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Abstract

Rubber is not only a non-linear elastic material, it is alepehdent on strain rate, temperature
and strain amplitude. The non-linear elastic property &edstrain amplitude dependence give a
non-linear dynamic behavior that is covered by the modeajgssted in this thesis. The focus is
on a finite element procedure for modelling these dynamipgnties of rubber in a way that is
easy to adopt by the engineering community.

The thesis consists of a summary and five appended papers.

The first paper presents a method to model the rate and adglitependent behavior of
rubber components subjected to dynamic loading. Usingradatd finite element code, it is
shown how a model can be obtained through an overlay of Viastie and elastoplastic finite
element models.

The model presented in the first paper contains a large nuaflreaterial parameters that
have to be identified. The second paper suggests a methoehtifydthe material parameters of
this model in a structured way. Experimental data for teintelifferent materials were obtained
from harmonic shear tests. Using a minimization approadét ghown how the viscoelastic-
elastoplastic model can be fitted to the experimental data.

Using the methods presented in the first two papers, a radeslded rubber bushing was
modelled in the third paper. The material properties of thidfielement model were based on
dynamic shear tests. The dynamic response of the finite etemeadel of the bushing was then
compared to measurements of a real bushing. Thus, veriffisgntire procedure from material
test to finite element model.

Steady state loading is a very common load case for many ra@oib@ponents. Although it is
possible to analyze this load with the earlier discussecoyigstic model, the regularity of this
load lends it self to described in a more efficient way. Fos thad case a simplified viscoelastic
method is adopted. The basic idea of this model is to creamaviscoelastic model for each
amplitude. In paper IV this method is compared to the previgscoplastic model as well as
verifying measurements.

In paper V both the viscoelastoplastic model and the modifiecbelastic model are used to
analyze rubber coated rollers. Different aspects of thenwdels are highlighted and the models
are used to analyze how the non-linear dynamic charadétsrist the rubber material influences
the rolling contact.

Together the five papers present a set of tools for analyhieglynamic behavior of rubber
components, from material testing to finite element moaglli
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Chapter 1

Background and Purpose

Dynamically loaded rubber components, such as flexiblegpivibration isolators and shock
absorbers, can be found in many mechanical systems andtaneobfcrucial importance. More-
over,demands for better performing products at lower ca#fsin shorter development cycles
are a constant challenge to modern industry. As a respornbéstohallenge, traditional physi-
cal prototyping and testing are gradually being replaceditiyal prototyping and simulations.
Until recently, rubber components have been more or lesdamkead in this context, partly be-
cause of the difficulty of modelling the complex charactérssof rubber, but also due to a limited
understanding of the mechanical properties of rubber nadterThe traditional way to develop
new rubber products is through physical prototyping antingq411], which is a highly time-
consuming and expensive process.

The aim of this thesis has been to develop new and improveladstor virtual prototyping,
in order to predict the dynamic behavior of rubber compaosiefibis includes new finite element
models as well as methods to fit these models to experimeatal dThe focus has been on
developing finite element procedures that can easily betaddyy practicing engineers. To limit
the task, only non-linear elasticity, rate and amplitudpatelence have been addressed in the
proposed methods.






Chapter 2

Overview

This thesis presents two fundamentally different appreadb model the rate and amplitude
dependent properties of rubber: The overlay method andjhieadent viscoelastic method. Both
models are based on using commercially available finite elgscodes.

The overlay method models the amplitude and frequency dkgee in two parallel consti-
tutive branches. This is done by superimposing a viscdelast an elastoplastic finite element
model by an overlay of element meshes. This approach makessible to use commercially
available finite element codes, using only the constitutigelels that have already been imple-
mented. One of the difficulties with this model is the largentner of material parameters that
need to be determined. This is done using a minimizationguioe which focuses on good fit to
dynamic modulus and damping.

The equivalent viscoelastic method is restricted to mao@gisary dynamic loads. The basic
idea is to create an individual viscoelastic model for eatipldude. For each amplitude, the
frequency behavior is addressed by a standard viscoetastiel. This provides a model that is
easier to fit to material tests and is computationally maiieieft.

Both models uses harmonic shear tests to characterize treardy properties of the rubber
material. Based on the expected working condition of themament, the tests are carried out for
a range of different frequencies and amplitudes. An adgentédth the simple shear test, is that
the elastic part of the rubber behavior is rather linears Tinakes it easier to observe the rate and
amplitude dependence.

Together the different methods provide a useful toolbornflan engineering point of view.
The methods are briefly described in Chapters 4 and 5 and netaésdare provided in the ap-
pended papers. In Chapter 3 a short introduction to the nmézddgroperties of rubber is given.






Chapter 3

Material Properties

This chapter is a brief introduction to various aspects efritechanical properties of rubber. It
should be noted that rubber is rmtematerial, but is a widely used term including a great variety
of very unique materials, all with highly individual propiess. Hence, the properties described
certainly do not apply to all rubbers. It is estimated tharéhare as many as 50,000 rubber
compounds on the market today. Although the focus of thiigeés on traditional vulcanized
rubber, other rubber-like materials such as the thermtplelastomers show similar mechanical
behavior, although the chemical composition is quite déife.

3.1 Brief History

Produced from the sap of rubber trees, rubber was first dised\by ancient native tribes in South
and Central America. The word "caoutchouc" comes from tldéaimword "cahuchu", meaning

"weeping wood". Rubber was discovered and brought back togeuby Columbus. As more

rubber found its way to Europe, early scientists began te takinterest. The poor mechanical
properties of unvulcanized rubber meant that it had litdeug as an engineering material. This
was all to change in 1839, when Charles Goodyear heatedwsutplated rubber by accident,
thus discovering the process of vulcanization. Producifigrmaand stable rubber material, this
discovery was the start of the modern rubber industry [SkrEsince, new and improved rubber
formulas and manufacturing processes have kept on additigetoariety of rubber products

available today.

3.2 Molecular Structure

Vulcanized rubber consists of long cross-linked polymetatales making up a highly elastic
matrix. For nearly all engineering applications, reinfagcfiller, usually carbon-black, is added
to the rubber compound (see Figure 3.1). The fine filler gagiform a structure within the

material. During vulcanization the filler structure formastib physical and chemical bonds with
the polymer chains. Depending on the application, therebeaseveral reasons for introducing

7



CHAPTER 3. MATERIAL PROPERTIES

fillers, such as increasing stiffness, damping, abrasisistece and tear strength. In other cases,
filler is simply introduced to reduce material costs.

Figure 3.1: Microstructure for a carbon-black-filled rubbeulcanizate. Grey circles: carbon
particles. Solid lines: polymer chains. Zigzag and daslieekl: crosslinks.

3.3 Damping and Dynamic Modulus

In the literature, several different ways to characteriaending and dynamic modulus can be
found. A common way to describe the characteristics of limescoelastic materials is in terms

of a complex modulus [8]. The complex modulus consists obapart (storage modulus) and an
imaginary part (loss modulus). Another way to describe thraglex modulus is in terms of the

absolute value (dynamic modulus) and phase angle.

Figure 3.2: A typical hysteresis loop in harmonic shear.

Since the dynamic properties of rubber are more or less ime@a4, it is not entirely appropri-

8



CHAPTER 3. MATERIAL PROPERTIES

ate to describe the characteristics in terms of a complexutnsdBased on the hysteresis loop in

Figure 3.2, the following two definitions of dynamic shearduotus,G 4., and dampingg, have

been used throughout the thesis. The dynamic shear modulus
Gdyn = T_O

Ko

(3.1)

corresponds to the tilting angle of the hysteresis loop. @ensin Figure 3.2y, is the shear
stress amplitudes is the shear strain amplitude abd is the energy loss per unit volume for
one cycle. For a linear viscoelastic material definition Aadg the absolute value of the complex
shear modulus.

The damping
d= Ue
TKRoTO

(3.2)

can be interpreted as a relative measure of the thicknehle bfysteresis loop. Applied to a linear
dynamic material, this definition is the sine of the phasdeafg.e. d = sin(d). For small phase
angles it is noted thatin(0) = delta = tan(d) which often seen in the literature when damping
is discussed.

3.4 Elasticity

Although rubber is usually thought of as an elastic, incazspible material, in real life there is no
such thing as a purely elastic rubber. Nevertheless, trggatibber as elastic can in some cases be
a good approximation. Examples of this are dynamically émhdnfilled rubber and filled rubber
subjected to quasi-static loads. For many unfilled rublibeshysteretic loss is often very small
and can thus be neglected. However, these rubbers are tédinise in practice.

Another example where it can be useful to use an elastic m@dfl statically loaded rubber
components. In this case a good approximation can oftenhiees by fitting an elastic model
to an experimental loading curve, ignoring the unloadingeu Such a model will yield fairly
accurate results during loading.

3.5 Rate Dependence

It is a well-known fact that the response of rubber companeninfluenced by the load rate. In
the case of a harmonic load, rate dependence or frequenendepce is shown as an increase in
modulus with increasing frequency, as seen in Figure 3.8.aRancreasing frequency the loss
factor will increase at low frequencies, reach a maximumtaed decrease at very high frequen-
cies [8]. Since the emphasis in this thesis is on low frequéetavior (beneath about 200Hz) of
rubber, the measurements presented does not show a daordeskss factor. Nevertheless, the
models presented are capable of modelling this behavioeds w

The rate dependent loss is usually attributed to the resistan reorganizing the polymeric
chains during loading. Since this reorganization cannotioimstantaneously, the loss of energy
will be rate dependent.
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Gdyn ( damping d
f (Hz) f (Hz)
10° 10° 10° 10* 10°

MPa)
10° 10?2 10* 4

Figure 3.3: General frequency dependence of dynamic sheaums and damping for a filled
rubber.

3.6 The Fletcher-Gent effect

The amplitude dependence, also known as the Fletcher-Gé&tdyme effect [9], is usually not
as well-known as the rate dependence, although in many tasesnplitude dependence is by
far the most prominent of the two. The effect of the amplitdépendence for a harmonically
loaded rubber is illustrated in Figure 3.4. As can be seein@ease in amplitude will lead to a
decrease in modulus. The loss factor, on the other handreaith a maximum at moderate strain
amplitudes.

Gdyn (MPa) A damping d
Ko Ko
1_3 1_2 1_1 10> 1_3 1_2 1_1 1O>
10 10 10 10 10 10 10 10

Figure 3.4: General strain amplitude dependence of dynahe&ar modulus and damping for a
filled natural rubber.

From a micro-mechanical point of view, the amplitude defeng is traditionally attributed
to the breakdown and reforming of the filler structure. Hogrewnore recent research suggests
that the amplitude dependence is caused by changes in théyards between the filler structure
and the polymeric chains. As the rubber is deformed, therd$will move along the surface of
the filler, resulting in a rate-independent energy loss.

10



CHAPTER 3. MATERIAL PROPERTIES

3.7 Mullins effect

Mullins effect can in some way also be considered an amgiependence. In the case of
a cyclic load, the Mullins effect [7] is observed as a deceeiasstiffness during the first few
load cycles. This is often referred to as “mechanical cémdiitg” or “scragging” of the rubber.
Considering an unconditioned virgin material, further@asing the strain amplitude will lead to
an decreasing modulus partly due to Mullins effect and paitie to the previously mentioned
Fletcher-Gent effect. Contrary to the Fletcher-Gent ¢ffetullins effect is not fully reversible.
However, if let alone for a couple of hours or more, the matewill heal and the stiffness of the
virgin material will be at least partly restored.

3.8 Other Properties

Besides the rate and amplitude dependence and the non-éifasticity accounted for in this
thesis, there are a number of other properties worth mention

One property that was encountered during the experimesstihg in this work is the temper-
ature dependence. During tests with a large harmonic lcaduthber specimen will heat up due
to material damping. The resulting increase in temperatilidhave a similar effect on the dy-
namic properties of rubber as that of a decrease in frequasgribed by the WLF-shift model
[1]. This effect can also be important for rubber componaatsiected to changes in external
temperature.

The working environment also poses other concerns suchiag agd swelling. Oxidation
and ozone cracking, often in combination with thermal agim@y drastically shorten the life
span of a rubber component. This is especially true for tbmmonents, since the aging process
is initiated at the surface. Also, many chemicals such aareiknown to destroy the crosslinks,
thereby reverting the rubber to the gum state, and alsorgasielling. Depending on the specific
rubber material, application and environment, differemipgrties have to be considered during
the design phase of a rubber component.

11






Chapter 4

Modelling General Dynamic
Loads

As mentioned earlier, the main object of this thesis is to ehtite rate and amplitude dependent
effects of rubber materials, using the finite element mettrad simple shear, the amplitude and
rate dependence can be modelled with simple one-dimensiwdels. These one-dimensional
models do not only form the basis of the overlay method piteselater, but they also provide
a valuable tool for understanding the fundamental behafioubber dynamics. Since the one-
dimensional models are based on the same principles as tigediement models, it is possible
to transfer the parameters between the two models.

The finite element analyzes in this thesis have been cartitith lbaqus [2]. The choice of
using a commercial finite element code makes it easier tcsfonuhe engineering problem rather
than a detailed description of complex finite element madelwill also result in methods that
can be put directly to use in industry. On the downside is #le& bf control of how the models
are implemented iMbaqus. Although Abaqus provides a very good manual there will always
be details that are left out of the manual.

4.1 Elasticity

For finite element analysis, rubber is often modelled as &tejpstic material [4]. Stress-strain
relationships are derived from a strain energy functiorallgiased on the first, and sometimes
also second, strain invariant. Due to incompressibiligaih be argued that the third invariant is
constant and thus will not influence the strain energy. Ha@mevhen analyzing highly confined
rubber components, the incompressibility properties oaiha neglected and are usually included
by an extra term in the strain energy function based on th@wetric change.

In this thesis only the Yeoh and Neo-Hookean models have bgeth These models are only
dependent on the first strain invariant. This single invar@dependence gives the advantage of
more robust models than for instance the Mooney-Rivlin aakich is also dependent on the
second strain invariant. A Mooney-Rivlin model fitted to daxmal test might behave very non-

13



CHAPTER 4. MODELLING GENERAL DYNAMIC LOADS

physically when loaded in a different direction. In contrdlse Neo-Hookean and Yeoh models
will always yield a physically correct behavior in all diteans, as long as they are correctly fitted
for one direction. The strain energy density function of eeh model is given by:

W = Cl()(Il - 3) -+ CQ()(Il - 3)2 -+ 03()(11 - 3)3 (41)

PuttingCyy andCs at zero yields the simpler Neo-Hooke model. The main difieesbetween
the two models is the inability of the Neo-Hooke model to captthe increase in stiffness of
rubber during large tensile strains. The Neo-Hooke modalde incapable of modelling the
modest non-linear behavior during shear.

4.2 Rate Dependence

The rate dependence is modelled using a viscoelastic mdtielmost simple one-dimensional
viscoelastic model to yield a physically correct behaviothe so called standard linear solid
(SLS) model. The SLS model consists of a single Maxwell elenceupled in parallel with
an elastic spring. This model will yield good results for aadimange of frequencies. In order
to achieve a better fit to a larger range of frequencies, th® ®lodel can be expanded with
several Maxwell elements coupled in parallel, resultinthngeneralized Maxwell model shown
in Figure 4.1.

Gy ;
AV A
t r Gve

~

tr Gve
2 —o0 —
e

Figure 4.1: The generalized Maxwell model.

The stress response of the generalized Maxwell model isumecs all the parallel element
stresses. The viscoelastic stress response is given beditaey integral according to

t
e (t) = / G, (t —)di(t) (4.2)
where the relaxation moduldsg, for a Maxwell element is given by
—t
Ggr, = G exp <t_> (4.3)

Combining Equations (4.2) and (4.3), and approximatingeding to the trapezoidal rule, the
viscoelastic stress for Maxwell elemertan be expressed in an incremental form as

—At veA —At
Arive%rf’e(exp(t )—1)+G12 H(l—i—exp(t )) (4.4)

14




CHAPTER 4. MODELLING GENERAL DYNAMIC LOADS

wherer¢ is the stress at the previous step [10]. Thus, for transiealyais, only the previous
step has to be taken into consideration. The total viscbektsess increment for the whole model
is then obtained by adding all incremental stress confohstfrom all elements.

In the finite element softwardbaqus, the generalized Maxwell (or Prony series) model has
been implemented based on a hyperelastic model suitabédafsiomers.

Another approach to modelling the rate dependence is tarastdnal derivatives to describe
it [3]. The advantage of the fractional model is its abilityrhodel a wide range of frequencies
and time resolutions using only a few material parameterspapared to the many parameters
needed for the generalized Maxwell model. This approacktig powerful for frequency analy-
sis. For transient analysis, however, fractional denestitend to be more time-consuming, since
the entire strain history has to be taken into account at #ahstep. Another drawback of this
approach is that it is not yet implemented in commercialdielement codes.

4.3 Amplitude Dependence

In one dimension, the amplitude dependent dynamic stiéfraesl loss angle can be modelled
with simple Coulomb frictional elements. When coupled thge with elastic springs, as shown

in Figure 4.2, itis possible to obtain a rather smooth resp@s well as a good fit to a large range
of amplitudes. The elastoplastic behavior of this modél nél piece-wise kinematic hardening.

GCD
IAYAVAVAS—|
ep
Ty, .G

/ A

ep
jﬁ TYZ G2 9 ——
% = K

Figure 4.2: The generalized one-dimensional elastoptastidel.

A frictional element coupled in series with an elastic sgrinelds the most simple non-
hardening elastoplastic model. The stress response for auelastoplastic elemepitcan be
expressed in the following incremental form:

ArP { G’ Ar  if elastic

7j 0 otherwise (4.5)

The total incremental elastoplastic stress responsedantb-dimensional model is then given
as the sum of all parallel elastoplastic elements.

In three dimensions, amplitude dependence is modelled ®fastoplastic model. The pre-
ferred model would be a kinematic hardening model based @rsdime hyperelastic model as
the viscoelastic and elastic models. Howeverdtmqus such a model is yet to be implemented.

15



CHAPTER 4. MODELLING GENERAL DYNAMIC LOADS

Instead, an elastoplastic model based on a hypoelasticptése has been used. Another prob-
lem has been the lack of a kinematic hardening moddlliagus/ Explicit. This was solved by
overlaying several non-hardening von Mises models, respih a piece-wise linear hardening
model. InAbaqus/Standard a similar model can be obtained with the use of a single kitiema
hardening model.

4.4 The Overlay Method

Experimental findings show that the amplitude dependendeae dependence can be consid-
ered as two independent types of behavior, i.e. the frequessponse is the same for all strain

amplitudes and vice versa. Although not entirely true, #ssumption holds rather well for the

materials investigated in this thesis. On the basis of th&umption it can be concluded that
the rate dependent model and the amplitude dependent maxdéleccoupled together in paral-

lel, greatly simplifying the modelling task. For the onerginsional case, this is exemplified in

Figure 4.3.

. Gom _
A\ elastic part
try Gvel
2 Gye,
viscoelastic part
t,
"N Gve

W T
| E,

Ty, Gepl = Kk

ﬁgz—/\N\ﬁ elastoplastic par

Figure 4.3: One-dimensional equivalence of the visco&ladtstoplastic model.

Figure 4.3 clearly shows that the total stress can be olitaasea summation of the stress
contributions from all parallel contributions. The samemgach is used for the three-dimensional
model. Hence, the total stress tensor is obtained as a suomudtthe stress tensors from all
parallel contributions.

M N
T:TeJrT”eJrTep:TS+ZT§’8+ZT?” (4.6)
i=1 j=1

For the finite element model, the above summation of stres®ts is achieved by an overlay
of finite element meshes, according to Figure 4.4. The géidwa of this so called overlay
method is to obtain each stress tensor from a separate fieiteeat model. In some finite element
codes, such adbaqus/Standard it is possible to model the first two terms of Equation 4.6 in

16



CHAPTER 4. MODELLING GENERAL DYNAMIC LOADS

one model and the third term in a second model. The finite eidémedels are all created with the
same topology. The stress summation is then achieved bjnhieg each layer of elements into
one set of nodes. This approach yields a model able to regribgecombined rate and amplitude
dependence without having to implement any new finite elemenmlels.

Rheological model Hyperelastic FE-model

T

{}—/\/V\ﬁ Viscoelastic FE-model
—® /a/>

— =N\~ Elastoplastic FE-model

s

FE-model containing:
-Non-linear elasticity
-Frequency dependence
-Amplitude dependence

Figure 4.4: Principle of the overlay method.

4.5 Parameter ldentification

As previously mentioned, the major drawback of the mateniatiel presented was the number
of material parameters that have to be identified. In ordeemoove this obstacle, a structured
procedure to determine the material parameters was deacklop

Using a harmonic shear test, the rubber is characterizedfateht frequencies and strain
amplitudes. For simple shear, the rubber can be modellédanine-dimensional model, as pre-
sented in Figure 4.3. Since the parameters of the one-dioreisnodel are directly transferable
to the finite element model, it is sufficient to fit the one-dimei@nal model to experimental data.
The material parameters are then simply shifted to the fai@ment model.

4.5.1 Minimization of the Relative Error
The basis of the parameter identification is a minimizatitthe relative error between the model

and the experimental data. For this purpose an error fumgtidn the least square sense, was
defined according to

m 2 m 2

dd n,g dem 1 Gd n, Gez i

¢:(1_a)§ (%) +a§ (%) . (4.7)
i—1 exrp,i i—1 exp,i

Minimization of ¢y gives a good fit to measured dampiig, and dynamic shear modulus
Gezp. The weight factorr is used to put emphasis either on a good fit to dynamic modulus o

17



CHAPTER 4. MODELLING GENERAL DYNAMIC LOADS

on damping. In order to evaluate the error function, the dyinsshear modulus/y,,, and the
dampingd of the model have to be calculated at all thepoints of measurement. This can be
very time-consuming if the error function has to be evaldatpeatedly during the numerical
minimization.

4.5.2 Implementation

The fit of the resulting model will depend on the choice of treght factore and the numbeN
of viscoelastic and numb@i/ of elastoplastic contributions.

To provide a good understanding of how these three parasiatkrence the resulting model,
it is important that the user gets direct feedback on theehosaterial model and weight factor.
In order to achieve this user-interactivity, the computadil time for the parameter identification
has to be short.

0 50 100 TB0 I Dimenisata 50 100 750

Frequency [HZ] . ﬁwswe\asl\cv . # elastoplastic Frequency [HZ]
: Filt | Modiy .
. = 0.42
Do | 04

03

02

a1

Gy a
200 200
150 P a

100 0.05

Figure 4.5: Screen capture of the graphical user interface.

Using a combination of analytical approximations and nuca¢time stepping to calculate
the model response, an effective method to minimize the &retion was developed. The ana-
lytical approximations are used to speed up the costly tede=valuations of the error function,
while the more time-consuming numerical time stepping eduts guarantee the accuracy.

18



CHAPTER 4. MODELLING GENERAL DYNAMIC LOADS

To simplify the process of finding the material parametdrs, fitting procedure was imple-
mented in a graphical user interface, usiigitlab [6]. The graphical user interface shown in
Figure 4.3 makes it easy to try different numbers of viscst&taand elastoplastic contributions
and to test different weight factors in order to obtain thstipssible fit.

19






Chapter 5

Modelling Stationary Dynamic
Loads

The case of stationary dynamic loading is found in many itrthisapplications. Compared to
a general dynamic load, the regularity of a stationary dyindoad lends itself to be described
in a simplified and also more efficient manner. It should bedahat stationary dynamics also
include general periodic loads and is not restricted to dialynonic loads.

5.1 Equivalent Viscoelasticity

The viscoelastic procedures available in commercial felgenent codes are in their original form
unable to account for the Fletcher-Gent effect.

The basic idea for the equivalent viscoelastic approadhaisdue to the repetitive character
of stationary loading it is possible to foresee the largagtl#ude during a load cycle. Based on
knowledge of amplitudes in different material points it spible to create a viscoelastic model
that will give a correct estimate of damping and dynamic nleslwith respect to frequency for
a predicted amplitude.

Compared to the viscoelastoplastic approach of the preljialiscussed overlay method the
equivalent viscoelastic model make no assumptions of theharécs behind the amplitude de-
pendence. Nor does it require the amplitude and frequersrakence to be independent of each
other. This lack of restrictions allows the equivalent vislastic model to be fitted more closely
to the experimental data. It also means that any amplitugerd#ence present in the measure-
ment will be included in the model no matter if it is caused byllvhs effect or the Fletcher-Gent
effect.

Even if the equivalent viscoelastic model can be made to\zeimea correct manner in terms
of damping and modulus it should be noted that the time respavill be slightly different.
Considering the shape of the hysteretic loop during one tyate the equivalent viscoelastic
model will have an almost perfect elliptic shape whereaitsteretic loop of a typical amplitude
dependent rubber material will have sharper corners anda asymmetric shape, particulary for
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low frequency loading and quasi-static loading.

The analysis is carried out in two steps. First an initiallgsia is carried out. Based on the
result of the initial analysis an approximate amplitude dach element is determined. In the
second step each element is given an equivalent viscaetastiel based on the amplitude of the
previous step.

The viscoelastic model can be either a frequency domainioreadomain viscoelastic model.
The frequency domain model is restricted to harmonic loads.

5.2 Rolling Dynamics

Rolling contact is an important application for rubber. Atplaom the obvious application of
tires, rubber coated rollers are central to many indugtriatesses. For rubber coated rollers, it is
common with large loads and high speeds. This make it impbiteinclude both amplitude and
frequency dependence in the model.

It is easy to see that the dynamic modulus is the single mgsbitant material property to
control the contact pressure and contact width. Howeverjrifiluence of material damping is
not as straight forward. To understand the influence of netdamping in rolling, it is noted
that damping is a result of a difference between the loadimbusloading part of the load cycle.
During the initial part of the contact the rubber contactl wélsist the increasing load and the
pressure will increase fast. In the second and unloadirtigptire load cycle the inherent damping
will reduce the force by which the rubber regains its undakd shape. Thus the contact pressure
during rolling will be asymmetric. This is true independehthe damping is caused by plastic
or viscous effects.

In general rolling is a transient load case and need to be hedddrough a transient time
stepping analysis. This general approach is needed whealling speed is not constant or when
rolling over non-smooth surfaces. As the contact simutetvorks best with small time steps, an
explicit time stepping scheme is usually preferred.

Although not a harmonic load case, steady state rolling aviat surface is an example of a
stationary dynamic load case and is thus suited for the abprivviscoelastic model. Compared
to a transient analysis the equivalent viscoelastic modgiopms computationally much more
efficient for this load case.
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Chapter 6

Future Research

As often with research projects, more questions have bésedréhan answered in the course of
this work. By using the present thesis as a basis, it is plestilzontinue in many directions.

There are other important rubber characteristics that tiigtincorporated in the model pre-
sented, depending on the application and choice of matégtors such as temperature depen-
dence and a more thorough approach to Mullins effect cankem tiato consideration.

Considering the complexity of dynamic harmonic testindpeotpotentially simpler and less
time consuming methods might be interesting to investigiféh a relaxation test it might be
possible to characterize the entire rate dependence irgke gst. With several relaxation tests
of different step sizes it could be possible to cover the #oge dependence as well. Another
approach might be to use different impact tests as a simpletav&haracterize the dynamic
properties of rubber. Viewing the finite element model asdwaaced extrapolation of material
test data, it can be argued that the test method should berckmseflect the load of the intended
application. I.e. when modelling a shock absorber it wouddkengood sense to obtain the material
parameters from an impact test, whereas a harmonic tesbthistmore suitable when modelling
a vibration damper.

Multi-body dynamics (MBD) simulations are another impottarea for models of rubber
dynamics. Bushings incorporated into existing MBD codeshsas ADAM S and DADS are
greatly simplified and are a source of uncertainty when ammadysystem dynamics. A low degree
of freedom model for rubber bushings can be based on the sanuipfes as the material models
presented in this thesis.
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Modelling amplitude dependent
dynamics of rubber by standard
FE-codes

Per-Erik Austrell, Anders K Olsson
Division of Structural Mechanics, Lund University, Sweden

ABSTRACT: For most engineering rubbers, material dampsncpiused by two different mech-
anisms, resulting in rate dependent and amplitude depdrzEravior respectively. This paper

presents a simple engineering approach to model the elas@oelastic-elastoplastic character-

istics of rubber materials, providing a finite element maslgtable for analyzing rubber compo-

nents subjected to cyclic as well as transient loads. Algfinoconstitutive models with the above
characteristics exist, they have yet to be implemented imneercial finite element codes. The
advantage of the suggested method is the ability to usedresisting FE-codes for the purpose
of analyzing the amplitude and rate dependent behavior lofben components. This is done by
a simple overlay of finite element meshes, each utilizingradstrd hyperelastic, viscoelastic and
elastoplastic material model respectively. Hence, no @mgntation of new material models is
required. To demonstrate the ability of the method, an gwitaetric rubber bushing subjected to
a stationary cyclic load has been analyzed, with materiapgrties measured using a sinusoidal
shear test.

1 Introduction

Rubber components such as shock absorbers, vibration dgnifexible joints etc, are often
used as coupling elements between less flexible or rigidtstres. Knowledge of how these
elastomeric components affect the dynamic charactesisfithe complete system, are often of
crucial importance. In industries, such as the vehicle stguwhere rapid development of new
products or models is of essence, virtual prototyping amdikitions are increasingly important.
In most of these simulations, the non-linear dynamic bedravi rubber components are usually
completely overlooked or, at best, greatly simplified.

The stiffness and damping properties of dynamically loaddxdber components are usually
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dependent on both frequency and amplitude. For most enjigereibbers, damping is caused by
two different mechanisms at the material level, resultmgiscous (rate dependent) and frictional
(amplitude dependent) damping respectively. Constiutodels for rubber used in standard
large strain FE-codes are usually either hyperelasticamodlastic. Elastoplastic models, needed
to model the frictional damping, are also normally suppiredrder to model the plastic behavior
of metal. Based on these commonly available models, a ndgirBcedure able to model the
dynamic behavior of rubber materials including both ratd amplitude dependence as well as
nonlinear elastic behavior, is proposed. The model haratiés harmonic and transient loads.
The advantage of the proposed method is that no advancetitatws modelling or programming
skills are required, since it only utilizes already avaiednd implemented constitutive models.

This paper is a development of a conference proceeding biréu& Olsson (2001).

Apart from this introductory section, the paper consistfoaf major sections, outlining the
basic ideas of the overlay method and a final section wherenttbod is applied to a rubber
bushing. In section 2 a brief discussion of different mategyoperties for rubber is given and the
three constitutive branches used in the presented over#tyad is discussed. Section 3 discusses
the the double shear test and important properties suchragidg and dynamic modulus. It is
argued that the elastic response of rubber in simple sheglmigst linear, which enables the
shear tests to be modelled using one-dimensional symbaldefa. Hence, in section 4 different
one-dimensional models are examined. For the one-dimealsicodels the total stress is given
as a summation of the shear stresses. In section 5 it is grthegdor a general load case, the
one-dimensional models may be generalized into three diiloes by adding stress components
instead of only shear stresses. Thus allowing for the nad{gsirameters for the one-dimensional
model to be copied to the FE-model. This last step is dongyubkia novel approach of overlay
of finite element meshes. To demonstrate the ability of tlip@sed method an axi-symmetric
rubber bushing, subjected to a stationary cyclic load, @R analyzed in section 6. It is shown
how the presented method can be used to model the non-ligeantc behavior of a rubber
bushing.

2 Constitutive Branches

Rubber has a very complex material behavior. Besides thdinear elastic behavior, most engi-
neering rubber materials also show a considerable matkniaping, which give rise to hysteretic
response in cyclic loading. Apart from the strain level, dy@amic response of rubber is depen-
dent on the present strain rate and the strain history. Far@dnic load this behavior can be
observed through the dependence on frequency and ampi#ggectively. Dynamic modulus
and damping of a typical engineering rubber can vary witlesghhundred percents due to varia-
tions in frequency and amplitude. Several authors haveesgtully modelled the frequency and
amplitude dependencies as two approximately independaterial behaviors (Austrell 1997;
Kaliske & Rothert 1998; Miehe 2000 and Sjoberg 2000). Théitalib model the rate depen-
dence separately from the amplitude dependence is a useipény, greatly simplifying the
material modelling. The treatment of rate and amplitudesdéent properties by two indepen-
dent branches is also used in the presented model. It shouldver be noted that this theory
has mostly been used to model highly filled rubbers which arg gommon in engineering ap-
plications. A study by Chazeau et al (2000) on the amplituelgeddence on low-filled rubbers
suggests that the observed amplitude effects also comaérdiependence.
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The mechanical behavior can be divided into three prindpénches. The first and most
dominant branch in terms of stress magnitude being the ine@a4l elastic branch. The proposed
model does not favor any specific hyperelastic model. laistha user is free to use whatever
hyperelastic model available in the FE-code.

The rate dependent second branch, is modelled using a lasticenaterial model based on
a Prony series approach. Other authors, such as Enelund(@985), have proposed the use of
fractional derivatives in order to model the rate dependeaficubber. The advantage of fractional
derivatives is the ability to model a wide frequency rangthwinly a few material parameters.
Prony series on the other hand offer a numerically more #femethod to model the response
to a general strain history, since only the previous stepdag considered, as compared to the
fractional approach were the entire previous strain hjstas to be considered for each step.
Another advantage of the Prony series is that it is alreagyeémented in many commercial
FE-codes.

For the rate-independent third branch, only the Payne teffsyyne 1965) is included in the
proposed model. For a harmonic load, the Payne effect isroddeas a decrease in dynamic
modulus for increasing amplitudes. The decrease in modsilndelled using an elastoplastic
material model similar to Kaliske & Rothert (1998) and Mig(2900). The used elastoplastic
model results in a piecewise linear kinematic hardeningdfter applying the overlay method.

Apart from these three fundamental branches, discussedealbabber also shows other
important material behaviors, such as Mullins effect (Nhgll1969), temperature dependence,
swelling and ageing, to name only a few. These effects areebemnot accounted for in the
presented model. The model presented in this paper is appgifor general dynamic loads and
for elastomers without pronounced damage behavior. Depgrah the type of analysis, the ap-
plication and elastomer in question, other material bedraunight have to be included in the
model. If required, it is possible to include both Mullindesft as well as temperature dependence
without any major changes to the model described in thispdpenperature effects can be added
using a WLF-shift function according to (Ferry 1970). The ®&hift can be viewed as a scaling
of the time for the viscoelastic part. Kari & Sjoberg (2003ga the WLF-shift in conjunction
with a fractional viscoelastic model. Mullins effect is adly modelled with a damage model,
which basically reduces the elastic strain energy funotitth a scalar factor dependent on the
maximum deformation, see for example Simo (1987) and Mid98%). Considering a cyclic
load with constant amplitude, Mullins effect is seen to digzar during the first few load cycles.

3 Harmonic Shear Test

Since the elastic part of the material is almost linear dpsimear, most of the testing is done using
a double shear test specimen. The linear elasticity oldaineing simple shear makes it easier
to observe the nonlinear dynamic properties. The expetimhdata presented in this article was
obtained from a double shear specimen according to Fig. &.dblable shear specimen consists
of three steel cylinders connected by two rubber discs.

When subjecting the test specimen to a stationary cyclid ohysteretic loop according to
Fig. 2 is obtained. A correct material model should exhib& same dynamic shear modulus
Gayn and dampingl as obtained in the test.
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Figure 1: The double shear specimen.
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Figure 2: Typical hysteretic loop for a rubber material sabjed to a stationary cyclic load.
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For cyclic loads, the dynamic shear modulus is defined by

T0

Gdyn = K_Ov (1)

wherery is the amplitude of the shear stress agpds the amplitude of the shear strain, as defined
in Fig. 2. A correct description of the dynamic modulus, ated from the material model, is
vital in order to achieve a finite element model with a cordyetamic stiffness.

For viscoelastic materials, the damping is attributed tieesge anglé asd = sin(d). However,
for a material with elastoplastic properties, the phaséeaisghot well defined. In this paper, the
dampingd is defined by

Ue
TKRoTO

d=sin(d) = (2)

whereU. is the hysteric work, corresponding to the area of the hgsitetoop in Fig. 2. l.e.,
damping could be viewed as a normalization of the hystevetik. A large damping yields a
large difference between the loading and unloading cumvéisd hysteric response. For a linear
viscoelastic material, definition (2) will yield the samesuét as the argument of the complex
modulus. l.e. the definition is not in conflict with linear e@elastic theory. Instead it could be
viewed as extension of the concept of damping into elasstipity.

In Fig. 3 atypical hysteresis loop from the dynamic shedstieshown. Using the definitions
in Eg. (1) and (2) it is easy to calculate the obtained dynah&ar modulus and damping. The
deviation from viscoelastic behavior is clearly observethie sharp corners of the hysteretic loop.
A purely viscoelastic material would had exhibited ellijpghaped loops, with rounded corners.

In the following section it is discussed how the dynamic darghear behavior may be mod-
elled with one-dimensional models.
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Figure 3: Hysteretic response, obtained from a double sispa@cimen subjected to a sinusoidal
load atf = 0.05H z.
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4 One-Dimensional Models

When subjected to simple shear, the elastic branch of thehhethaves almost linear. For simple
shear, this observation makes it possible to reduce therimateodel to a linear one-dimensional
elastic-viscoelastic-plastoelastic model. Thus, theabihn of the rubber material, subjected to
simple shear, can be discussed using one-dimensional $igmimmels.

Using mechanical analogy, one-dimensional models cangisf linear spring and damping
elements is used to describe and interpret the dynamic lehaivfilled elastomers for sim-
ple shear. Models like this can also be used to model rubbmpooents subjected to one-
dimensional loads, for instance in vehicle-dynamic siroles. They also provide a useful and
illustrative general understanding of the material chiréstics.

Next a viscoelastic and an elastoplastic model are disdustbese models are then com-
bined in parallel forming a viscoelastic-elastoplasticdmlowith both frequency and amplitude
dependent properties. The viscoplastic model exhibits#me principle behavior as found in
the experimentally obtained data. Finally a five-paraméteroplastic model is used to illustrate
the rate and amplitude dependence of the dynamic modulus.

Gy

T
n G | —
AW

Figure 4. Mechanical anology illustrating a viscoelastiodel, the so called standard linear
solid model.

4.1 Viscoelastic model

The simplest viscoelastic model that exhibits a physicedigsonable behavior is a spring
combined in parallel with a Maxwell element according to.FigThis is the so called "Standard
Linear Solid" model, abbreviated the "SLS-model". The Sh&del is made up of two spring
elements with the elastic shear modulesndG, and a dashpot element with the viscosity co-
efficientn. This model is able to reproduce the frequency dependenpid@of rubber material.

It provides a qualitative correct behavior of the dynamicdelas and damping. The dynamic
modulus increases with increasing frequency and the dagmeiaches a maximum where the
increase in dynamic modulus is at its maximum. Since the iisdmurely viscoelastic it does

not reflect the amplitude dependence. Therefore the dynamadtulus and the damping is only
dependent on the frequency.

In Fig. 5 the dynamic behavior of the SLS-model is shown aeldifferent frequencies. The
frequency is increased from 1) representing a low frequém&) representing a high frequency.
It can be seen that a very low or high frequency results in enosd elastic shear modulus. That
is, the damping is almost zero, which is illustrated by theywearrow hysteretic response with
the loading and unloading curves being nearly identicalekime frequency is close to zero the
elastic shear modulus is given By;,, ~ G. (WhereG, denotes the relaxation modulus at
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Figure 5: Harmonic excitation of a viscoelastic model and ttysteretic response at increasing
frequencies 1) to 3).

timet = oo, corresponding to zero frequency.) The elastic shear nuisddrresponding to a high
frequency is given byz gy, = Go = G + G.

The dynamic shear modulus increases fi@m to G with increasing frequency. The maxi-
mum damping is found at frequency 2) for which the distan¢evéen the loading and unloading
curve reaches its maximum.

4.2 Elastoplastic model
Go

Ty G
i K

Figure 6: Mechanical analogy illustrating a simple elaskagtic material model, which is able
to represent an amplitude dependent dynamic shear modulus.

Besides the viscous type of damping described earlier thatso a rate independent damping
in filled rubber materials. A simple model describing ratdependent damping is obtained by
replacing the dashpot in the SLS-model with a frictionah@at according to Fig. 6. During slip
between the element surfaces, symbolically illustrateithénfigure, the frictional element stress
is limited to +£7,. The stress is thus limited to the prescribed stress indiggrof the relative
velocity of the contacting surfaces.

The model in Fig. 6, with two parallel springs with the elasthear modulué’ andG ., is
the mechanical analogy for an elastoplastic material viritsadr kinematic hardening. The stress
in the model is in this case independent of the strain rate.

When the model is subjected to cyclic loading, the frictioel@ment causes a difference
between the loading and unloading curves and the hysteesponse is given the shape of a
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Figure 7: Periodic excitation of an elastoplastic model ahd hysteretic response at two different
amplitudes. Depending on the amplitude two different dyaaimear modulus are obtained.

parallelogram according to Fig. 7, provided that the lingtistress is reached in the frictional
element. All type of periodic loading with a certain amptiee, provides the same results in the
stress-strain graph, independent of load shape and load rat

The frictional element provides a non-linearity that mayobserved from the parallelogram
shaped hysteretic response. This also results in an am@litependent dynamic shear modulus.
As can be seen in Fig. 7, it is obvious that the dynamic sheaufs decreases with increasing
amplitude.

4.3 Viscoelastic-elastoplastic model

For filled elastomers damping is caused by two different raaidms at the material level, result-
ing in viscous and frictional damping respectively. Reaigation of the rubber network during

periodic loading results in a viscous type of resistanceomon view is that the Payne effect
is caused by frictional damping attributed to the filler sttwe and the breaking and reforming
of the structure which take place during loading and unle@dihe stresses obtained in a filled
rubber material can thus be divided into a dominant elasiit; put also a viscous and a frictional
part.

I

=K

Figure 8: Mechanical analogy illustrating a simple five parater viscoplastic material model
resulting in a frequency and amplitude dependent dynandarsinodulus and damping.

Combining the viscoelastic and the elastoplastic modelairaltel yields a material model
which sums the elastic, viscous and frictional stressesmple model of this viscoplastic type
is shown in Fig. 8. The model simulates the frequency and iamlel dependence in a physically
correct manner.
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Figure 9: Amplitude and frequency dependence of the dynsineiar modulus ( See Eq. (1).) for
the simple five parameter model.
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Figure 10: Amplitude and frequency dependence of the phagle §See Eq. (2).) for the simple
five parameter model.
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The combined frequency and amplitude dependence of thexdgrshear modulus and phase
angle according to the material model in Fig. 8 is illustdateFig. 9 and 10. The phase angle is
directly proportional to the damping and thus also propoi to the hysteresis. That is, a large
phase angle yields a large difference between the loadidguatoading curve. Values of the
dynamic shear modulus and phase angle for which the amelénd frequency result in a power
output which exceeds a certain limit have been removed fhafigure. The separable amplitude
and frequency dependence of the model is in agreement widgrexental findings according to
(Austrell 1997).

AN elastic part

L=\
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jﬁ — =W — T
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Figure 11: The generalized one-dimensional viscoelastistoplastic model.

The one-dimensional model shown in Fig. 8 can be generdligetiding more viscous and
frictional elements in parallel, according to Fig. 1. Thedabcan then be given a quantitative bet-
ter fit to experimental data. In section 5 this enhanced misdgneralized into three dimensions
for the purpose of finite element calculations. Since thedineensional model is equivalent to
simple shear of the the three-dimensional model, the nahfgarameters are the same for the one-
dimensional model and the three-dimensional model. Hearoee the one-dimensional model is
fitted to the simple shear test, the material parameters gashifted to the three-dimensional
model FE-model.

5 The Overlay Method

According to the one-dimensional viscoplastic model showig. 1, the total stress is obtained
by adding the elastic stress, the viscous stress, and thicpdiress. A direct generalization of the
one-dimensional stress to a three dimensional state afssisdo add elastic, plastic and viscous
stress tensors. The total stress tensd then given by

T=74+7% 47" 3)

where the different stress tensors are obtained from a bigstic, an elastoplastic and a
viscoelastic material model. For consistency, all thesdetwshould be based on the same hy-
perelastic model.

The elastoplastic part of the stress tensor is given by a atiom
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M
TP = Z T 4)
j=1

where the terms are obtained from a non-hardening plastigidel, according to von Mises,
implemented for large strains. The model used in sectione8 ttzree terms in the summation
above.

The viscoelastic stress contribution is also given by a sation according to

N
=) T (5)
k=1

where the terms are obtained from a visco-hyperelastic msdi¢able for large strains.

5.1 Implementation of the Overlay Method

Since the commercial FE-codes do not contain any suitabistitotive model, this paper pro-
poses a novel engineering approach. Using only standarcbBEES, a three-dimensional model
is obtained through an overlay of FE-meshes. With this aggrpthe implementation of a new
constitutive model is avoided. The basic approach usingtieglay method, is to create one
hyperelastic, one viscoelastic and one elastoplastic BEemall with identical element meshes.
Assembling the nodes of these models according to Fig. &R&lya finite element model that cor-
responds to the five-parameter model discussed earlierder to create a model corresponding
to the generalized mechanical analogy in Fig. 1, a suitabieber of viscoelastic or elastoplas-
tic FE-models are simply connected in parallel by assergldifferent layers of elements to the
same nodes.

In Abaqusboth the hyperelastic and the viscoelastic parts can be lleddeith a single
FE-model based on a viscoelastic Prony series. The elastappart can be modelled with sev-
eral parallel elastoplastic FE-models based on a non-hargelastoplastic material model. In
Abaqus/Standard there is also a possibility to define a pisecinematic hardening elastoplas-
tic model. Unfortunately, neither Abaqus nor Marc contairy @lastoplastic models based on
hyperelasticity. Hence, in the following section the plaptrt is based on a hypoelastic material
model.

Preliminary investigations indicate that the materiabgpaeters needed for the finite element
models can simply be copied from the one-dimensional motiadimhas been fitted to experimen-
tal data in simple shear. A fitting procedure for the one-digienal model is further discussed in
(Olsson & Austrell 2001).

The reason why the one-dimensional mechanical analogysseebe easily generalized into
three-dimensions has not been thoroughly investigatedveMer, one reasonable explanation
for this behaviour is that the isotropic and incompressdtiaracteristics of rubber provides a
constraint that reduces the degrees of freedom in the tirmensional model.
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Viscoelastic FE-model

Elastoplastic FE-model

FE-model containing:
-Non-linear elasticity
-Frequency dependence
-Amplitude dependence

Figure 12: Basic idea of the overlay model.

6 Cylindric Rubber Bushing

A cylindric component according to Fig. 13 has been studibémwsubjected to a stationary
cyclic load. The bushing consists of one outer and one intieet tube, with rubber in between.
The component is subjected to large amplitudes at low frecjes. A finite element analysis
of the component, using a material model that combines im@ad elastic properties with rate
independent damping, has been performed. The dimensi@dsinghe computations are=
20mm, R=40nm and H = 50mm.

R

Figure 13: The analyzed cylindric component.

The model was fitted to the hysteretic response presenteid)in3 The experimental data
were obtained using a double shear test specimen accoodig.tl. Fig. 14 shows the response
of the one-dimensional material model subjected to the daatkas the test specimen.
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Figure 14: The one-dimensional material model subjected tnusoidal shear load af =
0.05H z.

The rubber bushing was modelled Abaquscombining a hyperelastic material model and
three elastoplastic models. The elastoplastic models beased on hypoelasticity with isotropic
von Mises plasticity without hardening. An inconsistendytvithe used model is that the elasto-
plastic part is hypoelastic while the elastic part is hytsstc. It would be preferable if the same
hyperelastic base was used for the entire model, but aslgieggiouslyAbaqusdoes not contain
any hyperelastic plastic materials models at the preseat da

6.1 Axial Shear Load

Fig. 15 shows the cylindric component during axial cyclieahloading. The load case is a
displacement controlled cyclic loading with graduallyrieasing amplitude. The state of stress is
very close to simple shear.

The shear stressshown in the graph is the mean stress computed as the axdaldbtained
from the finite element analysis, divided by a cylindric sug area with the radius + R)/2,
resulting int = P/(n(r + R)H). As can be seen in the graph, the dynamic modulus decreases
with increasing strain amplitude. Another interestingersation made from the graph is that the
shape of the hysteretic response is in good agreement veitexiherimental result, according to
Fig. 3, used to obtain the one-dimensional material model.

6.2 Axial Tension

Fig. 16 shows the cylindric component subjected to a homeges stress. This load is not in
agreement with the present component design, with one amtkone outer metal pipe vulcanized
to cylindrical surfaces of the rubber part. However, thiadaase is of great interest since it

shows the behavior of the material model during pure telasitecompressive loading. The load
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case is a displacement controlled cyclic loading with gedigiincreasing amplitude. The stress
(same in all elements) shown in the graph is calculated aaxia force P, obtained from the
finite element analysis, divided by the original cross-iseet aread = 7(R? — r?). The graph
illustrates the influence of the non-linear elastic stresgribution on the hysteretic response at
different amplitudes.

6.3 Radial Load

Force [kN]

e R N SO SR R
Displacement [mm]

Figure 17: Amplitude dependent dynamic stiffness. Anabyfdhe cylindric component subjected
to a radial cyclic load.

Fig. 17 shows the cylindric component subjected to a radiatll The load case is dis-
placement controlled and cyclic, with gradually incregsamplitude. Since there is no sense in
presenting a specific stress in this highly inhomogeneoessstate, the graph shows the relation
between the radial forc, obtained from the finite element analysis, and the radggldcement.
Similar to the previous load case, the graph also shows tlhueirce of the non-linear elastic stress
contribution on the hysteretic response.

6.4 Torsional Load

Fig. 18 shows the cylindric component subjected to a toaitoad. The load case is displace-
ment controlled and cyclic, with gradually increasing tons The graph shows the relation be-
tween the torsional momemt;, obtained from the finite element analysis, and the torsien p
sented in radians. As expected the hysteretic responsesshqwinciple the same behavior as
for the axial shear load in Fig. 15, since torsion in prineijsl a state of shear.
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to a torsional cyclic load.

7 Conclusions

Using a novel engineering approach, it is shown how alreaéstieg FE-codes can be used to
model the dynamic behavior of rubber components. The usdsifreg FE-codes makes it easy to

create a highly advanced model without implementing a newstifntive model. The presented

method is able to represent the non-linear elastic behaasowell as the rate dependent and
amplitude dependent inelastic properties of rubber matéFhe model discussed works equally
well for a general dynamic load as well as for creep and réllaxanalysis and other cases of
transient dynamic loads.

Finally, a cylindric rubber bushing, subjected to diffetrkenv frequency cyclic load cases, was
analyzed using the proposed method. A harmonic simple séstaras used to obtain the material
parameters. The component characteristics were thenlagdduor different load directions,
giving a physically reasonable behavior.
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Notation

The following symbols are used in this paper:

Superscripts

e

ep
ve

G
Gdyn
Goo
G()

T

70

Ty

T

KR

Ko

d
)
Ue
Ui
M
N

shear modulus

dynamic shear modulus

long term shear modulus

instant shear modulus

shear stress

shear stress amplitude

yielding shear stress

stress tensor

shear strain

shear strain amplitude

damping

phase angle

dissipated energy for a closed hysteresis loop
viscosity coefficient

number of elastoplastic components
number of viscoelastic components

elastic
elastoplastic
viscoelastic
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Parameter identification for a
Viscoelastic-Elastoplastic Material
Model

Anders K Olsson, Per-Erik Austrell
Division of Structural Mechanics, Lund University, Sweden

ABSTRACT: A fitting procedure for a viscoelastic-elastsfitamaterial model capable of rep-
resenting amplitude and rate dependent properties of fédladtomers is presented. The material
model contains a lot of parameters that have to be fitted terxental data. A method to fit such
a viscoelastic-elastoplastic material model to data oléai from a stationary dynamic shear test
is suggested. Using this method, the material model wad fittexperimental data for thirteen
different elastomers. Simulated dynamic modulus and dagngie compared to experimental
data and presented for a wide range of frequencies and sgmaiplitudes.

1 Introduction

Filled rubber is a two-phase material consisting of longypwr chains in a structure of micro-
scopical carbon-black particles. Reorganization of thebew network during dynamic loading
gives rise to a viscous damping. When subjected to a dynamadt, breaking and reforming of
the carbon-black structure results in a frictional elalstsiic damping.

Experimental results have shown that the viscoelastic\iehs almost independent of the
elastoplastic behavior (Warnaka 1962). This observatiamdzpendence between the viscoelas-
tic and elastoplastic behavior is the foundation of sevei@diels for modelling the dynamic be-
havior of rubber (Kaliske & Rothert 1998), (Miehe & Keck 2QGhd (Sjoberg & Kari 2002).

The model addressed in this paper has previously been deddni (Austrell & Olsson 2001).
A one-dimensional mechanical analog in simple shear, wierelastic properties of rubber are
rather linear, is shown in figure 1. This makes it possibleeforesent the material model as a
one-dimensional model according to the figure, where thet@béastic elements are coupled in
parallel with the viscoelastic elements. The reason foirftamore than one viscoelastic and more
than one elastoplastic stress component, is to get an iregifitto a wider range of frequencies
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Figure 1: The one-dimensional mechanical analog represt@m of the material model.

and strain amplitudes.

In (Austrell & Olsson 2001) it is shown how this model is epgibeneralized into three di-
mensions by an overlay principle, by merging several vilEsie and elastoplastic FE-meshes.
The advantage of this approach is that it does not requirénapigmentation of new constitutive
laws, since it only uses already implemented models. An@teantage of this approach is the
ability to use the parameters already obtained for the amesasional model in figure 1. Hence,
it is sufficient to fit the one-dimensional model to the expwntal data. The material parameters
can then simply be shifted to the finite element model.

The drawback with the above model is the large number of nahtparameters that are
needed. Because of the number of material parameters, linssaimpossible to fit the ma-
terial model by hand. This obstacle is removed by the methesigmted here. A structured fitting
procedure makes it easy to obtain the material model froreréxgntal data.

Viscoelastic models using fractional derivatives suctEarme({und et al 1996), (Sjoberg & Kari
2002) generally do not need as many parameters to descahgsitoelastic part of the material
and are thus easier to fit to experimental data. Models liksdhare usually better suited for
evaluation in the frequency domain than in the time domatmens they tend to be rather time-
consuming. This is due to the fact that the entire load hyshars to be taken into account at
every time increment. In the presented method it is only eded store the previous stress state
in the time stepping. Another obstacle with the fractionatichtive model is the absence of
commercially available FE-codes.

The elastoplastic part of this model consists of an overfageally (non-hardening) elasto-
plastic models. When connected together their behavidbeipiece-wise kinematic hardening.
A continuous kinematic hardening model could replace thasteplastic part. However, since
kinematic hardening still is rare in commercial finite eletheodes, a simple overlay of ideally
elastoplastic models was chosen.
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2 Test method

A test batch of 13 different elastomers has been evaluatelyigmic simple shear tests. Exper-
iments were carried out at the Marcus Wallenberg Laborato8tockholm (Kari & Lindgren).
The test object used is the so called double shear test speeiotording to figure 2.

| i

- L 025 mm

Figure 2: Double shear specimen, used for testing at sintpéas

The test specimens have been subjected to a sinusoidalftoaa wide range of different
frequencies and amplitudes, with shear strain amplituge® 12% and frequencies up to 180
Hz. To prevent hysteretic heat build-up from ruining thauigeshe measurements were performed
during a very brief time period, but still long enough to dbta stationary reading. For each
strain amplitude and frequency, about 20 load-cycles haea berformed, out of which five were
evaluated. A typical hysteresis loop from a load cycle isrghin figure 3. For a given frequency,
measurements were conducted at four different amplitiedaging with the smallest amplitude.
Thus, also damage effects were included in the measuremMewever, the investigated material
model does not include any damage effects. This conflict éetmmodel and measurement is
further discussed in section 6.

The dynamic behavior of rubber materials can be charaetthky the dynamic shear modulus
and the phase angle, i.e. the aim of the fitting procedure isatenmal model with the same
stiffness and damping properties as the tested rubbersdyiiteanic shear modulus,,,, and the
corresponding damping parametkiare defined according to

U.
Gdyn = T ) d= (1)
Ko TKOTO

with variablesU., 7y and x, defined in figure 3. The hysteretic work per unit volulig is
obtained through numerical integration of the experimigntacorded time history data. It can be
noted that the damping parametkis identical tosin(d) for a purely linear viscoelastic model,
where/ is the phase angle. Assuming simple shear, the shear strasd shear strair are
calculated according to

P U
T= 5 K= f (2
where P is the shear force2 A is the two shearing areas, is the displacement anH is the
thickness of the shear specimen. This is, however, onlyftmugpure state of simple shear. Finite
element analysis indicates that this approach leads to derestimate of the shear modulus with

approximately 6%. Thus the obtained shear modulus shouiicbeased by 6%.
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Figure 3: Typical hysteretic loop for a filled rubber.

3 Fitting procedure

Although the one-dimensional material model is rather &nip its appearance, the number of
material parameters to be determined makes the fitting grwedifficult. The dynamic behavior
of rubber components is mainly attributed the dynamicrstiés and the damping properties. Thus
the aim is to obtain a material model that exhibits the saiffaess and damping as the rubber
material, for a given range of frequencies and strain anombdis.

3.1 An optimization approach

The fitting procedure can be viewed as a least square minimrizaf the relative error of the
material model compared to the experimental data. For thiggse an error function is estab-

lished: ) )
1/} _ (1 _ Oé) Z (ddyn,i - demp,i) + OZZ <Gdync,; - qexp,i> (3)
exp, i

Ao s
i=1 €rp, i=1

The damping!; and shear moduluS,,, ; are calculated from the material model at the spec-
ified frequencies and amplitudes, whengis the total number of measurements. Thus the error
function is a function of the material parameters (see figytr /(G oo, GV, tr1, ..., GT*, Kyt -..).

By choosing the scale factar, it is possible to decide whether to emphasize a correct tiogle
of the dynamic modulus or a correct modelling of the damping.

In a similar manner it is also possible to chose individuablefactors for each measurement
1. This might be useful if the measurements are not evenlyiloiged or if extra emphasize is to
be given for certain frequencies and amplitudes.

Evaluation of theoretical damping and dynamic stiffness loa done in two different ways.
The most correct way to obtain the behaviour of the materiadiehis to use a time-stepping
algorithm. This is however, a time-consuming proceduneegeilly if the optimization algorithm
is such that the error function needs to be evaluated regigatéor a large amount of measure-
ments and an increasing number of material parametersghieach will be very slow. A more
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efficient approach is to use an analytical approximationweier, the poor accuracy of this ap-
proach yields a model with poor fit to experimental data. A wawork around this problem
is to use the analytical approach for repeated evaluatiodd@ause the time stepping algorithm
to calibrate the analytical expression with certain intdsv The fitting procedure was developed
using this basic idea.

3.2 Analytical approximation of damping and modulus

The one-dimensional model consists of three differentgygfeelements, namely the elastic ele-
ment, the viscoelastic Maxwell element and the elastoplakment (fig. 1). In order to calculate

the total damping/’** and dynamic shear modulggp/, for the entire model, damping and mod-
ulus are calculated for each of the elements.

Starting with the single Maxwell element, it can be showngtell 1997) that the viscoelastic
damping is given by

1+ w?t2
T

and that the dynamic shear modulus is given by

ve, ,242
ve  GiwTt

dyni = F w22
i

(5)

\
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Figure 4. The complex modulus of the viscoelastic Maxwethgonents (solid lines) and the
resulting viscoelastic modulus plotted in the complex plan

In figure 4 the viscoelastic branch is plotted in the complne. Summing up the total
dynamic contribution from all thé&/ Maxwell elements and the purely elastic element results in
the following expression

N 2 N 2
Gon = (Goo +ZGzzmcos<6i>> + (Z Gz;;msmwi)) (6)
i=1

i=1

whered; is the phase angle according to equation (4). In a similarn@athe total viscous
damping can be expressed as:

N

1 GVew?t?
dve — T 77,[ 7
Gy 2 T+ o2 7 @
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Thus, the viscoelastic part of damping and dynamic shearulneds calculated with the
analytical expressions (6) and (7).

The behavior of the elastoplastic elemgdiepends on whether it is plastic or not, i.e. whether
the shear strain amplitude is larger than the yield straif, or not.

K
T\ K

]

K

Figure 5: The hysteretic loop of one elastoplastic element.

From the elastoplastic response of a single element, shofiguire 5, it can be seen that the
shear stress amplitudéf for an elastoplastic element is given by

GPr,, if kg > Ky,
e { 7 VY 0 Yj (8)

To. — .
05 Gry  otherwise

Using the definition of equation (1) and by looking at figuré& 8an be seen that the dynamic
modulus for an elastoplastic elemeris given by:

G;pnyj if
G ={ TR ROy ©)
v G otherwise

For the maximal strain = ky, all the elastoplastic elements will have reached theirimak

€

stress Ievei-je” =757. Hence, the elastoplastic stress amplitude is obtainéteasim of the stress
amplitudes from all of the elastoplastic elements. Frondesf@nition of dynamic shear modulus

according to equation (1) the total dynamic shear moduluthi®elastoplastic pa(f;’;n is then
given by
M
G, => G . (10)
j=1

The hysteretic worKJ., is given by the inclosed area in the hysteretic loop, seergurdiS.
Simple geometry yield

Aks. G (Ko — Kky,) If Ko > Ky,
ep _ Sij Yi Yi
v, { 0 otherwise. (11)
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Adding up the hysteretic work done in each element, the fgdtic damping, as defined in
equation (1), is found to be

M ep
Zj:l UCj
M _ep’
TKQ ijl To,

Thus, the elastoplastic part of damping and dynamic sheaiutus is calculated with the
analytical expressions (10) and (12).

d°r = (12)

Since the largest stress for the total elastoplastic dmrttdn does not occur at the same
time as for the viscoelastic contribution, adding the dbations from all elements in the model
becomes rather complicated and numerically time consuniihg elastoplastic response can be
approximated with its basic Fourier component (Harris &8teson 1986). This approximation
makes it possible to represent both the elastoplastic nsgpand the viscoelastic response in a
complex plane, as seen in figure 6.

AI

m

Figure 6: Approximative representation of the viscoelaatid elastoplastic response in the com-
plex plane.

Based on this complex representation and using the appabiximcos(d) ~ cos(d°?) ~
cos(0v¢), the total dynamic shear modulus is obtained from the faligvexpression
Gayn =G, + Gy (13)

dyn yn

noting thatGyy . also contains the elastic contributiéh.. Another way to reach expression

(13) would be to approximate the viscoelastic part with astelplastic part. As explained for

equation (10), the total dynamic modulus for elastoplasticlels can be derived through a simple
summation. Hence, using this elastoplastic approximatitiralso result in equation (13).

From the representation of figure 6 and some trigonometiygus= sin (), the total damp-
ing is calculated similar to a generalized Maxwell model.

Gel) dep+G'L)e dve
d ~ dyn dyn (14)

G

dyn

With equation (13) and (14) it is possible to calculate thierfunction (3) analytically. Due to
the approximations introduced, this expression has to ligrated using a more time consuming
time stepping approach. The calibration is done by muliigyequation (13) and (14) with a
scalar correction factor. This correction factor will bepdadent on both frequency and strain
amplitude, as well as the material parameters.
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3.3 Numerical evaluation of damping and modulus

A more accurate way to calculate damping and modulus is byngenigal time stepping algo-
rithm. The elastoplastic stress for an elemgmian be expressed in the following incremental
form.

GP Ak if elastic

?p = J

AT { 0 otherwise (15)
The viscoelastic stress response is given by a hereditiagrad according to
t

T7e(t) = / G, (t —t)dr(t") (16)

—0o0

where the relaxation moduldsg, for a Maxwell element is given by
—t

Gr, = Gi%xp <t_> a7

Combining equation (16) and (17), and approximating adogrtb the trapezoidal rule, the vis-
coelastic stress for elemeintan be expressed in an incremental form

AT = T¢ (exp <tAt> — 1> +
veA —A
Gz2 K(l-l—exp(t t)) (18)

wherer; is the stress at the previous step.

The total stress increment for the whole model is then obthioy adding all incremental
stress contributions from all elements. In doing so for esef in strain history, the stress history
is derived. From the stress history, the dynamic modulusdardping is obtained using the
definitions in equation (1).

3.4 Implementation

The multi-dimensional line search algorithminconprovided by the optimization tool-box in
Matlab (MathWorks Inc.) has been used to find the minimum of the efwaction in equa-
tion (3). To do this, the error function has to be calculatedllastrains and frequencies where
measurements have been made, i.e., damping and dynamidunddwe to be calculated at all
experimental points.

To reduce the search area, the following constraints areseuh
try > try > 0 > by

By, > Kyy > . > Ky, (29)
Ky, < mazx (Ko)

To further reduce the search area and to avoid nonphysidatialgparameters, each param-
eter is given an upper and a lower bound, besides the bouretgiation (19). This upper and
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lower bound can also be used to avoid extremely high modutishmvill ruin the computational
performance when an explicit finite element method is usée. Bound is also useful in order to
prevent the creation of elastoplastic or viscoelastic routions that will always behave elastic
for the given strain amplitudes and frequencies.

Since the material model may contain a large number of pawmi¢is often difficult to find
a true global optimum. To stabilize the optimization altjam it is important to use a structured
approach. The fitting is done in four steps:

o At first a rough guess of the material parameters is made. Belth strains and relaxation
times are given a logarithmic distribution over the meadwamplitudes and frequencies
respectively.

e Secondly, the shear moduli of the elastic and the elastipkelements are fitted to only
the lowest frequency for which the influence of the viscagadements may be neglected.
The yield strains for the elastoplastic contributions arehanged at this stage.

e The third step is to fit all of the shear moduli to all test da#dter this step the model
should be fairly accurate.

e The final step is then to fit all material parameters to all tkgh, resulting in a minor
adjustment of the material model.

For the last three steps the error-functiwraccording to equation (3) is minimized using
an iterative method for which the error-function has to balested repeatedly. As already men-
tioned, the analytical solution by itself is not accuratewgh to provide a good fit for the material
model and the numerical solution is too time-consuming tewsuated more than a few times
during the fitting algorithm. The solution to this problemtd use the analytic expression when
minimizing. When the minimization has converged, the atiey and numerical damping and
modulus are then compared and a correction factor is caécll& he analytical expressions for
damping and modulus are then adjusted with the correctimiorfgn order to give accurate result.
The minimization algorithm is repeated using the adjustedydical expression. This procedure
is repeated for the last three steps above. The correctaarfaill depend on frequency and
strain amplitude as well as material parameters.

It should be noted that although the described method hasdyemvn to work well in find-
ing a minimum for the error function, it does not guarantes the obtained minimum is truly
global. Nor is it certain that the true minimum would provithe best material model from an
engineering point of view. Once a material model is obtaiinederefore has to be compared
to the experimental data, as is done in section 5. If the nbthmaterial parameters does not
provide a good enough fit, a change in weight factor or numbeiscoelastic and elastoplastic
contributions are made, and the fitting procedure is restastth the new error function. Each
fitting procedure takes about one minute on a regul@0 M H z PC, depending of the number of
elements and the number of measurements.

To enhance the interactivity the fitting procedure was immdeted using a graphical user-
interface inM atlab. Weight factor, number of elastoplastic and viscoelagiittibutions can be
easily set in the user-interface, and the resulting moaeted in comparison with the experimen-
tal data.
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4 Materials and experimental findings

The dynamic shear modulus and damping have been measurE8l different rubber materials.
The materials and their hardness are presented in tableelhditdness for the rubber materials
has been measured for sample plates from the same batchtastthigecimen were manufactured
from. Compared to most other rubber the tested materialsedaévely hard and with a high
degree of damping.

Material Hardness
NR60, Svedala Skega ~60
NR80, Svedala Skega ~80
ECO 3575s, Ahauser 56-59
HGSD 78, Scapa Rolls 76-77
HGSD 85, Scapa Rolls 83-85

HNBR 78 Shore A, Trelleborg 78-82
Hypalon 72 Shore A, Trelleborg 72

EPDM 0591, Ahauser 94-95
PUR 9180h, Ahauser 82-86
PUR 9190h, Ahauser 94-95
PUR 9290h, Ahauser 86-87
Adilithe I1l, Sami 87

Silicon 80 Shore A, Trelleborg 80-84

Table 1: The tested materials and their measured hardndss¢SA].

e The two NR materials, provided by Svedala Skega, are EVanited and carbon-black
filled natural rubber. The main difference between the twmigh higher modulus of the
80 Shore NR compared to the 60 Shore NR. They both clearhb@tullins effect. The
natural rubbers show high amplitude dependence, though sbinis clearly accredited to
Mullins effect and not to the Payne effect. If previously didioned, the amplitude depen-
dence would not be as high. The frequency dependent damphaytor of the NR rubber
deviates from all the other materials except the EPDM. Foothler materials damping
increases with an increase in frequency. Comparing hasdmes modulus it is noticed
that there is no good correlation between the two as repbstétindley 1974) for natural
rubbers.

e The ECO material from Ahauser is an epichlorohydrine rubldre ECO, like the two
natural rubbers also show a pronounced amplitude depeadenc

e The two HGSD materials from Scapa Rolls are different gradéypalon rubber, as is the
hypalon from Trelleborg. The characteristics of the thrgpafons are a low modulus in
combination with a large frequency dependence and a verlf amplitude dependence.

e HNBR is a hydrogenated acrylonitrile butadiene rubber. HNB interesting in the sense
that it combines high amplitude dependence with a high faqu dependence.

e The EPDM material from Ahauser is an ethylene propyleneaiabber. The material has
a higher modulus than the natural rubbers but otherwisesiarjar in its behavior.
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e The PUR materials from Ahauser as well as the Adilithe matérom Sami are four dif-
ferent grades of polyurethanes. The four polyurethanekighdy elastic low-damped ma-
terials, with a relatively high modulus.

e Finally the last material is a silicon material from Trelbeh. With a high amplitude de-
pendence and a low frequency dependence.

5 Fit to experimental data

In this section the fit of the material model to experimengbdrom 13 different rubber materials
is described. All the tested rubbers exhibit more or lessliidg and frequency dependent
modulus and damping.

Using the previously presented method to fit the materialehtwlexperimental data, a set
of material parameters was obtained for each material. g@de Al in the appendix.) Different
numbers of elastoplastic and viscoelastic contributiasswell as different choices of weight-
factorsa according to equation (3) were tried. The aim was to find a dad both damping
and modulus and at the same time keep the needed number ofahaaeameters to a minimum.
The number of material parameters is of course dependeimeosought accuracy of the model
as well as the range of frequencies and amplitudes in theiexpetal data.

Since the elastoplastic models in most finite element coded a yield stress, instead of a
yield strainx,, only the yield stress is provided in the tables. The retalietween yield stress
and yield strain is;, = Gk,,.

In figure 7 to 19 the obtained material models are compareggeramental data. Presented
damping and dynamic shear-modulus are defined accordirguiation (1). The theoretical val-
ues, shown in the graphs, are calculated at the same angphnd frequency as the measured
values. Due to difficulties to obtain a specified strain atagk during the measurements, the
amplitude might fluctuate slightly from the specified strainplitude. This is seen in the model
curve as a deviation from the expected smooth curve.

For both the NR materials, there is a clear conflict betwe@napiate fit to dynamic modulus
and fit to damping. This is due to the fact that all tests werdezhout on unconditioned rubber
and the fact that the filled NR exhibited a lot of damage effethis effect is further discussed in
the next section.

For many of the materials it can be seen that the assumptiolependence between ampli-
tude and frequency behavior is not entirely true. For theadyio shear modulus this is observed
as a change in curvature, with respect to frequency, atrdifteamplitudes. If the assumption
was completely true, the frequency response of the dyname@ranodulus would have the same
shape for all amplitudes. Thus, it is impossible to get aquffit to the dynamic shear modulus
with the existing model.

The EPDM material and the two NR materials all behave similiih respect to damping.
(See figure 14, 7 and 8.) In contrast to the other materialmpétay does not increase mono-
tonically with increasing frequency. The frequency resoaf the damping seem to be highly
dependent on the strain amplitude. As seem in the figures/tesof behavior is hard to simulate
with the material model at hand. It is however possible to eiadoughly correct damping.
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Figure 7: Dynamic shear modulus (left) and damping (right)NiR60. Solid line: material
model. Dotted line: experimental dat&) : ko = 1%; < : ko =3%; O: kg ="7%; A
Ko = 12%.
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Figure 8: Dynamic shear modulus (left) and damping (right)NiR80. Solid line: material
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Ko = 12%.
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Figure 10: Dynamic shear modulus (left) and damping (righftHGSD78. Solid line: material
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Figure 11: Dynamic shear modulus (left) and damping (righftHGSD85. Solid line: material
model. Dotted line: experimental dat&) : ko = 1%; < : ko =3%; O: Kkg="7%; A:
Ko = 12%.

Dynamic modulus [MPa]

0 50 100 150 0 50 100 150
Frequency [Hz] Frequency [Hz]

Figure 12: Dynamic shear modulus (left) and damping (righftHNBR. Solid line: material

model. Dotted line: experimental dat&) : ko = 1%; < : ko =3%; 0O: ky=T7%; A:
Ko = 12%.
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Figure 15: Dynamic shear modulus (left) and damping (righftPur9180. Solid line: material
model. Dotted line: experimental dat&) : xo = 0.667%; <~/ : ko =2%; O: ko = 4%;
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Figure 17: Dynamic shear modulus (left) and damping (righftPur9290. Solid line: material
model. Dotted line: experimental dat&) : xo = 0.667%; <~/ : ko =2%; O: ko = 4%;
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Figure 18: Dynamic shear modulus (left) and damping (righttSamilll. Solid line: material
model. Dotted line: experimental datd) : xo = 0.667%; </ : ko =2%; O: ko = 4%;
A Ko = 6.7%.
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The four tested polyurethanes (figure 15-18) all exhibitlatreely low damping and low
amplitude dependence. The lack of amplitude dependenspécially obvious for the dynamic
modulus.
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Figure 19: Dynamic shear modulus (left) and damping (righit)Silicon. Solid line: material
model. Dotted line: experimental dat&) : ko = 1%; < : ko =3%; O: kg ="7%; A:
Ry = 12%.

6 Limitations of the viscoelastic-elastoplastic model

As previously mentioned this material model has two basitéitions. Firstly, it assumes inde-
pendence between frequency and amplitude. Secondly,strimténclude any damage effects.

As seen in section 5, the assumption of independence betmateand amplitude behavior
does not hold entirely for all materials. This is most clgaen in the dynamic shear modulus
for the two natural rubbers in figure 7a and 8a. Due to indepece between viscoelastic and
elastoplastic effects in the model, the modelled frequetependence will be the same for all
amplitudes.

The second limitation means that the model is best suitedademconditioned rubber or
rubber with negligible damage properties. For a rubber auittdamage effects the hysteresis
loops at constant frequency should fit inside each otherlfangplitudes, as seen for the HNBR
rubber. The opposite is seen for the NR60 material in figure 20

For a material with little or no damage effects, such as th&RM figure 21, the viscoelastic-
elastoplastic material model provides a good fit to expemtaledata. Although it is possible to
fit the material model to a conditioned rubber with damageat#f, it has to be remembered that
the obtained material model will then be fitted to a specifiel®ef damage. Thus, if used in a
finite element model it will only yield valid results if the #re component has reached the same
level of damage as previously obtained in the material tdstg an unconditioned rubber with
pronounced damage effects it is not possible to obtain a fjpofithe model to both damping
and shear modulus, as seen in figure 20. The dashed line tieslizaviscoelastic-elastoplastic
model able to simulate the dynamic modulus of unconditiddBdA model fitted like this would
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overestimate the damping severely. If the model, on therdthed, was to be fitted to obtain a
correct damping property, the fit to dynamic modulus woulgbber, especially when amplitude
dependence is considered.

By inspecting the hysteretic loops at the lowest frequendievas concluded that only the
two NR materials show significant damage effects.

7 Conclusion

Stationary dynamic shear tests were performed on 13 unidoneld rubbers. The tests were
conducted for frequencies up 180 H z and shear strain amplitudes up to 12%. These test data
make up a unigue material, which could be useful for othexaeshers.

For rubber exhibiting little or no damage effects, it waswhdow the investigated viscoelastic-
elastoplastic material model could be fitted to both freqyesnd amplitude dependence. For
rubber with a more pronounced damage behavior it was shaatwigroelastic-elastoplastic ma-
terial model alone was insufficient to model the dynamic ntasland damping. In order to model
these effects, a damage model would have to be included.

It is thus concluded that the viscoelastic-elastoplasttemal model is a suitable model for
conditioned rubber or rubber with little or no damage effect
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A.

Material parameters

NR60 NR80 Eco3575 HGSD78 HGSD85 HNBR Hyp72

Goo 1.65 3.84 2.31 2.32 4.52 3.94 2.48
GYe 0.133 0.436 0.424 0.536 1.21 0.991 0.800
G%° 0.128 1.15 2.19 0.673 1.38 0.762 1.19
Gy° - - - 0.0662 0.190 8.31 6.05

4e - - - 3.06 6.08 - -
tr1 0.0750 0.0244 0.00702 0.0629 0.0648 0.0105 0.0677
tro 0.00159 0.00148 0.000540 0.00548 0.00622 0.00399 0.00592
tr3 - - - 0.00520 0.00496 0.000528 0.000528
tra - - - 0.000447 0.000551 - -
GY* 4.01 14.2 5.94 0.648 0.875 7.15 4.94
G 0.641 1.83 0.542 0.0834 0.401 3.21 0.380
G - - - - - 0.701 -
Tyl 0.0287 0.0941 0.0321 0.00251 0.00423 0.0236 0.00254
Ty2 0.0221 0.0763 0.0266 0.00420 0.0119 0.0807 0.00934
Ty3 - - - - - 0.0493 -

EPDM Pur9180 Pur9190 Pur9290 Samilll Silicon

Goo 9.08 7.70 20.6 9.94 11.2 3.14
GYe 1.88 0.510 2.02 0.470 0.610 0.212
G%° 1.30 0.713 0.109 0.679 0.218 0.0214

e 3.55 0.904 2.22 1.16 1.25 0.786
Gye - 2.82 7.54 5.31 7.62 -
tr1 0.0816 0.830 0.0637 0.284 0.0715 0.0215
tro  0.00975 0.0588 0.00742 0.0401 0.0197 0.00725
tr-s 0.00130 0.00633 0.00488 0.00601 0.00521 0.00123
tra - 0.000583 0.000527 0.000504 0.000408 -
GP 10.1 1.30 3.16 0.560 0.865 4.56
G5¥ 1.49 0.649 4.30 0.494 0.641 0.548
G5 1.89 - - - - -
Tyl 0.0477  0.00499 0.0147 0.00252 0.00433 0.0266
Ty2 0.0303 0.0216 0.144 0.0163 0.0209 0.0182
T3 0.122 - - - - -

Table Al: Material parameters given in [MPa] except for given in [s].
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Finite Element Analysis of a Rubber
Bushing Considering Rate and
Amplitude Dependent Effects

Anders K Olsson, Per-Erik Austrell
Division of Structural Mechanics, Lund University, Sweden

ABSTRACT: A cylindrical bushing subjected to a stationguglic load is analysed with emphasis
on the amplitude and frequency dependent damping and madlihe material parameters were
determined from a dynamic shear test, in terms of a visctielatastoplastic model. Using an
overlay of finite element meshes, the material model wasimghted in a finite element model
of the cylindrical bushing and subjected to a radial cyclhadl. The calculated damping and
stiffness for the bushing were verified with measured data the actual bushing. Results show
that the viscoelastic-elastoplastic model can be madepeesent the amplitude and frequency
dependence seen in the two natural rubbers investigatedisnpaper. It is also seen that the
model, although fitted to a shear test, performs fairly wallef more general load case as well.

1 Background

The traditional way to develop new rubber components isutjinomanufacturing prototypes,

testing, modifying the prototype and more testing. Theitghib model the dynamic behaviour

of rubber components introduces advantages in terms otdsting and prototyping, resulting

in faster development times and reduced costs. The finiteeslemodel also provides a tool to

analyse local stresses and strains within the componentiora detailed way than can be done
in testing. Thus, providing the engineer with useful infation of how to optimise the geometry

of the component in order to make better use of the rubberriabsmd to increase the expected
life-time of the component.

It is a well-known fact that the dynamic properties of rubéaer dependent on both amplitude
and frequency. An increase in amplitude yields a decreas®itulus. This softening effect is
usually referred to as the Payne effect (Payne 1965, Warh@2). The frequency dependence
can be observed through an increase in modulus and dampimgfeasing frequency.
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The frequency dependence is usually modelled with a viastielmodel, whereas the Payne
effect can be described with an elastoplastic model. Aigythat there is no connection between
the amplitude and rate dependence, authors such as Sjobiéagi &2002), Miehe (2000) and
Austrell (1997) have coupled the viscoelastic and elassij models in parallel, adding the
stress contributions from each branch. This simplified apphh has shown good agreement with
measurements.

2 Methods

Austrell et al. (2001) presented a simple finite element oebthvith the capability to model the
amplitude and frequency dependent properties of filledeubd method to fit this material model
to experimental data was suggested by Olsson & Austrell{R0The purpose of this paper is
to evaluate these two methods by investigating the dynagtiaiour of a rubber bushing. Two
different grades of NR were investigated. For each of the nvederials one double shear test
specimen and one cylindrical rubber bushing were manufadtu

AAAA—]  elastic part

2 2
w viscoelastic part

/I oy [

L= AN =K
T 2
= = AMA| | elastoplastic par

Figure 1: A one dimensional symbolic interpretation of thetenial model.

For simple shear, the material model can be interpreted as-@limnensional symbolic model
as shown in Figure 1. The fundamental assumption of this iMagein the ability to model the
amplitude and frequency dependence as two separate baravithus, enabling the frequency
dependent viscoelastic branch to be coupled in paralléltivé amplitude dependent elastoplastic
branch. This parallel coupling is also the foundation ofdfierlay method suggested by Austrell
et al. (2001), which was used to create the finite element hppdeented in this paper.

The dynamic shear test was used to obtain the viscoeldasteplastic material model ac-
cording to Olsson & Austrell (2001). The non-linear elaftigndation of the model was obtained
through an extra quasi-static shear test. The material hvagkethen implemented in a finite el-
ement model using an overlay of finite element meshes asatisdby Austrell et al. (2001).
Measurements of the real bushing were used in order to véréfinite element model when
a harmonic radial load was applied. Hence, the material iedéted for simple shear, but
evaluated for a more general load case.
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3 Mechanical testing

The cylindrical bushings and the double shear test specmene tested in &chenk tensile
machine with a 7kN load cell. Tests were carried out by Langdstal at Volvo Car Corporation.

Since the mechanical properties of rubber are sensitivenpérature changes, it is important
that the experiments are carried out at a constant temperdimavoid heat build-up in the rubber
only a few cycles were performed at each frequency and amdglit

During the first load cycles most NR show a significant sofigrgffect, the so called Mullins
effect (Mullins 1969). To remove this softening effect fréhe measurements, the rubber com-
ponents were conditioned at an amplitude 10% higher thahigtest measured amplitude. Fur-
thermore, the tests were conducted starting with the higlregplitudes and finishing with the
lowest.

3.1 Materials

Two different carbon-black-filled natural rubbers wererakeed. Both grades had a hardness of
50 IRHD, which according to Lindley (1974) means they shcudge roughly the same shear
modulus. One grade is a low filled rubber commonly found iromdgtive applications, referred
to as material A in this paper. The other grade with slightlyrenfiller and higher damping is
referred to as material B in this paper. To achieve the samankas for both materials softener
was added to material B.

4 Shear test

For simple shear, the elastic part of the rubber behavialnisst linear at moderate strains. This
property is advantageous when characterizing the mateiae it makes it easier to isolate the
non-linear dynamic properties. For this reason the mafeai@meters were obtained solely from
the double shear test. The utilized, double shear testrspasi consist of three steel cylinders
connected with two circular rubber plates, as shown in FEdur

P

Figure 2: The double shear test specimen used in the evaluafithe material parameters.

The dynamic shear tests were performed as described im8e&ctiDynamic shear modulus
Gayn and damping! were measured at frequencies ranging from 0.1-50Hz anat shre&n am-
plitudes ranging from 1-50%. The dynamic shear modulus amping were defined according
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to U
U c
Gdyn = iv = (1)
Ro TTROTO
wherer, represents the stress amplitudg the strain amplitude ant, the hysteretic work per

unit volume and load cycle.

As suggested by Olsson & Austrell (2001) a good fit to dampmydynamic shear modulus
was sought through a minimization of the error functiogiven as

m 2 m 2

'(/)O[Z(dtd de.cpt) +(1O{)Z<GZG Gewpz) (2)
i=1 exrp, 1 i=1 exrp, 1

wherem is the number of measurements. The error function is sokgheddent on the material

parameters. Hence, minimizing this function yields thegégunaterial parameters. By choosing

the weight factory it is possible to decide whether to focus on a good fit of theadtyic modulus

or damping. This is further discussed by Olsson & AustrédQR).
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Figure 3: Dynamic shear modulus of material A at differemaiist amplitudes. Dashed line:
Measured data. Solid line: Model.

The models slight deviation from the expected smooth cusge Figure 3-6) is due to prob-
lems to keep a constant amplitude during the tests. Sincentigel is evaluated at the exact
amplitudes and frequencies as recorded in the test, théraacuracy of the amplitude will also
be reflected in the model curve. It should be noted that thetpgpment experienced difficulties
at the lowest amplitudes due to the very small displacenamtgorces. Hence, the result for the
lowest amplitudes might be somewhat unreliable.

The obtained material parameters are presented in Tablerthef increasing the number of
viscoelastic and elastoplastic contributions will givdigrs improvement of the model, best seen
in an improved fit of the dynamic shear modulus for low freqies. It was however decided that
this slight improvement was not worth the extra computati@nsts involved when implemented
in the finite element model.
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Figure 4: Damping of material A at different strain amplitesl Dashed line: Measured data.
Solid line: Model.
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Figure 5: Dynamic shear modulus of material B at differemaiist amplitudes. Dashed line:
Measured data. Solid line: Model.

4.1 Fit of non-linear elasticity

In order to capture the non-linear elastic characteristitsthe Yeoh-model (Yeoh 1990) a quasi
static shear test according to Figure 7 was performed. Tiee flarameters were then fitted with
a standard least square method (Austrell 1997).
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Figure 6: Damping of material B at different strain amplitesl Dashed line: Measured data.
Solid line: Model.

Table 1: Material parameters

Material A B

Go [MPa] 0.613 0.495
GY¢ [MPa] 0.0227 0.0108
Gy [MPa] 0.103 0.0457
GY¢ [MPa] - 0.152

tr1 [] 0.0110 0.00921
tro 8] 0.00105 0.00874
tr3  [8] - 0.000798
G’ [MPa] 0.291 1.31

G¥ [MPa] 0.128 0.316
G5" [MPa] 0.0626 0.130
Gy [MPa] - 0.0620
7,1 [MPa] 0.00247 0.00793
Ty2 [MPa] 0.00573 0.0121
Tys [MPa] 0.0132  0.0234
Tya |[MPa] - 0.0318
Ca0/C1o -0.0725 -0.124
Cs30/Cho 0.0153  0.0397

For simple shear the shear stress of the Yeoh-model is givarfanction of the shear strain
k according to

T = 201()/% + 402()/%3 —+ 603()%5 (3)

The ;o parameter governs the initial shear modullis)(= G/2), whereas th€'y; andCs
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Figure 7: Quasi-static shear test of material A. Dashed :lityperelastic Yeoh-model. Solid
line: Measured data (strain rate: 0.9%/s).

parameters govern the non-linear elastic response. Hémeesharacteristic non-linear shape
is determined by the ratioSy,/Cio and Cs/Cho and the overall modulus is set by tiig,
parameter. Since the principle non-linear elastic resp@ithought to be independent of dynamic
properties, the two ratios are kept unchanged and’'thgarameter is fitted to the dynamic shear
test along with the amplitude and rate dependent parameatediscussed in the next section.

5 Rubber bushing

Two bushings were examined, one of material A and one of nahtBr The rubber bushing
consists of one outer and one inner steel tube connecteduwtitier. Similar bushings are found
in modern automotive suspensions.

Dynamic stiffnessiq,,, and dampingly..; for the rubber bushing are defined in a similar

manner as for the shear test . W
0 hyst
Kdyn = yush = —=

ug

(4)

whereFy is the amplitude of the forcey the displacement amplitude amid,,.: the hysteretic
work per load cycle.

7TFOU0

5.1 FE-model

The FE-model was created #baqus with 8-node hybrid elements. Due to symmetry only one
fourth of the bushing had to be modelled, as seen in FigurenteSlbaqus does not provide a
viscoelastic-elastoplastic model, the FE-model was etkasing the overlay method. In this case
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Figure 8: The cylindric bushing and FE-model.

a viscoelastic finite element model was merged with threpes/ely four elastoplastic finite
element models, for material A and B.
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Figure 9: The FE-model subjected to a 3mm radial displacegmen

The viscoelastic branch was modelled with Prony-seriesdan a hyperelastic Yeoh-model.
It would be desirable to use the same hyperelastic Yeoh-hasda base for the elastoplastic
branch. But, this type of elastoplasticity is currently vaigable in Abaqus. Hence, the elasto-
plasticity has been modelled with several ideally elastsit hypoelastic models coupled in par-
allel in accordance with the overlay method.Abaqus/Standard this elastoplastic model could
also be achieved by a single model with piecewise kinematidéning.

A radial sinusoidal displacement was analyzed for diffefesguencies and amplitudes. The
deformed finite element model is shown in Figure 9. As can lee $e the Figure, the radial
load case introduces both tension and compression, assv&lear. The calculated damping and

stiffness are presented to the left in Figure 10-13.
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5.2 \Verification

The bushings were loaded in the radial direction as destiib&ection 3. Measured dynamic
stiffness and damping for the rubber bushing are shown taghein Figure 10-13. These results
should be compared to the predicted results, shown to thimlEfgure 10-13, obtained from the
finite element model.

When the FE-model is compared to the measurements it carebéted the dynamic stiffness
of the bushing is overestimated for both materials. Dampimg¢he other hand seems to be well
predicted for material B, but underestimated for material A

In an effort to keep the computational costs to a minimum aeratoarse finite element mesh
was used for the analysis. Tests with finer meshes show thatrédicted stiffness will drop
approximately 3% for a fine mesh, which partly explains theiateon between measured and
calculated stiffness. On the other hand, a finer mesh didffesitahe predicted damping.

The slight error in the finite element model might to some rixédso be explained by dif-
ferences in material properties of the double shear specand the rubber bushing. Although
the components were manufactured from the same batcht digyfiations in the manufactur-
ing process due to different geometries, might result ifedéit degrees of cross-linking during
vulcanization.

Given the above uncertainties, and also the fact that themahinodel did not fit the shear
test perfectly, the results are as good as could be expected.

5.3 Shape of hysteretic response

Although emphasis for the fitting procedure was on dynamiduhes and stiffness, it is also
important to obtain a correct shape for the hysteresis laoingd a load cycle. For a purely
viscoelastic material the hysteretic response will havellotic shape. Whereas a purely elasto-
plastic model will have a more parallelogram shaped respuaiith sharp corners.

The hysteretic response for the rubber bushing of materialdBown in Figure 14. Showing
both elastoplastic and viscoelastic effects, the obtaioep is a mixture of a parallelogram and
an ellipse. As expected from the dynamic stiffness presdntBigure 12, the hysteretic response
of the finite element model is slightly too stiff. Apart froimet deviation in stiffness, the shape of
the hysteresis loop from the model seems to be in good agréemith the measured response.

5.4 Mullins effect

During the tests it was observed that Mullins effect seenoeetover faster than anticipated.

However, no further measurements to verify this obsermatiere made. Since the mechanical
conditioning of the specimens were done only once, it idyikkat the measurements to some
extent were influenced by Mullins effect. To investigatsthibservation, a discontinuous damage
model (Miehe 1995) given by

—“Amax

T=7(l—d(l—€e" 7 ) (5)
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was added to the viscoelastic-elastoplastic model. Thmglastic-elastoplastic stress is referred
to asT andn andd,, are material parameters. This damage model is solely deptod the
highest strain energy;..., given by the hyperelastic Yeoh-model.

When fitted to the dynamic simple shear tests no significaptarements were seen. The
most noticeable change was a slightly improved modellintpefamplitude dependent dynamic
shear modulus. As already mentioned, similar improvemamii be obtained through the addi-
tion of more viscoelastic and elastoplastic contributioihsvas decided that the small improve-
ments were not worth the added complexity introduced by #reatje model. Hence no further
damage modelling were performed.

6 Summary and conclusions

The non-linear dynamic properties of two grades of low-dilleatural rubber were examined.
Measurements show that the dynamic shear modulus vary wéthl®0% (see Figure 5), in this
case mainly due to the amplitude dependence but frequesayklys a important role.

A viscoelastic-elastoplastic material model was fitted sinaple shear test and implemented
in a finite element model. It was shown that the obtained fieiegnent model could be used
to predict the dynamic properties of a cylindrical rubbesling subjected to a dynamic radial
load. When compared to measurements of the same bushingsit@ncluded that the finite
element model showed a principally correct rate and amjditdependence. Although not in
absolute agreement with experimental data, the result iseat gmprovement if compared to
results obtained with purely hyperelastic or viscoelastotels.
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Considering Amplitude Dependent
Effects During Cyclic Loads by an
Equivalent Viscoelastic Model

Anders K Olsson, Per-Erik Austrell, Géran Sandberg
Division of Structural Mechanics, Lund University, Sweden

ABSTRACT: Although it is well known that the dynamic prapsmf rubber depend on both fre-
guency and amplitude, there are no commercially availablgfielement codes that take account
of these effects. This paper outlines a simplified procetiuextend the usability of the com-
mercially available frequency dependent viscoelasti¢dialement models, to also take account
of the amplitude dependence. By first calculating the loadllat each element it is possible
to obtain an equivalent viscoelastic model for a cyclic lodgking this approach two different
frequency dependent models are treated; one frequencyramtroe domain viscoelastic model.
Both models are verified against experimental data with gesdlts.

1 Background and introduction

It has long been customary to model rubber with either hylpstie or viscoelastic material mod-
els. However, it is well known that the dynamic propertiesrabiber are dependent of both
amplitude and frequency. Considering a harmonic load, y#imauehic modulus of the rubber ma-
terial will increase if the frequency increase. Likewise,iacreasing amplitude will results in a
decreasing dynamic modulus. The importance and influentteesé two behaviours will depend
on the rubber material as well as the load ranges of the ptatiapplication.

Amplitude dependence s attributed to two different pheaoay the so called Mullins (Mullins
1969) effect and the Payne (Payne 1965) or Fletcher-Gestteffhe Mullins effect is seen as a
softening effect during the first load cycles. This softgnéffects is believed to be caused by the
breakdown of the filler structure and is usually thought cdiagreversible phenomena. However
when left unloaded for a couple of hours the material in tlaipgr was observed to regain much
of its virgin properties. The Payne effect on the other handdt dependent on the number of
load cycles or previous loads and is completely reversible.
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The Mullins effect will temporarily disappear if the mataris initially loaded at a higher
amplitude. The Payne effect on the other hand is not dep¢ndesrevious load cycles.

The aim of the suggested equivalent viscoelastic appraath imodel both frequency and
amplitude dependent effects. The basic idea is that, ewmgththe rubber material is not purely
viscoelastic, it is possible to create a suitable equivdtequency dependent viscoelastic model
for any given amplitude. Hence the choice of material patamdor this equivalent viscoelas-
tic model is governed by the strain amplitude. Using thisrapph, the model is restricted to
modelling stationary dynamic loads, for which an amplited® be determined. By a simpli-
fied engineering approach this method works well in conjionorith commercial finite element
codes, using the already available material models.

The combined frequency and amplitude dependent propeatiashber material have pre-
viously been modelled by coupling a viscoelastic materiatied in parallel to an elastoplastic
(Miehe 2000) (Austrell & Olsson 2001) forming a viscoelgdéstic model. By coupling the
two constitutive branches in parallel the frequency andlante dependence are assumed to be
independent of each other. No such assumption is needetidamtiidied equivalent viscoelas-
tic model. Unlike the viscoelastoplastic model the sugegstjuivalent viscoelastic model can
capture a coupled dependence between amplitude and frequemother interesting feature of
the equivalent viscoelastic model is that it makes no dititm between the Mullins or Payne
effect as they are both only treated as amplitude dependémcef the material tests of which
the model is based on contain Mullins effect, so will the mode

2 Measurements

Two different rubber components were used for this studye @ouble shear test specimen and
one cylindrical rubber bushing. Both components were meetufed using the same carbon black
filled natural rubber and subjected to sinusoidal loadsguainydraulic test rig. Fitting the model
only to the shear test and comparing the resulting finite efemmodel to the real bushing provides
a good verification of the model. The same two components wendously used to verify the
viscoelastic-elastoplastic model described in (Olssonuteell 2003) using an overlay method
(Austrell & Olsson 2001).

4 T

Figure 1: The double shear test specimen used in the evaluafithe material parameters.
To remove the influence of the Mullins effect in the measumsieboth components were
conditioned at a 10% higher displacement than the highestded amplitude. The tests were
then conducted starting at the highest amplitude and fimjsht the lowest. Both material and
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component tests were carried out by Lars Janerstal at VolwoG@rporation in Gothenburg,
Sweden.

2.1 Material test

The double shear test specimen as shown in figure 1, con§iiee steel cylinders connected

together with two thin rubber pieces. The purpose of the oabear test is to obtain a true

simple shear deformation. However finite element caloometiof the test specimen show that a
shear modulus obtained from this test has to be increasegbycént to yield the same values as
the ideal simple shear test, indicating that a perfect stnspkar load case is not obtained. This
deviation was accounted for when fitting the material modsé&d in the finite element model.
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Figure 2: Measured dynamic stiffness of the rubber material

Using a hydraulic test rig, the dynamic shear modulg,, and damping! were measured
at frequencies ranging from 0.1-50Hz and shear strain amagls ranging from 1-50%. The
dynamic shear modulus and damping as seen in figure 2 and 3le#mned according to

70

, Ue
Gayn = P d=sin(d) = prm— Q)

wherer, represents the stress amplitudg,the strain amplitudej the phase angle arld. the
hysteretic work per unit volume and load cycle.

Both material models presented in this paper were basecdeatytiamic shear data presented
in figure 2 and 3.

2.2 Radially loaded bushing

A cylindrical rubber bushing as seen in figure 4 was subjetdealsinusoidal load in the radial
direction. The rubber bushing consists of one outer and pneristeel tube connected with
rubber. Similar bushings are found in the flexible joints afsnmodern car suspensions.
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Figure 3: Measured damping of the rubber material.

Figure 4: The cylindric bushing and FE-model. Dimensions given in mm.

Dynamic stiffnessq,,, and dampingl,,s; for the rubber bushing are defined in a similar
manner as for the shear test

F 5
Kdyn = _0; dbush = —7 (2)
Ug

whereFy is the amplitude of the forcey, the displacement amplitude amid,,.: the hysteretic
work per load cycle. The dynamic stiffness and damping wesasuared at frequencies ranging
from 1-50Hz and amplitudes ranging from 0.20-3.0mm. Experital data from the bushing are
presented in figure 5 and 6. This data was only used for theoganpf verifying the finite element
models.
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Figure 5: Measured dynamic stiffness of the rubber bushing.
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Figure 6: Measured damping of the rubber bushing.

3 Equivalent viscoelasticity

Two different equivalent viscoelastic models are preskintehis paper. The first model is based
on time domain viscoelasticity and the second on frequennyain viscoelasticity. The basic idea
of both models is that the material can be modelled as puistpelastic for a given amplitude.

l.e. each different amplitude will give rise to a unique wislastic model. Considering a finite
element analysis, for every element the equivalent sheainsimplitude has to be determined
so that an appropriate viscoelastic model can be assigneacto element. Therefore the finite
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element analysis is carried out in four steps:

e An initial displacement controlled elastic FE-analysigperformed using a hyperelastic
material model.

e The output file is read and the equivalent shear strain andgiis calculated for each
element with equation 4.

e Based on the obtained amplitudes each element is assigraggpeopriate viscoelastic ma-
terial model.

¢ A new input-file is then created and executed with the newvadgt viscoelastic material
models assigned to each element.

In case of a load controlled analysis the above procedudsrtede repeated to find an appropri-
ate elastic modulus for the initial finite element model tsume that the elastic and viscoelastic
model yield the same global displacements.

In this paper the elastic analysis of the first step was peréorwith a Neo-Hooke hyperelastic
model with the strain energy potent®l = Cio(I; — 3). For a simple shear load case the first
strain invariant isl; = x? 4+ 3. For a general load case an equivalent shear strajrcan be
calculated from the strain energy amplitudg according to:

i
Cho

Keq (3)
l.e. the simple shear load case and the general load caserapared by putting their elastic
strain energy equal.

It should be clear that even though the equivalent visctielamdels can be made to yield a
correct dynamic modulus and damping, their response toradrac load will be slightly different
considering the shape of the hysteretic loop. Whereas tlzsuned hysteretic loop may in some
cases be asymmetric with sharp corners, the equivalentelestic loop will always be more
ellipsoidal with rounded corners.

An attempt to further improve the accuracy of the equivaléstoelastic procedure was made
by computing the the equivalent strain amplitude using enafive scheme for which the equiva-
lent strain amplitude was updated each step. Although thizedjbehavior converged within the
first iteration the element stresses did not fully convergethis iterative scheme was abandoned.

4 Equivalent time domain viscoelasticity

The time domain viscoelastic model #baqus is based on a Prony-series approach. The one-
dimensional mechanical analog representation of this insdkistrated in figure 7.

For each measured strain amplitude a time-domain visdoelasaterial model as seen in
figure 7 was fitted. Thus, an individual set of material parn@mseexists for each measured am-
plitude. The behavior of this time-domain viscoelastic mddr simple shear is shown in figure
8 and 9.
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Figure 8: Simulated dynamic modulus using the equivalemt tiomain viscoelastic model.

Comparing the time-domain viscoelastic model with the aess data in figure 2 and 3 for
simple shear it is seen that there is a good agreement betiveénwo. The chosen viscoelastic
model imposes a relation between the damping and the dymaadalus. In short, a high deriva-
tive of the dynamic modulus with respect to frequency yidlidgh damping. In reality damping
is only partly caused by viscoelastic effects. Modelling &mtire damping as purely viscoelastic
leads to an overestimation of the viscoelastic part of theplag and hence also an overestima-
tion of the derivative of the dynamic modulus with respecfremuency. This effect is clearly
visible for the time-domain equivalent viscoelastic model

4.1 Finite element model

The finite element analysis is performed in four steps asigusly described. For the time do-
main viscoelastic model the fitted material parameters aevalid at the measured amplitudes.
For all other amplitudes the material parameters are oy linear interpolating between the
existing sets of material parameters. Choosing the rataxéimest,. the same for all sets of pa-
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Figure 9: Simulated material damping using the equivaleanetdomain viscoelastic model.

rameters will simplify this interpolation. For amplitudestside the measured amplitude range,
the material parameters are set equal to those of the neagasured amplitude. A finite element
model of the cylindric bushing in figure 4 was created and éolwith a sinusoidal load in the
radial direction. Calculated stiffness and damping of thghiing is shown in figure 10 and 11.

The finite element analyzes were performedimqus/Implicit using the hyperelastic large
strain viscoelastic material model which is based on Prenyes. Eight-node hybrid formulation
brick elements were used to model the rubber material anstéet was modelled as rigid.

x 10
16+ /74#»//“?’/’4747/747 b
v//ﬂ/' L ----4
14 7 P -
I O R SR
€ 12,797 o -B-- - CETTT - -
2 g:/;i’:g*"’5’7
8 1017 1
f=
=
» 8r b
Q
% 6 —v—uO:O.ZOmmf
Oi 7A7u0=0.50mm
4r -<-u,=0.80mm)|]
ol —>7u0=1.5mm |
—s-u_=3.0mm
0
0 L L L L
0 10 20 30 40 50

Frequency [Hz]

Figure 10: Simulated dynamic stiffness for the rubber boghising the equivalent time domain
viscoelastic FE-model.
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Figure 11: Simulated damping for the rubber bushing usireggfuivalent time domain viscoelas-
tic FE-model.

5 Equivalent frequency domain viscoelasticity

Considering a steady state stationary dynamic analysidythemic modulus and damping can be
described in terms of a complex modulus. In this analysisithration is treated as a perturbation
around an elastically predeformed state. Thus the equatiescribing the stationary load case
is reduced to a linear system of complex equations. Thislyialvery fast solution compared to
a time domain viscoelastic model which must be solved thindirge-stepping. Indbaqus the
frequency dependent complex modulus is given in tabulan &rch as recorded from a frequency
sweep. Thus there is no fitting of material parameters ferritodel.

For the equivalent frequency domain viscoelastic modefrbguency dependence is deter-
mined from the amplitude obtained from the initial hypes@itamodel.

5.1 Finite element model

The cylindrical bushing was analyzed using the equivaletfifency domain viscoelastic model.
Since the frequency dependence was only measured at fivétaohesl for the the double shear
specimen, the material parameters for all other amplitadesbtained by linear interpolation of
the measured data. For amplitudes outside the measuredwataphinge, the frequency depen-
dent material data are set equal to those of the nearest redasuplitude.

Simulated stiffness and damping of the cylindric bushirg @resented in figure 12 and 13,
which should be compared to the corresponding measureingigsire 5 and 6. The bushing is
loaded in the radial direction.

As previously, the finite element analyzes were performedltisgus/Implicit using eight-
node hybrid formulation brick elements to model the rubbaterial. The used material model
allows for a large strain hyperelastic initial static lo@$e from which the small strain steady state
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Figure 12: Simulated dynamic stiffness for the rubber boghising the equivalent frequency
domain viscoelastic FE-model.
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Figure 13: Simulated damping for the rubber bushing using dguivalent frequency domain
viscoelastic FE-model.

analysis is performed using a frequency dependent compdeluhas given in a tabular manner.
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6 Result discussion

As seen in figure 10-13, both FE-models show the same behavibe real bushing presented in
figure 5 and 6. Yielding almost identical result both modelsrestimates the dynamic stiffness
of the bushing and underestimates the damping.

The overestimation of dynamic stiffness is partly due toidyfaourse finite element mesh as
seen in figure 4. Calculations with finer meshes show thattifiieess can be reduced by at least
6%, whereas the damping is hardly affected at all by a finehmes

During manufacturing the bushing is vulcanized at an etVa¢mperature at which it re-
ceives its elastic properties. Thus at room temperature thi#l be residual stresses in the rubber
material of the bushing. This pre stressed state is notdecdin the analysis shown in figures 10
to 13. In order to get an estimate of the influence of the rediduiesses an initial temperature
load was added to the equivalent frequency domain viscielasdel. Assuming a temperature
coefficient 0f220 - 107¢/ K a 120K temperature drop was modelled prior to the steady state dy-
namic analysis. Comparing figure 14 and 15 with figure 12 andti8 seen that the residual
thermal stresses will lower the dynamic stiffness by roy@@% and increase the damping with
the same percentage, thus explaining much of the deviatiemis the finite element models.
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Figure 14: Simulated dynamic stiffness for the rubber boghising the equivalent frequency
domain viscoelastic FE-model, taking account for the tenapee drop after vulcanization.

A parameter which was shown not to influence the result istingaer of different viscoelastic
material models used in the equivalent viscoelastic finikenent model. A general approach
would be to use one material model for each element. Howeyeising the same viscoelastic
model for several elements with approximately the saménstraplitudes the number of material
models needed can be greatly reduced. For the finite elemedelnm this paper, containing
1620 elements, using 20 material models only altered thétieg stiffness with less than 0.1%
in comparison to using one material model for each element.

Comparing the results of the two equivalent finite elementat® with the results of the
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Figure 15: Simulated damping for the rubber bushing using dlguivalent frequency domain
viscoelastic FE-model, taking account for the temperativop after vulcanization.

viscoelastoplastic model presented in (Austrell & Olss601) it can be seen that the results
are very similar. The major difference seem to be that dévizaf the dynamic modulus with
respect to frequency is slightly exaggerated in the time alonaiscoelastic model and slightly
underestimated in the viscoelastoplastic model, wheteasdmplex viscoelastic model is the
most accurate in this respect. The reasons for this is leeliey be that complex model do not
use any analytical mathematic expression to describe ¢uygiéncy and amplitude dependence.
It simply interpolates in the measured material data.

7 Conclusions

The time domain and the frequency domain equivalent visstiel models yield almost iden-

tical results. It is also noted that the two models yield veiyilar results as the viscoelastic-
elastoplastic model studied in (Olsson & Austrell 2003).1 thkee models overestimates the
stiffness and underestimates the damping. This deviaaonbe explained by the fact that the
initial temperature loads were left out and that a ratheghoiinite element mesh was chosen.
Identical finite element meshes were used in all three models

The frequency domain model will fit exactly to experimentatadand will be very compu-
tationally efficient since it will linearize the system ofwegions. In linearizing the system, the
model will be restricted to smaller amplitudes and sinuabigad cases.

The time domain model will not be as computationally effitian the frequency domain
model but more efficient than the viscoelastic-elastojaasbdel studied in (Olsson & Austrell
2003). Compared to the frequency domain model the time dowiacoelastic model is better
suited for larger deformations also including contacthAligh it will only handle cyclic loads it
is not restricted to purely sinusoidal loads.
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It is thus concluded that the two equivalent viscoelasticlet® was shown to have different
advantages and restrictions. Both models were shown to wellkwhen modelling the harmon-
ically loaded cylindrical bushing in this paper.
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Appendix: Material Parameters

Table 1: Material parameters for the time domain viscoetastodel.

| ko | Goo[IMPa] [ G*°[MPa] | t.[s] |
0.0125] 0.8239 0.0882 1.20
0.0772 0.115
0.0400 | 0.029
0.1067 0.011
0.3587 | 0.0010
0.0254| 0.6688 0.1043 1.20
0.0790 | 0.115
0.0436 | 0.029
0.1042 0.011
0.3774 | 0.0010
0.0635| 0.5826 0.0886 1.20
0.0832 0.115
0.0312 0.029
0.0960 | 0.011
0.3314 | 0.0010
0.126 0.5547 0.0755 1.20
0.0672 0.115
0.0261 0.029
0.0807 0.011
0.2750 | 0.0010
0.250 0.5334 0.0609 1.20
0.0527 0.115
0.0198 | 0.029
0.0686 | 0.011
0.2182 | 0.0010
0.625 0.4804 0.0448 1.20
0.0400 | 0.115
0.0115 | 0.029
0.0603 | 0.011
0.1466 | 0.0010
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Modelling the Dynamic Properties of
Rubber in Rolling Contact

Anders K Olsson, Per-Erik Austrell
Division of Structural Mechanics, Lund University, Sweden

ABSTRACT: For rubber in rolling contact many different asjgeof rubber properties come into
play. The dynamic response of rubber is dependent of bothitacgand frequency. Modelling
the amplitude and frequency dependent effects is an impostap in understanding how load,
rolling speed and geometry will affect the rolling behavidithis paper studies two different finite
element procedures to include amplitude and frequencyrdigre effects in conjunction with
rolling contact. It is shown how the non-linear dynamic cheteristics of the rubber material
influences the rolling contact. Analyzed examples incladleng on a flat surface and rolling

over a groove.

1 Introduction

Rubber in rolling contact is found in many different apptioas and is not only of interest to the

tire industry, but also to the processing industry. In papanufacturing and similar processes,
understanding rubber covered rollers is vital to improvaliy and production capacity. The

ability to analyze the rolling contact of rubber offers a moful tool for a better understanding

of how material characteristics in combination with rollsign variables influence the contact
properties such as pressure gradient and contact widtlditibraally, analyzes treat the rubber
cover as elastic, however most rubber materials also ebdnifyplitude and frequency dependent
properties that contribute to the above contact properties

The purpose of this paper is twofold. The first is to examine different methods of incor-
porating amplitude dependent effects into finite elemerdetsof rubber in rolling contact. The
second purpose is to highlight some important aspects ofinear material characteristics in
general and amplitude dependence in particular when gotiantact is studied.

For a harmonic load, the amplitude dependence can be seeleasease in dynamic modulus
for increasing amplitude. For an increasing amplitude tamping will at first increase until a
maximum is reached after which further increased ampliwileresult in decreased damping.

109



Partly depending on the application and partly on the spexifiber properties, the amplitude
dependent effects are in many cases far more pronounceththaate or frequency dependence
(Olsson & Austrell 2001). This is especially obvious for Aggtions with moderate amplitudes
and low to moderate frequencies, as well as for rubber witlyl proportion of filler particles.
For very low or very high strain amplitudes these effectsusally of less interest.

Various finite element models for dealing with the non-étasffects of rubber in rolling
contact have previously been presented. A model introdudmllins effect in terms of a damage
formulation have been treated by (Kaliske & Domscheit 20i1id showed important influence
on the shape of the contact surface after the initial reiaigt A non-linear viscoelastic approach
(Akutagawa et al. 2003) was used to determine rolling rasc# caused by amplitude dependent
effects.

This paper studies two different methods to account for doetbamplitude and frequency
dependence in a rolling contact finite element analysis. firfsemethod uses an elastoplastic-
viscoelastic model previously presented in (Austrell &%ois 2001) and the second is based on
an approximate time-domain viscoelastic model presemté@lsson et al. 2006). Both methods
are based on simple engineering approaches and utilize eacralty available finite element
codes, keeping the added complexity to a minimum.

1.1 Material data

The material models of this paper have been fitted to measmisrobtained from a double shear
test specimen of @8 ShoreAHHNBR (hydrogenated acrylonitrile butadiene) rubber froralle-
borg. For the measured amplitude and frequency range, trBRHNbber exhibit equally pro-
nounced amplitude and frequency dependence. The magsigktave previously been presented
in (Olsson & Austrell 2001). The test specimen was subjetdeaisinusoidal load and dynamic
shear modulus and damping were measured. The frequenogddiram 5 to 180Hz and the
shear strain amplitude ranged from 1 to 12%. The measuree istrould ideally cover the loads
experienced in the roller in terms of frequencies and saaiplitudes. This is further studied in
later sections.

2 Rubber covered rollers

From an industrial point of view, rubber covered rollersafrgreat importance in many industrial
applications. From a scientific perspective the simple ggomand loading of rubber covered
rollers make them ideal to study the dynamic effects of rulpheterial during rolling.

Depending on what industrial application or process thkerad found in, different contact
parameters are important. Contact parameters such astaidéh, maximum pressure, pressure
gradient and surface strains are all governed by materigesties and design variables such as
rubber thickness, roller radius, applied load and rollietpeity, as seen in figure 1. In general
the design variables are simple to control but are hard teetade to what is happening in the the
contact region. The contact parameters on the other harghaier to correlate to the process but
harder to control. Hence, a good model describing the ozialiip between contact parameters
and design variables is the key to control the process.
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Figure 1: Rubber covered roller, design variables and cahtzarameters.

3 Elastoplastic-viscoelastic model

This section offers a brief introduction of the elastoptasiscoelastic model. A more thorough
presentation is found in (Austrell & Olsson 2001). The elpistic-viscoelastic model is based
on the assumption that the amplitude dependence and theefieg dependence can be treated
as independent of each other. This approximation makes#iple to model the combined mate-
rial behaviour with two parallel constitutive brancheseascoelastic branch to account for the
frequency dependence and one elastoplastic to accouttd@mplitude dependence. The total
stress tensor is thus given as the sum of the elastoplastizistoelastic stress tensors:

Otot = Oplast + Ovisco (1)

This summation of stress tensors can be achieved by oveglayviscoelastic finite element
mesh with an elastoplastic finite element mesh.

The rubber was modelled with 4-node quad elements with etlintegration. Due to the
history dependent nature of the plastic part of the modelstbady state rolling analysis was car-
ried out by time stepping. Since the size of the time stepsigicted by the contact simulation an
explicit time-stepping scheme was chosen. The analysicamed out inAbaqus/Expliciusing
a large strain viscoelastic material model in combinatidth & kinematic hardening elastoplastic
model. SincéAbaqus/Explicitoes not contain kinematic hardening a piece wise lineatemang
elastoplastic model was created by overlaying severalljdelastoplastic models.

The viscoelastic part was modelled with a large strain \dtastic model based on Neo-
Hookean hyperelasticity and a viscous behaviour definedrimg of a Prony series. The ma-
terial parameters for the HNBR rubber are found in (Olssonwtéell 2001). In figure 2 and 3
the elastoplastic-viscoelastic model is compared to nredsiata. The presented dynamic shear

111



modulusG,, and damping! are defined according to:
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wherery is the shear stress amplitudg, is the shear strain amplitude abd is the energy loss
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Figure 2: Dynamic shear modulus of HNBR rubber. Solid linxsstoplastic-viscoelastic model.
Dotted line: experimental datal) : ko = 1%; O : ko = 3%; O : ko = T%; V : ko = 12%.

4 Equivalent viscoelastic model

The equivalent viscoelastic model is limited to model pe&igdoads. The requirement for the
load to be be periodic is due to the need to in advance estithatmaximum load level during
a load cycle. The model is based on the approximation tha farown strain amplitude it is
possible to model the rubber as purely viscoelastic. Algiaihe rolling contact will not give rise
to a harmonic load it will result in a periodic load when rodliover a smooth surface. Hence,
when modelling rolling contact the equivalent viscoelastiodel is restricted to constant speed
and a smooth surface.

Considering steady state rolling, a material point will espnce the same maximum strain
amplitude at every revolution. l.e. for a given roller andvaeg compression, the strain amplitude
at the material level is only related to the distance to thdbeun surface of the individual material
point. This means that for every amplitude a correspondihgfsviscoelastic material parameters
has to be created. Since the strain amplitude for the ruldzged roller is only dependent on the
radial coordinate, each tangential layer of elements veillehan individual viscoelastic material
model. The analysis is carried out in two steps.

112



OO 50 100 150
Frequency [Hz]

Figure 3: Damping of HNBR rubber. Solid line: elastoplastiscoelastic model. Dotted line:
experimental data) : ko = 1%; O : ko = 3%; O : ko = 7%; V : ko = 12%.

e First an equivalent shear strain amplitude for each elefageat is calculated from an initial
elastic analysis.

e Based on the equivalent shear strain amplitude each eldmgartis given an individual
viscoelastic model in the following analysis.

A more detailed presentation of the equivalent viscoalastidel can be found in (Olsson et.
al 2006).

Since rolling contact results in a non-harmonic load, it @ possible to use a frequency
domain viscoelastic model. Instead a time-domain visatielanodel must be used. This was
done with a large strain viscoelastic model based on Nedketmo hyperelasticity and with the
viscous part given in terms of a Prony seriesAhugus the steady state rolling was modelled with
a mixed Lagrangian/Eulerian formulation. In this formidatthe rubber material flows through
the static deformed finite element mesh. This approach niakesne-domain viscoelastic model
very efficient for steady state rolling. The rubber was migdilith 4-node quad elements with
a hybrid formulation suitable for incompressible or almiasbmpressible materials.

The behaviour of the equivalent time-domain viscoelastadeh with respect to dynamic
shear modulus and damping is shown in figure 4 and 5 resplyctizach curve represents one
amplitude.

5 Rolling over a smooth surface

In the this section a rubber coated roller is studied wheimgpbver a flat surface. First the load
conditions at material level is studied using an elasti¢diriement model. Secondly, using the
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Figure 4: Dynamic shear modulus of HNBR rubber. Solid linquigalent viscoelastic model.
Dotted line: experimental dat&l) : ko = 1%; v : ko = 3%; O : ko = 7T%; A : ko = 12%.
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Figure 5: Damping of HNBR rubber. Solid line: Equivalentaggelastic model. Dotted line:
experimental datal) : ko = 1%; v : kg = 3%; O : ko = 7%; A : ko = 12%.

example, the two previously discussed material models sed to analyze the influence of the
dynamic material properties.

The geometry of the roller is given in figure 6. The rollingaty is 10m/s and the com-
pressive displacement of the rollerssmm. The roller is modelled as a long rigid cylinder
coated with a thin layer of rubber. For the initial elasti@bsis the velocity can be neglected as
the rubber is elastic and the speed is not high enough tatiasany sizeable inertia forces.
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Figure 6: Analyzed rubber coated roller.

5.1 Load conditions at material level

A simple elastic static finite element model of the previgud#scribed roller was analyzed in
order to study the loads experienced by the rubber mateauidhgl rolling. The aim is to serve
as a verification of the chosen load range for the materitd seswell as to gain an initial under-
standing of the basic mechanics involved.

Since the roller is long in the axial direction, two-dimemsal constant strain conditions are
applicable. As the rubber coating is much softer than theristeel cylinder and flat surface, both
cylinder and surface is treated as rigid. Hence only the euisbtreated as a flexible body. The
friction between the roller and flat surface is neglecteds however easy to include friction if
needed.

As the material parameters are derived from a harmonic mbtest it is important to choose
frequency and strain amplitude ranges for the test thaesponds well to the load of the roller.
In order to analyze the frequencies experienced by the rublbiee contact region during rolling,
a purely elastic analysis was made and the equivalent straar according to equation 4 was
derived from the strain energy amplitutd and the hyperelastic Neo-Hooke paramétey.

Wo

Cro (4)

Req =

The strain pulse during one revolution for an element at théase of the rubber coating
is shown in figure 7. For the example analyzed in this papemtbgimum strain amplitude
experienced by the rubber is not reached at the surface astexp Instead the maximum occurs
at approximately one third of the rubber thickness meadinoedthe surface and in. The two dips
in the curve at either side of the largest pulse marks thénaulf the contact surface. Outside the
contact area the rubber will bulge outward due to its incaragive nature.

The corresponding fast Fourier transform of the time sig;mahown in figure 8. As seen in
this frequency plot there are two major frequency contidng atl0 H z and140 H z respectively.
These frequencies are important for deciding the freq@stfor the material tests.
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Figure 7: Equivalent shear strain pulse for one element atgarface during one revolution.
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Figure 8: Frequency spectrum for an element at the rubbefesar.

A simple approximation of the dominant frequency of the pulan be made by approximating
the pressure distribution with half a sine wave. Thus, fasllng speedv and a contact widthl
the dominant frequency of the pulse can be obtained acaptdin

v
f=a (5)

For the roller analyzed in figure 7 and 8 the approximate damtifrequency id67H z which is
in fairly good agreement with the second peak of the cornedjpg Fourier transform. The first
peak is related to the revolution speed and can be descriitied w

f=

(%

2rR

(6)
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which for this example yield8 H z, also in fairly good agreement with the Fourier transform
analysis.

As mentioned earlier the material test covered a frequeswoge from 5 tol80H z and am-
plitudes from 1 to 12%. From the calculated loads in figured &nit is seen that the measured
range correspond well to the loads experienced by the roller

5.2 Comparison of material models

For comparison both the viscoelastic-elastoplastic aedetijuivalent viscoelastic as described
earlier were used to analyze the a rubber covered rollerlimgocontact with a flat smooth
surface. The geometry and the load is identical to the examipbection 5.1. As mentioned
previously the viscoelastic-elastoplastic model wasya®a through an explicit time integration
and the equivalent viscoelastic-elastoplastic model wasyaed by an implicit solver using the
steady state transport formulation.

The contact pressures from both the equivalent viscoelastl the viscoelastic-elastoplastic
finite element model are shown in figure 9. Both models showlggweement with each other.
Unfortunately it was not possible to obtain any experimihdita to compare with, but the agree-
ment between the two separate models suggests that theisesliable.

Contact pressure [Pa]

0 0.005 0.01 0.015 0.02 0.025 0.03
Contact surface [m]

Figure 9: Contact pressure when rolling over a flat surfacatted line: Overlay method; Solid
line: Equivalent viscoelastic method.

The asymmetric shape of the pressure distribution can Haierg by the non-elastic proper-
ties of the rubber material. At the first phase of the contafase the rubber material is loaded
until it reaches the maximum contact pressure after whightuinloaded. Similar to a cyclic ma-
terial test, the contact pressure response when unloadihdewiate from the load curve. This
behaviour is caused by damping and will result in a loss @fistenergy. Thus, the asymmetric
shape of the contact pressure is a result of the material id@mphe asymmetric pressure re-
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sults in an increased initial pressure gradient which camemeficial for some applications where
fluids need to be driven away from the contact area.

In this case the deformation is mainly controlled by the priéged displacement. l.e. the
contact width is governed by the prescribed displacemeahtsamardly influenced by the dynamic
modulus. Hence, decreasing the rolling speed and thus atseaking the dynamic modulus will
not alter the contact width. Instead the softer responskeofubber will give a lower maximum
pressure and thus a lower contact force. Decreasing thiegslbeed for aload controlled roller on
the other hand would resultin an increased contact widthifauslalso a lower maximum pressure.
Understanding and controlling these phenomenons is witalany industrial applications.

6 Rolling over a non-smooth surface

In this section a rubber covered roller is studied to see hifferdnt material properties will
influence the contact prpoerties. The radius of the rolldr7iSmmthe thickness of the rubber
layer is Inmand the compressive load isiBW/m

6.1 Fictive materials

As was seen in figure 9 both the equivalent viscoelastic aastaplastic-viscoelastic model will
give the same pressure distribution rolling over a flat sigfalrying different material models
indicated that the pressure distribution was not affectethb material characteristics. The pres-
sure distribution over the contact area was the same ircégpéf the rubber were modelled as
elastoplastic or viscoelastic.
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Figure 10: Contact pressure when rolling over a flat surfasing fictive material model):
Elastic model;y: Elastoplastic model/\: Viscoelastic model.
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To further prove this point two fictive materials were dedyene purely viscoelastic and one
purely elastoplastic. Both material models were fitted tileix a constant damping ef = 0.35
for a frequency range of 5 to 188z and a shear strain amplitude range of 1 to 12%. This re-
sulted in an amplitude dependent modulus for the elastiipla®del and a frequency dependent
modulus for the viscoelastic model with the same damping.

When rolled over a flat surface both models gave the same stidipe contact pressure dis-
tribution, only differing in the maximum pressure. Througgme trial and error simulations the
modulus of both material models were chosen so both modeéstha same maximum pressure
when running over a flat surface. When fitting the materiaapeaters this way the elastoplastic
and the viscoelastic model will yield the same result in ®iwh contact width and maximum
contact pressure for the chosen roller geometry and load.

Figure 10 show the contact pressure as both models aregallin speed of ¥f/sover the
flat surface. A purely hyperelastic model is also shown adesernce. For a given geometry and
load, the maximum contact pressure and contact width islgngiven by the dynamic modulus.

In figure 10 it can also be noted that the two models exhibitséiie asymmetric pressure
distribution. The asymmetric shape is caused by the matiaping. The material damping
can be regarded as a dimensionless measure of the diffdsetweeen loading and unloading. In
this case, the equal plastic and viscous damping will gieestime asymmetric distortion. l.e. the
asymmetry of the contact pressure is governed by the amédataping regardless of what phe-
nomenon is causing the damping. Both material damping ayndragtric pressure distribution
is a result of the difference between the loading and unt@adirve of the material. Compared
to the contact pressure in figure 9 the contact pressure irefib@ show less asymmetry. This
is explained by the thinner rubber coat of the latter roll@ick will result in a more volumetric
load.

6.2 Shallow groove

Using the previously derived fictive material the same rollas studied when rolling over a
shallow groove. The groove isrimwide and 0.&mdeep with the same length as the roller and
situated in the axial direction of the roller.

As seen from figure 11 to 13, the elastic and viscoelastic tr&ftmv similar deformations
whereas the elastoplastic model better adapts to the sliape groove. Unlike the other two
models the elastoplastic model incorporates amplitudemidggnce. Since the dynamic modu-
lus of the amplitude dependent material will decrease fdanareasing in amplitude, the highly
strained areas of the roller close to the hole will behavefhreanner if modelled by the elasto-
plastic model. Although the viscoelastic and elastoptastidels give the same result when rolled
over a flat surface, it can be concluded that including thelitmcie dependence, as done in the
elastoplastic model, will result in a softer and more defalte contact region. Hence, a correct
model of the amplitude dependence is important when madgethie rolling contact of a rough
surface. Another implication of this result is that when asth contact between the surface and
the rubber is desirable, it may be wise to choose a rubbempaithounced amplitude dependence.
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Figure 11: Element deformation when running over a smalbgmusing an elastic finite element
model.

Figure 12: Element deformation when running over a smallogmusing an viscoelastic finite
element model.

7 Summary

The topic of this paper is finite element modelling of rubbarared rollers. Two different meth-

ods to include frequency and amplitude dependence areestudie viscoelastic-elastoplastic
model and one equivalent viscoelastic model. Both modelside both rate and amplitude de-
pendent properties. It was shown that both models gave the sasults, suggesting that the
contact pressure when rolling over a flat surface is mainkegeed by dynamic modulus and
damping and is not dependent on how the damping is modelled.

For the equivalent viscoelastic model the mixed Euleriagfiangian formulation as supplied
by Abagusin combination with the equivalent viscoelastic model éhiates the need for time
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Figure 13: Element deformation when running over a smalbgmusing an elastoplastic finite
element model.

stepping during steady state rolling and is a very effici@htitton. This model is however re-
stricted to periodic loads, which for rolling contact triates to constant velocity and smooth
surfaces.

The viscoelastic-elastoplastic model was used in comioimatith Abaqus/Explicitas the
small time steps needed for the contact simulation, fits thallgime steps needed for conver-
gence in an explicit scheme. This model differs from the egjent viscoelastic in the ability to
model rolling over a arbitrary surface and at varying velesi

The model was used to analyze a roller rolling over a smalbggon a flat surface. For this
load case the steady state rolling approach is not validexgriove will not come into contact
with the same material point at every revolution. When cornmgaviscous and plastic damping
mechanics, it was seen that amplitude dependent rubbdtegdumuch softer behaviour of the
high strain regions of the rubber surface. This local safgeffect will make the rubber deform
more easily and better adapt to the geometry of the groove.
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Al Notation

The following symbols are used in this thesis:

G
Gdyn
Gezp
Gr

shear modulus

dynamic shear modulus

measured dynamic shear modulus
relaxation shear modulus

long term shear modulus

instant shear modulus

relaxation time

shear stress

shear stress amplitude

yielding shear stress

stress tensor

shear strain

shear strain amplitude

yield shear strain

damping

measured damping

component damping

phase angle

dissipated energy per volume for a closed hysteresis loop
highest strain energy

dissipated energy for a closed hysteresis loop
viscosity coefficient

displacement

weight factor

error function

angular frequency

thickness

number of elastoplastic components
number of viscoelastic components
number of measurements
displacement amplitude

dynamic stiffness

force amplitude

elastic strain energy amplitude
equivalent strain energy amplitude
total stress tensor

elastoplastic part of stress tensor
viscoelastic part of stress tensor
frequency

rolling velocity

contact width

radius of roller



Superscripts

elastic
elastoplastic
viscoelastic

e

ep
ve

A-2



