapter. The first part, found in Chapter 2, presents a method to con-
trol resource usage in a Linux/UNIX system. Resource in this specific
case is CPU bandwidth, but can also be I/O, memory etc. In many
cases it is not necessary to control resource usage. If there, for ex-
ample, is plenty of resources available, then the control introduces an
unnecessary overhead. But if the resources are scarce, or if there is
a lot of competition for them, then it might be advantageous and in
some cases even needed to control the access to them. A key example
of where resources are very sparse is in small wireless devices. In our
daily life we get in contact with a large number of these wireless de-
vices – in many cases more than we would really like to. During the
last years, the number of devices has nearly exploded and they are
now truly ubiquitous. A lot of these devices function more or less on
their own and do not need or want any interaction from other devices in
the area. Others however interact heavily with their environment. One
example of the latter is sensor/actuator networks. When developing a
large network of cooperating nodes in that way, it is very useful to have
a simulation tool that captures the relevant aspects of the setup. One
such tool is TrueTime, which is introduced in more detail in Chapter 3.

9

Chapter 1. Introduction

1.2 Outline and Related Publications

This section contains the outline of the rest of the thesis, together with
references to related publications.

Chapter 2: Controlling Linux in a Nice Way

This chapter gives an overview of task scheduling in the Linux 2.6
kernel. It explains scheduling-related operating system concepts such
as priority, nice value, interactivity and task states. An implementa-
tion of a CPU bandwidth controller is described in detail along with a
number of experiments. The chapter ends with a summary of related
work.

Publications

Andersson, Martin (2006) “Controlling Linux in a Nice Way.” In
Reglermöte 2006. Stockholm, Sweden.

Contributions This represents work performed by the author alone.

Chapter 3: Simulation Tools For Wireless Control

This chapter introduces the wireless capabilities of the TrueTime sim-
ulation tool. The wireless radio model is described, together with an
overview of the WLAN 802.11 and ZigBee 802.15.4 medium access con-
trol (MAC) layers. Simulation of local clocks with drift and battery
powered devices are also described. The chapter ends with a number
of examples and a summary of related work.

Publications

Andersson, Martin, D. Henriksson, A. Cervin, and K.-E. Årzén (2005):
“Simulation of Wireless Networked Control Systems.” In Proceed-
ings of the 44th IEEE Conference on Decision and Control and
European Control Conference ECC 2005. Seville, Spain.

Henriksson, Dan, A. Cervin, M. Andersson, and K.-E. Årzén (2006):
“TrueTime: Simulation of Networked Computer Control Systems.”
In Proceedings of the 2nd IFAC Conference on Analysis and Design
of Hybrid Systems. Alghero, Italy.

10

Andersson, Martin, D. Henriksson, and A. Cervin (2005): “TrueTime
1.3—Reference Manual.” Department of Automatic Control, Lund
Institute of Technology, Sweden.

Contributions This represents work performed in close collabora-
tion with Dan Henriksson and Anton Cervin. Henriksson and Cervin
developed the TrueTime kernel and network block, while the author
developed the wireless network block. The author has also developed
the battery block, local clocks and the dynamic voltage scaling.

Chapter 4: Future Work

The thesis ends with some suggestions for future work.

Funding

The work has been partly sponsored by the EU/IST FP6 integrated
project RUNES.

11

2

Controlling Linux in a Nice

Way

2.1 Introduction

Linux started as a hobby project in 1991. It was initially created by a
young student at the University of Helsinki by the name Linus Tor-
valds. In 1994 he released version 1.0 of the Linux kernel. This kernel
and its successors has since formed the base around which the various
Linux operating systems are created. The code for the Linux kernel
and most of the available applications is freely available to everyone.
This freedom has made it possible for a large number of people and
companies to contribute to and improve the code. Linux has even for
many people become a synonym for free software. As the source code is
free, a number of organizations have released their own versions of the
operating system. Some of these organizations are Debian, Fedora and
SuSE. Linux has for many years been a large competitor in server sys-
tems, such as web, ftp, mail and file servers. During the last years, the
interest in Linux from commercial companies has increased dramati-
cally. Nowadays, large enterprises such as IBM and Hewlett-Packard
take active part in the Linux development, and also ship Linux as part
of their large server and cluster systems. Linux is, however, not limited
to server systems. The popular operating system can be found in many
embedded devices such as set-top boxes, wireless access points and mo-

12

2.1 Introduction

bile phones from, e.g., Motorola and Samsung. Linux is also gaining
market in the desktop area, although maybe a little slower. The cities
of Berlin and Munich, both in Germany, and Vienna in Austria have
already decided to migrate their desktop PCs from Windows to Linux.
When two or more tasks run on the same computer, they share

resources such as CPU bandwidth, and memory and network capacity.
The exact decision of how the resources are split between the tasks
is often left to the operating system. In most cases, this deference
of command is a good thing because it is not normally known exactly
how important the mail client is compared to the web browser. In some
cases, however, it would be advantageous if there existed a mechanism
to specify exactly how important different tasks (or groups of tasks) are
compared to each other. Take for example the simple case where you
run a large MATLAB simulation on your computer. If you are alone
on the machine, you will get close to 100% of the CPU bandwidth.
But you will only get about 50% of the CPU bandwidth, if another
user logs on to the same machine and starts up his own MATLAB
simulation. The same thing may happen when you decode a movie,
but in this case the performance loss will probably be more noticeable
because the human brain is very sensitive to jerky playback of sound
and video. You probably do not think that this behaviour is fair; after
all it is your computer and you should have more resources than the
other person. So how can you change this type of behaviour?
The presented type of problem does not only show up in simple

cases such as this one, but also on more complex computer systems
such as web servers, where some of the clients may be more important
than others. In the same way, it shows up in virtual hosting where
several servers are run on the same machine. The rest of this chapter
will present a mechanism aimed at solving this type of problem.

13

Chapter 2. Controlling Linux in a Nice Way

2.2 Objective of Control

The objective of control has been to achieve some sort of CPU band-
width reservation. This concept makes it possible to reserve a fraction
of the CPU to a specific task or a group of tasks. Linux does not dis-
tinguish between processes and threads. Instead they are both called
tasks. Even POSIX types of threads created using the Native POSIX
Thread Library (NPTL) are called tasks, and from the kernel perspec-
tive they are all the same schedulable entity. Therefore the method
which will be presented can be used both for threads and processes.
The developed method has been implemented as an add-on to the

Linux 2.6 kernel. A key factor in the implementation has been to
make it non-intrusive and preserve the way that the original scheduler
works. This gives the benefit that the new features can be used with-
out breaking things that worked before. It is also important to note
that large changes to such a critical part as the scheduler is unlikely
to gain acceptance from the Linux community. The proposed method
makes it possible to create a number of virtual CPUs and give them
each, e.g., 20% of the physical CPU bandwidth during a certain period
of time. The presented method uses the nice value as control signal
and the execution time as measurement signal to make the scheduler
give the controlled tasks their specified amount of CPU bandwidth.
It may be argued that the presented problem can be solved offline

by specifying a static nice value for each task. This is of course ab-
solutely true, if you happen to have a static system where everything
is known beforehand. That is, you know exactly how many tasks that
are present in your system, their exact execution-time demands, and
do not allow tasks to enter or leave the system. These premises are
not likely to show up in an ordinary Linux desktop or server system
and therefore it is necessary to introduce a feedback loop to cope with
the unknown. In an ordinary computer system there is a lot of dy-
namics. This is due to the fact that tasks can arrive and leave the
system at any time. They can also change their state and in that way
consume more or less execution time. In Symmetric Multi-Processing
(SMP) or Symmetric Multi-Threading (SMT) systems such as Intel’s
Hyper-Threading systems, tasks will also jump between processors in a
(from the user’s perspective) more or less random pattern. This causes
the execution environment to change rapidly and therefore an ability
to adapt to different situations is necessary.
14

2.3 Linux Scheduling Overview

2.3 Linux Scheduling Overview

The rest of this chapter covers uniprocessor scheduling in the Linux
2.6(.12) kernel. In the cases where the scheduler depends on parame-
ters whose values differ between the supported architectures, the val-
ues defined for i386 have been used. The Linux 2.6 scheduler can
be seen as divided into two parts. The first lightweight part is ex-
ecuted at every timer interrupt and can be found in the function
scheduler_tick(void) in the file <kernel/sched.c>. This function
checks if the currently running task has exceeded its given time slice.
If it has, preparations are made to make sure that the main part of the
scheduler is called when returning from the timer interrupt. The main
part of the scheduler is the function schedule(void)which can also be
found in <kernel/sched.c>. This function is responsible for deciding
which task will run next and also performs the context switch. The
mentioned timer interrupt occurs with a frequency of HZ1, which is set
to 1000 in the 2.6.12 kernel. The time between two consecutive timer
interrupts is called a jiffy and is the smallest amount of time that the
Linux kernel keeps track of and consequently corresponds to 1 ms.

2.4 Policy, Priority and Nice Value

There are three different scheduling policies available in Linux, one
for normal tasks and two for soft real-time tasks. All of the policies
are preemptive, i.e., if a process with higher priority gets ready to run
it will preempt the currently running process. The policies are:

• SCHED_FIFO: First In-First Out scheduling

This is a policy for soft real-time tasks. Tasks in this group always
have higher priority than tasks in the normal SCHED_OTHER group
and will therefore preempt all other running tasks in the system.
A task belonging to this group will stay at the head of its priority
list until it either yields or is blocked by an I/O request, after
which it will be put at the end of the list.

1Kernels ranging from 2.6.13 and upwards have the HZ value as a config option, which
defaults to 250. See http://lkml.org/lkml/2005/7/8/259 for details and discussions.

15

Chapter 2. Controlling Linux in a Nice Way

• SCHED_RR: Round Robin scheduling

This is also a policy for soft real-time tasks, and very similar to
the SCHED_FIFO policy. Tasks are, however, only allowed to run
for a specific quantum of time before they are moved to the end
of their respective priority lists. A task that has been preempted
by a higher priority task is upon resumption allowed to run for
its remaining part of the quantum. Apart from the mentioned
differences, the two policies are the same.

• SCHED_OTHER: Default Linux time-sharing scheduling

This is the normal time-sharing scheduling policy that is used
for all tasks that do not have very special timing demands.

Valid priority values in the Linux scheduler are in the range [0, 139]
with 0 being the highest priority and 139 being the lowest. Priori-
ties in the range [0, 99] are reserved for soft real-time tasks using the
SCHED_FIFO or SCHED_RR policy. From now on, it will be assumed that
SCHED_OTHER is used if not explicitly stated otherwise.
In Linux, every task has a static priority that is often referred to

as the nice value. The nice value lies in the range [−20, 19] with 0
or 5 being the default value, depending on if the task is run in the
foreground or background. A large nice value means that the task is
very nice to other tasks, i.e., its priority is low. It also means that the
task will not compete so hard for CPU bandwidth, that is, it will cause
minimum interference to other tasks. The opposite is true for low nice

values. The nice value of a task can be set and changed using the nice2

and renice user programs, respectively. The nice values [−20, 19] are
mapped directly to the priorities [100, 139] as seen in Figure 2.1.
To make things a little more complicated, but also better, the sched-

uler does not use the static priority derived from the nice value di-
rectly. Instead it uses something called dynamic priority, which in
essence gives bonuses to interactive tasks and penalties to non-inter-
active tasks. The maximum bonus is −5 and the maximum penalty is 5.
This gives an effective priority which is in the interval static_prio±5,
so changes to the static priority (or nice value) are always respected.

2See man nice for more details

16

2.5 Interactive or not?

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

nice

priority
0

13919

−20

100

Soft real time tasks

Normal tasks

Figure 2.1 The picture shows how the nice value for normal tasks are mapped
to priorities.

2.5 Interactive or not?

The Linux scheduler considers tasks to be either interactive or compute-
bound. Interactive tasks get their priority slightly increased, depend-
ing on how interactive they are considered to be, while compute-bound
tasks get it decreased in the same manner. This is a good thing, be-
cause you do not normally mind if your prime value calculations take
some extra seconds to complete. But most people get very annoyed if
it takes a noticeable time for the word processor to show the typed
letters on the screen. The scheduler does not know beforehand which
tasks are interactive, so it uses a heuristic method to decide which are.
In essence, it measures the difference between how long time a task
spends sleeping/waiting and how long time it spends running. The
difference is saved in a variable called sleep_avg in the task_struct.
Both the sleep-time and the run-time are truncated to the interval
[0,NS_MAX_SLEEP_AVG] so that one long run-time or sleep-time does
not affect the bonus system too much. The sleep_avg variable is also
truncated to the same interval if needed. Truncation to an interval
means that the truncated value is rounded up if it is lower than the
interval, and rounded down if it is higher. After the truncation, the

17

Chapter 2. Controlling Linux in a Nice Way

sleep_avg variable is scaled to [−5, 5] in the CURRENT_BONUS(p)macro,
and this is what makes up the dynamic priority. As interactive tasks
tend to wait for I/O most of the time, while non-interactive tasks do
not, this is a fairly good measure. There are some special cases in-
volved when updating the sleep_avg variable. First, there is a sort
of low-pass behaviour that makes it easier for tasks to get interactive
status than to lose it. Secondly, there are special cases for tasks that
sleep very long or wait on I/O. There are also special cases that pro-
hibit tasks that are very interactive to fork children which are also very
interactive, and so on. This all means that tasks can be more or less in-
teractive, but there are also cases when the scheduler wants a yes or no
answer to this question. This is done using the TASK_INTERACTIVE(p)

macro which looks at the tasks nice value and the current bonus. The
mechanism used in this macro to decide if a task it interactive or not
makes it hard for tasks with a large nice value (background tasks) to
get interactive and vice versa. The TASK_INTERACTIVE(p) macro with
its needed sub-macros can be viewed in Listing 2.1 and an attempt to
visualize the result can be seen in Figure 2.3.
To be frank, the complete mechanism behind the interactivity esti-

mation is very complex, but a starting point to understand the details
would be to take a closer look at the function
effective_prio(task_t *p), the macros TASK_INTERACTIVE(p) and
CURRENT_BONUS(p), and also all updates of the variable p->sleep_avg,
all found in <kernel/sched.c>.
A bug was found in the TASK_INTERACTIVEmacro during the inves-

tigation of the scheduler code. The bug made the interactivity scale
nonlinearly and was triggered when the nice value was negative, see
Figure 2.2 and 2.3 for a comparison.The bug did not have any serious
impact on the system, but was nonetheless regarded as a genuine bug.
It is left as an exercise to the reader to find the bug in Listing 2.1.
A report was sent to the Linux kernel mailing list [Andersson, 2006]
presenting the problem along with a small patch which was promptly
accepted and merged into the 2.6.17 version of the Linux kernel.

18

2.5 Interactive or not?

Listing 2.1 Code for deciding if a task is interactive or not, taken from <in-
clude/linux/sched.h> and <kernel/sched.c>.

#define MAX_USER_RT_PRIO 100

#define MAX_RT_PRIO MAX_USER_RT_PRIO

#define MAX_PRIO (MAX_RT_PRIO + 40)

#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)

#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)

#define USER_PRIO(p) ((p)-MAX_RT_PRIO)

#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))

#define PRIO_BONUS_RATIO 25

#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)

#define INTERACTIVE_DELTA 2

#define SCALE(v1,v1_max,v2_max) \

(v1) * (v2_max) / (v1_max)

#define DELTA(p) \

(SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)

#define TASK_INTERACTIVE(p) \

((p)->prio <= (p)->static_prio - DELTA(p))

19

Chapter 2. Controlling Linux in a Nice Way

bonus

n
ic

e

−5 −4 −3 −2 −1 0 1 2 3 4 5

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

14

16

18

Figure 2.2 Picture showing how the nice value and current bonus give the
interactive status of a task. Gray means that the task is interactive, white means
that it is not. This is the version without the bug fix mentioned in Section 2.5.

bonus

n
ic

e

−5 −4 −3 −2 −1 0 1 2 3 4 5

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

14

16

18

Figure 2.3 Picture showing how the nice value and current bonus give the
interactive status of a task. Gray means that the task is interactive, white means
that it is not. This is the version with the bug fix mentioned in Section 2.5.

20

2.6 Scheduling of Tasks

2.6 Scheduling of Tasks

The scheduler has two priority queues, one for active tasks, and one for
expired tasks. The queues are arrays of linked lists, one list for every
priority. The scheduler always chooses the list with the highest priority
in the active queue. The scheduler treats tasks differently depending
on if they belong to the SCHED_OTHER policy or not. If we therefore
assume that all tasks belong to the normal SCHED_OTHER policy, then
the following is true. Every task in the active queue of the system gets
to run a certain time before it is put in the expired queue. This time is
called a time_slice and the actual size of it depends solely on the nice
value given to the task and not on the effective priority. Nice values
in the interval [−20 . . . 0 . . . 19] are mapped to time slice sizes in the
interval [800ms . . . 100ms . . . 5ms] using the code in Listing 2.2. The
size of the resulting time slices can be seen in Figure 2.4. Note that
the resulting time slices do not scale linearly with the nice value.
A non-interactive task is moved to the expired queue when it has

used up its given time slice, an interactive task on the other hand
is reinserted into the active queue if there is no risk of starvation in
the expired queue. When there are no more tasks left in the active
queue, it is switched with the expired one. Whether there is starvation
or not is decided in the EXPIRED_STARVING macro. The expired queue
is considered to be starving if the first expired task has had to wait
for more than a fixed time multiplied with the number of tasks in the
active queue. This makes the starvation limit load depending. It is also
considered to be starvation if a task with lower nice value than the
currently running task is in the expired queue.
Tasks with the same priority are treated differently depending on

whether the scheduler considers them to be interactive or not. Non-
interactive tasks are not interrupted by tasks with the same priority
during their time slice. Interactive tasks on the other hand get their
time slice split up into smaller pieces of size TIMESLICE_GRANULARITY

and are put at the end of the active queue again and again until they
have executed for their whole time slice. The result is that interactive
tasks are scheduled more or less round-robin with tasks of the same
priority, while non-interactive tasks run non-preemptively. The size of
the parameter TIMESLICE_GRANULARITY depends on the bonus given to
the task.

21

Chapter 2. Controlling Linux in a Nice Way

Listing 2.2 Code for calculation of a task’s time slice, taken from
<kernel/sched.c> and <include/linux/sched.h>.

#define MAX_USER_RT_PRIO 100

#define MAX_RT_PRIO MAX_USER_RT_PRIO

#define MAX_PRIO (MAX_RT_PRIO + 40)

#define USER_PRIO(p) ((p)-MAX_RT_PRIO)

#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))

#define MIN_TIMESLICE max(5 * HZ / 1000, 1)

#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)

#define DEF_TIMESLICE (100 * HZ / 1000)

/*

* task_timeslice() scales user-nice values [-20 ... 0 ... 19]

* to time slice values: [800ms ... 100ms ... 5ms]

*

* The higher a thread’s priority, the bigger timeslices

* it gets during one round of execution. But even the lowest

* priority thread gets MIN_TIMESLICE worth of execution time.

*/

#define SCALE_PRIO(x, prio) \

max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)

static inline unsigned int task_timeslice(task_t *p)

{

if (p->static_prio < NICE_TO_PRIO(0))

return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);

else

return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);

}

22

2.7 Model of the System

−20−15−10−505101520
0

100

200

300

400

500

600

700

800

nice value

ti
m

e
_
s
lic

e
 (

m
s
)

Figure 2.4 The size of time_slice as a function of the nice value.

23

Chapter 2. Controlling Linux in a Nice Way

2.7 Model of the System

Here we assume that a task is always willing to run, i.e., it is compute-
bound. We can then summarize what we have learned in a few points
and build a model of the system to predict its behaviour.

• A task’s time slice depends solely on its nice value.

• Tasks are scheduled in order of priority.

• Tasks are moved from the active queue to the expired queue when
they have executed their whole time slice.

• The active queue is swapped with the expired when empty.

According to this model, the fraction of execution time that a task
gets during one round of execution can be calculated as:

f raction(i) = time_slice(i)
∑

∀ j time_slice(j)

where i and j denote task indexes.

Example If, for example, tasks 1, 2 and 3 have nice value 0 and task
4 has nice value −1, then task 4 will get:

f raction(i) = time_slice(i)
∑

∀ j time_slice(j)
= 420
100+ 100+ 100+ 420 (58%

Evaluation of the Model

To show that the presented model is accurate, a number of experiments
have been performed. Theoretical values from the proposed model are
compared to values received through measurements in a real-world
system3. The experimental setup consists of four tasks running in an
endless while-loop as seen in Listing 2.3. Three of the tasks have nice
value five, while the nice value of the fourth task is varied in order to
give it more or less CPU bandwidth compared to the other tasks. The
expected result and the measured result can be seen in Table 2.1 in

3The authors normal desktop system with no special tweaks.

24

2.7 Model of the System

column two and three, respectively. A plot of the same values can be
seen in Figure 2.5. Using lower nice values than −6 resulted in the
system becoming to sluggish to do any good measurements, therefore
these are left out. This sluggishness is probably due to the fact that
tasks with that low nice values are given so high priorities that they
conflict with the tasks interacting with the user. As can be seen, the
results from the experiments follow the model very well.

Listing 2.3 Endless while loop used in the evaluation.

int main()

{

int i = 1;

int test;

double test2;

while(i){

test2++;

test++;

}

}

25

Chapter 2. Controlling Linux in a Nice Way

Table 2.1 Comparison of the execution time model for Linux and measure-
ments on a real world system.

nice value Expected CPU% Measured CPU%

-6 69.8 68.6

-5 68.97 68.0

-4 68.09 66.7

-3 67.15 66.1

-2 66.17 64.9

-1 65.12 63.7

0 30.77 30.0

1 29.69 29.0

2 28.57 28.0

3 27.42 27.0

4 26.23 25.7

5 25 24.5

6 23.73 23.3

7 22.41 22.0

8 21.05 20.8

9 19.64 19.4

10 18.18 17.9

11 16.67 16.4

12 15.09 14.6

13 13.46 13.3

14 11.76 11.5

15 10.00 9.85

16 8.16 8.0

17 6.25 6.2

18 4.26 4.15

19 2.17 2.125

26

2.7 Model of the System

−20−15−10−505101520
0

10

20

30

40

50

60

70

80

nice value

%

Figure 2.5 Comparison of the execution time model for Linux (+) and mea-
surements on a real-world system (○).

27

Chapter 2. Controlling Linux in a Nice Way

2.8 Control Structure

Linux keeps track of all data belonging to a task in a structure called
task_struct, defined in <include/linux/sched.h>. This structure con-
tains, for example, the process identification number (pid), parent,
children, siblings etc. The structure includes a lot of data relevant
for control purposes such as a task’s execution time, and the state of
the task. The fields that we will use are stime and utime, which corre-
spond to the execution time in kernel space and user space for the task,
respectively. A task is said to execute in kernel space when it performs
system calls, i.e., asks the operating system to perform some action
on behalf of the task, such as opening or closing files or creating new
tasks. All execution of code that is not done by the operating system
is said to be done in user space. The granularity of the execution time
measurement is one jiffy, which corresponds to 1 ms on the Intel ar-
chitecture4. Both of the time counters are increased monotonically and
are 32 bits long, which makes them wrap around after approximately
50 days if we assume that the task gets 100% of the CPU time.
The controller must run periodically, and should not be delayed for

too long. This rules out the possibility to implement the controller in a
user space task, as that would make its performance depend on other
tasks in the system. The controller could, for instance, put itself into
starvation if it increased the priority of another task too much. With
this in mind, a Linux kernel module has been implemented that intro-
duces the possibility to register tasks and give them a CPU bandwidth
reference. Being in kernel space, the module is not vulnerable to the
problem mentioned earlier, but on the other hand it makes the im-
plementation much harder. The kernel module monitors the execution
time given to registered tasks by periodically sample the mentioned
utime and stime variables. The module also modifies the nice value
of the task so that the bandwidth reference is met on average. This is
done by creating a kernel timer, and register a function with it that is
run every 20 ms. Every time the function is run, it goes through a list
of registered tasks and saves the current execution time in a circular
buffer. In this way it can output the execution time given to a task
during, e.g., the last 20 ms. The kernel timer also executes a controller

4kernel 2.6.12

28

2.9 Controller Implementation

r e nice y

Controller Scheduler

−1

samplerΣ

Figure 2.6 The setup used to control the task’s execution time.

function that changes the nice value of the controlled task in order to
try to get the fraction of time given to the task to correspond to the
reference value. The structure of the setup with controller, scheduler
and sampler can be seen in Figure 2.6.
The control signal, in this case the nice value, can only be changed

in discrete steps. This makes it impossible to keep some references
statically, but by changing very fast between two control signals, i.e.,
using Pulse Width Modulation (PWM), the reference can be kept on
average. Another thing that one should be aware of is the nonlinearity
in how the nice value is mapped to the time_slice as seen in Fig-
ure 2.4. This makes it much harder to follow references which forces
the control signal to oscillate over the interval between 0 and −1.

2.9 Controller Implementation

In this first implementation of the presented concept, the focus has
been to get something that works in reality as a proof of concept. This
has led to a design where a PI-controller with anti-windup has been
implemented using fixed point arithmetics. In the future, more elabo-
rate schemes could of course be used that take into account more de-
tails of how the scheduler works, as well as global knowledge of what
other tasks are doing. By using a PI-controller in this way, the PWM
behaviour described in Section 2.8, is achieved automatically. Some of
the important parts of the controller implementation can be seen in
Listing 2.4. The implemented PI-controller has K = 0.01 and Ti = 52.
The integral part is implemented as a backward Euler approximation.
The anti-windup works by limiting the integral state, if that state is

29

Chapter 2. Controlling Linux in a Nice Way

outside the control signal limits.
The K and Ti values have been chosen rather conservatively. This

is due to the fact that even small changes to the nice value can lead to
large changes in the achieved CPU-bandwidth. The effect of changes to
the nice value also varies with the number of tasks in the system and
their respective nice values in turn. The fact that there are unknown
parameters in the system makes it good to have a conservatively tuned
controller. Another thing that makes a conservatively tuned controller
preferable, is the fact that measurements are taken over an interval.
The system must therefore be given some time to react to the control
signal before changing it again. Using a large value on Ti, also has the
bonus effect that measurements are averaged; This removes the need
to low-pass filter them.
When looking at the code in Listing 2.4, it is valuable to know

that the external set_user_nice() function isO (1) in complexity. This
makes the overhead of changing the control signal very small. The low
complexity of the function call is due to the fact that the scheduler uses
a separate list for every priority. When a task’s priority is changed, it
is first removed from its current queue and then inserted at the end
of the new one, i.e., no sorting is necessary.
In the implementation of the controller it has been assumed that

right shift (>>), is done by shifting in the signed bit, i.e., arithmetic
shift. This seems to be true on most architectures.

2.10 Usage

It is possible to communicate with the control structure described in
Section 2.8 using the /proc interface. The /proc file system is a file
system that does not exist on disk, it lives entirely in software. Every
file is tied to a function in the kernel, which generates data on the
fly when read. Files can both be written to and read from and gives
therefore an easy way to communicate between user-space and kernel-
space. The /proc file system is considered to be a standard way of
getting data from kernel-space and is used heavily by many tools in
Linux systems, e.g., top and ps. When the controller module is loaded,
it creates a file named /proc/fix/command which can be used to send
commands to and read some data from the module. To register a new

30

2.10 Usage

Listing 2.4 Implementation of the controller.

#define FIXPOINT 20

#define FLOAT2FIXED(a) ((int)(a * (1 << FIXPOINT)))

#define K_float 0.01

#define K FLOAT2FIXED(K_float)

#define Ti 52

#define I_faktor ((int)((K_float / Ti) * (1 << FIXPOINT)))

#define umax (19 << FIXPOINT)

#define umin (-20 << FIXPOINT)

static void controller_fn(int pid, int error, int* I)

{

struct task_struct *p;

int u;

u = K * error;

u += *I;

/* Backward Euler approximation of the integral part */

*I = *I + PERIOD * I_faktor * error;

/* Anti-windup */

if (*I < (-20 << FIXPOINT))

*I = (-20 << FIXPOINT);

if (*I > (19 << FIXPOINT))

*I = (19 << FIXPOINT);

/* Limit the control signal to valid values */

if (u < umin)

u = umin;

if (u > umax)

u = umax;

read_lock(&tasklist_lock);

p = find_task_by_pid(pid);

if (!p){

printk(KERN_ALERT "Missing pid\n");

goto out;

}

set_user_nice(p, u >> FIXPOINT);

out:

read_unlock(&tasklist_lock);

}

31

Chapter 2. Controlling Linux in a Nice Way

task to be controlled by the module, the tasks process id (pid) must be
known. Also, a reference in the interval [0...100] must be chosen. The
command is then supplied to the module by writing it to the mentioned
file on the form “ADD pid ref”. If the pid is 8979 and the reference is
5, this can be done with the following line:
echo "ADD 8979 5" > /proc/fix/command

A task can be unregistered with the command “DEL pid”. The reference
can also be changed for an already registered task by adding it again
with a new reference (without removing it first). A file /proc/fix/pid

is created when a new task is registered. This file can be read peri-
odically to receive data about the execution behaviour of the task. The
data consists of the registered reference, the period of the sampling,
and the execution time received during the last period of the sampling.

2.11 Experiments

All experiments have been performed on the author’s single CPU desk-
top computer. No special steps were taken before the measurements
were made. At the same time as the experiments were made, there
were a number of tasks in the system, e.g., X, Firefox, Thunderbird,
XEmacs and so on. All bandwidth measurements have been filtered
through a moving average window of 4 s. This filtering is done be-
cause of the fact that when a task executes, it gets 100% of the CPU-
bandwidth and then it gets 0% when it does not execute. Filtering
through a moving average window shows the CPU-bandwidth during
that window and this is what one wants to achieve in the control.
Running the experiments on a computer with more than one CPU

will gain results similar to the ones seen in this section. Except for the
fact that there will of course be considerably more load disturbances,
as those seen in Experiment 2.

EXPERIMENT 1
The setup consists of four tasks running in endless while-loops as seen
in Listing 2.3. Three of the tasks have their nice value set to five while
the fourth task’s nice value is used as a control signal to keep its
bandwidth at the reference. Somewhere around time 42, the desired
reference is changed from 25% to 50%. A plot of the step response can

32

2.11 Experiments

be seen in Figure 2.7. As can be seen in the plot, the system follows
the reference well, but there is considerably more oscillation when the
reference is set to 50% than to 25%. This is due to the fact that the
reference at 50% makes the control signal iterate back and forth over
the non-linear gap in time slice sizes between nice values at 0 and
−1, as can be seen in Figure 2.4. This shows that it is much harder
to follow certain references. These hard-to-follow references depend on
how many other tasks there are in the system and their respective
nice values, so no general rules can be given.

EXPERIMENT 2
The setup in this experiment is similar to the one in Experiment 1.
However, instead of doing a step in the reference, one of the back-
ground tasks is removed at approximately time 100. As can be seen
in Figure 2.8, this makes the CPU-bandwidth of the remaining tasks
grow and therefore deviate from the desired reference which is set to
25%. The case is handled well by the controller and the disturbance is
soon rejected.

EXPERIMENT 3
The setup in this experiment is different from Experiment 1 in that two
of the tasks are being controlled at the same time. The references for
both of the tasks are kept at 25% initially. At time 182, the reference
for the first task is changed from 25% to 50%. At around time 320,
the reference is changed back to 25%. The result of the step response
for the first task can be seen in Figure 2.9. The coupling between the
two tasks is visible in Figure 2.10, which shows the disturbance on the
second task resulting from the step on the first one. This experiment
shows the PWM nature of the control signal and the results of the
quantization in the nice value. In Figure 2.9, it can be seen that the
control signal is constant both before and after the two steps. But
when the reference is set to 50%, the control signal fluctuates a lot.
Also note that there is much less oscillation in the CPU-bandwidth
when the reference is set to 25% than to 50%. This is due to the fact
that some references cannot be kept stationary due to the fact that the
nice value is discrete, compare Table 2.1 for more examples.

33

Chapter 2. Controlling Linux in a Nice Way

20 30 40 50 60 70 80
0

10

20

30

40

50

60

70
CPU Bandwidth

%

time (s)

20 30 40 50 60 70 80
−5

0

5
Control Signal

n
ic

e
 v

a
lu

e

time (s)

Figure 2.7 Step response of the CPU bandwidth in Experiment 1.

60 80 100 120 140 160 180
0

10

20

30

40

50

60

70
CPU Bandwidth

%

time (s)

60 80 100 120 140 160 180
0

2

4

6

8

10
Control Signal

n
ic

e
 v

a
lu

e

time (s)

Figure 2.8 Load disturbance of the CPU bandwidth in Experiment 2.

34

2.11 Experiments

150 200 250 300 350 400 450
0

10

20

30

40

50

60

70
CPU Bandwidth of Task 1

%

time (s)

150 200 250 300 350 400 450
−5

0

5
Control Signal of Task 1

n
ic

e
 v

a
lu

e

time (s)

Measurement
Reference

Figure 2.9 Step response of the CPU bandwidth (task 1) when controlling
two tasks in Experiment 3.

150 200 250 300 350 400 450
0

10

20

30

40

50

60

70
CPU Bandwidth of Task 2

%

time (s)

150 200 250 300 350 400 450
−5

0

5
Control Signal of Task 2

n
ic

e
 v

a
lu

e

time (s)

Measurement
Reference

Figure 2.10 Step response of the CPU bandwidth (task 2) when controlling
two tasks in Experiment 3.

35

Chapter 2. Controlling Linux in a Nice Way

2.12 Taking the State Into Account

Up until now it has been assumed (for simplicity) that a controlled
task is always willing to run, i.e., it is compute-bound. This may be
true in some cases, but obviously not in all. Imagine for example that
the controlled task is given a reference of 50% but does not need, in fact
refuses to use, more than 40% due to the fact that it is waiting on some
I/O to occur the rest of the time. The integral part of the PI controller
will in this case then add up the difference and increase the control
signal in order to remove the error. But as the task itself is unwilling
to run and the system can not force it, the difference will remain and
the control signal will continue to rise until it hits its limit. This is
of course not a good thing, and could be solved by taking the current
state of the task into account when controlling it. The strategy could be
something like: do not increase the control signal further if the task is
not willing to run more. This is more or less an anti-windup scheme,
with the difference that the control signal should not be allowed to
saturate before it starts to work. This section explains the concept
of task states and gives a strategy for solving the above mentioned
situation.

Task State

An operating system needs to know what a task is doing in every single
moment in order to decide how to schedule it correctly. In Linux, this
information is stored in a task’s state variable. A task’s state is changed
many times during its lifetime. The names of the states are more or less
arbitrary and vary between different operating systems and literature.
Some systems have more fine-grained states, others do not. They are,
however, often referred to as:

New The process is being created.

Ready The process is ready to run.

Running The process is running.

Waiting The process is waiting for an event.

Terminated The process is terminated and is waiting to be reaped.

36

2.12 Taking the State Into Account

In Linux, the information about the state is saved in the variable
state in the struct task_struct mentioned in Section 2.8. The dif-
ferent states are defined as in Listing 2.5

Listing 2.5 Linux task states taken from <include/linux/sched.h>.

#define TASK_RUNNING 0

#define TASK_INTERRUPTIBLE 1

#define TASK_UNINTERRUPTIBLE 2

#define TASK_STOPPED 4

#define TASK_TRACED 8

#define EXIT_ZOMBIE 16

#define EXIT_DEAD 32

If the state is set to TASK_RUNNING, it means that the process is
ready to be run. But it does not necessarily mean that the process
is running at this very moment. This “Running” state is the same as
the normal “Ready” state mentioned earlier. TASK_INTERRUPTIBLE and
TASK_UNINTERRUPTIBLE are “Waiting” states. Interruptible means that
the process can be sent a signal that wakes it up before its requested
sleep time is over. TASK_STOPPED means that the process is stopped,
often because it was sent a signal. This is also a kind of wait state.
TASK_TRACED is used for debugging. TASK_ZOMBIE is set when a process
has terminated but has not yet had its status collected by the parent.
EXIT_DEAD is also used in the termination phase.

Strategy

The idea to update the control signal only if the task is willing to run,
sounds good at first. It is, however, not as simple as it first might seem.
The obvious question to answer is: how do we know if a task is will-
ing to run more than it already does? The idea used in the current
implementation is to sample the state of the task at the same time as
the execution time. The controller is then only executed if two consec-
utive samples show that the task is in the TASK_RUNNING state. This
strategy works well if the task is usually in the TASK_RUNNING state for
a longer time than the time between two consecutive samples of the
controller. How long time a task spends in its running state depends
highly on its own workload during a certain time interval, but also on

37

Chapter 2. Controlling Linux in a Nice Way

�������������� ��������Task Execution
Sampling Points
Task State
Controlled Intervals
CPU Bandwidth

rrrrrrr www

0% 0%0%0% 70% 100% 30%30% 90%

Figure 2.11 Example of how the strategy for controlling non-compute bound
tasks works.

the other tasks in the system as the task might get interrupted by a
higher priority task. This makes it hard to give any general rules and
hence draw any conclusions to be used for more accurate control.

Why does the Strategy work?

The reason why the presented strategy works, i.e., the control signal
does not saturate, is the following: A task with a low priority will be in
the TASK_RUNNING state for a long time. This is due to the fact that it
will be preceded and interrupted by tasks with higher priorities. It will
not switch from the TASK_RUNNING state until it has finished its current
work load. If the priority of the task is increased, the task may not be
preceded by as many tasks as before and it will also not be interrupted
by as many. Hence, it will finish earlier and therefore be a shorter
time in the TASK_RUNNING state. In essence, a high priority gives a
short ready time. As the execution time demand is constant, the ratio
between executed time and time spent in the TASK_RUNNING state will
increase if the priority is increased. At a certain point, an equilibrium
will be reached, where the reference is met during the period when the
task is in the TASK_RUNNING state, and hence the control signal will be
constant.

Example Figure 2.11 shows the sampling points of the controller
and the task’s state at those points. It also shows the task’s execution
trace and which of the sample intervals that are used by the controller.
An r in the figure means that the task is in the TASK_RUNNING state,
and a w that it is in one of the “Waiting” states. During the controlled
intervals, the ratio between used time and time spent in the running
state is approximately 48%.

38

2.12 Taking the State Into Account

EXPERIMENT 4
This experiment consists of one periodic task that executes for approx-
imately 40 ms and then sleeps for 60 ms repeatedly. This results in a
task that uses at most 40% of the CPU even if it is alone in the system.
Controlling such a task with the method explained in Section 2.8 would
make the control signal saturate, because the error will never go away
if a reference larger than 40% is given. Two load tasks of the same
type as used in Section 2.11 with nice values at 5 are also present in
the system.
As can be seen in Figure 2.12, the proposed scheme works well in

practise. In the beginning of the plot, the reference is higher than can
be achieved, and at time 55 it is set to an even higher value, but the
control signal still behaves well. It can also be seen that the controller
is still able to follow reference changes when they are lower than 40%.
The observant reader may notice the delay and the following under-

shoot at time 160. Also note that this behaviour does not show up at
any of the other step changes in the plot. This is not an integrator
windup as might first be thought, but is instead due to the fact that
the system has marked the task as interactive and therefore given it
an additional bonus. When the task after some time is marked as non-
interactive, it loses its bonus and this results in the under-shoot. This
is the same thing as stitching in a mechanical system.
The fact that non-compute-bound tasks can be controlled using the

presented strategy, significantly increases the usability of the tech-
nique. It opens up a new range of applications to be controlled, such as
event-driven tasks that need some percentage of the CPU when they
want to execute, but otherwise sleeps most of the time. This is the
case with mp3-decoders and video-players, but also with web-servers
and many other applications.

39

Chapter 2. Controlling Linux in a Nice Way

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80
CPU Bandwidth

%

time (s)

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20
Control Signal

n
ic

e
 v

a
lu

e

time (s)

Measurement
Reference

Figure 2.12 Step responses for a non compute-bound task when taking the
task’s state into account in Experiment 4.

2.13 Related Work

Reservation based scheduling is not a new concept and has been around
in one form or another for many years. The concept has been called fair-
share scheduling [Essick, 1990; Kay and Lauder, 1988; Henry, 1984]
but is also known under the name proportional-share scheduling [Fong
and Squillante, 1995; Stoica and Abdel-Wahab, 1995; Waldspurger and
Weihl, 1995b; Waldspurger and Weihl, 1995a]. A good summary of this
field, together with more details can be found in [de Jongh, 2002].
In the real-time systems area, a similar concept is known under the
name Constant Bandwidth Server (CBS) [Abeni and Buttazzo, 1998].
An implementation of a CBS running in the Linux 2.4.18 kernel can
be found in [Abeni and Lipari, 2002]. The mentioned implementation
works by raising the priority of the task that it currently wants to
run to the highest possible value. A comparison between the constant

40

2.14 Conclusions

bandwidth allocation and the proportional share allocation methods
can be found in [Abeni et al., 1999]. Other interesting related topics in
the real-time area is the Resource-Kernel [Rajkumar et al., 1998] and
the Sporadic Server [Sprunt et al., 1989].
The idea of using the nice value as a way to enforce CPU fractions

has been known before. One early implementation is the Watson Share
scheduler [Moruzzi and Rose, 1991], implemented on top of a standard
AIX operating system at the Compute Power Server Cluster at IBM. It
is also mentioned in [Hellerstein, 2004] and [Hellerstein et al., 2005]
as something that in UNIX can be done in theory, but is complicated
in practice because of the non-linear relationship between nice, the
number of processes and the CPU fraction received. Provided that the
number of jobs in the system is fixed, and that they are all present from
the same time and onward, a deterministic analysis of the steady state
shares is possible. [Hellerstein, 1993] shows how this can be used to
statically calculate the base priorities on a uniprocessor in the presence
of decay-usage scheduling in UNIX. [Epema, 1998] extends this analysis
to the multiprocessor case.
An interesting Linux kernel project in this area is Class-based Ker-

nel Resource Management (CKRM) [CKRM, 2006] and [Nagar et al.,
2004] which aims at providing differentiated service to resources such
as CPU time, memory pages, I/O and incoming network bandwidth. It
accomplishes CPU reservations by scaling the time_slice value and
re-queuing tasks. Parts of this project is used in “SuSE Linux Enter-
prise Server 9”, but not the CPU controller.

2.14 Conclusions

An exposition of the Linux 2.6 scheduler has been done and a method
for controlling the CPU bandwidth given to tasks in Linux has been
presented. The presented method has been shown to work, both for
compute-bound and non compute-bound tasks. A number of experi-
ments have been performed in order to show that the technique works
in reality.

41

3

A Simulation Tool for

Wireless Control

3.1 Introduction

Sensor/actuator networks and mobile robots are application areas for
embedded real-time systems where wireless communication plays a vi-
tal role. The computing and communication resources in these types
of applications are often severely limited, making integrated design
approaches important. Another common characteristic of these sys-
tems is that they interact with their environment. One example is a
sensor network that monitors the presence of moving objects in some
environment. Other examples are mobile robots moving around in the
environment or sensor/actuator networks that implement networked
control loops.
Simulation is a powerful technique that can be used at several

stages of system development. In order to support the applications
at hand, co-simulation facilities are crucial. It should be possible to
simultaneously simulate the computations that take place within the
nodes, the wireless communication between the nodes, the sensor and
actuator dynamics, the dynamics of the mobile robots, and the dynam-
ics of the environment, including the physical systems under control.
In order to model the limited resources correctly, the simulation model
must be quite realistic. For example, it should be possible to simulate

42

3.2 Wireless Networks

the timing effects of context switches and interrupts in a multi-tasking
real-time kernel implementing the control logic of the nodes. It should
also be possible to simulate the effects of collisions and contention in
the wireless MAC layers. Due to simulation time and size constraints,
it is at the same time important that the simulation model is not too
detailed. For example, simulating the computations on a source code
level, instruction for instruction, would be overly costly in most cases.
The same applies to simulation of the wireless communication at the
radio interface level or on the bit transmission level. In some cases how-
ever simulation on this low level is exactly what one wants to achieve,
and then products like, e.g., Simics [Magnusson et al., 2002] are useful.
There are a number of simulation environments available for net-

worked systems, see the related work section at the end of this chap-
ter for an overview. However, the majority of these only simulate the
wireless communication and the node computations. Hence, something
more is needed. TrueTime [Cervin et al., 2003; Andersson et al., 2005]
is a co-simulation tool that is being developed at Lund University since
1999. By using TrueTime it is possible to simulate the temporal behav-
ior of computer nodes and communication networks that interact with
the physical environment. The network support in the early releases
of the tool was restricted to wired networks. In this chapter the wire-
less network block, available in recent versions, is presented together
with the means to simulate battery-powered nodes, local clocks and Dy-
namic Voltage Scaling (DVS). This, in combination with the already
present features, make it possible to concurrently simulate all the as-
pects described above. This opens up a wide range of new application
types for simulation, e.g., teams of collaborating or competing mobile
robots interacting with their environment. Another example could be
sensor networks with mobile or stationary nodes communicating via
wireless ad-hoc networks internally and through a gateway node to
back-end servers using wired networks.

3.2 Wireless Networks

A wireless network is different from a wired one in many ways. Most
of the differences between them rise from the fact that in a wired
network, the signal follows a guarded medium from the sender to the

43

Chapter 3. A Simulation Tool for Wireless Control

receiver. The signal has therefore more or less the same characteris-
tics at the two points. In a wireless network, the case is the opposite.
The signal may have travelled through a number of different matters
on its way from the sender to the receiver. It may also have taken a
number of different paths. This results in a signal which differs signif-
icantly between the two points. This section will give a very condensed
description of some important properties of wireless networks.
Wireless networks can be divided into two groups, infrastructure

based networks and ad-hoc networks. Infrastructure based networks
are very common in WLANs and mobile phone systems. Typically all
communication takes place between nodes and access points and there
is no direct communication between nodes. This makes it easy for the
access point to control the medium access. It is also rather straight-
forward to let the access point perform routing between different net-
works when the node is not within the access point’s own signal reach.
The drawback is that infrastructure based networks are not so flexible.
Ad-hoc networks on the other hand are very flexible, and do not need
any infrastructure at all to work. In such networks, nodes can commu-
nicate directly with each other and hence there is no need for access
points. This on the other hand makes routing a bit harder because no
central intelligence exists.
In a wireless network, radio waves are often used as the physical

transportation layer for the signal, and then an antenna is needed.
IEEE 802.11 also supports Infrared (IR) light as a medium, but it
is hardly used in any commercial products. There exists a number of
different antenna models for radio. One often used theoretical model of
an antenna is the isotropic one. This is simply a single point in space
which radiates equal amounts of power in all directions. In reality
though, all antennas have a more or less directive effect and many
antennas are even designed in order to get such effects.
It is common that radio stations are built such that they can not

send and receive signals at the same time. As a consequence of this,
it is not possible for a sending station to hear if another station starts
to send during its own transmission. Duplex stations can of course be
built, but the technology is a little more complex and expensive.
When simulating a wireless network, it is important to take the

path-loss into account. The signal power is always much lower in the
receiver node than in the sender node. Parts of this comes from the

44

3.3 The TrueTime Simulator

fact that wireless devices do not have a guarded medium, and therefore
the radio signal power is spread in all or some directions depending on
the antenna being used. Many obstacles such as buildings, trees, fog,
snow and rain will also decrease the signal power level in the receiver.
Due to large obstacles, there can be an extreme form of attenuation
called blocking or shadowing, which makes it impossible to receive the
radio signal at all. The signals may also reflect on objects such as
buildings or mountains. This reflection makes it possible for the radio
signal to take many different paths from the sender to the receiver,
i.e., multi-path propagation. If the sender and the receiver are moving,
then the channel characteristics will change over time. Because of the
multi-path propagation, the received signals may then sometimes have
different phase and cancel each other. The power level can therefore
change significantly even if the nodes are moved only a small distance.
This is often referred to as short-term fading. Long-term fading is the
fact that the signal fades with distance.
In a wireless network, the air can be considered as a shared medium

and therefore interference from other terminals must be taken into
account in the simulation. It may also happen that nodes that are
not able to hear each other when they are sending, still disturb each
others transmissions in a receiving node situated in between them.
This situation is often referred to as the hidden node problem.

3.3 The TrueTime Simulator

TrueTime is based on Simulink [The Mathworks, 2001], the graphical
simulation environment of MATLAB, and consists of computer, bat-
tery and network blocks as shown in the block library in Figure 3.1.
The TrueTime blocks are connected with ordinary Simulink blocks to
form a real-time control system. The main feature of TrueTime is the
possibility of co-simulation of the interaction between the real-world
continuous-time dynamics and the computer architecture in the form
of task execution and network communication.
The TrueTime computer block executes user-defined tasks and in-

terrupt handlers representing, e.g., I/O tasks, control algorithms, and
network drivers. The scheduling policy of individual computer blocks is
arbitrary and decided by the user. Execution times of tasks and inter-

45

Chapter 3. A Simulation Tool for Wireless Control

Figure 3.1 The TrueTime block library.

rupt handlers can be modeled as constant, random, or data-dependent.
Furthermore, TrueTime allows simulation of context switching and
task synchronization using events or monitors.
The TrueTime network blocks distribute messages between com-

puter nodes according to a chosen network model. Communication mod-
els supported by the wired network block are: CSMA/CD (e.g. Ether-
net), CSMA/AMP (e.g. CAN), Round Robin (e.g. Token Bus), FDMA,
TDMA (e.g. TTP), and Switched Ethernet. Only packet-level simula-
tion is supported – it is assumed that higher protocol levels in the
kernel nodes have divided long messages into packets, etc. Only the
properties related to the communication timing are modeled, i.e., the
simulation is not performed on bit level.
To illustrate the TrueTime simulation capabilities, a small example

is given in Listings 3.1, 3.2 and 3.3. The example creates an interrupt
handler which is triggered when a message arrives on the network. The
message is read and then directly put in a mailbox. A task instance is
created in order to handle the message outside the interrupt handler.
The focus of this chapter is on the wireless network modeling and

simulation. For more details on the computer and wired network blocks,
see [Cervin et al., 2003; Andersson et al., 2005]. TrueTime 1.3 is avail-
able for download at http://www.control.lth.se/user/dan.henriksson/.

46

3.3 The TrueTime Simulator

Listing 3.1 Initialization of the TrueTime kernel.

function example_init(argument)

% Initialize the TrueTime kernel

ttInitKernel(0, 0, ’prioFP’); % nbrOfInputs, nbrOfOutputs, fixed priority

% Create a mailbox

ttCreateMailbox(’network_messages’, 10) % mailboxname, maxsize

data.msg=[];

% Create a task

% name, deadline, priority, codefunction, data structure

ttCreateTask(’network_response_task’, 100, 3, ’taskcode’, data);

% Create a network interrupt handler

% name, priority, codefunction

ttCreateInterruptHandler(’nw_handler’, 3, ’handlercode’);

% Initialize the network

ttInitNetwork(1, ’nw_handler’); % nodenumber, handlername

Listing 3.2 Task code.

function [exectime, data] = taskcode(seg, data)

switch seg,

case 1,

data.msg = ttTryFetch(’network_messages’); % Read a message from a mailbox

exectime = 0.00002; % execution time

case 2,

% Reply to the sender

ttSendMsg(2, data.msg, 10); % receiver, data, length

exectime = -1; % finished

end

Listing 3.3 Code for the network interrupt handler.

function [exectime, data] = handlercode(seg, data)

temp = ttGetMsg; % Read a message from the network

ttTryPost(’network_messages’, temp); % Put the message in a mailbox

ttCreateJob(’network_response_task’); % Create an instance of a task

exectime = -1;

47

Chapter 3. A Simulation Tool for Wireless Control

3.4 The TrueTime Wireless Network

This section will describe the wireless network modeling, the imple-
mentation of the IEEE 802.11b/g WLAN and IEEE 802.15.4 ZigBee
standards, and the interface of the wireless block within TrueTime.
Again it should be noted that the scope of the wireless block (and the
TrueTime environment as a whole), is to simulate the main properties
related to the timing characteristics and not to be a complete wireless
network simulator. Consequently, the simulation of network messages
is not done on the bit or radio interface level.

Modeling of the IEEE 802.11b/g Protocol

The TrueTime wireless network block simulates medium access and
packet transmission, i.e., the medium access control (MAC) sub-layer
of the IEEE 802.11 reference model. 802.11b/g is used in many lap-
tops and mobile devices of today, and is because of its heavy use a good
candidate to include in a simulator. The 802.11b standard is quite com-
plex and is described in [IEEE, 1999a] and [IEEE, 1999b]. A more con-
densed presentation can be found in [Schiller, 2003]. The MAC schemes
of 802.11b/g are the same as in ordinary 802.11, therefore the simu-
lation model presented here is valid for 802.11 as well. The presented
model captures the following aspects:

• Direct sequence spread spectrum (DSSS1) physical layer (PHY).
Other non-supported PHY layers of 802.11 are frequency hopping
spread spectrum (FHSS) and infra-red (IR).

• Ad-hoc wireless networks, as opposed to infrastructure-based ones.

• Isotropic antenna.

• Inability to send and receive messages at the same time.

• Path loss of radio signals modeled as 1
da
where d is the distance

in meters, and a is a parameter chosen to model the environment.

• The mandatory basic access method based on CSMA/CA.
• Interference from other terminals (shared medium).
1Each information bit in the message is XOR’ed with a sequence of 0’s and 1’s in

order to make the signal more insensitive to, e.g., multi-path propagation

48

3.4 The TrueTime Wireless Network

The implemented simulation model does not capture very detailed or
compute intensive aspects such as shadowing, reflection or multi-path
propagation. Many of these features can however be implemented in
the user-defined path-loss function described in section 3.6.
A package transmission is modeled like this: The node that wants to

transmit a packet checks to see if the medium is idle. The transmission
may proceed, if the medium is found to be idle, and has stayed so for
a time specified in the standard (50 µs when using DSSS). A random
back-off time is chosen and decremented in the same way as when
colliding (described in the end of this section), if the medium is found
to be busy. When a node starts to transmit, its relative position to all
other nodes in the same network is calculated, and the signal levels in
all these nodes are calculated according to the path-loss formula 1

da
.

The signal is assumed to be possible to detect, if the signal level in
the receiving node is larger than a configurable threshold (receiver sig-
nal threshold). If this is the case, then the signal-to-noise ratio (SNR)
is calculated and used to find the block error rate (BLER). Note that
all other transmissions add to the background noise when calculating
the SNR. The BLER, together with the size of the message, is used to
calculate the number of bit errors in the message and if this number
is lower than another threshold (error coding threshold), then it is as-
sumed that the channel coding scheme is able to fully reconstruct the
message. If there are (already) ongoing transmissions from other nodes
to the receiving node and their respective SNRs are lower than the new
one, then all those messages are marked as collided. Also, if there are
other ongoing transmissions, which the currently sending node reaches
with its transmission, then those messages may be marked as collided
as well depending on the signal strength in the receiving nodes.
Note that a sending node does not know if its message is colliding,

therefore ACK messages are sent on the MAC protocol layer. From the
perspective of the sending node, lost messages and message collisions
are the same, i.e., no ACK is received. If no ACK is received during a
certain configurable time, the message is retransmitted after waiting
a random back-off time within a contention window. The contention
window size is doubled for every retransmission of a certain message.
The back-off timer is stopped if the medium is busy, or if it has not
been idle for at least a time specified by the protocol (50 µs when using
DSSS). There are only a certain number of retransmissions before the
sender gives up on the message and it is not retransmitted anymore.

49

Chapter 3. A Simulation Tool for Wireless Control

Modeling of the IEEE 802.15.4 Protocol

ZigBee is a protocol designed with sensor and simple control networks
in mind. It has a rather low bandwidth, 250 Kb/s, but also a really low
power consumption. Although it is based on CSMA/CA as 802.11b/g,
it is much simpler and the protocols are not very similar.
The packet transmission model used for simulating ZigBee is sim-

ilar to WLAN, but the MAC procedure differs and is modeled as:

1. Initialize:
NB=0
BE=macMinBE

2. Delay for a random number of backoff periods in the interval
[0, 2BE − 1]

3. Is the medium idle?
if yes: send
else: goto 4

4. Update the backoff counters:
NB=NB+1
BE=min(BE+1, aMaxBE)

5. Is NB>macMaxCSMABackoffs?
if yes: drop the packet
else: goto 2

The variable names are taken from the standard to make comparisons
easier. A small explanation of their names is provided below.

NB Number of backoffs.

BE Backoff exponent.

macMinBE The minimum value of the backoff exponent in the CSMA/CA
algorithm. The default value is 3.

aMaxBE The maximum value of the backoff exponent in the CSMA/CA
algorithm. The default value is 5.

macMaxCSMABackoffs The maximum number of backoffs the CSMA/CA
algorithm will attempt before declaring a channel access failure.
The default value is 4.

50

3.4 The TrueTime Wireless Network

Calculation of Error Probabilities

During the calculation of error probabilities, it is for simplicity as-
sumed that BPSK2 is always used in the transmissions. This is of
course an approximation, but it relates well to reality.
Assume that a symbol is sent, in our case this is a bit, i.e., a 0 or a

1. Additive white Gaussian noise gives a probability density function,
for the received symbol, that for some signal-to-noise ratio will look like
Figure 3.2. A threshold is then used to decide if the received symbol
is a 0 or a 1. The decision threshold is marked as a line in the middle
of the figure. The darker area to the left of the threshold gives the
probability of a symbol error. A higher signal to noise ratio translates
the curve to the right, making the probability of error smaller.
The above standard procedure should ideally be performed for every

bit in the message. The total number of calculated bit errors should
then be compared to the error coding threshold. This is, however, not
done, because it would computationally be very expensive. Instead,
the maximum noise level during the transmission is saved, and used
to calculate the worst case SNR. By assuming that bit errors in a
message are uncorrelated, it is deduced that the number of bit errors,
X , belongs to a binomial distribution X ∈ Bin(n, p). Where n is the
number of bits in the message, and p is the probability that a certain
bit is erroneous. If the value of n is large, the binomial distribution can
be approximated with a normal distribution, using the central limit
theorem. This gives that X ∈ N(np,√npq) where q = 1 − p. What
we are really interested in is the probability that bn, where b is the
error coding threshold, is larger than the total number of bit errors in
a message. This probability is calculated using

P(X ≤ bn) =

Φ(bn− np√
npq

) if bn− np > 0

1− Φ(pbn− npp√
npq

) if bn− np ≤ 0

where Φ is the standard normal cumulative distribution function.

2Binary Phase Shift Keying (BPSK) is a means of transmitting symbols by altering
the phase of a reference signal. It uses two phases separated by 180○ and is hence binary.

51

Chapter 3. A Simulation Tool for Wireless Control

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 3.2 Probability density function for a received symbol when using
binary phase shift keying and additive white Gaussian noise. The line in the
middle is the decision threshold. The area to the left of the threshold gives the
probability of an erroneous decision. The area to the right gives the probability
of a correct decision.

Example Assume that a message consists of 100 bits, i.e., n = 100.
The probability that a certain bit is erroneous has been calculated to
0.1 using the above method, i.e., p = 0.1 and q = 1− p = 0.9. The error
coding threshold has been set to 5%, i.e., b = 0.05. Then the probability
that we can decode the complete message is

P(X ≤ bn) = 1− Φ(pbn− npp√
npq

) = 1− Φ(5√
9
) (0.0478

The TrueTime Wireless Block Interface

The structure of the wireless block as seen from a user point of view is
very similar to the wired network block. The main difference between
the wired network block and the wireless is that the x and y coordi-
nates of the simulated computers are made available to the wireless
block with two vector input ports as seen in the block library in Fig-

52

3.4 The TrueTime Wireless Network

ure 3.1. These input coordinates give the position of the nodes and may
therefore change over time if the nodes are moving. A node in this con-
text is a unit consisting of a computer block connected to a wireless
block, and optionally some dynamics. In the current implementation,
nodes can only move in a two-dimensional space. It is however straight
forward to add a third dimension, if needed in future simulations.
The wireless block is event-driven, i.e., when a node tries to trans-

mit a packet, the packet is put in an input buffer and a trigger signal
is sent to the block on the Snd port. When the simulated transmission
of the package is finished, the packet is put in a buffer at the receiving
node and a new trigger signal is sent to the receiving node on the Rcv

port. A packet contains information about the sending and receiving
computer node, arbitrary user data, and the packet length.
The wireless network block is configured through the block mask

dialog, see Figure 3.3. The available options consist of:

Network type. Determines the MAC protocol to be used. Can
be either 802.11b/g (WLAN) or 802.15.4 (ZigBee).

Network number. A unique identifier for the wireless network
block. Useful when nodes are connected to multiple networks.

Number of nodes. Number of nodes connected to the network.
Affects the size of Snd, Rcv and Schedule inputs and outputs of
the wireless block.

Data rate. Data transmission speed of the network in bits/s.

Minimum frame size.Messages shorter than this will be padded.

Transmit power. The signal strength used when transmitting a
message. According to the standard, this is limited to a maximum
of 1000 mW in USA, 100 mW in Europe and 10 mW in Japan.

Receiver signal threshold. If the received signal strength is
above this value, then the medium is regarded as busy.

Path-loss exponent. The number a in the path-loss formula 1
da
.

Special pathloss function. Gives the user the possibility to
implement his/her own path-loss function in a MATLAB m-file.

53

Chapter 3. A Simulation Tool for Wireless Control

Figure 3.3 The dialog of the TRUETIME wireless network block.

ACK timeout. The time a sending node will wait for an acknowl-
edgement before retransmitting a message.

Retry limit. The maximum number of times a node will try to
retransmit a message before giving up.

Error coding threshold. A number in the interval [0, 1] which
defines the percentage of block errors in a message that the cod-
ing can handle. For example, certain coding schemes can fully
reconstruct a message if it has less than 10% block errors.

54

3.5 Implementation Details

Some of the network parameters can also be set on a per node
basis with the command ttSetNetworkParameter. This function makes
it possible to dynamically change these network parameters. At the
moment the following parameters are supported:

transmitpower Signal strength used when transmitting a message.

predelay The time a message is delayed by the network interface at
the sending end. This can be used to model, e.g., a slow serial
connection between the computer and the network interface.

postdelay The time a message is delayed by the network interface at
the receiving end.

The default parameter value is 0 for the predelay and the postdelay.
The transmitpower parameter is only valid when using the wireless
network and defaults to whatever is set in the block mask dialog.

3.5 Implementation Details

This section will give a brief description of how the event-based im-
plementation of the wireless network block exploits the zero-crossing
detection mechanism in Simulink.
The implementation uses two callback functions to interact with

Simulink: The mdlOutputs (Listing 3.4) and the mdlZeroCrossings

(Listing 3.5). mdlOutputs is called by Simulink at each simulation
time step, to compute the block’s output signal and store it in the S-
function’s output signal arrays. mdlZeroCrossings is used by Simulink
to find discontinuities, in order to insert additional simulation time
steps before and after the time they occur. The mdlZeroCrossings func-
tion should be implemented in such a way that it returns a value that
crosses zero at the time of a discontinuity.
When a message is sent on the network, the Snd input port of the

network block is changed as a step. This creates a discontinuity which
leads to the fact that mdlOutput is executed a small time before, exactly
at the time of the discontinuity, and also a small time after it. This
makes sure that the block is always executed when a message is sent.
The other type of event that the block should take care of is internal
events. These are generated when the transmission of a message is

55

Chapter 3. A Simulation Tool for Wireless Control

finished and the result should be propagated to a receiving node. In-
ternal events are also generated, e.g, when a backoff counter reaches
zero. These internal events are taken care of in the mdlZeroCrossings

function. Every time the network function is run, it saves the time of
the next internal event to occur in a variable nwsys->nextHit. When
the mdlZeroCrossings function is executed, it returns the difference
between the time of the next event and the current time. It also re-
turns zero if it detects that the input signals have changed value since
the last invocation.
A small example of the timing is given in Listing 3.6. The example

consists of a Simulink step block connected to an S-function. When the
mentioned callback functions are executed, the S-function prints out
the current time. The step has been set to occur at time 1.5. As can be
seen in Listing 3.6, mdlZeroCrossings detects the change in the input
signal at time 1.5. mdlOutput is, however, not executed with the new
input signal until time 1.5+ǫ. This means that there is usually a small
offset from when the input changes to when the block is executed with
the new input signal. The size of the time delay depends on which solver
that has been chosen in the simulation. The time delay is, however, very
small and in the presented example it was 2.8 ⋅ 10−14 s.
The runNetwork function, called from the code in Listing 3.4, is

responsible for transmitting messages according to the chosen protocol.
This is done in the following way: When a new message arrives, it is
put in a queue called preprocQ. Messages are also put in this queue
if they have collided and must wait a certain time before they are
transmitted again. The message waits in this queue until the predelay
or the backoff time has expired. The message is then transmitted if
the chosen protocol admits it. When a message is in transmission,
it is moved to another queue called inputQ. If the transmission was
successful, the message is moved to the outputQ, otherwise it is put in
the preprocQ again with a suitable backoff time. When the message
has waited for the specified postdelay, it is moved to the postprocQ

where the receiving node can access it. One problem with the current
implementation is that it only remembers the time of the next event.
A better solution would be to calculate the time of all known future
events and save them in a data structure. This data structure could
then be updated when new events arrive.

56

3.6 Other New Simulation Features

Listing 3.4 Pseudo-code for the mdlOutputs function.

static void mdlOutputs(SimStruct *S, int_T tid)

{

if (any input has changed value) {

/** Run the network code, and compute when the next invocation

* should occur.

*/

nwsys->nextHit = runNetwork();

}

Update all output signals;

}

Listing 3.5 Pseudo-code for the mdlZeroCrossings function.

static void mdlZeroCrossings(SimStruct *S)

{

Read and store all inputs;

if (any input has changed value) {

nwsys->nextHit = ssGetT(S);

}

/**

* Tell Simulink when we would like to run next. This may be now,

* or sometime in the past or future.

*/

ssGetNonsampledZCs(S)[0] = nwsys->nextHit - ssGetT(S);

}

57

Chapter 3. A Simulation Tool for Wireless Control

Listing 3.6 A small example showing how a discontinuity in the input signal
at time 1.5 creates additional simulation time steps. The additional steps are
1.5− ǫ, 1.5 and 1.5+ ǫ.

mdlOutputs: 0.00000000000000000000e+00

mdlZeroCrossings: 0.00000000000000000000e+00

mdlZeroCrossings: 1.00000000000000000000e+00

mdlOutputs: 1.00000000000000000000e+00

mdlZeroCrossings: 1.00000000000000000000e+00

mdlZeroCrossings: 2.00000000000000000000e+00

mdlZeroCrossings: 1.50000000000000000000e+00

mdlZeroCrossings: 1.25000000000000000000e+00

mdlZeroCrossings: 1.49999999999997157829e+00

mdlOutputs: 1.49999999999997157829e+00

mdlOutputs: 1.50000000000000000000e+00

mdlZeroCrossings: 1.50000000000000000000e+00

mdlZeroCrossings: input has changed value at 1.50000000000000000000e+00

mdlZeroCrossings: 2.00000000000000000000e+00

mdlZeroCrossings: 1.75000000000000000000e+00

mdlZeroCrossings: 1.50000000000002842171e+00

mdlOutputs: 1.50000000000002842171e+00

mdlZeroCrossings: 1.50000000000002842171e+00

mdlZeroCrossings: 2.00000000000000000000e+00

mdlOutputs: 2.00000000000000000000e+00

mdlZeroCrossings: 2.00000000000000000000e+00

mdlZeroCrossings: 3.00000000000000000000e+00

mdlOutputs: 3.00000000000000000000e+00

mdlZeroCrossings: 3.00000000000000000000e+00

58

3.6 Other New Simulation Features

3.6 Other New Simulation Features

Local Clocks

Having local independent clock representations with respect to a global
time, will facilitate simulation of many problems related to clock drift
in asynchronous systems and failure in the clock synchronization for
synchronized systems.
The local clocks are manipulated by specifying time offsets and

drifts, which is typically done during the initialization phase for each
node. An ideal clock is obtained by setting these values to zero. The
timing primitives in TrueTime that are affected by the change in
clock representation are; ttSleep, ttSleepUntil, ttCurrentTime, and
ttCreateTimer, which all operate on the local clocks in the node.

Power Consumption and Dynamic Voltage Scaling

The power constraints of networked embedded systems make it desir-
able to model power consumption. Therefore, models of power devices
(batteries) have been incorporated into the TrueTime framework. This
makes it possible to model and evaluate power management strate-
gies at different levels of the system for energy-efficient implementa-
tions. This includes dynamic voltage scaling algorithms, energy-aware
scheduling and communication protocols. As a means for this, True-
Time supports dynamic changes of the CPU speed in the different
nodes, and the possibility to set a nominal power consumption.
Each node has its own battery block, which is connected in a feed-

back loop with the computer block. The inputs to the battery block
could be any form of power consumption, e.g., CPU, network trans-
mission and receiving activity, and sensors and actuators. The battery
itself is modeled as a simple integrator, fed by the sum of the battery
inputs. The output of the battery is fed to the computer block, and as
this level drops to zero all task execution is stopped. The execution will
continue if the battery is recharged.

59

Chapter 3. A Simulation Tool for Wireless Control

User-Defined Path-Loss Function

The default path-loss function (or propagation model) used in the True-
Time wireless simulations is

Preceiver =
1
da
Psender

where P is the power, d is the distance in meters, and a is a param-
eter that can be chosen to model different environments. This model
is often used in simulations, but in some cases it can be advantageous
to use other models. Therefore, TrueTime has the possibility to reg-
ister a user-defined path-loss function. The function is written as a
MATLAB m-file and can therefore take advantage of all the built-in
functions available in MATLAB or Simulink. This includes in particu-
lar the possibility to use persistent variables, i.e., variables which are
retained in memory between calls to the function. This function can,
for example, be used to model a Rayleigh3 fading or blocking of radio
signals to and from certain points in the environment. At the moment,
nodes in the TrueTime framework only have x and y coordinates, but
if a direction was to be introduced this function could also be used to
model directive effects in the antenna behaviour.
The MATLAB function takes the following arguments

• Transmission power

• Name of the sending node

• x and y coordinates of the sending node

• Name of the receiving node

• x and y coordinates of the receiving node

• Current simulation time

and returns the signal power in the receiving node.
A small example showing the structure of how a Rayleigh fading

could be implemented can be seen in Listing 3.7.

3In a Rayleigh fading, the relative speed of two nodes and the number of multiple
paths that the signal takes from the sender to the receiver is taken into account. See
Figure 3.4 for an example.

60

3.6 Other New Simulation Features

Listing 3.7

function [power]=rayleigh(transmitPower, node1, x1, y1, node2, x2, y2, time)

% Calculate the exponential pathloss

distance = sqrt((x1 - x2)^2 + (y1 - y2)^2);

power = transmitPower/(distance+1)^3.5;

% Kalman filter to get the relative velocity of the two nodes

velocity = kalman_velocity(node1, x1, y1, node2, x2, y2, time);

% Calculate the rayleigh fading

factor = calculate_rayleigh(node1, node2, velocity, time);

% Add the rayleigh fading to the exponential path loss

power = power * factor;

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

d
b

sample

Rayleigh fading

Figure 3.4 Example of a Rayleigh fading using a radio frequency of 2.4 MHz.
Nodes moving with a relative speed of 6 km/h, 1 second sampling interval and
10 random phasers.

61

Chapter 3. A Simulation Tool for Wireless Control

3.7 Simulation Case Studies

The TrueTime simulation environment for networked embedded sys-
tems will now be demonstrated in two simulation scenarios. The first
simple scenario is intended to demonstrate the wireless communica-
tion model and the impact of interfering nodes and physical locations
on the communication timing. The other example is more elaborate and
show the use of TrueTime in a research area that is currently receiv-
ing much attention in the real-time systems community, distributed
control of mobile agents.

A Simple Communication Scenario

This setup contains four nodes communicating over a wireless network.
The example is intended to show how the distance and therefore the
path-loss between sender and receiver, and also interference from other
sending nodes affect the communication timing.
Two situations will be described with the geographic locations of

the nodes displayed in Figure 3.5. In the first setup (labeled a) in the
figure), node 1 is far away from the others and therefore its signal
level will be too low to receive in the other nodes. This also means
that node 1 will not be able to disturb the transmissions of the other
nodes. The circle around each node denotes the distance at which the
power of the original signal has been reduced to the threshold value. In
this simulation, the transmit power was 100 mW, the threshold 2 mW
and the path loss exponent 2. In the second setup, node 1 has moved
considerably closer and is now within the reach of all other nodes.
In both setups, nodes 1, 2, and 3 send periodic messages to the re-

ceiver node (node 4). Closeups of the resulting network schedules can
be seen in Figure 3.6. The network schedule has the following repre-
sentation. Low means that the node is idle and has nothing to send.
Medium corresponds to that the node is waiting to transmit a mes-
sage, but for some reason has not started yet, i.e., the net is busy or
it is counting down its back-off timer from a previous collision. And fi-
nally, high means that the node is sending a message. Note that a node
does not know that its message has collided until it does not receive
an ACK message from the receiver. Therefore, a transmission does not
end until the complete message has been sent, even if it collides.
The top plot of Figure 3.6 shows the transmission in the first setup.

62

3.7 Simulation Case Studies

a) b)

Figure 3.5 The two configurations considered in the first example in Sec-
tion 3.7. Node 1, 2, and 3 all send to node 4. Node 1 is too far away to reach
the destination in the first setup, whereas in the second setup all three sending
nodes interfere. The circles around the nodes show the distance at which the
transmitted signal is no longer possible to detect (receiver signal threshold).

At time 0.02 all three nodes start to send at the same time, and at
the time when they have finished sending + ACKtimeout they con-
clude that for some reason their messages were not received properly.
All nodes then choose a randomized back-off time (according to the
CSMA/CA policy) and the second time, nodes 2 and 3 both manage to
get their messages sent to the receiver without further collisions.
Node 1, however, is trying to send its message over and over again.

This depends on the fact that it is too far away from the intended
receiver node and therefore does not get an ACK message back. So
it sends its message, waits the ACKtimeout and then tries to send it
again after waiting an additional back-off time. This behavior continues
until the maximum retry limit, which is set to five in this example, has
been reached and then it drops the message.
In the second setup, the transmissions of all three sending nodes

collide in their first try (as seen in the bottom plot of Figure 3.6). They
all choose their random back-off times before re-transmitting again and
getting their messages through in the second try.

63

Chapter 3. A Simulation Tool for Wireless Control

a)
0.015 0.02 0.025 0.03

1

1.5

2

2.5

3

3.5

Time (s)

Transmission schedule (high=sending, medium=waiting, low=idle)

Node 1

Node 2

Node 3

b)
2.315 2.32 2.325 2.33

1

1.5

2

2.5

3

3.5

Transmission schedule (high=sending, medium=waiting, low=idle)

Time (s)

Node 1

Node 2

Node 3

Figure 3.6 Close-ups of the network schedules corresponding to the two con-
figurations described in Figure 3.5.

RoboCup

This setup is inspired by the well-known RoboCup project [The RoboCup
Federation, 2004]. This project aims at, by the year of 2050, having a
team of fully autonomous robots win against the human world soccer
champions. RoboCup 2006 will be held in Bremen, Germany. This soc-
cer cup consists of five leagues: the simulation league, the small size
league, the middle size league, the 4-legged league, and the humanoid
league.

64

3.7 Simulation Case Studies

This example involves two teams consisting of five players each,
playing soccer against each other on a simulated play field. All the
players are modeled as TrueTime computer blocks and the communi-
cation between them is performed via the wireless network block. The
example shows that TrueTime is a good tool for evaluating high-level
strategies in the field of distributed intelligence, autonomous agents
and multi-agent collaboration.

Robot Modeling Each soccer playing robot, robot, is modeled by a
TrueTime computer and simple dynamics for its planar motion. The
Simulink subsystem representing a robot is shown in Figure 3.7. In this
simplified model it is assumed that the robot moves independently in
the x- and y-directions. The robot has two D/A outputs representing
the currents to the motors. The dynamics between motor current and
position is given by the transfer function 1

s(s+3.5) , with
1

s+3.5 being the
transfer function between motor current and velocity. By integrating
the velocity we obtain the position. These positions, i.e., the x and y
coordinates, are then fed into the TrueTime wireless network block in
order to calculate the path-loss of the radio signal.
It is further assumed that both the positions and the corresponding

velocities are directly measurable, and thus the robot has four A/D in-
puts for these signals. In a more realistic setup, filtering of the position
measurements would have been required to obtain velocity estimates.
The Schedule output is used to monitor the execution within the

computer, and the robot communicates through the TrueTime wireless
network using the Snd and Rcv ports.

Visualization and High-level Coordination The Simulink model
of the soccer game consists of ten robots (two teams of five robots each)
modeled according to the previous section. The x- and y-coordinates
of each robot are also fed into a MATLAB S-function responsible for
animating the game using 2D-graphics.
Within this framework, it is easy to evaluate different high-level

strategies to coordinate the robots in the two teams. Both centralized
and distributed intelligence may be considered. In the following we as-
sume a centralized strategy where a master node is coordinating the
movements of the robots in each team. The master has full sensing
capability of both the ball position and the position of the individual

65

Chapter 3. A Simulation Tool for Wireless Control

3

Snd

2

y

1

x

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

TrueTime Kernel

Schedule

Demux

1
s

1

s+3.5

1

s+3.5

1
s

1

Rcv

Figure 3.7 A model of a mobile robot in TrueTime, consisting of a TrueTime
computer for code execution and communication and continuous-time dynamics
for its motion.

robots. In a real setup this would, e.g., correspond to a camera monitor-
ing the playing field and sending the information to the master node.
The master node sends commands to robots in the team and receives
in return responses of completed tasks. Commands can be, e.g., shoot,
pass, dribble etc.

Local Sensing and Control The local intelligence of the individual
robots can be chosen to incorporate different hardware configurations
and physical devices. It is, e.g., straight-forward to model sensors such
as proximity sensors and on-board vision systems.
The controller may also be arbitrarily advanced. The implementa-

tion in this case is intended to mimic a tiny embedded device without
any RTOS support. The position controllers of the robots are imple-
mented in interrupt handlers connected to hardware timers. Simple
proportional control is used to follow velocity trajectories to reach ref-
erence positions provided by the master node. When a robot has the
ball it either dribbles in the direction of the opposing goal or shoots
if it is sufficiently close. When dribbling, the robot may also receive
commands from the master to pass the ball in the direction of a team
mate. Figure 3.8 shows screen shots from an attacking combination.

66

3.7 Simulation Case Studies

Figure 3.8 A sequence of screen shots from a successful attacking combination
in the simulated RoboCup application.

67

Chapter 3. A Simulation Tool for Wireless Control

3.8 Related Work

There exists a large number of general network simulators today. One
of the most well-known is ns-2 [The VINT Project, 2004], which is a
discrete-event simulator for both wired and wireless networks with
support for, e.g., TCP, UDP, routing, and multi-cast protocols. It also
supports simple movement models for mobile applications. The channel
model in ns-2 is quite simple [Dricot and Doncker, 2004]. ns-2 makes
the assumption that messages are received without errors if the power
level is above a certain threshold. Packets with power levels below the
same threshold are simply dropped. The packet with the largest power
level is received if two transmissions occur at the same time, and the
difference in power level between them is larger than 10 dB. Other-
wise both packets are dropped. Three different path-loss models are
available, two of them are deterministic and form ideal circles where
the messages are received perfectly inside and dropped outside. The
third model is called the shadowing model and adds some probabilistic
changes to the path-loss by using a zero mean Gaussian variable. An-
other discrete-event computer network simulator is OMNeT++ [OM-
NeT++ Community, 2004]. It contains detailed IP, TCP, and FDDI
protocol models and several other simulation models (file system sim-
ulator, Ethernet, framework for simulation of mobility, etc.). It uses
the same path-loss function as the TrueTime wireless block, errors are
however treated in a more detailed manner. It distinguishes between
header and data part of packages and also between different modu-
lation techniques. Compared to these simulators, the network simu-
lation part in TrueTime is in some cases more simplistic. However,
the strength of TrueTime is the co-simulation facilities that make it
possible to simulate the latency-related aspects of the network commu-
nication in combination with the node computations and the dynam-
ics of the physical environment. Rather than basing the co-simulation
tool on a general network simulator and then try to extend this with
additional co-simulation facilities, the approach has been to base the
co-simulation tool on a powerful simulator for general dynamical sys-
tems, i.e., Simulink, and then add support for simulation of real-time
kernels and the latency aspects of network communication to this. An
additional advantage of this approach is the possibility to make use of
the wide range of toolboxes that are available for MATLAB/Simulink.

68

3.9 Conclusions

For example, support for virtual reality animation.
There are also some network simulators geared towards the sensor

network domain. TOSSIM [Levis et al., 2003] compiles directly from
TinyOS code and scales very well. Its radio and interference model
is however very simplistic, with either perfect transmissions or prede-
fined error rates which can be changed at runtime. COOJA [Österlind,
2006] is similar to TOSSIM but for the Contiki OS instead. Network
in a box (NAB) [NAB, 2004] is another simulator for large-scale sensor
networks. Another example is J-Sim, a general compositional simula-
tion environment that includes a generalized packet switched network
model that may be used to simulate wireless LANs and sensor net-
work [Tyan, 2002]. Again, these types of simulators generally lack the
possibility to simulate continuous-time dynamics and to simulate the
inner workings of the nodes at the thread and interrupt handler level,
features that have been present in TrueTime since the early versions.
A few other tools have been developed that support co-simulation

of real-time computing systems and control systems. RTSIM [Palopoli
et al., 2000] has a module that allows system dynamics to be sim-
ulated in parallel with scheduling algorithms. XILO [El-Khoury and
Törngren, 2001] supports the simulation of system dynamics, CAN net-
works, and priority-preemptive scheduling. Ptolemy II is a general pur-
pose multi-domain modeling and simulation environment that includes
a continuous-time domain, and a simple RTOS domain. Recently it has
been extended in the sensor network direction [Baldwin et al., 2004].
In [Branicky et al., 2003] a co-simulation environment based on ns-2 is
presented. The ns-2 simulator has been extended with an ODE-solver
for dynamical simulations of the controller units and the environment.
However, this tool lacks support for real-time kernel simulation.

3.9 Conclusions

This chapter has presented a simulation environment for mobile wire-
less networked embedded systems. The tool is focused on co-simulation,
where the computer architecture in the form of computer nodes and
communication networks are simulated in parallel with continuous-
time dynamics modeling the physical environment.
The chapter has described the modeling and implementation of the

69

Chapter 3. A Simulation Tool for Wireless Control

IEEE 802.11b/g and 802.15.4 standards for wireless communication
within the TrueTime framework. Other new features are simulation of
local clocks, and power consumption within the individual nodes.
Two examples have been presented: a simple communication sce-

nario and a mobile robot soccer game.

70

4

Future Work

4.1 The Nice Controller

The nice control of the CPU-bandwidth can be enhanced in some ob-
vious ways. The most important is probably to make it possible to
control the CPU-bandwidth on a per group basis instead of individu-
ally for each task. This is certainly doable, but the exact details has
to be worked out with quite some care. When introducing more fea-
tures such as controlling groups of tasks, it is also needed to create a
better interface to make it easier to configure the controller. To gain
more acceptance and feedback from the Linux community, the con-
troller should be integrated into the CKRM project as soon as that
project has stabilized its code base. This will also automatically give
access to better configuration utilities.
Another point that needs to be given more thought, is identifica-

tion of areas that could benefit from a controller like the one presented
in this thesis. One of the obvious examples is web servers. Many web
servers have customers that are not equally important. If tasks that
service the customers are given different shares of the CPU-bandwidth,
then they will also get different response times. This can be used to con-
trol the response times of the server. In that setup, the CPU-bandwidth
controller will be used in a cascade structure.

71

Chapter 4. Future Work

4.2 The TrueTime Simulator

The programming of tasks in the TrueTime simulator would benefit if
the “segment” structure could be left behind. Getting rid of the segment
structure would make the code more similar to ordinary programming
code, which would int turn increase the portability to and from other
systems. As it is now, a context switch can only occur between two
segments. It is of course possible to make a segment around every
command if one wants to make the context switching more fine grained.
That is, however, quite tedious work and it would be better if it could
be done automatically.
Automatic code generation, both to and from TrueTime is another

desired feature. With that available, it would be possible to use True-
Time for rapid prototyping of real-time control systems and then con-
vert the code to a more efficient platform when properly analyzed. It
would also be possible to analyze already available code to find bugs
and performance bottlenecks. In these kinds of tests, it would be ad-
vantageous if the execution times used in TrueTime were based on
values from real systems.
One problem with the current implementation, of both the wired

and the wireless network blocks, is that they only remember the time
of the next event. A better solution would be to calculate the time of
all known future events and save them in a data structure. This data
structure could then be updated when new events arrive.
The structure for implementing new network protocols could be en-

hanced and made pluggable, so that users will be able to implement
and test protocols in a simpler manner. At the time of this writing,
implementing a new network protocol in TrueTime requires too much
knowledge about the inner details of the different blocks.
The network blocks only implement the MAC layers of the network.

It would be advantageous from the users’ perspective if a common
library containing higher level protocols could be implemented, such
as TCP/IP or different routing protocols.

72

5

Bibliography

Abeni, L. and G. C. Buttazzo (1998): “Integrating Multimedia Applica-
tions in Hard Real-Time Systems.” In Proceedings of the 19th IEEE
Real-Time Systems Symposium, pp. 4–13. Madrid, Spain.

Abeni, L. and G. Lipari (2002): “Implementing Resource Reservations
in Linux.” In Proceedings of the Fourth Real-Time Linux Workshop.
Boston (MA).

Abeni, L., G. Lipari, and G. C. Buttazzo (1999): “Constant Bandwidth
vs Proportional Share Resource Allocation.” In ICMCS ’99: Proceed-
ings of the IEEE International Conference on Multimedia Comput-
ing and Systems, pp. 107–111. IEEE Computer Society, Washington,
DC, USA.

Andersson, M. (2006): “Strange Interactivity Behaviour.” Home page:
http://lkml.org/lkml/2006/2/27/104.

Andersson, M., D. Henriksson, and A. Cervin (2005): TrueTime
1.3—Reference Manual. Department of Automatic Control, Lund
University, Sweden.

Baldwin, P., S. Kohli, E. A. Lee, X. Liu, and Y. Zhao (2004): “Modeling
of Sensor Nets in Ptolemy II.” In IPSN’04: Proceedings of the Third
International Symposium on Information Processing in Sensor
Setworks, pp. 359–368. ACM Press.

Branicky, M., V. Liberatore, and S. M. Phillips (2003): “Networked
Control Systems Co-Simulation for Co-Design.” In Proceedings of

73

Chapter 5. Bibliography

the 2003 American Control Conference, vol. 4, pp. 3341–3346.
Denver, USA.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén (2003):
“How Does Control Timing Affect Performance?” IEEE Control
Systems Magazine, 23:3, pp. 16–30.

CKRM (2006): “Class-based Kernel Resource Management (CKRM).”
Home page: http://ckrm.sourceforge.net/.

de Jongh, J. (2002): Share Scheduling in Distributed Systems. PhD
thesis, Delft University of Technology.

Dricot, J.-M. and P. D. Doncker (2004): “High-accuracy physical layer
model for wireless network simulations in NS-2.” In Proceed-
ings of the International Workshop on Wireless Ad-hoc Networks,
IWWAN’04. Oulu, Finland.

El-Khoury, J. and M. Törngren (2001): “Towards a Toolset for Archi-
tectural Design of Distributed Real-Time Control Systems.” In Pro-
ceedings of the 22nd IEEE Real-Time Systems Symposium. London,
England.

Epema, D. H. J. (1998): “Decay-Usage Scheduling in Multiprocessors.”
ACM Trans. Comput. Syst., 16:4, pp. 367–415.

Essick, R. B. (1990): “An Event-Based Fair Share Scheduler.” In
Proceedings of the Winter 1990 USENIX Conference, pp. 147–162.
USENIX.

Fong, L. L. and M. S. Squillante (1995): “Time-Function Scheduling: A
General Approach to Controllable Resource Management.” Techni-
cal Report RC 20155 (89194). IBM Research Division, T.J. Watson
Research Center, Yorktown Heights, NY 10598.

Hellerstein, J. L. (1993): “Achieving Service Rate Objectives with De-
cay Usage Scheduling.” IEEE Transactions on Software Engineer-
ing, 19:8, pp. 813–825.

Hellerstein, J. L. (2004): “Challenges in Control Engineering of
Computing Systems.” In Proceedings of the 2004 American Control
Conference, vol. 3, pp. 1970– 1979.

74

Hellerstein, J. L., Y. Diao, S. Parekh, and D. M. Tilbury (2005): “Con-
trol Engineering for Computing Systems.” IEEE Control Systems
Magazine, 25:6, pp. 56–68.

Henry, G. J. (1984): “The Fair Share Scheduler.” AT&T Bell Laborato-
ries Technical Journal, 63:8, pp. 1845–1857.

IEEE (1999a): “ANSI/IEEE Std 802.11.”

IEEE (1999b): “IEEE Std 802.11b.”

Kay, J. and P. Lauder (1988): “A fair share scheduler.” Communications
of the ACM, 31:1, pp. 44–55.

Levis, P., N. Lee, M. Welsh, and D. Culler (2003): “TOSSIM: Accu-
rate and Scalable Simulation of Entire TinyOS Applications.” In
Proceedings of the 1st International Conference on Embedded Net-
worked Sensor Systems, pp. 126–137. Los Angeles, CA, USA.

Magnusson, P. S., M. Christensson, J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner (2002):
“Simics: A Full System Simulation Platform.” IEEE Computer,
35:2, pp. 50–58.

Moruzzi, C. and G. Rose (1991): “Watson Share Scheduler.” In Pro-
ceedings of the Fifth Large Installation Systems Administration
Conference (LISA ’91), pp. 129–133. USENIX, San Diego, USA.

NAB (2004): “NAB (Network in A Box).” Home page: http://nab.epfl.ch/.

Nagar, S., R. V. Riel, H. Franke, C. Seetharaman, V. Kashyap, and
H. Zheng (2004): “Improving Linux resource control using CKRM.”
In Proceedings of the 2004 Linux Symposium, vol. 2, pp. 511–524.
Ottawa, Ontario, Canada.

OMNeT++ Community (2004): “OMNeT++ Discrete Event Simula-
tion System.” Home page: http://www.omnetpp.org.

Palopoli, L., L. Abeni, and G. Buttazzo (2000): “Real-time control
system analysis: An integrated approach.” In Proceedings of the
21st IEEE Real-Time Systems Symposium. Orlando, Florida.

75

Chapter 5. Bibliography

Rajkumar, R., K. Juvva, A. Molano, and S. Oikawa (1998): “Resource
kernels: a resource-centric approach to real-time and multimedia
systems.” In Proceedings of the SPIE/ACM Conference on Multi-
media Computing and Networking (MMCN’98), pp. 150–164. San
Jose, CA, USA.

Schiller, J. (2003): Mobile Communications Second Edition. Addisson-
Wesley. ISBN 0 321 12381 6.

Sprunt, B., L. Sha, and J. Lehoczky (1989): “Aperiodic Task Tcheduling
for Hard Real-Time Systems.” Real-Time Systems Journal, 1:1,
pp. 27–60.

Stoica, I. and H. Abdel-Wahab (1995): “Earliest Eligible Virtual Dead-
line First : A Flexible and Accurate Mechanism for Proportional
Share Resource Allocation.” Technical Report. Norfolk, VA, USA.

The Mathworks (2001): Simulink: A Program for Simulating Dynamic
Systems – User’s Guide. The MathWorks Inc., Natick, MA.

The RoboCup Federation (2004): Home page: http://www.robocup.org.
The VINT Project (2004): “The Network Simulator ns-2.” Home page:
http://www.isi.edu/nsnam/ns/index.html.

Tyan, H.-Y. (2002): Design, realization and evaluation of a component-
based compositional software architecture for network simulation.
PhD thesis, Ohio State University.

Waldspurger, C. A. and W. E. Weihl (1995a): “Lottery Scheduling: Flex-
ible Proportional-Share Resource Management.” In First Sympo-
sium on Operating Systems Design and Implementation (OSDI),
pp. 1–11. USENIX Association.

Waldspurger, C. A. and W. E. Weihl (1995b): “Stride Scheduling:
Deterministic Proportional-Share Resource Mangement.” Technical
Report MIT/LCS/TM-528. Massachusetts Institute of Technology,
MIT Laboratory for Computer Science.

Österlind, F. (2006): “A Sensor Network Simulator for the Contiki OS.”
Technical Report T2006-05. SICS – Swedish Institute of Computer
Science.

76

Department of Automatic Control

Lund University
Box 118

SE-221 00 Lund Sweden

Document name
LICENTIATE THESIS
Date of issue
August 2006
Document Number
ISRN LUTFD2/TFRT--3240--SE

Author(s)
Martin Ohlin

Supervisor

Karl-Erik Årzén
Anton Cervin
Johan Eker
Sponsoring organisation

RUNES
Title and subtitle

Feedback Linux Scheduling and a Simulation Tool for Wireless Control

Abstract

Computing systems are becoming more and more complex and powerful. It is nowadays not uncommon
to run several server applications on the same physical platform. This gives rise to a need for resource
reservation techniques, so that administrators may prioritize some tasks, or customers, over others. This
thesis gives an introduction to the Linux kernel 2.6 task scheduler, and scheduling related operating
system concepts such as priority, nice value, interactivity and task states. The thesis also presents an
implementation of a scheduling mechanism, that in a non-intrusive way introduces per task CPU band-
width reservations in the Linux operating system.

The MATLAB/Simulink-based simulator TrueTime is given a short introduction, and the wireless capa-
bilities of the tool are described in more detail. TrueTime is a tool for co-simulation of real-time tasks,
network communication, and continuous-time plant dynamics. The modeling of the common medium ac-
cess control (MAC) layers of IEEE 802.11 and IEEE 802.15.4 is described, along with the radio model
used. TrueTime’s capabilities to simulate local clocks with drift, Dynamic Voltage Scaling, and battery
powered devices are also presented.

Key words

Linux, Scheduling, Feedback Scheduling, Resource Reservation, Simulation Tools

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280–5316
ISBN

Language

English
Number of pages

78
Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library, Box 134, SE-221 00 Lund, Sweden
Fax +46 46 222 42 43 E-mail lub@lub.lu.se

