
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

TrueTime 1.1 -- Reference Manual

Henriksson, Dan; Cervin, Anton

2003

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Henriksson, D., & Cervin, A. (2003). TrueTime 1.1 -- Reference Manual. (Technical Reports TFRT-7605).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/f2677993-2bdf-48be-98ee-1a7f21c9dcb9

ISSN 0280–5316
ISRN LUTFD2/TFRT--7605--SE

TRUETIME 1.1—Reference Manual

Dan Henriksson
Anton Cervin

Department of Automatic Control
Lund Institute of Technology

March 2003

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden

Document name
INTERNAL REPORT

Date of issue
March 2003

Document Number
ISRN LUTFD2/TFRT--7605--SE

Author(s)

Dan Henriksson, Anton Cervin
Supervisor

Sponsoring organisation

Title and subtitle
TRUETIME 1.1—Reference Manual

Abstract

The manual describes the use of TrueTime, a Matlab/Simulink-based tool for simulation of distributed
real-time control systems. The tool facilitates detailed co-simulation of plant dynamics, controller task
execution, and network transmissions. The TrueTime Kernel and TrueTime Network blocks are described,
and the real-time kernel primitives are detailed.

Key words
Real-time control systems, Event-based simulation, Shared resources, Real-time kernel, Feedback sched-
uling, Networked control systems.

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280–5316

ISBN

Language
English

Number of pages
64

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.lu.se

Contents

1. Introduction . 4

2. Getting Started . 4

3. Using the Simulator . 5

4. Writing Code Functions . 5

4.1 Writing a MATLAB Code Function 6

4.2 Writing a C++ Code Function 7

4.3 Calling Simulink Block Diagrams 7

5. Initialization . 8

5.1 Writing a MATLAB Initialization Script 8

5.2 Writing a C++ Initialization Script 8

6. Compilation . 10

6.1 The MATLAB Case . 10

6.2 The C++ Case . 10

6.3 Parameters to the Kernel Block 10

7. The TrueTime Network . 11

7.1 CSMA/CD . 11

7.2 CSMA/CA . 12

7.3 Round Robin . 12

7.4 FDMA . 12

7.5 TDMA . 13

7.6 Compiling the Network Block 13

8. Examples . 13

8.1 Process and Controller . 13

8.2 Real-time Control of the DC-servo 14

8.3 Distributed Control of the DC-servo 16

9. Implementation Details . 17

9.1 Task Model . 17

9.2 The Kernel Function . 18

9.3 Timing . 20

10. TrueTime Command Reference . 21

ttInitKernel . 24

1

ttCreatePeriodicTask . 25

ttCreateTask . 26

ttCreateJob . 27

ttKillJob . 28

ttCreateInterruptHandler . 29

ttCreateExternalTrigger . 30

ttNoSchedule . 31

ttNonPreemptable . 32

ttAttachDLHandler . 33

ttAttachWCETHandler . 34

ttAttachPrioFcn (C++ only) . 35

ttAttachHook (C++ only) . 36

ttCreateMonitor . 37

ttEnterMonitor . 38

ttExitMonitor . 39

ttCreateEvent . 40

ttWait . 41

ttNotifyAll . 42

ttCreateMailbox . 43

ttTryFetch . 44

ttTryPost . 45

ttCreateTimer . 46

ttCreatePeriodicTimer . 47

ttRemoveTimer . 48

ttCurrentTime . 49

ttSleepUntil . 50

ttSleep . 51

ttAnalogIn . 52

ttAnalogOut . 53

ttSetNextSegment . 54

ttInvokingTask . 55

ttCallBlockSystem . 56

ttSetX . 57

2

ttGetX . 59

ttInitNetwork . 61

ttSendMsg . 62

ttGetMsg . 63

11. References . 64

3

1. Introduction

This manual describes the use of the MATLAB/Simulink-based [The Mathworks,
2000] simulator TRUETIME, which facilitates co-simulation of controller task execu-
tion in real-time kernels, network transmissions, and continuous plant dynamics.
The simulator is presented in [Cervin et al., 2003; Henriksson et al., 2002], but
several differences from these papers exist.

The manual describes the fundamental steps in the creation of a TRUETIME sim-
ulation. That include how to write the code that is executed during simulation,
how to configure the kernel and network blocks, and what compilation that must
be done to get an executable simulation. The code functions for the tasks and the
initialization commands may be written either as C++ functions or as M-files, and
both cases are described.

Two tutorial examples are provided, both treating PID-control of a DC-servo. In
the first example the DC-servo is controlled by a controller task implemented in a
TRUETIME kernel block. This example is also extended to the case of three PID-tasks
running concurrently on the same CPU controlling three different servo systems.
The second example simulates distributed control of the DC-servo, with the sensor,
controller, and actuator represented as three different nodes communicating over a
network.

The manual also includes a section describing some of the internal workings of
TRUETIME, including the task model, implementation details, and timing details. A
TRUETIME command reference with detailed explanations of all functionality pro-
vided by the simulator is given at the end of the manual.

For questions and bug reports, please direct these issues to

truetime@control.lth.se

2. Getting Started

Download the compressed files available at:

http://www.control.lth.se/∼dan/truetime/
Note that TRUETIME 1.1 supports both MATLAB ver. 6.1 (with Simulink ver. 4.1) and
MATLAB ver. 6.5 (with Simulink ver. 5.0). Later releases, however, will not support
MATLAB ver. 6.1.

Extract the files to any suitable directory $DIR and start MATLAB. Then run the
MATLAB-script init_truetime.m located in the directory $DIR/truetime/kernel:

>> cd $DIR/truetime/kernel;
>> init_truetime;

This will set up all necessary paths needed to run the simulator.

Issuing the command

>> truetime

from the MATLAB prompt will then open the TRUETIME block library, see Figure 1.

4

Figure 1 The TRUETIME block library.

3. Using the Simulator

The TRUETIME blocks are connected with ordinary Simulink blocks to form a real-
time control system, see Figure 2. Before a simulation can be run, however, it is
necessary to initialize computer blocks and the network block, and to create tasks,
interrupt handlers, timers, events, monitors, etc for the simulation.

we

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

TrueTime Kernel

Schedule

1

s +−12

Pendulum

Figure 2 A TRUETIME computer block connected to a continuous pendulum process.

The initialization code as well as the code that is executed during simulation may be
written either as C++ code or as MATLAB M-files. The former is faster but the latter
is probably more convenient. How the code functions are defined and what must be
provided during initialization will be described below. It will also be described how
the code is compiled to executable MATLAB code.

4. Writing Code Functions

The execution of tasks and interrupt handlers is defined by code functions. A code
function is further divided into code segments according to the execution model in
Figure 3. All execution of user code is done in the beginning of each code segment.
The execution time of each segment should be returned by the code function.

5

1 2 3

Simulated execution time

Execution of user code

Figure 3 The execution of user-code is modeled by a sequence of segments executed in order
by the kernel.

4.1 Writing a Matlab Code Function
The syntax of a MATLAB code function is given by the following code implementing
a simple P-controller:

function [exectime, data] = Pcontroller(segment, data)

switch segment,
case 1,

r = ttAnalogIn(1);
y = ttAnalogIn(2);
data.u = data.K*(r-y);
exectime = 0.002;

case 2,
ttAnalogOut(1, data.u);
exectime = -1; % finished

end

The variable segment determines which segment that should be executed, and data
is a user-defined data structure that has been associated with the task when it was
created, see ttCreateTask and ttCreatePeriodicTask in the command reference.
The data is updated and returned by the code function. The code function also
returns the execution time of the executed segment.

In this example, the execution time of the first segment is 2 ms. This means that the
delay from input to output for this task will be at least 2 ms. However, preemption
from higher priority tasks may cause the delay to be longer. The second segment
returns a negative execution time. This is used to indicate end of execution, i.e.
that there are no more segments to execute.

ttAnalogIn and ttAnalogOut are real-time primitives used to read and write signals
to the environment. Detailed descriptions of these functions can be found in the
command reference at the end of this manual.

Note: The directory $DIR/truetime/kernel/matlab contains the MEX-interfaces
for all the functions provided by the simulator. These functions must be compiled
in order to be called from MATLAB functions (e.g. » mex ttAnalogIn.cpp). Since the
compiled MEX-files become rather large, it is recommended to only compile the
functions that are used in the simulation.

6

4.2 Writing a C++ Code Function
Writing a code function in C++ follows a similar pattern as the code function
described above. The C++ syntax for the simple P-controller code function in the
previous section is given below. We here assume definition of a structure Task_Data
that contains the control signal u and the controller gain, K .

double Pcontroller(int segment, void* data) {

Task_Data* d = (Task_Data*) data;

switch (segment) {
case 1:

double r = ttAnalogIn(1);
double y = ttAnalogIn(2);
d->u = d->K*(r-y);
return 0.002;

case 2:
ttAnalogOut(1, d->u);
return FINISHED; // end of execution

}
}

4.3 Calling Simulink Block Diagrams
Whether implemented in C++ code or as M-files, it is possible to call Simulink block
diagrams from within the code functions. This is a convenient way to implement
controllers. Below follows an example where the discrete PID-controller in Figure 4
is used in a code function:

function [exectime, data] = PIDcontroller(segment, data)

switch (segment),
case 1,

inp(1) = ttAnalogIn(1);
inp(2) = ttAnalogIn(2);
outp = ttCallBlockSystem(2, inp, ’controller’);
data.u = outp(1);
exectime = outp(2);

case 2,
ttAnalogOut(1, data.u);
exectime = -1; % finished

end

See the command reference at the end of this manual for further explanation of the
command ttCallBlockSystem.

7

Figure 4 Controllers represented using ordinary discrete Simulink blocks may be called
from within the code functions. The only requirement is that the blocks are discrete with the
sample time set to one.

5. Initialization

Initialization of a TRUETIME kernel block involves specifying the number of in-
puts and outputs of the block, defining the scheduling policy, and creating tasks,
interrupt handlers, events, monitors, etc for the simulation. This is done in an
initialization script for each kernel block.

5.1 Writing a Matlab Initialization Script
The initialization code below shows the minimum of initialization needed for a
TRUETIME simulation. The kernel is initialized by providing the number of inputs
and outputs and the scheduling policy using the function ttInitKernel. A periodic
task is created by the function ttCreatePeriodicTask. This task uses the code
function Pcontroller defined in Section 4.1. See the command reference for further
explanation of the functions.

function example_init

ttInitKernel(2, 1, ’prioFP’);

data.u = 0;
data.K = 2;
ttCreatePeriodicTask(’ctrl’, 0.0, 0.005, 2, ’Pcontroller’, data);

5.2 Writing a C++ Initialization Script
An initialization script in C++ must follow a certain format given by the template
below:

#define S_FUNCTION_NAME filename

#include "ttkernel.cpp"

// include code functions

8

void init() {
// perform the initialization
}

void cleanup() {
// free dynamic memory allocated in the script
}

The file ttkernel.cpp contains the Simulink call-back functions meaning that the
initialization script is actually a complete MATLAB S-function. filename should
be the name of the source file, e.g. if the source file is called example_init.cpp,
S_FUNCTION_NAME should be defined to example_init.

The init()-function is called at the start of simulation (from the Simulink call-
back function mdlInitializeSizes), and it is here all initialization should be per-
formed. Any dynamic memory allocated from the init()-function can be deallo-
cated from the cleanup()-function, which is called at the end of simulation (from
mdlTerminate).
The C++ version of the initialization from the previous section is given below

#define S_FUNCTION_NAME example_init

#include "ttkernel.cpp"

#include "Pcontroller.cpp"

class Task_Data {
public:

double u;
double K;

};

Task_Data* data;

void init() {

ttInitKernel(2, 1, FP);

data = new Task_Data;
data->u = 0.0;
data->K = 2.0;

ttCreatePeriodicTask("ctrl", 0.0, 0.005, 2, Pcontroller, data);
}

void cleanup() {

delete data;
}

9

6. Compilation

Depending on whether the code functions and the initialization script are written in
C++ code or as M-files, different amounts of compilation must be performed before
running a simulation.

In the C++ case, the initialization script itself is compiled, producing a MATLAB

MEX-file for the simulation. In the MATLAB case, a kernel function (ttkernelMATLAB-
.cpp) is compiled once and for all to a MATLAB MEX-file. This S-function then calls
the initialization script (M-file) at the start of simulation.

The following compilers are supported (it may, however, also work using other
compilers):

• Visual Studio C++ 6.0 under Windows

• gcc, g++ - GNU project C and C++ Compiler (gcc-2.96) for LINUX and UNIX

6.1 The Matlab Case
Compile the file ttkernelMATLAB.cpp in the directory $DIR/truetime/kernel:

>> mex ttkernelMATLAB.cpp

You will also need to compile the kernel primitives that you use in your code func-
tions, e.g. ttInitKernel and ttAnalogIn . These files are located in the directory
$DIR/truetime/kernel/matlab. This compilation only has to be done once, and no
further compilation is required if code functions or initialization scripts are changed.

However, you may experience that nothing changes in the simulations, although
changes are being made to the code functions or the initialization script. If that is
the case, type the following at the MATLAB prompt

>> clear functions

To force MATLAB to reload all functions at the start of each simulation, issue the
command (assuming that the model is named servo)

>> set_param(’servo’, ’StartFcn’, ’clear functions’)

6.2 The C++ Case
In the C++ case the initialization script (example_init.cpp in the example from
the previous section) itself should be compiled

>> mex example_init.cpp

This file also needs to be recompiled each time changes are made to the code func-
tions or to the initialization script.

6.3 Parameters to the Kernel Block
The TRUETIME kernel block takes two parameters. The first parameter is the name
of the initialization script without extension. I.e., in the example in the previous
section, this parameter should be example_init. The second parameter is used
to indicate fail-safe execution of the code functions in the MATLAB case. If this
parameter is non-zero, the code functions will be executed in a try-catch construct,
preventing MATLAB from crashing if an error occurs. The downside with this mode
is that it slows down the simulation.

10

7. The TrueTime Network

Five simple models of network protocols are supported: CSMA/CD (e.g. Ethernet),
CSMA/CA (e.g. CAN), Round Robin (e.g. Token Bus), FDMA, and TDMA (e.g.
TTP). The propagation delay is ignored, since it is typically very small in a local
area network. In all protocols, a long message may be split into a number of frames
which are transmitted in sequence. Minimum and maximum frame sizes can be
specified, and each frame can carry an overhead.

The network block is configured through the block mask dialog, see Figure 5. The
following network parameters are common to all models:

Number of Nodes The number of nodes that are connected to the network. This
number will determine the size of the Snd, Rcv and Schedule input and outputs
of the block.

Data rate (bits/s) The speed of the network.

Pre-processing delay (s) The time a message is delayed by the network interface
on the sending end. This can be used to model, e.g., a slow serial connection
between the computer and the network interface.

Post-processing delay (s) The time a message is delayed by the network inter-
face on the receiving end.

Minimum frame size (bytes) A message or frame shorter than this will be padded
to give the minimum length. Denotes the minimum payload, before the over-
head is added. E.g., the minimum Ethernet payload is 46 bytes.

Maximum frame size (bytes) A message longer than this size will be split into
several frames. Again, denotes the maximum payload, before the overhead is
added. E.g., the maximum Ethernet payload is 1500 bytes. To avoid splitting
into frames, specify a very large maximum frame size.

Frame overhead (bytes) Each frame will be extended with this number of bytes
before transmission. This number should include any inter-frame gap. E.g.,
the Ethernet frame overhead is 38 bytes.

Loss Probability (0-1) The probability that a network message is lost during
transmission. Lost messages will consume network bandwidth, but will never
arrive at the destination.

7.1 CSMA/CD
CSMA/CD stands for Carrier Sense Multiple Access with Collision Detection. If the
network is busy, the sender will wait until it occurs to be free. A collision will occur
if a message is transmitted within 1 microsecond of another (this corresponds to
the propagation delay in a 200 m cable; the actual number is not very important
since collisions are only likely to occur when two or more nodes are waiting for the
cable to be idle). When a collision occurs, the sender will back off for a time defined
by

(minimum frame size + frame overhead) / data rate � R

where R = rand(0, 2K − 1) (discrete uniform distribution) and K is the number
of collisions in a row (but maximum 10—there is no upper limit on the number
of retransmissions, however). Note that for CSMA/CD, minimum frame size and
frame overhead can not both be 0.

11

Figure 5 The dialog of the TrueTime Network block.

After waiting, the node will attempt to retransmit. In an example where two nodes
are waiting for a third node to finish its transmission, they will first collide with
probability 1, then with probability 1/2 (K = 1), then 1/4 (K = 2), and so on.

7.2 CSMA/CA
CSMA/CA stands for Carrier Sense Multiple Access with Collision Avoidance. If the
network is busy, the sender will wait until it occurs to be free. If a collision occurs
(again, if two transmissions are being started within 1 microsecond), the message
with the highest priority (the lowest priority number) will continue to be transmit-
ted. If two messages with the same priority seek transmission simultaneously, an
arbitrary choice is made as to which is transmitted first. (In real CAN applications,
all sending nodes have a unique identifier, which serves as the message priority.)

7.3 Round Robin
The nodes in the network take turns (from lowest to highest node number) to
transmit one frame each. Between turns, the network is idle for (minimum frame
size + frame overhead)/(date rate) seconds, representing the time to pass a token
to the next node.

7.4 FDMA
FDMA stands for Frequency Division Multiple Access. The transmissions of the
different nodes are completely independent and no collisions can occur. In this
mode, there is an extra attribute

12

Bandwidth allocations A vector of shares for the sender nodes which must sum
to at most one.

The actual bit rate of a sender is computed as (allocated bandwidth � data rate).

7.5 TDMA
TDMA stands for Time Division Multiple Access. Works similar to FDMA, except
that each node has 100 % of the bandwidth but only in its scheduled slots. If a
full frame cannot be transmitted in a slot, the transmission will continue in the
next scheduled slot, without any extra penalty. Note that overhead is added to each
frame just as in the other protocols. The extra attributes are

Slot size (bytes) The size of a sending slot. The slot time is hence given by (slot
size)/(data rate).

Schedule A vector of sender node ID’s (1 . . . nbrOfNodes) specifying a cyclic send
schedule.

7.6 Compiling the Network Block
The S-function implementing the network block is located in the directory $DIR/true-
time/kernel. This file is compiled once and for all with the command

>> mex ttnetwork.cpp

8. Examples

The directory $DIR/truetime/examples contains two examples of PID-control of a
DC-servo, with the second example treating the distributed case. The descriptions
below will only treat the MATLAB case. For detailed instructions on how to compile
the examples in the C++ case, see the README-files in the two example directo-
ries.

8.1 Process and Controller
The DC-servo is described by the continuous-time transfer function

G(s) = 1000
s(s+ 1)

The PID-controller is implemented according to the following equations

P(k) = K ⋅ (r(k) − y(k))

I(k+ 1) = I(k) + Kh
Ti
(r(k) − y(k))

D(k) = ad D(k− 1) + bd(y(k− 1) − y(k))
u(k) = P(k) + I(k) + D(k)

(1)

where ad = Td
Nh+Td

and bd = N KTd
Nh+Td

. The controller parameters were chosen to give
the system a closed-loop bandwidth, ω c = 20 rad/s, and a relative damping, ζ = 0.7.

13

8.2 Real-time Control of the DC-servo
The first example considers simple PID control of the DC-servo process, and is in-
tended to give a basic introduction to the TRUETIME simulation environment. The
process is controlled by a controller task implemented in a TRUETIME kernel block.
Two versions of the code function are provided, one standard PID implementation
and one that calls a Simulink block diagram to calculate the control signal in each
sample. The example is also extended to the case of three PID-tasks running con-
currently on the same CPU controlling three different servo systems. The files are
found in the directory $DIR/truetime/examples/simple_pid/matlab.

Code Function The MATLAB code function (pidcode.m) for the controller task is
given below

function [exectime, data] = pidcode(seg, data)

switch seg,
case 1,
r = ttAnalogIn(data.rChan);
y = ttAnalogIn(data.yChan);
data = pidcalc(data, r, y);
exectime = 0.002;

case 2,
ttAnalogOut(data.uChan, data.u);
exectime = -1;

end

where the function pidcalc.m implements the controller (1).
Initialization Script The simulation model (servo.mdl) is given in Figure 6,
and the corresponding initialization script (singleservo_init.m) looks like this:

function singleservo_init

ttInitKernel(2, 1, ’prioFP’); % nbrOfInputs, nbrOfOutputs, FP

data.K = 0.96;
data.Ti = 0.12;
data.Td = 0.049;
data.N = 10;
data.h = 0.006;
data.u = 0;
data.Iold = 0;
data.Dold = 0;
data.yold = 0;
data.rChan = 1;
data.yChan = 2;
data.uChan = 1;

ttCreatePeriodicTask(’pid_task’, 0.0, 0.006, 2, ’pidcode’, data);

Experiments with a Single PID Task Run the M-file makepid.m to compile
the files necessary for the simulation. Then open the model servo.mdl to run the
single PID task simulation. Try the following

14

Figure 6 The TRUETIME model of the DC-servo system.

• Run a simulation and verify that the controller behaves as expected. Notice
the computational delay of 2 ms in the control signal. Compare with the code
function. Study the schedule plot (high=running, medium=ready, low=idle).

• Try changing the execution time of the first segment of the code function, to
simulate the effect of different input-output delays.

• Try changing the sampling period and study the resulting control performance.

• A PID-controller is implemented in the Simulink block controller.mdl. Study
the code function blockpid.m and the initialization script block_init.m. Change
the name of the init-script in the parameter field of the kernel block to
block_init. Now the code function will use the PID-controller block to com-
pute the control signal in each sample. Run a simulation.

Experiments with Three PID Tasks Open the model threeservos.mdl to run
the simulation of three concurrent PID tasks. Try the following

• Make sure that rate-monotonic scheduling is specified by the function ttInit-
Kernel in the initialization script (threeservos_init.m) and simulate the
system. Study the computer schedule and the control performance. Task 1
will miss all its deadlines and the corresponding control loop is unstable.

• Change the scheduling policy to earliest-deadline-first and run a new simula-
tion. Again study the computer schedule and the control performance. After
an initial transient all tasks will miss their deadlines, but the overall control
performance, however, is satisfactory.

15

Figure 7 The TRUETIME model of the distributed control system.

8.3 Distributed Control of the DC-servo
This example simulates distributed control of the DC-servo. The example contains
four computer nodes, each represented by a TRUETIME kernel block. A time-driven
sensor node samples the process periodically and sends the samples over the net-
work to the controller node. The control task in this node calculates the control
signal and sends the result to the actuator node, where it is subsequently actuated.
The simulation also involves an interfering node sending disturbing traffic over
the network, and a disturbing high-priority task executing in the controller node.
The simulation model is shown in Figure 7. The files are found in the directory
$DIR/truetime/examples/distributed/matlab.

Experiments Compile the MATLAB simulation by running the M-file makedist.m.
Then open the model distributed.mdl to run the simulation. Try the following

• Study the initialization scripts and code functions for the different nodes.
The event-driven nodes contain interrupt handlers, which are activated as
messages arrive over the network. The handler then notifies the corresponding
task that a message has arrived.

• Run a first simulation without disturbing traffic and without interference in
the controller node. This is obtained by setting the variable BWshare in the code
function of the interfering node (interfcode.m) to zero, and by commenting
out the creation of the task ’dummy’ in controller_init. In this case we will
get a constant round-trip delay and satisfactory control performance. Study
the network schedule (high=sending, medium=waiting, low=idle) and the
resulting control performance.

• Switch on the disturbing node and the interfering task in the controller node.
Set the variable BWshare to the percentage of the network bandwidth to be
used by the disturbing node. Again study the network schedule and the re-
sulting control performance. Experiment with different network protocols and
different scheduling policies in the controller node.

16

9. Implementation Details

9.1 Task Model
TRUETIME tasks may be periodic or aperiodic. Aperiodic tasks are executed by the
creation of task instances (jobs), using the command ttCreateJob. All pending jobs
are inserted in a job queue of the task sorted by release time. For periodic task
(created by the command ttCreatePeriodicTask), an internal timer is set up to
periodically create jobs for the task.

Apart from its code function, each task is characterized by a number of attributes.
The static attributes of a task include

• a relative deadline

• a priority

• a worst-case execution time

• a period (if the task is periodic)

These attributes are kept constant throughout the simulation, unless explicitly
changed by the user (see ttSetX in the command reference).
In addition to these attributes, each task instance has dynamic attributes associated
with it. These attributes are updated by the kernel as the simulation progresses,
and include

• an absolute deadline

• a release time

• an execution time budget (by default equal to the worst-case execution time
at the start of each task instance)

• the remaining execution time

These attributes (except the remaining execution time) may also be changed by
the user during simulation. Depending on the scheduling policy, the change of an
attribute may lead to a context switch. E.g., if the absolute deadline is changed and
earliest-deadline-first scheduling is simulated.

In accordance with [Bollella et al., 2000] it is possible to associate two interrupt
handlers with each task: a deadline overrun handler (triggered if the task misses
its deadline) and an execution time overrun handler (triggered if the task exe-
cutes longer than its worst-case execution time). These handlers can be used to
experiment with dynamic compensation schemes, handling missed deadlines or pro-
longed computations. Overrun handlers are attached to tasks with the commands
ttAttachDLHandler and ttAttachWCETHandler.

Furthermore, to facilitate arbitrary dynamic scheduling mechanisms, it is possible
to attach small pieces of code (hooks) to each task. These hooks are executed at
different stages during the simulation, as shown in Figure 8. E.g.„ the overrun
handling mentioned above is conveniently implemented using hooks. The following
actions are taken in the various hooks

17

τ

t

Release
hook

Start
hook

Suspend
hook

Resume
hook

Finish
hook

Figure 8 Scheduling hooks.

Release hook: When a task is released and it has an attached deadline overrun
handler, a timer is created. The expiry of this timer is set to the absolute deadline
of the task, and the deadline overrun handler is triggered upon expiry. It may be
the case that, because of previous overruns, the absolute deadline of the task has
already expired when the task instance is released. In this case the overrun handler
is activated immediately.

Start hook: When a task is started and it has an attached worst-case execution
time overrun handler, a corresponding timer is created. If the timer expires, the
worst-case execution time handler is triggered.

Suspend hook: When a task is suspended, the execution time budget of the task
is decreased with the time elapsed since it last began execution. The worst-case
execution time timer is temporarily removed.

Resume hook: When a task is resumed, and it has remaining execution time budget,
the worst-case execution time timer is again created.

Finish hook: When the task finishes execution, both overrun timers are removed.

See the file $DIR/truetime/kernel/defaulthooks.cpp for the actual implementa-
tion of these hooks.

9.2 The Kernel Function
The functionality of the TRUETIME kernel is implemented by the function runKernel
in $DIR/truetime/kernel/ttkernel.cpp. This function manipulates the basic data
structures of the kernel, such as the ready queue and the time queue, and is called
by the Simulink call-back functions at appropriate times during the simulation.
See Section 9.3 for timing implementation details. It is also from this function the
code functions for tasks and interrupt handlers are called. The kernel keeps track
of the current segment and updates it when the time associated with the previous
segment has elapsed. The hooks mentioned above are also called from this function.

A simple model for how the kernel works is given by the following pseudo code.
Note that interrupt handlers are not treated in the code below. However, they are
treated essentially in the same way as the tasks.

18

double runKernel() {

// Compute time elapsed since last invocation
timeElapsed = currentTime - prevHit;
prevHit = currentTime;
nextHit = 0;

while (nextHit == 0) {

// Count down execution time for current task instance
// and check if it has finished its execution

if (there exists a running task) {
Decrease remaining execution time with timeElapsed
if (remaining execution time == 0) {

Execute next segment of the code function
Update remaining execution time
Update execution time budget
if (remaining execution time < 0.0) {

// Negative execution time = Job finished
Remove the task from the ready queue
Execute finish-hook
Simulate saving context
if (there are pending jobs) {

Move the next job to the time queue
}

}
}

}

// Go through the time queue (ordered after release time)

for (each task) {
if (release time - currentTime < 0.0) {

Remove the task from the time queue
Move the task to the ready queue
Execute release-hook

}
}

// Go through the timer queue (ordered after expiry)

for (each timer) {
if (expiry - currentTime < 0.0) {

Activate handler associated with timer
Remove timer from timer queue
if (timer is periodic) {

Increase the expiry with the period
Insert the timer in the timer queue

}
}

}

19

// Dispatching

Make the first task in the ready queue running task
if (the task is being started) {

Execute the start-hook for the task
Simulate restoring context

} else if (the task is being resumed) {
Execute the resume-hook for the task
Simulate restoring context

}
if (another task is suspended) {

Execute suspend-hook of the previous task
Simulate saving context

}

// Determine nextHit, next invocation of the kernel function

time1 = remaining execution time of the current task
time2 = next release of a task from the time queue
time3 = next expiry of a timer
nextHit = min(time1, time2, time3);

} // loop while nextHit = 0.0
return nextHit;

}

9.3 Timing
The TRUETIME blocks are event-driven and support external interrupt handling.
Therefore, the blocks have a continuous sample time. Discrete (i.e., piecewise con-
stant) outputs are obtained by specifying FIXED_IN_MINOR_STEP_OFFSET:

static void mdlInitializeSampleTimes(SimStruct *S) {
ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime(S, 0, FIXED_IN_MINOR_STEP_OFFSET);

}

The timing of the block is implemented using a zero-crossing function. As we saw
above, the next time the kernel should wake up (e.g., because a task is to be released
from the time queue or a task has finished its execution) is denoted nextHit. If there
is no known wake-up time, this variable is set to infinity. The basic structure of the
zero-crossing function is

static void mdlZeroCrossings(SimStruct *S) {
Store all inputs;
if (any interrupt input has changed value) {

nextHit = ssGetT(S);
}
ssGetNonsampledZCs(S)[0] = nextHit - ssGetT(S);

}

This will ensure that mdlOutputs executes every time an internal or external event
has occurred.

20

Since several kernel and network blocks may be connected in a circular fashion, di-
rect feedthrough is not allowed. We exploit the fact that, when an input changes as a
step, mdlOutputs is called, followed by mdlZeroCrossings. Since direct feedthrough
is not allowed, the inputs may only be checked for changes in mdlZeroCrossings.
There, the zero-crossing function is changed so that the next major step occurs at
the current time. This scheme will introduce a small timing error (< 10−10).
The kernel function (runKernel()) is only called from mdlOutputs since this is
where the outputs (D/A, schedule, network) can be changed.

The timing implementation implies that zero-crossing detection must be turned on
(this is default, and can be changed under Simulation Parameters/Advanced).

10. TrueTime Command Reference

The available TRUETIME commands can be divided into three categories; commands
used to create and initialize TRUETIME objects, commands used to set and get task
attributes, and real-time primitives. The commands are summarized in the tables
below, and the rest of the manual contains detailed descriptions of their function-
ality.

21

Command Description
ttInitKernel Initialize the TRUETIME kernel.
ttInitNetwork Initialize the TRUETIME network interface.
ttCreatePeriodicTask Create a periodic TRUETIME task.
ttCreateTask Create a TRUETIME task.
ttCreateInterruptHandler Create a TRUETIME interrupt handler.
ttCreateExternalTrigger Associate a TRUETIME interrupt handler with

an external interrupt channel.
ttCreateMonitor Create a TRUETIME monitor.
ttCreateEvent Create a TRUETIME event.
ttCreateMailbox Create a TRUETIME mailbox for inter-task

communication.
ttNoSchedule Switch off the schedule generation for a specific

task or interrupt handler.
ttNonPreemptable Make a task non-preemptable.
ttAttachDLHandler Attach a deadline overrun handler to a task.
ttAttachWCETHandler Attach a worst-case execution time overrun

handler to a task.
ttAttachPrioFcn (C++ only) Attach an arbitrary priority function to be used

by the kernel.
ttAttachHook (C++ only) Attach a run-time hook to a task.

Table 1 Commands used to create and initialize TRUETIME objects.

Command Description
ttSetDeadline Set the relative deadline of a task.
ttSetAbsDeadline Set the absolute deadline of a task instance.
ttSetPriority Set the priority of a task.
ttSetPeriod Set the period of a periodic task.
ttSetBudget Set the execution time budget of a task instance.
ttSetWCET Set the worst-case execution time of a task.
ttGetRelease Get the release time of a task instance.
ttGetDeadline Get the relative deadline of a task.
ttGetAbsDeadline Get the absolute deadline of a task instance.
ttGetPriority Get the priority of a task.
ttGetPeriod Get the period of a periodic task.
ttGetBudget Get the execution time budget of a task instance.
ttGetWCET Get the worst-case execution time of a task.

Table 2 Commands used to set and get task attributes.

22

Command Description
ttCreateJob Create a job (task instance) of a TRUETIME task.
ttKillJob Kill the running job of a task.
ttEnterMonitor Attempt to enter a monitor.
ttExitMonitor Exit a monitor.
ttWait Wait for an event.
ttNotifyAll Notify all tasks waiting for an event.
ttTryFetch Fetch a message from a mailbox.
ttTryPost Post a message to a mailbox.
ttCreateTimer Create a one-shot timer and associate an interrupt

handler with the timer.
ttCreatePeriodicTimer Create a periodic timer and associate an interrupt

handler with the timer.
ttRemoveTimer Remove a specific timer.
ttCurrentTime Get the current time in the simulation.
ttSleepUntil Put a task to sleep until a certain point in time.
ttSleep Put a task to sleep for a certain time.
ttAnalogIn Read a value from an analog input channel.
ttAnalogOut Write a value to an analog output channel.
ttSetNextSegment Set the next segment to be executed in the code

function.
ttInvokingTask Get the name of the task that invoked an interrupt

handler.
ttCallBlockSystem Call a Simulink block diagram from within a code

function.
ttSendMsg Send a message over the network.
ttGetMsg Get a message that has been received over the

network.

Table 3 Real-time primitives.

23

ttInitKernel

Purpose
Initialize the TRUETIME kernel.

Matlab syntax
ttInitKernel(nbrInp, nbrOutp, prioFcn)
ttInitKernel(nbrInp, nbrOutp, prioFcn, csoh)

C++ syntax
void ttInitKernel(int nbrInp, int nbrOutp, int prioFcn)
void ttInitKernel(int nbrInp, int nbrOutp, int prioFcn, double csoh)

Arguments

nbrInp Number of input channels, i.e. the size of the A/D port of the
computer block.

nbrOutp Number of output channels, i.e. the size of the D/A port of the
computer block.

prioFcn The scheduling policy used by the kernel.
csoh The overhead time for a full context switch. Unless specified, zero

overhead will be associated with context switches.

Description
This function performs necessary initializations of the computer block and must be
called first of all in the initialization script. The priority function should be any
of the following in the MATLAB case; ’prioFP’, ’prioRM’, ’prioDM’, or ’prioEDF’.
The corresponding identifiers in the C++ case are; FP, RM, DM, and EDF. To define
an arbitrary priority function, see ttAttachPrioFcn.

See Also
ttAttachPrioFcn

24

ttCreatePeriodicTask

Purpose
Create a periodic TRUETIME task.

Matlab syntax
ok = ttCreatePeriodicTask(name, release, period, priority, codeFcn)
ok = ttCreatePeriodicTask(name, release, period, priority, codeFcn, data)

C++ syntax
bool ttCreatePeriodicTask(char* name, double release, double period,

double priority, double (*codeFcn)(int, void*))
bool ttCreatePeriodicTask(char *name, double release, double period,

double priority, double (*codeFcn)(int, void*), void* data)

Arguments

name Name of the task. Must be a unique, non-empty string.
release Release time of the first instance of the periodic task.
period Period of the task.
priority Priority of the task. This should be a value greater than zero, where

a small number represents a high priority.
codeFcn The code function of the task, where codeFcn is a string (name of an

M-file) in the MATLAB case and a function pointer in the C++ case.
data An arbitrary data structure representing the local memory of the

task.

Description
This function is used to create a periodic task to run in the TRUETIME kernel.
The function returns true if successful and false otherwise. The periodicity is
implemented by a periodic timer, generating task instances. The deadline and worst-
case execution time of the task are by default set equal to the task period. This may
be changed by a suitable set-function.

See Also
ttCreateTask, ttSetX

25

ttCreateTask

Purpose
Create a TRUETIME task.

Matlab syntax
ok = ttCreateTask(name, deadline, priority, codeFcn)
ok = ttCreateTask(name, deadline, priority, codeFcn, data)

C++ syntax
bool ttCreateTask(char* name, double deadline, double priority,

double (*codeFcn)(int, void*))
bool ttCreateTask(char *name, double deadline, double priority,

double (*codeFcn)(int, void*), void* data)

Arguments

name Name of the task. Must be a unique, non-empty string.
deadline Relative deadline of the task.
priority Priority of the task. This should be a value greater than zero, where

a small number represents a high priority.
codeFcn The code function of the task, where codeFcn is a string (name of an

M-file) in the MATLAB case and a function pointer in the C++ case.
data An arbitrary data structure representing the local memory of the

task.

Description
This function is used to create an a-periodic task to run in the TRUETIME kernel. The
function returns true if successful and false otherwise. Note that no task instance
(job) is created by this function. This is done by the primitive ttCreateJob.

See Also
ttCreatePeriodicTask, ttCreateJob, ttSetX

26

ttCreateJob

Purpose
Create a job of a task.

Matlab syntax
ok = ttCreateJob(release)
ok = ttCreateJob(release, taskname)

C++ syntax
bool ttCreateJob(double release)
bool ttCreateJob(double release, char *taskname)

Arguments

taskname Name of a task.
release Release time of the job.

Description
This function is used to create job instances of tasks. If there already exist pending
jobs for the task, the job is queued and served as soon as possible. Jobs are queued
and served after release time. This function must be called to activate a-periodic
tasks, i.e., tasks created using ttCreateTask. The function returns true if success-
ful and false otherwise. If the task name is not specified the call will affect the
currently running task.

See Also
ttCreateTask, ttKillJob

27

ttKillJob

Purpose
Kill the running job of a task.

Matlab syntax
ttKillJob(taskname)

C++ syntax
void ttKillJob(char *taskname)

Arguments

taskname Name of a task.

Description
This function is used to kill the running job instance of a task. If there exist pending
jobs for the task that should be released, the first job in the queue will be scheduled
for execution.

See Also
ttCreateJob

28

ttCreateInterruptHandler

Purpose
Create a TRUETIME interrupt handler.

Matlab syntax
ok = ttCreateInterruptHandler(name, priority, codeFcn)
ok = ttCreateInterruptHandler(name, priority, codeFcn, data)

C++ syntax
bool ttCreateInterruptHandler(char *name, double priority,

double (*codeFcn)(int, void*))
bool ttCreateInterruptHandler(char *name, double priority,

double (*codeFcn)(int, void*), void* data)

Arguments

name Name of the handler. Must be a unique, non-empty string.
priority Priority of the handler. This should be a value greater than zero,

where a small number represents a high priority.
codeFcn The code function of the handler, where codeFcn is a string (name

of an M-file) in the MATLAB case and a function pointer in the C++
case.

data An arbitrary data structure representing the local memory of the
handler.

Description
This function is used to create an interrupt handler to run in the TRUETIME kernel.
The function returns true if successful and false otherwise. Interrupt handlers
may be associated with external interrupts, timers, or attached to tasks as overrun
handlers.

See Also
ttCreateTimer, ttCreateExternalTrigger, ttAttachDLHandler,
ttAttachWCETHandler

29

ttCreateExternalTrigger

Purpose
Associate a TRUETIME interrupt handler with an external interrupt channel.

Matlab syntax
ok = ttCreateExternalTrigger(handlername, latency)

C++ syntax
bool ttCreateExternalTrigger(char *handlername, double latency)

Arguments

handlername Name of a created handler to be associated with the external
interrupt.

latency The time interval during which the interrupt channel is
insensitive to new invocations.

Description
This function is used to associate an interrupt handler with an external interrupt
channel. The function returns true if successful and false otherwise. The size of
the external interrupt port will be decided depending on the number of created
triggers. The interrupt handler is activated when the signal connected to the exter-
nal interrupt port changes value. If the external signal changes again within the
interrupt latency, this interrupt is ignored.

See Also
ttCreateInterruptHandler

30

ttNoSchedule

Purpose
Switch off the schedule generation for a specific task or interrupt handler.

Matlab syntax
ttNoSchedule(name)

C++ syntax
void ttNoSchedule(char* name)

Arguments

name Name of a task or interrupt handler.

Description
This function is used to switch off the schedule generation for a specific task or
interrupt handler. The schedule is generated by default and this function must be
called to turn it off. This function can only be called from the initialization script.

31

ttNonPreemptable

Purpose
Make a task non-preemptable.

Matlab syntax
ttNonPreemptable(taskname)

C++ syntax
void ttNonPreemptable(char* taskname)

Arguments

taskname Name of a task.

Description
Tasks are by default preemptable. Use this function to specify that a task can not be
preempted by other tasks. Non-preemptable tasks may, however, still be preempted
by interrupts.

32

ttAttachDLHandler

Purpose
Attach a deadline overrun handler to a task.

Matlab syntax
ttAttachDLHandler(taskname, handlername)

C++ syntax
void ttAttachDLHandler(char* taskname, char* handlername)

Arguments

taskname Name of a task.
handlername Name of an interrupt handler.

Description
This function is used to attach a deadline overrun handler to a task. The interrupt
handler is activated if the task executes past its deadline.

See Also
ttAttachWCETHandler, ttSetDeadline

33

ttAttachWCETHandler

Purpose
Attach a worst-case execution time overrun handler to a task.

Matlab syntax
ttAttachWCETHandler(taskname, handlername)

C++ syntax
void ttAttachWCETHandler(char* taskname, char* handlername)

Arguments

taskname Name of a task.
handlername Name of an interrupt handler.

Description
This function is used to attach a worst-case execution time overrun handler to a
task. The interrupt handler is activated if the task executes longer than its associ-
ated worst-case execution time.

See Also
ttAttachDLHandler, ttSetWCET

34

ttAttachPrioFcn (C++ only)

Purpose
Attach an arbitrary priority function to be used by the kernel.

C++ syntax
void ttAttachPrioFcn(double (*prioFcn)(Task*))

Arguments

prioFcn The priority function to be attached.

Description
This function is used to attach an arbitrary priority function to the TRUETIME

kernel. The input to the priority function is a pointer to a Task structure, see
$DIR/truetime/kernel/task.h for the definition. The output from the priority func-
tion should be a number that gives the (possibly dynamic) priority of the task. As
an example, the simple priority function implementing fixed-priority scheduling is
given below:

double prioFP(Task* task) {

return task->priority;
}

35

ttAttachHook (C++ only)

Purpose
Attach a run-time hook to a task.

C++ syntax
void ttAttachHook(char* taskname, int ID, void (*hook)(Task*))

Arguments

taskname Name of a task.
ID An identifier telling when the hook should be called during

simulation. Possible values are RELEASE, START, SUSPEND, RESUME,
and FINISH.

hook The hook to be attached.

Description
This function is used to attach a run-time hook to a specific task. When the hook
will be called is determined by the identifier ID. It is possible to attach hooks that
are called when the task is released, when the task starts to execute, when the
task is suspended, when the task resumes after being suspended, and when the
task finishes execution.

The input to the hook is a pointer to the Task structure of the specific task, see
$DIR/truetime/kernel/task.h for the definition.

36

ttCreateMonitor

Purpose
Create a TRUETIME monitor.

Matlab syntax
ok = ttCreateMonitor(name, display)

C++ syntax
bool ttCreateMonitor(char *name, bool display)

Arguments

name Name of the monitor. Must be a unique, non-empty string.
display To indicate if the monitor should be included in the monitor graph

generated by the simulation.

Description
This function is used to create a monitor in the TRUETIME kernel. The function
returns true if successful and false otherwise.

See Also
ttEnterMonitor, ttExitMonitor

37

ttEnterMonitor

Purpose
Attempt to enter a monitor.

Matlab syntax
ttEnterMonitor(monitorname)

C++ syntax
void ttEnterMonitor(char *monitorname)

Arguments

monitorname Name of a monitor.

Description
This function is used to attempt to enter a monitor. If the attempt fails, the task will
be removed from the ready queue and inserted in the waiting queue of the monitor
on a FIFO basis. When the task currently holding the monitor exits, the first task
in the waiting queue will be moved to the ready queue now holding the monitor.
Execution will then resume in the segment after the call to ttEnterMonitor. Priority
inheritance is used if a task tries to enter a monitor currently held by a lower priority
task. If the attempt to enter the monitor fails, the suspend-hook of the task will be
executed. When the task enters the monitor, the resumed-hook is executed.

Example:

function [exectime, data] = ctrl(seg, data)

switch seg,

case 1,
ttEnterMonitor(’mutex’);
exectime = 0.0;

case 2,
criticalOperation;
exectime = 0.001;

case 3,
ttExitMonitor(’mutex’);
exectime = -1;

end

See Also
ttCreateMonitor, ttExitMonitor

38

ttExitMonitor

Purpose
Exit a monitor.

Matlab syntax
ttExitMonitor(monitorname)

C++ syntax
void ttExitMonitor(char *monitorname)

Arguments

monitorname Name of a monitor.

Description
This function is used to exit a monitor. The function can only be called by the task
currently holding the monitor. The call will cause the first task in the waiting queue
of the monitor to be moved to the ready queue.

See Also
ttCreateMonitor, ttEnterMonitor

39

ttCreateEvent

Purpose
Create a TRUETIME event.

Matlab syntax
ok = ttCreateEvent(eventname)
ok = ttCreateEvent(eventname, monitorname)

C++ syntax
bool ttCreateEvent(char *eventname)
bool ttCreateEvent(char *eventname, char *monitorname)

Arguments

eventname Name of the event. Must be a unique, non-empty string.
monitorname Name of an already created monitor to which the event is to be

associated.

Description
This function is used to create an event in the TRUETIME kernel. The function
returns true if successful and false otherwise. Events may be free, or associated
with a monitor.

See Also
ttWait, ttNotifyAll

40

ttWait

Purpose
Wait for an event.

Matlab syntax
ttWait(eventname)

C++ syntax
void ttWait(char *eventname)

Arguments

eventname Name of an event.

Description
This function is used to wait for an event. If the event is associated with a monitor,
the call must be performed inside a ttEnterMonitor-ttExitMonitor construct. The
call will cause the task to be moved from the ready queue to the waiting queue of
the event. When the task is later notified, it will be moved to the waiting queue
of the associated monitor, or to the ready queue if it is a free event. A call to this
function will trigger execution of the suspend-hook of the task. When the task is
notified of the event, the resume-hook will be executed.

Example of an event-driven code function:

function [exectime, data] = ctrl(seg, data)

switch seg,

case 1,
ttWait(’Event1’);
exectime = 0.0;

case 2,
performCalculations;
exectime = 0.001;

case 3,
ttSetNextSegment(1); % loop and wait for new event
exectime = 0.0;

end

See Also
ttCreateEvent, ttNotifyAll

41

ttNotifyAll

Purpose
Notify all tasks waiting for an event.

Matlab syntax
ttNotifyAll(eventname)

C++ syntax
void ttNotifyAll(char *eventname)

Arguments

eventname Name of an event.

Description
This function is used to notify all tasks waiting for an event. If the event is associ-
ated with a monitor, the call must be performed inside a ttEnterMonitor-ttExitMo-
nitor construct. The call will cause all tasks waiting for the event to be moved to
the waiting queue of the associated monitor, or to the ready queue if it is a free
event.

See Also
ttCreateEvent, ttWait

42

ttCreateMailbox

Purpose
Create a TRUETIME mailbox for inter-task communication.

Matlab syntax
ok = ttCreateMailbox(mailboxname, maxsize)

C++ syntax
bool ttCreateMailbox(char *mailboxname, int maxsize)

Arguments

mailboxname Name of the mailbox. Must be a unique, non-empty string.
maxsize The size of the buffer associated with the mailbox.

Description
This function is used to create a mailbox for communication between tasks. The
function returns true if successful and false otherwise. The TRUETIME mailbox
implements asynchronous message passing with indirect naming. A buffer is used
to store incoming messages, and the size of this buffer is specified by maxsize.

See Also
ttTryFetch, ttTryPost

43

ttTryFetch

Purpose
Fetch a message from a mailbox.

Matlab syntax
msg = ttTryFetch(mailboxname)

C++ syntax
void* ttTryFetch(char* mailboxname)

Arguments

mailboxname Name of a mailbox.

Description
This function is used to fetch messages from a mailbox. If successful, the function
returns the oldest message in the buffer of the mailbox. Otherwise, it returns NULL
(C++) or an empty struct (MATLAB).

See Also
ttCreateMailbox, ttTryPost

44

ttTryPost

Purpose
Post a message to a mailbox.

Matlab syntax
ok = ttTryPost(mailboxname, msg)

C++ syntax
bool ttTryPost(char* mailboxname, void* msg)

Arguments

mailboxname Name of a mailbox.
msg An arbitrary data structure representing the contents of the

message to be posted.

Description
This function is used to post messages to a mailbox. If successful, the message is
put in the buffer of the mailbox, and the function returns true. Otherwise, the
function returns false.

See Also
ttCreateMailbox, ttTryFetch

45

ttCreateTimer

Purpose
Create a one-shot timer and associate an interrupt handler with the timer.

Matlab syntax
ok = ttCreateTimer(timername, time, handlername)

C++ syntax
bool ttCreateTimer(char *timername, double time, char *handlername)

Arguments

timername Name of the timer. Must be unique, non-empty string.
time The time when the timer is set to expire.
handlername Name of interrupt handler associated with the timer.

Description
This function is used to create a one-shot timer. When the timer expires the as-
sociated interrupt handler is activated and scheduled for execution. The function
returns true if successful and false otherwise.

See Also
ttCreateInterruptHandler, ttCreatePeriodicTimer, ttRemoveTimer

46

ttCreatePeriodicTimer

Purpose
Create a periodic timer and associate an interrupt handler with the timer.

Matlab syntax
ok = ttCreatePeriodicTimer(timername, start, period, handlername)

C++ syntax
bool ttCreatePeriodicTimer(char *timername, double start, double period,

char *handlername)

Arguments

timername Name of the timer. Must be unique, non-empty string.
start The time for the first expiry of the timer.
period The period of the timer.
handlername Name of interrupt handler associated with the timer.

Description
This function is used to create a periodic timer. Each time the timer expires the
associated interrupt handler is activated and scheduled for execution. The function
returns true if successful and false otherwise.

See Also
ttCreateInterruptHandler, ttCreateTimer, ttRemoveTimer

47

ttRemoveTimer

Purpose
Remove a specific timer.

Matlab syntax
ttRemoveTimer(timername)

C++ syntax
void ttRemoveTimer(char *timername)

Arguments

timername Name of the timer to be removed.

Description
This function is used to remove timers. Both one-shot and periodic timers can be
removed by this function. Using this function on a periodic timer will remove the
timer completely, and not only the current instance.

See Also
ttCreateTimer, ttCreatePeriodicTimer

48

ttCurrentTime

Purpose
Get the current time in the simulation.

Matlab syntax
time = ttCurrentTime

C++ syntax
double ttCurrentTime(void)

Description
This function returns the current time in the simulation, in seconds.

49

ttSleepUntil

Purpose
Put a task to sleep until a certain point in time.

Matlab syntax
ttSleepUntil(time)
ttSleepUntil(time, taskname)

C++ syntax
void ttSleepUntil(double time)
void ttSleepUntil(double time, char *taskname)

Arguments

time The time when the task should wake up.
taskname Name of a task.

Description
This function is used to make a task sleep until a specified point in time. If the
argument taskname is not specified, the call will affect the currently running task.
A call to this function will trigger execution of the suspend-hook of the task. When
the task wakes up, the resume-hook will be executed.

See Also
ttSleep

50

ttSleep

Purpose
Put a task to sleep for a certain time.

Matlab syntax
ttSleep(duration)
ttSleep(duration, taskname)

C++ syntax
void ttSleep(double duration)
void ttSleep(double duration, char *taskname)

Arguments

duration The time that the task should sleep.
taskname Name of a task.

Description
This function is used to make a task sleep for a specified amount of time. If the
argument taskname is not specified, the call will affect the currently running task.
This function is equivalent to ttSleepUntil(duration + ttCurrentTime()). A call
to this function will trigger execution of the suspend-hook of the task. When the
task wakes up, the resume-hook will be executed.

See Also
ttSleepUntil

51

ttAnalogIn

Purpose
Read a value from an analog input channel.

Matlab syntax
value = ttAnalogIn(inpChan)

C++ syntax
double ttAnalogIn(int inpChan)

Arguments

inpChan The input channel to read from.

Description
This function is used to read an analog input from the environment. The input
channel must be between 1 and the number of input channels of the computer
block specified in ttInitKernel.

See Also
ttAnalogOut

52

ttAnalogOut

Purpose
Write a value to an analog output channel.

Matlab syntax
ttAnalogOut(outpChan, value)

C++ syntax
void ttAnalogOut(int outpChan, double value)

Arguments

outpChan The output channel to write to.
value The value to write.

Description
This function is used to write an analog output to the environment. The out-
put channel must be between 1 and the number of output channels specified in
ttInitKernel.

See Also
ttAnalogIn

53

ttSetNextSegment

Purpose
Set the next segment to be executed in the code function.

Matlab syntax
ttSetNextSegment(segment)

C++ syntax
void ttSetNextSegment(int segment)

Arguments

segment Number of the segment.

Description
This function is used to set the next segment to be executed, overriding the normal
execution order. This can be used to implement conditional branching and loops
(see, e.g., the description of ttWait). The segment number should be between 1
and the number of segments defined in the code function.

54

ttInvokingTask

Purpose
Get the name of the task that invoked an interrupt handler.

Matlab syntax
task = ttInvokingTask

C++ syntax
char *ttInvokingTask(void)

Description
This function returns the name of the task that has invoked an interrupt handler.
Used, e.g., in generic interrupt handlers associated with task overruns (deadline,
WCET) to determine which task that caused the interrupt. In the cases when the
interrupt was generated externally or by the expiry of a timer, this function returns
NULL (C++) or an empty struct (MATLAB).

See Also
ttAttachDLHandler, ttAttachWCETHandler

55

ttCallBlockSystem

Purpose
Call a Simulink block diagram from within a code function.

Matlab syntax
outp = ttCallBlockSystem(nbroutp, inp, blockname)

C++ syntax
bool ttCallBlockSystem(int nbroutp, double *outp, int nbrinp,

double *inp, char *blockname)

Arguments

nbrinp Number of inputs to the block diagram.
nbroutp Number of outputs from the block diagram.
inp Vector of input values.
outp Vector of output values.
blockname The name of the Simulink block diagram.

Description
This function is used to call a Simulink block diagram from within a code function.
The states of the block diagram are stored in the kernel between calls. The block
diagrams may only contain discrete blocks and the sampling times should be set
to one. The C++ function returns true if successful, and false otherwise. The
MATLAB function returns a vector of zeros if unsuccessful. The inputs and outputs
are defined by Simulink inports and outports, see the figure below. Here follows an
example using this Simulink diagram:

function [exectime, data] = PIDcontroller(segment, data)

switch segment,
case 1,

inp(1) = ttAnalogIn(1);
inp(2) = ttAnalogIn(2);
outp = ttCallBlockSystem(2, inp, ’controller’);
data.u = outp(1);
exectime = outp(2);

case 2,
ttAnalogOut(1, data.u);
exectime = -1;

end

56

ttSetX

Purpose
Set a task attribute.

Matlab syntax
ttSetX(value)
ttSetX(value, taskname)

C++ syntax
void ttSetX(double value)
void ttSetX(double value, char *taskname)

Arguments

value Value to be set.
taskname Name of a task.

Description
These functions are used to manipulate task attributes. There exist functions for
the following attributes (with the true function name in parenthesis):

• relative deadline (ttSetDeadline)
• absolute deadline (ttSetAbsDeadline)
• priority (ttSetPriority)
• period (ttSetPeriod)
• worst-case execution time (ttSetWCET)
• execution time budget (ttSetBudget)

Use the ttSetX functions to change the default attributes set by ttCreateTask and
ttCreatePeriodicTask. All these functions exist in overloaded versions as shown
by the syntax above. If the argument taskname is not specified, the call will affect
the currently running task.

Following are some special notes on the individual functions:

ttSetDeadline: Changing the relative deadline of a task will only affect subsequent
task instances and not the absolute deadline of the currently running task instance.
If deadline-monotonic scheduling is used, a call to this function may lead to a context
switch, or a re-ordering of the ready queue.

ttSetAbsDeadline: A call to this function will only affect the absolute deadline for
the current task instance. If a deadline overrun handler is attached to the task, this
will be triggered based on the new absolute deadline. Using earliest-deadline-first
scheduling, a call to this function may cause a context switch, or a re-ordering of
the ready queue.

ttSetPriority: Priority values for tasks should be positive. If the task is holding
a monitor, and is currently inheriting the priority of a higher priority task, the

57

new priority will not be assigned until the task exits the monitor. In the case of
fixed-priority scheduling a call to this function may lead to a context switch, or a
re-ordering of the ready queue.

ttSetPeriod: This function is only applicable to periodic tasks. Assuming a period
h1 before the call, task instances are created at times h1, 2h1, 3h1, etc. If the call
is executed at time h1 +τ , new task instances will be created at the times h1 + h2,
h1+2h2, h1+3h2, etc., where h2 is the new period of the task. Using rate-monotonic
scheduling, a call to this function may cause a context switch, or a re-ordering of
the ready queue.

ttSetWCET: Changes the worst-case execution time of the task. Each new task
instance will get an execution time budget equal to the worst-case execution time
associated with task. A call to this function will not influence the execution time
budget of the currently running task instance.

ttSetBudget: This call is used to dynamically change the execution time budget of a
running task instance. When a task instance is created, the execution time budget
is set to the worst-case execution time of the task. A call to this function will only
have effect if there is a worst-case execution time overrun handler attached to the
task. This handler is activated when the budget is exhausted, and will be triggered
based on the new execution time budget.

See Also
ttCreateTask, ttCreatePeriodicTask, ttGetX

58

ttGetX

Purpose
Get a task attribute.

Matlab syntax
value = ttGetX
value = ttGetX(taskname)

C++ syntax
double ttGetX(void)
double ttGetX(char *taskname)

Arguments

taskname Name of a task.

Description
These functions are used to retrieve values of task attributes. There exist functions
for the following attributes (with the true function name in parenthesis):

• release (ttGetRelease)
• relative deadline (ttGetDeadline)
• absolute deadline (ttGetAbsDeadline)
• priority (ttGetPriority)
• period (ttGetPeriod)
• worst-case execution time (ttGetWCET)
• execution time budget (ttGetBudget)

Use the ttGetX functions to retrieve the current attributes of a task. All the func-
tions exist in overloaded versions as shown by the syntax above. If the argument
taskname is not specified, the call will affect the currently running task. The func-
tions will return a value of zero if there is no task running or if the specified task
does not exist.

Following are some special notes on the individual functions:

ttGetRelease: Returns the time when the current task instance was released. If
there is no running task instance the function will return zero.

ttGetDeadline: Returns the relative deadline of the task.

ttGetAbsDeadline: Returns the absolute deadline of the current task instance. If
there is no running task instance the function will return zero.

ttGetPriority: Returns the priority of the task. The function will return the current
priority of the task, i.e., if the priority has been raised because of priority inheritance
the higher priority will be returned.

59

ttGetPeriod: Returns the period of a periodic task.

ttGetWCET: Returns the worst-case execution time of a task.

ttGetBudget: Returns the remaining execution time budget of the current task in-
stance. The execution time budget is decreased each time a new segment of the
code function is executed, as well as when the task is suspended by another task.
If there is no running task instance the function will return zero.

See Also
ttSetX

60

ttInitNetwork

Purpose
Initialize the TRUETIME network interface.

Matlab syntax
ttInitNetwork(nodenumber, handlername)

C++ syntax
void ttInitNetwork(int nodenumber, char *handlername)

Arguments

nodenumber The address of the node in the network. Must be a number
between 1 and the number of nodes as specified in the dialog of
the TRUETIME Network block.

handlername The name of an interrupt handler that should be invoked when
a message arrives over the network.

Description
The network interface must be initialized using this command before any mes-
sages can be sent or received. The initialization will fail if there is not exactly one
TRUETIME Network block in the Simulink model.

See Also
ttSendMsg, ttGetMsg

61

ttSendMsg

Purpose
Send a message over the network.

Matlab syntax
ttSendMsg(receiver, data, length)
ttSendMsg(receiver, data, length, priority)

C++ syntax
void ttSendMsg(int receiver, void *data, int length)
void ttSendMsg(int receiver, void *data, int length, int priority)

Arguments

receiver The number of the receiving node (a number between 1 and the
number of nodes). It is allowed to send messages to oneself.

data An arbitrary data structure representing the contents of the
message.

length The length of the message, in bytes. Determines the time it will
take to transmit the message.

priority The priority of the message (relevant only for CSMA/CA networks).
If not specified, the priority will be given by the number of the
sending node, i.e., messages sent from node 1 will have the highest
priority by default.

Description
The network interface must have been initialized using ttInitNetwork before any
messages can be sent.

See Also
ttInitNetwork, ttGetMsg

62

ttGetMsg

Purpose
Get a message that has been received over the network.

Matlab syntax
ttGetMsg

C++ syntax
void *ttGetMsg()

Description
This function is used to retrieve a message that has been received over the network.
Typically, you have been notified that a message exists in the network interface
input queue by an interrupt, but it is also possible to poll for new messages. If no
message exists, the function will return NULL (C++) or an empty struct (MATLAB).
The network interface must have been initialized using ttInitNetwork before any
messages can be received.

C++ example of an event-driven receiver:

// Task that waits for and reads messages
double receiver_task(int seg, void *data)
{

MyMsgType *msg;
switch (seg) {
case 1:

ttWait("message");
return 0.0;

case 2:
// Get all messages (may be more than one!)
while ((msg = (MyMsgType *)ttGetMsg()) != NULL) {
printf("I got a message!\n");
delete msg; // don’t forget to free memory

}
ttSetNextSegment(1); // loop
return 0.0;

}
}

// Interrupt handler that is called by the network interface
double msgRcvhandler(int seg, void *data)
{

ttNotifyAll("message");
return FINISHED;

}

See Also
ttInitNetwork, ttSendMsg

63

11. References

Bollella, G., B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turnbull
(2000): The Real-Time Specification for Java. Addison-Wesley.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén (2003): “Analysis
and simulation of controller timing.” IEEE Control Systems Magazine. To
appear.

Henriksson, D., A. Cervin, and K.-E. Årzén (2002): “Truetime: Simulation of control
loops under shared computer resources.” In Proceedings of the 15th IFAC World
Congress on Automatic Control. Barcelona, Spain.

The Mathworks (2000): Simulink: Dynamic System Simulation for MATLAB. The
MathWorks Inc., Natick, MA.

64

