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STATE ESTIMATION IN POWER NETWORKS I

A literature survey

A.J.M. van Overheek

ABSTRACT,

This report gives the results of a literature study on ztate ;
estimation methods in power networks. First the steady state |
analysis of power networks is treated. From this analysis the
state variables are defined: all complex bus voltages. It is
pointed out that this state definition is different from the

one used in control theory. In the presentation of the methods
a distinction is made between estimatérs for the state at time-
point gconly using the measurements obtained at t, and estima-
tors that also use & priori knowledge about the state. All me-
tho&s proposed for or in actual use belong to the latter'categary.
These methods can be thought of as consisting of three families.
The first two families are directly applying estimation theory,
while the third one makes use of the physical properties of a
power network. Finally one representative of each family is
presented that has prbmising outloocks for further comparison.
The actual comparison and results are the subjects of follewing
papers. '

This work has been done as partizl fullfillment of the require-
mgnts for the Masters Degree in Electrical. Engineering at the
Eindhoven University of Technology, Eindhoven, The Wetherlands.

Y




x,..?..u
2
: CONTENTS,
. rage
1. Introduction. 3
L.l.  The task of a power systemn. 3
1.2. Reasons for state estimation. 4
L.3. Outline of this report. 6
2. ©Steady state analysis in power gystems. 7
; 2+1l.  The network model. 7
1 2.2. The load flow problem, 8
. 2.3, Choice of state variables. a
i - H
E 3. Generalized least squares estimation theory. 11
| 3.1, Introduction. : 1l
: 3.2, BEstimation, general. 11
a2 3.3, Estimates based on y - 11
. 3.4. Estimates based on y &and x. 12
3.5. Statistical interpretations, relations with
filter theory. 13
4. ©State estimation methods in powsy - networks. ' 15
4.1. Introduction. - ~ ' 15
4.2, The measurement equation. : 15
4.3, Estimation methods based on v, only. ~ 17
! 4.4. Estimation methods based on ¥y and a priori
: knowledge of & - 20
: 4.5, Other methods. 25
: 5. Three promising methods for further comparison., 27
| 5.1. Introduction. : 27
5.2. ‘The three methods, 27
5.3. Estimated computing times per iteration. 23
6. References, ' 30

Appendix;: Relationships between measurement and state
variables. 33




1. INTRODUCTION.

~1.1. The task of a power system.,

When we talk about an electric power system, or power sys-
‘tem for short, we mean the whole complex of plants, installstions,
'and apparatus necessary to produce, tvransport and distribute the

- demanded electric energy to all customers. The task of such a
.power sytem can be formulated as follows:

An electric power system must supply the varving active
and reactive power demanded by consumers with satisfac-
tory continuity and quality of service at a minimum price.

How do three elements in this definition, supply varying*
demand and guality, look like in reality ?

The electricity is preduced in generators driven by tur-
bines.. ‘These can either be steam~, water-, or gasturbines.

The majority of the turbines in the world are steamturbines.

400 to 600 MW is a normal capacity for.a modern generator driven
by a steamturbine. Heat sources for producing the necesarry
steam can be coal, gas,;oll or a nuclear reactor. To distinguish
s£eam plants from hydro power plants they are also édlled thermal
power plants. . Gastuz cbines have a much smallex capacity and are
used for fast stand-by and peak loads.

Plants will be located on sites with, for thermal plants,
sufficient coodling water available or with favorable terrain
conditions for hydro power plants. Usually these places differ
from the ones where the load is concentrated: cities, indus-~
trial areas.’ Tﬁerefore it is necessary to transport large quan-
tities of electric energy from fhe production to the consumption
centers. There we'll have to distribute these large quantities
to all individual éustomers. The means in use to do this are
the transmission and distribution networks congisting of cables,
air lines, switching centers and transformers. These networks
operate at several hierachical voltage levels. The transmission
network, taking care of the bulk transports, has the highest
level, This voltage level is 400 to 800 kV{!) for the AC BYS~—
tems of today. In some cases High Voltage.DC {AVDC) is used for
bulk transportation.




The load variation, the second element in our formulation,
éan be about a factor two or more: the maximum load occurring
guring the early morning hours is about twice as large as the
minimum load during the night. Of course this is dependent on
Cthe time of year and the geographical location. A power system
;must have sufficient production and transportation capacity to
fmeet this maxinum demand. )

An annoyving thing is that there is almost no way to store
“energy in the system. The demand has to be met instatanecusly.
-when the demand is varving the prsﬁucti@a must follow these '

L]

variations. The largest variation takes place in the morning ¢
when within a few hours the demand goed from minimum to maximum.
The system must be able to follow this rise while maintaining
the required guality, the third element of.our_definition.

This quality has to do with the freguency in the system
and the voltage level and form at the customers. - The frequen-
cy is maintained within very close limits: 50 + 0.01 Hz (60 +
0.0% Hz for e.g. USA,Canada), while the voltage level is allo-
wed to have larger variations: wup to 10 %.

1.2, Reasons for state estimation.

The last element in our 6efini£ion says that all of this
has to be done at a minimum cost. Certain production units will
be cheaper than others, cérﬁain lineg will have higher losses
than others. All of this has to be taken into account when de-
ciding which part of the load is going to be produced where.
This is the problem of load dispatch.

Now we'll first make a little excursion into the field of
calculations. When we loock on a timescale of minutes the demand
is varying very slowly. For calculation purposes it is possible
to assume that the network is in steady state. By deoingso we
disregard for example the energy that is stored in the genera-
tors as rotating and magnetic snergy.

From here on we will hainly be concerned with the trans-
mission network. The terms. network and system.are used inter-
changeably. The power plants are just sources of active and




freactive power and the load is lumped into loads concentrated
‘at the main switching centers.

Steady state analysis 1s used in calculations for security
fpuxpases: e,g. how far is this line from its load limit ? what
- will happen with this line when an other one goes out of servi-
ce 7, and in calculations concerning load dispatch.

| In.-the 1350's, with the advent of the computer, a numnber
of algorithms for off line use &ere developed to solve the so
éalled load flow problem: how much energy is flowing in each

tine given this demand and this production schedule., With this -

¥

problem solved one c¢an calculate é;g¢ the line losses necesgary ¢

in solving economic load dispatch problems. But let us go back
to the reasong for state estimation. _

Sipnce the last century we have seen a doubling of the total
demand every ten years. This has lead to ever increasing sizes
of production units and to larger transmission networks opera-
t£ing at higher véltéges and superimposed on the old ones. 'The
whole system is getting more and more complegx. It is of increa-
sing im?ortanée to know the situation in the system at this mo-
ment for security reasons, dispatch purposes and 1ocal-péwer
plant control strategies. |

The first steps to obtain this goal, the knowledge of the
| spresent situation or state of the system,were made by incorpo-
rating real time measurements in existing. load flow algorithms,
This proved to be unreliable, mainly because just as mény mea=- .

surements with their inherent uncertainties were used as there

i

were state variables to determine. 8o one turned to other methods

using more measurements to diminish the uncertainty in the know-
ledge of the state of the system.

The remainder of this report will be concerned with these
last methods: state estimation methods. There are but a few
state estimation methods tested in actual on line operation
/16,20/x§, Three stages are suggested in the on- line application
of an estimation algortihm or estimator. 1) use the estimator
to obtain a reliable data base. 2} use this base for on line

%) see chapter 6: References.




security monitoring. 3) use this base for on line control.

- 311 reported applications are in the first and second stage.

1.3, Outline of this ryeport,

This report gives a review of the proposed methods as I
found them in the literature. The analysig of the power sys-
rem in steady state including the load flow problem ig the sub-
ject of chapter 2. As a result-of this analysis the state vari-
ables are defined. Before the presentation of the methods in
chapter 4 & few general formula's will be derived from genera-
lized least sguares estimation theory in chapter 3. Both in
chapter 3 and 4 a distinction is made between methods using on-
1y the information from the measurements and methods using a
priori knowledge., The methods presented in chapter 4 can also
be divided into three families. The first two families apply
egtimation theory directly. The first one uses batch processing
of measurements, while the second one uses sequential measure-
ment processing. In the third family use is made of the almost
linear relation between the vomplex voltage difference across
a line and the power flow in that line. 1In chapter 5 one repre-
sentative of each family is presented that looks promising fox
further comparison.
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2. STEADY STATE ANALYSIS IN POWER SYSTEMS.

2.1. The network model.

To obtain a mathematical model of the power network it is
assumed that all three phase voltages and currents are symmetric.
- As @ consequence of this assumption we only have to consider
single phase values. That is why we can use the same model as
in network theory consisting of nodes connected by branches.

In our model we have one ground node. All other nodes can
be identified with buses in the real network. A branch between
- two nodes corresponds to the line(s) and/or cable(s) between the;

two corresponding buses. Such a branch is modelled by a I-gec~
tion (Fig., 2.1}).

¥

Pba %a _ Zab ! series Impedance
%a - Yaa %b ¢ shunt admittances

+ {% [k : node voltages
.Eb % Iab %a : line curx':ents '
Pab Pba : active line flows

reactive line flows

= C%bg%a

Fig. 2,1: Branch in network model.

- The series impedance %ﬂ; = %ﬁz + j%ﬂ) consists of conductor resis-
tance~(%ﬂ9 and inductance (X, > 0). The shunt admittances, . =

G, 7 j%ﬁl and Yp = %ﬁa + j%ﬂ) are lumped from the distributed
- a@mittance between line and ground. Usually these admittances are
purely capacitive (%ﬁi :'qﬁ) = { and B > O,Qﬂ} > 0}, For air
lines these shunt admittances are about a factor 102 gmaller
than the serdies admittance (?/ZI)) A,consequence of our assump-
tions is that all results will have per phase values. The element
values for the branches must also be single phase.

The variables we are interested in are summarized in table
2.1, Thg load flow problem is treated in the next section because
it is both an example of steady state analysis and it gives a
good introduction to the choice of state variables. We want to
determine all the variables of interest of table 2.1 given a cer-
tain load and generation pattern,




At each bus {(nodel:

i Voltage magnitude
Voltage angle

Real dgenerated power
Reactive generated powerx
Real power demand

i  Reactive power demand

Complex voltage: U = Veja

ACRIR™ o <

¥

For each line (branch):

I, I ¢ Complex line current from A to B (B to A) at
ab ha
node A{B)
z;bz>a: Real line flow from & o B (B to A) at node A{B) -
&bcta Bgactive line flow from A to B (B to A) at

node A{B)
Table 2.1: The variables of interest.

For each node we have two real equations: the active and
‘reacti§é power balance. However, we have six variables: V,S,%;,
%;'%i'%i' At each bus we have to specify four of them to solve
our problem.

Let us first look to the variables of tabie 2.1 in mére de-
tall. When we know all node voltages it is possible to compute
all line currents and flows. An addition of a fixed amount to
each § does not change the solution. It is just a rotation of
our chosen coordinates. So we'll have to choose at least one &
as reference. When we look to the problem from an operations
point of view we can say that %i and zi are always given. a}
and Q; can be influenced by turbine and excitation regulation
respectlvely

2.2, The load flow problen..

In the actual solution of the load flow problem the deman-
ded and generated at a bus are lumped together into the smo called
Abus pOwer: Sam P+ j% where P = P - and Qa Qg . Now
we'll have to choose two of foul varlables to solve our problem. -

" For physical reasons (see e.g. /1/) P is mostly dependent on §
and gﬁon V. Therefore we choose only one variabié out of the
group %a'a and one out of gi,v. This gives four possibilities,
corresponding to the following bus types:

Type l: giand gigiven. The solution gives V and §.




This is a load bus. All buses with no generation (%1= =P

Q=

pype 2t giand V given. The gcolution gives %iand §.

i belong to this category.

This is a generator bus. For most generators the reactive

generation is determinéd by the automatic voltage control.

Type 3: V and § given. The solution gives %a and %in
This is our reference bug., %iand‘%ihave to cover the line
losses. These are unknown bheforehand. Therefore this bus
ig also called slack or swing bus.

Type 43 giané § given. The solution give %g and V. .
This is an angle reference bus. It can be used together
with a type 2 bus as an alternative to a type 3 bus.

In most problems there are type 1 and 2 buses with one type 3

bus as:refefeﬁce bus. The actual non linear eguations are sol-

ved for the voltages (V and &) by means of sone itcratlve method,

e.gs Newiton-Raphson or Gauss-8Seidel /1,2/.

From this example we see that with the knowledge of'all nodé
voltages we can compute the complete power flow in the network.
From the node voltages we can calculate the line currents and
line flows. With all line flows known we can calonlate the net
power injected at each bus, the bus power, by using the pover
balance equation.

2.3. Choice of state variables.

The state of a power system can be defined as:

the minimum set of variables necesarry to compute all
the other variables of interest in the network, given
the network structure, network parameters and load
characteristics,

From the previous section it will be clear that the node
voltages form such a set. 8o for a network with N buses we have
2N - 1 state variables: the N voltage magnitudes V and the N - 1
- angles 6. We'll have to define one voltage angle as reference
{see previous section). An alternative way to répresent the com-
plex voltages is in rectangular coordinates: U = e + iE.

As state variables we then have the N e's and ¥~ 1 f£'s.
When we drop the minishum in the definition it is possible to




_lﬁm,

form a different set of state variables: all complex line vol-
tages plus at least one node voltage as reference to establish
+he voltage level in the aystem. This is of interest Ior one
of the methods to be pressented. But in the remainder of this
paper we will stay with our set of nodal voltages.

One thing that should be stressed here, is that at the basis
of this state definition lies our steady state assumptilon.
This state does not give sufficient information to compute future
states when system dymanics are involved. ALl the estimators
to be presented want to estimate the above defined steady stateg
When they are following this slowly changing state in time they ©
are sometimes called dynamic estimators or even dynamic static
state estimators. This can be very confusing. A& better word
is maybe a tracking estimator: it keeps track of the slowly
changing steady state.
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3. GENERALIZED LEAST SQUARES ESTIMATION THEORY.

3.1. Introduction,

In this chapter a few general formula®s, or better said
first order approximations, will be derived from dgeneralized
least squares theory /6/. These formula's will be used in the
next chaptexr with the presentation of the different estimation
methods. Before we ¢o on, first some definitions.

Y ¢ vector of measurements (real), ' dimension m
# i state vector (real}, dimension ?'
% ¢ estimated state vector or estimate {real),dimension n.
‘,.T: transpose of a vector or matrix.

Table 3.1: Some definitions.

3.2. Estimation,general.

The basis of estimation theory is the measuremenﬁ equation:

y = gix) + e (3-1)
The values we obtain from our measurement instruments woh't be
exact. This is represented by the error vector e. The rela-
tionship between the exact or true values of the measurements and
the state vector x is in general a non linear vector function g.
In estimation we want to determine an estimate % from our m noisy
measurements which is best in some sense., We can distinguish
two kinds of estimates: estimates based on y and estimates based
on y and a priori knowledge of the estimate: X. It will be shown
that the latter is a special‘case‘of the former.

3.3, Estimates based on y.

Here “best in some sense" is defined as: % is that value of
% which minimizes the scalar criterion or loss function J.

3= {y -~ 9x) Wiy - g(x} (3~2)
Note that x is not the actual state but the variabel with respect
to which J has to be minimized given y and the function g.
W in 3-2 is a m x m weighting matrix. A large value of %j‘means
that we have much confidence in the value of the i-th measure-
ment. In section 3.5. statistical interpretations of this

weighting matrix will beé treated. Putting the off diagonal ele-




ments egual to zero meang that we assume no cross coupllng betwee
the measurements, It is possible to look upon J as a we;ghted
error. For the minimum value of J the gradient with respect to
x will be equal to 0.

ad

s

ax

i

~2@0u{y - 9(x)} =

3-3
vy (%) ( )
with G(gg) =R Tk o= x
- =
G(éﬂ} is a m ¥ n matrix: the Jacobilan,

when we lineavize equation 3-3 around & point Eo we'll get:

Gtz Wy = olx) - 6(x ) x - 200 (3-4)
In 3-4 g{x) from 3-3 is approximated by its first order Taylor
expansion around 50; This gives a first order approximation of

our estdimate given y and E,

.“1 e - -
g = x + (X 2 WG (x ) GH&O}W{X - glx )} ' (3-5)

—

3.4, Estimates based on y and X.

If we have g, an a priori value for our estimate, we can in-

corporate this in our criterion function:

5= {y - e@}W {y - e} + (&~ x}'W (X - =} (3-6)
Wl is the same weéiaghting matrix as W in section 3.3, With the
weighting matrix W, we can express the confidence we have in
our a priori estimate X. This problem can be brought back to
the problem of the previous section by considering the a priori
value of our estimate as extra measurements. We can define:

Y . {a(x) wio G(x)
y' o=l gt (x) =l W= R 6T () = (3-7)

X X
substitution of these variables in 3-6 gives:

— mcaa

1
2= x +(C5°€§_O>WIG(.}£G> t W) (&ﬁ.omlﬁt ~glx )}

_ (3-8)
+w {x - %;1)

By adding and subtracting G(x Y% - xn}the expression in the
ol BT 2

last pair of brackets of 3~6'can be written as:




o Fe

Ty YW {y ~ + W% - -
Gl(gga)‘ll.z glx )} + W% - x )

i

é%EQ)WX{G(EO){§ - §G} Tty - g(éo) - G(gg){g - 59)} +

W {x =~ x ) o=
z 0

it

(&ﬁ)WG@} +w}@§“§}%-&§}w{ghgﬂ§)“
o 1 o 2 0 ¢ 1 0
- G(g":{}}{g - ;50}} {3~9)

Substitution of 3-9 in 3-8 gives the result:

fod

= 3 CE[. - -1 = &F -
£+ (Cx )W e(x) +w ) é['(ﬁg)w]{g gx)

- G(g{_p){;i - §0}} (3-10)

Because 3-10 is derived as a special case of 3-5 we obtain the
cerm y - glx) - G(éﬂ){g - x i. This term can be seen as a first
order approximation of y - g(®). The matrix to be inverted,
éTW G + w , has dimension n % n. For some applications it is
useful to have 3-10 in a form which involves the inversion of

a m x m matrix, for example when we want to use this formula for
processing single measuvements {(m = 1). This can be done by

applying the matrix inversion lemma:

g%+ u Sx ) (e W dlx oy +w )y - gtz ) -
2 0 0 2 0 1 0

- Gl J{% = % ] (3-11
Gix Mz - ¥ 1} )

3.5, Statistical interpretations, relations with filter theory.

For the derivation of formula'é 3-5,3=-10 and 3-11 we didn't
make any assumptions concern%ng_the statistics of the process.
This section:wants to give some interpretations if we do know
something about the statistics of our process.

If we know that the error ¢ is a zero mean random vector with
covariance R then it is possible to determine the covariance of
the estimation error P, = Efi{x - x}Hx - x} } E is the expecta-

.tlon operator. In the linear case g(x) = Gx where G is a con-
stant matrix. 'Then formula 3-5 becomes:
-1 .
= (G ws)” & wy . (3-12)
Then P, is:

b4

——




v b

Py (& we)” & urwe (Fwe) ™ (3-13)
if ; is chosen to bhe Rhl then 3=13 simplifies to:

b, = (Erle) | (3-14)
Theméhoice W = le means’ that the larger the uncertainty of a

;
i
i
[
S
i
i

measuremant {large element in R) the smaller the weight we place
on the measurement. It can be shown that this cholce gives the

minimum mean sguare error in the estimate of all linear unbiased

estimates.

In practice R will contain off diagonal terms. Voltage and
power meagurenments make use of the same voltage transformer or
the same commﬁnication channel, for example. For calculation
purposes W is in most cases assumed to be diagonal. Egquation
3-13 tells us something about the quality of the estimate in that
case.

For the linear case equation 3~10 is:

— w1 —
2 =%+ (¢ WG kW) GTwl{X - G¥) (3-15)
wl -1 ‘
By choosing W = R and W = P§ , Where P; is the covariance

1 : 2 X - .
of the a priori estimation errot B{{x - x}{ x ~ E}T}, the in-
verse of W' from equation 3-7 is egual to the covariance of the
extended observation error. Then it follows from 3-14 and 3-7

that: . L _
Py = ("¢ + Pg" | | (3-16)

! This can also be written asi
Py = Py - ,ygé? [spgépdr r)” epy . (3-17)

—o—

Till here we have only talked about first and second order
moments. When we assume Gaussian denéities, which are completely
R specified by their first and second order momenté, the mininum
| mean square estimate ig also the maximum likelihood estimate.

In that case the guantity y -~ Gg in equation 3~15 is independent
from E. . This quéﬁtity, the innovation, contains the new infor-
mation about the estimate.
The results in this section were derived for the linear case.
They can also be derived from linear filtering theory /3,4,5/.
- For correzsponding results in the non linear caée see /4,6/.
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4. STATE ESTIMATION METHODS IN POWER NETWORKS.

4.1. Introduction.

We start again with the measurement squation ¥ = g{x) + e
The next section deals with questionsass: -~what kind of measure-
ments are available in power networks ?, -~what is the vector
function g(x) 2, -how does G{x) look like 7, - How do we form
our welghting matrix W ? The néasurements will be available at
discrete points in time. BEvery . ve will have a nev meas?remegt
veetor ¢ = y(t ). We can divide the estimation methods in two;
‘classes. Class 1, treated in section 4.3., consists of methods
in which the estimate Ek of the state at %{is only based on zﬁse
the measurements obtained at t . In the methods of class 2, th
subject of section 4.4., also some form of .a priori knowledge
about the estimate is taken into account. Most of the methods
used in or proposed for practical applications belong to class 2.
By means of this distinction it is easier to explain some of the
properties of the proposed methods. In the following table some
subscripts are defined which will be used in the formula's of
this chapter,
time argument.
iteration counter for iterative methods.

measurement counter: y, is the j-+h measurement of
the vector y. J

Table 4.1: Subscripts.

b
(Y o h LT ]

4.2. The measurement equation,

The following measurements are used in power networks:

type measurement

Voltage magnitude at a bus.

line current magnitude at a line terminal.
active line flow at a line terminal.
reactive line flow at a line terminal.
net injected active power at a bus.

net injected reactive power at a bus.

U e L N et

Table 4.2: Measurements in power networks.

e
The measurements of type 5 and 6§ can be considered as a heritag
of the load flow problem from chapter 2, They can also be con-




~ G

sidered as composite measurements., The net injected power at
a bus 1s the sum of all owtgoing line flows. Usually the mea-
surements are telemetered to the operations center where they
are further processed. When there is not sufficient transmis-—
gion capacity available it is possible to lump the line flow
measuranments into injection measurements.

The explicit relationships necessary to compute g(x) and
G{x) are given in the appendix for both the rectangulax and the
polar representation of the state vector. Before an estimation
algorithm can use these relationshi?s it must know the topolo-
gy of the network and all the element values given in fig. 2.1
for all branches, ' A

One thing that must be stressed is that the matrix ¢ will
be extremely sparse, . When there are N buses and m measurements
G will have dimension m x {2N - 1), N can be of the order of
50 or more while m usually is about 1.2 to 1.5 larger as the
number of state variables. The guotient number of measurements/
number of state variables is the redundancy of the measurement
gystem. It should be larger than one, otherwise it does not
make much sense to apply estimation methods (see chapter 1).
It is very easy to understand why G 1s s0 sparse. For type 1
measurements only the two elements which have to do with the
voltage at that bus are not equal to zero. For. the measurements
of type 2,3, and 4 only the four elements that have to do with
the voltages of the two buses the branch is connecting are not
equal to zexro. For the measurements of type 5 and 6 the only
non zero elements are the elements that have to do with the
voltage of the bus itself and with the voltages of the buses to
which that bus is directly connected by a branch. It is very
important to exploit this sparsity in the calculations in order
to save computing time.

The last element of the measurement equation, the error e,
can be modelled as:

gj= {a(full scale value) + g(reading)}% . (4-1)

where'% is a random variable N(0,1}. The coefficient g represents
the fixed errors of transducers, A/D converters, transmission
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channels, etc., while § corresponds to the reading dependent

errore. For power and injection measurements (types 3,4,5,6)

¢ and B are of the order 0.01. For voltage and current measure-
ments 8 is usually set equal to zero., 8 has to do with the watt
and var transducers that are used for powér measuremants.
Except for this random component there can also be a constant bias
component in the error. If a large bias is suspected, this bias
may also be estimated. We can éhoase the weighting factor for
the j~th measurement (diagonal W matrix) as: )
gki: {0 {full scale value) + B(reading}]m (4-2)

4.3. IEstimation methods based on Vi only.
£}

The first method is just a straight forward app11catlon of
formula®3~5, We start in some point 5} o and obtain a first order
2

approximation of the estimate & Using this pcint as our

mkf l‘
new reference point we do a new estimate, etc. till we converge

to some point: . our estimate gkﬁ The formula for this iterative
method is:

= . T ' _ A .
B, 500 = B,y v Sy e, ) de puly - g, )} aed)

This ié just a steepest descént method. In each iteration we
calculate the gradient of the loss function in the laszt obtained
point and go in the negative direction of the giadienﬁ to obtain
our new estimate. The gain factor is [é&gkyi)WG(gk'i)]ul.

when we choose W = R then this gain is equal to the first order
approkimation of the covarlance of the estimation error (2 k,i %).
In the implementation of 4-3 we make use of the facts that

é%G is a sparse, symmetric, positive definlte matrix. We solve
the system of linear equations:

= d(x

(éﬂﬁk,i)WG(ﬁ e B, 18 i (4-1)

k.1 §k,i+l

With A% 5e1 = a0 7 R 0 Maa T ¥y T 9 y)

by means of g matrix squafe root method. 'The sparsity can be
exploited in the updating of é%G and é%. .
There are several ‘simplifications possible to reduce the
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computational effort. These can all be interpreted as different

choices of the gain factor in the steepest descent method.

~ po not compute a new gain factor at each iteration but keep
it constant after one or a few iterations. For the matrix
sguare root method this means rhat we use the sane trianguw
larized version of é%é during the remainder of the iterations,
rhis gives a very large reduction in computing time (see chap-
ter 5.

— Tgke only the diagonal elements of é&G through the iterations.
put the off diagonal elements egqual to zZero.

- Hold the diagonal elements congéant after a few iterations. )
The off diagonal elements are put equal to zero.

. Make use of the fact that the real power 1s mostly dependent
on & and the reactive power on V /1/. In this Way‘@e can
write é%G as a block diagonal matrix and split the problem
into two problems of lower dimension. Note that this is
not possible when there are line current measurements in
y (compare equations A~45 till A-48 in the appendix) .

A1l these simplifications will increase the numbexr of iterations,

but each iteration takes less time as one iteration of type 4-3.

primary references for this method: /9,10,11,24/. Also: /1,8,13,

17.2%1/.

The method of formula 4-3 may be classified as batch pro-
cessing of the measurements. Tp 4-5 the formula's are given for
+he sequential processing of the measurements. If W is a dia-
gonal matrix then, after processing all m measurements, the
result will be exactly equal, to the result obtained by batch

processing. First some definitions:

gfg) measurement function for the j-th measurement if

3qix)
gfﬁ y= 5% §F£0: the j~th row of G(EO}.
%.j weighting factor for the j-th measurement (scalar).
[
W, . weighting matrix for the a priori estimate when pro-
¥

cessing the j+l-st measurement (n * n matrix) .
mable 4,3: Definitions for seguential measurement processing.

With these definitions we have the following set of formula's
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to obtain 3kfi+1 Lrom gk,i;
2, 341 :ng,j FRgl%, e %ﬂ{»k i 3+3{ﬁ }{%k,,g R
KT, GL+1 LA C e 1”‘7?3&1(3}:, b T"L;a—z)
. -1 (4--5)
B, 541~ "%,j“ K1 GaB, 0W 5
~1
with kk 0 = Ek,i fi%'oz kI (k large)

If Win 4-3 is a diagonal matrix then é&G can be written as :

%'V\LlGl** %&%5262+ ses s G;gw G . By repeatedly applying ‘,.

1l,mwm
the matrix inversion lemma on the in this way written matrix

é%@ it is possible to derive 4~5 from 4-3. See also /5/. From
this derivation it follows directly that %Z(}" 9. Then %£13 is
infinite. In practice this is approximated by choosing %this
matrix to be a diagonal fatrix with large diagonal elements.
Note th6151mllarity of 4~5 thh 3-11 and 3-17 with x = %

=k;3
Xg < __]\ pr Vo= Vﬁ,j and P, Wz 41 We can interpret %, , as

the esblma§e obtained after using the information of 3 meiégre~
ments., ?5,j+1is then the covariance of the estimation error
after processing j + 1 measurements. This is egual to the co-
variance of the a priori ?stimatioﬁgerror when processing the

3 + 2-nd measurement, ?5'013 infinite means that we donlt know
anything about the a priori estimate before processing the first
measurement. Thig is exactly the same as in 4~3. We only use
the information of the measurements obtained at %{.

When we interpret §k,j as.the estimate after processing j
measurements we c¢an ask ourselves: wouldn't it be better to re-
linearize at our new estimate as soon-as we have it available.
in other words, relinearize after each measurement. When we do
this we get in the i + l-st iteration (cf, 3~11 with % = %

}

r 7

Be,q41 = B4 X 1{3% 341 7 Gl 5t H

...1
KJ WZJJ:J*- ‘*k:Zl (3+l(~—k i % J%—H =k, J) * Vi;:u-*ﬁ

341 %, 5 B 3+1{~k,3)wz 3

with 2y o = Xy 4 ¢ “5 0=

(4-6)

= kI (k large)
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A disadvantage seems to be the updating of g and G with every mea-
gsurement, but only the elements that have to do with the j-+ l-st
measurement need updating. What becomes important with this
method is the order of measurement processing. The ordering of
the measurements should be such that each following measurement
contains as much new information about the estimate as possible.
Algo for this method simplifications are proposed. These

all have to do with the choice of the weighting matrix W,

- Diagonalize W;la This gives a considerabel saving in the
uypdating of %; a?d the evaluation of K. y!
. g
- Uage.,a constant @2 - This only eliminates the updating oft% o

Try the computation of K we still have o handle the complete
m*X mmatrix. K
- Use a,constant diagona; %Z . .
All these simplifications mean that we place less and/or wrong
weights on the a priori estimate gk,j'
promising for practical application.
Primary references for this method: /13,14,15/. Also: /7,11,21,22/.
This concludes the description of the estimation methods
hased on ¥y only. The two presented methods, the iterative method

with batch processing and the method with sequential processing

The first one ig the most

and relinearization after each measurement will be extended in
the next section.

4.4, Estimation methods based on Yy and a priori knowledge of gk'

The first three methods of this section can be seen as an
extension of the ones presented in the previous section, The
last method is different froﬁ all others. It makes use of the
fact that the relation between line flows and line voltages {line
voltage = the veoltage difference across a line) is much more 1li-
near than the rela%ion between line flows and bus voltages. All
methods of this section make use of the fact that the state is
changing slowly by putting as an initial estimate for Rt
§k+l = gk, Also in this sectionlthe inverse of the wéighting
matrix ﬁzwill be called P and ﬂ_ will be called R. Only in spe-
cial cases this P, respectively R, matrix may be interpreted as
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the covariance matrix of the a priori estimation error, respec-

tively measurement ervror.
The first method is just the batch method of 4~3. We start

with §+ as our initial estimathe for L and hope that one ite-
ration will be sufficient to obtain our new estimate:

4y 1 _ml 1 ?

gk-%l B g}{ * (Géﬁk)R G(Ek)] G?[I(E}.C)R hik%*l . g(i{.}{)} (4~7)

Compare this with 3-10 with E = Ky = gk and %}z 0. Also here we

can keep GWG constant. Here constant means constant during a '
certain period of time. For example calculate a new estimate |
every 30 seconds and a new triangularized version of é?RM G
every 20 minutes. Note that the right-hand side of equation 4-4
is recomputed at every %{ & decision for relinearizatjcn can
be based on the value of the loss function 3-2 and/or on the
distance between the current estimate and the linearization point., -
0f course it is possible to iterate the same neasurement set
more than once, especially when we relinearize. Compare this
with the iterated extended Kalman filter /4/.

It is possible to formulate a sequential version—of 4-7

making use of either 4-5 or 4-6. Uping 4~5 gives:

Epal, 441 ~ Zxa1,49 ¥ K;;+1{5§{+1,j+1"" g(»’5}«:44,;’;}}

' 1
SR RECTE R G?ﬂ(-%k) t R
' (4-8)
Bl = BT Ky G800
with ﬁk+l o = %, » By= kI (k'large)
In the second method we choose X of 3+10 as g, and P as

=k k
the weighting matrix for our a priori estimate. This gives:

T g T S T 1 ,
B = Bt CEIRT G + 57 )T CRIRT (g, -

(4-9)

The 56quentia1 version of 4-3 is the same as 4-8 only with
Eﬁ+l,0$ %ﬁ. Also for this sequential metheod the simplifications
described in the previous section: diagonal P, constant P, and
constant diagonal P, aré possible. A problem with this method
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is that PHlf or [éDR“1G + Pné)mI from 4-9, tends to become singu-
lar. This is caused by putting to much weight on the a priori
estimate.

The previous two methods can be considered as special casges
of the third wmethod. This method makes use of the following
"model"” for the state: '

Zppy T E Ty (4-10)

Yy is a random vector with zeré mean and covariance q{. This
model gives gk as- the expected value for §k+l and %{+ q{ as the
a priori expected value for Ik+l‘
With these values 3~11 becomes:

Beer = 2 * Kol - 9tg]
-1

Ko7 (B ngT;gk) (e(x,) (B + q)6tz,) + ) © (4-11)
Bap™ (B+q) - Bea1 G800 (B + )

Q can be looked upon as a kind of memory measure. The larger @,
the larger the covariance of the state noise, the less important

the value of 2, 1s 1in the evalvation of % The two extreme

cases Q = 0 and Q = » correspond to 4-7 ai314~9 respectively.
Compare this with what is said after equation 4-5,
Usually Q will be chosen to be a diagonal matrix., It remains
a problem to determine good values for the elements of Q. They
must have something to do with the maximum rate of change of
the state. An other way to look at Q is as artificially intro-
duced noise in the previous method to prevent P from getting
singular. Then Q should be determined experimentally.

The sequential version of this method with relinearization
after each measurement is given below:

Bp+1,9+1 = Bpai, 5 * Ber, 3410 %41, 541 ™ 984,50}

Ber1, 9417 Bear, 5 é;u(f‘-kﬂ,j) (§110841, 39801, 5 gjl-i-l(—%};ﬁ-l,j) *
R
(4-12)

Rk, 341 T K1,y T forl, 341 G119 %1, 5

With &i1,0 = B ¢ Byp, 0= Bt &
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Also here the constant ¥, diagonal P, and constan£ diagonal P
variations are possible. The versdon with diagonal P is one of
+he mehhods in actual use /15,16/. -
references for the first method 4-7 are: /9,10,11,12/and/34/.
primary references for the second method are/13,14/and the
already mentioned/15/and/16/. Also:/7,11,21,22, 23,25/,

- The last method of this section is also a method that is
in use now./20/. As caid beforé this method builds on the almost
linear relation between line voltage and line flow. The com-

plex line flow %ﬁ}= %1 * jgﬂ)(see fig. 2.1) is equal to:

5, = Byt 39" u i

ab a "ab
®x . : . ; 3 -~
(@ - P~ (x: complex conjugate) (4~13)
= |- YO U
% aa a
¥ ab

U appearg quadratic in 4- 13 while U - q} ,the line voltage, ap-
pears linearly. Further we have to realize that with a change
in the state of the power network the. proceéntual change of the
1ine voltage will be much larger than the procentual change in
the bus voltage. This method uses only line flow and at least
one voltage measurement for references purposes. From the

1ine flow measurements{it is assumed that both real and reactive
1ine flow are available)} new measurement variables are calcu~
jated: . the line voltages. These new measurenents are used to
estimate the state variables. Since the new measurements are
dependent on the state variables the estimate has to be obtained
in an iterative way.

We start with our original loss function:

J =y w‘g(g}}XTw{g - g(x}} (W diagonal) (4-14)
Note that the scalar loss function is defined for complex mea-
surements. When we call our new measurements 2z and our new
measurement function g'({x) then we can write the loss function as:

3= {z -~ g @iz - ¢ @Y} . (4-15)
what is the new weighting matrix D ?
First of all the relation between the line voltages and the bus
voltages is linear:

g'(x) = Ax - | (4-16)
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The relation between y and z (see 4-13) is in vector Form:

A S )
U (4~17)
with H = sl g 43 1 matrix, k, =%, .Y U
L E%b,j ’ diagona atrix, 4 b, 3 aa,j Y

giis the bus voltage at the line terminal where we take our line
flow measurement. From 4-17 we can formulate the relationship
between g{x) and g'(x):

)x

+ k) (4-18)

g({x} = Hﬁ(g'ig
Substitution of 4-17 and 4-18 in 4-14 gives:

i

Hz - o' @} a2 - ¢ x)*)

{z = 9" o T {z ~ g ()}

J
(4-19)

fl

Because W is a diagonal matrix D is also a diagonal matrix:

1, 2

S ——

Z

sz W,
ab,j

(420}

Now the assumption is made that D is constant. For que use the
nominal value. Here we make use of the relatively small changes
in bus voltages that occur under normal operation.

The relation between z and y is:

z = H Xﬁ - k or in component form:
A . . {4-21)
57 “%LL 5 %b,i%a,i %
gince it is impossible to determine the bus voltages when we only
know the differences between the bus voltages we need at least
one voltage measurement fo establish +the voltage level in our
system. This is ogtained bﬁ splitting g'(x) = Ax in:
Ax = A E_+ BE {4-22)
s g =g ol
gg s our vector with known reference voltages {usually one).
E is the vector of unknown voltages we want to estimate. With

these formula's we can state our estimation problem As mini-

‘mize J with respect to E

- - - T - X . -
9 ={z - BB, - BE}'D{z - A E_ - BE} (4-23)

The solution is the linear least squares estimate of 3-15:
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~ R N \
E = (g?Dﬁl B ofz ~ %}gg} (4-24)

Note that B is only dependent on the network structure and only
contains elements that are either 1 ox 0. g?DB can be saved

in triangularized form as long as the topology of the network
does not change!l

o obtain our estimate at § from the one at g{ we can now

_ K+l
formulate the following iterative method:

_1 .
Zqy, il o kel a1 Tl

Bpai,is

~ Kyag,i41

1
{5 - . "
kg?DB) g?D{Ek+l,i+l %Iég}

Eri

0 o ! | J—_4
w1, 141 (gk-%-}_ i+l éE—Pg)

with &, o = 3¢ (4-25)
1

E%ﬁ;,i+1ls a.ﬁlaQOﬁal matrix with elements:

?%b;j
X1, 141,

is a vector with eleménts:

Hoe1,i41,3 "

Ek+1}i+l

Ker1, 141,39 Zab,d ma,d ktl,i41,3

One can say that this method exploits the special properties
of power networks. It is also possible to look at this method
ag a change of state variables as opposed to a change of measure~
ment variables. The calculation of +he old state variables (bus
voltages) from the new ones (1ine voltages plus one reference
voltage) includes the use of pseudo inverses. This probably
leads to the same formula's. This method could also have been
treated in section 4.3. Since it is 8O different from the other
presented methods and since it uses %, as initital estimate for

k

3y+1 just like the first method of this section it was preferred
to treat it here,

References for this method: /18,19/and/ 20/,

4.5, Other methods.

of course it is possible to formulate still many more methods.
211 the methods presented use a first order approximation of the
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loss function, One can think of a Fletcher-Powell method using
two terms in the Taylor expansion of J or of some random search
method based directly on the loss function, Also one can try
to do real dynsmic estimation, But all these other methods’

run into difficulties when we try to implement them due to the
high dimensionality and/or the non linear nature of the problem.
The presented methods are a representative sample of the ideas
on state estimation in power networks as I found them in the

literature.




5. THREE PROMISING METHODS FOR FURTHER COMPARISON.

5.1, Introduction.

The methods presented in chapter 4 can be divided into three
families. The first and second family consist of methods based
directly on the estimation methods presented in chapter 3. In
the first family batch progessing of measuvements is used while
in the second family the measurements are processed sequentially.
The third family makes use of the physical behavior of power
networks. It consists in fact of one member: the line flow men
thod. . 1

If we want to choose one of the methods from chapter 4 for
application in a real situation we need some comparative data.
At the moment there are only a few comparisons available /7,21/.
/7/ is iore a demonstration of the feasibility of these methods
and gives almost no comparative data. 21/ compares a gene-—
ralized load flow method, a least sguares method (4-7) and a
tracking method (the seguential version of 4~7, given in §~8).
So it does not cover all our families.

. When we want to.make comparisons one of the things to be

%;f taken into consideration is the computing time each al@orithm

: needs. Based on a rough estimate of the needed computing time

i a ¢holce is made of one representative from each family that

3%? looks promising for further comparison since it is impossible to

jtj compare all methods. Section 5.2. presents the three methods

5 and sectdon 5.3. gives the estimated computing times. The ac-
tual comparison and the results are going to be the subject of
following reports.

5.2. The three methods.

Method A: Batch processing with consiant gain,
This is the method given in 4~7 and implemented as in 4-4:

-1 -1
[éc(;gl)_ﬁ G(x,) ) ax =-§(§k)R Ay iy

k+1
A1 T Eper T AYjepr = Ypay — 9% (5-1)
Xy : last linearization point.

In this method one of the things worth investigating is how to
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maka the relineariztion decision,
Method B: Seqguential processing with relinearization after each
meagurement,

This is exactly the method presented in 4-12 with diagonal P:

‘3(31{+1,j)}

gk-i*l,j-lfl - ﬁk-ﬁ—l,j + }i;%-l,j%-l{}i:.—%l,j-{-lm

)P & (x ) +

Ba1, 341 Bert, 3 S, 5) (G3+1(-"k+1 31841, 5 G+, 5
w1
Ry
Ber1, 9417 Ben, 5™ diag| Ber1, 341 Her Bk, 3 k+1,3} q (5-2)
with gk+l 0~ zk ; E%+l,0::%<+ q{

Here one of the interesting things is the choice of Q. It rbould
be inteiesting to have a V,d representation of the state vector
and different values for the corresponding elements in Q.

Another one 1s the relationship between this P and the real co-

variance of the estimation error.

Methoed C: The line flow method.
This is the last presented method in 4-25,
Note that here all variables are complex,

=u X -k
Zpal,ivl = hen, i1 Yer T Krn 54

I’i:l L= Zab;j
F1ei+1,3 §k+1,i+1,j
- {5=3)
}3(+l,i+l,j ab,j aa,j ﬁﬁl 1+l,3
Ee1,ie1 = (B 0B)7 8 iz Zper,ivn T By lg)
" _ _
Bpal, 41 = ‘g}ﬁl,ﬁl‘g’ Bea1,0 = E

The influence of the choice of reference voltage and the influence
of the error in this voltage measurement on the estimate are a

few interesting things to look at. An other one is the inclusion

of other measurements in this method.
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5.3. Estimated computing times per iteration,

The estimated computing times are given in table 5.1. For

each multiplication or addition a +ime of 5 usecs is taken.

Only line flow measurements are congidered. This is done to make

a comparison with method C possible. This is not so far from

the general case since VOl£age and line current measurements

regquire less operationg‘while bus powers require more. It is

assuned that as many variables as possible are updated at the

same time. In other words multi?lications with zero are avolidéd.

: ;

n = 20 n = 5@ n

= 100 n = 200

m = 30 m = 100 m = 200 m = 300
msec msec msege msec sec msec Sec msac
mathod A 26 G 260 38 1.83 128 13.9 450
method B 9 23 45 90
method C 6 31 : 112 424

Table 5.1: Estimated computing times.

it is very interesting to see the amount of time saved by using
a constant gain in method A. The right-hand times with method
A are the times using a constant gain. Method A and C can still
be improved if we exploit the sparsity in the triangularization
process. This is in fact what is done in method B. There we
treat each measurement separately and change only the elements
that need to be changed.
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APPENDIX: RELATIONSHIPS BETWEEN MEASUREMENT AND STATE VARIABLES.

fr This appendix contains the necessary formula's to compute g(x)
; ' and G(gjs_) in both rectangular and polar coordinates. The follo-

wing variables are used:
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- \ &
. 23 o =y o . P 1 - 7 %
the complex bus voltage %1 e 3%{ iae
- the complex line current :%b
- the real line flow i3
ab
- the reactive line flow €éb . T
-t lex 1 FLox T g, + ‘
| the complex line flow Sp° Bp 195
i ~ the complex injected bus current %z
- the real injected bus power I%
- the reactive injected bus power (%
- the complex injected bus power %i* 23+ j%a
, JY,
-~ the line series admittance ¥, =G, +jB. = |Y, |e ab
ab ak ab ab Jor
~ the lir . = - i ab
the 1¢ shunt admittance Y = Ly * Iy [yab le
The line serdes admittance is the inverse of the line series im-~
pedance of fig. 2.1: ¥, = Eiw. If there is no branch between
ab '

a and B then %&)= %ﬁix ., The line shunt admittance Y, corres-
ponds to the shunt admittance ¥ of fig. 2.1, It is the shunt
admittance of the line from & to B at terminal A. The measure-
ment types used are those of table 4.1.

Rectangular coordinates.

type 1: Voltage magnitude at bus A,
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Line current magnitude st line terminai A.
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Active and reactive lire flow at line terminal A,
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type 5 and 6: Injected active and reactive power at bus A,
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Polar coordinates.
type l: Voltage magnitude at bus A.
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type 3 and 4: Active and reactive line flow at line terminal A.
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Line current magnitude at line terminal A,

24
Sab
®
Ua
TN )
v
a
: ap -9
2] ab %b
b + 9y .
Y LY
T -
EN A
Y 5
P ab Qab
_ ab 3\% + %b "a-%-“

(A-137)
(An38}.
{A~39)

(A—40)

“(&-41)

(A-42)

(A-43)

(B-44)

(A~-45)

(A-46)




(A-47)

(A-48)

5 and 6: Injected active and reactive power at bus A.
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