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1. INTRODUCTION.

‘In the eérly days of Kalman—type'fiitering, there appeared
in the journals much literature about the problem of esti-
mating a state vector U(T) from an observation process z(t)
on 0 st ¢ T, assuming a linear dynamical system for u(t)

with a "white noise" forcing term, i.e.

ult)

it

ACEIult) + BCEYE(L)

4]

¢i.1) 4 uo) = g

z(t) Cltiult) + n(t)

where A, B, C are continuous matrix functions and £(t),

n{t) are independent vector Gaussian white noises, i.e.

E{E(t)eCs) )
E{n(t)nts) }

H

§(t-s)Q(t) _ (1.2)
8{t~s)R(t)

i

where Q,R are continuous in t, symmetric and positive mat-

rices and R(t) is invertible.

Using this formal approach, filtering equations for a
best least squares estimate can be derived as for the
discrete time case. However, the definition of the dis-
turbance is not probabilistically well founded, because
E(t) is eqﬁivalent to the depivative of a Wiener-procéss
which simply does not exist. In other words, the state
vector u(t) and observation z(t) are not stochastic pro-

cesses in the probabilistic sense.

All of these problems are solved, if one uses the Itoin-
tegral and writes

t
J B(t)aw(t)
0




for the "white noise' and defines the stochastic dyna-

mical system in integral form, i.e.

_ ; min(t,s)
au(t) = A(tult)dt + B(Hdw(t) Blwltdwls)'} = | Q¢1)dt
(1.3) u(0) = U,
' ' _ , min(t,s)
dz(t) = C{tyule)dt + dv(t) E{v(tivis) '} = R{t)dr
0

where w, v are independent vector Wiener processes. The
solutions u(t) and z(t) are now well defined vector sto-~
chastic processes, and the best least squares estimate
of u{t) based on the observations z(s), 0 € 5 s t is at)

and is given by the familiar Kalman-Bucy equations:

(dn(e) = ACD(E)dt + PCOCR™T(E) (dz(t) - cle)ule)dt)
(T.4) <4
L u(0) =0 ’
[ 4P % s _
85 L ACEHP(E) - PCOACEYT + PLOIC(E)PRT ()C(EIP(t) =
dt
(1.5) = B(E)Q()B(t)™
{ P(0) = PO = Cov(xgxg)

(P(t) of course is the covariance of the error u(t) - ult). )

In many physical examples, the dynamical system one withes
to estimate is described some partial~integro differvential
equation; to mention a few of the often quoted ones from

the literature:
1. a heat exchanger

2. electrical, optical or acoustic waves which are random-
1y excited '

~

3, vandom variations on an electrical transmission line.

i




‘It seems to me that these motivations are only secondary,
the primary one being a generalization of the Kalman-Bucy
filtefing theory to distributed parameter systems. As one
would expect, the class of distributed parameter system
which has been considered is small, namely parabolic par-
tial differential equations with initial data and boundary
conditions, so that the dynamical system always has a
unique solution which depends continuously on the data.
(There are some exceptions to this whichwill be mentioned
" later.) As for the finite dimensional case, the tricky
mathematical problem is to suitably define the noise dis-
turbances and as for the finite dimensional case, most
authors have ignored the existence of this problem and
have proceeded formally. So this survey will fall into

two parts, namely the formal approaches and the mathema-

tically rigorous ones,




2. FORMAL SOLUTIONS TO THE FILTERING PROBLEM.

2.1, Basic Linear Filtering Model.

Many authors [21, [14], [151, [161, [20}. [211, [22],
take as their basic system equations, the following mo-
del

;
EH$§¢§A = Alx,tiulx,t) + Bx,t)e{x,t) on De RP
2t
2.1) 4 Bxu(x,t) =0 on D
“oul(x,0) = ub(xl
L z(x,t) = M{x,t)ulx,t) + nl(x,t)

where the deterministic system with B = 0 is a well-found
problem of Hadamard, A(x,%t) is some spatial, linear, par-
tial differential operator, B, boundary conditions and
uy{x} the initial data. B(x,t) and M(x,t) are matrixs
valued with suitably smooth coefficients and g(x,t), n(x,t)
are independent Gaussian distributed "stochastic processes"

with zero expectation and covariances

Q{x,y,t}6(t~8)

E{e(x,t)E(y,m) )
(2.2)  Einlx,tInly.s)')
E{g(x,t)n(y,s) 3

14

R(x,yyt)§(t#s)

3]

S(x,y,t)&(t~-8)

uo(x) ig a distributed Gaussian random variable with Zzero
expectation and covariance matrix Potx,y} and is indepen-

dent of £ and n. R{x,y,t) is assumed to have an inverse.

Although several authors give less general examples, their

ideas and techniques can be generalized to this cage.




9,2,.Best Least Squares Estimate.

A major contribution was made by Tzafestas and Nightingale
{241 - tEB} around 1938, 1969, In [21] he assumes that his
pest estimate ﬁ(x,t[t) of u{x,t) based on z(s,x) 0 ¢ 5 € t
has the form

o+

1 (2.3) alx,t]t) = [ [ H(x,t3y,s)z(y,s)dDds
0D

=

and minimizes the error in the sense of least $quares.
Then he is able to follow the finite dimensional proof
to get analogous filtering equations to (1.4} and (1.5},

~

3u A(x,t)& + [ H{x,tyy t) [z(y,t) = M(y,t)ﬁ(y,tlt)}dD
ot ’ JY :

A

and L (2,4)

|13

B(xyt3y 1) P(x,y,t)Mﬁ(y,t)R_1(x,y,t) ,

where

3P

1t

{X,y,T) AlX,tIP{x,y,t) ~ Plx,y,t)A(y,t) +

+ B(x,t)0lx,y,t)B (y,t) -

- [ PCy,a, M (e, IR (Y o, t)M e, BIPa,y £ dD
! _

As these are partial differential equations, one needs

boundary and initial conditions

[an]

'&(x,OfD) =

it

‘ Bxﬁ(x,ti't) 0 x & 3D
(2.5} .
P{x,y,0) = Pg(x,y) .

BXP(x,y,tlt) z 0 = {3yP(x,y,t[t) "X,y & 3D




In [22] he gets the same result by introducing genera-
1ized distributed characteristic functions and in [231
he shows that this filter is alsco the best estimate in
+he maximum likelihood sense.

Thau [26'] in 1969 considered a special case of (2.1) for
the random heat equation, assuming his noise disturban-
ces were independent of x and taking a single point ob-
servation z(t,x,). He used the same least squares crite-
rion as Tzafestas and Nightingale and derived similar
filter equations. If nothing else, this paper demonstrates
the information gap, between work in England and in Ameri-

Ca.

2.3, Minimization of Functional Approach.

0 and avoids

tr

Meditch in [14] 1971 considers (2.1) with B
all Specification of the random nature of ug(sx) and n{x,t);
they are simply "errors". He defines his best estimate
a(x,TIT) to be that which minimizes the following func-

tional
' 1 1 o
(2.6) J =5 é[u(x,o} = uy(x)) Ax’y[u(y,ﬂ) - uocy3)dn +
1 ) oy
s [ [{z(x,t) -~ M(x,Dlulx,t)] R "(x,t) -
0 b ‘ _
v {z(x,t) =~ M{x,t)ulx,ty)dddt
where

, o . -1
Ay g = (é P, (x,y)(+)dD)




and PO, R are suitable weighting matrices, symmetric and

positive.

This pecasts the filtering problem as the deterministic
optimal control problem of minimizing (2.8), which he
solves by classical techniques, obtaining a two point
boundary value problem,(TPBVP) and then decouples to get
the usual filtering equations for u and P. He notes that.
the case B § 0 can be included by adding an appropriate
weighting term in J and he draws the analogy between PO;
R and the covariance matrices of the errors. Although in
finite dimensions one can show that minimizing a quadra-
tic functional is equivalent to finding the best least
squares estimate, in infinite dimensions, this must be
regarded as an "ad hoc"™ hypothesis. Both Phillipson and
Mitter [15] 1967 and Balakrishnan and Lions [2] 1967
use this technique to solve the problem of egtimating
the control data uo(x) from noisy observatgbns, nearly
avoiding a probabilistic treatment. In fact, Bensoussan
[4] does provide a probabilistic interpretation for mi-

nimizing a functional to find u (see 83).

2.4, Discrete Observations.

Meditch also suggests that incpractice discrete observa-
tions are more desirable and provides a formal way of

+

including these .

: , K
M(t,si)écsi'}() + z n(tgsi)s(t“'si)
1 iz1

(2.7) z(t,x) =

B o1

i

Other authors have since included these in their work.

~




2.5. Innovations Approa&h.

Atre and Lémba [1] 1971 borrow the innovations approach
from Kailath and use it to formally reproduce the fil-~
tering equations. (This approach may be frultful in a
rigorous treatment of linear distributed parameter sys-

tems. )

2.6. Noise on Boundary.

Sakawa [16] 1872 includes the case of noisy boundary da-
ta by assuming a boundary condition of the form

Fly)u(t,y) + ault,y) . S(t,yivit,y? yEIQ
3N
A

[
@

where F, S are smooth matrices, a/anA is the normal spa-
tial derivative corresponding to A and v{t,y) is Gaussian
white noise independent of ¢ and n. He also assumes disc-
rete observations. However, he readily reduces the prob-
lem to one equivalent to (2.1) by adding the term S x)] o
. S{t,x)v(t,x) to the state equation, where §{y(x)) is a
generalized function concentprated on 3D, Solutions of

formal analysis yields the ge
ter equations.



2.7, Colored Noise.

Tonafestas in a recent paper (241, 1972, has generalized
his filtering results to include coloured noise in the

observation, i.e.

[ z2(x,t) = M(x,tlulx,t) + N{x,t)alx,t)
R Bxﬂﬁx,t) + D(x,tInlx,t)
(2.8) -1 3t

q{x,0}) = Qo(x)

t YXQ(XH:) = 0 on 8D

where n is a distributed Gaussian white ngige as before
and the coloured noise @ is the output of the randomly
forced linear partial differvential equation. In essence
his solution amounts to tpans forming this system into

one equivalent to (2.71).

2.8. Solution of the Filtering Equations.

Several of the authors included examples of solutions of
(2.4), (2.5) in their papers ([14], [20],;[211 - [2%])

and all were obtalned by looking for a separation of va—_
"piables solution using elgenfunctlon expansions for u

and P, where the eigenfunctions are those defined by the
deterministic version of (2.1). Sakawa [16] does a gene-
ral elgenfunctlon expansion;, obtaining Kalman- Bucy equa-
tiong for an infinite estimation vector [uﬁ(t), u2(t),

..} and an infinite covariance matrix {Pij(t)), %_: 1,

evs o my, 3 = 1, ... », Naturally these lock just like the
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finite dimensional Kalman-Bucy equations

However, these examples are purely illustrative and dé
not represent any general theory. Yor a theory based on
approximation on finite dimensional subspacesg, see Ben-
soussan [5] and a thesis to appear by J.C. Nedelec (I.R.
T.AY. ' .

2.9, Other Extensions.

Some authors have included partial-integro differential
operators in A(x,t), for ekample [22]. In faect all the
theories can be easily generalized to include integral
operators explicitly, as they are just bounded operators.
Using a formal approach it is possible to generallze most
results from lumped parameter to dlstrlbuted parameter
systems. For example, Shukla and Srinath [18] give re-
sults forvoptimal filtering in a linear, distributed pa-
rameter system with time delays. '

2.10. Smootﬁing and Estimation.

Although this report concerns the filtering problem, I
should note that similar technigues to the above ones
are applicable to 'the smoothing and estimation problem
and several authors have exploited these (see [1], [2},
{14], {151, [211, [231. (28713,




1.

2,11, Nonlinear Filtering.

Phe most recent papers in this field consider the fil~
teping problem when the state equations are nonlinear.
Tzafestas and Nightingale in f23] 1969 used a maximum
1ikelihood approach to find a best Filter for (2.1)
where A(x,t), B, Mix,t) are allowed to be nonlinear
differential or integro-differential operators. He uses
a generalization of a likelihood functional to infinite.
dimensional Gaussian random variables, and shows that
the best magimum likelihood estimate is one which mini-

mizes a functional

r - .

(z.9) -9 =5 [ [ (ax0) - ug) 1Py (xsy) 1
Dy Dy ‘
' (u(YsO) - uo(y))qudDQ +ot ot e
5 % 4 -1
+ 5 g é é (z(t,x) - M(x,t)u(x,t)] R™ ' (x,y,t)*

2

v {ztt,y) - Mly,t)uly,t)dD;dD,dt +

1
7

fan TR

[ ] Fﬂi%%:ﬁl - A(xst,u)ulg
D, P . ' .

172

[}

Q—/l(xsyst) M‘ - A(y,t,u)u(t.,y) dD1"dDéd.t
3t

subject to sx(usx,t} = 0 on 2D and Q is actually the co-

vapriance matrix of B(x,t)E(x,t)

So this provides some justification for the functional




12.

approach. Seinfeld [171, [18] 18638, 1971, Hwang, Sein-
feld and Gavalas [411] 1972 and Lamont and Kumar [12] 1872
all treat various nonlinear dynamical systems and add in
noise as desired and then write down some massive funec-
tional which includes a term for every noise component

in the system. They define their best estimate to be the
solution of this deterministic minimization problem and
then proceed to solve it as a classicai caleulus of va-
riations problem. This yields a TPBVP which they embed
in a wider class of problems .(i.e. "invariant embedding™)
to yield a recursive Kalman=-Buecy type filter. The mathe-
matics is quite formal and there is even some difference
in the choice of cost functiomals by various authors.

cf. [12]1 and [10].
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3. MATHEMATICALLY'RiGDROUS APPROACHES.

An early paper which posed an infinite dimensional fii-
tering problem was that by Falb [9] in 1967. The idea
was o generalize the Itd integral te a Hilbert spaée
and so to define a stochastic evdlution'equaﬁiion5 ‘the
analogue of (1.3) in a Hilbert space context, and then
to proceed as for the finite dimensional case. The main
difficulty here is that for partial differential equa~ .
tions, the operator A(t) is a differential operator and
hence unbounded. In [93;eﬁalb only considered A(t) boun-
ded which would cover integral equations, but in [71,
Curtain and ;Falb gave an existence theorem for a stochas-
tic evolution equation with unbounded A(t), which could
be applied fruitfully to the filtering problem.

Kushner {11] 1970 considers the filtering problem for

two classes of distributed systems. The first is a se-
cond order parabolic partial differential equation with
an integral operator in the state equation and Diriche-
let-type boundary conditions. The observation is a weigh-
ted average of the state vector over space and time and
the disturbance proceéses are Itﬁ differentials of Wie-
ner processes in time only, i.e. he considers the dege-
nerate case where the noise ig uniformly distributed in
space. Taking his best estimate to be the conditional
expectatibn of the state, given the observation process,
he derives Ffiltering eguations for this estimate and for
the covariance of ‘the erroy, rigorously egtablishing ‘
existence, uniqueness of the gsolutions. The second prob-
lem is a second order parabolic partial differential
equation with mixed boundary conditions. Again the dis-
turbance processes are only random in time, but now he
allows noise on the boundary as well as in the state
equation. Taking his observations averaged over the boun~
dary this time, he does a similar analysis to the first
problem.



i,

Duncan [8] 1972 generalizes filtering results to Banach
valued stochastic processes, but as the operators are
bounded it does not apply to partial diffevential-equa-

tions.

The rest of this survey will be concerned with the work
of Bensoussan and for a complete exposition, the reader
is peferred to his recent book [41 1971. He has solved
the problem of filtering for a veryiwide class of linear

distributed parameter systems, namely

w(t)

-+

ACtiu = f(t) + BCt)g(t) D gt 7T
{3.1) u(0)

1

+
LIG D

z2(t)

1

Cltiult) + n(t)

where the state u{t) has values in a Hilbert space H,
the observation z{t) in another Hilbert épaﬁé‘P, the
operators B(t), C(t) are bounded and linear, but Alt)
is linear and closed, i.e. a differential operator. If
we consider (3.1) as a deterministic system, then Lions
r13] has developed a very nice theory for the solution
of control problems of this:form, and Bensoussén uses
this format. The random components ave E(t}, p and R{t)
and have values in some Hilbert space, but instead of
tpeating them as random variables or stochastic proces-
ses in a Hilbert space, he introduces a more general
concept of a linesr random functional or equivaleﬁtly a
cylindrical probability. Really he treats them as "gene-
ralized pandom variables" in a manner analogous to the
use of generalized functions in partial differential

equations.,

Phe class of second order linear random functionals (LRF)
which have uniquely defined expectations and covariance

operators are closed under affine continuous maps. (3.17

defines ult) and z(+) as affine, continuous maps from
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(z,£(*);, n{*)) using appropriate spaces and so if we
assign a LRT associated with (g, £(*), n("}), this in-
duces LRF's associated with u(¥) and z(-)}. The estima-
tion problem is then defined as the best linear estimate
of the LRFP associated with u(T) by the LRF associated
with z(+}. Using results from estimation theory in a
Hilbert space, Bensoussan reduces the problem to the

deterministic problem of minimizing the functional *

1

(3.2 JCg, £(+)) = < Pa t,c> g ¥ fg < Q(t)“ii(t)5 E(t)>Edt

TRz (D-Cult;z,e) 7 ()=
K

- C{t) ult; g,8) » pdt .

with respect to g, £(‘), where P, Q(t), R{(t) are the co-
variance operators for the LRF corresponding to ¢, £(t) and
n(t) respectively. PO5 Q(t), R(t) are self adjoint and posi-

tive and invertible.

The best estimate is w, = u(T;5,£(*)), where (g, £(.)) is

the minimizing pair.*

He also derives the Kalman - Bucy eguations for ;r'

(2.3) L 4 A p(O+PEYCR(DR™ Y (L) o(t) n(e) =
dat

glt) + P(t) % (IR L (t)zq(t)

r{0) = uO'

This gives some insight into the Justification for defining the best

estimate a priori in terms of minimizing a functional. Cf. 2.3,




16.

dPCE) | peodat(e) + AGLIP(E) +
dt '
s POOCCEY RV (LIC(RIP(E) =
(3.4) :
= B(t)e(t)BE (L) ()
P(0) = P '

N

i

(actually only a weaker version of the P(t) equation
holds.}

and ;T = r{T).

Finally he shows that (3.3), (3.4) define the best LRY
estimate for the general case where P, and Q(t) are not
invertible. Applying this result to the speeial equation
(2.1), one finds agreement between both filtering equa-
tions. If one applies these results to the finite dimen=~
sional case, then (3.3), (3.1) correspond to the fil-
tering equations one obtains using the formal approach
of (1.1). So this LRF approach gives new insight into

+he finite dimensional filtering problem as well.

Note that (3.1) is not a stochastic differential equa-
tion in the strict sense and that ul{t) is not a well-
defined stochastic process, but has some linear random
functional identified with it. For a stochastic evolu-
fion equation approach, Bensoussan defines a Hilbert
space-valued Wiener process and stochastic integration
in a Hilbert space along the lines of Falb {91, Then he
considers the following system model




17.

f t )
ult,w) *.f A(tIu(r,wldr =
g
ot t
(3.5) { = uge) + [ fodr + [ B(r)YdE(t)
g a
t
z{t,w) = f Cl{oiuf{t,wddr + n{t,w)
. 0

where £(t), n{t) are Hilbert space valued independent
Wiener processes with covariance operators Q(t), R(t)
respectively and uo(d) is a Gaussian stochastic process
independent of £(t) and n(t) with zero expectation and
covariance F.

This theory requires that Py, Q(t), R(t) be.nuclear ope-
pators (as well as positive and self adjoint). For fil-
tering, one vequires R(t) to be invertible and so F must
be finite dimensional (i.e. a finite dimensional obser-

vation space).

Under these conditions, Bensoussan proves that the best
global estimate for the random variable u(T,w) based on
the stochastic process z(t,w); 0 €t ¢ T is given by

the solution of the stochastic differential equation

) T ) T L .
(3.8)  w(T,0) +. ACOuleddac + [ POCHOR T (o)cltiultdat =
- 0 0 .

T T
o seedat + [ PCOCHCORT (0 dz(t) + uyle)
0 : 0

A

where P(t) is given by (3.4).




18.

This is the required generalization of the Kalman-Bucy
filter equations (1.%), (1.5) to infinite dimensions.

Bensoussan has also eﬁtenéed these vesults to systems
with second order in t to obtain similar results. In [61
he has looked at the problem of optimization of location
of sensors when you have discrete observations and he
has proved a separation principle for distributed para-
meter systems in [56]. The reader is referred to [3] for

“his treatment of the estimation problem.
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