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Preface

In industry there exist a huge number of controllers that through feedback
provide processes to operate more reliable, more exact or more economi-
cally despite disturbances affecting the process. To obtain this it is required
that the controllers are properly tuned. Two different approaches for con-
trol system design are taken in this thesis. One approach is a robust design
method that requires substantial engineering effort but can guarantee a con-
trol system with certain properties. The other approach is suited when the
amount of feedback loops makes it impossible to spend too much effort on
each controller. Using a procedure for automatic initialization of an adaptive
controller allows a control system to be tuned by simply pushing a button.
The research behind this thesis began initially with a study of some adap-
tive controllers. Trying to understand their behavior led me into the area of
robust control design.
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Introduction

The purpose of feedback control is to make a system behave in a predicted
manner irrespective of its environment, or more safe, or, more economically.
Reduction of the effects of disturbances and process variations are the main
reasons for using feedback on open loop stable processes. This is accomplished
by a well designed feedback. If no disturbances were acting on the process
and a perfect description of the process is available, then feedforward control
would be sufficient. If on the other hand the open loop process is unstable
these objectives are only secondary because the main purpose of feedback
control is then to stabilize the process.

There are many different requirements on a control system that have
to be considered in the design process. The demands are sometimes con-
tradictory and it may be necessary to make trade-offs between conflicting
design goals. Some important issues are model uncertainty, command signal
following, rejection of load disturbances and sensor noise, and actuator satu-
ration. Unfortunately there exists no design method that considers all these
issues simultaneously. Different design methods focus on different issues.
Requirements that are not explicitly considered in the design should be ana-
lyzed afterwards. Optimization is a general method that can deal with many
requirements. This idea of formulating control system design as an optimiza-
tion problem was pioneered in [Zakian and Al-Naib, 1973]. Fundamental
contributions over a long period of time is summarized in [Polak et al., 1984].
The design procedure leads to a semi-infinite programming problem because
constraints are given by frequency and time domain functions. Consideration
of a finite number of frequencies and times leads to significant simplifications,
that has been pursued in [Boyd and Barratt, 1991]. Another aspect of con-

9

}




Chapter 1 Introduction

trol system design is the amount of engineering effort that is spent in the
design. Will a simple, computationally cheap design method give sufficient
performance of the system, or is it necessary to use an advanced, perhaps
computationally intensive design method to obtain desired performance.

Two different approaches of control system design will be taken in this
thesis. First, a new design method for single input single output processes is
presented. It considers uncertainty in the process model explicitly. The con-
troller is obtained by solving a large optimization problem with frequency do-
main constraints. A substantial engineering effort is required by this method.
It can give the limit of some performance objective. If this performance is
not satisfactory, as may happen for processes with large uncertainties, an
adaptive controller is an alternative to improve performance.

Adaptive control has the potential to give desired performance for a
control system with uncertainty. A drawback is that adaptive controllers may
be difficult to commission. For this reason the most used adaptive technique
is automatically tuned PID-controllers [Kraus and Myron, 1984] and [Astrém
and Héigglund, 1988a]. These controllers have been developed to the stage
where tuning is performed simply by pushing a button. It would be desirable
to make adaptive controllers as easy to use as the PID autotuner. A procedure
for automatic initialization of an adaptive controller will be developed in this
thesis. The key idea is to use information from an experiment with relay
feedback to initialize the adaptive controller. The initialization procedure
together with the adaptive controller gives a new auto-tuning approach that
works for a larger class of processes than those which can be well controlled by
PID-controllers. The use of an auto-tuner is a way to reduce the engineering
effort for the design. This is particularly interesting in the process industry
where there may be thousands of control loops.

The thesis is organized as follows. Chapter 2 defines the control system
and presents pole placement design. A robust design problem using con-
strained convex functions is formulated in Chapter 3. These are used in the
optimization problem discussed in Chapter 4, where some examples also are
given. Chapter 5 presents an adaptive controller. Chapter 6 studies an ex-
periment with relay feedback and suggest information that can be obtained
from this experiment. A procedure for automatic initialization of an adaptive
controller is proposed in Chapter 7, where some examples demonstrate prop-
erties of the procedure. Conclusions are given in Chapter 8. A test batch
of processes, used to evaluate the initialization procedure for the adaptive -
controller, is given in Appendix A.

10




Preliminaries

The purpose of this chapter is to introduce the feedback system and the pole
placement design that will be considered in this thesis.

2.1 The Feedback System

The process to be controlled has one output signal y, that is supposed to
follow a desired reference, one input signal u that may be manipulated by a
control law. Furthermore two disturbances [ and d affect the process. These
are assumed to act at the process input and at the process output respectively.
The process itself is assumed to be described by a rational transfer function.
This is a ratio of two polynomials B and A in the differential operator % for
continuous-time systems, or in the shift operator ¢q for discrete-time systems.
The process output is then given by

y:§@+0+d (2.1)

It is assumed that the measurement of y is corrupted by measurement noise
n. The control actions thus have to be based on the signal z given by

s=y+n (2.2)

The controller is linear with two degrees of freedom. A general finite
dimensional control law is then given by

oS () o
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Chapter 2 Preliminaries
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Figure 2.1 The closed loop system

where r is the reference signal. The controller is described by four polyno-
mials. The feedback design determines the polynomials § and R to obtain
desired disturbance rejection properties and desired measurement noise at-
tenuation. Once the feedback loop is determined, the feedforward design
provides the polynomials Bg and Ag for a desired reference signal response.

A block diagram of the feedback system is shown in Figure 2.1. The
process output y and the process input u for the closed loop system are

obtained from (2.1), (2.2) and (2.3). Co-
_ BS (Efir—n N AR i+ BR ]
Y= AR+ BS \ Az AR+ BS ' AR+ BS 2.4)
AS Bg BS T
= —— | Ep—n—d) - 555!
AR+ BS \ Ag AR + BS
Introduce
BS
T= AR+ BS
S - AR
°7 AR+ BS
BR (2.5)
%= AR+ BS
oA
AR+ BS

where 7 and S, are recognized as the complementary sensitivity function
and the sensitivity function for the closed loop system [Doyle and Stein,
1981]. Two other sensitivity functions are defined, the sensitivity for input
disturbances S; and the input sensitivity for measurement noise Sp. Using
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2.1 The Feedback System

these transfer functions equation (2.4) may now be written as

B
y=:rzir+s,-l+sod—7n
f (2.6)

u:Sn—'éf-r——Tl—-Snd—Snn
Ag

Design objectives may be given in terms of desired properties of the transfer
functions in (2.5). From equation (2.6) it is obvious that control design is a
trade-off between conflicting objectives. For some of the transfer functions
high bandwidth would be demanded and for others a low bandwidth is de-
sired. However, these transfer functions are strongly dependent, since they
have the same characteristic polynomials.

The loop transfer function is another important quantity. It is composed
of the feedback controller and the open loop process in series, i.e

BS

L=7%

Many qualities of the closed loop system may be demonstrated by the prop-
erties of L. In classical servo design the compensator S/R is modified to
assign desired properties to the loop transfer function [Chestnut and Mayer,
1959]. The complementary sensitivity function and the sensitivity function
may be expressed in the loop transfer function.

L
T=—""
1+ L
1
So=17Z

Also notice that 7 + S, = 1.

2.2 Pole Placement Design

Pole placement is a simple design method where a two degree of freedom con-
trol law may be achieved without iterative calculations. The design method
focuses on command signal following and load disturbance rejection [Astrém -
and Wittenmark, 1990]. A desired closed loop characteristic polynomial is
chosen and the feedback controller is provided by the solution to a polynomial
equation.

The open loop process is given by (2.1) and the controller is given by

Ru=Tr - 52

13




Chapter 2 Preliminaries

which corresponds to (2.3) with Bg = T and Ag = S. The closed loop system
is given by (2.4).

The design is performed in two steps, first the feedback controller S/R
is designed to give the desired response for the disturbances ! or d or both
and to give the desired measurement noise attenuation. Once the feedback
controller is designed, the polynomial T' may be chosen for the feedforward
to give the desired response to reference signals.

Feedback Design

The feedback controller design may be formulated such that constant distur-
bances ! and d are eliminated in stationarity. Consider a step disturbance [
to be generated by A,l = e; where ¢; is a pulse and A, = s in the continuous
time case or A, = 1 — ¢! in the discrete time case. The influence of ! in the
output signal is then

__BR BR
~ AR+ BS A, (AR+BS)"

i

Provided that AR + BS is asymptotically stable and A, is a factor of R, it
follows that

.

lim Yy = 0
t-->00

i.e. the effect from the disturbance is eliminated in stationarity. This cor-
responds to integral control. The controller will then have high gain. at low
frequencies. The controller properties required to eliminate output distur-
bances are derived similarly. However, it may be noted that constant output
disturbances always are eliminated in stationarity if the open loop process
contains an integrator.

To carry out the design the process model numerator is factorized as

B=B"tB~

where BY is a monic polynomial whose zeros are stable and well damped.
These zeros are canceled by the controller. The remaining zeros B~ are
not canceled and will appear in the closed loop transfer functions 7" and S;.
Since Bt is canceled it is a factor of the closed loop charactéristic polynomial.
The zeros of BT will correspond to modes in the control signal u that are
unobservable in the process output y and B should therefore only contain
stable and well damped zeros.

The closed loop characteristic polynomial consists of Bt and A, with
the desired closed loop poles

AR+ BS = A.B* 4 (2.7)

14




2.2 Pole Placement Design

Since BT is a factor of B and also is present in the right hand side of (2.7)
it must be a factor in R. Then (2.7) may be simplified to the Diophantine-
Aryabhatta-Bezout equation

AAR +B™S = 4, (2.8)

from which R' and S are achieved. To ensure a proper controller the charac-
teristic polynomial A, must be chosen such that

degA. > mindeg A, = 2degA — degB™" + degA, — 1 (2.9)

[Astrém and Wittenmark, 1990]. If the degree of the polynomial A, is higher
than necessary the solution of the Diophantine-Aryabhatta-Bezout equation
does not yield a unique proper controller. This freedom can be used for other
purposes, e.g. improving robustness, as will be proposed in Chapters 3 and
4. The feedback compensator is given by S in (2.8) and

R=R'A.B*
which then is forced to contain the factor 4,.

Freedom of the Diophantine-Aryabhatta-Bezout Equation

If there exists one solution R} and Sy to the Diophantine-Aryabhatta-Bezout
equation (2.8) there is an infinite number of solutions '

R =R, —QB~
S = 8o + QAA,

parameterized by the the polynomial Q. Assume that R} and S, yields a
proper controller. Not all choices of () lead to proper controllers. The degree
of the closed loop characteristic polynomial A, determines the admissible
degree of Q). The degree of the controller is degR = degA. + degBt — degA.
To have a proper controller the degree of S should satisfy degR > degS =
max (deg S, deg@ + degA + degA,). If deg A. = min deg A, then only Q=0
gives a proper controller. If deg A. > mindeg A, then (2.9) gives

deg@ < degA. — 2degA + degB™ — degA,

2.10
= degA. —mindeg 4, — 1 (2.10)

Equation (2.10) shows that each increase in the degree of A, allows the same
increase in the degree of Q.

15




Chapter 2 Preliminaries

If @ is not restricted to be a polynomial but a stable rational transfer
function, any such @ = N/D satisfying

deg N —deg D < deg A, — mindeg A, — 1 (2.11)
gives a proper controller

So + QAA, _ So + QAAT
A.(R, —QB) Ry- QBA,

S
Z= (2.12)

Here Bt = 1, which is no restriction. The closed loop characteristic poly-
nomial is the product A.D. There exist polynomials N and D such that
the controller may have common stable factors in S and R that can be used
to cancel factors in A.. Unstable common factors can not appear in § and
R. This means that all stabilizing controllers with the factor A, in the de-
nominator can be parameterized as (2.12) where the casual controller So/ Ry
stabilizes the process B/A and @ = N/D satisfies (2.11). This resembles the
the Youla parameterization or the () parameterization [Vidyasagar, 1985].

-

Solution of the Diophantine-Aryabhatta-Bezout Equation

The controller polynomials are given by the solution of equation (2.8). This
equation is equivalent to a system of linear equations. Define the process
model and the controller as polynomials in z. : -

A(2)Ar(2) =0z + 12"+t ay

B~ (2) = foz" + 1zt 4 4 B

Ac(Z) — ntds + ac121'+d'—1 4ot Ge(ntd,)
R'(2) =ro2 iz b g

S(2) = soz% + 5127 4o 4 osg,

The polynomial equation (2.8) can then be written as the linear equation
Mz =P (2.13)

where P is a column vector with the coeflicients of A., ¢ is a vector with the
controller coefficients

T = (’['0 . e lrd 80 e sd, )T E Rd'+d‘+2

T

16




2.2 Pole Placement Design

and M is a ( + d, + 1) X (dr + d,; + 2) Sylvester matrix

/ao Bo \
a; - B
M= . . Qg . ,30 (214)

oy - (o 2] ﬂ“ .. IHI

\ 5 a:n N ﬁ;/

The matrix has d, + 1 columns with a-coefficients and d, + 1 columns with
B-coeflicients. Leading B coeflicients may well be zero here since it is required
that

77+d'r:lll+ds

to make the block matrices with a and § coeflicients have the same number
of rows. 2

If AA, and B~ are coprime, the linear equation (2.13) has a solution. It
is unique if the degree of A, is minimal. If on the other hand the polynomials
AA, and B~ have a common factor G, the Sylvester matrix M is singular
and thus not invertible. If G also is a factor in A., there exists a solution
to the Diophantine-Aryabhatta-Bezout equation, otherwise not. Numerical
problems may occur if the polynomials AA, and B~ have factors that are
close.

Choice of Characteristic Polynomial

Mathematically the closed loop poles may be chosen arbitrarily. However,
certain choices may lead to a closed loop system that is very sensitive to vari-
ations in the process model, and should therefore be avoided. A reasonable
choice is to let the open loop properties, i.e poles, guide the choice of closed
loop poles. For an open loop stable continuous time process it is often reason-
able to let the closed loop poles have the same distance to the origin as the
open loop process poles. Choices far away from this recommendation may
lead to unstable controllers or controllers with high gain, both undesirable
from a sensitivity point of view. See [Lilja, 1989] for further discussion.

17




Chapter 2 Preliminaries

Design of Feedforward

The choice of feedback compensator was motivated from the disturbances { or
d. There is, however, still freedom in the control law to select the polynomial
T in the feedforward to give an appropriate response to reference signals. For
the pole placement controller, the transfer function from reference signal to
output is

BT T_B‘T
AR+ BS =~ A,

Y T (2.15)

where the degree of T satisfies deg T' < deg R. The closed loop characteristic
polynomial may be factored as A, = 4,,4,. Select T' = B, A, and (2.15)
gives

oy (2.16)

The factor 4, may be interpreted as an observer polynomial that will be
canceled in the transfer function from r to y [Astrém and Wittenmark, 1990).
The role of the polynomial B! is to adjust the static gain and, if desired,
introduce additional zeros in the transfer function (2.15). '

The reference signal response may be further manipulated if the feedfor-
ward instead is chosen as the stable proper transfer function Bg /Ag.

Discussion

Any design method using a finite dimensional model described by a rational
transfer function as (2.1) could be interpreted as a pole placement design.
Therefore the question of where the poles should be located is highly inter-
esting.

Pole placement design, as described in this chapter, does not consider
model uncertainty. If the process model is uncertain, either the robustness
properties of the control system must be checked or the design has to be
modified to cope with an uncertain process. There exist some methods for
incorporating model uncertainty into pole placement design [Soh et al., 1987,
Boyd et al., 1988].

Due to the simplicity of the pole placement design method it is popular
in adaptive controllers where the computational complexity must be limited.

18




Objectives for
Robust Design

Chapter 3 and 4 deal with robust design of uncertain single input single
output processes. Some of the ideas here were presented in [Lundh, 1990].
The purpose of this chapter is to describe uncertainty of process models
and to use this description to define frequency domain objectives for robust
design. The focus is on design of a feedback compensator, the feedforward
design problem is briefly mentioned at the end of the chapter.

3.1 Introduction

In Chapter 2 the process was assumed to be described by a rational transfer
function. This model is only an approximation. If the model deviates much
from the real process, the actual behavior of the real closed loop system will
not be as predicted from the model. Bad performance or even instability may
be encountered. It is, therefore, of great significance to describe the accuracy
of the model and to design the control law such that the closed loop system
performance is acceptable for all processes within the uncertainty envelope -
for the model. The process model uncertainty influences the achievable per-
formance. Small uncertainty implies that the process behavior is rather well
defined. It is then possible to design with small robustness margins. Hence,
the performance may be improved.

There are many sources for model uncertainty. Variations may occur
due to imprecise manufacturing, a cheap component with large tolerances

19
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Chapter 3 Objectives for Robust Design

may be used instead of an expensive one with small tolerances. This is
actually one of the strong motivations for using feedback control. Other
sources of uncertainty are wear and heating. Real processes are nonlinear and
a linearized model is describing the process for some operating conditions.
Different operating conditions may be described by an uncertain linear model.
It is assumed that all these variations occur rarely or are so slow such that
the process may be considered as time invariant.

Two types of model uncertainties are discussed here. Each with its own
characteristics. A combination of the two types of uncertainty descriptions is
proposed. It is shown that this combination of uncertainty descriptions has
some nice properties.

Only continuous time processes are considered here since structured un-
certainty is often coupled to physical parameter variations, and these cou-
plings become very complex when the process is sampled [Astrdm and Wit-
tenmark, 1989]. It may well be argued that the physical structure is com-
pletely destroyed by the sampling.

Feedback Performance Objectives

Feedback control design is a trade-off between different objectives, e.g. load
disturbance rejection and measurement noise attenuation. "Assume first that
the real process is perfectly described by the model. Then, the only reason
for feedback control of a stable process is to reduce the effects from the
disturbances.

Let S be one of the closed loop transfer functions in (2.5). The feed-
back compensator design gives this transfer function desired properties. The
specifications can be expressed as limits on the magnitude of the frequency
response. Desired disturbance rejection is achieved by making & small in a
certain frequency interval. A convenient way to limit S is to introduce a
weight W(w) and the inequality

W(w)|8(7’w)l <1, Vw

The weight W(w) may be the frequency response magnitude function of some
filter as in Ho, control design.

The disturbance rejection properties are described by the three strictly
stable transfer functions S,, S;, and S, in (2.5). The disturbance rejection
objectives are defined through the inequalities

Wo(w)|So(iw)] <1
Wi(w)|8i(iw)| <1 (3.1)
Wa(to)|Sa(i)] < 1

which should hold for all frequencies w.

20



3.1 Introduction

The first inequality impose a limit on the transfer function from out-
put disturbance to process output, i.e. the sensitivity function. The second
inequality limits the transfer function from input disturbance to process out-
put. The third inequality limits the transfer function from measurement
noise to control signal. The inequalities (3.1) are referred to as the nominal
performance criteria.

Certain properties of the weights in (3.1) leads to certain closed loop
behavior. Step disturbances affecting the system at the process input or at
the process output are eliminated in the output y in stationarity provided
that either $;(0) = 0 or S,(0) = 0. A sufficient condition for this is to require
that R(0) = 0 in the feedback controller. The controller is then said to have
integral action. This correspond to weights W;(0) = co and W,(0) = oo
respectively. Measurement noise is present in all systems. High noise energy
in the control signal u is undesirable since it leads to frequent control actions
that causes actuator wear. Therefore the transfer function S, from noise n
to control signal u should be limited. The weight function W, (w) is chosen
with respect to spectral characteristics of the noise n acting on the system.

3.2 Unstructured Uncertainty

This section reviews and extends some well known results from robust design
[Doyle and Stein, 1981, Morari and Doyle, 1986]. Relations between process
model uncertainty and performance are discussed in the frequency domain.

Unstructured uncertainty is used to describe the accuracy of a model.
Let the real process be defined by the transfer function G° and let G be the
transfer function of the model of the process. The unstructured uncertainty
is specified by the function W, (w), defined by

G (iw) — G(iw)
G(iw)

< Wu(w),  Vw

The real process is then considered to be described by
0 B
G =G4, = 1 (14 AwW,) : (3.2)
where G(s) = B(s)/A(s) is the model of the process and
Gu(iw) = (1 4 A(iw)Wy(w))

is a stable transfer function with |A(iw)| < 1. The multiplicative unstruc-
tured uncertainty may be viewed as a disc in the Nyquist diagram, to which

21
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Chapter 8 Objectives for Robust Design

the frequency response of the real process belongs for a certain frequency.
The center of the disc is given by G(iw) and it has the radius |G(iw )W, (w)|.

A related type of unstructured uncertainty is additive unstructured un-
certainty. Both additive and multiplicative unstructured uncertainties are
limited to stable perturbations of the process, i.e. it is assumed that the
number of unstable open loop poles is constant. This is a drawback with
these types of uncertainty descriptions. It is overcome by using the coprime
factorization unstructured uncertainty [Vidyasagar, 1985]. This considers un-
structured perturbations of both the numerator and the denominator of the
process. The process is described as a fraction of coprime transfer functions
with all poles in a prescribed region.

The criteria in (3.1) are established for a process that is accurately de-
scribed by the model. If this is not the case, the real closed loop system
may be unstable or may perform badly. It must of course be required that
the closed loop system is stable for all processes (3.2). This is referred to
as robust stability. There exists a simple criterion for this [Doyle and Stein,
1981].

LEMMA 3.1—Robust Stability

The process (3.2) is controlled by the controller (2.3). The closed loop system
is stable for unstructured multiplicative uncertainties W, (w) provided that
the closed loop system is stable for W,, = 0 and that

W (w)|T (w)| < 1, Yw (3.3)
where 7 is defined in (2.5). oo

Robust stability is not sufficient for a nice closed loop performance when the
process is uncertain. A stronger requirement is robust performance, which
is obtained when the nominal performance criteria (3.1) are satisfied for all
processes G? in (3.2), described by B/A and W, [Morari and Doyle, 1986].
The following three sub-sections modify the nominal performance criteria
(3.1) to establish criteria for robust performance.

Output Disturbance Rejection

Consider first rejection of an output disturbance d. The output due to such
a disturbance is given by

AR d
AR+ BG,S

as was derived in Chapter 2. Assuming that the specifications require that
the transfer function SY based on G® should be smaller than 1/W,. Hence

AR AR .
AR+ BSG, AR+ BS(1+ AW,)| =

Yya = Sod =

Wo = Wo

1, Yw,V|A| <1
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3.2 Unstructured Uncertainty

This inequality should be fulfilled for all frequencies and all uncertainties
|A(w)| <1 for the process G°. It can be rewritten as

AR
AR+BS

1+ 255 AW

<1, Vw,V|A| <1

o

Using the transfer functions in (2.5) the robust performance criterion for
output disturbance rejection is

W, <1  Vw,VA|<1 (3.4)

So
1+ AW, T
A necessary and sufficient condition for (3.4) is established by a lemma in
[Francis, 1988].

LeMMA 3.2—Robust Performance
Assume that Lemma 3.1 holds. A necessary and sufficient condition for robust
performance (3.4) is

WolSol + WulT| <1 Vw - (3.5)

Proof: Proof of sufficiency: Lemma 3.1 yields that W,|7| < 1. Then (3.5)

implies

1 > Wo|So| > WO[SO|

<
21w T 2 iy aw.r] e viAlst

To prove the necessity assume that W,|7| < 1 and that (3.4) holds. Pick a
frequency wq for which

[WoSo|
1— |WaT]|

obtains its maximum. Pick A, such that |1 + AgW, 7| =1 — |W,T|. Then

WIS Woleo)lSim)
w1 =Wy (w)|T(iw)| |14+ Ag(iwo)Wu(wo)T (iwo)] —
and (3.5) holds. O
The inequality (3.5) may be written
Wo(w) + Wy (w)|L(iw)| < |1+ L(iw)] VYw (3.6)
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Figure 3.1 Nyquist diagram interpretation of robust performance for output
disturbance rejection

where L = BS/AR is the loop transfer function. This inequality and thus
Lemma 3.2 has a nice interpretation in the Nyquist diagram. See Figure 3.1.
The right-hand side of (3.6) is the distance in the complex plane between
L(iw) and —1. The unstructured uncertainty bound W,(w) limits the real
loop transfer function for the frequency w to be inside a circle with center in
L(iw) and with radius W, (w)L(iw). This is represented by the lower circle
in Figure 3.1. The nominal performance criterion is represented by the circle
with center in —1 and with radius W,(w). The robust performance criterion
is satisfied for the frequency w if these two circles do not intersect. Robust
performance is achieved if the circles are disjoint for all frequencies.
Effective disturbance rejection is achieved by a large W, over a wide
frequency interval, i.e. a tight bound on §,. Large uncertainties correspond
to large W, implying that 7 must be kept small. Since S, +7 = 1, these
two requirements can not both be fulfilled for same frequencies. Note that

1> W (@)lSu(ie)] + Wa(w)|T (i)

2 min(Wo(w), Wa(w))(1So| + |T1)

2> min(Wo(w), Wu(w))(|S, + T1)

> min(W,(w), Wy (w)) Yw
implying that if min(W,(w), Wy(w)) > 1 for any w then no controller exists
that fulfills the robust performance criterion.

If Wy(w) < 1,Vw the controller gain may be increased to infinity and
still satisfy Lemma 3.2. This is never the case for real plants. True plants
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3.2 Unstructured Uncertainty

always have roll-off for high frequencies which implies that |B(iw)/A(iw)] is
small for high frequencies. To have W, less than 1 for high frequencies thus
requires a very accurate plant description.

Still there exist no analytic method to obtain a controller that satisfies
the condition of Lemma 3.2. A sufficient condition for SISO systems that
allows the problem to be solved using H., methods, is given in [Francis,
1988]. Alternatively the problem may be solved numerically using convex
programming as suggested in [Boyd and Barratt, 1991].

Input Disturbance Rejection

Consider the case of reducing the effects in the output y of an input dis-
turbance I. For a process without uncertainty, | may be expressed by an
equivalent output disturbance d = G°l. Then, the desired input disturbance
rejection is specified by the weight Wo = W;|G?| in the condition for output
disturbance rejection. In presence of model uncertainty, the uncertainty must
be accounted for in the expression for an equivalent disturbance. This is con-
sidered in the derivation of the design criterion for robust input disturbance
rejection here.
The contribution in the output caused by [ is given by

BG.R

0
=SV = ——
y=51= 0T BG.S

Using the transfer functions in (2.5) the robust performance criterion for
input disturbance rejection is ’ '

|S:(1 + AWL)]
: <
Wil raw,T| =

1, Vw,VAI<1 (3.7)

provided that Lemma 3.1 holds.

LEMMA 3.3
Assume that Lemma 3.1 is satisfied. A sufficient condition for robust perfor-
mance (3.7) is that the inequality

Wil + W )ISi| + Wl T| < 1 (3.8)

holds for all w.
Proof: From Lemma 3.1 it follows that W,|T| < 1. If (3.8) holds, then

Wi(1 + W.)(Si| S Wi(1 4+ W)|S:l S Wil + AW, [|Si|
1-WJT| ~— [R+AWT| |1+ AW, T|

for all frequencies w and for all |A| < 1. O
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It may be noted that (3.8) is not a necessary condition for (3.7). Some
conservatism is incorporated since |1 + AW, | not necessarily achieves its
maximum for the same A as |1 + AW, 7| achieves its minimum. However,
this happens for frequencies where 7 (iw) is a negative real number. Thus,
the condition in this lemma is tight for these frequencies.

Measurement Noise Attenuation

A criterion for robust measurement noise attenuation is derived in the same
way as for output disturbance rejection.

LEMMA 3.4
Assume that Lemma 3.1 is satisfied. A necessary and sufficient condition for
robust measurement noise attenuation is

Wa|Sn| + Wo|T| <1 Vw (3.9)
Proof: The proof is analogous to Lemma 3.2. O
Under mild assumptions on the process, Lemma 3.4 implies the robust sta-
bility condition in Lemma 3.1. .

LEMMA 3.5

Assume that W, (w) > 0,Vw and that W, (wo) # 1, Vwg such that A(iwe) = 0.
Then (3.9) is a sufficient condition for W, |7| < 1.

Proof: For w : |Sy,(iw)| > 0 it follows that W, (w)|7 (iw)| < 1. Consider then

wo ¢ |Sn(twe)| = |AS/(AR + BS)| = 0. If S(iwg) = 0 then 7 (iw) = 0 and the
inequality holds. Otherwise A(iwo) = 0 and (3.9) is W, |BS/(0+ BS)| < 1.
Since Wy (wo) # 1, then (3.9) implies W, (wo)|7 (two)| < 1. O

Summary

Conditions for closed loop robust stability and robust performance have been
established for the uncertain process (3.2). If the nominal performance cri-
terion (3.1) holds, the assumptions in Lemma 3.5 are satisfied, and if

W,|So| + Wau|T|1 <1
Wi(1 + W,)|S:| + Wa|T| <1
W |Sn| + W |T| <1

for all w, then closed loop robust stability and robust performance are ob-
tained.
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3.3 Structured and Unstructured Uncertainties

This section presents process models with both structured and unstructured
uncertainties. The feedback system was introduced in Chapter 2. Assume
that the real process is described by the transfer function

G° = G,G, (3.10)

where G,(s) is the ratio of the two polynomials B and A. These polynomials
describe a parametric transfer function model. Uncertainty is represented
as variations in the polynomial coefficients in known intervals. This type
of uncertainty is referred to as structured uncertainty. Furthermore G, is a
stable transfer function of the same type as discussed in (3.2). This describes
the unstructured uncertainty.

Model with Structured Uncertainty

The parametric part of the process model (3.10) is described by the strictly
proper rational transfer function

_ B(s,p) _ Boo(3)By(s,p)
Gi(s,p) = A(s,p)  Aoo(s)Ap(s,p) -

where B,,, Aoo, Bp and A, are polynomials of finite degrees in the Laplace
variable s. The polynomials B,, and 4,, are accurately known, i.e. their
coeflicients have no interval variation. The degrees of the polynomials B,
and A, are known and

(3.11)

4

By(s,p) = bgs™ + bys® ™1 4 ... 4 by,
Ap(s,p) = aps™ +ays® "t 4 ... tag,

are described by a vector containing their coefficients
Pab=(ag -+ ag, by --- bg )T € IR

The elements of this vector belong to certain given intervals. Sometimes
the variations in different elements are correlated. A better description of
the structured uncertainty can be obtained if the variations in p,; can be
described as an affine mapping R s IRes

Pab(P) = Paro + Mo p (3.12)

where the vector p is known from modeling or identification to belong to
a hyperrectangle in IR?. The simplest case of variation is when Pabo = 0
and My, = I. Then the uncertainty is directly expressed in the polynomial
coefficients.

Two sets are introduced to describe the transfer function G,(s,p).
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DEFINITION 3.1—Set of Uncertain Parameters
Let p be as in (3.12). The transfer function family G,(s,p) with structured
uncertainty is defined by the set

P={p:pi€(pi,pf) i=1..:dp}

where p; and pj-" are the lower and the upper limits of the i:th component
of p. O

DEFINITION 3.2—Set of Vertices
Let the set P. contain the dp. = 92d» vertices of the set P. O

Any element in the set P may be formed as a convex combination of
elements in the set P.. Design complexity may be reduced considerably if only
the elements in P, has to be considered for the design. This will be pursued
later using properties of convex functions. It may be noted that variations in
many parameters will make the set P, very large. For computational reasons
it is desirable to keep this set reasonably small.

Discussion

One reason for introducing structured uncertainty instead “of unstructured
uncertainty is that it is a more accurate way of modeling situations where
the uncertainty can be related to parameter variations. Attempts to de-
scribe such variations as unstructured uncertainty results in an unnecessarily
conservative design since phase information is discarded. The uncertainty
displayed in the Nyquist diagram shows this. The region of G(iw,p) in the
Nyquist plane may have any geometry in the structured uncertainty case. If
unstructured uncertainty is used to describe the same type of uncertainty, a
circle is drawn, that encircles the region of uncertainty.

Another reason for using structured uncertainty is that unstructured
uncertainty requires that perturbations are such that the number of unsta-
ble poles of the process remains the same under the perturbations. With
unstructured uncertainty it is thus not possible to capture the case when a
process changes from being stable to being unstable due to the perturbations.

Unmodeled dynamics is normally present at high frequencies and is
preferably described using unstructured uncertainty. On the other hand,
process variations at low frequencies are often adequately described by struc-
tured uncertainty. It may be very conservative to use unstructured uncer-
tainty to describe this type of model uncertainty. A combination of the two
types of uncertainties is proposed. This idea has also been proposed in [Wei
and Yedavalli, 1989].

An example describes how a model with both structured and unstruc-
tured uncertainties may be constructed.
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3.9 Structured and Unstructured Uncertainties

ExXAMPLE 3.1—Ship Dynamics

A linearized model of a ship moving under constant velocity is given in
[Astrém, 1990, pp. 41-42]. The transfer function from rudder angle to yaw
angle is

(bos + 1)b1

Go(s) - 8(s + ag)(s + a1)

The parameters of this model depend on operating conditions like speed,
trim, and loading. Five different operating conditions k are considered with
the parameters given in the table below.

k bo bl ag aj

1 1.07 0.75 1.96 —0.70
2 1.05 0.74 1.66 —0.59
3 0.93 0.85 1.86 —0.47
4 0.71 1.29 2.02 -0.21
5 0.89 1.83 2.35 0.05

~

Since parameter a; changes sign the number of open loop unstable polés is
not constant. The behavior of the process, thus, can not be described using
only unstructured uncertainty. The essential parametric variations occur in
the process gain b; and in the pole a;. These variations are related and can
approximately be described by the linear relation b; =~ 1.6 + 1.3a;. One way
to model this process and its uncertainty is to use the model in (3.11) with

B(S,p) _ Boo(S)Bp(S,p) N 0.9s+1 bl
A(‘97p) B Aoo(s)Ap(S,p) N S(S +200) s+ a;

(3.13)

The structured uncertainty is described by the coeflicient variation

(0’1)—<0)+(1> 0.70 < p < 0.05
b, ) \16 1.3)F R e

Hence, the set of vertices has two elements
P.={-0.70 0.05}

The accuracy of the model (3.13) is described by unstructured uncer-
tainty. A bound on the unstructured uncertainty can be obtained in the
following way. Consider one of the operating conditions k. For each k assign
a value to a; from the table. The gain b is then estimated from a; using the
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Figure 3.2 Frequency responses B(iw, p)/A(iw, p) and corresponding regions
describing unstructured uncertainties for the two models in P, in Example 3.1.

linear approximation. The error in the gain and the variations in the other
pole and in the zero gives an error in the model. These errors are covered by
unstructured uncertainty which is bounded by

0k B(iwapk)
G ) = o)

B(ivak)
A(iwapk)

Wy(w) = max

A simple curve fit gives

Wo(w) = ’0.3zw + 0.12|

w4 1.2

The solid lines in Figure 3.2 show the frequency responses for the two
models B(iw,p)/A(iw,p) in (3.13) for p € P.. The bound W,(w) allows
variations in each of these frequency responses between the dashed lines sur-
rounding the curve for the respective frequency response. O
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3.4 Design Criteria

In this section it is shown how the design criteria for processes with combined
structured and unstructured uncertainties can be formulated in a manner
analogous to Section 3.2. This requires a reformulation of the design criteria.
The key idea is to express them as constrained convex functions of the process
parameter p.

Controller Parameterization

A controller was presented in Chapter 2. The parameterization (2.12) is a
convenient way to characterize all proper stabilizing controllers having the
factor A, in the denominator when the process is accurately described by the
fraction B/A. Here the problem is extended to a family of transfer function
models described by the set P. One element in this set is regarded as the
nominal model.

DEFINITION 3.3—Nominal Model

The nominal process model is chosen as one element pg € P corresponding
to Bo(s) = B(s,po) and A¢(s) = A(s,po), with deg Ao(s) = maxdeg A(s,p)
for p € P. oo O

The nominal controller Sy/Ry, is designed to give desired closed loop prop-
erties for the nominal model. The controller used in the sequel is given by

S So+ QA4 . (.
E= A(F - OB (3.14)

where Q = N/D is a stable rational transfer satisfying the degree condi-
tion (2.11). This form guarantees that § and R do not have common zeros
in the closed right half plane. It should also be noted that this controller
only guarantees stability for the closed loop system based on the nominal
model. For other transfer functions in the family P, the closed loop system
may, however, be unstable. Criteria for stability are implied by the robust
performance criteria given later.

Throughout the rest of this chapter it will be assumed that the function
Q is fixed. Later, in Chapter 4, the function ) will be chosen to obtain
desired closed loop performance objectives.

Output Disturbance Rejection

Incorporation of structured uncertainty in the robust performance criteria
is pursued for the output disturbance rejection case. With straightforward
modifications it is applicable for input disturbance rejection and measurement
noise attenuation.
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Introduce the functions
flw,p) = Wo(w)|A(iw, p)R(iw)| + Wau(w)|B(iw, p)S(iw))
and

Ac(s,p) = A(s,p)R(s) + B(s,p)5(s) (3.15)

where B(s,p) and A(s,p) are defined in (3.11) and R(s) and S(s) are defined
in (3.14). Then, the robust performance criterion (3.5) in Lemma 3.2 for
output disturbance rejection may be written as

f(w,p) — [Ac(iw,p)| €0,  Vw,VpEP (3.16)

Notice that the functions f(w,p) and A.(s,p) depend on the rational function
Q. Furthermore, A, is not a polynomial since it contains Q.

A drawback of using the inequality (3.16) as a design criterion is that
the left hand side is not necessarily a convex function in p, since the second
term —|A.(iw,p)| is concave in p. A modified criterion which is convex will
therefore be formulated. To do this introduce a bounding function P(w,p)
satisfying Co

'¢(w,p) < |Ac(iw,p)|, Vw,Vp eP (3.17)

The function ¢(w,p) will be constructed below. It should be concave in p..
The function C

9(w,p) = f(w,p) — ¥(w,p) (3.18)

will then have the desired convexity properties. Using (3.18) the design ob-
jective may be expressed by the inequality

g(w,p) <0 (3.19)

that should hold for all w and for all p € P. The condition (3.19) is then a
sufficient condition for the robust performance criterion (3.16).

If (3.19) holds for the vertices p € Pc, then it follows from the convexity
of g(w,p) that (3.19) will be satisfied for all convex combinations of the
elements in P., namely the set P. The condition

g(w,p) <0, Yw,Vp € P

is thus a sufficient condition for robust output disturbance rejection. The
fact that g(w,p) is convex in p thus reduces the complexity of the design
problem considerably.
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Construction of a Bounding Function

The use of a bounding function ¥(w,p) was suggested above. This function
is constructed here.

Introduce the structured uncertainty as perturbations of the nominal
model

88(s,p) = B(s,p) — Bo(s)
6A(3ap) = A(s,p) - Ao(s)

The function (3.15) is split into

A (s,p) = Aco(8) + b4c(s,p) (3.20)
where the first term

Aco(s) = Ao(s)Ar(s)Ry(s) + Bo(s)So(s) (3.21)
is independent of p and @. The second term

6ac(s,p) = 64ArRy + 68So + QA (Aobp — Boba) = - (3.22)
is affine in p. Also notice that §4. is affine in Q. This important fact will be

useful in Chapter 4.
The magnitude of the function A.(iw,p) satisfies

6A 2 5A 2
Al = |Aco + bac| = |Acolf (1 +Re 222 ) + (Im 22
AcO AcO

(3.23)
6Ac
>
> o] (14 Re 52
The bounding function v is now chosen as
. ) 8 ac(iw,p)
#(0,7) = coio)] 1+ Re 22L000) (3.24)

It follows from (3.23) that ¢ satisfies (3.19). Further, 9(s,p) is affine in p, -
i.e. concave. This means that g is convex in p.

The use of 9 instead of | Ac| implies that the constraints are unnecessarily
conservative. The amount conservatism can be expressed by the quantity

§y(w,p) = |AC("“TAI:2|(;);/’I(“”?) (3.25)
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Figure 3.3 Measure of conservatism §, as function of the argument ¢ for r =
0.3 (solid line), 7 = 0.5 (dashed line), and r = 0.7 (dotted line) in Example 3.2.

The normalization intends to make the first term approximately one. It
corresponds to the scaling that will be used in the optimization problems in
Chapter 4. The function é4(s,p) is convex in p. The worst case is then given

by

nul’az,’xb}/,(w,p), Vp € Pe T (3.26)

A 6y which is considerably smaller than one implies that the inequality in
(3.23) is close and the use of ¥ is not particularly conservative. An example
will explore this.

EXAMPLE 3.2
Consider the ratio

A
AcO

=1+ ret

with the interpretations » = |§4c/Aco| and ¢ = arg(64c/Aco). Figure 3.3

shows the measure §y in (3.25) as function of the argument ¢ € (0,2x) for

r = 0.3 (solid line), for » = 0.5 (dashed line), and for » = 0.7 (dotted line).
O

Stability

A basic demand for robustness is that the closed loop system has all poles
strictly in the left half plane for all p € P. The closed loop poles correspond
to the zeros of the function A.(s,p) in (3.20). Closed loop stability for a
family of processes with structured uncertainty is established by the following
theorem.
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THEOREM 3.1—Stability of a Family of Transfer Functions

Consider the functions in (3.20)~(3.22). If the polynomial Aco(s) has all roots
strictly in the left half plane and if ¢(w,p) > 0, Vw and Vp € P, then A.(s,p)
has all zeros in the open left half plane for all p € P.

Proof: The polynomial Aco(s) has no roots in the closed right half plane,
C™*. Then it is possible to write 4. = A Acs with

5Ac(3ap)
Aco(s)

for s € €1 and it is sufficient to check if Acs(s,p) has zeros in Ct.
The condition on 7 is equivalent to

Acﬁ(sap) =1 +

5Ac(iw,p)

1+ Re _—_Aco (i)

>0, Yw,Vp € P (3.27)

which implies that the map Acs(s,p), for a contour s € I’ encircling the
closed right half plane, always has a positive real part Vp € P.. The function
§4c(s,p) is affine in p and thus also Re Acs(s,p). Then (3.27) is satisfied
Vp € P. The degree condition in Definition 3.3 yields that deg Ag > degéa
and deg Ay > degép. Then §4./Ac0 is proper and A.s(s,p) is bounded for
s € C*. Thus the map A.5(s,p) for the contour s € T will never encircle the
origin for any p € P. Since A(s) and D(s) have no roots in Ct, Acs(s,p)
will have no poles in C*. Thus A.s(s,p) has no zeros in C™ from the principle
of argument variation. . . O

Robust Performance

The robust performance criteria for processes with both structured and un-
structured uncertainties are summarized in three theorems. They extend the
results on robust performance in Section 3.2.

THEOREM 3.2—Robust Output Disturbance Rejection

Let the process (3.10) be controlled by the fixed controller (3.14). The struc-
tured uncertainty is described by p € P and the unstructured uncertainty
is described by W, (w). The performance objective for output disturbance
rejection is defined by Wo(w). Assume that the closed I6op system is stable
for all uncertainties p € P and W,,. ’

Define

w.p) = A(iw, p)R(iw)
fo(w,p) ‘ Acg(iw? | | 29
fup(w,p) = Wu(w) B(’i’:’()ii()’“’) _ <1+Re%g%;_1;))
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If the function

go(wap) = Wo(w)fo(w,p) + fmﬁ(“%?) <0 (3'29)

for all w and for all p € P, then the condition (3.5) in Lemma 3.2 holds for
all processes within the uncertainty region.

Proof: The condition (3.29) is equivalent to (3.19) for p € P.. The function
go is convex in p, and hence it is sufficient to satisfy g,(w,p) < 0 for the
vertices, p € P, to yield that g,(w,p) < 0,Vp € P. Then (3.19) holds Vp € P.
This is a sufficient condition for the inequality (3.5) in Lemma 3.2. O

The condition in Theorem 3.2 guarantees that the closed loop system
satisfies the nominal performance condition for all processes within the re-
gion of uncertainty. Thus, (3.29) is a sufficient condition for robust perfor-
mance. The use of convex functions in (3.29) reduces complexity, since not
all processes with structured uncertainty have to be investigated.

In Theorem 3.2, it was assumed that the closed loop system is stable for
all uncertain processes under consideration. This assumption will, however,
be eliminated in a forthcoming theorem. First, analog conditions for robust
input disturbance rejection and robust measurement noise attenuation are
presented. ’

THEOREM 3.3—Robust Input Disturbance Rejection
Let the process (3.10) be controlled by the fixed controller (3.14). The struc-
tured uncertainty is described by p € P and the unstructured uncertainty is
described by W, (w). The performance objective for input disturbance rejec-
tion is defined by W;(w). Assume that the closed loop system is stable for
all uncertainties p € P and W,,.

Define

B(iw, p) R(iw)

ﬁw@=a+mww

Aco(’iw)
o =t PR - (1)
If the function
gi(w,p) = Wi(w)fi(w,p) + fuyp(w,p) <0 (3.30)

for all w and for all p € P, then the condition (3.8) in Lemma 3.3 holds for
all processes within the uncertainty region.

Proof: Analogous to the proof of Theorem 3.2. O
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THEOREM 3.4—Robust Measurement Noise Attenuation

Let the process (3.10) be controlled by the fixed controller (3.14). The struc-
tured uncertainty is described by p € P and the unstructured uncertainty is
described by W, (w). The performance objective for measurement noise at-
tenuation is defined by W, (w). Assume that the closed loop system is stable
for all uncertainties p € P and W,.

Define
-
If the function
gn(@;p) = Wa(w)fa(w,p) + fuy(w,p) <0 (3.31)

for all w and for all p € P,, then the condition (3.9) in Lemma 3.4 holds for
all processes within the uncertainty region.

Proof: Analogous to the proof of Theorem 3.2. O

-

Main Result

In the three Theorems 3.2, 3.3, and 3.4 it was assumed that the closed loop
system is stable for all uncertainties described by p € P and W,,. Theorem -
3.1 guarantees closed loop stability for all p € P. Now it only remains to
establish a condition that guarantees that the unstructured uncertainty will
not destabilize the closed loop system. This condition will also be sufficient
for the inequality ¢ > 0 in Theorem 3.1 to hold.

THEOREM 3.5—Robust Performance and Robust Stability

Let the process (3.10) be controlled by the fixed controller (3.14). The struc-
tured uncertainty is described by p € P and the unstructured uncertainty
is described by W,(w). Assume that B(s,p) and A(s,p) have no common
zeros on the imaginary axis and that all weights W,, W;, W,,, and W,, are

positive Vw. Assume further, for any p € P that Vwy such that A(p,iwe) =0
it follows that W, (w¢) # 1. If the conditions .

90(“"1?) <0
gi(w,p) <0 (3.32)
gn(w)p) <0

in the theorems 3.2, 3.3, and 3.4 hold Yw and Vp € P, then the closed loop
system is stable for all models within the uncertainty region.
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Proof: The inequalities above may be written

AR BS 6Ac
o u <1
W AcD + W AcO - ( + Re Aco)

B dac
Wi(1+W,) R + W, BS <{1+Re A Yw,Vp € P,
AcO AcO ACO

AS BS

6Ac
W <{1
AcO + AcO - ( + Re ACO)

Since neither B and A nor S and R have common zeros on the imaginary
axis, at least one of the terms on the left-hand side is positive. Then

6AC(iW,p)

14+ Re
co(iw)

>0, VYw,Vpe P,

and stability is obtained from Theorem 3.1.
It remains to show that the unstructured uncertainty not will destabilize
the closed loop system, i.e.

~

W, |BS| < |AR + BS| Vw,¥p € P (3.33)

The condition for noise attenuation (3.31) yields

W |AS| + Wa |BS| < |Acol ( 5‘“) < |AR + BS|
c0

(3.34)
Yw,Vpe P

For w : W,|AS| > 0 it directly follows that (3.34) implies (3.33). Consider
wo : |A(iwo, p)S(iwo)| = 0. Theorem 3.1 yields that A.(iw,p) # 0, then one
of A(iwo,p) = 0 and S(iwe) = 0 must be nonzero. If S(iwy) = 0, (3.33)
holds. For A(iwg,p) = 0 and if the bounding function 4 is conservative, the
right inequality in (3.34) is strict, which implies (3.33). For A(iwo,p) = 0
and a nonconservative v, (3.34) gives W, |BS| < |BS]|, ‘v’p € P which holds
for Wy(wo) < 1. But Wy (wg) # 1 and (3.33) holds. O

The inequalities (3.32) will be used as constraints in an optimization
problem. This will be treated in Chapter 4.
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3.5 Design of Feedforward

3.5 Design of Feedforward

The feedback design above determines the complementary sensitivity func-
tion. The command signal response may be shaped further by a feedforward
Bg(s)/Ag(s), since the output signal is given by

Bg
_ Of 7o
Yy Ag T

where 7° = 7°(s,p,A) is the complementary sensitivity function based on
the real process G° in (3.10). The feedforward ought to be chosen such
that variations in the response to command signals are limited although
T°(s,p, A) may have different characteristics due to the process uncertainties

p € P and A.

One way to obtain well defined command signal responses is to limit the
frequency content in the signal

-

by chosing Bg(s)/Ag(s) as a low pass filter. Introduce the fictive error siéna.l

Bg
ef=yr—y:Sgyr:A—E83r

where S = S3(s,p, A) is based on G? in (3.10). Then select the feedforward

to limit the magnitude of the transfer function from » to ey, i.e.

Bg(iw)
Ag(iw)

Sg(iw,p,A)‘ < ef(w), Vw,VpeP,V|A|<L1 (3.35)

for some weight ef(w) > 0. This condition resembles the condition in the
robust output feedback problem. An analogous reformulation is

- (Re <j1Ao> * 1) =0 (3.36) °

VYw,Vp € P.

1
€f

Bg

B || AR
Ag

ACO

BS
AcO

+ Wy

Fulfillment of (3.36) for p € P, is sufficient for (3.36) to hold for p € P
due to convexity. Given a certain feedforward Bg/Ag (3.36) is a sufficient
condition for (3.35). Hence, the responses to command signals will be close
for all uncertainties under consideration.
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The feedforward must satisfy Bg(0)/A#(0) = k, where 1/k is the DC-
gain of 7 to yield a unit DC-gain of the transfer function form » to y. For
an integrating controller it follows that & = 1.

A simple way to select the feedforward is to find the smallest T for the
feedforward

By k

;1; - (STﬂ‘ n 1)7,,“ (337)
for which (3.36) holds. Given the process B(s,p)/A(s,p) with unstructured
uncertainty W, (w), the nominal model By(s)/A4¢(s), and the feedback con-
troller S(s)/R(s) it is possible to explicitly calculate minTy to make the
response for the reference signal as fast as possible while (3.36) holds. This
is exemplified in Chapter 4.

3.6 Conclusions

Since a model of a real process is never exact it is useful to characterize the
uncertainty of the model. In this chapter it has been proposed to do this
using structured and unstructured uncertainties. Design methods for pro-
cesses with unstructured uncertainty have been developed by [Morari and
Doyle, 1986], who showed that robust output disturbance rejection could be
expressed by an inequality. This criterion has here been extended to crite-
ria for robust input disturbance rejection and for robust measurement noise
attenuation. These results have also been generalized for models with struc-
tured and unstructured uncertainties. These criteria for robust performance
is the main contribution of this chapter.

A design method that considers these conditions for robust performance
will be presented in Chapter 4.
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Robust Design
Using Optimization

/

Many different requirements have to be considered in control system de-
sign. Command signal following, rejection of load disturbances, rejection of
measurement noise, and reduction of the effects from model uncertainty are
examples of typical requirements. In the previous chapter-it has been shown
that many requirements can be expressed in terms of inequalities involving
convex functions. In this chapter a design method will be developed that
considers such inequalities.

There are some methods for control system design that considers model
uncertainty explicitly. The Hoo-method [Zames, 1981] and the LQG/LTR
approach [Stein and Athans, 1987] deal with unstructured uncertainty only.
Quantitative feedback design [Horowitz, 1963] and robust pole placement de-
sign [Soh et al., 1987] deal with structured uncertainty. The u-design [Doyle,
1987], offers a way to deal with complex valued structured perturbations.
It is, however, inordinately complex at the moment. A design method that
provides closed loop robust stability for a process with a combination of
structured and unstructured uncertainties is described in [Wei and Yedavalli,
1989]. Robust performance is, however, not guaranteed.

The method that will be presented in this chapter also considers a com-
bination of structured and unstructured uncertainties. It provides robust
performance for the closed loop system. It may be viewed as an extension
of the design approach proposed in [Boyd and Barratt, 1991]. A certain for-
mulation of the weight functions W in (3.29), (3.30), and (3.31) provides the
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Chapter 4 Robust Design Using Optimization

design method to search for a controller that yields, in some sense, the best
disturbance rejection or the best noise attenuation.

4.1 The Optimization Problem

Design criteria for processes with structured and unstructured uncertainties
were formulated in Chapter 3. It was shown in Theorems 3.2, 3.3, and 3.4 that
output disturbance rejection, input disturbance rejection, and measurement
noise attenuation could be expressed by inequalities involving the functions
go(w,p), gi(w,p), and g,(w,p) which are convex in p.

The controller was given by (3.14). It is parameterized in terms of the ra-
tional function Q. The choice of a good controller @ will now be investigated.
First some approximations are made.

The transfer function @ is approximated by

N(s,z)
= 4.1
where D(s) is a fixed stable polynomial and
N(s,z) = 218" 1 + 238" 2 .-+ 2, ) (4.2)

From (2.11) it follows that deg N < deg D +deg R, —deg A¢. The motivation
for this particular choice is that @ is linear in z € IR™. The controller is now
parameterized by z. A similar approach is taken in [Boyd et al., 1988].

It will now be investigated how the functions g,, g;, and g, depend on z.
Consider e.g. the transfer function g, in (3.29). It follows from (3.14) that

S =5 +QA-A,
R = A, (R, — QBy)

and from (3.22) that
dac = EAATRB +6BSo + QA, (A053 — BO5A)

The dependence of R, S, and 64, on z is thus affine, and it follows from
(3.28) and (3.29) that g, is convex in z.

The function g,(w, p) will now be redefined as g,(w, p, z) to show the de-
pendence on z explicitly. Analog redefinitions give g;(w,p,z) and gn(w,p, z).
These functions are all convex in p for fixed z and convex in z for fixed p.
The conditions in Chapter 3 on a feasible controller z now becomes

go(w,p,:n) = Wo(w)fo(w,p)m) + fu'l,b(w7pam) <0
gi(wapam) = Wi(w)fi(w,p,w) + fuv)(w’P;fL‘) <0 (4'3)
gn(w’p,m) = Wn(w)fn(“’)pam) + fu‘lll(w,pam) <0
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4.1  The Optimization Problem

for all w and p € P.. Since the functions are convex in , control design can
be done by convex optimization. There are many controllers z that satisfy
these inequalities. To find a unique controller that gives, in some sense, best
performance, introduce an additional constraint function

gy(y’vaa :I:) = yWy(w)fy(w’p)m) + fu't/l(wap)m) <0 (4'4)

where y is a performance measure that will be maximized, W,(w) is a non-
negative weight, and f, is one of the functions f,, fi, or fn in (4.3) depending
on the optimization objective. A maximization of y forces Wy(w)f, (w,p,z) to
be minimized while other constraints are satisfied. The optimization problem
is

maximize y

subject to g,(y,w,p,z) <0

go(w,p,z) <0 (4.5)
gi(wapa :D) <0
gn(w,p,m) <0 Yw,Vp € P

with constraint functions defined in (4.3) and (4.4). It is important that g,,
gi, and g, all are present and have the properties assumed in Theorem 3.5,
otherwise closed loop stability can not be assured.

Two examples are used to illustrate how certain design objectives can
be formulated as the optimization problem (4.5). '

EXAMPLE 4.1—Improved Load Disturbance Rejection
A controller for fast rejection of constant output load disturbances is obtained
if So(iw,p,z) has small magnitude for low frequencies and is bounded for

higher frequencies. Such design criteria are provided by replacing the weight
Wo(w) by Wyo(w,ws) in the first constraint in (4.3), i.e.

Wyo(w,ws) fo(w,p, ) + fuyp(w,p,z) <0 Yw,Vp € Pe

The new weight is defined as

Wiofurn) = max (VE(2)°, -

where M, is the maximum peak of the frequency function from disturbance
to output, o is the low frequency slope of S,(iw,p,z), and w, may be in-
terpreted as the closed loop bandwidth. Figure 4.1 shows the inverse of the
weight Wyo(w,ws). Let S2(iw,p,A,z) be the sensitivity function based on
the uncertain process G° in (3.10). A feasible controller is achieved when
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Figure 4.1 Performance bound on disturbance rejection.

|83(tw,p, A, z)| is lower than 1/W,,(w,ws) for all w, for all p € P and for
all |[A] < 1. Increasing wp means that the output load disturbance rejection
is improved through a lowered low-frequency slope. The fastest load dis-
turbance rejection is achieved for the maximal attainable wy subject to the
constraints (4.3).

An optimization problem of the form (4.5) for maximally fast load dis-
turbance rejection is obtained by chosing the weights /

Wy(w)zg and W,,(w)zMip - (46)

the function f, = f,, and the performance measure y = wy. O

Remark. The weight W, (w) in (4.6) may also be used to optimize the input
disturbance rejection. Then f, = f;, Wi(w) = 1/M,, and o is the low
frequency slope of S;(iw,p, ). O

EXAMPLE 4.2—Improved Measurement Noise Attenuation

The measurement noise attenuation is bounded by the third constraint in
(4.3). A normal design objective is to minimize the maximum magnitude
of the transfer function from measurement noise to control signal. Such a
controller is obtained by chosing f, = f, and Wy(w) = 1 in (4.5). At the
optimum the magnitude of S2(iw, p, A, z) is bounded by the inverse of

Wyn(w’ y) = max (y, Wn(w))

forall w, p € P, and |A| < 1 according to Theorem 3.4. A large y corresponds
to good measurement noise attenuation. O
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The optimization problem (4.5) has constraints that are functions of the
frequency w. Such constraint functions lead to a semi-infinite optimization
problem [Polak et al., 1984]. To solve such an optimization problem here, it
is a approximated by a finite dimensional problem. Based on knowledge of
the interesting frequency range for the control system, a set of frequencies

{wj7j:1a""m} (47)

is selected. It is assumed that if the constraints in (4.3) and (4.4) are satisfied
for the frequencies in (4.7) they are satisfied for all frequencies.

The optimization problem (4.5) can now be reformulated using the finite
set of frequencies in (4.7). It is

maximize y

subject to gy (y,wj,p,z) <0

go(wj,pyz) <0 (4.8)
gi(wj,P,m) <0
gn(wj,p,z) <0 j=1,...,m, VpeP,

This optimization problem has 4m2%-¢ constraint functions IR™ ~— IR, since
each element p € P, produces 4m constraints and the set P, consists of 2%«
elements.

It is important that the number of frequencies m is considerably larger
than the dimension n of . Then z can not be chosen such that R(iw;,z) =0, -
VYw;, or S(iwj,z) = 0, Vw; in the controller (3.14). This means that Vz
there exist fy(wj,p,z) > 0 in (4.4). Inspection of (3.28) and (4.4) gives
with the same arguments that for some w; and 0 < y < oo it follows that
gy(y,wj,p,z) > 0 when |z| — co. Hence the set of feasible = is bounded.

The controller that is obtained from the solution to (4.8) is often of
high order. Hence, model reduction may be used to reduce the controller
complexity.

Properties of the Optimization Problem

This section discusses properties of the optimization problem defined in (4.8).
It will be shown that the optimization problem has only one extremum. The
constraint functions in (4.8) all have a special structure which is given by

9i(y,2) = yfri(z) + foi(z), ie€eI={1,...,4m2%:} (4.9)

where f1;(z) is convex and non-negative and f3;(z) > —oo and convex. Con-
straints in (4.8) without y correspond to fi; = 0. For all z, at least one
fri(z) > 0 and at least one g;(y,z) > 0 for 0 < y < co and |z| — oo. The
constraints define a convex set.
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DEFINITION 4.1—Feasible Set
Let gi(y,z) be given by (4.9). Define for fixed y > 0 the convex set z € IR™
of feasible solutions

Qy) = {= : gi(y,2) <0O,Vie I} O

As noted above Q(y) is also bounded. A lemma relates the sets {}(y) for
different values of y.

LEMMA 4.1
Assume that the convex set {}(yz) in Definition 4.1 is non-empty. If y» > o
then Q(y2) C Q(y1).

Proof: Consider the convex set Q;(:) defined by the function g;(-,-). It
follows that

gi(y1,2) = y1 fri(z) + fai(z) < yafri(z) + fai(z)
= gi(y27T’) <0

Thus, if ¢ € Q4(y2) then z € Q;(y1), and Q;(y2) C Qi(y1). The intersection
of all Q;(y2),7 € I form a convex set which is a subset of Q(y1). a

The optimization problem (4.8) can now be reformulated as

maximize y
subject to z € Q(y) ~ (4.10)
y>0 ’ '

If the set 2(-) is empty, no feasible solution exists. Otherwise the following
theorem shows that the optimization problem has one global extremum.

THEOREM 4.1—Uniqueness

If a feasible solution exists for the optimization problem (4.10) then the set
X* = Qy*) € R™ corresponding to the maximum y = y* is convex and
nonempty and any relative maximum is a global maximum.

Proof: Given an initial yo > 0, assume that Q(y,) # 0, i.e. a feasible
solution exists. Increasing y generates ordered subsets of ((y) according to
Lemma 4.1. Introduce y* = supy, J) # 0, and a sequence Q(y;) with
y; monotonically increasing to y*. Then y* < oo, since Vz, at least one
fii(z) > 0. Since the sets (y;) are closed and bounded it follows from
Cantor’s intersection theorem, e.g. [Simmons, 1963, pp. 73-74] that Q(y*) #
0. Optimum is thus achieved for the nonempty convex set X* = Q(y*). O
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4.2 Practical Considerations

The proposed design method uses optimization to find a controller for certain
closed loop behavior. By making several approximations an optimization
problem with a unique optimum was obtained. The consequences of the
approximations will now be discussed and it will also be shown how a feasible
solution can be obtained.

Iteration over @

The controller is parameterized by the numerator coefficients = of Q(s,z)
in (4.1). The choice of denominator of Q(s,z) affects the solution to the
problem. If Q(s,z) is sufficiently complex it is a reasonable approximation of
the infinite dimensional set of all Q(s). After a solution z* to the optimization
problem (4.8) has been found, an investigation of Q(iw,z*) will show if a
new denominator D(s) further may improve the optimum of (4.8). It is not
realistic to assume that the first choice of denominator has the requested
properties, but an acceptable choice is obtained after a few iterations since
the choice of D(s) is not so crucial. This will be demonstrated in an example
below.

-

Initial Feasible Controller

The optimization problem in (4.8) requires an initial controller parameterized
by z in (4.1). For a reasonable guess of the initial controller the optimization
routine itself, finds a feasible solution to the problem (4.8). For some prob-
lems the routine may however fail here. Searching for a feasible controller
may in such cases be done in two steps. First, find a controller that yields a
stable closed loop system for all processes G(s,p),p € P, then find a feasible
solution to the optimization problem (4.8) for a given y = yo.

Stabilizing Solution: A controller that stabilizes all processes G(s,p),p €
P yields a closed loop system that satisfies the condition in Theorem 3.1.
The use of the lower bounding function (3.24) instead of the magnitude of
the closed loop characteristic polynomial may cause some conservatism in the
constraints (4.3). A measure of the conservatism is proposed in (3.26). The
minimal conservatism may be found through the optimization problem

minimize maxéy(w;j,p, )
wj,p

6A6(wj1pa a”')

S 4.11
Aoo(i05) >e>0 ( )

subject to 1+ Re

j=1,...,m, Vpe P,

The objective function is convex in z since it is the maximum of some convex
functions 6y(w,p,z). The constraint function is affine in z. Hence, the
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optimization problem (4.11) has one minimum that could be found using
optimization. For a feasible solution to (4.11), Theorem 3.1 guarantees closed
loop stability for all processes G(s,p),p € P.

Feasible Solution: A stabilizing solution to the optimization problem
(4.11) may be improved so that the constraints in (4.8) are satisfied for
Y = Yo. An optimization problem of the type (4.10) is formulated using
the constraints in (4.8). Hence, a feasible solution is found from

maximize -y
subject to 0<y <1
7 (9y(yo,wj,p,2) +1) < 1

(4.12)
7(go(wjspy2) +1) <1
7(gi(“"japam)+1) <1
7(gn(“’j7pam)+1) <1 j=1...,m, VpeP,

A feasible solution to (4.8) is achieved if the optimal v* = 1. If v* < 1 no
feasible solution is found.

If the weights in (4.12) give acceptable performance there is no need to
search for an optimal solution. Arbitrary positive weights may then be used.

Implementation

The optimization problem is solved using a sequential quadratic programming
algorithm implemented in Fortran [Gill et al., 1986]. The Fortran subroutine
is linked to PRO-MATLAB [MathWorks, 1990], where the problem is set up

and the result is evaluated.

4.3 First Order Example

The first example is taken from [Masten and Cohen, 1989]. It will show
that a controller satisfying the desired specifications is obtained after a few
iterations. The reason for this iteration is that the initial choice of D(s) in
(4.1) does not yield a sufficiently good approximation of the infinite set Q(s).

The process is considered to consist of two parts G%(s) = G,G,. The °
first part is a first order transfer function describing parametric variations.
It is given by

b
s+a

Gs(s,p) =
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Im

Re .

Figure 4.2 Nyquist curves for the loop transfer functions Lq (3w, p), for the four
P € Pc with uncertainty circles drawn for the frequency w = 20 radians/s.

with 0.5 < 5 < 3.0 and —1.0 < ¢ < 3.0. Thus, the set P, has four ele-
ments. Characteristics for these will be shown in the figures for this example.
The second part of the transfer function represent unmodeled dynamics. It
is assumed to be

1 —8T
Gu(S) = m € (4-13)

with 0 < T'< 0.1 and 0 < 7 < 0.05. The unmodeled dynamics is bounded
using unstructured uncertainty. This bound is given by

Wa(w)

e—m0.0Ew l

= 1
(1 +10.1w)

A feedback controller will be designed for effective input disturbance
rejection. The initial controller is a PI controller

So(s) 175414
Ro(s) 3

49




Chapter 4 Robust Design Using Optimization

The Nyquist curves for the loop transfer functions

LO(iwap) = %G,(iW,p)
for p € P, are shown with solid lines in Figure 4.2. The controller stabilizes all
four processes p € P, without unstructured uncertainty. Presence of unstruc-
tured uncertainty may, however, destabilize the closed loop system. For each
frequency response in Figure 4.2, the frequency w = 20 radians/s is marked
with a cross. Due to unstructured uncertainty, each of these points may vary
inside respective dashed circle with center at the cross, i.e at Lo(:20,p). The
radius of these circles are given by W,(20)L,(720,p). Since some of these
circles surround —1, the closed loop will be unstable for some processes G°
within the uncertainty envelope.

A stabilizing controller which rejects input disturbances as fast as pos-
sible will now be determined. It is required that the sensitivity constraint
|S?| < 2.5 should hold for all processes G° within specified region of uncer-
tainty. This is captured by the optimization problem (4.8) with f, = f;,
Wy(w) = v2/w, y = wp, W; = 1/2, and W, = 1/2.5. The denominator of
Q(s,z) in (4.1) is first chosen as .

D(s) = (5 +1)(s + 10)(s + 100)

Optimization gives w, ~ 2.4 radians/s and the measure of conservatism (3.26)
is max 8y ~ 0.10. The resulting controller Si(s)/R1(s) is of fourth order. It
will be used as the initial controller in the forthcoming optimization problems.
A new optimization problem attempts to increase the bandwidth w;. For the
initial controller S;/R; and the denominator

D(s) = (s +1)(s+10)

optimization finds a controller that yields wp &~ 2.5 radians/s. An inspection
of the frequency response of @) reveals that this transfer function is a high
pass filter. An appropriate choice would therefore be

D(s) = (s +10)*(s + 20)®

where also the degree is increased for more freedom in Q(s,z). This denom-
inator is used in a new optimization problem. It follows that the maximal
attainable bandwidth now is wp &~ 3.5 radians/s. Model reduction of the
ninth order controller from the optimization yields a third order controller

Sa(s) _ 54.9(s + 1.0)((s + 17.0)% + 13.0%)
Ry(s) s((s +27.5)% + 52.32)
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Im

Figure 4.3 Nyquist curves for the loop transfer functions Ly (iw, p), for p € P,
with uncertainty circles.

Figure 4.3 shows the Nyquist curves for the loop transfer functions

w

Ly (iw,p) = %Ga(iw,p)
for p € P.. Each of these curves has a set of circles describing the possible
variation due to unstructured uncertainty for different frequencies. None of
these uncertainty circles intersects the circle around —1 for the sensitivity
function constraint. Hence, this constraint holds for all frequencies and for
all processes G° under consideration.

Iterations with other initial controllers and with other denominators
D(s) does not improve the bandwidth further. The dashed lines in Fig-
ure 4.4 show |S;(tw,p)| for the four processes with p € P.. The solid lines
show the maximal |S?(iw,p, A)|, |A] < 1 for the four p € P.. The unstruc-
tured uncertainty increases the magnitude of the functions |S;|. The dotted
line shows the inverse of the optimal performance function 1/Wy;(w,3.5). As
requested 1/W,; is an upper bound on |S?|.

Figure 4.5 shows simulations for the four processes p € P. when the
unmodeled dynamics G, (s) in (4.13) is defined by T = 0.1 and 7 = 0.05.
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Figure 4.4 Magnitude of S; for p € P, with unstructured uncertainty (solid)
and without unstructured uncertainty (dashed). The inverse of the input distur-
bance performance function Wy—‘-1 (dotted).

The controller is S;/R, and the feedforward is Bg/Ag = 1/(0.88s+ 1). The
reference signal is one, at ¢ = 10 s a constant input load (I = —1) affects the
system and at ¢ = 18 s a constant output load (d = —0.25) affects the system.
The response to the input load disturbance is acceptable. The response to
the output disturbance has a large overshoot, but this was not considered in
the design.

4.4 Ship Steering Example

The second example considers the ship in Example 3.1. The process is unsta-
ble for certain operating conditions. A controller will be designed such that
the sensitivity function is constrained by |S,| < 1/W, = 1.5 and the noise
sensitivity is constrained by |S,| < 1/W, = 100 for all processes p € P with
unstructured uncertainty bounded by W, (w). Load disturbances, affecting
the process at the input, should be eliminated in stationarity. This requires
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Figure 4.5 Simulation of closed loop system for four processes p € P with
unmodeled dynamics Gy (s).

an integrating controller. The initial controller

So(s)  3.75((s + 0.24) +0.272)(s + 1.71)

Ry(s) s(s +1.11)(s + 2.39)

stabilizes the nominal process p = po = (—0.70 4 0.05)/2 = —0.325. It does
not stabilize all processes within the prescribed range of uncertainty. This
is seen in Figure 4.6, where the solid curves show the frequency responses of
the loop transfer functions

B(iw)p)SO(iw)
A(tw, p) Ry (iw)

Lo(iw,p) =

for the two elements p € P.. The dashed curves on each side of these fre-
quency responses show the region of possible variation due to the unstruc-
tured uncertainty. The frequency responses do not encircle —1 for all uncer-
tain processes under consideration, and hence robust stability is not achieved.
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Figure 4.6 Nyquist curves Lo(iw, p) with uncertainty regions of the loop trans-
fer function for the system, with controller So/Ro and for the two values of the,
process parameter p € Pe.

A controller satisfying the bounds on |S,| and |Sy,| is given by a feasible
solution z/ to the optimization problem (4.8). The constraints are defined at
25 frequencies logarithmically spaced between 102 and 102. The controller
(3.14) is parameterized by Q(s,z) in (4.1) with

D(s) = (s +1)*(s + 5)*(s + 20)°

A feasible solution to the optimization problem (4.8) yields an eleventh order
controller. Its frequency response is adequately described by a fourth order
controller, that is obtained using model reduction. It is given by

Si(s)  54.71((s + 0.13)% + 0.17%)(s + 1.99)(s + 46.21)
Ri(s) s(s + 1.27)(s + 21.21)(s + 28.95)

Optimal Input Disturbance Rejection

A controller for optimized input disturbance rejection will now be designed.
Define W, (w) = v/2/w and fy = fi- Keep W, = 1/1.5 and W,, = 0.01 as
above. The controller is defined by the nominal controller S;/R; above and
it is parameterized by Q(s,z) in (4.1) with

D(s) = (s +0.5)%(s +1)°(s + 5)?
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Figure 4.7 Nyquist curves Ly (iw, p) with uncertainty regions of the loop trans-

fer function for the system, with controller S;/R2 and for the two values of the
process parameter p € Pe.

This D(s) is obtained iteratively as demonstrated in the previous example.
A controller for optimized disturbance rejection is given by the solution to

the optimization problem (4.8). The controller is of eleventh order. Model
reduction then gives a fourth order controller

Sa(s) _ 93.72((s + 0.42)2 + 0.362)(s + 2.00)(s + 36.35)
Ry(s) s(s + 1.86)(s + 22.85)(s + 28.97)

The solid curves in Figure 4.7 show the frequency responses of the loop trans-
fer functions

B(iw, p)Sa(iw)

Ls(iw,p) = A(iw, p) Ry (iw)

for the two elements p € P.. The circle around —1 has radius 1/1.5. It
corresponds to the sensitivity constraint |S,| < 1.5. The uncertainty regions
due to unstructured uncertainty are shown by dashed lines as in Figure 4.6.

These regions do not intersect the circle around —1 as requested by the design
constraint on the sensitivity function.

The conservatism of using 9 in (3.24) instead of the norm of the closed
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Figure 4.8 Simulation of seven closed loop systems in the ship example.
loop characteristic polynomial is measured by (3.26). For this problem it is

wryr;gg}{)c 8y (w,p,z*) ~ 0.07

which is considerably smaller than one.

The bandwidth, as defined by Figure 4.1, is wp = 0.96 radians/s. Simula-
tions of the closed loop system for seven different open loop processes within
the uncertainty bound are shown in Figure 4.8. The controller S;/R; was
used, and the feedforward

Bg(s) 1
Ag(s) (14 1.61s)3

was chosen as suggested in Chapter 3. The reference signal is a step and an
input load disturbance affects the process at ¢ = 23 s. The feedforward slows
down the response time for reference inputs to avoid overshoots for some
processes. The responses for the different processes are then close as seen in

Figure 4.8.
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Figure 4.9 Simulation of seven closed loop systems for two different controllers.

Optimal Noise Attenuation

Assume now that a lower bandwidth than above is acceptable. It is considered
as acceptable if it satisfies wy > 0.10 radians/s, which is ten times lower than
the optimal bandwidth above. Another controller will now be designed to
minimize the measurement noise contribution in the control signal. To do this
define W, = 1, fy = fn, Wi = v/2-0.1/w and W, = 1/1.5 for the optimization
problem (4.8). An optimal solution is obtained for y = 0.021 which means
that |Sy| is less than 48 for all uncertain processes under consideration. The
low demand on bandwidth here, allows lower noise sensitivity compared to
the controller for fast load disturbance rejection. After model reduction, the
controller is

S3(s)  47.21((s 4 0.15)% 4 0.16%)(s + 2.01)
Rs(s) s(s + 1.57)(s + 12.78)

Figure 4.9 show the responses to a constant input load disturbance for
seven different processes within the uncertainty bound when the controllers
S2/ Ry (dashed lines) and S3/Rj3 (solid lines) are used. The fastest response
is achieved for the controller S;/R, that is optimized with respect to input
disturbance rejection. The slowest response is achieved for the controller
S3/Rs that is optimized with respect to measurement noise attenuation, with
little emphasize on load disturbance rejection properties. .

Finally Figure 4.10 show the frequency responses for the four controllers -
that have been designed. The initial controller So(iw)/Ro(iw) (dash-dotted)
does not have sufficient phase advance to stabilize all uncertain processes.
The feasible controller S;(iw)/R;(iw) (dotted), has more phase lead, and the
price for this is high gain at high frequencies. This property is also found
for the controller Sy(iw)/Rz(iw) (dashed). However, the low frequency gain
is increased for this controller. This means faster disturbance rejection. The

57




Chapter 4 Robust Design Using Optimization

(]
=]
=
g
&
p
102 10-1 109 10! 102
100 T T T 7T T rrrr T T LI L A LI T T T TT1r1ry ¥ T T 1T 17T
E:
=
[
&
=
oy
_100 1 1A|:|x||| L [ W I N B ! TS N I
10-2 10-1 100 101 . 102

Frequency [rad/s]

Figure 4.10 Frequency responses for the controllers in the ship example.

controller S3(iw)/ R (iw) (solid) for best noise attenuation has lower gain than
the other controllers that stabilize all processes under consideration. None of
these controllers have high frequency roll-off. For a practical implementation
such would be desired.

4.5 Conclusions

A new method for robust control system design has been presented here.
The method considers processes with combined structured and unstructured
uncertainties. The controller parameters are determined through a convex
optimization problem which is formulated using the frequency domain con-
ditions for robust performance in Chapter 3.

Two examples have demonstrated the use of the design method. The
first example showed how iteration over different denominators D and initial
controllers Sy/Ry leads to a controller with desired properties. The second
example showed how the method can be used to achieve a controller that
is optimized in some sense, while regarding other design criteria and uncer-
tainty.
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Robust and
Adaptive Control

~

Robust control of uncertain processes has been discussed in Chapter 3 and
Chapter 4. Adaptive control is another way to deal with variations in the
process dynamics. For very large uncertainties adaptive control may be the
only way to obtain an acceptable control system. Adaptive controller are rea-
sonable well understood. See e.g. the textbooks [Astrém and Wittenmark,
1989] and [Goodwin and Sin, 1984]. Although adaptive controllers have the
potential to give excellent performance, it has been observed that adaptive
systems may also be difficult to commission. For this reason the most exten-
sively used adaptive technique is automatic tuning of simple controllers of
the PID type [Kraus and Myron, 1984, Astr6m and Hagglund, 1988a]. These
controllers have been developed to the stage where tuning is performed sim-
ply by pushing a tuning button. It would be desirable to make adaptive
controllers as easy to use as the simple autotuners. Such a procedure will be
developed in Chapters 5, 6, and 7. The key idea is to use information from
an experiment with relay feedback to initialize the adaptive controller.

Section 5.1 gives a brief background to adaptive control and the equa-

tions are summarized for the adaptive controller that is used here. This
controller is a well known algorithm based on pole placement design and
recursive least squares estimation. It is known that pole placement control
design may lead to closed loop systems with poor robustness. The controller
itself may e.g. be unstable. This is illustrated in Section 5.2. The design
procedure developed in Chapter 4 is too complicated to perform on line. In
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'

Process parameters

Design —— ] Estimation j@————
Controller
parameters
S S u y
Controller p{ Process
—B

Figure 5.1 An indirect adaptive controller.

Section 5.2 a much simpler way to improve the robustness of the pole place-
ment controller is therefore suggested. This procedure, which is believed to
be novel, is introduced in the adaptive controller. Coe

¢

5.1 Adaptive Control

An adaptive control system is a special type of nonlinear feedback system.
The controller has the ability to adjust itself from knowledge, successively
gained about the process, such that the closed loop system behaves as desired.

In this thesis an indirect adaptive controller with the structure shown in
Figure 5.1 is used. Only single input single output systems are considered.
The control design is based on a robustified version of pole placement design.
Parameter estimation is performed by recursive least squares.

The selection of desired closed loop poles is critical for the success of
a pole placement design. This is done based on the characteristics of the
process. The controller is a sampled data system. The selection of sampling
period is critical for control design and especially for a successful parameter
estimation. These choices are discussed in Chapter 7.

The process is described by the input-output relation

_g'B(¢g7Y)
o) = B iy (5.1

where B*(qg™!) and A*(¢™!) are polynomials of degree m and n respectively
in the delay operator g~ and d is the delay in the process. It is required that

60




5.1 Adaptive Control

d > 0 to have a strictly proper model of the process. In an adaptive controller
it is essential to know the delay. The polynomials in (5.1) are estimated by
a recursive least squares algorithm

8(k) = 8(k — 1) + K(k) (ys(k) — 7 (k)8(k — 1))
K(k) = P(k — D (k)] (A + oZ(k)P(k — o5 (k)) (5:2)
P(k) = (I - K(k)o (k) P(k — 1)/
with the polynomial coefficients defined in
O(k)=(ar ... an bo ... by)T

The estimator uses a forgetting factor A to put more emphasize on recent
measurements than on older. The input and output signals of the process
are filtered before they are fed into the estimation algorithm.

ys(k) = Hi(g7 )y(k) us(k) = Hy(q™" Ju(k)

The filtered output ys(k) and the filtered regression vector

( —ys(k —1) \ -

—ys(k —n)

ps(k) = wll — d))

\uj(k—m—a))

are then used in the estimator. The filter H ;(q*l) may be interpreted as a
frequency domain weighting of the error in frequency response of the esti-
mated process model. The filter is often chosen with band pass characteris-
tics. The passband should be chosen such that an accurate process model is
obtained for frequencies where the loop transfer function L is close to —1 in
the Nyquist diagram. The regression filter would therefore be chosen from
the closed loop characteristics.
The controller is defined in the delay operator as

R*(q " )u(k) = T"(¢ " )r(k) — ™ (a7 Jy(k) (5.3)

Its coefficients are determined in the design block, using pole placement de-
sign that was introduced in Chapter 2. The Diophantine-Aryabhatta-Bezout
equation

A () AN g R (¢7) + a7 B (¢7)S (a7!) = 4i(e7) (5.4)
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is defined by the estimated parameters 6 and the desired closed loop specifi-
cations. It is solved at every sampling instant.

A Priori Knowledge

Any control system synthesis is guided by specifications on the desired behav-
ior of the closed loop system. The specifications may be in time or frequency
domain or in locations of the closed loop poles. An adaptive controller must
also be given information of what it is intended to achieve. It is not a black
box that may be connected to any real process and be expected to do a
good job. The indirect adaptive controller above needs the following a priori
information.

Sampling interval should be chosen with respect to the closed loop system.
The essential dynamics of the closed loop system should be reflected in the
discrete time model.

Process model structure is defined by the delay d and the degrees of the
polynomials B* and A*. It is used to set up the recursive estimator (5.2).

Closed loop specifications are given by the characteristic polynomial A* =
A3 Ay, and the polynomial A}. An integrating controller is introduced with
A* =1—q7'. A such will be used in the sequel. The (gomplexity of .the
process model determines the degrees of A% and A*,. Appropriate closed
loop poles may be selected from properties of the open loop process.

Variables for the recursive estimator are the initial estimate of the
parameters §(0) and an initial covariance matrix P(0). The regression filter
H} and the forgetting factor A must also be given.

The data above should be given before the controller is commissioned.
They are essential for the robustness of the adaptive controller. Information

gained by a simple experiment under relay feedback will here be used to
obtain the data.

5.2 A Simple Robustification

The design method in Chapter 4 used the rational @ in the controller (3.14) to
satisfy various robustness criteria. The controller was obtained using convex -
optimization. Such calculations are too complicated to do on line in an
adaptive algorithm. There are, however, some simple choices that will lead
to controllers with significantly improved performance.

The properties of a controller may be influenced by requiring that its
transfer function has certain specified poles and zeros. A common case is
to require that the controller has integral action, i.e. a pole at ¢ = 1 in
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Table 5.1 Lower bound p,, of pole p for 0 < n, < 2 controller zeros in ¢ = —1
that gives a stable controller.

d
1

S
[

Do 41 D2

0.80 0.11 0.00
0.40 0.06 0.00 .
0.80 0.62 0.51
0.46 0.37 0.31
0.80 0.72 0.66
0.52 0.47 0.45
0.80 0.76 0.72
0.56 0.53 0.52
0.80 0.77 0.75
0.58 0.57 0.56

w
BN i —IN HIN DN

the discrete time case. Similarly it can be required that a discrete time
controller has a zero at ¢ = —1. This implies that the controller has zero
gain at the Nyquist frequency. This is a simple way to improve robustness
and insensitivity to high frequency measurement noise. A simple example
illustrates the benefits. C s

’

EXAMPLE 5.1
The process

B*(q-—~1) q—(d+1)
A*(g71)  1-10.8¢71

(5.5)

is controlled with an integrating controller. This means that the denominator
of the controller has the structure R*(¢7') = R™(¢7!)(1—¢™!). The numera-
toris chosen to have n, zeros at ¢ = —1, hence S*(¢7!) = §"™(¢71)(1+q71)"=.
The closed loop characteristic polynomial is specified as

A (g =1 —pgh) (5.6)

with 0 < p < 1. The controller is obtained from the solution to (2.8).
The freedom Q(g™!) in (2.12) is used to give S(g~!) the desired zeros. The
controller obtained will be unstable if p is chosen too small. Table 5.1 shows
how fast the pole p can be chosen for different delays d and different degrees
n. to have a stable controller. A controller with n, zeros at ¢ = —1 is stable
for p > pn,. The last three columns of Table 5.1 show p,, forn, =1,2,3. It
is observed that for processes with small delays d, the pole p can be chosen
faster when the controller has zero in ¢ = —1 compared with a controller
without such a zero. For large delays, however, the difference is small.
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Figure 5.2 Noise sensitivity Sp(e~*“") for controllers with n, = 0 (solid line),
n; = 1 (dashed line), and n, = 2 (dotted line).

Controller stability is not the only reason for introducing zeros at q =
—1 in the controller. A controller with such a zero has low gain at high
frequencies. This gives low sensitivity to high frequency measurement noise.
Figure 5.2 shows the noise sensitivity for different n,. The process (5.5) has
delay d = 2. The closed loop characteristic polynomial (5.6) is defined by
p = 0.6 and n. = 2. The noise sensitivities |Sn(e“i“’h)l are shown forn, =0
(solid line), n, = 1 (dashed line), and n, = 2 (dotted line). The magnitude
of Sn(e'i“’h) decreases with increasing n,. From Table 5.1 it follows that
the controllers are stable for these three n,. It should also be noticed that
the sensitivity functions S,(e~**) are close for the three cases. This means
that the disturbance rejection properties are similar. Analogous behavior of
Sn(e7*") and of S,(e~™") are observed for all processes in this example. [

The example has demonstrated some benefits of having a low controller
gain at high frequencies. The interval with low gain may be enlarged by
introducing more zeros in the controller. This will not be pursued here.
Thus, the suggested robustification of the pole placement design that will
be used in Chapter 7 is simply that the controller should have one zero at
qg=-—1.
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Relay Feedback

One successful method to tune a PID-controller is based on relay feedback
[Astrom and Higglund, 1988a]. The idea is that many processes will exhibit
limit cycle oscillations under relay feedback. For a large class of processes
good controller parameters can be obtained from the amplitude and the pe-
riod of the limit cycle. In [Astrém and Higglund, 1988b] and [Higglund
and Astrdm, 1991] it is shown that simple discrete time models can also be
calculated from the waveform of the limit cycle. x

This chapter discusses information about the process that can be ob-
tained from an experiment with relay feedback. Both frequency domain in-
formation and time domain information may be useful to characterize the
process. It will be shown in Chapter 7 that an experiment with a relay
feedback provides sufficient a priori information to commission the adaptive
controller described in Chapter 5.

6.1 The Relay Feedback System

Relay feedback is a classical topic in control theory. A ‘key problem is to
characterize the behavior of linear systems under relay feedback. Major ad- °
vances were made in the fifties. Main results are found in the textbooks
[Atherton, 1975] and [Tsypkin, 1984]. Systems with with relay feedback have
a very complex behavior and there are still important problems that are not
resolved. A complete characterization of first order processes with dead time
has recently been published [Holmberg, 1991].

The block diagram of a linear system with relay feedback is shown in
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-1 |-

Figure 6.1 Relay feedback

Figure 6.1. The relay output signal is given by

I

) = d, ife> eor(e>—eandu(t—) d)
YW= -d, ife<—cor (e < e€andu(t—)=—d)

where the relay amplitude is d and the hysteresis is €. .

Under relay feedback when a stable symmetric oscillation around zero
is established, the relay output will be a square wave with amplitude d and
period Tpsc = 27m/wosc- The Fourier series expansion of the process input
signal is

s() =2 3 Lsin(wpemt) (6.1)
4 meM m

where M = {1,3,5,...}. Similarly the Fourier series expansion of the process
output is

_ad
.—ﬂ'

yt) =22 3 % |G (iwosem)| sin (wosemt + atg Giwosem)) (6.2)

meM

Practical Considerations

Assume that the system initially is in stationarity at the desired operating
point. The input signal is kept constant for a while to estimate the noise
variance ¢ and the maximal amplitude of the noise v,,,. The relay hysteresis
level is then chosen from the maximal noise amplitude, so that erroneous
relay switches due to noise are avoided. A significant change in the error
signal will be required for the relay to switch. The relay feedback is now
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introduced and the system will oscillate. A predefined value of the relay
amplitude d is used initially. It is adjusted under the experiment so that the
oscillation will have a desired amplitude 7,,4;. There is a trade-off between
the information content in the output signal, due to the signal to noise ratio,
and the permissible perturbation.

Assume that the first harmonic dominates the process output. The ratio
between the oscillation amplitude

4d .
Ymaz = ? IG(Zwoac)|

and the relay hysteresis determines the phase shift of G(iw,c). Describing
function analysis gives

e
I Wose) = ——
m G(iwesc) 1d
and it follows that
arg G(iwosc) = —m + arcsin (y i ) (6.3)

-

The ratio €/ymaz is given by the user. The choice €/Ymaz = 0.5 implies that
arg G(iwpsc) =~ —57/6.

Asymmetric oscillations may occur if the relay is asymmetric or if there
are small load disturbances. Large load disturbances may quench the oscilla-
tions. Constant disturbances may be compensated for by.introducing a bias
in the relay [Hang and Astrém, 1988]

6.2 Frequency Domain Information

Under relay feedback the input signal is a square-wave when a periodic os-
cillation is established. The Fourier series expansion of the input signal (6.1)
shows that the signal has its energy at the frequencies w = w,,sm with
m € M. It is therefore appropriate to estimate the frequency response G(iw)
at these frequencies.

The slope of the frequency response magnitude is locally given by

_ Olog |G(iw)|
Ologw

n(w) =

(6.4)

The maximal slope is a measure of the process complexity. It may be used
to estimate the relative degree of the process. If the slope is steep in some
frequency interval a high order process model will be required for proper
modeling in this interval.
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Frequency Response Estimation

The frequency response of the process is estimated using the discrete Fourier
transforms of v and y. When the signals are sampled with interval h the
discrete Fourier transform is given by

7 _ 1 - —iQtk
~(Q) = ;o z z(k)e
k=1

where Q = 2xk/N, k = 1,2,...,N. The frequency response G is then esti-
mated by

Yn(m)

E[(em"‘) = ——————UN(Qm)

(6.5)

for m € M. Notice that an estimate is obtained only for the frequencies
Q. = wosemh, m € M where the input spectrum is nonzero.
To illustrate the accuracy of estimates, assume that the process is defined

by
y(k) = Ho(q)u(k) + v(k) | (6.6)

where v(k) is measurement noise. Assume further that v(k) is a white noise
sequence with zero mean value and with variance o%2. The m:th component
of the sampled input signal ‘

(k) = ;r‘i sin(Qmk) (6.7)

™m

has the spectrum

d\2 00—
st = {4V ()" 2= 2 (65)
0, Q4+

If the summation time for the discrete Fourier transform is a multiple of the
period, the frequency response estimate (6.5) of the process (6.6) is unbiased

E [I;I(em )] = Hy(e'?)
and the covariance of the estimate is

0'2 . _
Var [I:T(em"‘l ), H (e1ms )] = {Wa if my =may

, otherwise.
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for frequencies where the input spectrum is nonzero. From (6.8) it then
follows that the variance of the frequency response estimate is

wlo?m?

W\l
Var [H(e )] - AN d?

(6.9)

for the normalized frequency {2,,. Assuming that ¥me, is dominated by the
first harmonic it is possible to rewrite (6.9) as

@) 4 (o Y (6.10)
. = — m .
| H (e1)]2 N \Ymaz

The variance in the estimate for a certain harmonic is determined by the
signal to noise ratio Ymaz /0, the number of measurements and the number
m of the harmonic. The variance of the frequency response estimate (6.5)
increases quadratic with m. The estimates deteriorate fast with increasing
frequency. Increasing the number of measurements will decrease the variance
of the transfer function estimate. A decrease may either be accomplished by
faster sampling or summation over more periods.

Estimation of Slope

The slope (6.4) of the transfer function at the crossover frequency is of interest
to discriminate between different models. It is obtained from the frequency
response estimates (6.5). The slope at the frequency @ = /Qp; O, is
estimated by

fI(eile)

—log 'I—:T(em'“Z)
log(m;) — log(my)

log

i (|H(e )], | H (e)]) = (6.11)

To estimate the accuracy of the estimated slope, assume that the mag-
nitude of the frequency response in the interesting frequency interval is de-

scribed by
1\* ,
() o1

where the slope « is a real number. Gauss’ approximation formula gives

|

()| = |f ()

logE HIAI(em"‘l ) ] —logE UfI(emmz )
- log(my) — log(m)

E[4] =
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Table 6.1 Standard deviation of slope in Example 6.1.

o

1

3

ma2 On

3 0.12
5 0.22
5 0.74
3 0.35
5 1.10
5
3
5
5

3.54
1.04
5.49
17.45

QO o0 ) e

Since the estimates b, = |H (&' )| are uncorrelated for different m it follows
that

Var[ﬁ(hml,hmz)]z( on )ZVar[hml]—}—( on >2Var[hm2] (6.13)

Ohm, Ohm,
Inserting (6.10) and (6.12) in (6.13) gives Coe /
Var [#] = 4 ( 7 )2 (m212 4 mit2e) (6.14)
N (log(ml/mg))2 Ymaz ! 2

Notice that this expression for the variance is approximative. Gauss’ approx-
imation formula may be inaccurate when the variance of |H (e )] is large
compared to the magnitude |H(e**=)|. This may happen for large a.

The relay amplitude is chosen so that the signal to noise ratio is suf-
ficiently large. If not, the only way to achieve accurate estimates of n at
the oscillation frequency is to increase the number of measurements. The
sampling interval is limited by the available computer and it is not practi-
cal to have experiments over many periods of oscillation. Here a trade-off is
necessary.

EXAMPLE 6.1

Consider a relay experiment over N = 200 samples. Assume that the signal
to noise ratio is Ymaz /o = 10. Table 6.1 shows the standard deviation of the -
estimates of the slope 7 using (6.14) for different values of the slope a. The
standard deviation of the estimate of the slope increases fast with increasing
harmonic and increasing order of the process. Both these effects are due to
decreasing frequency response magnitude of the open loop process. O
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Summary

The conclusion from Example 6.1 is that with a reasonable signal to noise
ratio and not a too long experiment, only the two first harmonics of the signals
should be used for the slope estimation. The estimated slope is hereafter
considered to represent the local slope of the frequency response at w =
\/§wo,c, which is the geometric mean of the frequencies for the two first
harmonics of the oscillation.

6.3 Time Domain Information

In the previous section it was shown how frequency domain information could
be obtained from the relay experiment and how the slope of the frequency
response magnitude could be estimated. Time domain information can also
be extracted from the relay experiment. This can be used to determine the
time constant T and the delay 7 for the model

G(s) = T e 7 (6.15)

~

¢

where the degree n is obtained from the frequency response estimate. Pro-
cesses with monotone step responses may be approximated by (6.15). Al-
though this may be a crude approximation, the parameters of the model
(6.15) can be used for initialization of an adaptive controller. This' will be
pursued in Chapter 7.

The phase shift of the model (6.15) is given by

arg G(iw) = —wr — narctanwT (6.16)
and the slope is locally given by

_Olog |G(iw)| _  (wT)?

mi(w) = Ologw 1+ (wT)? "

(6.17)

If the argument arg G(iw) is known for some frequency w, Equation (6.16)

defines a relation between w1 and wr. If one of these quantities is known the -

other may then be obtained from (6.16). Consider especially the frequency
wr, defined by arg G(iwr) = —m, which may be considered as an upper
bound of the oscillation frequency wesc. Define the two quantities w,7 and
wrT as the normalized delay and the normalized time constant. They may
be considered as measures of the phase shift due to non-minimum phase
properties and to minimum phase properties of the process respectively.
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Figure 6.2 The slope n; at the frequencies w, (stars) and v3wx (circles) as
function of the degree n in Example 6.2.

A high order process with monotone step response may be approximated
by a lower order process model with a time delay for frequencies below and
in the neighborhood of w;. An example will suggest an upper limit on the
process model degree n.

EXAMPLE 6.2

Consider the process (6.15) with 7 = 0 and n > 3. The slope of the frequency
response magnitude is given by (6.17). The frequency w, satisfies w,T =
tan(w/n). Then the slope at the frequency w = w,m is given by

(m tan %)2

1+ (mtan %)2

ni(wzm) =

which is shown in Figure 6.2. The stars represent the slope at w, and the
circles represent the slope at v/3w, for different n. The maximal slope at w,
is achieved for n = 3. It is ny(wx) = 2.25. The maximum slope at V3w, is
ni(v3wr) ~ 3.06. O

This example shows that it is sufficient to consider process models (6.15)
with 1 <n < 3. The reason is that the degree n of the model is chosen from
the estimated slope at the frequency v/3w,sc, and the slope nz(\/gwo,c) <
nz(\/gw,r). If there also is a time delay in the process, the phase will decrease .
faster and the slope will be less steep at the frequency V3Wsse.

For a process (6.15) of degree n with considerable time delay, the local
slope m(\/?;wo,c) is less than n — 1. To choose a model of the same degree n
as the process it is required that

n1(V3wose) > n —1
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Figure 6.8 Relation between the normalized time constant w,T and the nor-
malized delay wxr for processes (6.15) of degree one, two and three.

It then follows from Equation (6.17) that this is equivalent to

n—1

3

woacT >

Since wyT > weseT, @ lower limit on the normalized time constant may now
be stated for models (6.15) of degree two and three.

WrT > woseT > 4/L, fn=2
" i (6.18)

wWrl > wozel > %-, ifn=3

Figure 6.3 shows the relation between the normalized time constant w,T
and the normalized delay w,T for processes (6.15) of degree 1 < n < 3. Only
curves for processes satisfying (6.18) are displayed. Third order processes
have short normalized delays. Second order processes may have longer nor-
malized delays, but still limited. Processes with dominating delays will have
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Figure 6.4 Half a period of oscillation for definition of times #;, #;, and #3.

large normalized delays w,T and consequently small normalized time ton-
stants w,T. Such processes will be considered as first order, and thus mod-
eled by a first order model. Higher order processes are modeled by second or
third order models for moderate delays.

Time Domain Estimates

There are several useful features that can be extracted from the the waveform.
To see this, the waveform is analyzed for some simple processes. The features
that will be considered are the three times t;, t5, and {3 that are shown
in Figure 6.4. This figure shows the input u(t), the output y(t), and its
derivative g(¢) for half a period of oscillation. Let ¢ = 0 be chosen as the
time for the relay switch.

o The output y achieves it extremum at time #;.
e The first extremum of the derivative 3 for ¢ > #; is at time 3.
o The derivative y reach 63 % of it extreme value at 5.

It then follows that 0 < #; < t5 < t3. It is assumed that the derivative
7y reaches its extreme value before the delayed input due to the next relay
switch affects the output, i.e

TOEC
2

i3 < +T
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6.9 Time Domain Information

This inequality may be violated for processes without delay when the hys-
teresis level € is very small.

It may sometimes be difficult to estimate ¢;, ¢, and ¢3. Consider e.g. a
process that resembles an integrator, then |y| switches between two constant
levels. For such a process t; and ¢3 are undefined. For nonminimum-phase
processes the output initially moves in the wrong direction which leads to
erroneous estimation of the time #; for the amplitude peak. Measurement
noise corrupts the process output y. This makes it difficult to differentiate y.
However, the signal quality can be improved considerably through filtering.
Since the signals are stored during the relay experiment, non-casual filtering
may be employed, e.g. taking mean value over several periods.

The times 1y, {2, and t3 are used to estimate the parameters of the model
(6.15). Depending on the degree n, the times are used to determine either
the time constant T or the delay 7. Given w,,. and arg G(iwesc) the other
parameter 7 or T' can be calculated from (6.16). Processes of degree n < 3
are analyzed below.

First Order Process

The first order process is described by the transfer function (6.15) withn = 1.
It gives the differential equation ’

Ty(t) + y(t) = bu(t — 1) (6.19)
Under relay feedback the input signal u is piecewise constant 4d. The so-

lution to (6.19) from the time when the relay switches from u(t) = —d to
u(t) = +d for the initial condition y(0) = —e is

yi1(t) = —bd (1 — e_t/T) - ee_t/T, 0<t<r

At ¢ = 7 the delayed input signal will affect the process output. The peak
amplitude max |y| is reached here, and it is given by

max y| = bd (1 — e_T/T) +ee” /T

It then follows that the time ¢; is given by ¢; = 7 for this first order process. .
For t larger than 7 the solution to (6.19) is given by

y2(t) = bd (1 + e"t/T> —2bde= T _ e T t>r (6.20)

The peak of the output derivative |j| is achieved at ¢3 = 77. For this first
order process it follows that ¢; = t5 = t3.

75

7




Chapter 6 Relay Feedback

The relay switches again after half a period of the oscillation. It then
follows that y2(T6sc/2) = €. From (6.20) the period of oscillation is given by

(6.21)

/T _
T,,. = 2T log (26 1+ e/bd)

1—¢/bd
If the delay T = 0 it follows from Taylor expansion of (6.21) that

4Te€

TOSC R -
bd

The period of oscillation does then not reflect the process dynamics. For
this type of processes max |y| = ¢, that may be used to identify this type
of processes. Another special case is when the process is an integrator with
delay, i.e. T'— oco. A similar analysis yields that

4e
Tose = 47+ z(‘l'
The process then oscillates with a triangular wave form. The derivative of
the process output switches between two constant levels, with the same mag-
nitude but with different signs. If the phase shift of the process is dominated
by the delay, i.e. 7> T, the period of oscillation is approximately

Tose =~ 2T

Second Order Process

Consider a process with the transfer function

b —8T
G(s) = T 1T 7 1) e (6.22)

For this process it follows that

long/Tz

t3 —t1 =T T:
3— 10 ek DR,

(6.23)

with ¢; and ¢3 as the time instants for extrema in |y| and |g| respectively. To -
see this consider the situation when there is a limit cycle. Let ¢ = 0 be the
time when the delayed input affects the second order dynamics. The solution
of the differential equation corresponding to (6.22) from ¢t = 0 is

T (bd + yo + Tz?]o)e_'t/T‘ i T2(bd + yo + Tl?)())e_t/T2

£) = bd —
y(t) Ty — T, T, — T,
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Calculation of g(t}) = 0 and 3(t;) = 0 gives after some simplification

t! t! bd T19 |
exp<1 1)_ +y0+ 1Yo lj

E_Tl —bd+y0+T23)o
and
T, T T, bd+yo+ T2y

These equations give ¢} and t;. Then t; — ] = t3 — t; establishes (6.23).
From the limit for (6.23)

im T, 28T /T2 /T,

=T
Ty —T, T1 —_ Tz 1

it follows in the special case where T = T} = T5 that

ts—t, =T (6.24)

This important relation will be used to estimate the time constant of the
model (6.15). /

Another special case of (6.22) is when T — oo. Then the process is
given by

b
s(sT +1) ¢

—T8

G(s) =

The first derivative y of the process output will then increase until the next
relay switch affects the dynamics. This means that 7' may be overestimated
and consequently 7 will be underestimated. Instead it is better to use the
time instant #3. For a second order process with multiple poles like (6.15) it
follows that

which can be used for estimation of T.

Third Order Process

A third order process described by (6.15) with n = 3 can be analyzed in
the same way as the second order process above. The analysis does not
give simple explicit expressions, so it will be done numerically instead. The
intervals ¢3 —¢; and f; — ¢; depend in a complicated way on the delay 7. The
first interval satisfies t3 — t; < 2 where equality is achieved for processes with

(i
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Table 6.2 Oscillation analysis of a third order process.

arg G(iwo,c) wo,CT (t3 — tl)/T (t2 — tl)/T

—17r/18 0.82 1.58 0.58
1.31% 1.52 0.55
—167/18 0.82 1.58 0.57
1.31% 1.52 0.55
—157/18 0.82 1.57 0.57
1.19 1.54 0.55
—147/18 0.82 1.59 0.58
1.06 1.55 0.56
—137/18 0.82 1.58 0.58
0.94 1.55 0.56

a dominating delay. However, these are not considered as third order since
the slope is too flat at v/3wosec.

The properties of this third order process under relay feedback are ana-
lyzed for different arguments arg G(iwos.) and for different ratios 7/T. The
period of oscillation T,,;. and the instants ¢;, ¢, and t3 ‘were determined.
Table 6.2 displays properties for different arg G(iwosc). The argument de-
pends on the hysteresis level and the oscillation amplitude as shown by
(6.3). The second column shows the lower and upper values for woscT.
The lower limit is given by (6.18). The upper limit is either given by
Wosc = tan(— arg G(iwesc)/3) or it is the limit for which t3 < Tpsc/2 '+ 7.
This limit for too short period is obtained for arg G(iwosc) that are close
to —m. These values for wy,.T are marked with an asterisk. The two last
columns show the corresponding values of the normalized intervals (t3—%;)/T
and (¢, —t1)/T.

Table 6.2 cover third order process with w,,.7" in the interesting interval
for relay oscillations. The quantities in the two last columns not are varying
much. Therefore the following approximations are suggested.

t3 - tl =~ 1.55T
t2 — tl =~ 0.55T

They will be used for the estimation of the time constant T'.

Summary

The Model (6.15) is used to characterize processes using information from an
experiment with relay feedback. The slope 7 and the argument arg G(iwesc)
are determined using discrete Fourier transforms. This gives a process model
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randy

Figure 6.5 Process input and output during relay experiment.

of first, second, or third order. For first order models the delay 7 is determined

from the time instant for extreme y, i.e. 7 = ¢;. The time constant is then
given by (6.16), i.e.

T =

tan (— arg G(iwosc) — WoseT)
wosc

For higher order models the time constant is determined from the numbers
t3 — t1 or ty —t;. The time constant is estimated by

T = min(t3 - tl, (tz - tl)/032)
for a second order model, and by
T = min((ts — t1)/1.55, (2 — 1)/0.55)

for a third order model. Then (6.16) gives the delay

(— arg G(twesc) — narctan wo,cT)

An example will now demonstrate the use of the model (6.15) for process
characterization.

EXAMPLE 6.3
Consider the process

1 —2s

Go(s) = m e

where white noise with standard deviation o, = 0.05 is added to the output.
Figure 6.5 shows the process input (dotted line) and the process output (solid
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Figure 6.6 Frequency responses in Example 6.3 for the true process Go(iw)
(solid line) and for the estimated model G(iw) (dashed line). The circles show,
the frequency response estimate H(e*@m) for m = {1, 3,5}.

line) during the relay experiment. At ¢ ~ 8 s it is assumed that a stationary
oscillation is established. The following two periods were then analyzed. The
oscillation frequency is wosc = 0.71 radians/s. The slope of the frequency
response was estimated to 7 = 1.32 using wysc and 3wyse. This gives n =
2 for the model G(s) in (6.15). The mean value over three half periods
of the process output gave a signal that was so smooth that it could be
differentiated. Analysis of the signal gave t3 —¢; = 1.10 s and (3 —¢1)/0.32 =
1.08 s, which yields T' = 1.08 s. The phase shift at the oscillation frequency
is arg G(iwosc) = —2.7 radians. The delay 7 is then calculated to 7 = 1.97 s.
The solid line in Figure 6.6 shows the frequency response Gy (iw) of the true
process, the dashed line shows the frequency response of the model G(iw)
where the gain is adjusted such that |G(iwesc)| = |Go(iwosc)|- The circles
show the frequency response estimate H (e*'m) for m = {1,3,5}, which was
obtained using discrete Fourier transforms. The curves in the figure show
that the estimated model is a good approximation of the true process. [
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6.4 Conclusions

A system with relay feedback system was analyzed in this chapter. It was
assumed that a unique limit cycle is achieved when the process is controlled
with a relay with hysteresis.

An analysis of the output from the process under relay feedback reveals
interesting properties of the process. The information discussed here are

e  The oscillation frequency wesc = 27/ Tpsc
e The frequency response H (%), m ¢ M
e The times t;, t; and {3

A simple model (6.15) is determined from this information. The modelis used
to characterize the process. It is described by the degree n, the time constant
T, and the delay 7. This model will be used in Chapter 7 for initializing an
adaptive controller.
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Initialization of
Adaptive Controllers

~

This chapter is concerned with initialization of an indirect adaptive con-
troller. The controller and the information required to start the controller
were presented in Chapter 5. The idea is to use an experiment with relay
feedback, discussed in Chapter 6, to provide initial data. In this Chapter it
will be shown how information from the experiment with relay feedback may
be used to design and commission the adaptive controller. Properties of the
desired closed loop system are discussed in Section 7.1. In Section 7.2 and
7.3 it is discussed how the model structure can be chosen and how the esti-
mator is initialized. Section 7.4 presents an algorithm for initialization of an
indirect adaptive controller from an experiment with relay feedback. Some
examples, given in Section 7.5, demonstrate its properties for some different
processes.

7.1 Properties of the Closed Loop System

The achievable properties of the closed loop system depend critically on prop-
erties of the open loop process. Reasonable specifications on the closed loop
system is a trade-off between command signal following, load disturbance
rejection, measurement noise attenuation, and robustness for process model
uncertainty. The robust design approach in Chapter 3 and 4 provided a trade-
off between these objectives. It is, however, too complicated to perform on
line in an adaptive controller.
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7.1 Properties of the Closed Loop System

Heuristics

The response time of a system may be characterized by the frequency w;,
where the phase lag is w radians. The response time consists of two parts, the
pure time delay and the time for the transient. These parts are characterized
by the normalized delay w,7 and the normalized time constant w,T' that
were defined in Chapter 6. They correspond to the non-minimum phase and
to the minimum phase properties respectively.

Define wy; as the frequency where the loop transfer function L has
radians phase lag. The desired closed loop system is faster than the open
loop system if wy; > w,. This increase in speed is obtained with phase lead in
the feedback controller. To understand the achievable performance two cases
are considered. If the slope of the phase curve is small, as for processes with
small normalized delay w,7, a controller with moderate lead may increase
wy considerably. This will decrease the response time of the closed loop
system. On the other hand, if the phase curve is steep, the response time is
dominated by the delay and may only be decreased marginally. Increasing
wy Tequires a controller with considerable phase lead.

The required phase lead in the controller increases with the decrease in
response time. A controller with much phase lead must .either be of high
order or be unstable. A high order controller may be difficult to tune.” On
the other hand, an unstable controller in series with a stable process yields a
loop transfer function with a Nyquist curve that must encircle —1. This may
be bad for the robustness of the system [Lilja, 1989]. An unstable controller
may also create problems if the actuator saturates. Another drawback is-that
unstable controllers may cause limit cycles in systems with static friction
[Wallenborg, 1987]. A fourth reason to avoid unstable controllers are the
precautions that have to be taken for safe changes between different operating
modes, e.g. between manual and automatic control. It is, thus, important
not to require too much phase lead in the controller.

Specifications for the Pole Placement Controller

The adaptive controller, described in Chapter 5, operates in discrete time.
The closed loop discrete time transfer function from reference input to plant
output is

q?45,(1)B*(¢"")

Inla™) = " a5

(7.1)

where B*(¢~!) and d are the delay and the numerator polynomial of the
discrete time process model (5.1). This choice of H} (¢7!) means that the
process zeros are not canceled by the controller. The controller (5.3) has
integral action and its numerator contains the factor 1 + ¢!, as suggested
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in Chapter 5. The controller is obtained from the Diophantine-Aryabhatta-
Bezout equation (5.4) with

A(g7Y) = An(g7 M)A ™)

Given the structure of the control system, the closed loop performance
is mainly affected by the choice of the polynomials A% (¢7) and AL(¢g71),
and the sampling interval h. The degrees of A}, and A are both chosen
equal to the degree of the process model A*. The degree of A* is given by
the slope of the frequency response magnitude, which can be obtained from
the experiment with relay feedback. This will be discussed below. Since the
real process is continuous it is convenient to give closed loop specifications in
continuous quantities. The characteristic polynomials A* (¢7') and A%(q7)
are discrete time counterparts to continuous time polynomials. These are
parametrized by wo, which is the distance from the poles to the origin. The
polynomials are chosen as

Ame(s) = s +wo

Ape(s) = s+ wo (7.2)

for first order processes, as

Apme(s) = 82 + V2wos + wi

7.3
Ase(s) = 82 + V3Bwos + wi (73)
for second order processes and as
Ame(8) = (s + wo) (s + V2wos + w) (7.

Aoe(s) = (s + wo)(32 + v/3wos + w?)

for third order processes. These continuous time polynomials have their poles
spread on a circle with radius wo and with center at the origin.

Choice of Sampling Interval

In a discrete time control system, the choice of sampling interval is one of
the most crucial issues. The sampling interval influences many properties
of the closed loop system. Load disturbances and measurement noise that
affects the system are not detected and compensated for until a new control
signal is affecting the process. A long sampling interval also requires a more
accurate model of the process since a sampled system operates in open loop
between the samples. One reason for using long sampling intervals are cost,
less powerful computers may be used.
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The sampling interval limits the closed loop bandwidth that may be
obtained. The sampling interval must not be longer than the essential process
dynamics is covered in the discrete time model. Here the sampling interval h
will be chosen from wy that specifies the closed loop characteristic polynomial.
For a first order process the sampling interval is chosen such that woh ~ 0.3.
For second and third order processes the choice of h is given by woh =~ 0.5
and woh = 0.7 respectively. These choices are within the recommendation
in [Astrdm and Wittenmark, 1989], which says that it is reasonable to select
the sampling interval such that there will be 5-20 samples in a closed loop
step response.

The recommendations above are reasonable for processes with relatively
small time delays. For processes with long time delays another aspect of
the sampling interval selection appears. A short sampling interval gives high
order process models and the pole placement design then yields a controller
of high order. A reasonable choice is to select the sampling interval such that
the model of the open loop process has not more than five additional poles
at the origin. This correspond to a sampling interval that is a fifth of the
time delay.

It will be shown below that there are some advantages to select the
sampling interval h as a fraction of the period of oscillation.

b= Lose (7.5)

2p
The relay output is assumed to be a symmetric square wave. The sampled
signal will then also be symmetric. Each half period of the relay output will
then have p samples. In [Astrém and Higglund, 1988b], the choice p = 3 was
motivated from a polynomial equation. Here a larger value on p will be used.
The recommendations above on woh and the delay d give p between five and
ten.

Performance Assignment

In an automatic design approach as in an adaptive controller, the trade-off
between noise attenuation and load disturbance rejection may be difficult to
consider. Reasonable specifications on the closed loop system will instead be
chosen such that the sensitivity function magnitude |S,| not is too large. This
is achieved if the loop transfer function has a frequency response sufficiently
far away from —1 in the Nyquist diagram. The design objective is to make °
the closed loop system as fast as possible with sufficient robustness margins.
The controller is also required to be stable. The robustness is considered as
acceptable provided that the frequency response of the loop transfer function
satisfies

min |1+ L (e**)] > 0.5 (7.6)
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This is equivalent to |S,| < 2. The peak of the sensitivity function depends
on the parameter wy for the closed loop poles.

To find a rule for a reasonable choice of wg, pole placement design is
applied on the process (6.15) for many different values of 7 and 7', and for
n = 1,2,3. A discrete time integrating controller (5.3) is designed to give
a closed loop characteristic polynomial A%(¢™1)A% (¢7!) that corresponds
to (7.2), (7.3), or (7.4) depending on the degree n. The numerator of the
controller is required to contain the factor 1 + ¢~!, which was discussed
in Chapter 5. The sampling interval h satisfies woh = 0.1 + 0.2n. The
parameter wg is increased until the sensitivity reaches the value 2 or the
controller becomes unstable. In this way the largest values of w, that can be
achieved subject to the constraints are obtained. The results are illustrated
in Figure 7.1. The figure shows that wy is related to w,, and that the relation
is conveniently expressed in terms of the normalized time constant w,T. The
empirical results for n = 1 are marked with circles (o). For n = 2 they are
marked with plus signs (+) and for n = 3 they are marked with asterisks ().
The function

Wo

1 1\?
— = {. . 2 *
o 0.5+ o T +0.1 (er> | (7.7)

-

is a reasonable approximation to the points in Figure 7.1. The solid line
shows this function. Notice that w,T and w,7 are related through Equation
(6.16).

For processes with small relative delay, /T, the normalized time con-
stant w,T is large. Consider, e.g. a first order process with 7' = 1 and
T = 0.1. For this process Equation (7.7) gives wp =~ 0.6w,. This means that
the controller is similar to a PID-controller, tuned by Ziegler-Nichols method
[Ziegler and Nichols, 1942], which has wy ~ 0.7Tw, for this process.

For processes with larger relative delay, /T, it follows from (7.7) that
it is possible to have a significant larger ratio wy/w,. This is equivalent
to classical controllers with dead time compensation. Such controllers can
give significant faster response than PID-controllers, tuned by Ziegler-Nichols
method, which in this case have wy =~ 0.3w.

For processes with large relative delays the response to command signals
and load disturbances are limited by the time delay. There is some benefit
in reducing the rise time. The effect is marginal when the rise time is an .
order of magnitude smaller than the dead time. For first order systems this
correspond to wor = 10. This means that wo/w, = 10/7. It is therefore
reasonable to limit the ratio wy/w, to 4.

The quantity wer is introduced to facilitate comparisons with other
design methods. A PID-controller tuned by Ziegler-Nichols method gives
wor = 1 [Astrom et al., 1989]. In [Middleton, 1991] it is suggested that
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Wy

1/(wxT) . :

Figure 7.1 Relation (7.7) between wp and wx. Empirical results for n =1 (o),
n=2(+), and n =3 (*).

woT < 2. The design rule (7.7) gives a value of wer that ranges from 1 to
12. The number increases with the ratio 7/T. Equation (7.7) gives wy as a
function of T and w,. Normally wese < wx, but it has been found that wese
can be used as an approximation of wr.

7.2 Choice of Model Structure

The indirect adaptive controller identifies parameters in the discrete time
process model (5.1). The model structure is determined by the degree of
the polynomials, deg B* and deg A%, and the delay d. The structure of this-
model should reflect the properties of the real process in a certain frequency
interval.

It is neither of interest to have a much more complex model of the
process than the process itself nor to have a too simple process model with
few parameters. The model should cover the essential process dynamics. If
there are too many parameters in the model of the process, higher demands
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are required on the excitation in the system to make the estimator converge
and to minimize the variance of the estimated parameters. If the model is
too complex it may have almost common zeros and poles which may lead
to numerical problems in the pole placement design. If the model class is
too simple it will not cover the real process dynamics. The nature of the
excitation will determine the identified model. This may differ dramatically
from the real process [Rohrs et al., 1985].

High order continuous processes may accurately be described by a lower
order process model at low frequencies. In a sampled system the frequency
content of the signals is limited by the Nyquist frequency w, = w/h. With
sufficiently slow sampling the steep high frequency slope of the frequency
response for a high order process will not be represented by the discrete time
process model. In most cases the process may be well described by a model
with some poles that model the dominating dynamics and with a delay to
achieve a correct phase response.

Model Order

The order of the process model is d + deg A*. The order may be reflected in
the frequency response. For processes without zeros, the high frequency slope
of the frequency response magnitude is equal to deg A*, but if the process
model contains zeros this is not true. However, the degree of A*(¢g™*) will here
be estimated as if no zeros were present. The degree is limited to deg A* < 3,
as discussed in Chapter 6.

The degree of A*(¢™!) will be estimated from the slope of the frequency
response magnitude. The slope of the frequency response 7 is estimated of
from the first two harmonics in the relay oscillation. The slope estimate is

given by (6.11). The degree of A*(¢™') is chosen as

deg A*(¢71) =142, if14+A13<n <24 Ags (7.8)

{1, ifn <14+ Aq,

3, 24 A<

where Aj; and Ajy; are thresholds, introduced not to select a higher order
model than necessary due to the uncertainty in 7. The thresholds can be
chosen from the uncertainty in the estimate of the slope. .

Time Delay and Numerator

Once the degree of A*(¢™!) is chosen it is possible to select the structure of the
process model numerator. This may be viewed as a high order polynomial,
whose d leading coefficients are zero and the remaining coeflicients form the
polynomial B*(¢~!). The time delay will appear in the desired closed loop
transfer function. An accurate estimate of the delay d is essential.
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When sampling a continuous time process, the degree of B*(¢™!) is
generically equal to deg A*. It thus seems natural to select deg B* = deg A*
for the discrete time process model (5.1). Sampling of a process with a wide
spread of poles gives a sampled system with poles close to the origin. Such
systems are conveniently approximated by models with deg A* < deg B*.
Models of this type which have the advantage that they use fewer parameters
have been found useful in several applications [Astrdm, 1980, Bengtsson,
1989, Astrom et al., 1991].

The structure of the process model numerator is chosen as follows. Con-
sider the process model

borg™ +bo2g 2+ + bomg™™
1+a0qg ! +ao2q 2+ +apmqg™

Hy(g™') = (7.9)

where n = deg A* and m is the smallest integer satisfying m > deg A* +7/h.
Estimate the parameters in this model using least squares estimation. The
discrete time signals u(k) and y(k) for the estimation are provided by inter-
polating the signals from the experiment with relay feedback. The sampling
period is given by (7.5). The samplingis synchronized with the relay switches.
Significant coeflicients in the numerator of (7.9) are considered as coeffi-
cients in B*(¢™!) and the rest with small magnitude are neglected. Leading
coefficients will have small magnitude for processes with delay. The following
method is proposed to select the degree of B*(¢™!) and the delay d: Initially
let deg B* = deg A*. Then choose the delay in the process as the integer d
that maximizes » ‘

deg B*+d

Jd)= Y |l (7.10)

i=d

where bg; are the estimated coefficients in the numerator of (7.9). This ob-
jective means that the coefficients in B*(¢™!) are the deg B* + 1 consecutive
bo;’s with the largest sum of coefficient magnitude.

If the neglected coefficients have magnitudes considerably lower than the
largest |bg;|, this is an indication that the model class is appropriate. If not,
the degree of B*(q!) is increased. A coefficient bo; can be neglected if it
satisfies

|bok| <n;é1[ax |bos|, Ip» ={i:d<i<d+degB*} (7.11)
3 B*

where the choice £ = 0.5 has turned out well in simulations. From experience
it is recommended to consider coefficients by only for k < d here. If any of
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Chapter 7 Initialization of Adaptive Controllers

these do not satisfy (7.11) the degree deg B* is increased to let B*(g™!)
contain these coefficients. The delay d is decreased so that

d + deg B* = constant

Trailing coefficients with large magnitude will always be neglected since these
may take strange values in the estimation due to insufficient excitation from
the experiment with relay feedback. The input spectrum is nonzero only for
certain frequencies and the energy decays as 1/w. Another rule for estimating
the delay is proposed in [Isermann, 1980].

7.3 Initialization of the Estimator

The adaptive controller was described in Chapter 5. It is based on recursive
identification of a process model. The structure of the model is chosen as
suggested above.

Initial Parameters o

The least squares estimator (5.2) updates the parameter estimates 6(k) and
the covariance matrix P(k) every sample. If the model structure is appro-
priate and the input in persistently exciting the estimates will converge to
some point 6*. A bad choice of the initial model §(0) may give a large tran-
sient after startup. Such a transient may be avoided if information from the
experiment with relay feedback is used to assign the initial §(0) and P(0).

First the model (6.15) is sampled with the sampling interval h for the
adaptive controller. This gives 6(—k,) where k;, is the length of the experi-
ment with relay feedback. This estimate is then improved by recursive least
squares estimation, using the stored input and output signals from the ex-
periment with relay feedback. This estimation gives §(0) and P(0).

The process input is a square wave during the experiment with relay
feedback. Its spectrum is non-zero for frequencies wesc, 3wosc, €tc., and is
inversely proportional to frequency. This means from a practical point of view
that the excitation is sufficient for estimating the parameters in a model with
four parameters. Thus, models of first and second order, that are estimated -
using the signals from the experiment with relay feedback, can be expected
to be good estimates of the process. A third order model requires more
excitation to provide an accurate estimate of the process.
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- 7.8 Initialization of the Estimator

Forgetting Factor

Discounting of old data is essential in all adaptive algorithms. It is also known
that discounting may cause some problems [Astrém and Wittenmark, 1989].
There are many ways to do the discounting. The particular choice depends
on the nature of the parameter variations. Ultimately it would be desirable
to let the algorithm explore this itself. Good ways to do this have not been
explored. The forgetting factor would be chosen with respect to the sampling
period. In a self-tuning controller, where tuning is switched off after some
time when the controller parameters have converged, the forgetting factor A
can be chosen close to 1.

Regression Filters

Least squares estimation is based on minimization of a quadratic loss func-
tion that is formulated in the time domain. The loss function may also be
interpreted in the frequency domain [Ljung, 1987, Wittenmark, 1989]. With
the filter H ;(q_1 ), weighting is introduced in the loss function. The passband
of the filter determines the frequency range where the Nyquist curves of the
identified model and the real process should be close. For a robust design it
is important that the frequency response of the estimated model is accurate
in the frequency range where the Nyquist curve for the loop transfer function
L is close to —1.

The processes under consideration here are stable. The specifications are
chosen to give a stable controller. Then the phase of the loop transfer function
decreases for frequencies above w,. An accurate loop transfer function. L is
then required in an interval surrounding the frequency wy, which is defined
by argL(iws) = —3w/4. For a process with dominating delay it follows
that wyT = wyT =~ 7. Then a good choice is wy = 3w,/4. For a process
without delay the important interval is in the neighborhood of wy. The ratio
wo/wy in Figure 7.1 for second and third order processes yield that wy/w,
is between one and two. The phase response is, however, flat for this type
of process and the suggestion above for wy will also do very well here. A
reasonable bandwidth of the filter is one decade. For large = the upper limit
of the passband of the regression filter is reached for arg L ~ —9w/4. The
regression filter can then be chosen as

k(1-¢71)

W (7.12) -

Hi(¢™') =

where the characteristic polynomial A’}(q_l) is the discrete time counterpart
to the continuous time characteristic polynomial

Ag(s) = <s + %) (s2 + 1.4v10wys + 10w2)
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where wy = 0.75w,. The filter is sampled with the same interval as the
adaptive controller.

7.4 An Initialization Procedure

The choice of design variables for an indirect adaptive controller based on pole
placement design and recursive least squares estimation have been discussed
in this chapter. The choices originated from the information available from
the experiment with relay feedback in Chapter 6. The controller is designed
to have a pole in ¢ = 1, i.e. integral action, and a zero in ¢ = —1 for improved
robustness and measurement noise attenuation.

A procedure for automatic initialization of the adaptive controller will
now be given. From an operational point of view the algorithm is similar
to the procedure for tuning a PID-controller based on relay feedback, see
[Astrém and Higglund, 1988a]. The procedure has the following steps.

Step 1: Bring the process output close to the desired set point by manual
control and wait for stationarity. Estimate the noise level and determine the
hysteresis level and relay amplitude. Lo

/

Step 2: Introduce relay feedback. Measure the process input and output.
Store these values with shortest possible sampling interval. Adjust the relay
amplitude to obtain a limit cycle with desired amplitude. Stop the experl-
ment after 2 or 3 periods with a stationary oscillation.

Step 3: Determine the period of oscillation T,,.. Estimate the frequency
response for the frequencies wosc and 3w, using discrete Fourier transforms.
Estimate the slope 7 of the amplitude curve from (6.11). Determine deg A*
from (7.8). Let Ay;p = 0.3 and Ayz = 0.1. Use w,, as an approximation for
wy in the sequel.

Step 4: Determine the times when the limit cycle and its derivative have

their extreme values. Estimate T and 7 of the model (6.15) as proposed in
Chapter 6.

Step 5: Determine wy from Equation (7.7).

Step 6: Select the sampling interval as b = T,,./2p, where p is the smallest 7
integer such that woh < 0.1 + 0.2deg A*. If 4h < 7 the process model will
have too many delays. Then decrease p until 4h > .

Step 7: The closed loop characteristic polynomials are then chosen as the
sampled counterpart to (7.2), (7.3), or (7.4). The regression filter is chosen
as (7.12) with wy = 3w, /4.

92




7.4 An Initialization Procedure

Step 8: Determine the delay d and deg B* for the process model (5.1) using
(7.9), (7.10), and (7.11).

Step 9: Initialize the recursive estimator with parameters computed from
n, 7, T, and h. Run the estimator with the data from step 2. The estimator
will then have the same states as if it had been running since the experiment
with relay feedback started.

Step 10: Select a reference input signal that excites the system so that the
controller will tune. One possibility is to let a square wave with frequency
wosc/3 excite the system for some periods.

In a self-tuning controller the estimation is switched off after step 10.
The parameters are then assumed to have converged during the excitation
from the reference input. If the estimation continues, it is from a practical
point of view recommended to monitor the excitation. Then it is possible to
adapt only, when both the input v and the output y are varying considerably.

7.5 Examples

Part of the heuristics for determining the design parameters, like Figure 7.1
were based on simple models. To determine the validity of the approach the
initialization procedure was tested on a large test batch. The results of the
initialization procedure for the processes in this batch are given in Appendix
A. This section demonstrates the initialization procedure on some examples.

A Second Order Process with Time Delay

An experiment with relay feedback was demonstrated in Example 6.3 for the
process

1 —23
Ga(s) = ml_)z €

The information from this experiment will here be used to initialize an adap-
tive controller. The estimate of the slope n = 1.32 gives deg A* = 2. Equation
(7.7) gives wo = 1.42 radians/s. Step 6 in the initialization procedure above -
gives the sampling interval h as follows. The condition woh < 0.5 first gives
h = Tosc/26 = 0.34 s. However, this gives 7/h = 5.7 which is larger than 4.
A longer sampling interval is thus required to limit the controller complexity.
For h = Tosc/18 = 0.49 s, it follows that 7/h = 4 which is acceptable. This
choice gives woh = 0.71. The delay of the discrete time process model is then
estimated to d = 5 and deg B* = 2.
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Figure 7.2 Adaptive control of the process G 4.

The adaptive controller is started after the initialization. Figure 7.2
shows a simulation of the system. The standard deviation of the measurement
noise is o, = 0.05. Table 7.1 shows the parameters after the initialization
procedure (¢ = 0) and after 67 seconds of adaptive control. For comparison,
the true parameters of the process are also given. The estimated parameters
at t = 0 and at ¢t = 67 s do not differ much. The estimated parameters
deviate somewhat from the true parameters 6;,,.. The two time constants in
the model (6.22) can be calculated from the estimated 8. They are T} ~ 0.75 s
and Ty ~ 1.8 s. The main reason for this deviation is insufficient excitation
during the relay feedback and the adaptive control. In spite of this, the loop

Table 7.1 True and estimated parameters of the model (5.1).

a1 as bo b, by
0(0) —1.0850 0.2736 0.1233 0.0317 0.0308
9(67) —1.1073 0.2875 0.1057 0.0463 0.0282
Oirve —1.2198 0.3720 0.0819 0.0702 0.0001

94




7.5 Ezamples

H ~ H
H ~ H

Re

Figure 7.8 Nyquist plot of the loop transfer functions based on the estimated
process model #(67) (solid line) and on the true process #srye (dashed line). The
frequencies wosc and 3wesc are marked.

transfer function based on the estimated model 6(67) and the loop transfer
function based on the true process ;e do not differ much. The Nyquist
curves of these loop transfer functions are shown in Figure 7.3. The solid
curve corresponds to the estimated model and the dashed curve corresponds
to the true process. The same eighth order controller, Ggi(g™!), is used
for both curves. This controller is obtained when the adaptation stops at
t = 67 s. Thus, it is calculated from the model §(67). The curves are adjacent
at wosc, which means that the estimate is good in the critical region. The
robustness margin is satisfactory since the loop transfer function is sufficiently
far away from —1. Notice also that the sensitivity of the closed loop system is
slightly larger than 2 although the specifications for this system were chosen
to give |S,| < 2. This is due to the fact that the excitation is not able to
make ||0(67) — Ozpue| = 0.

Comparison with PID-Control. The controller Ggi(g™!) is compared
with two other controllers to assess the quality of this adaptive design method:

o The Pl-controller Ggra(s) is tuned automatically using a method that is
recommended for processes with long time delays [Hagglund and Astrém,
1991]. Its parameters are K = 0.25/|G 4(iwosc)| = 0.34 and T7 =
1.6/wose = 2.27.
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Figure 7.4 Comparison between different tuning methods. Simulation using

the controllers G, (solid line), G, (dotted line), and G 3 (dashed line).

¢ The PID-controller Grs(s) is determined using dominant pole design
[Persson, 1992]. This method gives a very well tuned PID-controller
with K = 0.58, Tt = 2.21, and Tp = 0.56.

Figure 7.4 shows simulations where the process G4 is controlled with these
fixed controllers. An input load disturbance affects the process at ¢ = 20 s.
The solid line corresponds to Ggi, the dotted line to Gga, and the dashed line
to Grs. The behavior of the system for the controller Gg; is satisfactory.
The response for the controller Ggy is very slow. This type of automatic
tuning is not suited for this type of process. A well tuned PID-controller
can, however, do a good job as the response for Gg3 indicates.

Influence of Sampling Interval. The controller Gg; is compared with -
two other controllers to demonstrate different choices of sampling interval.
The other controllers are obtained by similar initialization procedures fol-
lowed by adaptive control for 67 s. The only difference from the way Gg;
was obtained is the choice of sampling interval:

o  The sampling interval is chosen as h = T,,./26 = 0.34 s for the controller
GRra(g™'). This h was initially proposed above to meet woh < 0.5. It
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Figure 7.5 Comparison between different sampling intervals. Control of pro-
cess G4 using the controllers Gp; (solid line), G g4 (dashed line), and G g5 (dotted
line).

gives woh = 0.49. The delay is d = 7 and the controller Ggy4 is of tenth
order.

¢ The sampling interval is h = T;,./6 = 1.48 s for the controller Grs(g™!).
This is very slow sampling since woh = 2.12. The control strategy resem-
bles dead-beat since the closed loop poles are close to the origin. This
controller is of fifth order.

Figure 7.5 shows simulations where the process G4 is controlled with the
controllers Gy (solid line), Grs (dashed line), and Ggs (dotted line). In
order to emphasize the effects of sampling the sampled signals are shown.
The responses for the reference input are close for all three controllers. For
the load disturbance, the responses for Ggr; and GRr4 are similar, but the °
response for Ggs is slower. The reason for this slow response is that the
disturbance is not detected so fast with a long sampling interval.

Such a performance degradation can be avoided if the sampling interval
is sufficiently short, as for Gr1. An even shorter sampling interval, as for Gr4,
improve performance very little. This illustrates that it is sound practice to
bound the number of samples per dead time to 4 or 5.
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A Benchmark Problem

One of the processes in the test batch has been used as a benchmark problem
for adaptive control strategies [M’Saad, 1991]. Here, it is used to show the
benefit of the proposed method for chosing the structure of the process model
numerator in Section 7.2.

The process is given by

(1—s)w?

(1 + s)(s% + 2¢wps + w2) ©

—3aT

GgB(s) =

where wp, (, and 7 belong to certain intervals. Here, w, = 15, { = 0.5, and
7 = 0.4 are considered. The experiment with relay feedback gives w,,. = 1.11
radians/s. The slope of the transfer function is estimated to # ~ 0. Hence,
the non-minimum phase properties dominate the process at the oscillation
frequency. A first order process model is chosen. Equation (7.7) gives wy =
0.66 radians/s. The sampling interval is h = 0.40 s.

The structure of the process model numerator is determined in step 8 of
the initialization procedure. After normalization with the largest coefficient,
the numerator of (7.9) is given by

-

Bi(g7') =0.00g7 — 0.62¢72 — 0.14¢™° + 1.00¢™* + 0.35¢~°

Initially, let deg B* = deg A* = 1, then (7.10) is maximized for d = 3.
However, the coefficient bg, violates (7.11). This is an indication of that
the suggested process model structure may not be suited for the actual pro-
cess. Therefore, the structure of the process model numerator is changed to
deg B* = 3 and d = 1, as proposed in Section 7.2. Figure 7.6 shows simula-
tions of two adaptive controllers with different structure of the process model
numerator. The solid lines correspond to the choices deg B* = 3 and d = 1,
and the dashed lines correspond to deg B* = 1 and d = 3. The convergence is
much faster for the more complex model, since this matches the real process
much better. After many reference steps the two strategies give, however,
almost the same behavior. This is observed for both the reference step at
t ~ 68 s and the load disturbance at ¢ ~ 76 s.

Different Choices of Model Order

The degree of the model is given by (7.8). It determines the complexity
of the controller. When the slope # of the frequency response is close to a
borderline for the model order in (7.8), a minor change in # leads to another
model order. This example demonstrates what different choices of model
order means for the resulting closed loop system.
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Figure 7.6 Comparison between different structures of the process model nu-
merator. The solid lines correspond to d = 1 and deg B* = 3 and the dashed line
tod = 3 and deg B* = 1.

Consider the process

8 —0.09s
Gl = e e

The value of the time delay was judiciously chosen to obtain an estimate
of the slope at the borderline. An experiment with relay feedback gives
the oscillation frequency w,,. = 2.05 radians/s. Waveform analysis gives
t2 —1; = 0.27 s and #3 — ¢; = 0.89 s. The slope of the frequency response
is . = 2.1 which is on the borderline between the choices deg A* = 2 and
deg A* = 3. Table 7.2 shows what these choices of degree mean for some
parameters in this adaptive design method. The delay in the model is in -
both cases d = 1, and deg B* = deg A*. The sampling interval is h = 0.22 s.

The process G¢ is controlled by two different adaptive controllers. The
controller G, is based on the second order process model. The solid curves in
Figure 7.7 show the responses for this system. The other adaptive controller
Gcs is based on the third order model. The behavior of this system is shown
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Figure 7.7 Adaptive control of process G¢(s). The solid curves represent the
system based on the second order model. The dashed curves represent the system

for the third order model.

by the dashed curves. First, the reference input is two periods of a square
wave with frequency wosc/3, then it is zero for ten seconds. An input load
disturbance affects the system at ¢ ~ 23 s.

The system with the controller G¢3 does not tune as fast as the one with
Gcz. The reason is that a more complex process model requires more exci-
tation to converge. After this initial transient the systems behave similarly
as long as the reference signal excites the system. This is also verified by the
Nyquist curves for the loop transfer functions at ¢ = 22 s. These are close,

as shown in Figure 7.8.

Table 7.2 Parameters in the adaptive design method.

deg 4* 2 3

T 0.89 0.58 s

T 0.24 0.01 s
wo 2.21 2.92 rad/s
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Figure 7.8 Nyquist curves for the loop transfer functions at.t = 22 s. The solid
curve represents the system based on the second order model and the dashed curve
represents the third order model.

7.6 Conclusions

A procedure for automatic initialization of an adaptive controller based on
pole placement design and recursive least squares identification has been
presented. The procedure uses information from an experiment with relay
feedback to chose sampling interval, model structure and closed loop specifi-
cations. Data from the experiment with relay feedback is also used to provide
the recursive estimator with appropriate initial parameters. Properties of this
initialization procedure have been illustrated by some examples. Since the
procedure is based on relay feedback it will only work for systems where
stable limit cycles are obtained under relay feedback. Extensive experience
indicates that this occurs for a wide variety of processes that are encountered
in industry, see [Higglund and Astrm, 1991].
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Conclusions

This thesis has treated two problems in robust and adaptive control. The re-
sults are a robust design method and a procedure for automatic initialization
of adaptive controllers. :

A new method for robust control system design has been presented in
Chapters 3 and 4. This method is based on ideas given in [Boyd and Bar-
ratt, 1991] which are generalized to processes where the uncertainty of the
process model is described as a combination of structured and unstructured
uncertainties. A main contribution is the formulation of design criteria as
constrained convex functions. These criteria guarantee robust performance
of the closed loop system for all processes within the specified region of un-
certainty. This is developed in Chapter 3. The convexity of the constraints is
used in two ways. First, to decrease the complexity of the design problem to
a finite dimensional problem. The controller is obtained using optimization
as shown in Chapter 4. The convexity implies that the optimization problem
has a unique solution. This design method searches for a controller to meet
several different design criteria. The design problem can also be formulated
so that it gives the limit of some performance objective.

For processes with uncertainties ranging over large intervals, a linear
controller that meets all design objectives may not exist. Adaptive controlis '
an alternative in such cases. Such controllers have the potential to give excel-
lent performance, but adaptive systems may be difficult to commission. The
other main contribution of the thesis is a method for automatic initialization
of an adaptive controller. This method uses information from an experiment
with relay feedback. The robust design procedure developed in the first part
of the thesis is too complicated to be performed on line in an adaptive con-
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troller. It also requires manual interaction. A strongly simplified version
that can be used on line is developed in Chapter 5. This procedure is used
in the adaptive controller. This controller may give poor performance if the
closed loop poles are not chosen properly. In Chapter 7 a simple formula is
proposed for choosing the closed loop poles. This choice is intended to give
a closed loop system with a sensitivity around 2.

The procedure for automatic initialization of an adaptive controller is,
from an operational point of view, similar to the PID auto-tuners that are
available today. The main difference is that the method in this thesis works
well for a larger class of processes than the PID auto-tuner, e.g. processes
with considerable delays can now be automatically tuned.

Natural future extensions are initialization procedures for other types of
adaptive controllers and modifications of the experiment to cover also other
types of processes.
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The Batch of Processes

The procedure for initialization of adaptive controllers in Chapter 7 involves
choices of many variables. These choices were based on heuristics rules.
To determine the validity of the initialization procedure, it was tested on
a batch of processes. These processes are listed here. The outcome of the
initialization procedure for the processes were measured by the peaks of the
sensitivity functions.

Processes

Processes with the following transfer functions were considered.

G1(8) = —(s—_:—i—)—z- e " 0.01<7<10
Gg(s)=—(;:1-1—5; 3<n<20
Gs(s)z(lsjr—‘f; 01<a<?
Ga(s) = %e"’

Gs(s) = ;“(3—1471'5 e 0.05 <7 <2
Go(s) = sl(s;fis“) 0.05 < a < 0.75
Gr(s) = p i 7 e " 0.01<7<10
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w2

= - - =0.2,w, = 4.3

Gs(s) 5(s? + 2(wps + w2) ¢ ¢ »Wp
1 0.5

= e 01<7<5

Gale) ((3+1)2+s+0.5>e 0.0l <7<
25 s,
G1le) = TG T BT )
Gui(s) = (1= o)y e 10<w,<15,02<7<04
(1 + s)(s% + 2¢wps + wg) =P = - -

G12(3) = ﬁ e“" 0.01 S T S 10
Gis(s) = ! 2<p<10

(s +1)(s +p)(s +p)(s +p°) N

The processes G1(s), G7(s), and G12(s) were used to heuristically determine
the rule (7.7) for choosing the parameter wg. Processes G1(s) to Gg(s) have
been used to assess performance of PID-controllers [Astrﬁm et al., 1989]. The
process G11(s) is a benchmark problem for adaptive control [M’Saad, 1991].
The process Gg(s) is constructed to have a resonance at 3wy,c, which leads
to an erroneous estimate of the slope. The processes Gg(s) and G14(s) are
inspired by processes where PID auto-tuning has failed. The process G;3 is
a modification of G5(s).

Validation

The initialization procedure for adaptive controllers in Section 7.4 have been
tested on the processes above. First, the initialization procedure was applied
to the process, then the adaptive controller was commissioned. Under adap-
tive control, the reference input was first two periods of a square wave with
the frequency wos./3 then it was zero for 30 samples. The frequency response
of the sensitivity function S, was calculated using the controller that was ob-
tained at the time when the adaptation stopped. The design objectives in
Section 7.2 were that the sensitivity function should satisfy |S,| < 2 and
that the controller should be stable. The controllers were stable for all the
investigated processes. The peaks of the sensitivity functions are shown in
Figure A.1. Processes modeled with deg A* = 1 are marked with a circle (o).
The plus marks (4) correspond to deg A* = 2 and the stars (*) correspond
to deg A* = 3. Some of the sensitivity functions have peaks higher than 2.
The highest peak is obtained for the process Gg(s) with 7 = 1. This process
would preferably be modeled by a first order model.

Although the formula (7.7) for choosing the design parameter wy was
derived using simple processes, it works rather well for all these processes.
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Appendiz A The Batch of Processes
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Figure A.1 Peaks of sensitivity functions. The circles (o), fhe’plus marks (+),
and the stars (%) represent processes modeled with deg A* = 1, deg A* = 2, and
deg A* = 3 respectively.

Table A.1 shows the result of the validation procedure for the process G(s).
The second column shows the value of the parameter that varies for the
different processes. An exception is the process Gi; where py = a means
wp = 15,7 = 0.2, py = b means w, = 15,7 = 0.4, py = ¢ means w, = 10,7 =
0.2, and py = d means w, = 10,7 = 0.4. Other columns in the table show
the estimate of the normalized time constant we,.T', the peak of |S,|, the
oscillation frequency wysc, the design parameter wy, and the estimated slope
7t. The chosen model structure is defined by deg A*, deg B*, and d. These
are also given. Last column shows the estimated delay 7 in (6.15).
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Table A.1

Valuation of processes in test batch.

k. p WoscT  [So] Wose wo 7 deg A* degB* d T

1 0.01 240 1.87 266 2.50 1.79 2 2 1 0.06
1 0.03 245 1.88 253 2.34 1.80 2 2 1 0.06
1 0.10 247 1.93 231 213 1.79 2 2 1 0.11
1 0.32 1.83 202 165 1.78 1.77 2 2 2 0.30
1 1.00 091 240 0.99 1.73 1.55 2 2 4 1.15
1 3.20 1.33 1.78 0.52 0.69 0.93 1 1 5 3.39
1 10.00 0.48 1.92 0.24 0.74 0.31 1 1 4 10.34
2 3 1.35 192 1.16 1.51 2.24 3 3 1 0.00
2 4 1.11 1.76 0.74 1.12 2.52 3 3 1 015
2 6 0.95 1.68 0.45 0.76 2.39 3 3 2  0.73
2 8 091 1.71 0.34 0.60 2.39 3 3 3 1.43
2 10 1.27 1.78 0.27 0.37 2.04 2 2 4 3.30
2 15 1.27 1.78 0.18 0.24 1.49 2 2 5 5.02
2 20 242 164 0.13 0.12 1.16 1 1 5 11.45
3 0.10 1.19 1.95 1.07 1.53 2.21 3 3 1 0.02
3 0.25 1.71 197 0.98 1.10 2.03 2 2 1 0.56
3 0.50 1.34 231 0.87 1.14 1.72 2 2 1 0.87
3 100 1213 1.69 0.72 0.42 1.92 1 2 1 1.47
3 1.50 8.89 1.69 0.62 0.38 0.91 1 2 1 1.64
3 2.00 3762 1.50 0.56 0.29 0.69 1 2" 1 1.57
4 — 83.64 1.84 0.94 048 1.02 1 1 2 1.08
5 0.05 244 207 143 1.33 1.70 2 2 1 0.22
5 0.10 2.44 2,08 1.27 1.18 1.70 2 2 1 0.24
5 0.20 2.56 2.08 1.06 0.96 1.67 2 2 1 0.26
5 0.40 244 214 0.83 0.77 1.61 2 2 1 0.36°
5 0.60 239 217 0.69 0.65 1.56 2 2 1 0.45
b 0.80 2.06 2.24 056 0.56 1.46 2 2 2 0.63
b 1.00 1.90 2.33 0.49 0.52 142 2 2 2 0.84
5 200 >100 1.84 0.32 0.16 1.26 1 1 2 3.2
6 0.05 244 2.08 143 1.33 1.68 2 2 1 0.22
6 0.10 244 2.09 127 1.18 1.85 2 2 1 0.24
6 0.25 2.51 214 093 0.85 1.54 2 2 1 0.24
6 0.50 9.54 1.96 0.71 0.43 1.27 1 1 2 1.59
6 075 >100 191 060 0.30 1.11 1 1 2 152
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Table A.1 Cont’d

E pr wosel |So| Wose wo n deg A* degB* d T
7 0.01 1155 140 14.30 8.40 1.00 1 1 1 0.01
7 0.03 834 159 12.06 7.50 0.99 1 1 1 0.04
7 0.10 6.36 1.82 8.16 5.39 0.99 1 1 2 0.11
7 0.32 343 191 3.77 3.02 1.02 1 1 4 034
7 1.00 1.68 190 156 1.77 0.90 1 1 4 1.02
7 3.20 063 1.94 0.67 1.61 0.57 1 1 4 3.34
7 10.00 0.33 1.95 0.26 1.05 0.17 1 1 4 10.02
8 — 4.09 2.33 0.86 0.65 0.70 1 1 4 1.45
9 001 >100 146 7.70 3.85 1.06 1 1 1 0.02
9 0.10 >100 1.72 5.00 2.50 1.10 1 1 1 0.14
9 1.00 0.85 2.60 1.13 2.09 1.39 2 2 3 1.08
9 5.00 0.83 1.88 0.40 0.76 0.70 1 1 4 5.23
10 - 0.80 1.89 0.61 1.19 0.55 1 1 4 331
11 a 2721 1.49 1.20 0.64 -0.02 1 1 1 0.49
11 b 10.68 1.50 1.11 0.66 -0.01 1 3 1 0.69
11 c 824 1.62 1.18 0.73 —-0.04 1 1 1 0.8
11 d 492 1.59 1.08 0.76 —0.03 1 1 2 0.80
12 0.00 1.35 1.92 1.16 1.51 2.24 3 - 3 1 0.00
12 0.01 1.35 1.92 1.15 1.50 2.24 3 3 1 0.00
12 0.03 1.35 1.91 1.13 1.48 2.24 3 3 1 0.00
12 0.10 1.19 193 1.07 1.53 2.25 3 3 1 0.02
12  0.32 1.11 2.29 0.94 141 2.18 3 3 2  0.12
12 1.00 1.22 2.01 0.71 0.99 1.91 2 2 3 119
12 3.20 1.74 1.69 0.44 0.49 1.15 1 2 4 3.76
12 10.00 0.67 1.88 0.22 0.50 0.41 1 1 4 10.58
13 2.00 1.19 193 1.96 2.80 2.23 3 3 1 0.01
13 4.00 2.38 1.95 4.37 4.11 1.86 2 2 1 0.05
13 10.00 2,19 1.87 17.82 7.67 1.61 2 2 1 0.00

1 1 2 ka 7=




