LUND UNIVERSITY

Languages and Tools for Optimization of Large-Scale Systems

Akesson, Johan

2007

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Akesson, J. (2007). Languages and Tools for Optimization of Large-Scale Systems. [Doctoral Thesis
(monograph), Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology,
Lund University.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/8269963c-b12c-4931-8019-c67c84494199

Languages and Tools for
Optimization of Large-Scale Systems

Languages and Tools for
Optimization of Large-Scale Systems

Johan Akesson

Department of Automatic Control
Lund University
Lund, November 2007

To Gustav

Department of Automatic Control
Lund University

Box 118

SE-221 00 LUND

Sweden

ISSN 0280-5316
ISRN LUTFD2/TFRT--1081--SE

© 2007 by Johan Akesson. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2007

Preface

During the course of my PhD studies, I have deliberately sought research
problems in diverse fields. I have also been involved in several projects,
which I have benefited from by collecting experiences from different fields.
My engagement in these projects has resulted in rewarding cooperations
with fellow researchers. The impact of such collaborations are also evident
in this thesis. In this preface, I briefly describe the projects in which I
have been involved during my time as a PhD student.

One of my most important experiences in the area of control is the
internship I did at the Department of Automatic Control in Lund, in the
summer of 1999. The purpose of the internship was to develop a demon-
strator of safe manual control, based on the Furuta pendulum process.
Knowledge of control theory turned out to be important, but also quite
insufficient in order to solve the problem at hand. In addition to control
theory, understanding of computer control, sensors and electronics, and
derivation of dynamic models of mechanical systems proved to be equally
important. These initial experiences from hands-on control system devel-
opment later became my main motivation to pursue further studies in the
subject.

The projects that I have participated in include:

Safe manual control of pendula. Starting as a seven-week internship
at the Department of Automatic Control and supervised by Karl
Johan Astrém, the work on safe manual control of pendula was
expanded into my master’s thesis. Initially, the main focus of the
project was experiments, and the development of a demonstrator, but
came to also involve some theoretical stability results. This project
has been active, however with low intensity, throughout my time as
a PhD student.

Operator support systems and grade changes. The second project
was originally part of the EU-sponsored project CHEM. My part
was to study operator support systems for grade changes in process

5

Preface

industry. The approach relied on model-based optimization and a
tool for sequence control, JGrafchart. The ideas from this project
later resulted in an industrial cooperation with Assidoméin Frovi.

Assidoman Frovi. In an attempt to increase the industrial input to the
operator support project, the paper mill Assidoméin Frovi was ap-
proached. A cooperation was initiated, and together we ran a mas-
ter’s thesis project, that was quite successful. Nevertheless, in Au-
gust of 2005, it was clear that the cooperation would not continue,
due to Assidomén Frovi being acquired by another company.

Model predictive control and MPCTools. As part of the work on sup-
port systems for operators I worked on model predictive control
(MPC). This work resulted in an MPC toolbox for Matlab, MPCtools.
MPCtools has been freely available on-line since January 2006, and
the download count is about 500, as of October 2007.

Integral action. As a spin-off from the work on MPC, I diverted into a
study of control structures that guarantees integral action in MIMO
systems. The results of the work also propagated back into MPC-
tools.

Real-time aspects of MPC. Following the tradition of integration of
control and real-time systems at the department, I was involved
in a project dealing with real-time aspects of MPC, where I col-
laborated with Dan Henriksson. As part of the project, MPCtools
was integrated with TrueTime, an in-house toolbox for simulation
of real-time control systems.

YAIP. Another on-going, mostly low intensity project during my time as
a PhD student has been the construction of a miniature robot on
two wheels (effectively an inverted pendulum on wheels). The idea
originated from a course in Computer Mechatronics taught by Mar-
tin Nilsson, at SICS. The current design is based on (at least) two
previous prototypes. The mechanical and electronics design, as well
as the actual construction of the robot has been performed by Rolf
Braun. In addition, Anders Blomdell has contributed many ideas on
various design issues.

Paper machine modeling and DryLib. After the cooperation with As-
sidomén Frévi, I continued to work on paper machine modeling, but
now in cooperation with Ola Slitteke, currently at Péyry. My role
in this project was not so much related to physical modeling (that
topic is Ola’s domain of expertise) but to the construction of a Mod-
elica library, DryLib. In a second step, DryLib was used in a case

study on parameter optimization, and was also developed further in
a master’s thesis project.

JModelica and Optimica. After the termination of the cooperation with
Assidomén Frovi, the JModelica project was initiated. The project
was partly motivated by my experiences from working with dynamic
optimization for large-scale systems, notably in the DryLib project.
The coding effort in that project was significant, and the JModelica
project was started based upon the hypothesis that improved high-
level support for optimization in the Modelica language would yield
improved productivity in the design process.

Start-up optimization of a plate reactor. Early on in the JModelica
project, it was decided that a case study related to large-scale dy-
namic optimization should be performed, in order to provide a proof
of concept. Staffan Haugwitz, who was working with control and
optimization of a plate reactor system of suitable size and struc-
ture, agreed to use the JModelica/Optimica tools to solve a start-up
problem that was part of his research. Staffan also became the first
beta-tester of the Optimica compiler and supported the JModelica
project by providing input from a user’s perspective.

In this thesis, results from the following projects are presented: Safe
manual control of pendula, YAIP, Paper machine modeling and DryLib,
JModelica and Optimica, and Start-up optimization of a plate reactor. Ma-
terial related to some of the other projects were presented in my Licentiate
thesis [Akesson, 2003]. The included material is organized into three main
parts, which constitutes three out of five parts of the thesis: Languages
and Tools for Dynamic Optimization, Case Studies, and Manual Control
of Pendula. Together, these parts reflect some of the characteristic aspects
of automatic control, ranging from high-level languages for physical mod-
eling to implementation of control algorithms using fixed-point arithmetic
for embedded processors. Given my motivations for pursuing PhD stud-
ies, I have enjoyed writing this thesis. I hope that you will find it equally
enjoyable to read.

Johan Akesson, October 2007

Abstract

Modeling and simulation are established techniques for solving design
problems in a wide range of engineering disciplines today. Dedicated com-
puter languages, such as Modelica, and efficient software tools are avail-
able. In this thesis, an extension of Modelica, Optimica, targeted at dy-
namic optimization of Modelica models is proposed. In order to demon-
strate the Optimica extension, supporting software has been developed.
This includes a modularly extensible Modelica compiler, the JModelica
compiler, and an extension that supports also Optimica.

A Modelica library for paper machine dryer section modeling, DryLib,
has been developed. The classes in the library enable structured and hi-
erarchical modeling of dryer sections at the application user level, while
offering extensibility for the expert user. Based on DryLib, a parameter
optimization problem, a model reduction problem, and an optimization-
based control problem have been formulated and solved.

A start-up optimization problem for a plate reactor has been formu-
lated in Optimica, and solved by means of the Optimica compiler. In ad-
dition, the robustness properties of the start-up trajectories have been
evaluated by means of Monte-Carlo simulation.

In many control systems, it is necessary to consider interaction with
a user. In this thesis, a manual control scheme for an unstable inverted
pendulum system, where the inputs are bounded, is presented. The pro-
posed controller is based on the notion of reachability sets and guarantees
semi-global stability for all references.

An inverted pendulum on a two wheels robot has been developed. A
distributed control system, including sensor processing algorithms and a
stabilizing control scheme has been implemented on three on-board em-
bedded processors.

Acknowledgments

Firstly, I would like to express my gratitude to my supervisor Karl-Erik
Arzén, for giving me the opportunity to pursue research in the areas that
I have found interesting and stimulating. Karl-Erik’s sound judgement
and guidance have given me the confidence to take on challenges that I
might have otherwise left unexplored. As my co-supervisor, Per Hagander
has been the ultimate discussion partner, and I have very much enjoyed
our, not always control-related, discussion sessions. Gorel Hedin became
my co-supervisor in the fall of 2006, and she has been my JastAdd mentor
ever since. Gorel’s interest in discussing the JModelica project, implemen-
tational details as well as how to improve the clarity of the presentation,
has very much affected the outcome of the corresponding parts of this
thesis. I also would like to thank Karl Johan Astrém for bringing my at-
tention to the field of automatic control. When Karl Johan hired me as a
trainee during the summer of 1999, he also introduced me to the exciting
field of control, and for this I am very grateful.

Further, I would like to thank Staffan Haugwitz for a rewarding col-
laboration related to dynamic start-up optimization of a plate reactor. It
is not feasible to mention Staffan without also mentioning his exceptional
ability to make people, including me, get into that good mood that is char-
acteristic of him. And accordingly, the plate reactor project was a true
joyride. Magnus Géfvert has been willing to discuss all kinds of Modelica-
related topics, also the slightly more philosophical ones. It has been very
rewarding. I also would like to thank Magnus for taking part in the discus-
sion on the final version of the Optimica syntax and semantics. Torbjérn
Ekman has helped me to sort out many issues related to JastAdd and the
implementation of the JModelica compiler. His entusiasm for this project
has been most appreciated. During the work on DryLib and parameter
optimization of a paper machine model, I collaborated with Ola Slitteke
and Jenny Ekvall. I would like to thank Ola and Jenny for eagerly edu-
cating me in the construction of physical paper machine models. In the

11

Acknowledgments

beginning of my time as a PhD student, I collaborated with Dan Hen-
riksson, on a project in which we integrated MPCtools and TrueTime, a
collaboration I very much enjoyed.

During 2004-2005, I was involved in a collaboration with Assidomén
Frovi. This collaboration resulted in a master’s thesis project, and I would
like to thank Bengt Nilsson, Niklas Jansson and Lars Jonhed for giving
me insight into the process of carton-board manufacturing.

I would like to thank the people at Modelon, including: Johan An-
dreasson, Jonas Eborn, Magnus Géfvert, and Hubertus Tummescheit for
interesting discussions on modeling in general and Modelica in particu-
lar. I also would like to thank the Dynasim crew, in particular Hilding
Elmqvist, Hans Olsson, and Sven-Erik Mattson for helping me with var-
ious Dymola and Modelica-related issues.

Twice, I have had the pleasure of visiting Professor. Lorenz T. Biegler’s
research group at Carnegie Mellon University, Pittsburgh, USA. The work
on dynamic optimization and Optimica has been very much influenced by
my experiences from these visits. I would like to thank Professor Biegler,
Carl Laird, Victor Zavala and Juan Arrieta for all the rewarding discus-
sions that we have had, and I certainly look forward continue them in the
future. I also would like to thank Carl for letting me stay in his house
during my visit in January 2007, and for all the late-night discussions
that we had.

It is a very pleasant experience to work at the Department of Auto-
matic Control in Lund. I would like to thank my friends and colleagues
at the Department for making my working days brighter and for eagerly
discussing whatever issue I have come up with—control-oriented or not.
Henrik Sandberg is the perfect room-mate, and I had the pleasure of shar-
ing office with him around 2003-2004. Apart from being a terrific source
of information about linear systems, he also served as the DdJ of our room.
He even played Gessle from time to time and, needless to say, he was thus
a very good DdJ. Pop on!

Leif Andersson keeps our computer systems healthy—his work has
undoubtedly saved me many hours of computer hassle. Also, Leif is a
keen teacher of the mysteries of Linux and KIEX, and I have very much
appreciated his teaching efforts. Anders Blomdell knows the answer to
any questions about programming (at least as far as I can tell), and I
would like to thank him for generously sharing his knowledge with me
whenever I run into a segmentation fault. I also would like to thank Rolf
Braun for letting me mess around in his mechanical workshop, it has
been very rewarding. The dynamic trio on the fifth floor consisting of
Eva Schildt, Britt-Marie Martensson and Agneta Tuszynski has helped
me with numerous administrative (and other) matters. I don’t know what
the Department would be like without you girls, but I am quite sure that I

12

don’t want to know. I also would like to Anders Rantzer for his stimulating
and inspiring leadership.

I have benefited from the teaching of some truly outstanding teach-
ers. Especially, I would like to mention Olle Christensson (physics, Laga-
holmsskolan), Erland Ejder (mathematics and physics, Osbecksgymasiet),
Ann-Sofi Gustavsson (Swedish language and literature, Osbecksgymnasiet),
Margareta Jonsson (English language, Osbecksgymnasiet), Lars-Erik Jon-
sson (history, Osbecksgymnasiet), Sven Spanne (mathematics, LTH), and
Robert E. Bitmead (automatic control, UCSD).

I am indebted to the following persons for reading manuscripts of this
thesis, and for providing me with numerous comments and suggestions
for improvements: David Broman, Anton Cervin, Magnus Géafvert, Staffan
Haugwitz, Carl Laird, Katarina Lundin Akesson, Brad Schofield, Ola Slt-
teke, and Victor Zavala.

I would like to acknowledge the financial support provided by the EC/-
GROWTH CHEM project, aimed at developing advanced decision support
systems for different operator-assisted tasks, e.g., process monitoring,
fault detection and isolation, and operations support, within the chem-
ical process industries. The CHEM project is funded by the European
Community under the Competitive and Sustainable Growth Programme
(1998-2002) under contract G1IRD-CT-2001-00466. The work presented in
Chapter 10 was supported by the Swedish Research Council for Engi-
neering Sciences, grant TFR 281-1998-618. I also would like to gratefully
acknowledge financial travelling support from The Royal Physiographic
Society in Lund, The Royal Swedish Academy of Sciences, Knut and Alice
Wallenbergs Foundation, and Civilingenjoren Hakon Hanssons Founda-
tion.

Sometimes, when my mind has been a bit too set on work, my dear
friends have helped me focus on non-control related essentials in life such
as whisky, computer gaming and cooking. I am very happy to have you all.
My parents, Lena and Bo-Evert Akesson, have given me endless support,
and always encouraged me to do the things I have set my mind to do.
You are the best! Erik, my brother, balances my slightly more theoretical
mindset by bringing my attention to more practical matters, such as driv-
ing tractors, welding, and lately, how to sell, en masse, fertilizers to the
farmers in Scania. It is very rewarding to be your brother.

I also would like to express a special thanks to Katarina, for her sup-
port and encouragement. When my PhD studies were the most difficult,
she gave me the strength to carry on. Finally, I would like to dedicate this
thesis to you, my dear son, Gustav. You are the light of my life.

Johan

13

Contents

1. Introduction 19
11 Motivation and Objectives 20
1.2 Contributions 22
1.3 Managing Complexity 26
14 Modeling and Simulation 30
1.5 Manual Control 36
1.6 Organization of the Thesis 42
Part I. Background 43
2. Modelica e 45
2.1 Simulation of Large Dynamic Systems 46
2.2 The Modelica Translation Process 47
2.3 The Modelica Language 48
2.4 Graphical Annotations 56
2.5 Modelica Tools 57
3. Dynamic Optimization 59
3.1 Calculus of Variations and The Maximum Principle .. 60
3.2 Direct Methods 63
3.3 Applications 73
3.4 Tools for Dynamic Optimization 75
3.5 Summary e 77
Part II. Languages and
Software Tools 79
4. JModelica - A Modelica Compiler 81
4.1 Introduction, 81
4.2 Objectives o e 86
4.3 Development Platform—dJastAdd 86
44 dJastAdd 88
4.5 An Executable Specification 100

Contents

4.6 PicoModelica 101
4.7 The JModelica Compiler 102
4.8 Benchmarks 104
4.9 Extensibility of the JModelica Compiler 106
410 Summary and Conclusions 108
5. Modelica Name and Type Analysis with JastAdd 110
5.1 Ambiguous Names 111
5.2 Classification of Names 112
5.3 Binding Names. 117
54 Type Analysis — Subtype Computation 127
5.5 Summary e e e e 131
6. Flattening of Modelica Models with JastAdd 132
6.1 Simplified Flattening without Modifications 133
6.2 Flattening and Modifications 134
6.3 The Instance AST 136
6.4 Conceptual Construction of the Instance AST 138
6.5 Construction of the Instance AST Using NTA:s 138
6.6 Modification Trees. 142
6.7 Environments 143
6.8 Declarative Construction of Merged Environments . . . 146
6.9 Handling of Structural Modifications 149
6.10 A Flattening Algorithm 153
6.11 Summary e 155
7. Optimica e e 156
7.1 Introduction 156
7.2 Motivation of the Optimica Extension 158
7.3 Scope of Optimica 160
7.4 The Optimica Extension 164
7.5 The Optimica Compiler 171
7.6 Examples, 175
7.7 Generalizations 181
7.8 Summary and Conclusions 183
Part III. Case Studies 185
8. DryLib e 187
8.1 Introduction 187
8.2 Physical Modeling 189
8.3 DryLib 196
8.4 Parameter Optimization 203
8.5 Model Reduction 209
8.6 NMPC of Output Moisture 218
8.7 Software Tools 222
8.8 Summary and Conclusions 224

16

Contents

9. Start-up Control of a Plate Reactor 225
9.1 Introduction, 225
9.2 The Plate Reactor 228
9.3 Problem Formulation 233
9.4 The Optimization Problem 235
9.5 Feedback Control 247
9.6 Simulation with Feedback Control 250
9.7 Monte Carlo Simulations 253
9.8 Summary and Conclusions 256
Part IV. Control of Pendula 257
10. Safe Manual Control of an Inverted Pendulum 259
10.1 Introduction 259
10.2 Equations of Motion 260
10.3 Reachability Set Analysis 262
10.4 A Stabilizing Controller 265
10.5 Tracking 266
10.6 Extensions 270
10.7 Conclusions 272
11. Design and Control of YAIP 273
11.1 Introduction 273
11.2 System Design 274
11.3 Encoder Processing 276
11.4 Gyro and Accelerometer Processing 282
11.5 Dynamic System Model 282
11.6 Stabilizing Control 284
11.7 Implementational Issues 285
11.8 Experimental Results 286
11.9 Conclusions and Suggested Improvements 287
Part V. Conclusions 289
12. Conclusions and Future Work 291
12.1 Languages and Tools for Dynamic Optimization 291
122 Casestudies, 293
12.3 Control of Pendula 294
13. Bibliography 296
A. Collocation and Runge-Kutta Methods 310
B. PicoModelica Syntax and Abstract Grammar 313
B.1 Concrete Syntax 313
B.2 Source Abstract Grammar 314
B.3 Instance Abstract Grammar 315
B.4 Flat Abstract Grammar 315
C. Complete AST for the Examples in Chapter 5. 316

Contents

D. A Flat Optimica Description for an Optimization Problem 317
E. A Modelica Model of a Plate Reactor 322

18

1

Introduction

Automatic control is a research field that intersects with several other dis-
ciplines, such as mathematics, physics, electronics, and computer science.
Another characteristic feature of automatic control is that systems are
studied at different levels of detail. In some applications, it is necessary
to consider the behavior of sensor and actuator hardware, filters imple-
mented by means of analog electronics, low-level control loops, and the
properties of the embedded computing hardware on which signal process-
ing and control algorithms are implemented. Other applications require
plant-wide models composed from hundreds of processing units and their
interconnections, in order to solve design problems at the system-level.
An additional aspect of automatic control is the extensive use of com-
puters, since literally all control functions are implemented in software.
Accordingly, modern control engineering requires a wide frame of refer-
ence, where understanding of products and processes at the system-level,
as well as detailed knowledge of sub-systems at the component-level are
required. This thesis reflects the richness of the field, and is composed of
five parts:

Part 1. Background

Part II. Languages and Software Tools
Part III. Case Studies

Part IV. Control of Pendula

Part V. Conclusions

The main contributions of the thesis are given in Parts II-IV. Part II
is concerned with computer languages and tools for modeling, simulation,
and optimization of large-scale systems. The results presented are strongly
related to the engineering need for high-level descriptions in order to
manage increasing system complexity, as well as the need to enable use
of efficient numerical algorithms based on high-level model descriptions.

19

Chapter 1. Introduction

In Part III, two cases studies are presented. The work in this part is
focused on optimization of large-scale systems, where it is shown how
efficient numerical algorithms for dynamic optimization can be applied
to Modelica models. In addition, the case studies in Part III serve as a
motivation for the language and tool development in Part II. Finally, in
Part IV, theoretical and experimental results on manual control of pendula
are presented. This work is based on classical control theory, mechatronics
and signal processing. Certainly, Part IV is not directly related to Parts II-
III, which will also be reflected in this introductory chapter, where the
backgrounds of these subjects will be given separately. Nevertheless, if
the four parts are considered together, they cover characteristic aspects
in the field of automatic control, ranging from sensor-processing and low-
level control loops to modeling and optimization of large-scale systems.

This chapter is organized as follows. The main objectives of this thesis
are stated in Section 1.1, and its contributions are listed in Section 1.2. In
Section 1.3, the current and future need for languages and tools to manage
the increasing complexity of products and process systems is discussed.
Section 1.4 gives an overview of modeling and simulation, and future di-
rections in the field are discussed. In Section 1.5, control systems where
humans are part of the control loop are introduced. This section serves
as an introduction to the work on manual control of inverted pendula in
Chapters 10 and 11. The chapter ends with an outline of the thesis in
Section 1.6.

1.1 Motivation and Objectives

Languages

There is currently an increasing need to integrate different languages,
tools and algorithms in the engineering design process. Also, the in-
creasing complexity of systems calls for high-level description frameworks.
Based on the observation that Modelica is becoming an increasingly used
language for modeling, a main objective in this thesis is to extend Modelica
with new constructs, in order to accommodate formulation of dynamic op-
timization problems. The proposed extension is entitled Optimica. While
dynamic optimization is an important extension of Modelica, there are
certainly other extensions which are equally important. Modularity of the
Optimica extension, both at the language level and at the implementation
level, is therefore considered as an additional objective.

20

1.1 Motivation and Objectives

Software

In order to demonstrate the effectiveness of the proposed extension Op-
timica, a related objective is to develop prototype software tools which
translate Modelica/Optimica descriptions into a format suitable for effi-
cient numerical solution. The requirements for this software is essentially
to perform a series of transformation steps based on the Modelica/Opti-
mica source code, including flattening of Modelica models and code gen-
eration. In particular, it was decided that the compiler should produce
as its output a description of a dynamic optimization problem in AMPL
[Fourer et al, 2003|, format. This in turn enables efficient use of state
of the art numerical solvers. A desired property in the software design
is that of modularity of the implementation. It was therefore set out to
develop a compiler for pure Modelica, entitled the JModelica compiler,
and in addition, a modular extension thereof, referred to as the Optimica
compiler.

Case Studies

The specific target of the proposed language extension is to enable op-
timization of large-scale dynamic systems. In order to demonstrate the
feasibility of the proposed concept, an additional objective of the thesis is
to perform case studies based on such systems. In the first case study,
which is based on a large-scale model of a paper machine dryer section,
the objectives have been to perform model calibration by means of pa-
rameter estimation to reduce the complexity of the model using an op-
timization approach, and to implement an on-line optimization moisture
control scheme. This work was performed prior to the development of the
Optimica compiler, and involved a significant coding effort in standard
programming languages, primarily in C. As such, this case study also in-
spired the work on Optimica. The second case study deals with start-up
of a plate reactor. The main objective is to start the highly exothermic
reaction without violating specified temperature bounds, also in the face
of modeling errors. In order to meet this objective, careful design of the
objective function and constraints in the start-up optimization problem is
required. In the context of this thesis, a secondary objective of this case
study has been to show the effectiveness of the Optimica extension, when
applied to a realistically sized application.

Safe Manual Control of Pendula

Control of unstable systems subject to input saturation and manual con-
trol is challenging, and also, many real processes belongs to this class. In
Part IV, this class of systems is represented by inverted pendula. The the-
oretical part of the work is concerned with developing a control structure

21

Chapter 1. Introduction

which achieves semi-global stability, in the case of manual control. In par-
ticular, the objective is to derive such a controller for a planar pendulum
system.

The experimental work in Part IV is concerned with design and control
of an inverted pendulum on a two wheels robot. The problem is challeng-
ing, in particular since accurate control relies on high-precision sensors
and actuators. The main objective has been to build a system with high
performance, in terms of maneuverability, while using low-cost compo-
nents.

These areas do have interconnections, but the presented results may
also be considered as separate contributions. Indeed, the attempts to solve
optimization problems using software dedicated to simulation, in the ap-
plications related to DryLib, motivated the work on Optimica and the
JModelica compiler. The work on start-up optimization of the plate reac-
tor then followed as a consequence of the progress made with the software
tools development.

1.2 Contributions

This thesis contains contributions mainly in three areas:
e Languages and software tools.

e Two case studies dealing with modeling and optimization of a paper
machine dryer section and a plate reactor, respectively.

e Safe manual control of an inverted pendulum and control of a pen-
dulum on two wheels robot.

In this section, the contributions of this thesis will be presented in some
detail.

The JModelica Compiler

A Modelica compiler front-end, the JModelica compiler, capable of trans-
forming Modelica source code into a flat representation has been devel-
oped. The compiler supports a subset of the Modelica language and is de-
veloped using the compiler construction framework JastAdd [Hedin and
Magnusson, 2003]. In this work, Torbjorn Ekman provided expertise in
issues related to JastAdd, and also, some of the strategies used for name
and type analysis originates from the JastAddJ compiler, [Ekman and
Hedin, 2007], but were adapted to the context of Modelica. An overview
of this work is given in Chapter 4, and details on the implementation are
given in Chapters 5 and 6. Part of the work is based on the publication:

22

1.2 Contributions

Akesson, J., T. Ekman, and G. Hedin (2007): “Development of a Modelica
compiler using JastAdd.” In Seventh Workshop on Language Descrip-
tions, Tools and Applications. Braga, Portugal.

Based on this paper, the authors have been invited to submit an extended
manuscript to the Elsevier journal Science of Computer Programming.

Optimica and the Optimica Compiler

An extension of the Modelica language, Optimica, has been defined in
order to support formulation of dynamic optimization problems based on
Modelica descriptions. In addition, a modular extension of the JModelica
compiler has been implemented which supports Optimica. The Optimica
language definition is presented in Chapter 7. An overview of the work on
Optimica and a draft specification of Optimica have been presented in:

Akesson, J. (2007): “Dynamic optimization of modelica models — lan-
guage extensions and tools.” In 1st International Workshop on
Equation-Based Object-Oriented Languages and Tools, Linkoping
Electronic Conference Proceedings. Linkoping University Electronic
Press, Linkoping, Sweden.

Akesson, J. and K.-E. Arzén (2007): “Tools and languages for modeling
and optimization of large-scale dynamical systems.” In 23rd IFIP TC
7 Conference on System Modelling and Optimization. Krakow, Poland.

DryLib and Applications

A Modelica library for modeling of paper machine dryer sections, DryLib,
has been developed. The mathematical model upon which the library is
based was developed by Ola Slitteke in [Slitteke, 2006], and the contri-
bution given in this thesis is concerned with structuring of the model into
a reusable and extensible Modelica library. This work was done in coop-
eration with Ola Slitteke, where Sléitteke provided expertise in the area
of physical modeling of paper machines. Also, DryLib can be viewed as
an evolution of a Modelica model that Slatteke developed during his PhD
work. In addition, three application examples related to optimization are
presented, namely parameter estimation, model reduction and non-linear
model predictive control. The work on parameter optimization was done
in cooperation with Jenny Ekvall, where Ekvall provided measurement
data and process expertise. This work is presented in Chapter 8, and is
based on the publications:

Akesson, J. and J. Ekvall (2006): “Parameter optimization of a paper
machine model.” In Proceedings of Reglerméte 2006. Stockholm,
Sweden.

23

Chapter 1. Introduction

Akesson, J. and O. Slitteke (2006a): “A Modelica Library for paper ma-
chine dryer section modeling—drylib — and applications.” Techni-
cal Report ISRN LUTFD2/TFRT--7615--SE. Department of Automatic
Control, Lund University, Sweden.

Akesson, J. and O. Slitteke (2006b): “Modeling, calibration and control
of a paper machine dryer section.” In 5th International Modelica
Conference 2006. Modelica Association, Vienna, Austria.

Start-up Optimization of a Plate Reactor

The applicability and effectiveness of the compiler tools for Modelica and
Optimica have been demonstrated in a case study, where these tools have
been used to compute start-up trajectories for a plate reactor. The process
is challenging both due to its size in terms of the number of equations
as well as due to its non-linear dynamics. In this context, the Optimica
compiler proved to be a valuable tool by providing a flexible environment
promoting high-level formulation of the optimization problem rather than
attention to the details of the numerical algorithms. This work was done
in close cooperation with Staffan Haugwitz, where Haugwitz provided
process expertise, and the author of this thesis provided the Optimica
compiler, and expertise in the area of dynamic optimization. The material
is presented in Chapter 9 and is based on the publications:

Haugwitz, S., J. Akesson, and P. Hagander (2007a): “Dynamic optimiza-
tion of a plate reactor start-up supported by Modelica-based code gen-
eration software.” In Proceedings of 8th International Symposium on
Dynamics and Control of Process Systems. Cancun, Mexico.

Haugwitz, S., J. Akesson, and P. Hagander (2007b): “Dynamic start-up
optimization of a plate reactor with uncertainties.” Journal of Process
Control. Submitted.

Manual Control of an Inverted Pendulum

A controller enabling safe manual control of an inverted pendulum system
has been developed. The controller is based on an explicit characterization
of the reachability set of the system when subject to input saturation. The
controller guarantees semi-global stability in a region of the state space
which is an arbitrarily large subset of the reachability set. The controller
also provides a mechanism for trading performance for robustness. This
material is presented in Chapter 10 and is based on the publications:

Akesson, J. (1999): “Safe reference following on the inverted pendelum.”
Technical Report ISRN LUTFD2/TFRT--7587--SE. Department of
Automatic Control, Lund University, Sweden.

24

1.2 Contributions

Akesson, J. (2000): “Safe manual control of unstable systems.” Master’s
Thesis ISRN LUTFD2/TFRT--5646--SE. Department of Automatic
Control, Lund University, Sweden.

Akesson, J. and K. J. Astrom (2001): “Safe manual control of the Furuta
pendulum.” In Proceedings 2001 IEEE International Conference on
Control Applications (CCA01), pp. 890-895. Mexico City, Mexico.

Akesson, J. and K. J. Astrom (2005): “Manual control and stabilization of
an inverted pendulum.” In Proc. 16th IFAC World Congress. Prague,
Czech Republic.

YAIP — An Inverted Pendulum on Two Wheels Robot

A pendulum on two wheels robot, entitled YAIP, has been designed. Impor-
tant parts of this work have included selection of mechanical and electri-
cal components. The current design is the result of at least two preceding
hardware prototypes. The mechanical and electrical design, as well as the
construction of the robot has been performed by Rolf Braun, and many
ideas have been contributed by Anders Blomdell. The control system and
sensor processing algorithms have been designed and implemented by the
author. The work is presented in Chapter 11 and is based on the publica-
tion:

Akesson, J., A. Blomdell, and R. Braun (2006): “Design and control of
YAIP—An inverted pendulum on two wheels robot.” In Proceedings of
the IEEFE International Conference on Control Applications. Munich,
Germany.

Other Contributions

Other contributions by the author, or in which the the author has taken
part, but which are not included in this thesis include:

Akesson, J. (2003): “Operator interaction and optimization in control
systems.” Licentiate Thesis ISRN LUTFD2/TFRT--3234--SE. Depart-
ment of Automatic Control, Lund University, Sweden.

Akesson, J. and K.-E. Arzén (2004): “A framework for grade changes:
An optimization and sequential control approach.” In Proceedings of
ESCAPE- 14. Lisbon, Portugal.

Henriksson, D. and J. Akesson (2004): “Flexible implementation of model
predictive control using sub-optimal solutions.” Technical Report ISRN
LUTFD2/TFRT--7610--SE. Department of Automatic Control, Lund
Institute of Technology, Sweden.

25

Chapter 1. Introduction

Akesson, J. (2006): “MPCtools 1.0—Reference Manual.” Technical Report
ISRN LUTFD2/TFRT--7613--SE. Department of Automatic Control,
Lund Institute of Technology, Sweden.

Akesson, J. and P. Hagander (2003): “Integral action — A disturbance
observer approach.” In Proceedings of European Control Conference.
Cambridge, UK.

Henriksson, D., A. Cervin, J. Akesson, and K.-E. Arzén (2002a): “Feedback
scheduling of model predictive controllers.” In Proceedings of the
8th IEEE Real-Time and Embedded Technology and Applications
Symposium. San Jose, CA.

Henriksson, D., A. Cervin, J. Akesson, and K.-E. Arzén (2002b): “On
dynamic real-time scheduling of model predictive controllers.” In
Proceedings of the 41st IEEE Conference on Decision and Control.
Las Vegas, NV.

1.3 Managing Complexity

The complexity of industrial systems as well as consumer products is in-
creasing rapidly. This trend is driven by increasingly competitive markets,
where reducing development time and production costs while increasing
product quality and adding functionality have become not only means to
increase profits, but also necessities for survival of companies. Accord-
ingly, improved methods and procedures for development of new products
and operation of existing processes are of integral importance. In partic-
ular, the problem of managing increasing system complexity needs to be
addressed. This complexity stems both from the increasing size of systems,
and increasing heterogeneity of systems. For example, it is not uncommon
for a vehicle model to include 30.000-40.000 equations and it is commonly
composed of mechanical, hydraulic and electronic subsystems.

Computer languages and software for supporting the engineering de-
sign process have been available for several decades, and followed the
introduction of the digital computer in the late fifties. Today, computer
based design tools are available for any engineer that needs them, and
accordingly, such tools are extensively used. It is also clear that designs of
products and processes made today, would not have been possible without
the support of computer software.

Several challenges in this area lie ahead, however, and some of them
will be discussed in this section. A striking observation can be made if
the impact of computer software on the efficiency of the design process,

26

1.3 Managing Complexity

is compared to the performance increase of CPUs. The latter develop-
ment is commonly considered to follow Moore’s law, which says that the
number of transistors (which is closely related to, for example, computing
performance) that can be fit onto an integrated circuit is doubled every
two years. This rule has been valid for at least 35 years, and accordingly,
the increase in performance of digital computers is about 23%/2 ~ 185.000
during this period. This number can be compared to the gain in produc-
tivity that follows the introduction of modern design software, such as
Matlab/Simulink, which is about 5-30, [Astrom, 2007]. Of course, it can
be argued that this is not a fair comparison, but it may still be an in-
dication that in the increase in computing hardware performance, lies a
challenge for the design-software community to take full advantage of this
development.

In this section, some aspects of design-software frameworks will be dis-
cussed. Design-software framework here refers to software developed to
support the engineering design process in a wide sense, but special atten-
tion will be given to model-based approaches. In particular, the growing
demand for design-software frameworks which are based on a unifying ap-
proach, supporting high-level model and problem descriptions and which
enable use of a wide range of algorithms will be discussed.

Large-scale systems

Modern component-based modeling languages enable detailed modeling at
the component-level as well as effective management of model complexity
at the system-level. Typically, expert knowledge, at the component-level,
is encoded by experts in a particular application domain into generic and
reusable model libraries. As a result, high-fidelity models can be con-
structed, at the system-level, by application engineers with a reasonable
effort. The resulting models may be very large and complex, since the
behavior of the model sub-systems are typically modeled using a high
level of detail. Performing transformations and operations, such as sim-
ulation, on such systems is inherently challenging simply because the
number of variables and equations is potentially very large. Currently,
the need to model processes with a high level of detail is increasing. This
development is largely driven by the advantages derived from performing
extensive assessments regarding performance, safety and operation cost
before the product or process is constructed. A design-software framework
must therefore be able to handle, efficiently, the complexity of current and
future large-scale models.

Heterogeneity of systems

Historically, several design software packages have been developed, tar-
geted at a particular application domain. For example, SPICE [Nagel and

27

Chapter 1. Introduction

Pederson, 1973|, was developed for modeling and simulation of analog elec-
tric circuits. SPICE later evolved into VHDL-AMS [IEEE, 1997], which is
an object-oriented modeling language, used mainly to model analog and
discrete electric circuits. In the domain of mechanical modeling, the soft-
ware package ADAMS [MSC Software, 2007] is commonly used, and in
chemical engineering gPROMS [Process Systems Enterprise, 2007] has
a dominating position. While these tools offer tailored solutions for their
respective domains, there is currently an increasing need to consider in-
teractions of sub-systems in different application domains. As an illustra-
tive example, consider a car. In order to perform, for example, simulation,
it might be necessary to consider not only a mechanical model of the
body of the car, but also the hydraulic braking system, the electronic en-
gine control systems, and maybe even combustion. In addition, a modern
car is equipped with several processors, ECUs, which execute embedded
software code. As a consequence, accurate simulation of the car behavior
requires a heterogeneous approach to system modeling and design. This
conclusion holds for modern product and process design in general, since
it is typical that the overall behavior of the system needs to be assessed
prior to construction.

Heterogeneity of Methods and Algorithms

There are currently a significant number of methods, tools and algorithms
for performing various design tasks. Such tasks include, for example, de-
sign optimization, control system design, model reduction, model calibra-
tion, and hardware in the loop simulation (HILS). A common characteris-
tic for many of these methods and algorithms is that they rely on a model
of the physical system at hand. However, the model format that they sup-
port may differ significantly. It is therefore not uncommon that the same
system has to be modeled several times in order to take advantage of
different design tools. This situation is troublesome, since it is time con-
suming to build several models of the same system, and it also rises issues
about consistency of the models. Managing this type of heterogeneity of
methods and algorithms is a key challenge that needs to be addressed.

Core Technologies

In this thesis, a few important techniques are explored in order to ad-
dress some of the issues discussed in this section. In particular, these
techniques are used extensively in Chapters 4-7 in the context of dynamic
optimization of Modelica models.

High-level languages. In order to effectively, and efficiently, manage
the increasing complexity, as described above, high-level description
languages are necessary. Such languages should preferably be able

28

1.3 Managing Complexity

to handle large, complex, and heterogeneous systems. The issue of
extending existing languages, in order to enable modeling of not only
systems, but also modeling of specific design problems is important
in this context.

Compilers. In order to transform high-level descriptions into a format
suitable for algorithms, compilers are necessary. Modern compiler
construction tools enable high-level encoding of the semantics of
computer languages, which makes compiler development less time
consuming, more flexible and in addition, the resulting compiler
specification can be interpreted as an executable specification. The
core data structure of compilers, the syntax tree, also forms the basis
for symbolic and structural computations such as equation sorting
and automatic differentiation. In addition, compilers are used for
code generation, which is an important technique in this context.

Modular extensibility. It is a reasonable assumption that new lan-
guages and design methodologies will emerge. It is therefore im-
portant to develop design-software frameworks that are extensible,
in order to meet demands for new functionality. In addition, it is
desirable to make extensions in a modular fashion, both at the lan-
guage level and at the compiler implementation level. A well known
modularization principle in compiler construction is the organiza-
tion of the compiler into front-ends and back-ends. A compiler front-
end translates source code written in a particular language, into
a canonical code representation format!. A compiler back-end then
translates the intermediate code into, for example, machine code for
a particular hardware architecture. The main point is that this de-
sign decouples front-ends from back-ends, which means that it is
sufficient to develop one front-end for each language and one back-
end for each architecture, instead of one compiler for each language-
architecture combination. This methodology is applicable also in the
case of design-software frameworks, but in this case the interme-
diate data format should describe a canonical representation of a
design problem, or model. In addition, back-ends are developed in
order to interface with different algorithms.

Code generation. As argued above, there is a large number of algo-
rithms that are useful in the design process, although the program-
ming APIs of these algorithms may be incompatible and in some
cases also cumbersome to use. In order to avoid large programming

10ne famous example of intermediate code representation is P-code, or pseudo code, which
was introduced at UCSD in 1978.

29

Chapter 1. Introduction

efforts associated with encoding a particular problem for a particu-
lar algorithm, it is desirable to use automatic code generation based
on high-level descriptions. The user is then relieved from the bur-
den of managing algorithm APIs directly, but can rather focus on
formulating the design problem, instead of encoding it. Another tar-
get of code generation may be embedded processors, in which case
the high-level description language is used to specify, for example, a
control system.

1.4 Modeling and Simulation

A key enabling technology for managing complexity is modeling and sim-
ulation. Mathematical models are extensively used in many engineering
fields, as a standard design methodology. Building models, and the abil-
ity to simulate their behavior, enables assessments of performance, safety
and operation to be done before a process is constructed. As a consequence,
the design can be thoroughly tested, evaluated and optimized before pro-
ceeding to the implementation phase. Modeling and simulation is also
used to model processes that have already been constructed. In this case,
operations such as bottle-neck analysis, what-if scenario analysis and pro-
cess optimization are common. Modeling and simulation can also, in some
cases, replace experiments, which are not feasible to perform for safety or
economical reasons. In this section, the history of modeling and simu-
lation will be briefly reviewed. For a more thorough presentation of the
subject, see [Astrom et al., 1998].

Analog Simulation

The field of modeling and simulation originates from analog simulation,
which was used as a method for simulating dynamic systems, primarily
from the 1920s to 1970s. Initial methods were based on mechanical sys-
tems, see for example [Bush, 1931]. The predominant technique, however,
during the period was simulation by means of analog electric circuits. A
dynamical system was then described in terms of integration, addition,
subtraction and multiplication by constants, which are all operations that
can be performed using basic electric components, such as operational
amplifiers. Setting up such simulation experiments is tedious. Not only is
it necessary to rearrange the description of the dynamic system so that
it can be mapped onto electrical circuits, scaling is also necessary. The
latter need stems from the fact that analog circuits have limited range.
Another common problem, which is still highly relevant in many modern
modeling frameworks, is that of algebraic loops. In order to simulate, by

30

1.4 Modeling and Simulation

means of analog simulation, a system containing algebraic loops, these
must be eliminated, which in effect means that the algebraic variables
must be eliminated in the mathematical description.

Numerical Integration

The advent of digital computers in the 1950s and 1960s dramatically
changed the area of modeling and simulation. In particular, numerical in-
tegration became a standard technique for simulation of dynamic systems.
Since then, the field of numerical integration has been an active area of
research. Many integration algorithms have been proposed, including the
family of Runge-Kutta schemes and multi-step methods such as the back-
ward difference formula (BDF). Particular attention has been given to the
issue of numerical stability of integration algorithms. It has been shown,
for example, that implicit solvers often have superior stability properties,
as compared to explicit solvers. In particular, this is important for stiff
system. On the other hand, implicit solvers require solution of a system
of equations at each time step which is computationally demanding. The
choice of an appropriate integration algorithm is therefore dependent on
the properties of the system to be integrated, see [Gustafsson, 1994] for a
discussion. Ordinary differential equations on the form

dx
7 = &) (1.1)

has been the subject of much of the research on numerical integration. In
addition the more general class of differential algebraic equations on the
form

g(x,x,y) =0 (12)

where % denotes the time derivative of x, has received increasing atten-
tion. The variables x here denotes variables which appears differentiated
with respect to time, whereas y denotes algebraic variables. Differential
algebraic systems arise naturally in physical modeling, and in particular
this formulation admits algebraic loops to be included. Closely related to
DAESs is the notion of index. Roughly, the index of a DAE defines how
many times a particular set of equations in the DAE have to be differen-
tiated in order to solve for the differentiated variables. For a monograph
on properties of DAEs and their numerical solution, see [Brenan et al.,
1996]

Another important extension of numerical integration algorithm is
event-handling, which arises in mixed continuous-discrete, or hybrid, sys-
tems. The task of the numerical integration algorithm is then extended to
include both integration of a continuous time system in between events,
and detection of event instants, see [Barton and Lee, 2002].

31

Chapter 1. Introduction

Modeling and Simulation Frameworks

The advent of digital computers and numerical integration algorithms
triggered the development of modeling and simulation languages and soft-
ware. An early initiative was CSSL, [Strauss, 1967], which served as a
unifying framework for modeling and simulation. CSSL formed a de facto
standard for simulation of continuous time systems for a long time, and
was used as a basis for, for example, the commercial tool ACSL, [Mitchell
and Gauthier, 1976]. CSSL provided the user with a macro language and
a set of built-in operators for expressing integration, time delay and hys-
teresis etc.

Another paradigm was used in Simnon, [Elmqvist, 1975], where con-
tinuous and discrete systems can be modeled in state space form. Simnon
allows connections between subsystems, and variables within each subsys-
tem are categorized as inputs, outputs or states. Simnon also has some
other nice features, such as variable sampling rate of discrete blocks, au-
tomatic sorting of equations in order to find the correct evaluation order,
and in addition, parameters may be changed without the need to recompile
the model.

Graphical Block-Based Modeling Graphical block-based modeling
has been used extensively in several engineering domains during the last
two decades, partly due to the success of Matlab/Simulink. This paradigm
has many common features with analog simulation using electrical com-
ponents, and is based on block diagrams composed of integrators, gains,
summation blocks, function generators etc. A particular feature of block-
based models is that the causality of each connection is fixed, which means
that the user must decide the direction of the data flow. While this is nat-
ural when modeling, for example, control systems, it is not convenient for
modeling physical systems. In effect, the block-based modeling paradigm
has inherited some of the inherent limitation of analog simulation. Most
importantly, algebraic loops cannot be easily handled, which means that
the user must solve for the right hand side of the differential equation.

Physical Modeling The above mentioned modeling and simulation
frameworks can be viewed as evolutions of analog simulation, that fol-
lowed the introduction of digital computers. In order to better match the
needs associated with physical modeling, several other paradigms have
emerged. One of the most significant drawbacks with the previously de-
scribed methods, for example block-based modeling, is that when alge-
braic loops are eliminated, the structure of the physical system may be
destroyed. Typically, a physical system is composed from a number of sub-
components, which interact through acausal connections. By keeping this

32

1.4 Modeling and Simulation

Bl idealGear=100
]
WI feedback motor speedSensor
s == .
T=1

fixed=0

Figure 1.1 A Modelica model of a DC-motor connected to a load, controlled by a
PI controller.

structure intact in the modeling framework, the mapping between the
model and the physical plant is preserved.

An early description language for physical modeling is bond graphs,
[Karnopp and Rosenberg, 1968]. Using bond graphs, subsystems are de-
fined by nodes, and the edges between sub-systems (nodes) represent
power flow. Bond graphs support acausal connections, and offer mech-
anisms to express connections involving flow variables (the sum of all
variable values in a connection equals zero) and potential variables (all
variables in a connection have the same value). These concepts are equiv-
alent to Kirchhoff’s laws of voltage and current, but are applicable also
to other domains, such as mechanical connections. In the latter case, the
torque/force variables represents the flow variables, and the angle/posi-
tion variables represents the potential variables.

A modeling paradigm that has won widespread use during the last two
decades is object-orientation. Object-orientation originates from the field
of computer science, where it had been used for 20 years prior to its intro-
duction in the field of physical modeling. In the context of physical mod-
eling, object-orientation is used primarily as a structuring concept. One of
the underlying ideas in this paradigm is to enable reuse of models. The
fundamental concept in object-orientation, the class, is typically used to
create libraries of physical counterparts, such as pumps, pipes and valves,
see for example [Nilsson, 1993]. In this way, the procedure of building a
model resembles the procedure of composing the actual system from phys-
ical components — having selected the sub-components from the library of
model classes, the structure of the system could be encoded by specifying
acausal connections between the components. Using this methodology, a
model class could be reused in several contexts, without the need to explic-
itly solve for the dynamic variables. In addition, object-oriented modeling

33

Chapter 1. Introduction

2)
T —wls)

wWr

£
=

Vs 1

T -
3
Inertia

Fl

' Yy
EE
=)

2

Fesiztar
h.
1
D L =D—»@
s T
— - |
Incluctor
Subtract el
3
ﬂ Wl
emf2

Figure 1.2 A Simulink model of a DC-motor connected to a load, controlled by
a PI controller. Diagram a) shows the control loop, whereas diagram b) shows the
motor model.

offers inheritance of classes, which is useful to specialize models by adding
additional variables and equations to a base class. These concepts have
been applied in several languages and tools, including Omola, [Andersson,
1994], Dymola, [Elmqvist, 1978], VHDL-AMS, [IEEE, 1997] and Modelica,
[Elmgvist et al., 1998].

ExampLE 1.1

To illustrate the difference between block-based modeling and and object-
oriented component-based modeling, consider a DC-motor connected to a
load, controlled by a PI controller. The example, including the dynamic
equations can be found in [Astrém et al, 1998]. Figure 1.1 shows the
component-based Modelica model of the system, and Figure 1.2 shows
the corresponding system modeled in Simulink. Notice how the physical
structure of the system is preserved in the Modelica model, but not in the
Simulink model. O

While the object-oriented modeling paradigm is very appealing for the
user, the resulting models are usually hierarchical, and cannot immedi-
ately be interfaced with numerical integration algorithms. In this respect,

34

1.4 Modeling and Simulation

models constructed using a block-based approach are more easily simu-
lated, since algebraic loops have already been eliminated, and explicit
functions for the state derivatives can be obtained. In contrast, component-
based models with acausal connections typically yield DAESs, potentially
with high index, which further complicates simulation. Therefore, a so-
phisticated machinery is required in order to translate such models into
a format suitable for numerical integration. The foundations of such a
machinery involves structural analysis of the DAE, equation sorting, sym-
bolic solution of equations whenever possible, and tearing which is a tech-
nique for reducing the complexity of the block structure of the resulting
DAE. These techniques were available in an early implementation of Dy-
mola, [Elmqvist, 1978]. Since then, a technique called index-reduction has
been introduced, which enables efficient translation and integration also
of higher-index systems. The impact of this type of software on the design
process is significant. In particular, it has shifted the focus of the user
from encoding of the problem to formulation of the problem.

Hybrid Modeling An important development in modeling and simu-
lation is support for mixed continuous and discrete time behavior. This
extension is orthogonal to existing modeling paradigms in the sense that
it can be incorporated both in an object-oriented component-based frame-
work, as well as in the block-based framework. Since many physical sys-
tems exhibit hybrid behavior, this development has proven extremely use-
ful, and greatly increased the scope of systems which can be effectively
modeled. Examples of phenomena which are intrinsically hybrid are fric-
tion and switched equipment, for example on/of valves and gear-boxes. The
introduction of support for hybrid systems in languages and tools followed
from the development of numerical integration algorithms which are ca-
pable of efficiently and accurately simulate systems with state-events.
Typically, such an algorithm monitors a set of zero-crossing functions,
and detects events by locking on time-instants when one of these func-
tions changes sign. At an event-instant, discrete actions may take place.
For example, states may be re-initialized, or the set of equations governing
the dynamics may be changed.

Future Challenges

There has been significant developments in the field of modeling and
simulation during the last fifty years. Largely this development has been
driven by the availability of increasingly powerful computers, which have
enabled simulation of large and complex systems. Also, concepts from the
field of computer science, such as languages and compilers, have been in-
troduced which has led to further improved productivity in the engineer-
ing design process. However, important challenges lie ahead. Supported by

35

Chapter 1. Introduction

the arguments discussed in this section, it is clear that existing tools and
languages need to be developed further in order to meet the increasing
need to manage large-scale, complex and heterogeneous models. Certainly,
there are strong initiatives in this direction, notably the development of
the Modelica language [The Modelica Association, 2007b]. Furthermore,
there is a wide range of design algorithms in various application fields,
ranging from control systems design to numerical optimization, that are
currently difficult to apply to large-scale models encoded in high-level lan-
guages. A major challenge is therefore to enable use of such algorithms
based on existing and future high-level model descriptions, in order to
further increase productivity in the design process. For these reasons, the
field of modeling and simulation is likely to continue its evolution, into
modeling and model-based design, where simulation remains an impor-
tant usage of models, but where other design methodologies are also sup-
ported. Development of software that implements unifying model-based
design framework is therefore one of the major challenges in this field.

1.5 Manual Control

Even if the bulk of the research in control has been devoted to fully auto-
matic systems, there are many situations where humans are an essential
part of the feedback loop. Typical examples are flight control systems,
where the pilot is a key element and process control where operators are
essential. Modern cars with advanced safety systems for distance and lane
keeping are other examples where humans closely interact with the un-
derlying control system.

Flight control is an area where the effect of humans has been inves-
tigated for a long time. Pioneering research on the behavior of humans
in tracking tasks was done by Tustin in [Tustin, 1947], which was fol-
lowed by intensive research for several decades, [McRuer and Krendel,
1959; Wilde and Westcott, 1962; Hall, 1963; McRuer et al., 1965; Klein-
man et al., 1970; Baron et al, 1970; Miall et al, 1993; Sheridan and
Lunteren, 1997]. These studies had a major impact on the design of au-
topilots. One interesting results is that the human adapts. For example, if
the lag in the process increases, the human will introduce more derivative
action. In [Gaines, 1969] it was argued that the adaptation could also be
interpreted as a consequence of non-linear behavior.

There has also been research on failures of control systems. The in-
terest in this area increased significantly after the Three Mile Island and
the Chernobyl incidents, see [Rausmussen, 1983] and [Moray et al., 1990]
and references therein.

36

1.5 Manual Control

In this thesis, a special case of interaction between manual and auto-
matic control is considered, where the process is unstable and the controls
are bounded. If precautions are not taken, the system may be driven into
saturation by manual control, with lost stability as a result. Such a con-
trol system can be decomposed into two main functions. The first, and
most important function, is to ensure stability, regardless of the com-
mands given by the user/pilot. Secondly, the control system should offer
high performance in terms of maneuverability for the user/pilot. Clearly,
these objectives are contradictory, and design of a control system which en-
sures stability but which does not unnecessarily restrict the performance
is therefore a major challenge.

Typical examples representing this class of systems are high perfor-
mance air crafts, exothermic chemical reactors and nuclear reactors. The
inherent difficulty with these problems have been discussed in [Stein,
2003]. In particular, there has been major problems related to control of
unstable (in some flight conditions) air crafts such as the Saab Gripen
[Rundqwist et al., 1997] and the YF-11 [Patcher and Miller, 1998]. Air
crafts are challenging examples because of the extreme requirements of
maneuverability, and that the unstable modes are too fast for the pilot to
stabilize manually.

The characteristic features of the systems described above can be cap-
tured by significantly simpler systems, however. In particular, the inverted
pendulum will be used to demonstrate the ideas presented in Chapter 10.
While an inverted pendulum system may differ significantly from a fighter
aircraft, it still shares the key characteristic features of being unstable and
having bounded controls.

An Example

The idea explored in Chapter 10 will be illustrated here by an example.
Although simple, this example reveals much of the structure of the prob-
lem, and provides important insight that will be used in the following.
Consider the first order system

% = x + sat(u). (1.3)

The system is unstable, and the control signal is limited by the standard
saturation function

—a u<-—a
sat,(u) = u —-a<u<a (1.4)
a u>a

If a is not given explicitly, the default choice of ¢ = 1 is assumed. A
characteristic feature of the system (1.3) is that there are initial states,

37

m < —my —mp < m < my m > mg

Figure 1.3 Different values of m results in three different equilibria configura-
tions.

x(0), from which the system cannot be brought back to the origin. This
feature is typical for unstable systems subject to bounded feedback control.
In this case, it must be required that |x(0)| < 1. If this is not the case, it
is not possible to recover the state of the system to the origin.

Introduce the set Vi = {x : |x| < 1}, consisting of all points in the
state space from which the state may be transferred to the origin by fea-
sible controls. This set is called the backwards reachability set. Since the
state space can be divided into the reachability set and its complement,
it is clear that it is impossible to design a controller that achieves global
stability. A realistic, but more restricted goal is then to find a controller
that guarantees that the state remains in Vj, if the initial state is in V.
This stability concept is referred to as semi-global stability, and implies
that the state of the system is confined to an a priori known subset of the
state space. This subset may coincide with the reachability set or it might
be smaller.

Now, for x € V,, the system is stabilized by the control law u = —Ix,
provided that / > 1. It is worth noting that when x is close to the equilib-
rium points x = 1, the solution departs slowly towards the origin. This
means that recovery to the origin is slow if x is driven close to the borders
of V. This phenomenon is called sticking, see [Patcher and Miller, 1998].
Sticking is typical for systems subject to manual control, although it is
not present in all such systems.

To investigate the effect of manual control we consider the control law

u=—lx+m, (1.5)

where m represents the manual control signal. It is clear that m may drive
the system into saturation, which in turn may cause the system to leave
V, if no precautions are taken. The equilibria of the system controlled by
the control law (1.5) are given by

%% = sat (1x° — m). (1.6)

Assuming that m is constant, then depending on the magnitude of m,
there are three cases, as illustrated in Figure 1.3. In the cases of m < —my

38

1.5 Manual Control

or m > my, mo = [— 1, there is one unstable equilibrium. It is then clear
that the system is unstable for such (constant) values of m. In the case
when —my < m < my there are two unstable equilibria and one stable
equilibrium. In this case, trajectories for which x(0) € V; will converge to
the stable equilibrium. The key to preserving stability of the system, i.e.,
enforce that x € Vg, is to limit the influence of the manual control term m.
This is actually quite natural, since maintaining stability is the primary
task of the controller, whereas manual control is secondary and should
be allowed only when there is no risk of jeopardizing stability. Limiting
of m may simply be achieved by an additional saturation function, with
appropriate limit, acting on m, that ensures that the state does not leave
Vs. In practice, it is convenient to introduce a safety margin, §, ensuring
that the state cannot get arbitrarily close to the border of V. This makes
sense for two reasons. Firstly, for robustness reasons it is reasonable not
to get too close to the border of V;. Secondly, the sticking effect makes it
undesirable to force the state close to the border of V. A sensible control
law is then

u = —lx + saty,,_s (m). 1.7

This choice guarantees that x € Vs, regardless of m. It is worth noticing
that the stability preserving property of the controller is independent of
the choice of m, which may not be a constant but rather a function of
time and/or state variables. The situation is further illustrated in Figure
1.4, where the solid lines show the equilibrium point corresponding to
constant values of m.

It remains to discuss what choices of m give desirable tracking proper-
ties. Although stability is enforced by the control structure (1.7), nothing
is said about convergence of the state to a desired set point. Introducing

m=1r, (1.8)

with [, = [— 1, gives perfect steady state tracking of constant values of r.
Notice, however, that zero-error tracking, in stationarity, can be achieved
only if
_m0—5 <r< m0—5
-1 — — [-1

holds.

In Figure 1.5, the response of the system (1.3) controlled by the control
law (1.7) with the manual control term defined by equation (1.8) is shown.
In the simulation, the parameter values [= 5, yielding mg =4 and 6 = 0.4
is used. Notice the slow response to the negative reference change, which
is typical for systems exhibiting sticking.

To summarize the insight gained from this motivational example, three
main points were made:

39

Chapter 1. Introduction

-5

I
0
X

Figure 1.4 For constant values of m, the solid lines correspond to the equilibrium
value of the state. The dashed lines indicate the border of V;, whereas the vertical
and horizontal dotted lines indicate maximum and minimum equilibrium values
given the control law (1.7) and inner saturation limits +(mq — §) respectively.

e The notion of reachability sets, which define a set of points in the
state space from which recovery to the origin is possible with bounded
controls, is essential.

e The introduction of manual control in a stabilizing feedback control
law may easily drive the system into saturation with escape of the
state as a consequence.

e If the influence of the manual control term is limited, stability can
be preserved.

Reachability Sets

There is an extensive literature on stabilizing a dynamical system subject
to input and/or state constraints. For linear systems, the problem is well
understood. For asymptotically stable systems, the stabilization problem
is trivial, since the state of the system will converge to the origin if the
control is set to zero. Of course, in order for this to be a feasible strategy
when the controls are bounded, the value zero must be feasible given the
bounds. For unstable systems without poles strictly in the right complex

40

1.5 Manual Control

Figure 1.5 State trajectory and control signal in solid, state reference in dashed
and the positive boundary of V; in dash dotted.

half plane, which include systems with poles on the imaginary axis, there
exist controllers that achieve global stability. The result was proven for a
chain of integrators in [Teel, 1992] and for the general case in [Sussmann
et al, 1994]. For linear exponentially unstable systems, the situation is
more involved. A key concept for control of unstable systems subject to
bounded inputs is the notion of reachability sets.

It can be shown that the reachability set of a linear exponentially un-
stable system, subject to bounded controls, is bounded in the directions
of the unstable modes. Consequently, only semi-global stability may be
achieved. An elegant result for calculation of reachability sets for expo-
nentially unstable systems as well as a method of semi-global stabilization
are given in [Hu et al., 2001].

The problem of calculating reachability sets can be cast as an opti-
mization problem, where this set is given as the solution of a Hamilton-
Jacobi-Bellman (HJB) partial differential equation. This approach also
accommodates non-linear systems, but on the other hand, the resulting
HJB equation may be very difficult to solve in practice. There is, however,

41

Chapter 1. Introduction

software available for this type of problems, see [Mitchell and Templeton,
2005].

Another branch of the theory deals with the problem of anti-windup. In
this setting, a local performance controller is designed without taking the
saturation non-linearity into account. The problem is then to find an anti-
windup modification of the controller that leaves the behavior of the local
controller unaffected when there is no saturation, and limits the effects
of saturation if it occurs, see for example [Rénnbéck, 1993]. In [Teel and
Kapoor, 1997], the problem was given a rigorous definition and solved for
the case of stable linear systems. In [Teel, 1999] the anti-windup problem
for exponentially unstable linear systems is addressed.

The notion of reachability sets will be used in Chapter 10, where ana-
lytical expressions for the reachability set of a planar inverted pendulum
system are derived.

1.6 Organization of the Thesis

The thesis consists of five parts. Part I, Background, contains references
to related work. In Chapter 2, an overview of the Modelica language is
given, and in Chapter 3 results and methods in the field of optimal con-
trol are reviewed. In Part II, Languages and Software Tools, the work on
the JModelica compiler and Optimica is presented. Chapter 4 contains
motivations and objectives for the JModelica compiler, as well as bench-
mark results. Chapters 5 and 6 give details of the implementation of the
JModelica compiler, and Chapter 7 presents the Optimica language ex-
tension and gives some examples of optimization problems formulated in
Optimica. In Part III, Case Studies, two case studies are presented. In
Chapter 8, the work on DryLib and related applications are presented,
and in Chapter 9, the work on start-up optimization of a plate reactor is
presented. Part IV, Control of Pendula, contains material related to man-
ual control of inverted pendula. Chapter 10 presents theoretical results
for a control structure enabling safe manual control of an inverted pen-
dulum, and in Chapter 11, the experimental work on a pendulum on two
wheels is presented. The thesis ends with Part V, Conclusions.

42

Background

2

Modelica

The Modelica language is widely used in industry for modeling and sim-
ulation of physical systems [The Modelica Association, 2007b]. Example
application areas include industrial robotics, automotive applications and
power plants. Typical for models of such systems is that they are of large
scale, commonly up to 100.000 equations. There are also extensive stan-
dard libraries for e.g., mechanical, electrical, and thermal models.

The first version of Modelica, 1.0, (see [The Modelica Association,
1997]) was published in September 1997. The effort was targeted at cre-
ating a new general-purpose modeling language, applicable to a wide
range of application domains. While several other modeling languages
were available, many of those where domain-specific, which made simu-
lation of complex multi-domain systems difficult. Based on experiences
from designing other modeling languages, notably Dymola, [Elmgvist,
1978], and Omola, [Andersson, 1994], the fundamental concepts of object-
orientation and declarative programming were adopted. The latest version
of the Modelica specification, 3.0, see [The Modelica Association, 2007a],
was released in September 2007. The work presented in this thesis, how-
ever, is based on the previous specification, version 2.2 [The Modelica
Association, 2005], which was released in February 2005.

The Modelica language has evolved from the simulation community,
with roots in analog simulation dating back to the 1940s. Several mod-
eling formalisms have been proposed, including Bond Graphs, [Karnopp
and Rosenberg, 1968], which explores the energy flow between systems,
VHDL-AMS, [IEEE, 1997], which is used to model electronic hardware,
and block diagram modeling, which is the dominating paradigm in Mat-
lab/Simulink. For an overview of the evolution of the field of continu-
ous time modeling and simulation, see [Astrom et al., 1998]. As a mod-
ern modeling language, Modelica has been inspired by several modeling
paradigms, with the objective of offering a unified modeling environment.

45

Chapter 2. Modelica

Flat Hybrid
Modelica DAE

Equation Code

Optimization Generation C-code

Modelica | Flattening

Figure 2.1 The Modelica translation process.

2.1 Simulation of Large Dynamic Systems

Mathematical modeling of complex physical systems requires appropriate
high level languages. In particular, it is essential that a modeling lan-
guage for such systems offers abstractions for structuring of models. A
particularly successful paradigm has been that of object-oriented mod-
eling, [Cellier, 1991]. In the Modelica context, the structural concepts of
object-orientation, such as classes, components and inheritance, are em-
phasized, rather than dynamic creation of objects and message passing.

Modelica is designed with multi-domain modeling in mind. Accord-
ingly, the language is particularly useful for applications which involve
modeling of physical phenomena from different domains. For example, in
automotive applications, it is desirable to have sub-models for the combus-
tion, the mechanical systems, the electronics and the interaction with the
road. In this type of applications, Modelica serves as a unifying language
in which all these sub-systems can be modeled.

The primary objective of formulating a model of a complex physical
system is most often simulation. That is, prediction of the response of a
model, given a specified input stimuli, and the state of the model. If the
model is sufficiently accurate, the simulation results may be used to draw
conclusions about the behavior of the true physical system.

Now, numerical simulation of large dynamical systems requires so-
phisticated numerical algorithms. The interfaces of such algorithms are
usually cumbersome, and does not correspond well to the engineering need
for a high-level description language. Therefore, symbolic algorithms have
been developed which transform a high-level Modelica description into ex-
ecutable code, [Elmqvist et al, 2004]. In fact, it is fair to say that the
success of Modelica relies on the availability of efficient computer tools.

46

2.2 The Modelica Translation Process

class BouncingBall //A model of a bouncing ball
parameter Real g = 9.81; //Acceleration due to gravity
parameter Real e = 0.9; //Elasticity coefficient
Real pos(start=1); //Position of the ball
Real vel(start=0); //Velocity of the ball
equation
der(pos) vel; // Newtons second law
der(vel) = -g;
when pos <= 0 then
reinit(vel,-expre(vel)); // set velocity after bounce
end when;
end BouncingBall;

Listing 2.1 A class modeling bouncing balls

2.2 The Modelica Translation Process

There is a fundamental difference between Modelica and traditional pro-
gramming languages regarding the outcome of the compilation process.
For many traditional programming languages such as Pascal or C, the
ultimate objective of a compiler is to output a file containing executable
machine code. Potentially, this involves compilation to an intermediate for-
mat. For Modelica, however, the objective of the compilation process is to
output code (usually C-code) to be compiled and linked with a numerical
simulation package. Therefore, concepts such as program counter, stack
and heap are not applicable or relevant. Rather, a Modelica model consists
of a set of class instances, often referred to as components. These compo-
nents are allocated statically, in the sense that they are specified prior
to simulation. Dynamic creation of new components during simulation is
not allowed in Modelica.

The process of translating Modelica source code into a format suitable
for numerical simulation/optimization algorithms can be divided into a
number of steps, see Figure 2.1. In the first step, the Modelica code is
flattened. This means that all component and inheritance structures are
eliminated. The resulting model contains essentially a set of variables
and a set of equations. The only property of the flat model that indicates
its hierarchical origin is that a variable name is usually expressed as a
qualified name, indicating the path of the corresponding variable. In the
next step, the equations are sorted using graph-theoretical methods such
as the BLT transformation, [Tarjan, 1972]. Sorting of equations are done
in order to explore the structure of the model. The equations are then
analyzed further and manipulated so that they can be more efficiently
used with numerical software. The output of this step is referred to as a

47

Chapter 2. Modelica

1 T

N Earth ball
- . = = = Moon ball ||
0.8 ‘\ PRait
7 A}
E L ‘ TN 4
?06 A \ , \
S \ \ . \ ” *\
3 04 ‘\ y g k ! * TN
i) \ l; \ ’ \
Yy vy v v ! \
021 v v\ ‘AL ot vl
\ \ N \
0 Wi] i L'l A
0 1 2 3 4 5 6 7 8
Time [s]

Figure 2.2 Position as a function of time for the BouncingBall example.

hybrid differential algebraic equation (DAE). The hybrid DAE also repre-
sents a generic mathematical description of the original Modelica model,
and may be used for different purposes. The most common application is
to generate C code, which is compiled and linked with an algorithm for
numerical integration. The behavior of the system can then be simulated
by executing the resulting application.

ExampLE 2.1
Consider the example in Listing 2.1. The model describes the dynamics of
a bouncing ball. The free motion of the ball is governed by Newton’s second
law, and the actual bounce is modeled using a when-clause, in which the
velocity of the ball is reversed. The behavior is parametrized by g, which
is the acceleration due to gravity, and e, which is the elasticity coefficient.
Now, consider the following model which contains two components of
the BouncingBall class in Listing 2.1:

class BBex
BouncingBall earthBall;
BouncingBall moonBall(g=1.62);
end BBex;

The component moonBall corresponds to a ball bouncing on the moon, and
accordingly, the acceleration due to gravity is changed in a modification.
In Figure 2.2 the positions of the two balls as a function of time are shown.

O

2.3 The Modelica Language

Modelica is “a unified object-oriented language for physical systems mod-
eling”, [The Modelica Association, 2005]. As such, its most important fea-

48

2.3 The Modelica Language

tures are, [Fritzson, 2004]:

e Modelica supports equation-based acausal modeling, as opposed to
assignment statements. Using equations, the modeler can state re-
lations on their most natural form, without the need to solve for
a particular variable. As a consequence, the data-flow direction is
not determined a priori, but rather by the context of a particular
component.

e Modelica can be used to express models from different domains, en-
abling modeling of heterogeneous systems.

e Modelica is an object-oriented language. This feature enables the
modeler to use powerful structuring concepts such as classes, com-
ponents, inheritance and generics.

e Modelica has strong support for component-based models, including
means to connect components. This feature enables modelers to cre-
ate modular models, as well as interfaces through which they can
be connected.

These properties make Modelica particularly well suited for modeling
of large and complex systems. For example, a well known limitation of
block-based modeling is the need to solve for a particular set of variables.
Even though the equations for each component in a composite model are
simple and straight forward to derive, the modeler has to transform, usu-
ally by hand, the original model component equations into the standard
ODE representation. For many physical systems, this transformation is
often global, in the sense that all model components have to be considered
simultaneously. In addition, the original structure of the model is often
destroyed in the transformation. Modelica overcomes this difficulty by al-
lowing acausal connection of model components. This approach leaves to
the tool to transform the model equations into a format suitable for, for
example, numerical integration.

The structuring constructs of Modelica, such as classes, inheritance,
generics and packages promote model reuse and development of model
libraries. This, in turn, enable domain experts to encapsulate knowledge
in an accessible and structured way. As a consequence, the Modelica users
can roughly be categorized into two groups. The first group contains the
domain experts who implement libraries and who encode physical rela-
tions at the equation level. The second group contains users who primar-
ily build custom simulation models based on existing libraries, but rarely
deal with the specifics of the actual library implementation. In this way,
Modelica provides a platform for a wide range of users and serves as a
unifying language between users with different skills and across domain

49

Chapter 2. Modelica

borders. For a comprehensive description of the Modelica language and
its usage, see [Fritzson, 2004].

Classes and Components

The class concept is fundamental in Modelica. Apart from the built-in
classes “Real”, “Integer”, “Boolean” and “String”, classes can also be de-
fined by the user. A Modelica class may contain local class definitions,
component declarations (these two entities are referred to as elements),
equations and algorithms. A component declaration corresponds to an in-
stance of a class, which can be either a user-defined class or a built-in
class, such as Real. In the latter case, the component declaration is some-
times referred to as a variable declaration. The variability of a variable
can be specified. For example, a variable of type Real can be specified to
be a parameter, which means that it is constant during simulation. Ele-
ments can also be specified to be either public or protected. In the latter
case, such elements are only accessible from within the class itself. In
addition, Modelica supports multiple inheritance.

Consider Listing 2.2. The class C contains four elements: one local class
definition, A, and three component declarations z, v and a. The behavior
of the class C is defined by three equations (notice that the binding ex-
pression in the declaration of v is an equation), which relate its variables.
The function der represents the time derivative operator %, which is used
to express dynamic behavior.

An important concept in Modelica is that of specialized classes®. Spe-
cialized classes can be used to indicate that a class has certain properties,
e.g. in a function class, all public variables must have prefix either input
or output and it may only contain algorithms, see Listing 2.3. A record
on the other hand may neither contain equations nor algorithms. A pack-
age may only contain class definitions and constants and a model cannot
appear in connection statements. Further, the specialized class block, is
intended for models which have connections with fixed causality. Typically,
control systems are implemented as blocks. Finally, the specialized class
connector is used for connection interfaces, and may contain variables
but no equations.

Equations and Algorithms

Equations and algorithms are used to define behavior. Physical phenom-
ena are often modeled by mathematical equations. Equations in turn
defines relationships between physical variables, such as pressure, tem-
perature, current or voltage. In addition, many physical phenomena are

1The term specialized class was introduced in the specification of Modelica 3.0. Previously,
the same concept was referred to as restricted class.

50

2.3 The Modelica Language

class C function pow
class A input Real x;
Real y[2]; input Integer p;
end A; output Real vy;
Real z;
Real v[2]={1,1}; algorithm
A a; Vi=X;
equation for i in 1:p-1 loop
der(z)=-z; Vi=Y*X;
a.y=v; end for;
end C; end pow;
Listing 2.2 A class. Listing 2.3 A function.

described by differential equations, where the variables as well as their
derivatives with respect to time or space appear. Typical origins of equa-
tions are the laws of nature, e.g. the law of conservation of energy or
Ohms law. By stating equations declaratively, the need to solve for a cer-
tain variable determined by the model context, and possibly simulation
environment, is eliminated. Consider e.g., Ohms law, valid for an ideal re-
sistor: v = Ri, where v is the difference in potential between the terminals,
R is the resistance and i is the current. This equation can be stated in
three different ways. Apart from the standard form, i = v/R and R =v/i
also have the same mathematical meaning. This example illustrates what
is a well known problem when formulating simulation models: it is often
necessary to have several versions of the same model depending on how it
is connected to its environment. Modelica solves this problem by enabling
the user to state equations on their natural form and then leave it to the
tool to transform the model into simulation code.

Most realistic systems exhibit discontinuous behavior. For example, the
gear box of a car have a limited number of discrete gears. Also, equipment
that is controlled by switching it on and off results in models with discrete
behavior. Systems containing both continuous and discrete dynamics are
referred to as Aybrid systems. Since many engineering problems are hybrid
in this sense, Modelica offers support for expressing hybrid models. There
are two constructs available in Modelica for introducing hybrid behavior.
if-clauses are used to express conditional equations, i.e., based on one
or many conditions, a corresponding set of equations are active in the
model, see Listing 2.4. It is also possible to express instantaneous events,
i.e., when a specified condition evaluates to true, some actions should be
taken. Examples of an action that is typically triggered by a when-clause
are re-initialization of state variables, see Listing 2.1.

While physical phenomena are conveniently expressed by equations,

51

Chapter 2. Modelica

class PWL
parameter Real a[4]={-3,-2,-1,0};
parameter Real x1im[3]={-1,0,1};
Real x;
equation
if x<=x1im[1] then
der(x)=al[1l]+*x;
elseif x>x1im[1] and x<=x1im[2] then
der(x)=al[2]+*x;
elseif x>x1im[2] and x<=x1im[3] then
der(x)=a[3]+*x;
else
der(x)=al[4]+*x;
end PWL;

Listing 2.4 A class illustrating conditional equations.

there are other types of behavior that is expressed in a more natural
way using algorithms. One such example is discrete-time control systems.
Since it is often desirable to model not only the actual physical system,
but also the associated control system, the ability to express algorithms
in Modelica is important. Algorithms in Modelica can be used to express
sequences of assignment statements, conditional statements and itera-
tion. It is straight forward to map a Modelica algorithm to C code, and
algorithms are therefore not explained in further detail here.

Connection of Components

Physical systems can often be decomposed into distinct subsystems, which
are connected. By using a top-down approach, models for the subsystems
can be combined to form more complex composite models. This method-
ology is strongly supported in Modelica. Specifically, the specialized class
connector and the built-in function connect can be used to formulate
structured models composed of interacting components.

A connector class serves as an interface between components. If two
components both have a connector of the same type, they may be con-
nected. The interface defined by a connector class consists of a set of vari-
ables, which are either of potential type or flow type. The semantics of a
connection operation is the following: When a connection is formed, the
potential variables of all connected connector components are set equal,
while the sum of the flow variables is set to zero. During translation of a
Modelica model, equations are generated from connection statements.

Consider Listing 2.5, where a number of classes describing a few ba-
sic electrical components are shown. The connector class Pin represents

52

connector Pin
Real v;
flow Real i;
end PositivePin;

partial model OnePort
Real v;
Real i;
Pin p;
Pin n;
equation
V = p.vV - n.v;
0 =p.i+n.i;
i=p.1i;
end OnePort;

model Resistor
extends OnePort;
parameter Real R=1;

2.3 The Modelica Language

model ConstantVoltage
extends OnePort;
parameter Real V=1;

equation
v =V;

end ConstantVoltage;

model Ground
Pin p;

equation
p.v = 0;

end Ground;

model Circuit
ConstantVoltage cv;
Ground g;
Resistor r;
equation
connect(cv.p,r.p);

equation connect(cv.n,g.p);
R+i = v; connect(cv.n,r.n);
end Resistor; end Circuit;
Listing 2.5 Modelica classes de- Listing 2.6 Additional models

scribing electrical components. defining electrical components.

an interface between electrical components. The potential variable v rep-
resents electrical potential and the flow variable i represents current.
Using the Pin class, a partial (equivalent to abstract) model, OnePort, for
a generic electrical component with two terminals can be formulated. This
model is incomplete in the sense that it lacks an equation defining the
behavior of the component. A defining equation is given in the specialized
model Resistor, in this case Ohms law. It is straight forward to formu-
late models corresponding to, e.g., capacitors and inductors based on the
partial model OnePort. Models corresponding to a voltage source and a
ground element are also shown in Listing 2.6. Using these classes, it is
straight forward to create a simple circuit, Circuit consisting of a voltage
source, a resistor and a ground.

This example illustrates several important features of Modelica, such
as hierarchical modeling, inheritance, and the connection mechanism.

Types

Modelica has a structural type system, [Abadi and Cardelli, 1996]. In
essence, this means that a class does not define, uniquely, a type. Instead,

53

Chapter 2. Modelica

model classtype //Class type of B
public parameter Real objtype s;
public connector classtype

flow Real objtype p;

model B
parameter Real s=-0.5;
connector C

flow Real p; ?
Real q; P nonflow Real objtype q;
end C: ’ end C;
protected protected Real objtype x;
Real x(start=1); .]
equation(: model objtype //Object type of B
der (x)=s*X; parameter Real objtype s;
end
end B;

Listing 2.8 Corresponding

Listing 2.7 A Modelica class. type interfaces.

the type of a class is either a built-in type, such as Real or Integer, or it is
defined by all named elements (local classes and components) of the class.
Based on this (informal) definition, relations such as subtype, supertype
and type equivalence are defined. As a consequence, inheritance is not the
only way to introduce a subtype-supertype relationship between classes,
as in e.g. Java. Instead, two classes unrelated by inheritance may well
be equivalent or have a subtype-supertype relation. This means that in
Modelica, subclassing is not equivalent to subtyping.

The concept of types is not formally defined in the Modelica specifica-
tion, [The Modelica Association, 2005]2. In [Broman et al., 2006], however,
an interface for specifying Modelica types is proposed. In this work, the
entities classtype, corresponding to the type of a class, and objtype, cor-
responding to the type of a component, are introduced. The type of an
element is then defined by a set of classtype and objtype specifications.
This type definition is recursive, in the sense that a classtype definition
may contain other classtype’s as well as objtype’s. Notice that equations
and algorithms are not part of the type definition, since they define the be-
havior and not the interface of a class. The use of classtype and objtype
is illustrated in Listings 2.7 and 2.8. The model B contains one public
Real parameter, s, one protected Real variable, x, one local class, C and
one equation. The classtype interface of B contains elements correspond-
ing to s, x and C, whereas the objtype interface contains only an element
corresponding to the public declaration s.

2In the specification of Modelica 3.0, the concept of types has been developed and specified
further.

54

2.3 The Modelica Language

model Capacitor
extends OnePort;
parameter Real C=1;

equation
i=Cxder(v);

end Capacitor;

model BaseCircuit
replaceable Resistor el extends OnePort;
Capacitor c(C=0.01);

end BaseCircuit;

model MyCircuit
BaseCircuit circuit(c(C=0.001),redeclare Capacitor el);
end MyCircuit;

Listing 2.9 An example of modifications and redeclarations.

Modifications and Parametrized Classes

Modelica supports changing of behavior of classes through modifications.
Using the modification mechanism, it is possible to e.g., add or change
binding expressions of variable declarations or replace local classes and
components with more specialized elements. The latter feature enables
the used of parametrized classes, commonly known as generics. This func-
tionality can be used to apply a top-down approach to modeling. A course-
grained model which contains simplified submodels can gradually be re-
fined into a fine grained high-fidelity model. This concept is quite useful
when designing prototype models, where it is initially important to gain
insight into the qualitative behavior of a system.

Listing 2.9 shows the use of parametrized classes. The model
BaseCircuit contains a resistor component, el. The resistor is declared as
replaceable, which is a requirement for parametrized classes and compo-
nents. In addition, the declaration has a constraining clause; the keyword
extends is here reused for another purpose than inheritance. A constrain-
ing clause states that the type of a replacing component must be a subtype
of the type of the class given in the constraining clause. If there is no con-
straining clause, the type of a replacing component must be a subtype of
the type of the default component declaration. In this case, the type of
the default declaration is Resistor, but there is also a constraining type,
OnePort, which has precedence.

In order to replace the replaceable component el, a redeclaration mod-
ification is applied when a component of the class BaseCircuit is declared.
For this purpose, the keyword redeclare is used. In the example, the class

55

Chapter 2. Modelica

resistor inductor

inertia flange_a
|]

abejopeuBis

Figure 2.3 A DC motor model.

Capacitor is a subtype of OnePort, and therefore the redeclaration mod-
ification is valid. Listing 2.9 also illustrates modification of binding ex-
pressions and merging of modifiers, where outer modifiers overrides inner
modifications. The default value of the capacitance in the model Capacitor
is 1. However, this value is overridden in the component declaration of the
capacitor c in the model BaseCircuit, using a modifier. This modifier, in
turn, may well be overridden by modifications in a component declaration
of BaseCircuit, as is the case in MyCircuit.

2.4 Graphical Annotations

Apart from the above mentioned features, Modelica supports the use of
annotations, where complimentary information, for example tool specific
information or graphics, can be given. The specification of annotations
includes a standard for describing graphical objects, which may represent
e.g., classes, components and connections. Typically, this feature is ex-
tensively used by library developers. By introducing a graphical notation
corresponding to the classes of the library, non-expert users can use the
library in a drag and drop manner, without the need to work directly with
the actual code. Figure 2.3 shows an example of the graphical features
of Modelica, illustrated by a simple model of a DC motor. The graphical
annotations also have a textual representation, which is embedded in the
model code. However, most tools offer a graphical modeling environment,
and the graphical annotations are therefore seldom edited textually.

56

2.5 Modelica Tools
2.5 Modelica Tools

There are several software tools, commercial as well as free, offering sup-
port for the Modelica language. Although not all tools currently offer full
Modelica support, the adoption of Modelica as a standard for dynamic
models increases. Therefore, the level of support for Modelica, as well as
the number of software tools supporting Modelica is also expected to in-
crease. In this section, a brief overview of some tools supporting Modelica
is given, for more information, see [The Modelica Association, 2007b].

Dymola

Dymola, developed by Dynasim, Sweden, [Dynasim AB, 2007], is a simu-
lation environment offering full Modelica support. Dymola is considered
the leading Modelica software, and is capable of translating and simulat-
ing very large models (>100.000 equations). Apart from graphical model
editing, simulation and plotting, Dymola also offers support for model
calibration, parameter optimization and hardware in the loop simulation
(HILS).

OpenModelica

OpenModelica is an open source project managed by PELAB, University
of Linképing, Sweden, [PELAB, 2007], and is released under the BSD
license. The distribution contains a Modelica compiler which translates
Modelica source code into C-code intended for simulation. OpenModelica
is developed in the language MetaModelica, which is an extended subset
of Modelica, specifically targeted at implementation of semantic specifi-
cations in compilers.

MathModelica System Designer Professional

MathModelica System Designer Professional (MSDP), developed by Math-
core, Sweden, [MathCore Engineering AB, 2007], is a commercial Model-
ica environment which is based on the OpenModelica compiler kernel.
MSDP offers a graphical editor as well as a simulation and plotting en-
vironment. In addition, MSDP has a link to Mathematica, which enables
further analysis and transformation of Modelica models.

Scilab/Scicos

Partial Modelica support is offered by Scilab, and the associated simula-
tion environment Scicos, developed within INRIA, France, by the Scilab
Consortium, [INRIA, 2007]. In Scicos it is possible to mix traditional
causal block-style modeling with implicit blocks, containing Modelica code.

57

Chapter 2. Modelica

MosiLab

Mosilab is a Modelica software developed by Fraunhofer-Institut fir Rech-
nerarchitektur und Softwaretechnik, Germany, [Nytsch-Geusen, 2007].
Apart from support for editing and simulation of Modelica models, Mosi-
lab also offers an extension to also include support for statecharts. This
extension is integrated with the Modelica language, and enables, for ex-
ample, the structure of a model to change during simulation, which is
generally not possible with standard Modelica.

SimulationX

The simulation software SimulationX, developed by ITI, Germany, [ITI
GmbH, 2007], also offers support for Modelica. The module TypeDesigner
supports definition of Modelica classes, which may then be used in the
model creation module and for simulation.

58

3

Dynamic Optimization

During the last five decades, the theory of dynamic optimization has re-
ceived much attention. In 1957, Bellman formulated the celebrated princi-
ple of optimality, and showed that dynamic programming was applicable
to a broad range of applications, [Bellman, 1957]. Following this work, dy-
namic programming has been applied to various fields, notably inventory
control, economics, statistics, and engineering. For a modern description,
see [Bertsekas, 2000a; Bertsekas, 2000b]. Using dynamic programming,
an optimal control law can be derived from the solution of a partial dif-
ferential equation, the Hamilton-Jacobi-Bellman equation. However, al-
though a very elegant theory, dynamic programming has proven difficult
to apply to large optimal control problems. In particular, the presence of
nonlinear dynamics and state or control variable constraints may lead
to computationally intractable problems. However, recent initiatives have
shown that it is possible to compute approximate solutions (with pre-
specified error bounds) of the dynamic programming problem, increasing
the applicability of the technique to complex systems, see [Lincoln, 2003|.

Another important contribution to the theory of optimal control is the
maximum principle, which was presented by Pontryagin and co-workers
in 1962, see [Pontryagin et al, 1962]. Whereas dynamic programming
provides a closed loop control law (the control law as a function of the
system states), the maximum principle provides the necessary conditions
for an open loop control law (the control law as a function of time) to
be optimall’. The maximum principle is an extension of classical results
in the area of calculus of variations, dating back to the 17th century.
The necessary conditions for optimality, as specified by the maximum
principle, constitute a two-point boundary value problem.

More recent advances in research on optimal control have resulted in
a new family of methods — the direct methods. The direct methods have

IThere are some exceptions, where the maximum principle yields a closed loop control
law, for example in the case of linear systems and quadratic cost.

59

Chapter 3. Dynamic Optimization

been successfully applied to large-scale systems, and they can also, in
some formulations, accommodate state constraints. These properties are
important in industrial applications. In contrast, both dynamic program-
ming and the maximum principle are difficult to apply to large non-linear
systems, in particular in the presence of state bounds.

This chapter is organized as follows. In Section 3.1, some results from
the calculus of variations, and the maximum principle are reviewed. In
Section 3.2, the two main direct methods, namely sequential and simul-
taneous methods, are described. Section 3.3 describes some important
industrial applications of dynamic optimization. The chapter ends with a
summary in Section 3.5.

3.1 Calculus of Variations and The Maximum Principle

Optimal control has its roots in the calculus of variations, a branch of
mathematics concerned with solving optimization problems containing dif-
ferential equations as constraints. The very first variational problem was
formulated and solved by Isaac Newton in 1686. The problem was to find
the minimum-drag nose shape in hypersonic flow, [Bryson and Ho, 1975,
p. 52]. Another classical variational problem is the brachistochrone prob-
lem, formulated by John Bernoulli in 1696, where a bead is assumed to
slide frictionless on a wire between two points in space, located in a con-
stant gravity field. The brachistochrone problem is then to find the shape
of the wire that minimizes the time it takes for the bead to slide from one
point to the other.

The classical results of optimal control derived by means of calculus of
variations will now be reviewed. Consider the simplified optimal control
problem

tr
minJ = min {(p(x(tf)) +/ L(x,u) dt}
u u tO
3.1
subject to (3.1)
= f(x,u), x(to) =x0
where x and u are functions of time. Introducing the Hamiltonian
H(x,u,A) = L(x,u) + AT f(x,u), the cost function can be augmented to

J = d(x(ty)) + /tf L(x,u) + AT (f —x)dt
fo . (3.2)
= ola(e) — (AT + [H o+ AT

60

3.1 Calculus of Variations and The Maximum Principle

where the second equality is obtained by integrating by parts. The vari-
ables A(t) are the adjoined or co-state variables. The variation of J can
now be written

sT=|(2_am\sx| 4 OH L amVox+ Bsular (3.3)
(Gem)od] o+ [(G) ove o]

Requiring that 6J = 0 gives the necessary conditions for a control profile
u to be optimal:

Pl =28 oH _,
axa(p oL’ Ou (3.4)
AT ===, x(to) = xo '
f ox t=t;

These conditions form a two-point boundary value problem (TPBV), since
the state variables are fixed at ¢ = to, whereas A is fixed at ¢t = ¢7. A

sufficient condition for optimality is au > 0.

In some cases, the TPBV problem can be solved analytically, in partic-
ular if the size of the dynamic system is moderate, or if it exhibits some
special structure. For example, if the dynamics is linear and the cost func-
tion is quadratic, then the solution of the TPBV problem specified by the
necessary conditions can be shown to be equivalent to solving a Riccati
differential equation. In this specific case, the control variable u is given
as a function of the state variables only, i.e., a closed loop control law is
obtained.

The necessary conditions for optimality (3.4) were generalized by Pon-
tryagin and co-workers in the maximum principle?, [Pontryagin et al.,
1962]. The maximum principle is based on the observation that an optimal
control profile u* must fulfill the condition H (x*,u,A*) > H(x*,u*,1*),
that is, the Hamiltonian is minimized over all feasible u. u* and A* denote
the optimal state and adjoint profiles. The necessary, and also sufficient,
conditions for optimality as specified by the maximum principle are then

AT = —%, T = %, u* = argmin,cy H(x*,u, 1%) 65
8¢ 3.5
At)t == , =(to) =20
Ox 1=t

The maximum principle can in some cases provide a solution to problems
where the conditions derived by means of calculus of variations fail. One

2The maximum principle was given its name because in the formulation used by Pontrya-
gin, a criteria was maximized, whereas in western literature, it is more common to minimize
cost functions.

61

Chapter 3. Dynamic Optimization

such example is when the equation(s) %—Ij = 0 does not provide any infor-
mation about the optimal u. This is the case if the control variable occurs
linearly in the dynamics and in the cost function. For example, in the case
of minimum-time problems with linear dynamics and control bounds, a
solution can be computed by means of the maximum principle, which re-
sults in a bang-bang control profile. For an example see [Bryson and Ho,
1975, p. 110].

There are several extensions of the necessary conditions for optimality,
which allow for more general problem formulations, including minimum-
time problems and problems with terminal and path constraints for the
states. See for example [Stengel, 1994] for a comprehensive, and compre-
hensible, presentation.

Numerical Solution of Two-Point Boundary Value Problems

Numerical solution of TPBV problems is significantly more difficult than
solving initial value problems. The reason for this is mainly that variables
are constrained both at the beginning and at the end of the interval.
Standard integration algorithms does not normally allow for this kind
of general boundary value problems. Several other methods have been
proposed, however.

Shooting methods Early attempts to solve TPBVs were based on algo-
rithms referred to as shooting algorithms. By starting with an initial guess
of A(¢), and then integrate the systems for the state and adjoint variables
forward in time, the terminal value of the adjoint variables, A(¢;) are ob-
tained. If the values obtained by integration do not match those specified
by the necessary conditions for optimality, new values A(¢y) are selected,
and the procedure is repeated. One strategy for updating A(#) is then

M(to)=e<%(tf)—/1(tf)T> (3%3)_ cef0,1 (3.6

There are some problems associated with this method, however. Firstly, it
is inherent from the definition of the differential equations governing the
adjoint system, that if the system & = f(x,u) is stable, then the adjoint
system is unstable. Secondly, it may be difficult to obtain an initial guess
for A(to). Thirdly, computation of the quantity gigg)) may be ill-conditioned.
For these reasons, improved methods referred to as gradient methods were

developed. For additional details see [Bryson and Ho, 1975].

Gradient methods 1In order to overcome the problem associated with
the adjoint system being unstable, the adjoint variables can be integrated

62

3.2 Direct Methods

backwards in time. Starting with an initial guess for the control variable
u(t), the system dynamics is integrated forward in time in order to ob-
tain the state variable trajectories. The adjoint system is then integrated
backwards in time. Notice that the state variable trajectories are usually
needed in order to integrate the adjoint system, and therefore needs to
be stored. Given the quantities obtained by the integration, the control
profile may then be updated according to the steepest descent strategy:

Au(t) = —a(t)%—f = —a(t) (g—’; + AT%> (3.7)

where o(t) is a scalar function which is adjusted to ensure that the
Hamiltonian is decreased. The justification for this method is that the
Hamiltonian should be minimized with respect to u, in order to fulfill the
necessary conditions for optimality. The update scheme may be further
improved, by implementing a generalized Newton scheme

0H

Au(t) = —W()—. 3.8
u(t) = —W(t) 5 (3.8)
The choice W(¢) = %ZTFZI gives the classical Newton method. For overviews
of gradient methods, see for example [Stengel, 1994; Bryson and Ho, 1975].
Gradient methods improves convergence, as compared to the previously
described shooting methods. Also, if second order gradients are computed,

convergence can be further improved.

Collocation methods Another alternative for solving TPBV problems
is collocation methods®. In this approach, the continuous time derivative
operator is transcribed into a discretize time approximation. This opera-
tion results in an approximation of the original problem, where the differ-
ential equation is fulfilled at a finite number of points in time, referred
to as collocation points. The TPBV problem is then transformed into a
system of equations to solve. Collocation is also used as an element of si-
multaneous methods, which are described in Section 3.2. For an overview
of collocation methods applied to TPBV problems, see [Ascher and Petzold,
1998].

3.2 Direct Methods

In the last two decades, a new family of methods have emerged, referred
to as direct methods. Direct methods attempt to solve dynamic optimiza-
tion problems by transcribing the original infinite dimensional dynamic

3The term collocation point refers to a point in time at which the differential constraint
% = f(x,u) is (approximately) fulfilled.

63

Chapter 3. Dynamic Optimization

problem into a finite dimensional static optimization problem. Thus, the
necessary conditions for optimality derived in the previous section are
not considered. The development of direct methods is motivated in [Betts,
2001], where three main arguments are given:

e Indirect methods, based on the conditions specified by the maximum
principle, require the user to derive the quantities %—f, %—f etc. This
requires skilled users, and even then the derivation can be involved

for complex models.

e An important element of many realistic optimal control problems
is state path constraints. Although there exists extensions of the
maximum principle to treat also such problems, these results are
often difficult to apply in practice. A particular difficulty is that the
activation sequence of the constraints must be known a priori.

e The adjoint variables, which play an important role when solving
optimal control problems by means of an indirect method, are
troublesome in two respects. Firstly, the adjoint variables are not
physical quantities, which makes it difficult to obtain initial guesses.
Secondly, the computation of the adjoint variables is often ill-
conditioned, which may lead to numerical problems. The problem
is further elaborated in [Bryson and Ho, 1975, p. 214].

There are two main branches within the family of direct methods. The
sequential methods rely on state of the art numerical integrators, typically
also capable of computing state sensitivities, and standard nonlinear pro-
gramming (NLP) codes. The controls are then usually approximated by
piece-wise polynomials, which render the controls to be parametrized by
a finite number of parameters. These parameters are then optimized. Si-
multaneous methods, on the other hand, are based on collocation, and
approximate both the state and the control variables by means of piece-
wise polynomials, see [Biegler et al, 2002] for an overview. This strategy
requires a fine-grained discretization of the states, in order to approx-
imate the dynamic constraint with sufficient accuracy. Accordingly, the
NLPs resulting from application of simultaneous methods are very large,
but also sparse. In order to solve large-scale problems, the structure of
the problem need to be explored.

In the following, the sequential and simultaneous methods will be de-
scribed. The presentation will be based on the optimal control problem

Iil(itglcb(x(tf))
subject to
x=f(x,u), x(0)=x0

(3.9)

64

3.2 Direct Methods
Po Di

Integrator

bS]

Figure 3.1 A sequential method is based on an integration algorithm and an NLP
solver.

The Lagrange cost term is dropped here for the sake of brevity of the
presentation. However, it is straightforward to extend the system with an
additional state x;, = L(x,u), in order to incorporate the integral penalty
term.

Sequential Methods

In a sequential method, the control variables are parametrized by a fi-
nite number of parameters, for example using a piece-wise polynomial
approximation. Given fixed values of the parameters, the cost function
of the optimization problem (3.9) can be evaluated simply by integrating
the dynamic system. The parameters may then, in turn, be updated by
an optimization algorithm, and the procedure is repeated, as illustrated
in Figure 3.1. When the optimization algorithm terminates, the optimal
parameter configuration is returned. Since the parameters determine the
control profiles, which are then used to compute x(¢/), the cost function
can be written as ¢(x(¢s)) = ¢(p). The infinite dimensional optimiza-
tion problem is thus transformed into a finite dimensional approxima-
tion. For these reasons, sequential methods are also referred to as control
parametrization methods. For a thorough description of single shooting
algorithms, see [Vassiliadis, 1993|.

Lagrange Polynomials A common choice of control parametrization
is to use Lagrange polynomials. Lagrange polynomials are also commonly
used in simultaneous methods, and will therefore be described here in
some detail. The length of the control interval, ranging from t, to ¢/ is
divided into N, intervals, see Figure 3.2, and in each interval, the controls
are written

N,

t—t_

u(t) = Zui,jLEM) < h'l 1> t e [ti—l,ti], hi=tiy1—t (3.10)
Jj=1 '

where L§N°) are the Lagrange polynomials, ¢; is the time at the beginning
of interval i and A; is the length of the interval. u;; are the weights that

65

Chapter 3. Dynamic Optimization
u(t)

Element i Element i + 1

ti1 lig tig tiv11 liv1e tiv13
i i+1

Figure 3.2 Piece-wise representation of control variables by means of Lagrange
polynomials.

parametrize the control profiles. The Lagrange polynomials are given by

N,y 1 i N —
LM ()=1 if N.=1

N,
- 3.11
Y@y = J[== itN.>2 (811)
T — Tk
k=1k#j

where the points 71...7x5, € [0,1] are used to define the polynomials.
Notice that N, points result in N, polynomials of order N, — 1. Lagrange
polynomials are particularly attractive, since they possess the property

Ly =] b =k (3.12)
J 0, if j#k

Accordingly, the values of u(¢) at the points ¢; ; are given by

t” Zu,kL (t” fi- 1> Zu,kL =Uu;; (3.13)

This property is useful since it enables path inequality constraints to
be enforced, approximately, by simply introducing bounds for u;; in the
optimization. Some caution is required, however, since the values of the
Lagrange polynomials in between the points are not considered.

Obtaining Gradients

Typically, the convergence of an optimization algorithm can be improved
by providing it with gradients of the cost function with respect to the

66

3.2 Direct Methods

parameters. While finite differences is a simple method for obtaining gra-
dients, it is not well suited for in this particular application due to scaling
problems and limited accuracy, [Rosen and Luus, 1991]. Taking the full
derivative of the cost function ¢(x(¢/)) = ¢(p), we obtain

d¢
dp

_ 0070
~ Ox 9p

(3.14)

tr t
While % is usually straightforward to compute, the quantity g—; = xp,(2),
referred to as the state sensitivity with respect to the parameter p, needs
attention. A common approach for computing state sensitivities is derived
by differentiating the differential equation & = f(x,u) with respect to p:

ddi_d d (ox\ _0fox ofou
dpat ~ap B g (ap> =%xop Touop 1)
which gives the sensitivity equations
) _of of ou
ip(t) = axp(t) + P 0p’ (3.16)

If Lagrange polynomials are used to parametrize the controls, the param-
eters p correspond to the parameters u; ;. Also, the quantity g—; can be
computed by differentiation of the corresponding Lagrange polynomials.
This method for computing derivatives results in a new set of differential
equations to solve. If the number of states of the system is n, and the
number of parameters is n,, then n, x n, additional equations must be
integrated. This operation is computationally expensive, although the ef-
ficiency of the integration can be increased by exploring the structure of
the sensitivity equations. There is also software available which supports
integration of the sensitivity equations, for example DASPK, [Maly and
Petzold, 1996].

Another method for computing gradients is based on the adjoint equa-
tions. The gradient of the objective function can be computed by the fol-
lowing expression:

do _ [,20f

= 1
dp ; ou 3p dt, (3.17)
where the adjoined variables are given by
: of ¢
T _ .79 T _ 99
At =-1 5 AC(tr) P (3.18)

The strategy when using the adjoint method for computation of gradi-
ents is then to first integrate the system dynamics, forward in time, and

67

Chapter 3. Dynamic Optimization

x(t) Seg.1 Seg.2 Seg. 3 | Seg. 4
/‘ A/dl :/dZ : p= d3 |
Sy T \/
| X3 |
o : : X4 | :
! | | ; | t
t ts ts ty

Figure 3.3 In a multiple shooting method, the control horizon is divided into a
number of segments, which are integrated independently.

then integrate the adjoint system backwards in time. Notice that this re-
quires the state trajectories resulting from the forward integration to be
stored, since they are needed in the backwards integration. The advan-
tage of using the adjoint method, as compared to integrating the sensitiv-
ity equations, is that fewer additional equations are introduced. Also for
the adjoint method, efficient software is available, for example DASPK-
ADJOINT, [Cao et al, 2003; Li and Petzold, 2002].

Multiple shooting A popular extension of the single shooting algo-
rithms is multiple shooting. In a multiple shooting algorithm, the opti-
mization interval [ty,¢/] is divided into a number of segments, see Fig-
ure 3.3. New optimization variables corresponding to the initial condi-
tions for the states in each segment, are then introduced. This enables
the dynamics, as well as the sensitivity equations, to be integrated in-
dependently in each segment. In order to enforce continuity of the state
profiles, equality constraints are introduced in the optimization problem
which ensure that the defects, d; = x(t},;) — x(t;, ;) are equal to zero.

Multiple shooting addresses some of the problems associated with sin-
gle shooting algorithms. For example, the computation of gradients may
be very sensitive, in that small variations in the parameters may give
rise to large changes in the cost function. This is true in particular if the
integration interval is long. If the integration is performed over shorter
intervals, this type of sensitivity is reduced, and the numerical stability
properties of the algorithm are improved. Another advantage of multi-
ple shooting algorithms is that state inequality constraints can be more
easily accommodated. Since the initial states in each segment are opti-
mization variables, algebraic inequality constraints can be enforced for
the states variables at the segment junctions. Notice, again, that pre-
caution is needed, since the values of the state variables in between the
segment junctions are not considered.

68

3.2 Direct Methods

Simultaneous Methods

A key element of a simultaneous method is the scheme used to discretize
the differential equation. For this purpose, a collocation scheme is com-
monly used. To illustrate this concept, consider the optimal control prob-
lem (3.9). Introducing the forward Euler approximation of the continuous
time derivative

% n YRHL T YR (3.19)
h
where 2 = N, /i, is the interval length and N, is the number of discretiza-
tion intervals. The differential equation is then approximated by

Xp+1 = Xp + hf(xk, uk) (3.20)

Most commonly, this equation is then used iteratively to obtain an approx-
imate solution of the differential equation. In the context of simultaneous
methods, however, these equations are rather included in a static opti-
mization problem as an equality constraint. The transcribed problem can
then be written

ming(xy,), £=0...N.—1
wi

subject to
x0 + hf(x0,u0) — x1 (3.21)
C(.’E, l_t) = : =0
xN,—1 +hf(xN,—1,uN,—1) — XN,
where the unknowns are % = (x1,”...,x3)" and @ = (u,...,u}y _;)".

Having transcribed the original continuous time problem (3.9) into a
discrete time approximation (3.21), it is instructive to examine the connec-
tions between the first-order optimality conditions for the two problems.
Following the presentation in [Betts, 2001], we introduce the Lagrangian
L = ¢(xn,) + ATc(x,@). The optimality conditions for the problem (3.21)
can then be written as

0H Of (xi,u;)

5o = AL = ATRELREE T =0, = 1N, -1

OH _ 0¢(xn,) 7 _
e = g =0 (3.22)
OH _ qrp2tits) _ o g N, -1

ﬁui 8ui

69

Chapter 3. Dynamic Optimization

which can be rearranged into

A=A — T Of (xi, ui) AT 99 (xn,)

. ’ N,—1 —
h 0x; oxy, (3.23)
A«T 8f(xi’ui) _ 0
! Gui o

In the limit, when A — 0, these relations reduce to the optimality con-
ditions for the original problem (3.9). The convergence properties for a
more realistic case, where a monomial-basis formulation (see [Bader and
Ascher, 1987]) is used instead of the forward Euler approximation, is an-
alyzed in [Kameswaran and Biegler, 2006].

In order to increase the accuracy of the approximation of the differen-
tial equation, the number of intervals, N, can be increased. This, in turn,
leads to very large NLPs to solve. However, NLPs resulting for collocation
are typically highly structured, in that the Jacobian of the equality con-
straint ¢(%,&) is very sparse, see [Betts, 2001] for a detailed treatment.
Exploring sparsity is therefore essential in order to efficiently solve this
type of problems.

Collocation using Lagrange polynomials Whereas the forward Eu-
ler approximation is straightforward to implement, there are several in-
tegration schemes which have superior numerical properties. One such
example is orthogonal collocation over finite elements with Radau points
and Lagrange polynomials. It can be shown that such a collocation scheme
is equivalent to a fully implicit Runge-Kutta scheme, see Appendix A. Ac-
cordingly, the stability properties of this scheme are inherited, see for
example [Petzold, 1986].

As described above, the purpose of the transcription procedure is to
translate the infinite dimensional dynamic constraint into a finite dimen-
sional constraint, which can be incorporated into the final static non-linear
program.

Consider, again, the differential equation

%= f(x,u), x(0)=xo, (3.24)

where x are the state variables and u are the control variables. The opti-
mization horizon is divided into N, finite elements, and within each ele-
ment, N, collocation points, 7; € [0,1], are defined. The choice of Radau
points implies that 7y, = 1. Introducing the element lengths 4;, the time
instants of the collocation points may be expressed as t;; = ¢;+h;7;, where
t; denotes the start time of element i. Introduce the polynomial state vari-

70

3.2 Direct Methods

able approximations

ti—
ch+1 th N) <TLI> te [ti—l’ti]’ (325)
i

where L (Ne+1) denotes Lagrange interpolation polynomials of order N,

and x;; are parameters. In order to obtain N, + 1 Lagrange polynomials,
the point 7y = 0 is added. The control variables are discretized using the
approximation

ZulkL < ht‘1> t € [ti1,ti], (3.26)

where the Lagrange polynomials L) have been introduced, and u;; are
parameters. The collocation equatlons may now be written

N,
YLy (@) = hif (i, wy) (3.27)
k=0

for all i = 1..N, and j = 1..N.. In order to enforce continuity of the state
variables between elements, the constraints

Xi_1,N, = Xi0 (3.28)

must be enforced. This is also the reason why the state variables are
approximated by Lagrange polynomials with a higher order than the con-
trol variables. The variables x and u and the original dynamic constraint
(3.24) are now replaced by the parameters x;; and u;; and the equality
constraints (3.27) and (3.28) in the final transcribed algebraic non-linear
program.

Another popular choice of collocation scheme is the monomial-basis
representation, [Bader and Ascher, 1987]. Using this method, the deriva-
tives, x, are approximated by Lagrange polynomials of specified order,
which implies that the state variable approximations are based on the
integral of the interpolation polynomials. The monomial-basis represen-
tation corresponds precisely to a Runge-Kutta scheme. Notice that in the
case when the states, x, rather than their derivatives, are approximated
by Lagrange polynomials, some calculations are needed to show that this
scheme is indeed equivalent to a Runge-Kutta method, see Appendix A.

71

Chapter 3. Dynamic Optimization

Comparison Between Sequential and Simultaneous Methods

There seems to be no general agreement on whether the simultaneous
methods or the sequential methods are preferable for dynamic optimiza-
tion of large-scale optimization problems. Multiple-shooting, which can be
viewed as an algorithm bridging the gap between the two families of direct
methods?, is quite popular in non-linear model predictive control (NMPC)
applications. Also, the simultaneous methods are gaining increasing in-
dustrial use, see for example [Pettersson et al., 2005].

In comparing single shooting and collocation methods, some advan-
tages and disadvantages can be distinguished. Single shooting is appeal-
ing due to its conceptual simplicity, and because of the size of the resulting
NLP, which is usually manageable. In each iteration in a single shooting
algorithm, the dynamic constraint is fulfilled with high accuracy, which
means that the optimization procedure can be terminated prematurely
(for example in order to avoid lack of convergence). The resulting control
profiles may be then be suboptimal, but may still be an improvement over
the initial guess. On the down-side, single shooting methods are computa-
tionally expensive, in particular if the sensitivity equations are integrated.
Further, unstable systems and state path constraints are difficult to man-
age with single shooting methods.

Simultaneous methods, on the other hand, handle state path con-
straints more easily, and are also better suited for unstable systems. In
fact, the ability to efficiently handle state path constraints is one of the
major benefits of the simultaneous methods. Further, with the availability
of NLP solvers capable of exploiting the sparse structure of the constraint
Jacobian and Hessian resulting from collocation, simultaneous methods
have proven to be computationally efficient also for large-scale systems.
On the other hand, first and second order derivatives, as well as sparsity
information, might be necessary for convergence. Also, the simultaneous
methods are sensitive to poorly scaled problems, in which case the result-
ing NLP might be ill-conditioned which can result in, slow, or even lost
convergence.

Multiple shooting methods inherit properties from both single shooting
and collocation methods. If a large number of shooting intervals are used,
the numerical stability properties are improved. Also, path constraints can
be enforced at interval junctions, which is an improvement compared to
single shooting. However, the computational demand for multiple shooting
algorithms is still large. If derivatives are computed by means of integra-
tion of the sensitivity equations, additional equations must be integrated
in order to obtain derivatives with respect to the initial state variables in

4A collocation scheme can be viewed as an extreme case of multiple shooting, where one
shooting segment corresponds to one step in the integration algorithm.

72

3.3 Applications

each shooting interval.

Both sequential and simultaneous methods rely on the availability of
high accuracy derivatives of the functions involved in the formulation of
the optimal control problem. For example, % and % are needed to inte-
grate the sensitivity equations. The same quantities are needed to com-
pute the constraint Jacobian resulting from a collocation scheme. While
manual differentiation of complex functions is cumbersome and error-
prone, there is efficient software available for the purpose. Two examples
are ADOL-C, [Walther and Griewank, 2007] which compute high accu-
racy derivatives of functions encoded in C, and ADIFOR, [Hovland and
Carle, 2007], which performs the same task for FORTRAN codes. The
availability of such software greatly increases the applicability of the di-
rect methods, since it relieves the user from the task of computing and
encoding, manually, derivatives.

3.3 Applications

Dynamic optimization is becoming a standard design tool, which is applied
industrially in a large number of applications. In this section, a few of the
most important applications will be briefly described.

Model Predictive Control

The key feature that distinguishes model predictive control (MPC) from
most other control strategies is the receding horizon principle. An MPC
controller solves, at each sampling instant, a finite horizon optimal con-
trol problem. Only the first value of the resulting optimal control variable
solution is then applied to the plant, and the rest of the solution is dis-
carded. The same procedure is then repeated at each sampling instant,
and the prediction horizon is shifted forward one step. Thereby the name
receding horizon control.

Historically, there has been two major selling points for MPC; it works
well for MIMO plants, and it takes constraints into account explicitly. Both
these issues arise frequently in many practical applications, and must be
dealt with in order for a control design to be successful. MPC has been
particularly successful in the area of process control, which is also the field
from where MPC originates. Traditionally, MPC has been mainly applied
to plants with slow dynamics, where the computational delay is small
compared to typical sampling intervals. However, recent reports of MPC
applications include plants with fast dynamics, ranging from air plane
control to engine control. For a review of industrial use of MPC, including
a historical review of the evolution of MPC, see [Qin and Badgwell, 2003]

73

Chapter 3. Dynamic Optimization

During the last decade, there has been significant research efforts to
resolve the theoretical issues of MPC. Notably, the problem of formulat-
ing a stabilizing MPC scheme has received much attention. As a result,
several techniques to ensure stability have been presented, see [Mayne
et al, 2000] for a review. The theory for MPC based on linear systems
is well developed, and strong results ensuring robust stability exists, see
[Maciejowski, 2002] for an overview. Also, the optimization problem re-
sulting from linear MPC is a Linear Inequality Constrained Quadratic
Programming (LICQP) problem, which is a convex optimization problem,
and efficient solution algorithms exist. In particular, existence of a unique
global minimum is guaranteed. For non-linear system, there exist MPC
formulations that guarantee stability under mild conditions. However, the
resulting optimization problem is, in general, non-convex and usually no
guarantee of finding a global minimum exits. Non-linear MPC remains a
very active field of research and recent results have shown that optimality
is not a necessary condition for stability, see [Scokaert et al., 1999].

State Estimation

Receding horizon estimation (see for example [Rao et al, 2003]) can be
viewed as the dual of model predictive control. In this case, however, the
problem is to compute estimates of the current state variables, given past
measurement data, and a model of the dynamic system that generated the
data. Receding horizon estimation is particularly appealing in the pres-
ence of state and control constraints, since these elements do not naturally
fit within the framework of, for example the extended Kalman filter. It is
interesting to note that while model predictive control has received signif-
icantly more attention, both in research and in industry, the problem of
designing a state estimator is often more challenging than designing the
actual controller. Also in this respect, receding horizon estimation is ap-
pealing, since the resulting dynamic optimization problem can be solved
using the same type of methods which have been developed for NMPC.

Off-line Optimization

In some cases, the computational complexity associated with large-scale
plants prohibits on-line optimization schemes. In such cases, it may still
be feasible to calculate, off-line, optimal transition trajectories. This strat-
egy is applicable, for example, in the process industry, where a common
operation is to perform grade changes, which transfer the state of a sys-
tem from one operating point to another. The different operating points,
or grades, may then correspond to different product qualities. Application
of optimal trajectories which have been calculated off-line typically need
to be supported by a feedback system, in order to compensate for dis-
turbances and modeling errors. In Chapter 9, a case study dealing with

74

3.4 Tools for Dynamic Optimization

off-line computation of optimal start-up trajectories for a plate reactor, and
their implementation using a mid-ranging feedback system, is presented.

Parameter Optimization

Component-based dynamic models constructed using first-principles often
contain a large number of physical parameters. While some parameter
values, for example densities of metals, can be looked up in tables, other
parameter values, for example heat transfer coefficients, may be difficult
to obtain accurate values for. As a result, the result of a simulation exper-
iment may not match the output produced by the corresponding physical
system. In order to calibrate a model to better match measurement data,
an identification problem may be formulated, where the deviation between
model and plant output is minimized. Parameters for which accurate val-
ues can not be obtained are then optimized.

3.4 Tools for Dynamic Optimization

There are several commercial and free software tools that support dy-
namic optimization. In this section, some of these tools are briefly de-
scribed.

Dymola

Dymola, see [Dynasim AB, 2007], is primarily a tool of modeling and
simulation of Modelica models. Since version 6.0, Dymola also supports
dynamic optimization. Multi-objective and multi-case problems can be for-
mulated and solved by means of a sequential method. The resulting non-
linear programs can be solved by means of, for example, an SQP algorithm
or a pattern matching algorithm. Dymola also provides a module that is
designed for calibration of Modelica models, given measurement data. The
focus of the optimization capabilities of Dymola is primarily parameter op-
timization, although optimal control problems can also be solved, if the
controls are parametrized by the user.

HQP

HQP (Huge Quadratic Programming), see [Franke, 2007], is a software
package that contains a numerical solver for large-scale non-linear pro-
grams, and interfaces to, for example, model representations available in
the S-function format and in Omuses [The Omuses Team, 2007]. Dynamic
optimization problems can be solved by means of a multiple shooting algo-
rithm. An application of HQP is reported in [Franke et al., 2003]. HQP is
released under the license GNU Library General Public License, Version
2.

75

Chapter 3. Dynamic Optimization

gPROMS

gPROMS, see [Process Systems Enterprise, 2007], is a modeling, simu-
lation and optimization software that is particularly targeting chemical
engineering applications. The optimization module within gPROMS sup-
ports both a single shooting and a multiple shooting algorithm.

Jacobian

Jacobian, see [Numerica Technolgy, 2007], is a modeling, simulation and
optimization environment that has evolved from research at MIT. In par-
ticular, Jacobian features sensitivity analysis and optimization of a class
of hybrid DAEs.

GESOP

GESOP, [ASTOS Solutions GmbH, 2006], provides interfaces to model
and optimization descriptions encoded in Fortran, C, or ADA, as well as
a graphical user interface. The graphical user interface enables the user
to specify, with a high level of detail, the properties of the mesh, as well
as variable bounds. GESOP contains both single shooting and multiple
shooting algorithms, as well as a collocation method, for solving dynamic
optimization problems. GESOP also provides an interface to the dynamic
optimization package SOCS [Boeing, 2007], which is a package for solution
of large-scale dynamic optimization problems.

MUSCOD-II

MUSCOD-II, [Diehl et al., 2001], is a software supporting dynamic opti-
mization by means of a multiple shooting method. Dynamic models may be
provided in C, Fortran, or as gPROMS models. MUSCOD-II also supports
solution of multi-stage problems, where the dynamics of the system model
is governed by different sets of differential-algebraic equations during the
optimization interval.

AMPL and IPOPT

AMPL [Fourer et al., 2003] is a language, as well as a tool, for formulation
of static optimization problems. The AMPL language offers constructs for
encoding of cost functions and constraints, and also provides a convenient
separation between the actual optimization problem and data.

AMPL, by itself, does not offer numerical algorithms for solving opti-
mization problems. Rather, AMPL provides a generic interface that offers
evaluation of the cost function and the constraints. In addition, the AMPL
solver interface offers evaluation of the first and second order derivatives
of the cost function and the constraints as well as sparsity patterns of the
constraint Jacobian and Hessian. The first and second order derivatives

76

3.5 Summary

are computed internally within AMPL by means of automatic differentia-
tion, which is a fast and accurate method for obtaining derivatives. A large
number of optimization algorithms have been interfaced with AMPL. In
particular, the solver IPOPT has been used to solve the large-scale opti-
mization problems resulting from the automatic transcription procedure
in the Optimica compiler, see Chapter 7. IPOPT is an interior-point bar-
rier function algorithm, see [Wichter and Biegler, 2006] for details.

3.5 Summary

Historically, optimal control originates from the calculus of variations,
dating back to the 17th century. Significant contributions were given by,
amongst others, Newton and Bernoulli. The field was revitalized in the
1950s and 1960s. Two important contributions were then given by Bell-
man (dynamic programming) and Pontryagin, (the maximum principle).
During the last two decades, a new family of numerical methods for dy-
namic optimization have emerged, referred to as direct methods. This de-
velopment has been driven by the industrial need to solve large-scale opti-
mization problems and it has also been supported by the rapidly increas-
ing computational power of modern computers. Two important classes of
direct methods are the sequential methods, which rely on state of the
art numerical integrators and standard NLP codes, and the simultaneous
methods which rely on collocation methods and specialized NLP solvers
capable of exploring sparsity.

77

Languages and
Software Tools

4

JModelica -
A Modelica Compiler

4.1 Introduction

Current state-of-the-art software for simulation of Modelica models is very
efficient for its main purpose—simulation. Certainly, simulation is the
single most important usage! of Modelica models today, and will most
likely be so, at least in the near future. However, as the body of Model-
ica libraries, commercial as well as public, grows, they also represent an
increasing value in terms of expert knowledge being encoded in Modelica
models. In order to increase the return of investment it is then of primary
interest to enable flexible usage of models, in contexts other than simu-
lation. There are several emerging usages of Modelica models, including:

Model restrictions. Modelica allows for very complex model behavior.
In the general case, a DAE resulting from compilation of a Modelica
model is non-linear and hybrid, and contains algorithms and func-
tion calls which may invoke execution of external C or Fortran code.
On the other hand, many design algorithms, as will be described in
the following, impose restrictions on model structure. For example,
for linear systems, many strong results as well as efficient algo-
rithms are available. Similarly for DAEs without hybrid elements.
Since the choice of algorithms usually affects performance and ac-
curacy, it is important to explore the structure of the model. It is

IThe term usage will be used in the following to refer to ways of using a Modelica model,
for example, for simulation or for optimization. The word application, on the other hand, will
be used in this text to refer to the area of application of a model, such as electrical circuits,
power trains or thermo-fluid systems.

81

Chapter 4. JModelica — A Modelica Compiler

generally the case that the efficiency of algorithms decreases as the
complexity of the model structure increases. Restricting the choice
of algorithms by always assuming the most general case in terms of
model structure is therefore quite conservative. It could be argued
that most Modelica models actually do use many of the facilities in
Modelica which makes it difficult to explore model structure. This
is true, but only partially. Models are most often developed with one
or more particular usages in mind. If the single intended usage is
simulation, there are few restrictions that need to be observed. On
the other hand, if the intended usage of a model is optimization, it
might be desirable to reduce the complexity of the model in order
to enable use of more efficient algorithms and also restrict the use
of elements which are known to be difficult to handle in the context
of optimization. Assisting the user in choosing an appropriate algo-
rithm, by offering means to classify the model structure, is therefore
an important issue.

Model reduction. Modelica models are often quite complex, sometimes

to a level where they are difficult to understand and analyze. A
large number of parameters distributed over a large model may also
result in models which are difficult to calibrate, simply because the
effect of changing the value of a parameter is difficult to predict. One
approach to overcome this difficulty is model reduction. The problem
is then to produce a simpler model which approximates the original
model. The simplified model may then be more suitable for analysis,
while still capturing the important features of the original model.

Static and dynamic optimization. Optimization is becoming a stan-

82

dard tool to solve design problems in many engineering disciplines.
A significant trend is that models of physical systems are used as
constraints in optimization problems.

While there is a large body of work in the area of optimal control
and estimation, it is not immediately applicable to general Modelica
models, since many results and algorithms impose restrictions on
the structure of models in order to be applicable. This observation
stems simply from the fact that the class of models that can be effi-
ciently simulated is much larger than the class of models for which
efficient optimization algorithms have been devised. Never the less,
a Modelica model may indeed have a structure which fits that of
a particular algorithm, either because the model inherently has a
particular property (for example, RLC network models, consisting of
resistors, capacitors and inductors, are linear if the network compo-
nent models are linear), or because the model has been adapted to fit

4.1 Introduction

into a particular model class. As an example of the latter case, con-
sider models containing interpolation tables. Linear interpolation of
table data gives rise to models which are not continuously differen-
tiable. If an algorithm which requires twice continuously differen-
tiable models is to be used, it is a standard procedure to replace a
linear interpolation scheme with, for example, a spline interpolation
scheme, which fulfills the differentiability condition.

A distinguishing feature of many optimization algorithms is that
they require additional information derived from the model, apart
from the model itself. A standard requirement is gradient informa-
tion, i.e., first, and in some cases, also second order derivative in-
formation. In order to manage large systems, some algorithms can
also exploit sparsity information to further improve performance.
For a discussion on dynamic optimization and related algorithms,
see Chapter 3.

Control design. Models are often used in control design. The most com-
mon example is perhaps to derive a linearized model from a non-
linear system, and apply tools from the theory of linear control sys-
tems. Linearization of Modelica models is also often supported by
current tools. However, more sophisticated control strategies are be-
coming more popular, which also increases the need for a flexible
model API in order to explore the structure of models. One such
example is Non-linear Model Predictive Control (NMPC) (see for
example [Mayne et al., 2000]. An NMPC controller solves, at each
sampling instant, an optimal control problem based on predictions
of the future model outputs. In order to solve the resulting opti-
mization problem efficiently, the same requirements as for dynamic
optimization applies.

Parameter estimation and calibration. Having constructed a model
of a physical system, the problem of calibrating the model to the
system often arises. Calibration of a model aims to reduce the mis-
match between the model and the plant behavior, and is commonly
performed by tuning model parameters until the simulated response
of the model is close to that of the true system. However, this pro-
cedure can be quite tedious, especially if the model behavior is com-
plex and the number of parameters to tune is large. It is therefore
important to enable efficient calibration of Modelica models. This
can be achieved, for example, by applying parameter optimization
methods, or grey-box identification techniques [Bohlin and Isaksson,
2003; Gerdin et al., 2007].

Embedded code generation. A current trend, that is particularly visi-

83

Chapter 4. JModelica — A Modelica Compiler

ble in the automotive industry, is to merge physical modeling, control
system design and code generation targeted at embedded CPUs. The
benefit from this approach is that the user is enabled to construct
models and embedded control systems using high-level languages
and tools, whereas the actual executable code is automatically gen-
erated from a high-level description. This area is quite challenging
since the complex interplay between physical systems, control algo-
rithms, and real-time control systems must be explored in order to
predict the behavior of the composite system. As a consequence, in
order to simulate, with a high level of detail, the behavior of the
composite system, it is essential to model not only the physical plant
and the control system, but also the real-time behavior of the embed-
ded CPU, see for example [Henriksson et al., 2003] for an overview.
Another important usage in this area is hardware in the loop simu-
lation (HILS), where the actual control system is evaluated against
the model, which is then executing in a simulation environment.

Currently, it is often difficult to apply this wide range of available and
emerging methods to models developed in Modelica. There are two main
aspects of this problem that need attention.

Firstly, new usages call for new high-level language constructs. For
example, in the context of optimization, there are several concepts that
are not represented in the Modelica language, such as cost functions and
constraints. This is not to be considered as a deficiency of Modelica, but
rather a consequence of Modelica being intended for modeling of physical
systems, not optimization problems. High-level language extensions are
therefore important in order to provide, for the particular usage domain,
suitable constructs possessing expressive power which is on par with that
of Modelica. It is desirable that such extensions are done in a modular
way, so that the actual model description is separated from, potentially
several, complementing descriptions, relating to the model. The issue of
language extensions will be further elaborated on in Chapter 7.

Secondly, algorithms for the usages listed above may require an ex-
tended model API, as compared to simulation. A typical simulation-based
interface in a Modelica tool essentially offers evaluation of the right hand
side of the DAE, evaluation of root-functions for detecting events, and
possibly the Jacobian of the right hand side with respect to the states.
This interface may, however be insufficient for other algorithms. For ex-
ample, in model reduction, a common operation is to apply a coordinate
transformation to the DAE and then truncate some states. Further, some
optimization algorithms require the Jacobian of the right hand side also
with respect to the model parameters and inputs. Second order derivatives
and sparsity patterns may also be useful in order to improve performance

84

4.1 Introduction

Other usage

e Optimica specific extension
Front-ends
Translation Translation L. Translation
Optimization Optimization Optimization
Canonical data structures and API
Interface/ Interface/ Interface/ . Interface/
Code gen. Code gen. Code gen. Code gen.
Back-ends
Pam's solver Pats's solver Ed's solver res Mike's solver

Figure 4.1 A software architecture enabling extensible compiler construction.

in terms of convergence of some optimization algorithms.

These two aspects have consequences for the design of extensible Mod-
elica compiler software. In terms of front-ends, it is desirable to enable
flexible implementation of front-ends, so that the core language, which
is Modelica, can easily be extended. It is also desirable to offer a generic
API, to which numerical or symbolic algorithms can be interfaced. Such
interfacing algorithms, potentially complemented by supporting code gen-
eration modules, are referred to as back-ends. The division of a compiler
into front-ends and back-ends is illustrated in Figure 4.1. This design is
commonly used also in conventional compilers, in which case the front-
ends may support different programming languages, and the back-ends
may generate machine-code for different hardware architectures.

In the context of physical modeling and model-based design, the task of
developing a framework according to the principle illustrated in Figure 4.1
is a major challenge. In particular, the problem of designing the interme-
diate representation layer, canonical data structures and API, requires
attention. This involves mathematical definition of the class of models
which can be expressed using the supported high-level languages. Such
a definition exists, for example, for the Modelica language. The major

85

Chapter 4. JModelica — A Modelica Compiler

challenge lies, instead, in the specification of intermediate formats for po-
tential extensions, and their relations to other extensions as well as the
mathematical model description format.

As a fist step towards creating a flexible Modelica-based modeling en-
vironment that addresses the issues of language extensions and flexible
model API, a new compiler, entitled JModelica, is under development.
For this development the compiler construction tool JastAdd [Hedin and
Magnusson, 2003; Ekman, 2006], is used. This tool uses several declara-
tive features such as reference attribute grammars and rewriting, in order
to support building extensible compilers.

In this chapter, an overview of the JModelica project and its current
status will be given. In Section 4.2, the objectives of the JModelica project
are stated. Section 4.3 motivates the choice of the development platform,
JastAdd, and in Section 4.4, the main features of JastAdd are described.
In Section 4.5, the role of a JastAdd description as an executable language
specification is discussed. In Section 4.6, PicoModelica, which is a subset
of Modelica, is introduced. PicoModelica will be used to explain design
concepts in the JModelica compiler in Chapters 5 and 6. The current
status of the JModelica project and some test results will be presented in
Sections 4.7 and 4.8. The chapter ends with summary and conclusions in
Section 4.10.

4.2 Objectives

The objective of the JModelica project is to develop a Modelica environ-
ment which facilitates experimental language design and language ex-
tensions, and provides a flexible model API in order to enable Modelica
models to be used by a wide range of algorithms. In terms of software, this
objective can be divided into two parts. Firstly, in order to accommodate
extensible compiler design at the language level, the compiler front-end
should be such that modular extensions of the core Modelica compiler is
possible. Secondly, in order to enable flexible interfacing of different nu-
merical algorithms, the compiler should offer a generic model API. Such
an API may then be used to construct compiler back-ends, which interface
with algorithms, for e.g., simulation, optimization or model reduction.

4.3 Development Platform—JastAdd

One of the main objectives of the JModelica project is to develop a Mod-
elica compiler which is modular and extensible. The core of the software

86

4.3 Development Platform—JastAdd

is the JModelica compiler, which supports flattening of Modelica models.
Flattening is the procedure of transforming a hierarchical Modelica model
into a flat representation corresponding to a hybrid differential-algebraic
equation (DAE) and will be treated in Chapter 6. It is desirable that ex-
tensions of the compiler, i.e., addition of new language constructs, can be
made in a modular fashion such that the code of the core compiler re-
mains intact. This approach is quite powerful, in that it allows for the
core compiler supporting pure Modelica to be developed independently of,
potentially several, core compiler extensions. The choice of JastAdd as im-
plementation platform is therefore natural, since it is explicitly designed
with modular extensible compiler construction in mind.

An interesting alternative to JastAdd is MetaModelica [Pop and Fritz-
son, 2006], which is used for implementation of the OpenModelica com-
piler. Like JastAdd, MetaModelica is a language designed for implementa-
tion of semantic behavior in compilers. MetaModelica is primarily based
on concepts from functional programming, and uses pattern matching
techniques to encode operations on the syntax tree. This paradigm differs
from the object-oriented approach in that data structures and transforma-
tion functions are separated. A particularly interesting idea underlying
the MetaModelica language is meta-modeling. In essence, meta-modeling
enables modeling of transformations of models within the same framework
as ordinary modeling. Fully implemented, meta-modeling would then al-
low for example for libraries to be developed which do not contain actual
models but rather implement transformations of models.

At an early stage of the JModelica project, JastAdd was used to de-
velop a front-end for a small subset of Modelica. The experiences from
this early attempt were promising, given the level of functionality in the
compiler that was obtained, and that the high-level constructs available
in JastAdd enabled rapid development. These early experiences inspired
further development based on the JastAdd platform. A particular target
of JastAdd is extensible compiler construction, which matches the objec-
tives of the JModelica project. In this respect JastAdd has proven to be
a successful choice, supported by the fact that the Optimica extension
presented in Chapter 7, has been implemented fully modularized. The
JastAdd platform has also been used to develop a full-scale Java compiler
(JastAddd), [Ekman and Hedin, 2007]. The JastAddJ compiler is execut-
ing at reasonable speed (within a factor of 3 slower than some hand-coded
compilers), while still being modularly extensible. The work on the Jas-
tAdddJ compiler provides further support for the hypothesis that JastAdd
is a feasible choice for the development of a Modelica compiler.

87

Chapter 4. JModelica — A Modelica Compiler
4.4 JastAdd

The JastAdd compiler construction system combines a number of fea-
tures including object-orientation, inter-type declarations, reference at-
tribute grammars, circular attributes, and context-dependent rewrites.
These concepts will be presented in detailed in this section. The goal is to
allow high-level executable specifications that support building extensible
compilers. Current state-of-the art hand-coded compilers do not support
the fine-grained extensibility that is needed for such extensions, but usu-
ally have support only for simple modularization into separate compiler
phases, e.g., using the Visitor design pattern [Gamma et al., 1995]. Jas-
tAdd is implemented in Java, generates Java code, and is available under
an open-source license [Ekman et al., 2006]. This section gives a summary
of the main features of importance for the following chapters.

Lexing and Parsing with JastAdd

JastAdd is dependent on supporting software for transforming the source
code into a stream of tokens (lexical analysis), and for parsing and subse-
quent construction of the AST. For these purposes, JFlex [Gerwin Klein,
2007] and Beaver [Beaver Project, 2007], respectively, have been used.
JFlex is a lexical analyzer generator, which takes as its input a specifi-
cation of tokens and produces a Java class which can be used to serve a
parser with a stream of tokens. Beaver is an LALR(1)? parser generator
which reads a syntactic language specification expressed as a context-free
grammar, and produces a Java class containing methods for constructing
an abstract syntax tree (AST) given a stream of tokens. The parser specifi-
cation is given in terms of a concrete syntax, which describes the syntactic
rules of the language and is in Beaver given on Extended Backus-Naur
Form (EBNF). The abstract syntax, on the other hand, represents the
structure of the program, disregarding the details of the syntax.

Abstract Syntax Trees

The core data structure in JastAdd is an abstract syntax tree. Represent-
ing computer programs as tree data structures is a standard technique,
which is commonly used in compilers. Each node in the AST corresponds,
roughly, to a language element in the source. When an AST has been
constructed, it can then be used for analysis, for example finding declara-
tions corresponding to identifiers, or for transformations. JastAdd uses an
object-oriented representation of the AST, where each node is represented
by a Java object. The child relations are implemented as object references.

2The acronym LALR(1) is short for lookahead, left-to-right parse, leftmost-derivation, 1-
symbol lookahead, see for example [Appel, 2002]

88

4.4 JastAdd

{ Equation ’
CComponentAccess 'y') (AddExp)
CComponentAccess 'x') CReaILitExp '1')

Figure 4.2 An AST representing the equation in Example 4.1.

ExawmpLE 4.1
Consider the Modelica equation

y=x+1

This equation would typically be represented by the AST depicted in Fig-
ure 4.2. Each node is labeled with the name of its corresponding type,
and, in the case of a terminal, also a literal value. O

Object-oriented Abstract Grammar

The core of a language implementation is the specification of an abstract
grammar. JastAdd uses an object-oriented abstract grammar specifica-
tion, from which a Java class hierarchy, referred to as the source AST
class hierarchy, is generated. The AST classes contain references to the
parent and children nodes, as well as constructors and a traversal API.
As an example of an abstract grammar specification, consider an excerpt
from the PicoModelica (PicoModelica will be introduced in Section 4.6)
grammar:

Root ::= ClassDeclx ...;

abstract ClassDecl ::= Name:IdDecl;

Model: ClassDecl ::= ExtendsClausex
ClassDecl=*
ComponentDeclx
Equation=
/InstRoot/;

RealClass: ClassDecl;

ExtendsClause ::= Super:Access

[Modification];
IdDecl ::= <ID:String>;

In a JastAdd grammar specification, a non-terminal is declared by its
name, followed by the symbol ::=, after which the children of the non-
terminal are listed. A specification of a non-terminal is called a produc-

89

Chapter 4. JModelica — A Modelica Compiler

tion. Nodes in the AST, as specified by the productions, are classified as
being either non-terminals, in which case their names occur in the left-
hand side of a production, or terminals, in which case they only occur in
the right-hand side of productions. For example, Root is a non-terminal
and <ID:String> is a terminal. Children of a node can be named, which is
expressed by specifying the child name and the name of the node type sep-
arated by a colon. For example, A ::= myB:B means that the node type A
has a child named myB of type B. Inheritance, in the object-oriented sense,
between node types is expressed by adding a colon followed by the name of
the supertype to the declaration. For example, A : B ::= indicates that
the node type A inherits from B. If a node has multiple children of the
same type, this can be indicated by an asterisk, and a child is marked as
optional if it is surrounded by square brackets.

The root node of a PicoModelica AST has the type Root, and consists
of zero or more ClassDecl nodes, as indicated by the asterisk. The non-
terminal ClassDecl is abstract, which means that it cannot be instan-
tiated. It has a child of type IdDecl which is entitled Name. The Java
class corresponding to ClassDecl then has a constructor ClassDecl (IdDecl
Name), as well as setters and getters for its child node. IdDecl is a non-
terminal, which contains a String literal named ID.

The non-terminal Model, corresponding to a model class declaration in
PicoModelica, is composed of zero or more ExtendsClause nodes (repre-
senting superclasses), zero or more ClassDecl nodes (representing local
classes), zero or more ComponentDecl nodes (corresponding to component
declarations), and zero or more Equation nodes. In addition, Model is a
subclass of ClassDecl. Model also has a child node, InstRoot, which is a
non-terminal attribute (NTA), [Vogt et al., 1989], which is indicated by
the child name being surrounded by slashes, see the description below
for details on NTAs. RealClass corresponds to the primitive type Real,
and is also a subclass of ClassDecl. ExtendsClause corresponds to an ex-
tends clause in PicoModelica, and consists of an Access and an optional
Modification, as indicated by the brackets.

Having defined the abstract grammar, JastAdd reads this specifica-
tion, along with aspects containing semantic behavior, and finally gen-
erates a Java class hierarchy. The procedure of merging the content of
aspects into the AST classes defined by the abstract grammar is usually
referred to as weaving, and is illustrated in Figure 4.3.

Aspects with Inter-type Declarations

The abstract grammar specification results in a Java class hierarchy,
where each class contains default constructors and a traversal API. A
common approach to compiler construction is to either edit the gener-
ated classes directly, or to use some modularization scheme like the Visi-

90

4.4 JastAdd

Abstract grammar

Aspects (behaviour) Modelica AST classes (Java)

Type
analysis

Modification
lookup

Error
checking

U
SEDk

Context-free grammar Parser class (Java)

Modelica

Modelica
EBNF Parser Parser
generator

Figure 4.3 Schematic figure describing the functionality of JastAdd.

tor pattern. JastAdd, however, offers significantly increased flexibility, by
supporting inter-type declarations which are organized into aspects. The
term inter-type declaration refers to a declaration of, e.g., a method, a
field or in the context of JastAdd, an attribute, outside the textual scope
of a class. The use of aspects and inter-type declarations enable cross-
cutting behavior to be modularized in a natural way. For example, the
implementation of name analysis in a compiler typically involves addition
of code to a large number of classes. In this case, the fundamental entity
of object-orientated languages, the class, does not offer effective means for
modularization. This deficiency can then be overcome by the introduction
of aspect-orientation, see Figure 4.3. The inputs of the weaving procedure
are the abstract grammar specification, which defines the AST classes,
and the code defined in the aspects. The weaving procedure ensures that
the semantic behavior, i.e., the inter-type declarations, are translated to
Java and inserted into the correct classes. The result of the weaving is
output as standard Java classes. These automatically generated classes
are typically not edited further. Rather, changes are made in the aspects
and the weaving procedure is repeated.

This approach to modularization is advantageous as compared to direct
editing of automatically generated AST classes. Consider, for example, the

91

Chapter 4. JModelica — A Modelica Compiler

situation where the abstract syntax needs to be changed, which results
in new AST classes being generated. In this case, manually inserted code
potentially needs to be copied, again manually, into these classes. While
the Visitor pattern enables modularization of behavior, it does not allow
for new fields to be added to classes. In some situations, this feature
is convenient, and the approach with inter-type declarations is therefore
advantageous also in this respect.

Inter-type declarations in JastAdd use a syntax which is similar to that
of Aspectd [Kiczales et al., 2001]. Consider the example aspect MyAspect:

aspect MyAspect {
// Add the boolean field visited to ASTNode
boolean ASTNode.visited = false;

// Add the method visit to ASTNode
public void ASTNode.visit() {
visited = true;
for (int i=0;i<getNumChild();i++)
getChild(i).visit();
}
}

The first declaration adds a boolean field visited to the class ASTNode
(ASTNode is the superclass of all AST classes generated by JastAdd). Next,
the method visit() is introduced for the class ASTNode. This method uses
the generic traversal API to retrieve all the children of the node and calls
the visit() method for each of them.

Reference Attributed Grammars

The semantic behavior, corresponding to the rules of the language for
which a compiler is developed, is primarily defined in JastAdd through
attributes, whose values are defined by equations. An equation defines the
value of one attribute in terms of the values of other attributes in the AST.
Again, attributes and equations are inter-type declarations, which are
defined in aspects. The equations used to define attributes are sometimes
referred to as being declarative. This means that the order of execution
is not determined a-priori, but rather that the equations are evaluated
when needed as determined automatically by JastAdd. This meaning of
declarative is different from the meaning of the term in the context of
Modelica. In Modelica, an equation is declarative in the sense that it
specifies an equality relation that holds, whereas in the JastAdd case the
causality of the assignment defined by the equation is fixed. The attribute
declarations are translated by JastAdd to ordinary Java methods, that are
then inserted in the AST classes. Like in ordinary Knuth-style attribute
grammars, see [Knuth, 1968], there are two types of attributes:

92

4.4 JastAdd

Synthesized attributes. In order to propagate information up-wards in
the AST, synthesized attributes are used. Computation of a syn-
thesized attribute can typically use information stored in the child
nodes of the node for which the attribute is defined.

Inherited attributes. In order to propagate information down-wards in
the AST, inherited attributes are used. The actual computation of
the inherited® attribute value is performed in an ancestor node of
the node for which the attribute is defined.

Apart from inherited and synthesized attributes, equations are key ele-
ments of AGs. Equations are used to define the actual value of attributes,
and may also depend on evaluation of other attributes. For synthesized
attributes, an equation can be specified in the attribute declaration, in
which case it is called a default equation. Equations can also be specified
for subclasses of the class for which the attribute is defined. In such cases
the equation given in a subclass overrides a default equations. Equations
for inherited attributes, on the other hand, are declared in ancestor nodes
of the node for which the attribute is defined.

In contrast to Knuth-style AGs, attributes in JastAdd can be reference-
valued. This means that an attribute may be a reference to another node,
arbitrarily far away in the AST, and other data (attributes) can be ac-
cessed via the reference attribute [Hedin, 2000]. Typically, this is used for
representing name bindings, e.g., from variable use to declaration, from
class to superclass, etc. The attribute declarations and equations are spec-
ified using inter-type declarations in aspect modules, using the keywords
syn, inh, and eq, which means synthesized attribute, inherited attribute
and equation, respectively.

The use of synthesized and inherited attributes and equations will
now be illustrated by means of some examples. The examples are extracted
from the implementation of the name analysis framework in the PicoMod-
elica compiler, see Chapter 5. In the end of this section, the evaluation of
the example attributes will also be described. Consider the declarations:

@ syn lazy ComponentDecl Access.myDecl() = null;

The declaration of a synthesized attribute is similar to a regular Java
method declaration. However, some differences apply. Firstly, computation
of synthesized attributes may not have side-effects. Secondly, synthesized
attributes in JastAdd may be cached, if the keyword lazy is used. If an

3The term inherited used in the context of AGs is unrelated to inheritance in the object-
oriented sense. The origin of the term is that in the original formulation of attribute gram-
mars, inherited attributes are defined in direct parent nodes. Consequently, information
propagated by attribute evaluations is inherited from parents to child nodes.

93

Chapter 4. JModelica — A Modelica Compiler

attribute is cached, its value is computed only once and then stored. Sub-
sequent attribute evaluations then returns the stored value. The syntax
for declaring a synthesized attribute is shown in the above listing, @. The
keywords syn and lazy indicate that the attribute is synthesized and that
it should be cached. The return type of the attribute is ComponentDecl. The
attribute is defined for the AST node Access, and has the name myDecl,
which is expressed by the type name followed by a dot and then the at-
tribute name. The myDecl attribute returns a reference to the AST node
representing the component declaration corresponding the the identifier
stored in the Access node. Finally, the attribute declaration has a default
equation, which is optional, and defines the default value of the attribute.
In this case, the default value is null. The default equation is valid for
the node itself, but is also inherited (in the object-oriented sense) by its
subclasses. Equations can also be overridden in analogy to Java methods.
For example, consider the equations for the myDecl attribute:

syn lazy ComponentDecl Access.myDecl() = null;
@ eq ComponentAccess.myDecl() = lookupDecl(getID());
® eq Dot.myDecl() = getRight().myDecl();

which are valid for the classes ComponentAccess, @, and Dot, ®. The syn-
tax of equations for synthesized attributes is similar to that of attribute
declarations, but uses the keyword eq. The return type is not specified for
equations, since this is implicitly given by the attribute declaration. There
are two syntactic alternatives for specifying equations. In the first alter-
native, which is shown in the example above, the value of the attribute
is defined by a Java expression, preceded by the symbol '=’. The second
alternative is to define the attribute computation as a Java block, i.e.,
a number of Java statements enclosed by curly brackets. Such a method
body must then contain a return statement which returns the value of
the attribute. Notice that attribute computations may be dependent on
other attributes, as in the case of the equation for ComponentAccess, @,
where the attribute lookupDecl is evaluated. Also, in the equation for Dot,
®, an attribute for a child node of Dot, Right, is evaluated. Accordingly,
information is propagated upwards in the AST. Evaluation of attributes
will also be illustrated in Example 4.2.
Let us now consider definition of inherited attributes:

@ inh ComponentDecl Access.lookupDecl(String name);
® eq Model.getEquation().lookupDecl(String name) = memberDecl(name);
® eq Root.getClassDecl().lookupDecl(String name) = null;

The syntax for declaring inherited attributes is similar to that of synthe-
sized attributes. The only differences are that inherited attributes are de-
clared using the keyword inh, and that they cannot have default equations.

94

4.4 JastAdd

Inherited attributes can also be cached. In the above example, the inher-
ited attribute lookupDecl (String name) is declared for the type Access, @.
This attribute is parametrized, and the evaluation of the attribute may
be dependent on the parameter. If a parametrized attribute is cached,
then the evaluation result is stored for each parameter. The value of an
inherited attribute is defined by an equation in an ancestor node. In the
example above, this means that the value of the attribute lookupDecl is
defined by ancestors of Access. In this case, two equations are declared
for Model, ®, and Root, ®. If there is more than one ancestor with such
an equation, it is the one closest to the Access that applies. An equation
for an inherited attribute applies to a subtree of the node in which it is
defined. Syntactically, this is indicated by specifying the child node that is
the root of the corresponding subtree. In the example above, the equation
declared in Model is then valid for the subtree which has an Equation node
as root. This is indicated by the reference to getEquation in the equation
declaration. In this particular case, Model delegates the computation of
lookupDecl to the synthesized attribute memberDecl(String name):

® syn lazy ComponentDecl ClassDecl.memberDecl(String name) = null;
eq Model .memberDecl(String name) {

// Search all ComponentDecls and look for a matching name

// Return matching declaration or else null.

}

The synthesized, parametrized, attribute memberDecl(String name) is de-
clared for ClassDecl, with the default value null, @. The default equation
is overridden in the node type Model, by an equation definition, ®. If the
Model contains a component declaration with a name matching the argu-
ment, then the declaration is returned. If not, null is returned.

Inherited and synthesized attributes are translated by JastAdd into
Java methods located in their corresponding AST classes. To invoke eval-
uation of an attribute, the corresponding method is simply called. If the
attribute depends on other attributes, such a call usually triggers a call-
ing sequence where parts of the AST is traversed in order to locate nodes
carrying equations applicable to the attribute which is being evaluated.
For example, when lookupDecl is evaluated, the AST is searched upwards
from the particular Access, until a node associated with a defining equa-
tion is encountered. For additional details on the evaluation framework
for attributes in JastAdd, see [Ekman, 2006].

Evaluation of the attributes described above will now be described
in the following example, where the calling sequence resulting from a
particular evaluation is illustrated:

95

Chapter 4. JModelica — A Modelica Compiler

ExampLE 4.2
Consider the AST in Figure 4.4, which corresponds to a simple Modelica
model:

model M
Real x;

equation
x=1;

end M;

We consider the case when the attribute myDecl is evaluated for the
ComponentAccess (a) corresponding to the identifier x in the equa-
tion. myDecl is defined by equation @, which accesses the inherited at-
tribute lookupDecl. This results in evaluation of the attribute lookupDecl,
declared in @, with the parameter “x”. The first ancestor of the
ComponentAccess, which is of type Equation (b), does not have an equation
defining the attribute lookupDecl. The next ancestor, however, is of type
Model (c), which contains an equation defining the value of lookupDecl, ®.
The attribute memberDecl is then evaluated, ®. The memberDecl attribute
is defined by equation ®, and results in a search for a ComponentDecl
with a name matching the argument. In this case, the ComponentDecl
(d) matches, since its IdDecl has the name “x”, and a reference to it is
returned. This value is then returned to the ComponentAccess node (a).
Since myDecl is a cached (lazy) attribute, its value (the reference to the
ComponentDecl) is cached in the AST, (e).

Notice how synthesized attributes propagate information upwards in
the AST, whereas inherited attributes propagate information downwards,
as is indicated by the arrows. This example is intended to illustrate the
evaluation of attributes. For a thorough discussion on name lookup, see
Chapter 5. O

Using inherited and synthesized reference attributes, the original AST
is decorated with node edges represented by reference attributes. This
results in the AST being, conceptually and practically, a graph in which
several new edges have been introduced. Such edges result from evalua-
tion of reference attributes, and connect nodes related by semantic rules,
although they may be located at very different locations in the AST. In
addition, the result of an attribute evaluation can be cached. In Exam-
ple 4.2, the reference attribute myDecl introduces a connection between a
ComponentAccess and its corresponding ComponentDecl. This link is repre-
sented in Figure 4.4 by a dashed arrow (e). To summarize, inherited and
synthesized reference attributes provides a convenient means to intro-
duce connections between related nodes, although they might be located
far apart in the AST.

96

4.4 JastAdd

ComponentDecl
\
\
N a
N H "
(CIassAccess 'Real') (IdDecI 'x) {ComponentAccess 'x') (RealutExp 1)

Figure 4.4 A simple AST illustrating how inherited attributes are evaluated dur-
ing run-time.

Parametrized Attributes

An equation for an attribute is defined as a member of a class, and can be
seen as having this as an implicit parameter, giving access to all other at-
tributes in the same node (and possibly others via reference attributes or
AST traversal). JastAdd supports also explicitly parametrized attributes,
giving the equation access to more, possibly non-local, information. Typi-
cal uses include name lookup, as demonstrated in Example 4.2 and type
comparisons.

Non-terminal Attributes

Non-terminal attributes, NTAs, [Vogt et al, 1989], are typically used in
cases when a child node cannot be constructed at parse time. Rather NTAs
are defined by equations, and may be dependent on the structure of the
AST, i.e., on the context. This mechanism is powerful, since it allows for
the AST to be modified, and in particular for new nodes to be added,
during the execution of the compiler, even after parsing. Consider the
following example:

ExawmpLE 4.3

A common operation in a Modelica compiler is to flatten a model. As is
described in Chapter 6, this procedure involves construction of a new data
structure, the instance AST. The instance AST represents a particular
model instance, and is used as an intermediate data structure, from which
a flat model representation can be derived. It is convenient to insert the
instance AST as a subtree of the corresponding Model. This is expressed

97

Chapter 4. JModelica — A Modelica Compiler

in the grammar specification:

Model: ClassDecl ::= ExtendsClausex

ClassDeclx

ComponentDecl*

Equation=

/InstRoot/;
where the child InstRoot is declared as an NTA. The actual computation
of the subtree is defined by an equation:

syn lazy InstRoot Model.getInstRoot() = ...;
O

A more elaborate example would be the definition of Modelica library class
declarations, stored on disk, as an NTA. In this case, when the NTA is
accessed, the library files will be read, parsed and the corresponding AST
will be constructed.

Rewrites

JastAdd supports conditional rewrites that can use attributes to define
context-dependent modifications of the AST. Rewrites are typically used
for modifying the AST from the initial form constructed by the parser, to
a form more suitable for compilation [Ekman and Hedin, 2004]. A typical
application of rewrites is when the node type cannot be determined at
parse time. Consider the following example:

ExampLE 4.4

The kind of an access in a qualified name is usually not possible to de-
termine at parse time. The term kind here refers to whether a particular
access references a component declaration, or a class declaration. For ex-
ample, if the name A.B occurs in an equation in Modelica, it is clear that
the access B must correspond to a component declaration, whereas the
meaning of A is ambiguous in the sense that it might be bound to either
a class declaration or a component declaration. This ambiguity can be
resolved by introducing the following rewrite:

rewrite AmbiguousAccess {
when ((lookupDecl(getID())!=null))
to Access { return new ComponentAccess(getID()); }
when ((lookupClass(getID())!=null))
to Access { return new ClassAccess(getID()); }

3

The rewrite is applicable to AmbiguousAccess nodes, and transforms such
a node to a ComponentAccess or a ClassAccess depending on the condi-
tions specified by the when clause. If no condition evaluates to true, then

98

4.4 JastAdd

no transformation is performed. The rewrite conditions are automatically
checked whenever a node with associated rewrites are accessed. As a con-
sequence, the order of execution does not have to be explicitly specified,
but is rather determined automatically by JastAdd, based on the order in
which nodes are accessed and attributes evaluated. O

Circular Attributes

JastAdd also supports circular attributes that are evaluated using fix-
point iteration [Farrow, 1986; Magnusson and Hedin, 2003]. Circular de-
pendencies of attributes arise when the evaluation of an attribute renders
the same attribute to be evaluated twice for a particular node. If such sit-
uations occur, the JastAdd keyword circular can be used to invoke a
fix-point iteration. A typical situation where circular attributes are use-
ful is when to detect circular inheritance structures in object-oriented lan-
guages. In the case of Modelica, there are also examples of legal programs
which contains circular dependencies. For example, import-statements
and extends-statements are circular in the sense that it is valid to in-
herit from a class that becomes visible through an import class, and vice
versa.

Combining Declarative and Imperative Code

While most of the compilation is best defined by the declarative attributes,
there will usually be a need for generating some output based on the
attributed AST. The attributes constitute an API that can be used by
imperative code, i.e., ordinary Java methods. In some situations ordinary
method declarations containing imperative code are more suitable than
attributes, for example if a method has side-effects. In such cases, ordinary
methods can simply be added using inter-type declarations.

Graphical Notation

In [Ekman and Hedin, 2007], a graphical notation for JastAdd code was
introduced. Building on UML, [Object Management Group, 2007], a few
additional elements have been added. Attribute declarations are displayed
as class methods, carrying one of the prefixes inh or syn. Equations are
shown using a similar syntax, with the prefix eq, but for brevity without
the return type. In addition, the right hand side of equation declarations
are shown in note boxes. For an example illustrating some of the attribute
and equation declarations above, see Figure 4.5.

99

Chapter 4. JModelica — A Modelica Compiler

= null
AST class ’TB'\ Root
eq getClassDecl().lookupDecl(String name)
\ Aggregate\

Access
- - — ClassDecl
inh ComponentDecl lookupDecl(String name) n
syn ComponentDecl memberDecl(String name)
Generalization AN
Equation definitions & = null
\ = memberDecl(name) Model

eq getComponentDecl().lookupDecl(String name)
eq memberDecl(String name)

memberDecl(String name) {..}B[/

Figure 4.5 AST classes, attributes and equations in extended UML notation.

4.5 An Executable Specification

A JastAdd implementation of a compiler may be viewed as an executable
language specification. The semantic behavior of the compiler is encoded
as attribute declarations and equations, in combination with imperative
code. Ideally, the attributes and equations of the JastAdd description are
mapped to rules in the corresponding language specification. In line with
this arguments, the JastAdd compiler implementation is then a formal
and executable specification of the language.

As such, it is not intended, however, to replace a textual and possi-
bly more informal specification text. A JastAdd description is a formal
specification in the sense that a particular interpretation of the language
specification has been encoded in an unambiguous manner, using Jas-
tAdd syntax. However, the mapping between the specification text of the
language and the JastAdd description might not be obvious. In particu-
lar, the organization of the compiler implementation might not coincide
with that of the specification text. Also, the specification text might not be
declarative, as a JastAdd specification. The mapping between the textual
specification and a JastAdd specification might then not be straightfor-
ward. In such cases, the procedure of translating a textual specification
into a JastAdd equivalent involves many design choices, where the speci-
fication text has to be cast as declarative JastAdd constructions. Once it
has been constructed, one of the main benefits of an executable JastAdd
specification, in contrast to a traditional hand-coded compiler, is that it is
significantly easier to analyze the semantic behavior of the compiler, due
to its declarative nature.

The idea of creating executable specifications, in the context of Model-

100

4.6 PicoModelica

ica, has been explored previously in [Kagedal and Fritzson, 1998], where
the semantic description language RML was used to encode the seman-
tics of the Modelica language. This implementation formed the basis of
the OpenModelica project, [PELAB, 2007]|. The success of the RML de-
scription of Modelica as an executable specification, seems to have been
limited, however. As pointed out in [Broman and Fritzson, 2007], a likely
reason for this is that the large size, and accordingly the level of detalil,
made it hard to get an overview of the specification. The same argument
applies to JastAdd descriptions, since it is often necessary to study such
a description to an extent that global understanding of the behavior is
acquired. Another issue that deserves attention is consistency of specifi-
cations, if there is more than one. A specification written in a natural
language is still needed, also in the presence of an executable specifica-
tion. It is then important to clarify the relation between the specifications,
and if possible, ensure that they are consistent.

Now, these objections are not to say that executable specifications ex-
pressed in, for example, JastAdd are not valuable. Certainly, attempts to
formalize the semantic behavior of Modelica add to the understanding of
the language, which, in turn, promote discussion and further development
of the language itself. Semantic behavior of computer languages is charac-
terized by a high level of abstraction. High-level description languages for
describing semantics are therefore important, since they provide general
concepts which make it easier to talk about semantics and to relate and
distinguish different semantic options in the language design process.

To summarize, it is not clear that semantic description languages, such
as JastAdd or RML, immediately provide means to formulate comprehen-
sible formal and executable specifications. Rather, they should be seen
as complements to textual specifications. While such descriptions may be
unambiguous, they are also usually large and complex, much like the lan-
guages they describe. In order to improve this situation, further research
is needed. In particular, the relationship between the a language specifica-
tion text and the corresponding executable specification should explored,
so that their interconnections are clear and explicit. For example, a Jas-
tAdd specification is more easily derived from a textual specification, if
the latter explains the language declaratively.

4.6 PicoModelica

Since Modelica is a large and complex language, a compiler intended to
support the full language is an equally complex program. Also, it is often
desirable to introduce optimizations in the implementation which gives
improved performance, but which might decrease the clarity of the design.

101

Chapter 4. JModelica — A Modelica Compiler

Design decisions, or design changes, made for a full compiler implemen-
tation also tend to involve much coding work simply due to the large code
base. Therefore, a compiler for a subset of Modelica, hereafter referred to
as PicoModelica (PM), has been introduced.

The purpose of PM is twofold. Firstly, it offers a convenient environ-
ment for testing and evaluating design principles, simply because the
number of source code lines of the PM compiler is in the range of hun-
dreds, while the number of lines of a full compiler implementation rather
is counted in the range of ten thousands. Secondly, the compact nature of
PM enables the design concepts to be presented without too many com-
plicating details, which are due either to the need for managing all cases
in the full language, or to performance optimizations. One of the objec-
tives of this thesis is to present design concepts for a Modelica compiler
implemented in JastAdd. This presentation, which is given in Chapters 5
and 6, is done in relation to PicoModelica, for the reasons of brevity and
clarity. However, the same concepts are applicable, for the corresponding
constructs, in a full-scale compiler.

Obviously, PicoModelica must include enough constructs of the full
language to be a useful subject of study. On the other hand, the language
should be small enough not to introduce too much complicating details.
This trade-off is balanced by the inclusion of the following constructs:

e Class declarations
e Component declarations

Inheritance

e Value modifications

Replaceable components
e Simple equations

Certainly, several important constructs of the Modelica language are dis-
regarded in PicoModelica, including dynamic name-lookup (inner/outer
constructs), conditional components, arrays, and connect statements. Still,
important concepts such as name and class lookup, type analysis, merging
of modifications, management of parametrized classes and flattening may
well be illustrated. The syntax, concrete as well as abstract, of PM can be
found in Appendix B.

4.7 The JModelica Compiler

The design principles developed in the context of the PM compiler have
been used to implement a prototype of a full-scale Modelica compiler, enti-

102

4.7 The JModelica Compiler

tled the JModelica compiler. The JModelica compiler is capable of parsing
full Modelica 2.2, and supports flattening of a larger subset of Modelica
than the PM compiler. Full support for parsing of the Modelica language
is advantageous, even though not all constructs are supported by the flat-
tening algorithm. For example, if a model contains constructs that are
not currently supported by the flattening algorithm, corresponding error
messages can easily be generated. Another advantage is that parsing of
full Modelica enables use of a large number of classes in the Modelica
standard library that contain only the supported constructs.

In addition to the capabilities of the PM compiler described in the pre-
vious section, the JModelica compiler supports flattening of the following
constructs*:

e Short class declarations (for example type PositiveReal =
Real (min=0))

Connect statements (including generation of connection equations)

Standard library access

Equations

Built-in types and functions

Certainly, the JModelica compiler lacks essential functionality in order
to be considered a full-scale Modelica compiler. For example, it lacks sup-
port for important language constructs such as functions, algorithms and
dynamic name lookup (inner/outer declarations). Also, in order to flatten
Modelica models, an evaluation framework for expressions and algorithms
is needed. In the JModelica compiler, evaluation is currently supported
only for scalar expressions. Support for arrays and type checking of ar-
rays is also rudimentary. An important part of a Modelica compiler is the
machinery for performing structural and symbolic computations. This in-
cludes Tarjan’s algorithm and the BLT transformation, index reduction,
tearing of equation systems and symbolic solution of equations when pos-
sible. These mechanism are also absent in the JModelica compiler.

Despite its limited functionality, however, the JModelica compiler, and
in particular, the modular extension Optimica, have been successfully used
to solve non-trivial dynamic optimization problems. Notably, Optimica (see
Chapter 7), has been used to formulate and solve the start-up problem
for a plate reactor, see Chapter 9. Also, the Optimica compiler has been
used in two master’s thesis projects dealing with lap-time optimization
for racing cars and parameter optimization with application to vehicle
models, respectively, see [Danielsson, 2007] and [Hultgren and Jonasson,

4As of October 2007.

103

Chapter 4. JModelica — A Modelica Compiler

Execution time for instantiation (Local Classes)
T T

R co JModelica
____ —6— JModelica Warm-Start
777777 = = = Dymola

o i ‘=1 =1 OMC
il | T
10’ 10° 10° 10*
Number of equations

Figure 4.6 Benchmark results.

2007] for details. The Optimica compiler has also been used in the PhD
course “Optimization-Based Methods and Tools in Control”, that was given

at the Department of Automatic Control, Lund University in September
2007.

4.8 Benchmarks

The correctness and performance of the flattening algorithm of the JMod-
elica compiler have been evaluated and compared to two other Modelica
tools: the OpenModelica 1.4.3 compiler and Dymola 6.0b. Three model
structures have been constructed to be used for benchmarking. The first
model structure consists of a network of electrical components, and the
second model structure consists of hierarchically nested classes. The third
model structure also consists of nested classes, but in addition, attributes
of primitive variables are modified. Models with increasing complexity
were automatically generated in order to compare the execution time for
small as well as larger models. Correctness was verified by automatic
comparison of the resulting flat descriptions from the three tools. The
flat descriptions produced by the tools were equivalent in all cases. The
execution times for the flattening procedure of the three tools are com-
pared in Figures 4.6, 4.7 and 4.8. As can be seen, Dymola outperforms

104

4.8 Benchmarks

Execution time for instantiation (Local Classes with Modifications)
T T T

Time [s]
S

: o JModelica

Pt —0— JModelica Warm-Start|
2,7 = = = Dymola

10 : I : o ‘== OMC

il L | T

1 2 3 4

10

Number of equations

Figure 4.7 Benchmark results.

JModelica and OpenModelica in all cases. This should be no surprise,
since Dymola is a highly optimized commercial product. For models of
small and moderate size, the OpenModelica compiler is faster than JMod-
elica. However, as model complexity increases, the JModelica compiler is
faster than the OpenModelica compiler. Since it is well known that Java
programs often execute slowly initially, execution times for the JModelica
compiler were recorded also when the program was warm-started. That
is, two models were parsed and flattened in sequence as a single Java-
program. By measuring the execution time of the second flattening, the
time associated with the start-up of the Java virtual machine and the
initial dynamic Java compilation is not included in the result. As can be
seen in Figures 4.6-4.8, the execution time of the JModelica compiler is
then significantly decreased for the small models.

It should be noticed that these benchmarks only test a small number of
language constructs. Accordingly, the results cannot immediately be used
to draw conclusions about the overall performance of the tested tools.
However, the results indicate that the JModelica compiler executes at a
reasonable speed, when compared to other Modelica tools.

All benchmarks were performed on an Intel Core 2 Duo E6420 system,
equipped with 4Gb of memory, running Fedora Core 7. The JModelica
compiler was run on the Java HotSpot Server VM version 1.5.0 with a
2.5Gb sized heap.

105

Chapter 4. JModelica — A Modelica Compiler

Execution time for instantiation (Electrical Circuits)

Time [s]

JModelica

1 —6— JModelica Warm-Start
= = = Dymola

‘=1=:0MC

i I

3 4

10

Number of equations

Figure 4.8 Benchmark results.

4.9 Extensibility of the JModelica Compiler

One of the primary objectives of the JModelica compiler is to develop
a compiler that is easy to extend in a modular fashion. This approach
enables rapid development of support for experimental language features
without the need to modify the core compiler functionality, which is rather
left intact. An additional benefit is that if the functionality of the original
compiler is extended, this new functionality is immediately available also
in a modular compiler extension. The extensibility feature will be illus-
trated in this section by means of a small example, where an abstract
grammar specification encoded in the MetaModelica format is automati-
cally converted into the JastAdd format for expressing abstract grammars.
A larger example of the extensibility capabilities of the JModelica compiler
will be given in Chapter 7, in the context of Optimica.

Abstract Grammar Conversion from MetaModelica to JastAdd

Compilers commonly rely on specifications of abstract grammars. This
is the case with both MetaModelica and JastAdd. However, the format
for specifying abstract grammars differ. MetaModelica uses a slightly ex-
tended version of Modelica, where some new keywords and syntactic con-
structs have been added. JastAdd, on the other hand, uses a format which
corresponds closely to productions in a context free grammar. Consider

106

4.9 Extensibility of the JModelica Compiler

package PicoModelica
uniontype ClassDecl

record Model
list<ExtendsClause> super;
list<ClassDecl> classDecl;
list<ComponentDecl> componentDecl;
list<Equation> eq;

end Model;

record RealClass
end RealClass;

end ClassDecl;
uniontype AbstractComponentDecl

record ComponentDecl
Option<Replaceable> repl;
Option<Parameter> par;
Access className;
IdDecl name;
Option<Modification> modification;
end ComponentDecl;

end ComponentDecl;

end PicoModelica;

Listing 4.1 A subset of the PicoModelica abstract grammar expressed in Meta-
Modelica format.

the MetaModelica grammar specification in Listing 4.1, which contains a
subset of the PicoModelica abstract grammar. The MetaModelica abstract
grammar format is explained in [Pop and Fritzson, 20086]. In essence, the
MetaModelica abstract grammar specification consists of standard Model-
ica language elements, such as classes and component declarations. Some
new elements are introduced, however:

e A new specialized class, uniontype

e Lists of components. The syntax for specifying a list of components,
named a, of the class A is 1list<A> a.

e Optional components. The syntax for an optional component named

107

Chapter 4. JModelica — A Modelica Compiler

a of the class A is Option<A> a.

Notice that the MetaModelica language contains several additional new
constructs, but they are not needed to encode the PicoModelica abstract
grammar, and are therefore not discussed here.

The modular extension of the JModelica compiler to also support the
new language constructs needed to transform a MetaModelica abstract
grammar into an equivalent JastAdd specification, consists of three parts.
Firstly, the parser needs to be extended in order for the compiler to be
able to read the new syntactic constructs. For this purpose, JastAdd offers
a preprocessor for the parser generator Beaver. Using this feature, new
productions can be added modularly. The result after the preprocessing
step is one Beaver specification, which contains all grammar rules, both
those from the original Modelica parser specification, and those from the
extension. Secondly, new AST classes, corresponding to the new language
elements need to be specified. Notice that the new AST classes may use,
for example, inherit from, AST classes defined in the original Modelica
abstract grammar. Thirdly, the semantic behavior of the new constructs
needs to be specified. This can be done by introducing new aspects, in
which new attributes, or equations for existing attributes, are added.
These aspects are then included in the weaving procedure, so that the
generated Java AST classes contain the behavior both from the original
and the extended JastAdd specifications.

The resulting compiler now supports both the subset of standard Mod-
elica that is supported by the original JModelica compiler, and the new
constructs that were introduced in the modular extension. The result from
the automatic conversion of the MetaModelica abstract grammar specifi-
cation in Listing 4.1 is shown in Listing 4.2. It is worth noticing that
the modular extension described in this section required only a moderate
coding effort, primarily due to JastAdd’s purposeful support for modular-
ization.

4.10 Summary and Conclusions

In this chapter, an overview of the work on the JModelica extensible Mod-
elica compiler has been given. The development platform JastAdd has
been introduced, and some of JastAdd’s main features have been high-
lighted. In addition, the role of a JastAdd description as an executable
specification has been discussed. A small subset of Modelica, PicoModel-
ica, has been introduced. PicoModelica will be used in the following two
chapters to demonstrate how semantic behavior that is fundamental in a
Modelica compiler, namely name and type analysis, and flattening, can

108

4.10 Summary and Conclusions

abstract ClassDecl;

Model : ClassDecl ::= super:ExtendsClause=
classDecl:ClassDecl+*
componentDecl :ComponentDecl*
eq:Equationx;

RealClass : ClassDecl ::= ;

abstract AbstractComponentDecl;

ComponentDecl : AbstractComponentDecl ::= [repl:Replaceable]
[par:Parameter]
className:Access
name: IdDecl
[modification:Modification];

Listing 4.2 The abstract grammar shown in Figure 4.1 converted to the JastAdd
format.

be implemented using JastAdd. The functionality of the current version
of the JModelica compiler have been described, as well as its limitations.
The modular extensibility capabilities of the JModelica compiler has been
demonstrated by means of a small example, and benchmark results where
the JModelica compiler has been compared to OpenModelica and Dymola
have been presented.

Given the experiences from the development of the JModelica compiler,
it is clear that JastAdd is a viable development platform for a Modelica
compiler. An interesting observation can be made regarding the develop-
ment time of the PicoModelica and JModelica compilers. As of October
2007, approximately 6 man-months have been spent on implementation.
Given that the compilers support several non-trivial features of the Model-
ica language, this observation provides support for the claim that JastAdd
is a development framework that enables rapid compiler development.
During the development of the PicoModelica and JModelica compilers, it
has also been evident that JastAdd specifications may be reusable. In
particular, some design schemes that were developed for the JastAdddJ
compiler [Ekman and Hedin, 2007], have been possible to apply in the
context of a Modelica compiler. This point will be elaborated on further in
the next chapter.

109

5

Modelica Name and Type
Analysis with JastAdd

Two areas which are fundamental in compilers are name and type anal-
ysis. Name analysis is concerned with binding names, or identifiers, to
their corresponding declarations. Type analysis, on the other hand, deals
with computation of types for expressions and computation of relations
defined for types, such as subtype and supertype. Name and type analy-
sis are important in order to perform checks of the validity of a program,
but also in order to access information about declarations and types when
implementing other features of the compiler, such as code generation.

Modelica is challenging both with respect to name and type analy-
sis. While the basic name analysis framework resembles that of other
object-oriented languages, Modelica also contains special constructs, such
as modifications, which must be given special attention. As a consequence,
identifiers in Modelica are looked up in context-dependent scopes, which
are different from the normal lexical scope. In addition, Modelica has a
structural type system, which differs from the type system of, for exam-
ple, Java. As a consequence, a class declaration does not uniquely define
a type, which complicates computation of relations such as subtype and
supertype. Again, the presence of modifications must be accounted for in
the type analysis, which further increases the complexity of this operation.

In the JastAdd framework, it is natural to represent name bindings
as references between AST nodes. These references, in turn, may be im-
plemented as declarative reference attributes, which are evaluated upon
access.

In order to bind names to declarations, the kind of a name access
must first be determined. In some situations, the meaning of a name is
ambiguous, in the sense that it may refer either to a class or component
declaration. This is the topic of Sections 5.1 and 5.2. Binding of names to
declarations is then discussed in Section 5.3.

110

5.1 Ambiguous Names

The results presented in this chapter builds on the work of Ekman
and Hedin, specifically [Ekman and Hedin, 2006; Ekman, 2006; Ekman
and Hedin, 2007]. The main contribution given in this chapter is the ap-
plication and extension of their framework for name and type analysis of
Java programs to Modelica. Initial work on this topic was presented in
[Akesson et al., 2007].

5.1 Ambiguous Names

It is usually not possible to determine the meaning (or kind, see Exam-
ple 4.4) of a Modelica name access at parse time. This is because the
meaning of a name is highly context-dependent. For example, in some
situations, it is not possible to determine, at parse time, if an entry of a
qualified name refers to a class declaration or a component declaration. In
addition to common object-oriented mechanisms such as qualified names
and inheritance, there are also some very Modelica-specific language fea-
tures such as modifications, that affect name analysis. Modifications are
challenging, in particular since they render names to be looked up not in
the enclosing environment, but rather in the scope of another class.

The Modelica specification states that a name is looked up in the or-
dered set of parents which lexically enclose an element. If a class is lexi-
cally contained in another class, the former precedes the latter in this set.
An unnamed parent encloses all top-level class declarations. If a name
cannot be found in a scope introduced by a parent in the set, correspond-
ing to a class declaration, lookup proceeds in the next scope in the set.
Some restrictions apply, however. A reference to a component declaration
in another scope is only allowed if the declaration has the prefix constant.

Name ambiguities arise in qualified names, such as A.B. For example,
if the qualified name A.B occurs in an equation, there are, at least, two
possible meanings of this name. Either, both A and B refer to component
declarations, or, A is a class and B is a component. Both alternatives are
valid, but are not possible to distinguish without considering the context
of the equation, i.e., what class declarations and component declarations
are visible from the particular equation. The qualified name A.B is thus,
in this case, ambiguous.

In some cases, the syntactic context of a name can be used to deter-
mine the meaning of the name. For example, in a component declaration
clause, say A.B b, the name A.B must refer to a class declaration. In this
case, the name A.B is not ambiguous since its meaning is clear from look-
ing at the component declaration clause. However, the name itself, A.B,
does not reveal its meaning, but must be considered in a context. This rea-
soning is based on the assumption that the Modelica program is correct.

111

Chapter 5. Modelica Name and Type Analysis with JastAdd

Consequently, there must be a mechanism for checking the correctness
of the classifications made. This, however, is considered to be part of the
error-checking functionality of the compiler, and is not considered here.

From these examples, it can be concluded that there are two ways of
determining the meaning of a Modelica name. In some cases, the syntactic
context of the name can be used to classify the name. If this is not possible,
the set of all visible class declarations and component declarations must
be considered in order to determine the meaning of the name.

5.2 Classification of Names

In this section, a strategy for classification of Modelica names will be
discussed. This strategy is adopted from [Ekman and Hedin, 2006], where
it is applied to classification of names in Java.

Consider the following abstract grammar for names in PicoModelica:

abstract Access : Exp ::= <ID:String>;
ParseAccess : Access;
Dot : Access ::= Left:Access Right:Access;

ClassAccess : Access;
ComponentAccess : Access;
AmbiguousAccess : Access;

For simplicity, all Access nodes in the AST which are built by the parser
are objects of the class ParseAccess. The ParseAccess nodes are then
classified and transformed into nodes of the correct AST class using
the rewrite mechanism in JastAdd. Apart from the ParseAccess class,
the grammar contains the classes ClassAccess, ComponentAccess and
AmbiguousAccess. In a correct Modelica program, there are no nodes of the
AmbiguousAccess class when all nodes have been classified. Occurrences
of such nodes indicates that there were names that could not be bound to
declarations. Qualified names are modeled using the AST node class Dot,
which in turn has two children: Left and Right. The parser ensures that
AST subtrees corresponding to qualified names are right skew-symmetric,
that is, only the Right child of a Dot node can be a node of the Dot class.
The convention of how to build subtrees corresponding to qualified names
is mentioned here, since it has consequences for how attributes in the
following presentation are defined.

The classification framework for Modelica names proceeds in two steps,
as noted above, and will now be described.

Syntactic Classification

Some names may be classified simply by considering their immediate syn-
tactic context. Such classification is computationally inexpensive, since it

112

5.2 Classification of Names

Access

inh Kind kind()
= Kind.AMBIGUOUS_ ACCESS '— syn Kind predKind()

ClassAccess |ComponentAccess| |AmbiguousAccess| |ParseAccess| Dot
eq getlLeft().kind()

eq predKind()
eq predKind()
AN
= Kind.CLASS_ACCESS

ComponentDecl = getLeft().predKind()
eq getClassName.kind() .
= Kind.CLASS_ACCESS
= getRight().predKind()

Root

eq getClassbef().kind() —| = Kind.AMBIGUOUS_ACCESS
Kind
ExtendsClause AN
- = Kind.CLASS_ACCESS static Kind COMPONENT ACCESS = new Kind()
eq getSuper().kind()

static Kind CLASS_ACCESS = new Kind()
Model] N
eq getEquation().kind() = Kind. COMPONENT_ACCESS

static Kind AMBIGUOUS ACCESS = new Kind()
Figure 5.1 The framework for syntactic classification of names.

does not require a lookup of the name in order to check for visible dec-
larations. Accordingly, it is desirable to use syntactic classification for as
many names as possible. Following the presentation in [Ekman and Hedin,
2006], the inherited attribute Access.kind() is introduced. Notice that
an inherited attribute is appropriate in this situation, since information
about the syntactic context of a name needs to be propagated downwards
in the AST. In PicoModelica, there are three kinds of syntactically clas-
sified names: class names, component names and ambiguous names. The
purpose of the syntactic classification framework is to transform the un-
classified ParseAccess nodes into nodes corresponding to either of these
three kinds. The attribute kind is defined by equations in AST classes
where the kind of a name can be determined without ambiguity, see Fig-
ure 5.1. For example, in the ComponentDecl class, it is clear that the child
ClassName must be a class name, which in turn is encoded in a corre-
sponding equation.

It is also possible to determine, in some situations, the kind of a name
which is part of a qualified name. In Modelica, it is illegal to reference
classes through component instances. This means that if a particular
name in a qualified name has been classified as a class name, then all
preceding names in the qualified name must also be class names. For

113

Chapter 5. Modelica Name and Type Analysis with JastAdd

rewrite ParseAccess {
to Access {

if (kind()==Kind.COMPONENT_ACCESS)
return new ComponentAccess(getID());

else if (kind()==Kind.CLASS_ACCESS)
return new ClassAccess(getID());

else
return new AmbiguousAccess(getID());

Listing 5.1 The rewrite of ParseAccess nodes is based on syntactic classification
given by the attribute kind.

example, consider the qualified name A.B.C. If C has been classified as a
class name, then it follows that A and B must also be class names. This
rule is encoded by the synthesized attribute predKind, see Figure 5.1.

It remains to define a rewrite which transforms ParseAccess nodes
into their classified equivalent. However, given the attribute kind, this is
straight forward, see Listing 5.1.

The syntactic name classification scheme will now be demonstrated by
the following example:

ExampLE 5.1
Consider the following Modelica model:

model C

model M

Real x;

end M;

M m;
equation

m.x=1;
end C;
Partial ASTs corresponding to this model are shown in Figure 5.2. The
complete AST for the model is found in Appendix C. The execution trace
following from accessing the ParseAccess ’m’ node will now be described.

a) The node ParseAccess ’'m’ is accessed, which triggers the rewrite
in Listing 5.1. This renders the inherited attribute kind() to be
evaluated.

b) The first encountered node upwards in the AST is of type Dot, which
has the associated equation:

eq Dot.getLeft().kind() = getRight().predKind()

114

5.2 Classification of Names

¢) The attribute predKind() is evaluated for the Right child of Dot.

d) When the node ParseAccess ’x’ is accessed, the rewrite in List-
ing 5.1 is triggered. This renders the attribute kind() to be evalu-
ated.

e) The call resulting from evaluation of kind() propagates upwards in
the AST. The first encountered node is Dot, but since this class has
no equation defining kind() for its Right child, the call is propagated
upwards in the AST.

f) The node Equation does not define kind() either, and the call prop-
agates further upwards.

g) For Model, the following equation is defined:

eq Model.getEquation().kind() = Kind.COMPONENT_ACCESS

and accordingly, the attribute kind() is evaluated to
Kind.COMPONENT_ACCESS.

h) The node ParseAccess ’x’ is rewritten to ComponentAccess ’x
i) The attribute predkind() can now be evaluated using the equation:

eq ComponentAccess.predKind() = Kind.AMBIGUOUS_ACCESS

Notice that this equation is defined in the AST class Access, and is
inherited to ComponentAccess.

J) Finally, ParseAccess ’'m’ is rewritten to AmbiguousAccess ’'m’ and
the syntactic classification scheme terminates.

In this case, the qualified name m.x could not be completely classified in
the syntactic classification framework, since the access corresponding to
m could be either a class access or a component access. Classification of
ambiguous names, as is necessary in this case, will be discussed in the
next section. O

Resolution of Ambiguous Names

The syntactic classification of ParseAccess nodes results in some names
which are unambiguously classified, but usually also in some ambigu-
ous names. In such cases, the syntactic context of a particular name ac-
cess is not sufficient to determine the meaning of the name. Instead, the
name is looked up as described in the next section in order to find vis-
ible component or class declarations. If a matching declaration is found,
the AmbiguousAccess node is rewritten into a corresponding node class,

115

Chapter 5. Modelica Name and Type Analysis with JastAdd

1

g) Model.getEquation() = (Model 'C')
COMPONENT_ACCESS

Tf) Kind()

Equation

£ &) kind()
b) eq Dot.getLeft().kind() =
getRight().predKind()

a) kind() d) kind()

c) predKind()

ParseAccess 'm'

h) Rewrite -
specialization of
ParseAccess 3

‘ Model 'C* ' ‘ Model 'C' '

j) Rewrite -
specialization of
ParseAccess

ParseAccess 'x'

Equation Equation

1 ParseAccess 'm' ' CCOmponeﬂtACCESS D CAmbiguousAccess 'm) CComponentAccess D

i) eq ComponentAccess.predKind() =
AMBIGUOUS_ACCESS

Figure 5.2 Syntactic classification of names.

i.e., ClassAccess or ComponentAccess, see Listing 5.2. The rewrite is per-
formed only if the AST API method duringNameClassification() eval-
uates to false. This condition is necessary in order for the resolution of
ambiguous names not to interfere with the syntactic classification scheme.
If neither a class declaration nor a component declaration with a match-
ing name is found, the node remains a AmbiguousAccess node, in which
case an error message should be generated. Notice that the rewrite con-
ditions are dependent on the lookup mechanism, which will be discussed
in Section 5.3.

116

5.3 Binding Names

rewrite AmbiguousAccess {
when (!duringNameClassification())
to Access {

if ((lookupDecl(getID())'!=null))
return = new ComponentAccess(getID());

else if((lookupClass(getID())!=null))
return = new ClassAccess(getID());

return this;

Listing 5.2 Classification of ambiguous names.

5.3 Binding Names

The purpose of name analysis is to bind names to their corresponding
class or component declarations. Such bindings are extensively used for
different purposes in the compiler implementation. For example, when
the type of an expression is computed, it is necessary to retrieve infor-
mation about the type of individual identifiers (names) which occur in
the expression. In Modelica, lookup of component names and class names
is performed slightly differently, and the two lookup mechanisms will be
treated separately in the following presentation. However, it is important
to notice that they are mutually dependent.

To implement name lookup, the usual approach in attribute grammars
is to use an inherited attribute env which contains all visible symbols at
that point in the AST. This works fine for simple block-structured scopes,
but becomes cumbersome when dealing with qualified names and inher-
itance. Instead, in the approach presented in [Ekman and Hedin, 2006],
which is also used in the PicoModelica compiler, the lookup mechanism is
implemented using parametrized reference attributes.

Component Names

Let us first consider ordinary qualified names like a.b.c. Here, ¢ should
be looked up in a scope decided by b, which in turn should be looked up
in a scope decided by a. The scopes may potentially be complex due to
inheritance from other classes. To implement such normal object-oriented
name analysis we have applied the same basic design as in the JastAdd
Java implementation [Ekman and Hedin, 2006], namely delegating lookup
attributes.

The framework for lookup of component names is based on the paramet-
rized, inherited attribute lookupDecl(String name), which is defined for
the class Access, see Figure 5.3. The argument name is the name to be

117

Chapter 5. Modelica Name and Type Analysis with JastAdd

Access
syn ComponentDecl myDecl() Root
= null inh ComponentDecl lookupDecl(String name) eq getClassDecl().lookupDecl(String name)
A N
| | = null
ComponentAccess Dot AN
= getRight().myDecl()
eq myDecl() eq myDecl()
eq getRight().lookupDecl(String name)

lookupDecl(getName().getID())ﬁ | = getlLeft() .myclass()AmemberDecl(name)Iﬁ

ClassDecl

syn ComponentDecl memberDecl(String name)

7

Model
eq memberDecl(String name)

- emerctone) |

= memberDecl(name)
= emerectone) |

eq getEquation().lookupDecl(String name) = memberDecl(name)

eq getSuper().lookupDecl(String name)

eq getClassDecl().lookupDecl(String name) AN

eq getComponentDecl().lookupDecl(String name)

AN

AN
= memberDecl(name)

memberDecl(String name) {
for (int i=0;i<getNumComponentDecl();i++)
if (getComponentDecl(i).matchComponentDecl(name)) ComponentDecl
return getComponentDecl(i);
for (int i=0;i<getNumSuper();i++) {

syn boolean matchComponentDecl(String name)

ComponentDecl cd = getSuper(i).getSuper().
) myClass().memberDecl(name); = getName()-getID()-equaIS(name)lﬁ
if (cd!=null)

return cd;

}
return null;

}

Figure 5.3 Framework for binding component names to their corresponding dec-
larations.

looked up amongst the set of visible component declarations. Ignoring,
for a moment, modifications, the set of visible component declarations is
given by all declarations contained in the first entry in the ordered set of
parents. That is, all component names hierarchically contained in a class,
are looked up amongst the declarations of the mentioned class. PicoMod-
elica does not support constants, which is the single case in Modelica in
which it is legal to reference a component outside the containing class.
Accordingly if a matching declaration is not found in the enclosing class,
the name lookup fails. This semantics is expressed by defining equations
for the lookupDecl attribute in the AST class Model, which corresponds
to a composite class. The equations delegate lookup to the synthesized
attribute memberDecl(String name), which is defined for the Model class.
The attribute memberDecl, in turn, is computed by searching the set of com-

118

5.3 Binding Names

ponent declarations contained in the Model node itself, and declarations
contained in potential super classes. The search for matching declarations
is supported by the attribute matchComponentDecl(String name) defined
for ComponentDecl. If a matching declaration is found, it is returned, oth-
erwise null is returned.

Lookup of qualified names requires an additional equation. Obviously,
a name in a qualified name is to be looked up in the class which is bound
to the name immediately to its left. To implement lookup for the right-
hand side, the Dot node delegates to the class of the left-hand side, as
follows:

eq Dot.getRight().lookupDecl(String name) =
getLeft () .myClass() .memberDecl (name);

Here, Dot defines the attribute lookupDecl of its child getRight. The value
is found by accessing the reference attribute myClass of the Left child and
delegating to memberDecl. The attribute myClass defines the class declara-
tion, which an Access node is bound to, and will be discussed in detail in
the next section. Notice that the Dot class does not need to explicitly define
the attribute lookupDecl of its left access, because there is an equation
higher up in the AST which gives a default definition of this attribute
for the whole subtree. In order for the lookupDecl attribute to always
be defined, an equation is added to the Root class, which returns null,
indicating that no declaration was found.

For convenience, an additional attribute myDecl, defined for Access, is
introduced to provide easy access to the declaration of an Access node,
see Figure 5.3. The component lookup mechanism will now be illustrated
by means of an example.

ExampLE 5.2

Consider the model in Example 5.1. In this example, the attribute eval-
uations that proceed the syntactic classification in Example 5.1 will be
explained. The corresponding (partial) ASTs are shown in Figure 5.4.

a) When the node ParseAccess 'm’ has been rewritten to a node of the
class AmbiguousAccess (see Example 5.1, j)), the rewrite condition
of the rewrite in Listing 5.2 is checked. This, in turn, renders the
inherited attribute lookupDecl to be evaluated, with the argument

m-.

b) Since no equation defining the value of lookupDecl is present in Dot
for the Left child, the call is propagated upwards in the AST.

¢) Equation does not define lookupDecl either, and the call is propa-
gated further upwards.

119

Chapter 5. Modelica Name and Type Analysis with JastAdd

1

d) eq Model.getEquation().lookupDecl('m') =

memberDecl('m')
(Model 'C') e) memberDecl('m')
c) IookupDed('yv w’jc“comPOnentDecH'm')

(ComponentDecI ‘M m'

Equation

b) lookupDecl('m') T g) = getName().getID().equals('m')

. ot 7/
(AmblguousAccess 'm') (ComponentAccess X) ,

< e
~ -
~ -
\\ ”
= e - -

h) lookupDecl(‘'m’')
i) Rewrite -

specialization of
AmbiguousAccess

/N
D)

Model 'C'

‘ Equation ’ (ComponentDecI 'M m')

(ComponentAccess 'm) (ComponentAccess 'XD

Figure 5.4 Lookup of component names.

120

5.3 Binding Names

d) An equation for lookupDecl is defined in Model:

eq Model.getEquation().lookupDecl(String name) = memberDecl(name);

e) The synthesized attribute memberDecl is evaluated for the Model
node, with the argument 'm’.

f) During the computation of memberDecl, all the components contained
in the Model are retrieved, and for each declaration, the attribute
matchComponentDecl is evaluated.

g) The default equation for the attribute matchComponentDecl is evalu-
ated. In this case, the name which is being looked up matches the
component name, and accordingly, the attribute evaluates to true.

h) A reference to the node ComponentDecl ’'M m’, corresponding to the
value of the attribute lookupDecl evaluated for the node
AmbiguousAccess ’'m’, is returned.

i) The first rewrite condition in the rewrite in Listing 5.2 evaluates to
true and the node AmbiguousAccess ’m’ is rewritten to

ComponentAccess ’m’.

In this case, the evaluation of lookupDecl was triggered by the rewrite
condition in the rewrite in Listing 5.2. Notice, however, that if the attribute
is accessed once again, (and if the attribute is declared to be lazy), then
the result is cached. In such case, the actual computation of the attribute
is not repeated, but rather, the stored reference to the node ComponentDecl
'M m’ is returned directly. O

Class Names

Class names are looked up similarly to component names. The
lookup mechanism is based on the parametrized inherited attribute
lookupClass(String name), which is defined for the Access class, see
Figure 5.5. The definition of the attribute is delegated to the class Model,
which may contain local classes, and Root which is the AST root node and
contains one or more class declarations. In the latter case, the equation
for lookupClass is performed by searching the set of class declarations
contained in the Root node for a matching declaration name. The actual
search is supported by the synthesized attribute matchClassDecl(String
name) which is defined for the class ClassDecl.

Lookup of class names in a Model node is slightly more elaborate than
in the case of component names, due to the rules for lookup of names
occurring in extends clauses. The Modelica specification states that “The
lookup of base-classes should be independent”. This means that in a legal

121

Chapter 5. Modelica Name and Type Analysis with JastAdd

Root

eq getClassDecl().lookupClass(String name)

getClassDecl().lookupClass(String name) {
for (int i=0;i<getNumClassDecl();i++)
if (getClassDecl(i).matchClassDecl(name)
return getClassDecl(i);
return null;

Access

}

A

syn ClassDecl myClass()
inh ClassDecl lookupClass(String name) getLeft().myClass!=null?

getLeft().myClass().memberClass(name): null

| |

ComponentAccess ClassAccess

Dot

eq myClass() eq myClass()

ClassDecl

syn boolean matchClassDecl(String name)

Model

eq memberClass(String name)

eq memberClassSuper(String name)

eq getEquation().lookupClass(String name)

eq getSuper().lookupClass(String name)

eq getClassDecl().lookupClass(String name)

eq getComponentDecl().lookupClass(String name)

memberClassSuper(String name) {
for (int i=0;i<getNumClassDecl();i++)
if (getClassDecl(i).matchClassDecl(name))
return getClassDecl(i);
return null;

}

eq getRight().lookupClass(String name)
eq myClass()

A
= myDecl()!=null? = lookupClass(getID())
myDecl().myClass(): null - getRight () myClass()‘
AN

syn ClassDecl memberClass(String name)
syn ClassDecl memberClassSuper(String name) = getName().getID().equals(name)

AN

memberClass(String name) {
if (name.equals("Real")) return root().getRealClass();
for (int i=0;i<getNumClassDecl();i++)
if (getClassDecl(i).matchClassDecl(name))
return getClassDecl(i);
for (int i=0;i<getNumSuper();i++) {
ClassDecl cd = getSuper(i).getSuper().
myClass().memberClass(name);
if (cd!=null)
return cd;
}
return null;

}

memberClass (name) !=null?
memberClass(name): lookupClass(name)
memberClassSuper(name) !=null?
memberClassSuper(name): lookupClass(name)
memberClass (name) !=null?
memberClass(name): lookupClass(name)
memberClass (name) !=null?
memberClass(name): lookupClass(name)

Figure 5.5 Framework for binding class names to their corresponding declara-

tions.

Modelica program, it should be possible to look up the name of a super
class without having to consider the content of other super classes con-
tained in the same class. As a consequence, it is not valid to inherit from
a local class which becomes visible through inheritance. Class names in
component declaration clauses, however, are looked up amongst all visi-
ble class declarations, also those which become visible through extends

clauses.

122

5.3 Binding Names

model C
model P
model A
Real x=1;
end A;
end P;

extends P;

extends A; // This is illegal!

A a; // This is legal
end C;

Listing 5.3 Examples of legal and illegal use of class names which become visible
through inheritance.

ExampLE 5.3

Consider Listing 5.3. While it is legal to inherit the local class P, it is illegal
to inherit the class A, which becomes visible only after the clause extends
P has been considered. Clearly, this violates the rule that lookup of class
names in extends clauses must be independent. It is legal, however, to
declare components from classes that become visible through inheritance,
for example A a. O

To summarize, class names are looked up differently depending on their
context, i.e., whether or not they are contained in an extends clause. The
need to differentiate inherited attribute definitions with respect to con-
text is natively supported in JastAdd. When an equation for an inherited
attribute is defined, the particular child node for which the definition is
valid must also be specified. Considering each child of a particular node to
be a root in a subtree, it is thus possible to introduce attribute definitions
which depend on the origin, i.e., in which subtree, of the attribute access
that rendered evaluation.

Lookup of class names is delegated to either of the attributes
memberClass(String name) or memberClassSuper(String name), which are
defined for the AST class Model. In the default case, when the class name
does not reside in an extends clause, memberClass is used:

eq Model.getComponentDecl().lookupClass(String name) =
memberClass(name) !=null? memberClass(name):
lookupClass(name);
eq Model.getEquation().lookupClass(String name) = ...
eq Model.getClassDecl().lookupClass(String name) = ...

The actual implementation of memberClass is shown in Figure 5.5. Here,
the set of all local classes contained in the Model node itself is searched,

123

Chapter 5. Modelica Name and Type Analysis with JastAdd

d) eq Model.getComponentDecl().lookupClass('M')
= memberClass('M')!=null? memberClass('M'"): lookupClass('M')

c) IookupCIass(y

ComponentDecl ‘M m'

e) memberClass(‘'M')

witchclassDecl(‘M')

Model 'M*

Model 'C'

g) = getName().getID().equals('M')

4

/7
b) lookupClass('M') T » myClass()

Ve
a) myClass() 1 ClassAccess 'M' ' 1 ComponentDecl 'Real x')

Figure 5.6 Lookup of class names.

as well as those of potential super classes. If the lookup of the class name
originates from an extends clause, the computation is instead delegated
to memberClassSuper. In this case, only the set of local classes of the Model
node is searched for a matching declaration:

eq Model.getSuper().lookupClass(String name) =
memberClassSuper (name) !=null? memberClassSuper (name) :
lookupClass(name);

If a class name is not found in a particular scope, lookup should proceed
in the ordered set of parents. This is achieved in the JastAdd implemen-
tation by accessing the attribute lookupClass, which is broadcasted also
to the ClassDef class, if no matching class declaration was found in a par-
ticular Model node. The computation of the lookupClass attribute is then
propagated upwards in the AST, to the next enclosing Model node, which
in turn corresponds to the next entry in the ordered set of parents. The
class name lookup framework will now be now be illustrated by means of
an example.

ExampLE 5.4

Consider, again, the model in Example 5.1. In this example, evaluation
of the attribute myClass defined for ClassAccess will be illustrated. The
corresponding (partial) AST is shown in Figure 5.6. It can be noticed that
the original ParseAccess ’'M’ node, see Appendix C, has been rewritten
to a ClassAccess ’'M’ node in the syntactic classification framework.

a) The synthesized attribute myClass in ClassAccess ’M’ is accessed.

b) Evaluation of myClass renders the inherited attribute lookupClass
to be accessed, with the argument ’M’.

¢) Since no equation for lookupClass is defined for ComponentDecl, the
call is propagated upwards in the AST.

124

5.3 Binding Names

d) For Model, an equation for the attribute lookupClass is defined:

eq Model.getComponentDecl().lookupClass(String name) =
memberClass (name) !=null? memberClass(name): lookupClass(name)

This equation defines the value of lookupDecl if there is a local class
with a matching name contained in the Model itself, otherwise, the
class lookup is delegated to the next scope.

e) Evaluation of the equation for lookupClass in Model results in the
synthesized attribute memberClass being evaluated.

f) During the computation of memberClass, in turn, the attribute
matchClassDecl is evaluated for the Model node corresponding to
the local class M.

g) The default equation for matchClassDecl returns true in this case,
since the name of the class declaration matches the name being
looked up. Accordingly, a reference to the corresponding Model node
is returned. Notice that in this case the condition in the equation
in step d) evaluates to true, and the lookup is not continued in the
enclosing scope.

h) Evaluation of myClass terminates, and the value of the attribute is
a reference to the Model node corresponding to M.

Notice that the computation of the attribute lookupClass is similar to that
of lookupDecl, that was illustrated in Example 5.2. In the case of class
name lookup, however, lookup continues in the enclosing scope if there is
no matching class declaration contained in the Model itself. O

Names in Modifications

In the sections above, lookup of class and component names in an ordinary
object-oriented setting was discussed. Modelica modifications, however,
introduce additional rules for name lookup which must be considered.
In particular, some names which occur in a modification clause should
be looked up in the default scope, that is, amongst the declarations of
the enclosing class, whereas other names should be looked up in a dif-
ferent scope. The latter scope is typically defined by a class declaration
node located in another part of the AST. In PicoModelica, there are two
kinds of modifications which contain names which should not be looked
up in the default scope, namely component modifications and component
redeclare modifications. The following examples illustrate the difficulties
when binding names in modifications:

125

Chapter 5. Modelica Name and Type Analysis with JastAdd

<t ComponentDecl /I

eq getModification().lookupDeclInClass(String name) = myClass()!=null? myClass().memberDecl(name): "U11D1

ExtendsClause = getSuper().myClass()!=null?
getSuper().myClass().memberDecl(name): null

eq getModification().lookupDeclInClass(String name)

NamedModification BI
inh ComponentDecl lookupDeclInClass(String name) = LookupDeclInClass(name)

eq getName().lookupDecl(String name)

?

ComponentModification - getName() . myClass () !=null? B|

eq getModification().lookupDeclInClass(String name) | getName().myClass().memberDecl(name): null

Root
eq getClassDecl().lookupDeclInClass(String name) ——“"1_:_;:;?>

Figure 5.7 Extension of the name lookup framework to also support modifications.

ExampLE 5.5

Consider the following component declaration A a(b=c) which declares a
to be a component of class A, but modified so that the variable b has the
value c (rather than the value defined in the class A). In this case, A and
c are looked up in the normal scope, i.e, the enclosing class. However,
b should be looked up in the scope defined by the class A, and in order
for the modification to be legal, there should be a component named b in
A. O

ExampLE 5.6

A similar lookup mechanism is used in the case of a component redeclare
construct, for example A a(redeclare B b). In this case, the declaration
b should be bound to a corresponding declaration contained in the class
A. O

The AST classes for these constructs are defined in the abstract grammar
by:

abstract NamedModification : Modification ::= Name:Access;
ComponentModification : NamedModification ::= Modification;
ComponentRedeclare : NamedModification ::= ComponentDecl;

The common superclass NamedModification is introduced in order to pro-
vide a common interface to the AST classes ComponentModification and
ComponentRedeclare, which in turn simplifies the implementation of the

126

5.4 Type Analysis — Subtype Computation

extended lookup framework. Now, the new lookup mechanism for names
in modifications is implemented by delegating lookup to the new inher-
ited attribute lookupDeclInClass(String name), which is defined for the
class NamedModification, see Figure 5.7. This attribute is used to define
the attribute lookupDecl in the class NamedModification by introducing a
new equation:

eq NamedModification.getName().lookupDecl(String name) =
lookupDeclInClass(name)

This equation delegates the computation of lookupDecl to the attribute
lookupDeclInClass, if the name to be looked up is contained in a
NamedModification node. The attribute lookupDeclInClass, in turn, is
defined in AST classes where the scope of the lookup can be determined.
For example, a defining equation is added to the class ComponentDecl:

eq ComponentDecl.getModification().
lookupDeclInClass(String name) =
myClass() !=null? myClass().memberDecl(name): null

The attribute is computed by accessing the class of the component declara-
tion, through the attribute myClass, and then invoke the ordinary lookup
mechanism in the scope defined by this class. Similar equations are added
to the classes ExtendsClause and ComponentModification, see Figure 5.7.

These examples illustrate how complex semantic rules can be encoded
in a compact manner in JastAdd, and how different parts of the specifica-
tion can be modularized. In this case the framework that handles lookup
of names in modifications has been separated from the specification that
handles ordinary object-oriented name lookup.

5.4 Type Analysis — Subtype Computation

Modelica has a structural type system in which relations such as type
equivalence and subtype are determined by the structure of classes rather
than through explicit declarations. Two unrelated classes may thus be
type equivalent if they declare the same named elements, i.e., local classes
and components. The concept of types in Modelica was briefly discussed
in Section 2.3.

In this section, computation of the subtype relation for classes and
components in PicoModelica is treated. The subtype relation is particu-
larly important in a Modelica compiler, due to the complex type system
and type rules. Subtype conditions are often checked when determining
the validity of class or component redeclarations in parametrized classes.
It is important to notice that the type system of Modelica differs from that

127

Chapter 5. Modelica Name and Type Analysis with JastAdd

of, for example, Java. In Java, a class uniquely defines a type, whereas in
Modelica, the interface, i.e., the named public elements of a class defines
it type.

In this section, the concept of types in Modelica, and in particular
different interpretations of the specification in this respect, are discussed.
Also, a basic framework for computation of the subtype relation in the
PicoModelica compiler is presented. The proposed implementation is based
on the design principles for type analysis presented in [Ekman, 2006], but
it has been adapted to the context of Modelica.

The Concept of Types

While the specification [The Modelica Association, 2005] does not formally
define a type, definitions of the subtype relation are given for classes and
components. It should be mentioned, however, that there is on-going work
in this area, see for example [Broman et al, 20086]. Also, the specification
of Modelica 3.0 [The Modelica Association, 2007a], contains an improved
and extended notion of types. As was noted previously, however, this work
is based on the specification of Modelica 2.2. For classes, the subtype
relation is defined as:

DEFINITION 5.1—SUBTYPING OF CLASSES, [THE MoDELICA AsSSOcCIATION, 2005]
For any classes S and C, S is a supertype of C and C is a subtype of S if
they are equivalent or if:

e every public declaration element of S also exists in C (according to
their names), and

e those element types in S are supertypes of the corresponding ele-
ment types in C.

O

An element is defined in [The Modelica Association, 2005] as either a
class declaration, a component clause or an extends clause. Clearly, this
definition allows for classes to be in the subtype relation without being
related by inheritance. For components, the subtype relation is defined
as:

DEFINITION 5.2—SUBTYPING OF COMPONENTS, [THE MoDELIcA AssocIATION, 2005]
Component B is subtype of A if:

e Both are scalars or arrays with the same number of dimensions, and

e The type of B is subtype of the base type of A (base type for arrays),
and

128

5.4 Type Analysis — Subtype Computation

e For every dimension of an array

— The size of A is indefinite, or

- The value of expression (size of B) - (size of A) is constant equal
to 0 (in the environment of B)

O

Neglecting the conditions applicable for arrays, which are not part of Pi-
coModelica, the subtype condition for components reduces to “The type of
B is subtype of the base type of A”. From a tool development point of view
(and perhaps other points of views as well), this statement is troublesome,
since the concept of type of a component is not further elaborated on, or
defined. One possible interpretation is that the component B b is a sub-
type of the component A a, if the class B is a subtype of A, according to
the above definition of subtyping of classes.

Now, this interpretation may be overly conservative, since it is not
legal to access classes through components in Modelica. For example, the
access a.B is illegal if a is a component and B is a local class contained
in the class of a. Therefore, it may be reasonable to exclude local classes
when checking the subtype condition for components. This approach is
also taken in [Broman et al, 2006]'. This interpretation will be used in
the implementation of the subtype computation presented here.

Computation of the Subtype Relation

The subtype test is defined in the compiler by the parametrized synthe-
sized attribute subtype(ClassDecl superType) and the synthesized at-
tribute subtype (ComponentDecl superType) which are defined for the AST
classes ClassDecl and ComponentDecl respectively, see Figure 5.8. The
attributes evaluate to true if the argument is a supertype of the node
representing the ClassDecl or ComponentDecl for which the attribute is
evaluated. The subtype test for classes and components are different, as
described above. In order to support computation of both kinds of tests
without repeating code, an additional attribute, subtypePar(ClassDecl
superType, boolean objType), is introduced for ClassDecl. The second
argument here indicates whether the test is to be performed without con-
sidering local classes, i.e, taking only component declarations into account.

When computing the subtype relation it is convenient to have different
rules for different kinds of classes. Since Java only supports dispatch on
the receiver the double dispatch, [Ingalls, 1986], pattern has been used

IDymola version 6.0b as well as OpenModelica version 1.4.2 also neglects local classes
when checking the subtype condition in the case of component redeclarations.

129

Chapter 5. Modelica Name and Type Analysis with JastAdd

ClassDecl

syn boolean subtype(ClassDecl superType)

syn boolean subtypePar(ClassDecl superType,boolean objType)
syn boolean supertypeModel(ClassDecl subType,boolean objType)
syn boolean superTypeReal(ClassDecl subType,boolean objType)

/4 = superType.subtypePar(superType,false)D1

A
= false

A
= false

ComponentDecl
syn boolean subtype(ComponentDecl superType)

|: myClass().subtypePar(superType.myClass(),true)D1

|

= superType.superTypeReal(this,objType)

RealClass

eq subtypePar(ClassDecl superType,boolean objType)

Model

eq subtypePar(ClassDecl superType,boolean objType)
eq superTypeModel(ClassDecl subType,boolean objType)

N eq supertypeReal(ClassDecl subType,boolean objType)

superType.superTypeModel(this,objType)D1

supertypeModel (Model subType, boolean objType) {
// Check local classes
if(!objType)
for(int i=0;i<getNumClassDecl();i++) {
ClassDecl cd =

return false;
}
// Check declarations
for(int i=0;i<getNumComponentDecl();i++) {
ComponentDecl cd =

return false;
}
// Check superclasses
for(int i=0;i<getNumSuper();i++) {

return false;
}

return true;

subType.memberClass(getClassDecl(i).getName().getID());
if(cd==null || 'cd.subtype(getClassDecl(i)))

subtype.memberDecl(getComponentDecl(i).getName().getID());
if(cd==null || !cd.subtype(getComponentDecl(i))

if(!subType.subtypePar(getSuper(i).getSuper().myClass(),objType))

AN

Figure 5.8 Framework for type analysis.

to implement a binary method where the target method is selected based
on the type of both the receiver and the argument. This method for type
analysis is used also in [Ekman, 2006]|. Consider the equation for the

attribute subtypePar defined for Model

eq Model.subtypePar(ClassDecl superType, boolean objType) =

130

5.5 Summary

superType.supertypeModel (this, objType)

Using this strategy, the first dispatch is performed based on the type of
the receiving object, in this case Model. The second dispatch is performed
based on the type of the argument, in this case the type of superType.
The actual computation of the subtype relation is thus delegated to the
attribute supertypeModel. Notice that the double dispatch pattern ren-
ders the actual computation to be performed for the supertype relation.
RealClass also defines the attribute subtypePar which delegates compu-
tation to the attribute supertypeReal in the same manner.

In PicoModelica, a Model class can not be a subtype of RealClass, or
vice verse. It is therefore convenient to introduce a generic definition of
the attribute supertypeModel for ClassDecl, which by default evaluates to
false. An equation defining the attribute for Model is then added, which
performs the actual supertype test for two models. The implementation is
shown in Figure 5.8, and follows from the definition of subtyping of classes.
If the test is to be performed considering local classes, (i.e. if the argument
objType is false), the list of local classes is traversed and the subtype
condition is checked for each class. Next, the component declarations are
checked, and, finally, the superclasses. The test for RealClass is trivial.

The subtype test for ComponentDecl is defined by the attribute

syn boolean ComponentDecl.subtype(ComponentDecl superType) =
myClass().subtypePar (superType.myClass(),true)

The actual computation is delegated to subtypePar defined for ClassDecl,
with the second argument set to true. This indicates that local classes are
not to be included in the computation of the subtype relation.

5.5 Summary

In this chapter, PicoModelica, has been used to demonstrate the core as-
pects of Modelica name and type analysis. It has been shown how design
concepts developed for the JastAdd extensible Java compiler (JastAddd),
[Ekman and Hedin, 2007], can be adapted and applied to the context of
the PicoModelica compiler. The framework used in the JastAdddJ compiler
has been extended to support non-trivial language features in in Model-
ica, such as structural subtyping, and name-lookup in modifications and
redeclarations. It has been shown how these extensions can be expressed
concisely in a declarative and modular way using JastAdd. The concept of
types in the Modelica language has also been discussed, and difficulties in
interpreting the Modelica specification, [The Modelica Association, 2005],
have been high-lighted.

131

6

Flattening of Modelica
Models with JastAdd

While object-oriented equation-based modeling in Modelica is beneficial
for the modeler, the source code is not immediately suited for use with
numerical algorithms. Typically, algorithms for simulation or optimization
require a model to be represented in a form which is closely related to its
mathematical definition, which is in the Modelica context usually referred
to as the underlying Hybrid DAE. This model representation is flat, in the
sense that it contains variables and equations, but no structural entities
such as classes or components. The process of transforming a Modelica
model into a flat representation is called flattening.

A Modelica program differs from many traditional programming lan-
guages in that it is not intended to be executed under the assumption of a
program counter, which defines the point of execution. Neither is there a
stack or heap. Rather, a Modelica model is defined by a static composition
of components. The entire concept of nested components can therefore be
eliminated at compile-time. All hierarchical constructs are then removed
and the result is a flat description consisting of a set of uniquely named
variables of primitive type, possibly arrays, and a set of equations and
algorithms that operate on primitive values and variables only. The flat
model may then be transformed further and eventually used for, for ex-
ample, code generation to a numerical simulation algorithm.

Flattening of Modelica models is challenging due to modifications,
which may change the value of a primitive variable or even change an
entire declaration. In the former case the term value modification will be
used and the latter case will be referred to as a structural modification®.
As a consequence, the environment, consisting of a set of modifications,

1Tt is possible for a value modification to actually change the structure of the model, if it
affects the size of an array. Such modifications may be viewed both as a value modification
and structural modifications, but will not be considered here, for the sake of brevity.

132

6.1 Simplified Flattening without Modifications

must be considered when flattening a particular class. The concept of en-
vironments, and how to construct them, is therefore a key issue when
designing a flattening algorithm.

The procedure of flattening a Modelica class is sometimes referred to
as instantiation, or elaboration. The meaning of these terms is equivalent,
however. In this chapter, the term flattening will be used.

This chapter starts with an introductory example of a flattening al-
gorithm, which does not consider modifications, in Section 6.1. In Sec-
tion 6.2, the modification mechanism is introduced and the effect of value
and structural modifications are explained. In Section 6.3, the concept of
the instance AST, which will play a key role in the flattening algorithm, is
introduced. In Section 6.4, construction of the instance AST is explained
conceptually and in Section 6.5, a JastAdd implementation for declarative
construction of instance AST:s is presented. In Section 6.6, modifications,
and their effects on the construction of the instance AST are discussed. In
Section 6.7 the concept of environments is introduced, and in Section 6.8,
computation and representation of environments in the instance AST are
discussed. Component redeclarations, which are a special kind of modifi-
cations, are treated in Section 6.9. The chapter ends with Section 6.10, in
which a flattening algorithm is presented, and a summary in Section 6.11.

6.1 Simplified Flattening without Modifications

Let us consider first a simplified flattening algorithm that does not deal
with the complication of modifications. A class may be used in multiple
component declarations, at different locations in a model. Enclosed com-
ponents and primitive variables may thus be instantiated multiple times
in different environments. A flattening algorithm need therefore compute
the set of primitive variables and equations in all components that occur
in the model. A simple way to implement flattening is to recursively flat-
ten composite components. Unique names for the primitive variables that
are encountered during flattening can then be obtained using a kind of
name mangling. The objective is to generate a unique flat name for each
primitive variable. The flattening process is then parametrized by a name
prefix of type String. When a component is flattened, its name is con-
catenated to this string, which is then propagated when the component’s
children are flattened. Consider the code in Listing 6.1. Each ClassDecl
iterates over its components and equations, and flattens them with the
current name prefix as a parameter. Another parameter, res, holds a con-
tainer for the resulting flattened code. Each ComponentDecl updates the
prefix by extending it with its own name. This particular name mangling
strategy generates names that are not only unique but also provide trace-

133

Chapter 6. Flattening of Modelica Models with JastAdd

public void ClassDecl.flatten(Collection res, String prefix) {
for(Iterator iter = components().iterator(); iter.hasNext();) {
ComponentDecl d = (ComponentDecl)iter.next();
d.flatten(res, prefix);
}

// similar for equations
}
public void ComponentDecl.flatten(Collection res, String prefix) {
String newPrefix = prefix + getName();
if(myClass().isPrimitive())
res.add(new FVariable(newPrefix, ...));
else
myClass().flatten(res, newPrefix);

Listing 6.1 A simple flattening algorithm.

ability back to the original model. Each ComponentDecl of primitive type
generates a new variable in the resulting container, and non-primitive
components are flattened recursively with the updated environment.

6.2 Flattening and Modifications

The concept of modifications constitutes a major challenge for the Mod-
elica compiler constructor. In essence, the reason for this is that it is not
sufficient to consider only the elements of the class to be flattened, since
there may be modifications in the environment that affect the type or
value of an element. The environment consists of all modifications that
are applicable to the class, and is built by merging of the modifications
collected at all levels of the instance hierarchy. Notice that it is possible for
a particular element to have several applicable modifications at different
levels. Merging of modifications is the procedure of determining which, of
potentially several, applicable modification in an environment that should
be applied when flattening a particular component. The Modelica speci-
fication states that outer modifications override inner modifications, that
is, modifications which are specified inside a component have lower prece-
dence than modifications specified outside of the component.

ExampLE 6.1

To illustrate the concept of environments and merging, consider List-
ing 6.2. Flattening of the class A, starting with an empty environment,
results in flattening of the class B in the environment {c(x = 5)}. This,

134

6.2 Flattening and Modifications

model A model A
model B model B
model C Real x = 1;
Real x = 1; end B;
Real y = 2; model C
end C; extends B;
Cc(x=3,vy=4); Real y = 2;
end B; end C;
B b(c(x = 5)); model D
end A; replaceable B b(x=2);
Listing 6.2 A Modelica model end D;
illustrating merging of modifica- D d(redeclare C b(y=3));

end A;

Listing 6.3 A Modelica model
illustrating component redeclara-
tion.

tion.

in turn, leads to flattening of C in the environment {x = 5, v = 4}. In
this case, an outer modification of x from the declaration of b overrides
an inner modification from the declaration of c. The result of the flat-
tening procedure is thus two variable declarations: Real b.c.x = 5 and
Real b.c.y = 4. |

Modifications may also express replacement of a component or type dec-
laration. In this case, the actual structure of the instance hierarchy may
be changed.

ExampLE 6.2

Consider Listing 6.3. The class A contains three local classes: B, C, which
is a subtype of B, and D which contains a replaceable component. Now,
flattening of A leads to flattening of D in the environment {redeclare
C b(y=3)}, which is valid since C is a subtype of B. The redeclaration
modification acting on the declaration of b in D results in the class C
being flattened instead of the class of the original declaration. The result
of the flattening procedure is thus Real d.b.x = 2 and Real d.b.y = 3.
The variable d.b.y is a direct result of the redeclaration of the component
b in class D, since a variable y is present in class C, but not in the class B.
Notice also that the modification x=2 specified for the replaced component
declaration B b must be taken into account, even though the declaration
itself is redeclared. O

The examples in this section show that it is not sufficient to perform local
tests, for example type checking, of the correctness of a Modelica program.
Instead such tests must be performed considering both the class to be

135

Chapter 6. Flattening of Modelica Models with JastAdd

flattened and its environment.

From the examples, it is also clear that the simplified flattening algo-
rithm given in Section 6.1 is not sufficient in the presence of modifications.
Instead, a flattening framework based on the concept of the instance hier-
archy will be introduced in the next section. This data structure is orthog-
onal to the class hierarchy, in the sense that it reflects the hierarchical
component structure of a particular model, rather than relations between
classes, such as inheritance and aggregation. The strategy of creating a
new data structure which is used for flattening has been previously used
to translate Omola models, see [Andersson, 1994].

6.3 The Instance AST

The procedure of flattening a Modelica model is closely related to the in-
stance hierarchy. This idea is described in [Andersson, 1994], in the con-
text of flattening of Omola models. The instance hierarchy is conveniently
represented as an abstract syntax tree, which reflects the structure of a
particular model instance. In the following, the original syntax tree re-
sulting from parsing of a Modelica file will be referred to as the source
AST, and the corresponding instance hierarchy will be referred to as the
instance AST. Further, the term source node will be used to refer to a node
in the source AST and instance node will be used to refer to a node in the
instance AST.

Each instance node corresponds, conceptually, to a component decla-
ration. (This assumption will be relaxed in the following section.) A key
observation is that the instance AST is recursively defined, in the sense
that the children of a given instance node are computed from the set of
components which are hierarchically contained in the class of the corre-
sponding component declaration. This observation will be explored when
constructing the instance AST. Also, the leaves of the instance AST cor-
respond to variables of primitive types.

Each node in the instance AST has a reference, referred to as an inter-
AST reference, to a node in the source AST. The inter-AST references
enable access to relevant sub-trees in the source AST, such as modifi-
cations. The inter-AST references are similar to attributes, but differ in
that they are defined when an AST is built, rather than through equa-
tions. This type of attributes are referred to as intrinsic attributes, see
[Farrow, 1982]. More commonly, intrinsic attributes are used to store in-
formation from the parsing phase, such as identifier strings and literal
values. In this case, however, the intrinsic attributes hold references to
nodes in another AST. It is important to note that the source AST and
the instance AST are two separate AST:s, and that the inter-AST refer-

136

6.3 The Instance AST

Source AST Instance AST
Inter-AST references

-
.=
-
P
e
-

-
--"
---"

Prae
~. -
~e -

Figure 6.1 The relation between a source AST (left) and an instance AST (right).
The dotted arrows represent intrinsic attributes.

ences link the nodes in the instance AST to corresponding nodes in the
source AST. Clearly, a particular node in the source AST may be the tar-
get of several inter-AST references, if the corresponding class declaration
is used in multiple locations in a model, see Figure 6.1. It is also worth
mentioning that the actual structure of the instance AST may depend on
modifications, which complicates its construction.

Notice that the instance hierarchy is orthogonal to the class hierarchy.
The latter defines relations between classes in a model, such as inheri-
tance and association, whereas the former represents the structure of a
particular model instance.

The instance AST has several interesting properties which can be ex-
ploited by a flattening algorithm. Since the instance AST represents the
instance hierarchy, the environment of any given component can be com-
puted by searching the AST upwards, assuming that each instance node
has a reference to its corresponding component declaration, and thereby
also to associated modifications. Further, the flat name of a component is
constructed by collecting all component names upwards in the AST.

Once the instance AST has been constructed, a flattening algorithm
that can handle modifications is simple to construct. It will simply tra-
verse the instance AST and collect variables and equations. Such an al-
gorithm replaces the simplified algorithm given in Section 6.1, and will
be described in Section 6.10.

137

Chapter 6. Flattening of Modelica Models with JastAdd
6.4 Conceptual Construction of the Instance AST

The structure of the instance AST is conveniently expressed in terms of an
abstract grammar, which defines the instance node types. In addition, the
inter-AST references to nodes in the source AST, represented by intrinsic
attributes, are declared in the abstract grammar.

The procedure of constructing the instance AST starts by locating, in
the source AST, the class node which is to be flattened. Notice that this
class node need not be the root of the source AST. Rather, this class is
identified using a qualified name, e.g., A.B.C, and the corresponding class
declaration node can found by traversing the source AST.

Conceptually, construction of the instance AST starts with a root node
with no children. Then, for each component declaration node in the class
to be flattened, a new child node is added to the instance AST root. In
addition, the inter-AST reference from an instance node is set to its corre-
sponding source node. When instance nodes corresponding to all compo-
nent declarations have been created, the algorithm proceeds recursively.
By following the inter-AST reference of an instance node, the class decla-
ration node of the corresponding component declaration can be retrieved.
New children of the instance node, that correspond to the component dec-
larations of the retrieved class declaration, are then created. The recursion
for a particular branch in the instance AST terminates when a component
declaration of primitive type, for example Real, is encountered.

An important role of the instance AST is to provide a representation
of environments, which in turn consist of a set of hierarchically ordered
modifications. Therefore, it is useful to introduce additional node classes
in the instance AST which correspond to elements which may have as-
sociated modifications. This can be expressed in the following informal
definition, which relates node classes in the source AST to node classes
in the instance AST:

For each node class in the source AST, that may have a modification sub-
tree, a corresponding node class is introduced in the instance AST.

A modification subtree is the AST corresponding to a modification
clause in a Modelica source file. This definition makes it possible to design
a general framework for construction of the instance AST, considering only
a small number of characteristic language constructs.

6.5 Construction of the Instance AST Using NTA:s

In Section 6.4, the recursive procedure for building the instance AST was
explained conceptually. Using nonterminal attributes (NTAs), the con-

138

6.5 Construction of the Instance AST Using NTA:s

syn lazy List InstNode.getInstNodeList() {
List 1 = new List();

® List comps = components();

® List supers = superClasses();

// Add children corresponding to all components
@ for (int i=0;i<comps.getNumChild();i++) {
ComponentDecl cd = (ComponentDecl)comps.getChild(i);
1.add(cd.newInstComponent(cd));
}

// Add children corresponding to all super classes
® for (int i=0;i<supers.getNumChild();i++) {
1.add(((ExtendsClause)supers.getChild(i)) .newInstExtends());
}

return 1;
}
Listing 6.4 Definition of the attribute getInstNodeList.

struction of the instance AST can actually be specified declaratively, by
exploring its recursive structure.

In PicoModelica, there are two constructs that allow modifications,
namely component declarations and extends clauses. Ignoring, for a mo-
ment, structural modifications, the following abstract grammar can be
defined for the PicoModelica instance AST:

abstract InstNode ::= /InstNodex/;

InstRoot : InstNode ::= <ClassDecl:ClassDecl>;

abstract InstComponent : InstNode ::=
<ComponentDecl : ComponentDecl>;

InstComposite : InstComponent;

InstReal : InstComponent;

InstExtends : InstNode ::= <ExtendsClause:ExtendsClause>;

Class names in this grammar have the prefix Inst to emphasize that these
classes are intended to be used to construct instance nodes rather than
source nodes. The children of the abstract class InstNode are declared
as a list NTA, and are defined by a synthesized attribute as shown in
Listing 6.4. The use of NTAs to declare the children of an InstNode is a
natural choice here, since the construction of the AST may then be made
dependent on the context of a particular node.

The root node of an instance AST has the type InstRoot, which holds
an inter-AST reference to a corresponding class declaration node in the
source AST, i.e. the class to be flattened. The inter-AST references are

139

Chapter 6. Flattening of Modelica Models with JastAdd

Instance AST classes | Source AST classes
Inter-AST reference |
h R » ComponentDecl
InstNode H syn ClassDecl myClass()
' T
syn List components() :I 1 myClass()
H 0
r = v i
| | | : | ClassDef €= !
........ ! syn List components()
InstRoot InstExtends InstComponent |
eq components () eq components () eq components() |
Model

| = getExtendsClause().getSuper().myClass().components() B| | eq_components()

= getClassDeCl().components()BI | = getCnmponentDecl().myclass()Accmponents()BI I | = getComponentDeclList()Bl

Figure 6.2 The attribute components defined for InstNode gives access to all com-
ponent declarations of the InstNode.

modeled as intrinsic attributes, which are denoted by angle brackets?.
The abstract class InstComponent has two subclasses, InstComposite and
InstReal. These correspond, respectively, to a composite component and
a component of the primitive type Real. Finally, the InstExtends class
corresponds to an extends clause.

Let us first consider how the instance AST is built when ignoring
the effects of structural modifications. By declaring the children of an
InstNode as a list NTA, the tree is built recursively using the synthesized
attribute getInstNodeList, which defines the NTA. Every InstNode car-
ries a reference to a node in the source AST, for example, ComponentDecl,
Model (which is a subclass of ClassDef) or ExtendsClause. By accessing
the source AST nodes, the set of children of the InstNode can be computed.
Consider the definition of the attribute getInstNodelist in Listing 6.4.
First, the sets of components and superclasses of the source AST node are
retrieved @. The computation of these sets depends on the type of a par-
ticular InstNode, and will be discussed below. Then, for all components,
new InstComponent nodes are created, and added to the set of children, @.
Finally, for all super classes, new InstExtends nodes are created, ®, and
the list containing the InstNode children is returned. The actual creation
of new InstNodes is performed within the scope of the source AST, and

2The syntax <S:T> means that the name of the intrinsic attribute is S and that its type
is T. Notice that the name and type strings may be equal, for example <T:T>.

140

6.5 Construction of the Instance AST Using NTA:s

ComponentDecl @ [f----=-=-=-=-=-=---+ > ClassDecl
InstComponent newInstComponent() InstComponent newInstComponent(ComponentDecl decl)
public InstComponent newInstComponent() {
return myClass().newInstComponent(this);
ExtendsClause RealClass
InstExtends newInstExtends() InstComponent newInstComponent(ComponentDecl decl)
public InstExtends newInstExtends() { Model
return new InstExtends(this);
} InstComponent newInstComponent(ComponentDecl decl)

return new InstReal(cd);

public InstComponent newInstComponent(ComponentDecl cd) {B‘

}

return new InstComposite(cd);
}

public InstComponent newInstComponent(ComponentDecl cd) {B‘

Figure 6.3 The attributes newInstComponent and newInstExtends are used to cre-
ate new InstNodes based on the corresponding classes in the source AST.

will be explained below. Notice that the instance AST is built on demand,
when the children of a particular node is accessed.

A generic interface for retrieving the components and superclasses of
an InstNode is provided by the attributes components and superClasses.
This interface enables the attribute getInstNodeList to be defined for
the type InstNode, and thereby eliminates the need for specialized im-
plementations for each node class. In Figure 6.2, the implementation of
components is illustrated. The implementation relies on the inter-AST ref-
erences for retrieving nodes in the source AST, as well as attributes pre-
viously defined in the name and type analysis, such as myClass.

It now remains to device a mechanism for creating an InstNode corre-
sponding to a component declaration or extends clause. In PicoModelica,
there are two kinds of components: composites and reals, which in turn
corresponds to the instance node classes InstComposite and InstReal. By
using dynamic dispatch with respect to the type of a component decla-
ration, it is possible to distinguish between the two cases. The method
newInstComponent, which is defined for the source class ComponentDecl,
delegates the call to the corresponding ClassDecl. The new instance node
is thus created within the scope of a ClassDecl, in the source AST, in
which case the correct node type, InstComponent or InstReal can be de-
termined, see Figure 6.3. The strategy for creating a new InstExtends is
similar. Notice that new InstNodes are created using methods rather than
attribute definitions, since each invocation should return a new object.

141

Chapter 6. Flattening of Modelica Models with JastAdd

’ Y
I InstRoot
A ’

A}
I InstRoot 1
N — e InstComponentDecl 'D d'

(InstComponentDecl B bl) GnstReplacingComponentDecI 'C D

(InstComponentDecl 'C c')

InstRealDecl 'Real y'

GnstReaIDecl ‘Real 9 GnstReaIDecI 'Real y) InstRealDecl 'Real x'

(a)

Figure 6.4 Instance AST:s resulting from the examples in Listings 6.2 and 6.3.

As an example, consider the model in Listing 6.2, and the resulting
instance AST depicted in Figure 6.4a, which reflects the hierarchical com-
ponent structure, as opposed to the class hierarchy. The leaves of the tree
correspond to the variables x and v which are of the primitive type Real.
A solid node indicates that a new name scope is introduced, whereas a
dashed node corresponds to elements which do not give rise to a new
scope. Examples of the latter are e.g. InstRoot and InstExtends. The con-
cept of a name scope is closely related to the flat name of a primitive
variable, in that each entry in the qualified flat name corresponds to a
name scope in the instance AST.

6.6 Modification Trees

PicoModelica supports two kinds of modifications, namely value modifi-
cations and structural modifications in the form of component redeclara-
tions. Value modifications must be considered in order bind the correct
expression to a primitive variable in the flat model representation. Struc-
tural modifications on the other hand, affect how the actual instance AST
is built, since a structural modification may cause a component declaration
to be replaced by another declaration. Consequently, the set of children
of the corresponding, replacing, instance node may differ from the set of
children which would have resulted from the original declaration.

By definition, each InstNode has a reference to a node in the source

142

6.7 Environments

AST, for example a ComponentDecl, which may have a modification sub-
tree. A modification subtree is a part of the source AST that corresponds
to a modification construct in the Modelica source code, see Figure 6.5.
Conceptually, it is therefore convenient to consider an instance node to be
associated with a modification subtree in the source AST. Modifications
associated with a particular instance node may be retrieved using the
inter-AST references, see Figure 6.5. For convenience, the synthesized at-
tribute InstNode.modificationTree(), which retrieves this modification
subtree is introduced:

syn lazy Modification InstNode.modificationTree() = null;
eq InstComponent.modificationTree() =
getComponentDecl().hasModification()?
getComponentDecl () .getModification(): null;
eq InstExtends.modificationTree() =
getExtendsClause() .hasModification()?
getExtendsClause().getModification(): null;

This attribute provides a generic interface to modification subtrees for
InstNodes. In the following, InstNodes are therefore considered to have
modification subtrees directly associated with them, although the actual
modification subtrees are located in the source AST. Again, notice that a
modification subtree may be associated with several instance nodes.

By construction, all modification subtrees, that may contain applicable
modifications for a particular instance node are located above the node
itself, in the instance AST. This means that it is sufficient to search for
applicable modifications for a particular instance node starting at the
node and proceeding upwards towards the root of the instance AST.

The instance AST thus represents an ordering of modifications, given
by the hierarchical tree structure. This ordering can be used to enforce the
rules of merging of modifications, where outer modifications have prece-
dence. This means that if several modifications applicable to a particular
element is found when searching the instance AST upwards, the modifica-
tion associated with the uppermost InstNode is selected. The ordered set
of modifications applicable to an instance node is called an environment.
In the next section, construction and representation of environments will
be discussed.

6.7 Environments
A key concept in the flattening process is that of environments. The Mod-

elica specification states that a class is flattened in an environment that
consists of a set of applicable modifications resulting from merging. In

143

Chapter 6. Flattening of Modelica Models with JastAdd

Source AST Instance AST

Modification subtree

~

Figure 6.5 Modification subtrees in the source AST can be accessed from the
instance AST using inter-AST references.

the context of the instance AST, this corresponds to each InstNode being
associated with an environment, which must be considered when the chil-
dren of the node are created. Accordingly, representation and computation
of environments is a key design issue in the construction of a Modelica
compiler.

For any instance node, the corresponding environment can be com-
puted by merging of applicable modifications accessible from instance
nodes located upwards in the instance AST. The importance of this obser-
vation is significant, since it implies that the environment of an instance
node can be computed before the entire instance AST is constructed. In
essence, this allows the instance AST to be constructed top-down, since
when a new node is added, its environment can be computed from the
part of the tree that is already built, that is above the new node.

In principle, it would be possible to construct the environment of an
instance node by searching the instance AST upwards, retrieve modifica-
tion subtrees associated with instance nodes encountered in the search,
and then traverse the modification subtrees to identify applicable modi-
fications. Such procedure would, although conceptually appealing, result
in much unnecessary traversal of modification subtrees, as well as a cum-

144

6.7 Environments

bersome implementation®.

A more efficient approach to representing environments is to asso-
ciate with each instance node, a data structure representing the merged
environment of the node. By introducing a list that contains entries with
references to modification subtrees, located in the source AST, each in-
stance node is provided with easy access to its environment. The list of
references to modification subtrees is ordered according to the precedence
rules of Modelica, and can be viewed as a projection of all applicable modi-
fications located upwards in the instance AST onto a single data structure,
see Figure 6.6.

Apart from a reference to a modification subtree, it is necessary to
store a reference to the instance node which was originally associated
with the modification subtree. The reason for this will become clear when
discussing flattening of binding expressions retrieved from value modifi-
cations. In essence, the additional reference to an instance node is needed
in order to compute the name prefix of a variable access in a binding
expression.

The merged environment is then represented by a list containing en-
tries, each holding a reference to a modification subtree and a reference to
the corresponding instance node. Notice that the list entries of an instance
node can hold instance node references to, either, the instance node itself,
or instance node located above the node. Again, this is essential, in order
for an instance node to have a well defined environment, even though the
instance AST is only partially built.

Computation of environments is done by merging of modifications. The
term merging refers to the procedure of determining which, of potentially
several, modifications that are applicable to a particular element. There
are two sources of modifications for an instance node. Outer modifications
are retrieved from the immediate parent of the node and are then merged
with the modifications, if any, which are associated directly with the node
itself. The resulting, merged, environment then contains all modifications
applicable to the elements hierarchically contained in the instance node.
For example, the content of the merged environment is sought for struc-
tural modifications when the children of the instance node is created. The
basic concepts of environments and merging of modifications were illus-
trated in Example 6.1.

3This strategy was implemented in an early version of the PM compiler, but was discarded,
since apart from being overly complicated, it was also difficult to extend.

145

Chapter 6. Flattening of Modelica Models with JastAdd

Source AST Instance AST

Merged environments

Modification subtrees

Figure 6.6 Representation of merged environments in the instance AST and their
relations to nodes in the source AST.

6.8 Declarative Construction of Merged Environments

The discussion of how to introduce environments into the instance AST in
Section 6.7 suggested that it is desirable to introduce a new data struc-
ture which explicitly represents an environment. The environment data
structure is conveniently modeled by AST classes, which are used to cre-
ate new nodes which are inserted into the instance AST, see Figure 6.6.
Introduction of new nodes in an AST is supported by JastAdd through
nonterminal attributes, as discussed in previous sections. Consider the
following extension of the instance abstract grammar:

abstract InstNode ::= /InstNodex/
/MergedEnvironment : InstModification+/;
InstModification ::= <InstNode:InstNode>

<Modification:Modification>;

A new nonterminal attribute, MergedEnvironment, consisting of a list of

146

6.8 Declarative Construction of Merged Environments

< InstNode getMergedEnvironmentList() {
syn List getMergedEnvironmentList() List env = nameScope()? myEnvironment(getName()):
inh List myEnvironment() myEnvironment();
inh List myEnvironment(String name) if (hasModification())
eq getInstNode().myEnvironment() env.add(new InstModification(this,getModification());
eq getInstNode().myEnvironment(String name) return env;
}

getInstNode().myEnvironment() {
List env = new List();
for (int i=0;i<getNumMergedEnvironment();i++)
env.add(new InstModification(getMergedEnvironment(i).getInstNode(),
getMergedEnvironment (i) .getModification()));
return env;

}

getInstNode().myEnvironment(String name) {

List env = new List();
for (int i=0;i<getNumMergedEnvironment();i++) {

Modification m = getMergedEnvironment(i).getModification().

matchModification(name);
if (m!=null)
env.add(new InstModification(getMergedEnvironment(i).getInstNode(),m));

}

return env;

InstModification Instance AST

Source AST 1

Modification

syn Modification matchModification(String name)
= null I :

ComponentModification

_ N ies . .
name.equals(getName().getID()? getModification(): nul'lB'\ eq matchModification(String name)

Figure 6.7 The framework for computation of environments.

nodes of type InstModification is added to the InstNode class. The type
InstModification, in turn, serves as a wrapper for a modification node
located in the source AST. The list in MergedEnvironment also represents
the precedence between modifications, where the first entry is the outer-
most modification. The reference to the modification node is implemented
as an inter-AST reference. The InstModification also keeps a reference
to the InstNode which is associated with the modification subtree con-
taining the modification node. As pointed out above, this is necessary in
order to compute the name prefix of binding expressions. Notice that the
reference to an InstNode contained in InstModification is implemented
as an intrinsic attribute, but without being an inter-AST reference, since
the target of the reference resides in the same AST.

Now, it turns out to be convenient to let the NTA MergedModification
represent the environment of the children of an InstNode. This design
simplifies merging of modifications as well as the procedure of locat-

147

Chapter 6. Flattening of Modelica Models with JastAdd

ing applicable modifications. The NTA is defined by the synthesized at-
tribute getMergedEnvironmentList, see Figure 6.7. The computation of
getMergedEnvironmentList, starts by retrieving the environment of the
InstNode itself, which contains applicable outer modifications. Finally,
the set of modifications associated directly with the InstNode node itself
is added to the list of InstModifications.

The environment of the instance node itself is defined by the inherited
attribute myEnvironment, see Figure 6.7. This attribute is defined both
with no arguments and with a string argument representing a compo-
nent name. In the first case, the resulting environment is identical to the
one defined by the getMergedEnvironmentList attribute of the InstNode’s
parent. In the second case, the resulting environment contains only modi-
fications that match the supplied component name. The need for both ver-
sions stems from the fact that some instance nodes introduce a new name
scope, for example InstComponent, whereas others, such as InstExtends
do not.

The search for applicable modifications in the definition of the at-
tribute myEnvironment (String name) relies on the synthesized attribute
matchModification(String name), which is defined for the source AST
class Modification. If the string argument corresponding to a component
name matches that of a ComponentModification, the modification subtree
represented by the child modifications of this node is returned.

ExampLE 6.3

To illustrate how environments are computed, consider Listing 6.2, and
the corresponding instance AST in Figure 6.8. The procedure starts with
an empty environment for the declaration B b. The environment of the
children of the corresponding InstComponent is defined by the attribute
getMergedEnvironmentList, and contains the modification c(x=5). In the
next step, the environment of the component declaration C c, defined by
myEnvironment (“c”), is computed. This results in a new environment con-
taining the modification x=5. The procedure is repeated for each instance
node InstComponent and terminates when a node corresponding to a prim-
itive declaration is encountered. The binding expression of a primitive
declaration, represented in the instance AST by an InstReal, is identified
as the first modification in the corresponding environment. For example,
for the declaration Real x, the binding expression is =5. O

To summarize, an advantage of the proposed framework for merging of
modifications is that the environment of an InstNode can always be com-
puted by using information which is available from its direct parent or
which is associated with the node itself. This, in turn, eliminates the need
for traversing modification subtrees whenever the environment of an in-

148

6.9 Handling of Structural Modifications

/___-—\
I InstRoot 1
__ ”,

myEnvironment("b") = {}

‘ InstComponentDecl 'B b* ’ getMergedEnvironmentList() = {c(x=5)}

myEnvironment("c") = {x=5}

‘ InstComponentDecl 'C ¢') getMergedEnvironmentList() = {x=5,x=3,y=4}

myEnvironment("x") = {=5,=3}

myEnvironment("y") = {=4}

getMergedEnvironmentList() = {?5,=3,=1} InstRealDecl 'Reala GnstReaIDecI 'ReaID getMergedEnvironmentList() = {=4,=2}
4

Figure 6.8 An example of how environments are computed.

stance node is constructed. In addition, the environment data structures
are cached, since the corresponding attributes can be defined as lazy. This
reduces the need for searching upwards the instance AST.

6.9 Handling of Structural Modifications

Structural modifications, corresponding in the PicoModelica language to
component redeclarations, are challenging since they must be considered
in the construction of the instance AST. In this respect, structural modifi-
cations are more difficult to handle than value modifications. However, the
framework for merging and representation of environments introduced in
Sections 6.7 and 6.8 is applicable also for structural modifications. In this
section, it will be shown how the environment framework can be extended
to take also structural modifications into account. This extension will be
done in a modular fashion by adding equations to existing attributes and
adding a small number of new attributes. The additions are made in a sep-
arate JastAdd aspect. The approach used in this section will also serve as
an example of how the features of JastAdd can be used to create modular
extensions of language semantics.

Conceptually, handling of structural modifications is straightforward.
Before a child node, corresponding to a component declaration, of an in-
stance node is built, the merged environment is checked for an applicable
structural modification. Structural modifications are represented in en-
vironments by inter-AST references to ComponentRedeclare nodes in the
source AST. If an applicable modification is found, a child instance node
with a reference to the replacing ComponentDecl (source) node is created.
Notice that this ComponentDecl resides in a modification subtree in the

149

Chapter 6. Flattening of Modelica Models with JastAdd

refine InstantiationTree eq InstNode.getInstNodeList() {
List 1 = new List();
List comps = components();
List supers = superClasses();

// Add children corresponding to all components
for (int i=0;i<comps.getNumChild();i++) {
ComponentDecl cd = (ComponentDecl)comps.getChild(i);
@® ComponentDecl replacingCD =
retrieveReplacingDecl (cd.getName().getID());

if (replacingCD != null)

@) 1.add(new InstReplacingComponentDecl (replacingCD,cd));
else
® 1.add(cd.newInstComponent());
}

// Add children corresponding to all super classes

for (int i=0;i<supers.getNumChild();i++) {
1.add(((ExtendsClause)supers.getChild(i)) .newInstExtends());

}

return 1;

}

Figure 6.9 Definition of the attribute getInstNodeList taking the effect of compo-
nent redeclarations into account. The new refined definition overrides the original
definition which is specified in the aspect InstanceTree.

source AST. The construction of the instance AST then proceeds as in the
previous case.

Now, a particular component declaration may match several structural
modifications in the merged environment. This follows since it is valid to
redeclare also replacing component declarations. The correct structural
modification is identified simply by retrieving the first entry with a match-
ing component name from the list which represents the merged environ-
ment. However, the modifications of all matching structural modifications,
as well as of the original declaration must be considered. According to the
Modelica specification, the modifications of replaced component declara-
tions must be considered and merged into the environment, although the
actual declaration is replaced. This means that the modifications of all
structural modifications must be considered when merging environments.

The specific details of how to extend the basic environment framework
introduced in Section 6.8 will now be discussed. First, a new instance AST

150

6.9 Handling of Structural Modifications

class is introduced:

InstReplacingComponent : InstComponent ::=
<OriginalDecl:ComponentDecl>;

This class represents a component declaration which is specified in a com-
ponent redeclaration modification. In addition, a reference to the original
declaration is stored, in order to provide access to its modification sub-
tree. Notice that even though the original declaration is overridden by the
replacing component declaration, its modification, if any, must be consid-
ered. This is achieved by adding an equation to InstReplacingComponent
defining the attribute modificationTree:

eq InstReplacingComponent.modificationTree() =
getOriginalDecl().getModification();

As noted above, it is valid to redeclare also a replacing component decla-
ration. Therefore, there may be several redeclarations of the same com-
ponent in an environment. It is straightforward to locate the correct
replacing component declaration, by simply finding the first matching
ComponentRedeclare in the environment. However, notice that each node
ComponentRedeclare, also those which are themselves redeclared, may
have a modification subtree which must be taken into account. This is
done by introducing an additional equation for the synthesized attribute
matchModification(String name) in the ComponentRedeclare node:

eq ComponentRedeclare.matchModification(String name) {
if (name.equals(getName().getID()) &&
getComponentDecl () .hasModification())
return getComponentDecl().getModification();
return null;

}

Finally, it remains to revise the implementation of the attribute
InstNode.getInstNodeList to also take structural modifications into ac-
count, see Listing 6.9. The main difference from the previous implemen-
tation is that the merged environment of an instance node is checked for
structural modifications applicable to the declarations contained in the
node, @. If such a modification is found, an InstReplacingComponentDecl
node is added to the set of children, @. If no redeclaration modification was
found, an InstComponent is created, ®. Notice that the new definition of
getInstNodeList is specified using the refine keyword, which renders the
original definition, which resides in the aspect InstantiationTree, to be
overridden. Certainly, it would be possible to revise the original definition
directly, but then the extension would not be fully modularized.

The revised implementation for computation of the set of children of an
InstNode is supported by two new attributes. The synthesized attribute

151

Chapter 6. Flattening of Modelica Models with JastAdd

InstNode
syn ComponentDecl replacingDecl(String)

replacingDecl(String name) {
for (int i=0;i<getNumInstModification();i++)
if (getInstModification(i).getModification().matchRedeclare(name)!=null)
return getInstModification(i).getModification().matchRedeclare(name);
return null;

}

—<>[* InstModification Instance AST

Source AST 1

Modification

syn ComponentDecl matchRedeclare(String name)
= null I :

ComponentRedeclare
= getName().getID().equals(name)? getComponentDecl(): nullb'\ eq matchRedeclare(String name)

Figure 6.10 The attributes replacingDecl and matchRedeclare are used to re-
trieve structural modifications.

replacingDecl(String name), which is defined for InstNode, retrieves
the first structural modification matching a given component name, see
Figure 6.10. An additional synthesized attribute, matchRedeclare, defined
for the source AST node Modification, is introduced to retrieve the
ComponentDecl from a component redeclaration node, see Figure 6.10.

ExampLE 6.4

The procedure of constructing the instance AST taking structural mod-
ifications into account will now be illustrated by the example in List-
ing 6.3. The resulting AST, as well as the environments associated with
the nodes, are shown in Figure 6.11. First, the component declaration
D d is flattened. Since the corresponding environment is empty, a new
InstComponent is created. Next, the component declaration B b is consid-
ered. The environment of this component contains an applicable redecla-
ration, which is computed by the attribute replacingDecl. Accordingly, a
node of type InstReplacingComponent is created. Construction of the AST
proceeds recursively. Notice that the node InstExtends ’B’ does not in-
troduce a new name scope, and thus the modifiers in the environment are
propagated unchanged. O

It is worth to notice that extension of the instance AST framework to han-
dle structural modifications has been implemented solely by adding three
equations to existing attributes and by introducing two new attributes.
This illustrates how complex and context-dependent semantics can be im-

152

6.10 A Flattening Algorithm

rd - kN
! InstRoot 1
A ’

myEnvironment("b") = {}

‘ InstComponentDec! 'D d' ’ getMergedEnvironmentList() = {redeclare C b(y=3)}

myEnvironment("b") = {y=3}
replacingDecl("b") = 'C b(y=3)"

(InstRepIacingComponentDecI 'C D getMergedEnvironmentList() = {y=3,x=2}

myEnvironment("y") = {=3} getEnvironment() = {y=3,x=2}

=T - N
InstRealDecl 'Real y' '\ InstExtends 'B' j getMergedEnvironmentList() = {y=3,x=2}
.

getMergedEnvironmentList() = {=3,=2}

myEnvironment("x") = {=2}

InstRealDecl 'Real x') getMergedEnvironmentList() = {=2,=1}

Figure 6.11 The instance AST resulting from the code example in Listing 6.2, and
associated node environments.

plemented in a compact and modular fashion in JastAdd. Based on the
experiences from implementing support for component redeclarations, no
major difficulties are expected when implementing further extensions, for
example support for type redeclarations.

6.10 A Flattening Algorithm

Given that the instance AST has been constructed, flattening of a model
can be performed by simply traversing the instance AST and thereby col-
lecting all equations and variables. The resulting model is represented by
a new AST, referred to as the flat AST. In principle, it would be possible to
use a subset of the source abstract grammar also to represent a flat model.
However, since the flat representation constitutes an interface between
the compiler front-end and different algorithms (symbolic and numeri-
cal), it is desirable to generate a new AST with a structure specifically
designed for the purpose. Another reason for introducing a new abstract
grammar for the flat model representation is that attributes defined for
source AST classes may not be applicable in a flat context.

The flat abstract grammar consists in essence of a container class,
which stores lists with references to variables and equations, respectively:

FClass ::= <Name:String> FVariablex FEquationx;
FVariable ::= Name:FIdDecl [BindingExp:FExp];
FEquation ::= Left:FExp Right:FExp;

In addition, the flat abstract grammar contains node classes which dupli-

153

Chapter 6. Flattening of Modelica Models with JastAdd

public void flatten(FClass fc) {

ASTNode for (int i=0;i<getNumChild();i++)
- getChild(i).flatten(fc);
void flatten(FClass fclass) }
public void flatten(FClass fc) {
List 1 = getEquations();
InstNode for (int i=0;i<l.getNumChild();i++)
void flatten(FClass fclass) 1 ((Equation)l.getChild(i)).flatten(getFullNameUnderScore(),fc);
A getInstNodelist().flatten(fc);
}
public void flatten(FClass fc) {
InstComponent FExp e = myBindingExp();
void flatten(FClass fclass) Opt o = e!=null? new Opt(e): new Opt();
fc.addFVariable(new FVariable(new FIdDecl(getFullNameUnderScore()),0));
getInstNodelList().flatten(fc);
}
InstReal
void flatten(FClass fclass) myBindingExp() {
syn FExp myBindingExp() if (getNumInstModification()>0) {

// Get first modification in environment
InstModification m = getInstModification(0);
Exp e = ((EquationModification)m.getModification()).getExp();
return e.flatten(m.getInstNode().getNamePrefix());
} else
return null;

Figure 6.12 The implementation of the flattening algorithm.

cate the expression node classes of the source abstract grammar.

The design of the flattening algorithm is shown in Figure 6.12. A
generic traversal method flatten(FClass fc) is defined for the generic
node class ASTNode, which is the super class of all AST classes. The argu-
ment FClass fc represents the flat model. A specialization of the flatten
method is defined for the node type InstNode, in which all equations are
retrieved, flattened and added to the supplied FClass. A generic inter-
face to the equations corresponding to an InstNode is provided by the
attribute equations. This attribute is defined similarly to components(),
see Figure 6.2.

Flattening of equations and expressions is straight forward—the flat-
tened equation or expression is (almost) identical to the original one.
One complication arises however. The name of a primitive variable is con-
structed by name mangling, as discussed above. Given the structure of the
instance AST, computation of such names can easily be implemented by an
inherited attribute. However, when an expression is flattened, this nam-
ing convention must be considered. This is done by providing a name prefix
to the flattening method for equations and expressions. If an expression
contains an identifier, the supplied name prefix is simply concatenated

154

6.11 Summary

with the name of the identifier.

A specialization of the flattening method is provided also for InstReal.
In this case, a flat variable, represented by an FVariable, is added to the
FClass. In addition, the environment of the primitive declaration must be
checked for an applicable binding expression. The synthesized attribute
myBindingExp(), which is defined for InstReal, computes the correct ex-
pression. Notice that the binding expression is flattened using the name
prefix of the InstNode which was originally associated with the modifica-
tion subtree. Although subtle, this point is essential, in order for binding
expressions given in modifications to have the correct prefix. In fact, the
main reason for including a reference to the InstNode of a modification in
the InstModification class is to enable correct computation of the name
prefix of expressions.

To summarize, the flattening algorithm is simple to implement, given
that the instance AST, including merged environments, has been con-
structed. In essence, the flattening algorithm is implemented as a traver-
sal of the instance AST, where all equations and primitive variables are
collected.

6.11 Summary

In this chapter, the process of flattening a PicoModelica model has been
discussed. In the flattening process, the most challenging problem is con-
struction of the instance AST. The main difficulty is due to component
redeclarations, which alter the structure of the AST. It has been shown
how a framework for declarative construction of the instance AST can
be encoded in JastAdd. The framework includes a strategy for merging of
modifications and is based on nonterminal attributes. Further, it has been
shown how the framework can be extended, in a fully modular fashion, to
also support component redeclarations. Finally, a simple flattening algo-
rithm, which constructs a flat model representation in the form of a new
AST, has been presented. It is also worth noticing that due to the declar-
ative specification of the instance AST, the construction is performed on
demand, as the flattening algorithm executes.

155

7

Optimica

7.1 Introduction

Modelica is becoming a standard format for describing and communicating
high-fidelity models of large-scale dynamic systems. Expert knowledge is
being encoded into Modelica libraries, both in industry and in academia.
The growing body of Modelica models also represents significant capi-
tal investments, and accordingly, Modelica models and libraries represent
valuable assets for many companies. As a consequence, Modelica models
are turning into legacy code, which cannot easily be replaced, simply be-
cause the cost of re-encoding the models in a different format is too large.

While the primary usage of Modelica models today is simulation, sev-
eral other usages are emerging, as discussed in Chapter 4. Since it is not
feasible, for the reasons mentioned above, to re-encode models for each
new model usage, future Modelica tools, and also the Modelica language
itself, should accommodate and promote new usages of Modelica models.
This requirement has profound consequences for software design of Mod-
elica tools, and also for the language design itself. In particular, some
new usages may require new constructs, at the language level, in order to
enable modeling of particular design problems.

One example of an emerging usage of Modelica models is dynamic opti-
mization. A characteristic feature of realistic dynamic optimization prob-
lems is that the procedure of formulating such problems is highly iterative.
It is common that extensive tuning of the cost function and constraints
is required in order to obtain an acceptable solution, see for example the
case study in Chapter 9. If a numerical algorithm is used to solve the
dynamic optimization problem, there is an additional dimension that re-
quires attention: the design of the transcription scheme. As described in
Chapter 3, the scheme used to discretize the control and state variables

156

7.1 Introduction

strongly influences the properties of the resulting solution, both in the
case of simultaneous and sequential methods. For example, in the case of
sequential methods, the choice of control parametrization quantifies the
level of sub-optimality which is usually introduced by piece-wise polyno-
mial control approximations. In the case of simultaneous methods, the
choice of collocation scheme influences the accuracy of the solution, and it
may even be required to adapt the mesh to a particular problem. In both
cases, the choice of discretization method also affects the execution time
for solving the problem, which is an important aspect in on-line applica-
tions. For these reasons, dynamic optimization problems are very rich in
the sense that there are several aspects that require attention. Also, the
user needs, and should be enabled to, model, using high-level language
constructs, the optimization problem both in terms of cost functions and
constraints and at the transcription level.

Sophisticated numerical optimization algorithms often have cumber-
some APIs, which do not always match the engineering need for high-level
description formats. For example, it is not uncommon for such numerical
packages to be written in C, or in Fortran, and that they require the dy-
namic system to be modeled as an ODE/DAE, which is also encoded in C
or Fortran. In addition, it may be required to also encode first and second
order derivatives. Although there are efficient tools for automatic differen-
tiation, as discussed in Chapter 3, encoding of dynamic optimization prob-
lems in low-level languages! like C or FORTRAN is often cumbersome and
error-prone. An important goal of developing high-level languages for dy-
namic optimization is therefore to bridge the gap between the engineering
need for high-level descriptions and the APIs of numerical algorithms.

There are several software packages supporting dynamic optimization,
for example Dymola [Dynasim AB, 2007], gPROMS [Process Systems En-
terprise, 2007], and GESOP [ASTOS Solutions GmbH, 2006]. However,
most available software tools are restricted in the sense that they usu-
ally only support a particular optimization algorithm. While a particular
algorithm may work well in some cases, the appropriate choice of numer-
ical algorithm is usually dependent on the particular problem at hand.
An analogy with differential equation solvers can be made. Stiff systems
call for sophisticated, but potentially computationally demanding solvers,
whereas less difficult systems may be more efficiently solved by a simpler
algorithm. An additional goal in the development of tools supporting high-
level formulation of dynamic optimization problems is therefore to provide
an open architecture, were several different algorithms can be integrated.

In this chapter, an extension of Modelica, entitled Optimica, will be pre-

IThe term low-level is relative, but is here used in relation to domain-specific languages
like Modelica.

157

Chapter 7. Optimica

sented. Optimica consists of a number of new language elements, which
enable high-level formulation of dynamic optimization problems based on
Modelica models. The syntax as well as the semantics of Optimica will be
described. In addition, a prototype implementation of an Optimica com-
piler, which is a modular extension of the JModelica compiler, will be pre-
sented. The effectiveness of Optimica and the prototype compiler will be
illustrated by means of examples, and also by the case study in Chapter 9.

The chapter is organized as follows. In Section 7.2, issues related to
extensions of languages are discussed. Different options regarding lan-
guage extensions in Modelica are also treated. In Section 7.3, the scope of
Optimica is discussed, i.e., the class of optimization problems that can be
expressed using Optimica is defined. In Section 7.4 the syntax and the se-
mantics of the Optimica extension are presented. Implementation issues
related to the modular Optimica extension of the JModelica compiler are
discussed in Section 7.5. In Section 7.6, some examples illustrating Opti-
mica in practical use are given. The chapter ends with a summary and
conclusions in Section 7.8.

7.2 Motivation of the Optimica Extension

Isn’t Modelica Enough?

Although being a very rich language in terms of expressive power for
describing complex hybrid dynamical systems, Modelica lacks important
features desirable for expressing optimization problems. This is quite nat-
ural, since Modelica was not developed with optimization in mind. For ex-
ample, the notion of cost functions, constraints, variable bounds and initial
guesses are not included in the Modelica language. Some of these quanti-
ties may indeed be modeled using standard Modelica, to some extent. For
example, a particular variable may be given the meaning of cost, and the
min and max attributes may be interpreted as variable bounds. However,
while this approach may work in simple cases, it becomes intractable
for more complex optimization problems. For example, complicated con-
straints, several use cases, and tailoring of the transcription method would
be difficult to express. Another example where it is inconvenient to use
standard Modelica to model an optimization problem is variable bounds.
Again, the min and max attributes may be used for the purpose. But these
attributes are usually used to express regions of validity for a model, and
giving them a new semantic meaning would be potentially misleading.

158

7.2 Motivation of the Optimica Extension

What About Annotations?

Modelica offers a mechanism for adding information to model, which may
not be part of the actual mathematical description, but which is convenient
to store in the model. Typical examples include graphical annotations and
documentation. Annotations can also be used to supply information that
can be used by a particular tool, for example, in order to influence proper-
ties of the translation process. In principle, it would be possible to specify
parts of an optimization problem by introducing suitable annotations. For
example, a variable could be marked as a cost function, and the semantic
meaning of the equality operator in an equation could be changed to that
of the inequality operator. There are two reasons why it is not a good idea
to strictly use this approach. Firstly, and most importantly, annotations
are designed to supply complementary information, whereas in this case,
the elements of an optimization problem are rather primary information,
that is essential for solving the actual problem. Also, since annotations
are not intended for formulation of design problems, they do not provide
a convenient modeling environment for the user. Secondly, annotations
cannot currently be changed by means of modification. Since modification
is one of the corner-stones of Modelica, this is a severe restriction. Also,
it is not currently well defined how annotations are treated in the case
of inheritance. Since one of the main objectives of the Optimica extension
is to enable convenient formulation of dynamic optimization problems us-
ing high-level constructs, using only annotations does not seem to be a
feasible alternative.

Whereas the above arguments are applicable to core elements of an
optimization problem, such as cost function and constraints, annotations
may well be used to specify a solution algorithm, and associated param-
eters. This type of information is not part of the actual optimization for-
mulation, but it might still be essential in order to efficiently solve the
problem numerically. By introducing annotations for specifying, for exam-
ple, the collocation scheme used in a direct method, the user is able to
model both the actual optimization problem at hand and the transcrip-
tion method in a unified high-level description language. This approach
is also in line with the intentions of Modelica annotations, because of the
separation between formulation of the actual problem (by means of dedi-
cated language constructs), and specification of the solution technique (by
means of annotations).

Tool-oriented Support for Optimization?

Another potential strategy for enabling dynamic optimization of Modelica
models is to develop tool-oriented solutions, for example Graphical User
Interfaces (GUIs), within a simulation-based software tool. This approach

159

Chapter 7. Optimica

is used, for example, to enable optimization of Modelica models in Dymola,
see Section 3.4. The user would then set up the optimization problem by
entering information in dedicated fields in the GUI. Using this approach,
the software tool needs to maintain an internal model of the optimization
problem, as specified by the user. While this solution may be an attrac-
tive choice for interfacing a particular optimization method with existing
simulation-based tools, it does not offer the flexibility, or portability, which
is inherent in the Modelica language. It is therefore desirable to define, at
the language level, a generic extension, which has a well defined syntax
and semantics. Nevertheless, it may still be desirable to offer GUIs, in or-
der to increase productivity in the design process, in the same way as cur-
rent Modelica tools typically offer GUIs to simplify critical modeling tasks

To Extend or to Complement?

A key issue is whether to extend Modelica by introducing new language
constructs, or to define a new, separate, language which complements
Modelica. By introducing a new language, the syntax and semantics of
Modelica would be kept entirely intact, which may be advantageous since
it makes design and maintenance of the language simpler. Also, if several
extensions are introduced, defining the interaction between the exten-
sions, both at a syntactic and semantic level, may be difficult. On the
other hand, Modelica has many generic built-in constructs, e.g., classes,
functions and declarative equations, which are widely applicable in many
contexts. Reinventing such constructs in new languages does not seem to
be an attractive alternative. Another argument in favor of language exten-
sion is that Modelica offers strong support for modularization of models.
In the case of dynamic optimization, the user may construct the model
separately from the formulation of the optimization problem, in which
the model is used. In this way, the same model may still be used for other
purposes than optimization, such as, for example, simulation.

It is essential, however, that language extensions targeted at particular
usages of Modelica models do not interfere unnecessarily with the original
language. Preferably, extensions should be modular, in the sense that the
new constructs are only allowed in a well defined language environment.

7.3 Scope of Optimica

Information Structure

In order to formulate a dynamic optimization problem, to be solved by a
numerical algorithm, the user must supply different kinds of information.

160

7.3 Scope of Optimica

It is natural to categorize this information into three levels, corresponding
to increasing levels of detail.

e Level 1. At the mathematical level, a canonical formulation of a
dynamic optimization problem is given. This include variables and
parameters to optimize, cost function to minimize, constraints, and
the Modelica model constituting the dynamic constraint. The opti-
mization problem formulated at this level is in general infinite di-
mensional, and is thereby only partial in the respect that it cannot be
directly used by a numerical algorithm without additional informa-
tion, for example, concerning transcription of continuous variables.

e Level II. At the transcription level, a method for translating the
problem from an infinite dimensional problem to a finite dimen-
sional problem needs to be provided. This might include discretiza-
tion meshes as well as initial guesses for optimization parameters
and variables. It should be noticed that the information required at
this level is dependent on the numerical algorithm that is used to
solve the problem.

e Level III. At the algorithm level, information such as tolerances
and algorithm control parameters may be given. Such parameters
are often critical in order to achieve acceptable performance in terms
of convergence, numerical reliability, and speed.

An important issue to address is whether information associated with
all levels should be given in the language extension. In Modelica, only
information corresponding to Level I is expressed in the actual model de-
scription. Existing Modelica tools then typically use automatic algorithms
for critical tasks such as state selection and calculation of consistent ini-
tial conditions, although the algorithms can be influenced by the user
via the Modelica code, by means of annotations, or attributes, such as
StateSelect. Yet other information, such as choice of solver, tolerances
and simulation horizon is provided directly to the tool, either by means of
a graphical user interface, a script language, or alternatively, in annota-
tions.

For dynamic optimization, the situation is similar, but the need for
user input at the algorithm level is more emphasized. Automatic algo-
rithms, for example for mesh selection, exist, but may not be suitable for
all kinds of problems. It is therefore desirable to include, in the language,
means for the user to specify most aspects of the problem in order to
maintain flexibility, while allowing for automatic algorithms to be used
when possible and suitable.

Relating to the three levels described above, the approach taken in the
design of Optimica is to extend the Modelica language with a few new

161

Chapter 7. Optimica

language constructs corresponding to the elements of the mathematical
description of the optimization problem (level I). The information included
in levels II and III, however, may rather be specified by means of annota-
tions. This design is also consistent with the current use of Modelica and
annotations, in that the actual modeling/problem formulation is done us-
ing dedicated language constructs, whereas solution algorithms and their
parameters are specified using annotations.

Dynamic System Model

The scope of Optimica can be separated into two parts. The first part
is concerned with the class of models that can be described in Modelica.
Arguably, this class is large, since very complex, non-linear and hybrid
behavior can be encoded in Modelica. From a dynamic optimization per-
spective, the inherent complexity of Modelica models is a major challenge.
Typically, different algorithms for dynamic optimization support different
model structures. In fact, the key to developing efficient algorithms lies in
exploiting the structure of the model being optimized. Consequently, there
are different algorithms for different model structures, such as linear sys-
tems, non-linear ODEs, general DAEs, and hybrid systems. In general, an
algorithm can be expected to have better performance, in terms of conver-
gence properties and shorter execution times, if the model structure can
be exploited. For example, if the model is linear, and the cost function is
quadratic, the problem can be obtained very efficiently by solving a Riccati
equation. On the other hand, optimization of general non-linear and hy-
brid DAEs is still an area of active research, see for example [Barton and
Lee, 2002]. As a result, the structure of the model highly affects the appli-
cability of different algorithms. The Optimica compiler presented in this
chapter relies on a direct collocation algorithm in order to demonstrate the
proposed concept. Accordingly, the restrictions imposed on model struc-
ture by this algorithm apply when formulating the Modelica model, upon
which the optimization problem is based. For example, this excludes the
use of hybrid constructs, since the right hand side of the dynamics is as-
sumed to be twice continuously differentiable. Obviously, this restriction
excludes optimization of many realistic Modelica models. On the other
hand, in some cases, reformulation of discontinuities to smooth approx-
imations may be possible in order to enable efficient optimization. This
is particularly important in on-line applications. The Optimica extension,
as presented in this chapter, could also be extended to support other al-
gorithms, which are indeed applicable to a larger class of models.

The Dynamic Optimization Problem

The second part of the scope of Optimica is concerned with the remain-
ing elements of the optimization problem. This includes cost functions,

162

7.3 Scope of Optimica

constraints and variable bounds. Consider the following formulation of a
dynamic optimization problem:

l%%nt//(x(t:),¥(t:),u(ti),p), 1€ 1...Neost, ti € [to,tf] (7.1)

subject to the dynamic system

F(x(t),x(t),y(t),u(t),p,t) =0, t€E [to,tf] (7.2)

and the constraints

(2),5(t),u(t),p) <0 tE [to,tf]

Ceq(x(t),¥(t),u(t),p) =0 t € [to,]
ineq((t7), ¥(t5), u(t;),) <0, jE€1...Nineg, t;€E [to,tf]
eq(x(tr),y(tr),u(tr),p) =0, k€ 1...Neg, € [to,tf]

czneq(

N33
~— ~— ~— —

~ A~ o~ o~

where x(¢) € R" are the dynamic variables, y(¢) € R™ are the algebraic
variables, u(¢) € R™ are the control inputs, and p € R™ are parameters
which are free in the optimization. In addition, the optimization is per-
formed on the interval ¢ € [t,t], where t, and t; can be fixed or free,
respectively. In addition, the initial values of the dynamic and algebraic
variables may be fixed or free in the optimization.

The constraints include inequality and equality path constraints, (7.3)-
(7.4). In addition, inequality and equality point constraints, (7.5)-(7.6),
are supported. Point constraints are typically used to express initial or
terminal constraints, but can also be used to specify constraints for time
points in the interior of the interval.

The cost function (7.1) is a generalization of a terminal cost function,
#(tr), in that it admits inclusion of variable values at other time instants.
This form includes some of the most commonly used cost function formula-
tions. Obviously, terminal as well as initial costs are included. A Lagrange
cost function can be obtained by introducing an additional state variable,
xr(t), with the associated differential equation x,(¢) = L(x(¢),u(¢)), and
the cost function y(ty) = x1(tf). The need to include variable values at
discrete points in the interior of the optimization interval in the cost func-
tion arises for example in parameter estimation problems. In such cases,
a sequence of measurements, y;(¢;), obtained at the sampling instants ¢;,
1 € 1...Ny is typically available. A cost function candidate is then:

Ny

> 0(t) = a(t:)" W (y(t:) — ya(t:) (7.7)

i=1

163

Chapter 7. Optimica

where y(¢;) is the model response at time ¢#; and W is a weighting matrix.
Another important class of problems is static optimization problems

on the form:

min ¢(x, y,u, p)

u’

subject to
F(0,x,y,u,p,t;) =0 (7.8)
Cineq(%,u,p) <0
Ceg(x,u,p) =0

In this case, a static optimization problem is derived from a, potentially,
dynamic Modelica model by setting all derivatives to zero. Since the prob-
lem is static, all variables are algebraic in this case, and no transcription
procedure is necessary. The variable ¢; denotes the time instant at which
the static optimization problem is defined.

Transcription

In this chapter a direct collocation method will be used to illustrate how
also the transcription step can be encoded in the Optimica extension. The
information that needs to be provided by the user is then a mesh spec-
ification, the collocation points, and the coefficients of the interpolation
polynomials.

7.4 The Optimica Extension

Modelica is a very rich language, containing many general-purpose con-
structs. Therefore, an extension of Modelica to accommodate dynamic op-
timization problems requires only a small number of new constructs. In
summary, the Optimica extension consists of the following elements:

e A new specialized class: optimization
e New attributes for the built-in type Real: free and initialGuess.

e A new function for accessing the value of a variable at a specified
time instant

e Class attributes for the specialized class optimization: objective,
startTime, finalTime and static

e A new section: constraint
e Inequality constraints

e An annotation for providing transcription information

164

7.4 The Optimica Extension

model DoubleIntegrator
Real x(start=0);
Real v(start=0);
input Real u;
equation
der(x)=v;
der(v)=u;
end DoublelIntegrator;
Listing 7.1 A Modelica model of a double integrator system.

In this section, the Optimica extension will be presented and informally
defined. The presentation will be made using the following dynamic opti-
mization problem, based on a double integrator system, as an example:

7
min/ 1dt (7.9)
u(t) Jo

subject to the dynamic constraint

0(t) = u(t), v(0)= (7.10)
and
x(tr) =1
v(tr) =0
v(t) 0.5 (7.11)
—1<u() <1

In this problem, the final time, ¢/, is free, and the objective is thus to
minimize the time it takes to transfer the state of the double integrator
from the point (0,0) to (1,0), while respecting bounds on the velocity v(t)
and the input u(¢). A Modelica model for the double integrator system is
shown in Listing 7.1.

A New Specialized Class

It is convenient to introduce a new specialized class, called optimization,
in which the proposed Optimica-specific constructs are valid. This ap-
proach is consistent with the Modelica language, since there are already
several other specialized classes, e.g., record, function and model. By
introducing a new specialized class, it also becomes straightforward to
check the validity of a program, since the Optimica-specific constructs

165

Chapter 7. Optimica

are only valid inside an optimization class. The optimization class cor-
responds to an optimization problem, static or dynamic, as specified in
Section 7.3. Apart from the Optimica-specific constructs, an optimization
class can contain also component and variable declarations, local classes,
and equations.

It is not possible to declare components from optimization classes in
the current version of Optimica. Rather, the underlying assumption is that
an optimization class defines an optimization problem, that is solved off-
line. An interesting extension would, however, be to allow for optimization
classes to be instantiated. With this extension, it would be possible to
solve optimization problems, on-line, during simulation. A particularly
interesting application of this feature is model predictive control, which is
a control strategy that involves on-line solution of optimization problems
during execution.

As a starting-point for the formulation of the optimization problem
(7.9)-(7.11), consider the optimization class:

optimization DIMinTime
DoubleIntegrator di;
end DIMinTime;

This class contains only one component representing the dynamic system
model, but will be extended in the following to incorporate also the other
elements of the optimization problem.

Attributes for the Built-in Type Real

In order to superimpose information on variable declarations, two new
attributes are introduced for the built-in type Real?. Firstly, it should be
possible to specify that a variable, or parameter, is free in the optimiza-
tion. Modelica parameters are normally considered to be fixed after the
initialization step, but in the case of optimization, some parameters may
rather be considered to be free. In optimal control formulations, the con-
trol inputs should be marked as free, to indicate that they are indeed
optimization variables. For these reasons, a new attribute for the built-in
type Real, free, of boolean type is introduced. By default, this attribute
is set to false.

Secondly, an attribute, initialGuess, is introduced to enable the user
to provide an initial guess for variables and parameters. In the case of free
optimization parameters, the initialGuess attribute provides an initial
guess to the optimization algorithm for the corresponding parameter. In
the case of variables, the initialGuess attribute is used to provide the
numerical solver with an initial guess for the entire optimization interval.

2The same attributes may be introduced for the built-in type Integer, in order to support
also variables of type Integer in the optimization formulation

166

7.4 The Optimica Extension

This is particularly important if a simultaneous or multiple-shooting al-
gorithm is used, since these algorithms introduce optimization variables
corresponding to the values of variables at discrete points over the in-
terval. Notice that such initial guesses may be needed both for control
and state variables. For variables, however, this strategy for providing
initial guesses may sometimes be inadequate. In such cases, a better so-
lution is to use simulation data to initialize the optimization problem.
This approach is also supported by the Optimica compiler. In the double
integrator example, the control variable u is a free optimization variable,
and accordingly, the free attribute is set to true. Also, the initialGuess
attribute is set to 0.0.

optimization DIMinTime
DoubleIntegrator di(u(free=true,initialGuess=0.0));
end DIMinTime;

A Function for Accessing Instant Values of a Variable

An important component of some dynamic optimization problems, in par-
ticular parameter estimation problems where measurement data is avail-
able, is variable access at discrete time instants. For example, if a mea-
surement data value, y;, has been obtained at time ¢;, it may be desirable
to penalize the deviation between y; and a corresponding variable in the
model, evaluated at the time instant #;. In Modelica, it is not possible to
access the value of a variable at a particular time instant in a natural
way, and a new construct therefore has to be introduced.

All variables in Modelica are functions of time. The variability of vari-
ables may be different—some are continuously changing, whereas others
can change value only at discrete time instants, and yet others are con-
stant. Nevertheless, the value of a Modelica variable is defined for all time
instants within the simulation, or optimization, interval. The time argu-
ment of variables are not written explicitly in Modelica, however. One
option for enabling access to variable values at specified time instants
is therefore to associate an implicitly defined function with a variable
declaration. This function can then be invoked by the standard Modelica
syntax for function calls, y(t_i). The name of the function is identical
to the name of the variable, and it has one argument; the time instant
at which the variable is evaluated. This syntax is also very natural since
it corresponds precisely to the mathematical notation of a function. No-
tice that the proposed syntax y(t_i) makes the interpretation of such an
expression context dependent. In order for this construct to be valid in
standard Modelica, v must refer to a function declaration. With the pro-
posed extension, v may refer either to a function declaration or a variable
declaration. A compiler therefore needs to classify an expression y(t_i)

167

Chapter 7. Optimica

based on the context, i.e., what function and variable declarations are vis-
ible. An alternative syntax would have been to introduce a new built-in
function, that returns the value of a variable at a specified time instant.
While this alternative would have been straightforward to implement, the
proposed syntax has the advantages of being easier to read and that it
more closely resembles the corresponding mathematical notation.

Class Attributes

In the optimization formulations (7.1)-(7.6) and (7.8), there are elements
that occur only once, i.e., the cost function and the optimization interval
in (7.1)-(7.6), and in the static case (7.8), only the cost function. These
elements are intrinsic properties of the respective optimization formula-
tions, and should be specified, once, by the user. In this respect the cost
function and optimization interval differ from, for example, constraints,
since the user may specify zero, one or more of the latter.

One option for providing this kind of information is to introduce a built-
in class, call it Optimization, and require that all optimization classes
inherit from Optimization. Information about the cost function and op-
timization interval may then be given as modifications of components in
this built-in class:

optimization DIMinTime
extends Optimization(objective=cost(finalTime),
startTime=0,
finalTime(free=true,initialGuess=1));
Real cost;
DoubleIntegrator di(u(free=true,initialGuess=0.0));
equation
der(cost) = 1;
end DIMinTime;

Here, objective, startTime and finalTime are assumed to be components
located in Optimization, whereas cost is a variable which is looked up in
the scope of the optimization class itself. Notice also how the cost function,
cost, has been introduced, and that the finalTime attribute is specified
to be free in the optimization. This approach of inheriting from a built-in
class has been used previously, in the tool Mosilab [Nytsch-Geusen, 2007],
where the Modelica language is extended to support statecharts. In the
statechart extension, a new specialized class, state, is introduced, and
properties of a state class (for example whether the state is an initial
state) can be specified by inheriting from the built-in class State and
applying suitable modifications.

The main drawback of this approach is its lack of clarity. In particular,
it is not immediately clear that Optimization is a built-in class, and that
its contained elements represent intrinsic properties of the optimization

168

7.4 The Optimica Extension

class, rather than regular elements, as in the case of inheritance from
user or library classes.

To remedy this deficiency, the notion of class attributes is proposed.
This idea is not new, but has been discussed previously within the Mod-
elica community. A class attribute is an intrinsic element of a specialized
class, and may be modified in a class declaration without the need to ex-
plicitly extend from a built-in class. In the Optimica extension, four class
attributes are introduced for the specialized class optimization. These
are objective, which defines the cost function, startTime, which defines
the start of the optimization interval, finalTime, which defines the end of
the optimization interval, and static, which indicates whether the class
defines a static or dynamic optimization problem. The proposed syntax
for class attributes is shown in the following optimization class:

optimization DIMinTime (objective=cost(finalTime),
startTime=0,
finalTime(free=true,initialGuess=1))
Real cost;
DoubleIntegrator di(u(free=true,initialGuess=0.0));
equation
der(cost) = 1;
end DIMinTime;

The default value of the class attribute static is false, and accordingly,
it does not have to be set in this case. In essence, the keyword extends and
the reference to the built-in class have been eliminated, and the modifica-
tion construct is instead given directly after the name of the class itself.
The class attributes may be accessed and modified in the same way as if
they were inherited.

Constraints

Constraints are similar to equations, and in fact, a path equality con-
straint is equivalent to a Modelica equation. But in addition, inequality
constraints, as well as point equality and inequality constraints should
be supported. It is therefore natural to have a separation between equa-
tions and constraints. In Modelica, initial equations, equations, and al-
gorithms are specified in separate sections, within a class body. A rea-
sonable alternative for specifying constraints is therefore to introduce a
new kind of section, constraint. Constraint sections are only allowed in-
side an optimization class, and may contain equality, inequality as well
as point constraints. In the double integrator example, there are several
constraints. Apart from the constraints specifying bounds on the control
input u and the velocity v, there are also terminal constraints. The lat-
ter are conveniently expressed using the mechanism for accessing the

169

Chapter 7. Optimica

value of a variable at a particular time instant; di.x(finalTime)=1 and
di.v(finalTime)=0. In addition, bounds may have to be specified for the
finalTime class attribute. The resulting optimization formulation may
now be written:

optimization DIMinTime (objective=cost(finalTime),
startTime=0,
finalTime (free=true,initialGuess=1))

Real cost;

DoubleIntegrator di(u(free=true,initialGuess=0.0));
equation

der(cost) = 1;
constraint

finalTime>=0.5;

finalTime<=10;

di.x(finalTime)=1;

di.v(finalTime)=0;

di.v<=0.5;

di.uw=-1; di.u<=1;
end DIMinTime;

Annotations for Specification of the Transcription Scheme

The transcription scheme used to transform the infinite-dimensional dy-
namic optimization problem into a finite-dimensional approximate prob-
lem usually influences the properties of the numerical solution. Neverthe-
less, transcription information can be considered to be complimentary in-
formation, that is not part of the mathematical definition of the optimiza-
tion problem itself. Also, transcription information is closely related to par-
ticular numerical algorithms. It is therefore reasonable not to introduce
new language constructs, but rather new annotations for specification of
transcription schemes. This solution is also more flexible, which is impor-
tant in order easily accommodate transcription schemes corresponding to
algorithms other than the direct collocation method currently supported.
Following the guidelines for vendor-specific annotations in the speci-
fication of Modelica 3.0 [The Modelica Association, 2007a, p. 147], a hi-
erarchical annotation for supplying the information needed to specify a
direct collocation method based on interpolation polynomials has been in-
troduced. This annotation is defined by the following Modelica record:

record DirectCollocationInterpolationPolynomials
parameter Real mesh[:];
parameter Real collocationPoints[:];
parameter Real polynomialCoefficientsAlgebraic[:];
parameter Real polynomialCoefficientsDynamic[:];
end DirectCollocationInterpolationPolynomials;

170

7.5 The Optimica Compiler

The variable mesh contains the lengths of the collocation elements. The
number of elements is given implicitly by the length of the vector. The
practice of specifying the element lengths rather than the location of the
start times of the elements is common in direct collocation formulations.
The variable collocationPoints is used to specify the location of the col-
location points within a normalized element, i.e., the values in the vector
collocationPoints should be in the interval [0, 1]. As described in Chap-
ter 3, the degree of the polynomials used to approximate the dynamic
variables is usually one higher than the degree of the interpolation poly-
nomials for the algebraic variables. Therefore, the coefficients of the in-
terpolation polynomials used to approximate the dynamic and algebraic
variables are given separately.

A transcription scheme based on third order Lagrange polynomials and
Radau points is specified in Listing 7.2. In this example, the parameters
for specifying the transcription scheme are declared directly in the body of
the optimization class. A more convenient approach would be to organize
the parameters of this particular scheme, and others, into records. These
records, and in addition, functions for calculation of collocation points and
polynomial coefficients, could then be organized into a Modelica library,
which would enable easy access for users. A convenient method for in-
clusion of a transcription scheme in an optimization class would then
be to inherit from a library class containing both the parameters specify-
ing scheme, and the actual annotation statement. However, this method
is complicated by the fact that the semantics of how annotations are in-
herited is not clearly stated in the Modelica specification. In addition, it
would be desirable to enable modification of elements in annotations, in
order to increase the flexibility of annotations.

7.5 The Optimica Compiler

A prototype implementation of the JModelica compiler, that also supports
the Optimica extension has been developed. The extended compiler will
be referred to as the Optimica compiler in the following. In terms of the
front-end, the compiler supports a subset of Modelica, as described in
Chapter 4, and an early version of Optimica. The syntax of Optimica that
is supported by this compiler is different than the one presented in this
chapter, although the functionality is essentially the same. The new, im-
proved syntax and semantics that have been presented in this chapter,
were defined based on the comments and experiences from the users of
the very first version of Optimica. A new version of the Optimica compiler,
supporting the revised Optimica syntax is currently under development,
with the intention of replacing the initial prototype.

171

Chapter 7. Optimica

optimization DIMinTime (objective=cost(finalTime),
startTime=0,
finalTime(free=true,initialGuess=1))

Real cost;
DoubleIntegrator di(u(free=true,initialGuess=0.0));

parameter Integer N = 100;
parameter Real m[N] = ones(N)*(finalTime-startTime)/N;
parameter Real c_p[3] = {0.1550,
0.6449,
1.0000};
parameter Real p_c_a[3,3] = [2.4158, -3.9739, 1.5581;
-5.7491, 6.6406, -0.8914;
3.3333, -2.6667, 0.3333];
parameter Real p_c_d[4,4] = [-10, 18, -9, 1;
15.5808, -25.6296, 10.0488, O0;
-8.9141, 10.2963, -1.3821, 0;
3.3333, -2.6667, 0.3333, 0];
annotation(__Optimica(DirectCollocationInterpolationPolynomials (
mesh=m,
collocationPoints=c_p,
polynomialCoefficientsAlgebraic=p_c_a,
polynomialCoefficientsDynamic=p_c_d)));
equation
der(cost) = 1;
constraint
finalTime>=0.5;
finalTime<=10;
di.x(finalTime)=1;
di.v(finalTime)=0;
di.v<=0.5;
di.u>=-1; di.u<=1;
end DIMinTime;
Listing 7.2 The complete Optimica specification of the double integrator optimal
control problem.

The main functionality of the Optimica compiler (both the prototype
and the new version) is to translate Modelica/Optimica source code into
AMPL, see [Fourer et al., 2003], source code. In addition, the Optimica
compiler can read simulation data from file, in order to obtain an initial
guess for the optimization problem. The AMPL code may then be executed
in the AMPL tool, which renders the problem to be solved by a numerical
algorithm, such as IPOPT [Wichter and Biegler, 2006]. The result is then

172

7.5 The Optimica Compiler

Initial
guess

The
Optimica
Compiler

Optimization
result

Figure 7.1 The transformation from Modelica/Optimica code to optimization re-
sult.

written to file for further analysis or implementation. See Figure 7.1 for an
illustration of the transformation steps involved when using the Optimica
compiler and AMPL to solve a dynamic optimization problem.

Relating to Figure 4.1, extension of a compiler involves addition of func-
tionality at three levels. Firstly, the front-end of the compiler has to be
extended to accommodate the new syntactic and semantic constructs. Sec-
ondly, the canonical data structure representing the mathematical prob-
lem formulation has to be extended, in order to accommodate for the new
elements. Thirdly, if the target of the extension is a new algorithm, then
a corresponding back-end has to be developed. The major challenges lie
in the extension of the front-end and of the canonical data structures,
in particular since an important objective is to implement the extension
modularly.

The Optimica Compiler Front-end

The front-end of the new version of the Optimica compiler has been im-
plemented as a fully modularized extension of the JModelica compiler. As
in the case of the extension of the JModelica compiler to support some
constructs of the MetaModelica language, see Section 4.9, the implemen-
tation of the front-end extension can be organized into three parts. The
first part is concerned with extending the parser, so that the new syntac-
tic constructs are supported. In the case of Optimica, there are two new
syntactic constructs, namely the specialized class optimization, with the
associated class attribute modification clause, and the constraint section.

173

Chapter 7. Optimica

Productions corresponding to these constructs were encoded in the for-
mat supported by JastAdd’s parser preprocessor, and the resulting parser
supports both the subset of Modelica that is supported by the JModelica
compiler, and the Optimica extension.

The second part is concerned with addition of new AST classes, rep-
resenting the new constructs. Accordingly, AST classes corresponding to
the specialized class optimization, constraints and the new instant value
function were defined.

The third part, which is also the most challenging, consists of extend-
ing the functionality of the compiler front-end so that a flat representation
of the optimization problem corresponding to an Optimica description can
be obtained. Firstly, the name analysis framework must be extended. In
particular, support for class attributes should be implemented. In addi-
tion, the compiler should recognize the new attributes for the built-in type
Real. Secondly, expressions that are syntactically equivalent to function
calls should be classified as either being an ordinary function call, or a
call to the new instant value function, which is implicitly defined for vari-
able declarations. Thirdly, the flattening algorithm must be extended to
take class attributes and constraints into account.

These extensions are conveniently implemented in JastAdd as new at-
tributes, or new equations to attributes already defined in the JModelica
compiler. The new attributes and equation declarations are defined in
separate aspects, which are then included in the weaving procedure. The
classification of function calls was implemented using a strategy similar
to that used for classification of ambiguous names, see Section 5.2. Exten-
sion of the flattening algorithm is straightforward, and consists mainly
of adding new attributes to enable access to the constraints from the in-
stance AST.

Canonical Representation and API

The canonical data structure used in the JModelica is referred to as flat
Modelica. Also, the result of the flattening procedure in the JModelica
compiler is a model representation expressed in this format. Optimica,
however, supports additional elements, which must also be represented
by the canonical data structure. Therefore, an extension of flat Model-
ica, flat Optimica, has been defined. Like in the case of flat Modelica,
flat Optimica is defined as an abstract grammar and is represented in
the compiler by an AST. In essence, flat Optimica contains, apart from
variable declarations and equations, also constraints, the optimization in-
terval, the cost function, and transcription information. Flat Optimica also
provides an API for accessing the contained elements, which is useful for
code generation purposes.

174

7.6 Examples

Code Generation to AMPL

One of the main features of the Optimica compiler is that it performs
automatic transcription of continuous variables, using a direct colloca-
tion method, see Chapter 3. The user is thus relieved from the burden
of encoding the collocation equations, which is a tedious and error-prone
procedure. Whereas the prototype version of the Optimica compiler sup-
ported one particular collocation scheme, future versions will support the
annotation that was introduced above to specify the transcription method.

In order to solve the transcribed optimization problem by means of a
numerical algorithm, the Optimica compiler generates AMPL code, see
Chapter 3. The transcribed problem is purely static, and can therefore be
encoded using the constructs available in AMPL. The AMPL representa-
tion of the optimization problem can be viewed as an additional intermedi-
ate representation format. The purpose of using AMPL is twofold. Firstly,
AMPL provides an additional debugging level, that is very useful during
compiler development. In particular, the AMPL tool offers a shell, where
variables and constraints can be inspected. Secondly, the AMPL solver in-
terface provides solvers with sparsity information, as well as first and sec-
ond order derivatives. This information may be essential for performance
and convergence of a numerical optimization algorithm. However, develop-
ment of such an interface in the Optimica compiler requires a major cod-
ing effort, and is beyond the scope of this thesis. The numerical algorithm
IPOPT has been used to solve the non-linear program resulting from the
transcription procedure. For additional details on IPOPT, see Chapter 3.

Implementation Status

A front-end for the new, improved version of Optimica has been imple-
mented, as a modular extension of the JModelica compiler. Support for
all the suggested constructs in the Optimica extension have been imple-
mented, including class attributes, the new attributes for the built-in class
Real, the instant value function for variables and constraints. The com-
piler front-end produces as its output a flat representation of an Optimica
optimization problem. Future extensions include support for the annota-
tions dedicated to specification of the transcription scheme, and adaption
of the AMPL code generation back-end of the prototype compiler to the
new compiler version.

7.6 Examples

In Section 7.4, the syntax and semantics of Optimica were illustrated by
means of an optimal control problem. In this section, the features of Opti-

175

Chapter 7. Optimica

F o springDamper y
force slidinghdass1 slidinghass2 speedSensor
1
f Ll
— —

Figure 7.2 A Modelica model of a mechanical servo.

model Servo
Modelica.Mechanics.Translational.SlidingMass slidingMassl(m=ml);
Modelica.Mechanics.Translational.SlidingMass slidingMass2(m=m2);
Modelica.Mechanics.Translational.Force force;
Modelica.Blocks.Interfaces.RealInput F;
Modelica.Mechanics.Translational.SpringDamper
springDamper (c=c, d=d,s_rel(min=-2000)) ;
Modelica.Blocks.Interfaces.RealOutput vy;
parameter Real ml = 1;
parameter Real m2 = 1;
parameter Real d = 0.1;
parameter Real c¢ = 0.01;
Modelica.Mechanics.Translational.Sensors.SpeedSensor speedSensor;
equation
connect(F, force.f);
connect (springDamper.flange_b, slidingMass2.flange_a);
connect(slidingMassl.flange_b, springDamper.flange_a);
connect (force.flange_b, slidingMassl.flange_a);
connect (speedSensor.flange_a, slidingMass2.flange_b);
connect(y, speedSensor. v);
end Servo;

Listing 7.3 A Modelica model of a linear servo.

mica will be illustrated by additional examples. In particular, a parame-
ter optimization problem, a static optimization problem, and a multi-case
optimization problem will be formulated in Optimica. For the reason of
brevity, the annotations for specifying the transcription scheme have been
removed from the Optimica descriptions.

A Parameter Optimization Problem

In this section, parameter optimization of a mechanical servo model, de-
picted in Figure 7.2, is considered. The servo consists of two point masses
connected by a spring-damper component. The system is driven by a force

176

7.6 Examples

optimization ServoParameterOptimization (objective=cost,
startTime=0,
finalTime=100)
® Servo servo(ml(free=true,initialGuess=0.7),
@) slidingMass.s(start=s0));
® Modelica.Blocks.Sources.Sine sine(amplitude=1, freqHz=0.1);
@ parameter Real sO(free=true,initialGuess=0.1);
parameter Integer N = 1000;
parameter Real data_vals[N] = {...};
parameter Real data_times[N] = {...};
@ Real cost = sum((data_vals[i]-servo.y(data_times[i]))A2
for i in 1:N);
equation
® connect(sine.y, servo.F);
constraint
servo.ml1>=0.5;
servo.ml<=1.5;
s0>=-1;
s0<=1;
end ServoParameterOptimization;

Listing 7.4 An Optimica specification for a parameter optimization problem.

that is applied to the first mass, and the output of the servo model is the
velocity of the second mass. The Modelica code for the model, excluding
graphical annotations, is shown in Listing 7.3. The model is composed, es-
sentially, of components from Modelica.Mechanical.Translational, which
is part of the Modelica standard library.

In this example, the mass of the first point mass, servo.ml, is assumed
to be unknown. The objective is to find the particular value of servo.ml
that minimizes a cost function similar to (7.7). It is assumed that data
has been obtained from the process, and that the input during data ac-
quisition was a sinusoidal force profile. The corresponding optimization
problem is encoded in the Optimica description shown in Listing 7.4. In or-
der to mark the parameter servo.ml as a free optimization parameter, the
free attribute is set to true, @. In addition, an initial guess is specified.
The initial position of the second point mass is considered to be unknown.
Therefore, the start attribute of the variable servo.slidingMass2.s is set
equal to the parameter s0, which in turn is a free optimization variable,
@. The input of the servo component, servo, is connected to a sinusoidal
signal source, ®. The measurement data points, and the corresponding
sampling times, are stored in the arrays data_vals and data_times, re-
spectively. Based on this data, the cost function, cost, is defined as the

177

Chapter 7. Optimica

I-n . 1=7
\ \
Tank 3 Tank 4
G%V_IT T T Y i
Pump 1 Pump 2
» Tank 1 Tank 2 B Us
o 1

Figure 7.3 A schematic picture of the quadruple tank process

sum of the squared output errors at each sampling instant, @. Finally,
constraints that impose bounds on the optimization variables servo.ml
and s0 are introduced. Notice that these bounds are included mainly to
avoid large steps in the optimization algorithms, resulting in unrealisti-
cally small or large values. The complete flat Optimica description pro-
duced by the Optimica compiler is given in Appendix D.

Static Optimization of Operating Point for the Quadruple Tank

In this example, static set-point optimization of a quadruple tank process
is considered. The process consists of four interconnected tanks, and two
pumps, where the latter are used to control the levels in the tanks. The
process is depicted in Figure 7.3, and is described in detail in [Johansson,
1997]. A Modelica model for the process is shown in Listing 7.5 and a cor-
responding Optimica description for the optimization problem is shown in
Listing 7.6. The objective of this static optimization problem is to minimize
the criteria

quadTank.u[1]A2 + quadTank.u[2]A2
subject to the equality constraint
quadTank.x[1]=4

This corresponds to finding the operating point where the level of the
first tank is 4 cm, and where the squared sum of the inputs is minimized.
Accordingly, the static class attribute is set to true, @, and the array

178

7.6 Examples

model QuadTank

// Process parameters

parameter Real A1=28, A2=32, A3=28, A4=32;

parameter Real al=0.071, a2=0.057, a3=0.071, a4=0.057;

parameter Real kc=0.5;

parameter Real g=9.81;

parameter Real k1 nmp=3.14, k2_nmp=3.29;

parameter Real gl nmp=0.30, g2_nmp=0.30;

// Tank levels

Real x[4](start={1,1,1,1},
min={0.1,0.1,0.1,0.1},
max={20,20,20,20});

// Inputs
input Real u[2];
equation

der(x[1]) = -al/Alxsqrt(2=g*x[1]) + a3/Alxsqrt(2=g+x[3]) +
gl_nmpxk1l _nmp/Al=u[1l];

der(x[2]) = -a2/A2xsqrt(2=g*x[2]) + a4/A2xsqrt(2=g+x[4]) +
g2_nmpxk2_nmp/A2«ul[2];

der(x[3]) = -a3/A3xsqrt(2+g*x[3]) + (1-g2_nmp)=*k2_nmp/A3+*ul[2];

der(x[4]) = -a4/Adxsqrt(2+g*x[4]) + (1-gl_nmp)=kl _nmp/Adxul[l];

end QuadTank;
Listing 7.5 A quadruple tank model.

optimization QuadTankOptimization (objective=cost,
® static=true)
@ QuadTank quadTank(u(each free=true, initialGuess={1,1}));
Real cost = quadTank.u[l]A2+quadTank.u[2];
constraint
quadTank.u <= {10,10};
quadTank.u >= {0,0};
quadTank.x <= {20,20,20,20};
quadTank.x >= {0.2,0.2,0.2,0.2};
quadTank.x[1] = 4;
end QuadTankOptimization;

Listing 7.6 An Optimica specification for a static optimization problem

variable quadTank.u is marked as free in the optimization, @. In addition,
bounds for quadTank.u and quadTank.x are specified.

179

Chapter 7. Optimica

model DoubleTank

parameter Modelica.SIunits.Area A = 2.8e-3
"Cross section area of the tanks";

parameter Modelica.SIunits.Area a = 7e-6
"Cross section area of the holes";

parameter Real k(unit="mA3/s/V") = 2.7e-6

"Constant of proportionality for the pump";

parameter Real beta(unit="m/s/V") = k/A;

parameter Real gamma = a/A;

parameter Real g(unit="m/sA2") = 9.81;

Modelica.SIunits.Length hl(start=0.0682) "Level of upper tank";
Modelica.SIunits.Length h2(start=0.0682) "Level of lower tank";

Modelica.Blocks.Interfaces.RealInput u ;
Modelica.Blocks.Interfaces.RealOutput y=h2;

equation
der (hl) -gammaxsqrt(2+g«hl) + betaxu;
der(h2) = gamma*sqrt(2+g+hl) - gammaxsqrt(2xg+h2);

end DoubleTank;
Listing 7.7 A Modelica model of a double tank system.

Multi-Case Optimization — Tuning of a PID Controller

In this section, an example of a multi-case optimization problem will be
given. The particular problem is to find one set of PID-parameters, that
gives acceptable performance in a wide operating range, when applied to
a non-linear double tank system. The process consists two water tanks,
where the first tank is mounted above the second tank. Water is then
puring freely from the upper tank to the lower, and a pump is used to
control the water flow to the upper tank. The input of the process is the
voltage fed to the pump, and the output is the level of the lower tank. The
objective of the PID control system is to keep the level of the lower tank
at a specified reference value, while rejecting input load disturbances. A
Modelica model of the process is shown in Listing 7.7.

In order to evaluate the closed loop performance, a Modelica model
implementing the control system, DoubleTankCL, was developed, see Fig-
ure 7.4. Apart from the double tank system and the PID controller, the
model also contains an input for the reference value and a disturbance in-
put. In the Optimica description, see Listing 7.8, three different instances
of DoubleTankCL, corresponding to different stationary operating points,

180

7.7 Generalizations

Constant

k=3

ref

l feedback }/

Ti=0.5

feedback1

Constanti

k=0.0682

Figure 74 A feedback loop consisting of a double tank system and a PID con-
troller.

are created. These operating points correspond to the input pump volt-
ages 1V, 3V, and 5 V, which result in lower tank levels of 0.007583 m,
0.0682 m, and 0.1896 m, respectively. Notice that the same PID parame-
ters are used in all instances of DoubleTankCL. In the scenario for which
the performance is evaluated, a positive reference step of 0.01 m is applied
at t = 30 s, and a unit input disturbance is applied at ¢ = 1000 s. The
objective of the optimization problem is then to minimize the sum of the
integrated squared errors in the three operating cases. Also, lower bounds
for the PID parameters are specified in Listing 7.8.

7.7 Generalizations

While the Optimica extension is dedicated to dynamic optimization of
Modelica models, the proposed extension contains two constructs that are
of interest also in a more general context. These constructs are the con-
straint section and the notion of class attributes. In this section, these

181

Chapter 7. Optimica

optimization DoubleTankOptimization (objective=cost(finalTime),
startTime=0,
finalTime=2000)

parameter Real K(free=true, initialGuess=29);
parameter Real Ti(free=true, initialGuess=24);
parameter Real Td(free=true, initialGuess=60);

Real cost(start=0);

DoubleTankCL doubleTankCL_1(Constant(k=1),
Constantl1(k=0.007583),
doubleTank (hl(start=0.007583),

h2(start=0.007583)),
pid(k=K,Ti=Ti,Td=Td));

DoubleTankCL doubleTankCL_3(pid(k=K,Ti=Ti,Td=Td));

DoubleTankCL doubleTankCL_5(Constant(k=5),
Constantl(k=0.1896),
doubleTank (hl(start=0.1896),

h2(start=0.1896)),
pid(k=K,Ti=Ti,Td=Td));

Modelica.Blocks.Sources.Step refStep(offset=0,
startTime=30,
height=0.01);

Modelica.Blocks.Sources.Step dStep(startTime=1000,

height=1);

equation
connect (dStep.y, doubleTankCL_1.d);
connect(refStep.y, doubleTankCL_1.ref);
connect (dStep.y, doubleTankCL_3.d);
connect(refStep.y, doubleTankCL_3.ref);
connect (dStep.y, doubleTankCL_5.d);
connect(refStep.y, doubleTankCL_5.ref);
der(cost) = (refStep.y-doubleTankCL_1.y)A2 +
(refStep.y-doubleTankCL_3.y)A2 +
(refStep.y-doubleTankCL_5.y)A2;
constraint
K>=0;
Ti>=0;
Td>=0;
end DoubleTankOptimization;

Listing 7.8 An Optimica description for a multi-case optimization problem.

182

7.8 Summary and Conclusions
constructs will be discussed from a more general point of view.

Constraints for Specifying Model Validity Regions

Most models have a limited region of validity. For example, approximate
linear models derived by linearization of non-linear models are typically
valid in a vicinity of the linearization point. Other examples are physi-
cal quantities that are inherently positive. Regions of validity are often
defined as subsets of the variable space of a model. Currently, Modelica
supports specification of validity regions by means of the min and max at-
tributes of the built-in type Real. A tool may then use this information
to check that all variables remain within the specified bounds during ini-
tialization and simulation. In some cases, however, it may be useful to be
able to specify more general regions of validity, for example ellipses. The
constraint section, which was introduced above, then offers convenient
means to specify inequality relations, that can be interpreted as regions
of validity.

Class Attributes

The notion of a class attribute is a generally applicable construct, that is
not restricted to dynamic optimization problems. It has been noted that a
similar mechanism has been introduced in the statechart extension sup-
ported by Mosilab, but with a different syntax. The same need may arise
also in other potential extensions. Consider, for example, an extension of
Modelica to also support embedded systems. Such an extension may con-
tain a specialized class, say task, which corresponds to a task, or process,
executing on a multi-threaded embedded processor. A task is typically as-
sociated with a set of attributes, such as e.g., priority, input latency and
dead-line. Also in this case, class attributes would provide a convenient
mean to supply this information.

7.8 Summary and Conclusions

In this chapter an extension of the Modelica language, Optimica, that en-
ables high-level formulation of dynamic optimization problems, has been
presented. The Optimica extension enables the user to specify important
elements of a dynamic optimization problems such as cost functions, con-
straints and optimization interval. The dynamic model, upon which the
dynamic optimization problem is based, is expressed using standard Mod-
elica. Optimica also supports an annotation that enables the user to spec-
ify the properties of a transcription method, based on direct collocation.
Because of these properties, Optimica supports formulation of dynamic

183

Chapter 7. Optimica

optimization problems, using high-level constructs, both at the mathe-
matical level and at the numerical transcription level.

A prototype implementation of the Optimica compiler has been used
in the work on start-up optimization of a plate reactor (see Chapter 9),
in two master’s thesis projects (see [Danielsson, 2007] and [Hultgren and
Jonasson, 2007]) and in the PhD course “Optimization-Based Methods and
Tools in Control”, that was given at the Department of Automatic Con-
trol, Lund University in September 2007. A new version of the Optimica
compiler, supporting the syntax and semantics presented in this chapter,
is currently under development. The front-end of the new compiler is fully
functional, and it remains to implement support for the transcription an-
notation, and to adapt the AMPL code generation back-end used in the
prototype compiler.

An important objective of the JModelica compiler is to offer a modularly
extensible Modelica compiler. In this respect, the experiences and results
from developing the Optimica extension are very promising. In particu-
lar, the coding effort needed to implement the extension of the compiler
front-end, including extension of the name analysis framework and the
flattening algorithm, was very moderate.

184

Case Studies m

3

DryLib

8.1 Introduction

The topic of this chapter is modeling, model reduction, parameter opti-
mization and control of a paper machine dryer section. The dryer section
is the last part of the paper machine and consists of a large number of
rotating steam heated cast iron cylinders. The moist paper is led around
these cylinders and the latent heat of vaporization in the steam is used to
evaporate the water from the web. When the steam releases its thermal
energy it condenses into water which is drawn off by suction with a siphon
and fed back to the boiler house. The cylinders are divided into separate
dryer groups where the steam pressure can be individually controlled in
each group. By adjusting the steam pressure in the dryer groups, and
thereby the heat flow to the paper, the moisture in the paper web is con-
trolled. The moisture ratio in the web is reduced from 1-1.5 kg water/kg
dry substance when entering the dryer section to a final product of 0.03—
0.1, i.e., a significant amount of water is removed in the dryer section.

To support and transport the paper web through the dryer section,
dryer fabrics are used. The dryer fabric is also used to press the web onto
the cylinders to provide good thermal contact between the two surfaces.

The dryer section is enclosed inside a dryer hood. The main purposes
of the hood are to create a controlled environment for the drying process,
improve energy utilization, and also to establish good working conditions
in the machine room. The exhaust air removes the evaporated water from
the paper web while preheated dry air is added to the hood by the supply
air.

Moisture is one of the most important quality parameters of the final
paper product. It is essential to keep this property well regulated, both
at steady-state and at state-transitions. A good model of the dynamics of

187

Chapter 8. DryLib

drying is therefore vital for good moisture control. Based on the work in
[Slatteke, 2006], a Modelica library, DryLib, has been developed. DryLib
implements the physical phenomena involved in the drying process, as well
as convenient components and connectors which enable rapid development
of dryer section models. An important feature of DryLib is its ability to
express models which are scalable, in the sense that the complexity of the
models can be easily changed. This feature is quite useful, since the need
for granularity depends on the application—a high fidelity model may
be suitable for simulation, whereas a course model capturing the main
behavior may be appropriate for control design.

Three contributions are given in this chapter. Firstly, the Modelica
library DryLib is presented. Secondly, parameter optimization, model re-
duction and an optimization based control scheme (Non-linear Model Pre-
dictive Control (NMPC)), are treated. Some of these topics have a general
character, while others are dealing specifically with dryer section issues.
Thirdly, the applications of the chapter serves as examples of the wide
range of relevant optimization problems that naturally follow the avail-
ability of high-fidelity models.

The work presented in this chapter has been done without the use of
Optimica, and the Optimica compiler, which were presented in Chapter 7.
Certainly, the Optimica compiler would have been very useful for solving
the optimization problems formulated and solved in this chapter. In partic-
ular, the same Modelica model as was used for simulation and parameter
optimization could then have been reused in the context of the model re-
duction problem. The main reason why the Optimica compiler was not
used to solve this problem is that it was not developed at the time when
this work was done. It should be noticed, however, that the current version
of the Optimica compiler is not immediately applicable to this problem,
since the model contains constructs, notably dynamic name lookup (in-
ner/outer constructs) that are currently not supported. The optimization
problems presented and solved in this chapter do, however, serve as an
excellent motivation for the development of Optimica. In particular, an ex-
tensive coding effort was required to tailor the particular problems to the
algorithms that were used to solve the problems numerically. The avail-
ability of a dedicated high-level language for dynamic optimization, and
supporting tools, would drastically have reduced this effort.

This chapter is organized as follows. In Section 8.2 the physical model
upon which DryLib is based, is presented. Section 8.3 deals with the struc-
ture and implementational details of DryLib. The Sections 8.4, 8.5 and
8.6 treat parameter optimization, model reduction and moisture control
by means of non-linear MPC. In Section 8.7, the software used to solve the
optimization problems presented in the paper is described. The chapter
ends with conclusions and future work in Section 8.8.

188

8.2 Physical Modeling

8.2 Physical Modeling

Modeling of the Dryer Section

Mathematical modeling of cylinder drying started with the pioneer work
[Nissan and Kaye, 1955]. An extensive review of drying models up to
1980 with some 130 references is given in [McConnell, 1980]. Many of
these models have different objectives and are of different type. There
are both static and dynamic models, and a majority of the models are
first principles models but some describe black-box modeling of the dryer
section. One mutual characteristic of the models is that they often focus
on modeling the paper sheet and neglect the steam system. Consequently
it is assumed that the steam pressure in the cylinders is a manipulated
variable or that a collected data series of the steam pressures is used as
an input to the model. This makes the model unsuitable for simulation of
feedback control. The model described in this work includes the dynamics
of the steam system and the inflow of steam is controlled by a steam valve.
It is therefore possible to mimic the entire moisture loop of the feedback
system in the paper machine.

The model library that is developed and used in this chapter is built
upon physical relations in terms of mass and energy balances, in com-
bination with constitutive equations for the mass and heat transfer. The
objective is to obtain a non-linear model that captures the key dynamical
properties for a wide operating range. The model formulation used here
is developed in [Slitteke, 2006], which in turn is based on [Wilhelmsson,
1995] and [Slitteke and Astrém, 2005]. The model for the paper web is
based on [Wilhelmsson, 1995] whereas the model for the cylinder, and
steam system is taken from [Slitteke and Astrom, 2005]. The model de-
scription given here is mainly given for completeness, but there are also
some minor additions as compared to the description given in [Slitteke,
2006].

While the physical behavior of the process is formulated using partial
differential equations (PDE:s), numerical simulation usually require the
PDE:s to be discretized in the spatial dimension(s). In this work, the pa-
per process is discretized by partitioning the process into control volumes
where a mass and energy balance are defined for each volume. These con-
trol volumes are then put together so that the outflow of one becomes the
inflow of the next. The precision of the model then depends on the size
of the control volumes, where a finer discretization grid gives improved
accuracy, but also increased computational complexity. In the models de-
veloped in in [Wilhelmsson, 1995] and [Karlsson, 2005], the paper web
is discretised both in the machine direction and in the z-direction, using

189

Chapter 8. DryLib

Paper weby,

Steam/ Condensate’ [
Cylinder shell

Figure 8.1 A piece of the cross-section of a drying cylinder, showing the steady-
state temperature profile and energy flows.

small elements. In the model used here, a courser discretization is used,
where the paper web is discretized only in the machine direction. The
length of a control volume corresponds here to the length of a free draw
or the length of a paper web section in contact with a cylinder. While this
discretization scheme offers decreased accuracy as compared to those used
in [Wilhelmsson, 1995] and [Karlsson, 2005], it has the distinct advantage
of significantly decreased simulation time.

In order to increase the clarity of the presentation, the indices iden-
tifying each individual control volume have been dropped. In Figures 8.2
and 8.3, however, the indices have been included to emphasize the discrete
nature of the paper process model.

The Steam and Cylinder Process

Let g;s [kg/s] be the mass flow rate of steam into the cylinder, ¢, [kg/s] the
condensation rate, q;; [kg/s] the blow through steam, and g, [kg/s] the
siphon flow rate. Also, let V; [m3] and V,, [m3] be the volumes of steam
and water, respectively, in the cylinder, and let p; [kg/m?®] and p,, [kg/m3]
be the respective densities. The mass balances for water and steam are
then
d V) —

a7 PsVs) = s — ac — ane
d

a(pwVw) =qc—Qquw

(8.1)

190

8.2 Physical Modeling

The energy balances for steam, water and metal are given by

d
a(psusvs) = (qs - th)hs - qchs

d
E(pwuwvw) = QChs - Qth - Qm (82)

d
a(me’me) = Qm - Qp

where @,, [W] is the power supplied from the water to the metal, @, [W]
is the power supplied from the metal to the paper, ks [J/kg] is the steam
enthalpy, A, [J/kg] is the water enthalpy, m [kg] the mass of the cylin-
der shell, C,,, [J/(kgK)] the specific heat capacity of the shell, T;, [K]
the mean temperature of the metal, and u; [J/kg] and u,, [J/kg] are the
specific internal energies of steam and water. From the thermodynamic
definition of specific enthalpy, we get

hs =ugs + pﬁ
: (8.3)
hy = uy + ﬁ.

w

where p [Pa] is the steam cylinder pressure. The steam and water volumes
add up to the total cylinder volume,

V=V,+V, (8.4)
The energy flow to the metal is given by the heat transfer equation
Qm = ascAcyl(Ts - Tm) (85)

where ;. [W/(m?K)] is the heat transfer coefficient from the steam-
condensate interface to the centre of the cylinder shell, A.,; [m?] is the
inner cylinder area, and Ts [K] the steam temperature. Experiments have
shown that o, depends on both condensate thickness, machine speed,
and the number of spoiler bars [Pulkowski and Wedel, 1988]. However,
the condensate has a turbulent behavior and the heat transfer coefficient
has proven to be difficult to model. Typical values range between 1000
and 4000 W/(m2 K). The power flow to the paper is

Qp = acpAcyln(Tm - Tp) (8.6)

where T, [K] is the paper temperature, o, [W/(m?K)] the heat transfer
coefficient from the cylinder shell to the paper, and 7 [] is the fraction

191

Chapter 8. DryLib

of dryer surface covered by the paper web. Figure 8.1 illustrates the heat
flows in the steam and cylinder model. An empirical model for «., has
been developed in [Wilhelmsson, 1995] where a linear relation with mois-
ture ratio in the paper web, u! [kg moisture/kg dry solids] is proposed.
The relation is given by

Oep(U) = Cepo + Ceprt (8.7

where &,y varies between 200-500 W/(m?K) and a.,. has typical values
in the range of 900-1200 W/(m?K). It is well known that o, depends on
other things, e.g. the web tension, and surface smoothness of both paper
and cylinder, but these phenomena are omitted here. The energy flow from
the part of the cylinder not covered by paper due to convection or radiation
to ambient air has been reported to represent only 1-2% of the total energy
flow and is therefore neglected, see [Wilhelmsson, 1995]. Since the steam
flow to the cylinder cannot be manipulated directly, a valve model is also
needed.
From [Thomas, 1999] we have

qs = G fy (xv) \% (psh —P)Ps, (8'8)

where C, [m?] is the valve conductance, x, is the position of the valve
stem and the function f, is the valve characteristics called valve trim.
The valve stem varies from 0 (minimum valve opening) to 1 (maximum
valve opening). The supply pressure at the steam header is py,. We use
equal percentage trim, since it is the most common characteristic in the
process industry [Hégglund, 1991]. This assumption gives

fo(x,) = R%~1, (8.9)

where R, is a constant known as the "rangeability”" since it is the ratio
between the maximum and minimum valve opening.

For simplicity, all steam within the cylinder cavity is assumed to be
homogeneous, with the same pressure and temperature. We also assume
that the steam in the cylinder is saturated. This means that the enthalpy,
density, and temperature are functions of the pressure only. Fitting poly-
nomials to the tabulated values for saturated steam in [Schmidt, 1969],

IThe symbol « is used to denote moisture ratio in this chapter, but is also used to denote
control inputs elsewhere in this thesis.

192

8.2 Physical Modeling
gives

T, = 0.1723(log p)® — 3.388(log p)® + 37.71log p + 124.5
hs = (—0.07402(log p)* + 2.887(log p)?
— 39.58(log p)? + 260 log p + 1824) x 10°
hy = (0.8842(log p)® — 18.77(log p)® + 2001log p — 748.5) x 103
ps = (0.005048p + 64.26) x 1073
Pw = —0.3136(log p)® + 6.792(log p)? — 52.43 log p + 1141

(8.10)

The Paper Web Process

The water and fiber content of the paper web are modeled by mass bal-
ances, whereas the temperature of the web is modeled by an energy bal-
ance. Starting with the mass balance of water, an expression defining the
evaporation rate (condensation rate) between the paper surface and the
surrounding air is needed. From [Wilhelmsson, 1995] we get the Stefan

equation
Pt KaM, <ptot — DPv,a)
Qevap = log ,
evap Rng Dtot — pv,p

(8.11)

where gevqp [kg/m?s] is the evaporation rate, K [m/s] is the mass transfer
coefficient, M,, [kg/mole| is the molecular weight of water, p;,; [Pa] the
total pressure of the air, p,, [Pa] the partial pressure for water vapor
in the air, p, , [Pa] the partial pressure for the water vapor at the paper
surface, R, [J/mole-K] the gas constant, and T}, [K] the paper temperature.
The partial pressure p, , is given by the moisture content of air, x [kg water
vapor/kg dry air|, and the total pressure, [Karlsson, 2000]

Duva Dtot- (8.12)

_ x
- x+0.62
The vapor partial pressure at the paper surface is given by

DPo,p = @Pvo (8.13)

where ¢ is the sorption isotherm, and p,o [Pa] is the partial vapor pressure
for free water, and is given by Antoine’s equation

(10.127— 7250)

Pvo = 10 (814)

As long as capillary transport can bring new water to the paper surface,

the vapor partial pressure at the paper surface is equal to the partial
pressure for free water. When the paper becomes dryer a correction factor

193

Chapter 8. DryLib

called sorption isotherm, ¢, is invoked which has a value between zero
and one. In [Pettersson and Stenstréom, 2000] an investigation of some
sorption isotherms found in the literature, is given. Many of those give a
heat of sorption that goes to infinity as u goes to zero. This is physically
unrealistic since the bond energy between the last fraction of water and
a cellulose fiber must be finite. From [Heikkild, 1993], a finite heat of
sorption at the origin which matches the hydrogen bond energy between
water-fiber is given and is therefore found to be most appropriate. The
sorption isotherm of a paper web depends on its composition and temper-
ature. It is not very well investigated when compared to other materials,
[Pettersson and Stenstrom, 2000], but [Heikkila, 1993] gives an empirical
expression for paper pulp,

@ =1 — exp(—47.58u'¥"" — 0.10085(T), — 273.15)u'0%%?) (8.15)

Now, let v, [m/s] be the speed of the paper web, d, [m] the width of the
paper web, A,, [m?] the area of the dryer surface covered by paper, and
g |kg/m?| the dry basis weight. Notice that A,, ~ An assuming that the
thickness of the cylinder is small. Then the mass balance of moisture for
a paper sheet in contact with a cylinder can be written

%(uQAxy) = dyvxginuin - Axyqevap - dyvxgu- (8-16)
A similar mass balance for moisture in the free draws can be derived from
Figure 8.2, which shows a schematic picture of the mass flows in a paper
sheet. Analogously, the mass balance for fiber in the paper web is given
by

d

E(gAxy) = dyvxgin - dyvxg- (817)

To model the energy balance, introduce

Cp,fiber + ucp,w

Cop = Tt (8.18)
where C,,, [J/kgK], C, river [J/kgK], and C,,, [J/kg-K] are the specific
heat capacity of paper, fiber and water, respectively. As we can see, C,
is a weighted sum of the heat capacities of the parts. From [Wilhelms-
son, 1995] we have C, fiper = 1256 J/(kgK). Also, let T, be the paper
temperature and AH be the amount of energy needed to evaporate the
water. Analogously to the discussion about the mass balance, if the web
is wet enough this energy is equal to the latent heat of vaporization for
free water. When the paper becomes dryer, however, an extra amount of

194

8.2 Physical Modeling

i—-1 i
AL qevap A yqevap

@ @ Cylinder shell
- dyvxgi—Zui—Z d vxgi—l i—1 dyvxgiui N
dyvxgifz Paper i — d vxg‘ 1 Paper i dyvxgi Paper i
Cylinder shell @ @

i i+1,i+1
A yqeuap A qevap

Figure 8.2 The mass transport for water and fiber in the paper web. The shaded
areas represent cylinder walls. When the paper is in the transition between two
cylinders (the free draw), evaporation occurs at both paper surfaces.

energy AH; (the heat of sorption) is necessary besides the latent heat of
vaporization for free water. The heat of sorption can be derived from the
sorption isotherm by thermodynamic theory and this relation is known as
the law of Clausius-Clapeyron

R, (d(Ing)
AHS=—— (d(l/T)) (8.19)

By applying this relation to (8.15), we obtain

AH, = 0.10085u""%T>R

v Mw(p (8.20)

The amount of energy required to evaporate water from the surface of the
web is then given by
AH =AH,,, + AH; (8.21)

where H,,, is the latent heat of vaporization for water, equal to 2260
kJ/kg (at atmospheric pressure). Furthermore, let the energy transport
due to convection between the paper surface and the air be

Qconv = apany(Tp - Ta) (822)

where o,, [W/(m?K)| is the heat transfer coefficient from paper to air
and T, [K] the ambient air temperature. Since water is an incompressible

195

Chapter 8. DryLib

Ai;lqéi‘llp(Aleqp 1+ AHY) AL Ghyap(AHuap + AH]
o AN T, = Ta) +0,, ALy (T, — Ta) Cylinder shell

i i T

dyvxg=2(1+ui=2)Ch 2 T2 dyvxg L (1+uim)i T dyvxgt (1+u))Ch ,Th
Paperi—1 Paper i Paperi+1
Q! J J

P
Optinder shell [41,0.,,(AHuoy + AHL) AL (Mo, + A7)
A (Ty = To) +eg AGNT ~ T,)

Figure 8.3 The energy balance of the paper web. The shaded areas represent
cylinder walls. When the paper is in the transition between two cylinders (the free
draw), energy flow to ambient air occurs at both paper surfaces.

medium, there is no pressure volume work on the surroundings, and we
write the energy balance as a change in enthalpy. The energy balance of
the paper web in contact with a cylinder is thus modeled as

d

779+ 1Ay G pT,) = dyvagin(L + tin) CopinTpin
— AvyQevap(AHvap + AH) — QpaAsy(Tp — To) (8.23)
—dyg(1+u)Co, Ty + Qp

The energy balance for the free draws is similar, an can be formulated
using the schematic illustration of energy flows shown in Figure 8.3.

8.3 DryLib

DryLib is implemented in Modelica, see Chapter 2. The objective of build-
ing the Modelica library DryLib has been to create a user friendly and
extensible platform for modeling of paper machine dryer sections. In par-
ticular, the aim has been to design the library so that, at the user level,
the appropriate level of model detail can be easily selected. The current
implementation of DryLib contains a few examples of components where
the level of detail can be specified by the user. More importantly, the li-
brary classes are designed to enable advanced users to add new behavior

196

8.3 DryLib

to key components in order to extend the functionality of the library. An
important concept in the design process has been that of model scalability,
which means that the granularity of the model behavior should be easy
to change, without the need to re-build the model.

Hierarchical Structuring

Having formulated a mathematical model for the paper machine dryer
section, as presented in Section 8.2, the issues of structuring the equa-
tions into Modelica classes, and definition of interface classes (connectors)
need attention. A paper machine dryer section model can be assembled
using very few basic component types. In essence, there are only two fun-
damental entities, namely a steam heated cylinder and a sheet of paper.
These two component types may then be combined, in large numbers, into
a complete dryer section model. However, it is convenient to introduce ad-
ditional hierarchical levels. As discussed above, the cylinders of a typical
dryer section are organized into steam groups, in which a number of cylin-
ders are operated at the same pressure. The introduction of steam groups
into the library provides a convenient hierarchical level for the user, since
many decisions regarding e.g. operating points and control design and
evaluation are made at the steam group level. For basic usage of DryLib,
it is also sufficient to utilize only classes defined at the steam group level
in order to create a fully working dryer section model.

In order to increase the flexibility of the library, the boundary con-
ditions of the physical entities have been factored out and modeled as
separate classes. As an instructive example we consider a paper sheet,
where the boundary conditions of the surfaces defining the sheet depend
on the environment. For example, different boundary conditions are im-
posed on the surface if the paper is in contact with the air or a cylinder
shell. The key to building a flexible Modelica library using this principle
of separation is the design of generic connector classes. This topic will be
discussed in detail below.

From a user’s perspective, DryLib is intended to enable easy mod-
eling of a dryer section. However, the user should remain in control of
the implementational details of key components, e.g. paper sheets and
cylinders. Also, advanced users should have the possibility to introduce
new behavior of existing components. Two key features of Modelica have
been used to satisfy these requirements. In the first case, parametrized
classes (replaceable/redeclare) has been used to propagate type infor-
mation downwards in the component hierarchy from the main user level
(which is the steam group level) to lower level components. This strat-
egy enables the user to easily select the appropriate level of detail for
e.g. the cylinder dynamics. In the second case, inheritance has been used
in order to simplify introduction of new component behavior. For the ba-

197

Chapter 8. DryLib

sic components such as cylinders and paper sheets, generic base classes
have been introduced, which in turn serve as super classes for particular
implementations. DryLib currently provides a few alternative implemen-
tations for key components, and additional behavior is easily added using
the pre-defined base classes.

Connectors and variable bindings The interface structure in DryLib
is based on three connector classes. While the connectors for heat flow
and mass flow (for connecting components with steam flow) are straight
forward, the connector class for a paper surface deserves to be discussed.
The paper web is modeled by separate mass balances for water and fiber,
and an energy balance, as described above. Natural flow variables are
thus mass flow of water and fiber, q,, [kg/s| and g [kg/s|, and energy flow
Q@ [W]. As for the potential variables, there are several feasible choices.
However, since DryLib is likely to be used by domain experts in the field
of paper drying, it was decided to use the standard variables within this
domain. The natural choices are then moisture ratio, u [kg water/kg dry
substance], dry basis weight, g [kg/m?| and temperature T [°C].

A particular feature of Modelica that has been used to simplify the
propagation of parameters and variables between components in DryLib
is dynamic name look-up in the instance hierarchy (inner/outer). For
example, the machine speed is used in various components, but is common
for the entire dryer section. Implementation using inner/outer constructs
is thus convenient. Examples of variables that may be assumed to be
shared by the components of a steam group are ambient temperature and
air moisture, which are also implemented using inner/outer.

Cylinder Models The cylinder base class CylinderBase,

which is partial, contains mainly connector components

and serves as a unifying class for particular implemen-

tations of dynamic behavior. The cylinder base class has

two mass flow connectors corresponding to steam inlet and
outlet, and one heat flow connector. Currently, DryLib contains two im-
plementations of cylinder dynamics. The first implementation is based
on Equations (8.1)-(8.5) and (8.10), whereas the second implementation
is based on the simplified linear dynamics derived in [Slétteke, 2006],
Chapter 4.

Paper Models The paper web base class contains essen-
tially four paper connectors corresponding to the cross sec-
tion areas and the upper and lower surfaces. This design enables sep-
aration of the actual paper web behavior, and the physical phenomena
defined by the boundary conditions of the paper. The design also adds
to the flexibility of the library, enabling, for example, easy extension to

198

8.3 DryLib

modeling of multi-ply paper drying. There are two particular implemen-
tations of paper web behavior. In the first implementation, the dynamics
is included, whereas in the second implementation the balance equations
are given as algebraic relations. The latter case is motivated by the fact
that the time constants of the paper web is small compared to the cylinder
dynamics. Neglecting the fast dynamics of the paper may be attractive for
applications where it is important to minimize the number of dynamical
states.

{ Interfaces A key component is the connection of the cross

section areas of two paper sheets. It is important to note
that the single mechanism that drives the mass transport in the machine
direction is the mechanical transportation of the paper, defined by v,.
Diffusion due to moisture gradients is neglectable given the high veloc-
ity of the paper through the dryer section, and is therefore not modeled.
As a consequence, the mass and energy flows through the cross section
area cannot be determined locally (compare e.g. mass transport driven by
pressure gradients), but relies solely on the machine speed v,. Using these
arguments, implementation of the PaperPaperInterface class is straight
forward and involves only encoding of appropriate terms of the right hand
sides of Equations (8.16), (8.17) and (8.23).

The interface between a steam cylinder and a paper surface
is modeled by the class CylinderPaperInterface, which has
one heat flow connector and one paper connector. The be-
havior of the class is defined by Equation (8.6), which im-
plies that energy transport takes place but not mass trans-
port.

Evaporation Much of the modeling effort in Section 8.2 was devoted
to describing evaporation of water from the paper surface.
This phenomena is encapsulated in the class Evaporation,
which contains the associated equations ((8.11)-(8.15) and
(8.20)-(8.22)) defining the mass and energy flows through
the paper surface.

Steam group models The classes described above have the character
of specifying physical behavior. We shall now turn our attention to classes
which are mainly used as structuring entities in the sense that they intro-
duce new hierarchical levels, and that they contain instances of behavior
classes. Basic usage of DryLib may involve only classes introduced at this
level.

199

Chapter 8. DryLib

FirstOrder1

l:\

Figure 8.4 The component diagram for CylinderUnit.

In order to efficiently explore the strong repetitive charac-

/ A\ ter ofa typical dryer section, the class CylinderUnit was

introduced. As can be seen in Figure 8.4, this class com-

bines a steam cylinder and a paper sheet which is attached

to an evaporation component. While different cylinders may

have different physical parameters, the structure of CylinderUnit is valid

in most cases. A difficulty when modeling a steam cylinder is to determine

the behavior governing the blow through steam and condensate flows. In

[Slatteke, 2006], a simplified model which relates the input mass flow and

the output mass flow by a first order system is used. Evaluation by sim-

ulation has shown that this model for the cylinder outlet gives acceptable

results, and also that the choice of time constant for the first order system
is not critical.

As noted above, a steam group is an important entity of

a dryer section. In order to obtain increased flexibility, a

steam group in DryLib is modeled by two classes—one

for the actual cylinders and one for the associated con-
trol system. The class CylinderArray contains an arbitrary number of
CylinderUnit components, and provides a convenient way to create large
cylinder groups.

200

8.3 DryLib

The actual control system, typically consisting of a valve,
a pressure sensor and a PID controller, is encapsulated in
the class SteamGroup, which also contains a CylinderArray,
component representing the actual cylinders and the pa-
per sheet. The SteamGroup class has four connectors corre-
sponding to incoming and outgoing paper, the steam header and an input
signal representing the reference value of the pressure controller.

A

Sources and sinks Apart from the classes presented above, DryLib
also contains classes which are used to drive a dryer section model, re-
ferred to as sources and sinks.

(0] o (0} In a paper plant, there are several process steps preceding
O the dryer section. In particular, the wet end, consisting of
07 the wire part and the press, is also considered to be part
® of the paper machine. Since these components are not in-

0 "0 cluded in DryLib, it is necessary to introduce a class which

generates an output corresponding to the wet end. This mechanism is en-
capsulated in the class PaperSource. This class is equipped with a paper
connector and simulates the incoming paper sheet given specifications for
water and fiber mass flow and paper temperature.

I Since the dryer section is the last part of the paper ma-
/. chine, the ending interface is straight forward and consists
® ||/ mainly of a paper connector which interfaces the last cylin-
.~ der group of a dryer section. In addition, there is a version

of the PaperSink class which offers outputs corresponding

to output temperature, output moisture and output dry basis weight.

PM7, Husum, Sweden

To demonstrate the capabilities of DryLib, a dryer section model corre-
sponding to that of PM7 located at the M-real mill, Husum, Sweden, has
been developed. The PM7 paper machine is a multi-cylinder machine pro-
ducing copy paper. The dryer section of the machine is divided into a
pre-dryer and an after dryer section with the surface sizing in the mid-
dle. The objective of the after-dryer section is only to dry the mixture
added by the surface sizing and it cannot take care of moisture problems
from the pre-dryer section. Only the pre-dryer is modeled here. The PM7
drying cylinders are divided into six groups, consisting of one, two, two,
three, ten and twelve cylinders respectively. For a detailed description of
the plant, see [Ekvall, 2004].

In Figure 8.5, the top level of the PM7 dryer section model is shown,
including six steam groups, a paper source, a paper sink, a mass flow
source representing the steam header and a set point distribution for

201

Chapter 8. DryLib

]]]]] 7
L

Figure 8.5 The top level of a complete dryer section model.

calculation of pressure set points for the groups. The final model consists
of 7453 equations and 312 dynamical states when translated with Dymola.

Extensions

Possible extensions of DryLib can be sorted mainly into two categories.
Firstly, the library may be extended by adding components modeling pro-
cess equipment or physical phenomena not covered by the current imple-
mentation. For example, modeling of systems in direct connection with
the dryer section, such as the condensate system, the steam production
and the ventilation system would enable simulation of a larger part of
the process. Also, adding this functionality would simplify connection of
the dryer section model to models of other important parts of the paper
machine, e.g. the press section, the wire section or other process units
utilizing the same steam header.

In an effort to extend the functionality of DryLib, the library has been
extended to include components of the condensate systems, such as tanks,
pipes, and siphons, see [Windahl, 2006].

Secondly, DryLib may be extended by introducing components which
enable simulation of the drying process at an increased level of detail. The
current design of DryLib is based on a particular choice of discretization
of the underlying PDE:s (describing mass and energy transport), which
yields a model with a reasonable level of detail, while maintaining accept-
able simulation times. While this choice of discretization is suitable for
analysis of moisture, temperature and pressure profiles in the machine
direction, other applications may require different levels of detail. For ex-
ample, in the work [Karlsson, 2005], the underlying PDE:s are discretized
at a very high level of detail. This enables e.g. analysis of the risk of
delamination in cartonboard manufacturing, as well as detailed study of

202

8.4 Parameter Optimization

moisture and temperature profiles, in the machine and thickness direc-
tions. Other applications, such as control design, may benefit from simple
models capturing only the input-output behavior of the system. This issue
is addressed in Section 8.5, where a model reduction scheme is proposed
to reduce the complexity of a dryer section model.

8.4 Parameter Optimization

It is desirable that the behavior of the model is similar to that of the real
plant, in order for results obtained from using the model to be applicable to
the plant. It is usually necessary to modify the original model to obtain a
better match with measurement data. A common method to minimize the
plant-model mis-match is to select one or more parameters of the model,
and then tune these until a satisfactory model response is obtained. This
procedure of tuning parameters, without taking stochastic properties of
the measurement data into account, is referred to as white-box identifi-
cation, see [Bohlin and Isaksson, 2003]. Parameter tuning may in simple
cases be done by hand, but more complex problems require structured
methods for finding the parameter set that yields the best result. One
such method is parameter optimization, which, in addition to selection of
parameters to optimize, also includes definition of a performance criterion
to minimize.

Model parameter values can be determined in several ways. Some pa-
rameters are available in tables, and are not associated with uncertainty,
whereas others may be determined from experiments. Mechanical systems
may for example be disassembled and their components can be measured
and weighted. Yet some parameters may be inherently hard to find ac-
curate values for. In the dryer section model, heat transfer coefficients
typically fall into this category.

When selecting parameters to optimize, parameters which are uncer-
tain are attractive choices. However, it should be kept in mind, that the
parameter optimization procedure does not necessarily produce the phys-
ically correct parameter values. Rather, the selected parameters are used
to compensate for all types of model-data mismatch given a particular
performance criterion. This implies that the actual parameter values ob-
tained from optimization should not be interpreted as the true physical
values, but rather those that achieve the best model-data match. On the
other hand, it is usually desirable to ensure that parameters have physi-
cally reasonable values.

203

Chapter 8. DryLib

Table 8.1 Optimization parameters

Parameter Nom. Min. Max.
s [W/(m?K)] 500 400 5000
K [m/s] 0.06 002 0.1

oy [W/(m2K)] 400 200 1000

Problem Definition

Setting up a parameter optimization problem requires insight into which
aspects of the model are most important. In this case, both the dynamic
and static model response is of importance. However, here, only the static
behavior has been considered. Specifically, cylinder and paper tempera-
tures of the paper machine, as well as the output moisture, have been
measured during stationary operation conditions. The aim of the opti-
mization has been to improve the stationary response of the model in the
sense that the difference between simulated temperatures and moisture
and measured temperatures and moisture, should be minimized.
A reasonable cost function to minimize is then

Ney
I =yr, > (T — Tni)*+
i=1
Ny
vr, D (T = T5)? + Y (Ul — o)’
i=1

(8.24)

where N,,; is the number of cylinders, superscript m indicates measured
quantities, superscript s indicates simulated quantities and y7,,, yr1,, and
7. are weights. While the measurement method used to determine cylinder
temperatures is reliable, the measurements of paper temperatures should
be regarded as uncertain. In particular, the paper temperature is varying
considerably in the machine direction depending on the position, relative
to a cylinder contact area, at which the measurement is taken, [Slitteke,
2006]. Therefore, the weight y7, was set to a small value. The moisture, on
the other hand, is an important quality variable that should be matched
with high accuracy. Accordingly, 7, was set to high value.
Three parameters were selected for optimization:

e The heat transfer coefficient between steam and condensate in a
cylinder, o, in equation (8.5)

204

8.4 Parameter Optimization

e The mass transfer coefficient Kz which is used in the expression
(8.11) defining evaporation of water from the paper surface

e The heat transfer coefficient between cylinder and paper is given
by the expression o, = &, + &, u, where u is the moisture of the
paper. o, was selected for optimization.

These parameters are used to specify the properties of each individual
steam cylinder, and could therefore, in principle, have different values
for different cylinders. In the following, two different approaches will be
taken. Firstly, parameter optimization where the same parameter values
are used for all cylinders will be performed. Secondly, the possibility to
further reduce the model-data mismatch by assuming that the cylinders
in different groups may have different parameter values, will be explored.
Table 8.1 summarizes nominal, maximum and minimum values for the
parameters.

Solving the Problem

The minimization of (8.24) should be performed subject to the constraint
constituted by the DAE representation of the model. Since the minimiza-
tion is performed in stationarity, all derivatives may be set to zero, and the
model is then represented by a purely algebraic constraint, F(x,y,p) = 0,
where x is the state vector, y represents the algebraic variables and p are
the parameters.

The optimization problem may now be written

Ny
min J =min y7, Y (To; — Ts)*+
X,Y,p X,5.P i—1 ’ ’
Ncyl
vr, > (T — Tp:)*+ (8.25)
i=1
Yuhs — tout)?
subject to
0 =F(x,y,p)

The problem was solved by a custom-made application coded in C,
which is based on the dsblock interface for accessing the model description
generated by Dymola, and the NLP code IPOPT, see [Wachter and Biegler,
2006], which is dedicated to solving large scale algebraic optimization
problems. The software is described in Section 8.7.

205

Chapter 8. DryLib

Cylinder Temperature

140 T T T T T T T
o 120} P PO u.o.'ﬂ" 1
o A Ao TN
. l‘U et a4 o &
=) PY /
g 100+ o - & =TS .
< y
& s
80 7 : : nom. cyl. temp. H
o Ad = = =meas. cyl. temp.
opt. cyl. temp.
60 | | | | | T T
0 5 10 15 20 25 30 35 40
Paper Temperature
140 T T T T T T T
— 120 4
b
; 100 T
=N _.'
g .a.o.o.c.,eﬁr“r""‘*’
= 80 - — o= Y ; B
-
&
| e A nom. paper. temp. i
60 = = = meas. paper. temp.
opt. paper. temp.
40 | | | | | T T
0 5 10 15 20 25 30 35 40

Cylinder number

Figure 8.6 Stationary temperature profiles in the case of three parameters.

Parameter Optimization Results

Solving the problem (8.25) yields the optimal temperature profiles shown
in Figure 8.6 and the optimal cost 256. For comparison, the nominal pro-
files, corresponding to the nominal parameter values, are plotted. As can
be seen, there is a significantly improved fit between simulated and mea-
sured responses. In particular, the output moisture in the nominal case
is unrealistically low too early in the dryer section, as can be seen in Fig-
ure 8.7. It can also be noted that the fit of the cylinder temperature profile
is better than that of the paper temperature profile. This phenomenon is
expected, since the weight associated with the paper temperature errors
was set to a low value. It can be noted, however, that there is still a
temperature mismatch for some cylinders.

In order to further reduce the errors, particularly in the paper temper-
atures, the number of optimization parameters could be increased. There
are two main reasons why additional parameters may achieve a better fit.

206

8.4 Parameter Optimization

1.4 T T T T T T T

nom. u
opt. u

Moisture []
o
@
T
1

0.6 n

0.4 .

0.2 . 4

0 I I I I I
0 5 10 15 20 25 30 35 40

Cylinder number

Figure 8.7 The moisture profile. The x-axes shows cylinder numbers.

Firstly, the initial assumption that all cylinders of the dryer section share
the same parameter set may not be true. This is because the cylinders
are operated under different conditions (pressures, temperatures etc.).
Secondly, additional optimization parameters may give improved compen-
sation for unmodeled phenomena, such as, for example, varying air con-
ditions along the dryer section.

In this case, the structure of the model offers a natural way to introduce
additional parameters. The cylinders of the dryer section are organized
into steam groups, where all cylinders of a group are operated at the same
pressure. It is then reasonable to assume that cylinders within a group
share the same characteristics, and could share the same parameter set.
The model consists of six steam groups, which yields a maximum of 18
optimization parameters.

Now, the introduction of additional parameters may lead to an over-
parametrized model. This may lead to a situation where the model is

207

Chapter 8. DryLib

Cost vs. number of parameters

260 T T T T
*
%
240 * i .
] x
x
220 % . o
x
x
o
2 . .
& 200+ g . —
¥ *
®
L]
180 | * |
* x
¥
160~ —
x
140 1 1 1 1 1 1 1
4 6 16 18

10 12 1
Number of parameters

Figure 8.8 Optimal cost as a function of the number of parameters.

fitted to a particular data set, including potential measurement errors. In
order to avoid this situation, the marginal benefit of introducing additional
parameters should be quantified and analyzed. This has been done by
assuming that neighbouring steam groups may share the same parameter
set. For example, if we let steam groups one and two, three and four and
finally five and six share parameter sets, three parameter sets yielding 9
parameters are obtained. Using this approach, there are 32 combinations,
including the extreme cases with three and 18 parameters.

In Figure 8.8 the optimal cost obtained in each of the 32 cases is
indicated by (x). As can be seen, the marginal benefit from introducing
additional parameters is decreasing. The lowest cost function value, 156, is
achieved for the case with 18 free parameter. The optimal temperature and
moisture profiles for this case are shown in Figures 8.9 and Figures 8.10.

208

8.5 Model Reduction

Cylinder Temperature

140 T T T T T T T
— I
O 120 Fo) 7
o a)\‘,Q.vA\(r\-wgﬂk,ﬁr-\,‘- -ve
& /e
£ 100 o——a—atmo—y 8
& y
¢
80 - 2 - - nom. cyl. temp. H
i - = =meas. cyl. temp.
opt. c‘yl. temp.
60
5 10 15 20 25 30 35 40
Paper Temperature
140 T T T T T T T
— 120 b
2
; 100 A
e, 4
g ate0g0s0 g0ty terey
L] ; i
&= 80 P
=&
L e A nom. paper. temp. il
60 = = = meas. paper. temp.
opt. paper. temp.
40 | | | | | T T
0 5 10 15 20 25 30 35 40

Cylinder number

Figure 8.9 Stationary temperature profiles in the case of 18 free parameters.

8.5 Model Reduction

Dryer section models built using DryLib result in large-scale models, even
though a sparse discretization scheme for mass and energy balances has
been applied. For control design, however, a model describing the dynamic
relationship between the inputs and the quality variables at the last free
draw is usually sufficient. In practice, low order models (e.g. KLT-models
with a gain, a time delay and a time constant) valid at a specific operating
point are commonly used for dryer section control. In this section, a re-
duced model targeted towards moisture control design is developed. Since
the output moisture measurement signal available for feedback control is
usually obtained at the end of the dryer section, the aim of the reduc-
tion scheme is to develop a simpler model, which captures the non-linear
dynamical behavior relating the steam pressure reference signal, input
moisture, input temperature and dry basis weight (from the press sec-
tion) to output moisture. Accordingly, accurate simulation of the paper

209

Chapter 8. DryLib

u
1.4 T T T T T T T
nom. u
opt. u
1.2 .
1 A
()
5
G osf .
=}
=
0.6 .
0.4 —
0.2 . |
®
0 | | | | | .
0 5 10 15 20 25 30 35 40

Cylinder number

Figure 8.10 Moisture profile. The x-axis shows cylinder numbers.

temperature and the moisture profile can be compromised in order to ob-
tain a lower order model, which describes only the phenomenon of interest,
i.e. the behavior of the moisture, accurately.

For linear systems, there exists methods which along with a reduced
linear model also gives a bound on the maximum approximation error.
The basic approach is usually to find a norm, where it is possible to actu-
ally solve the optimization problem resulting from posing a problem where
the norm of the difference between the original and the reduced model is
minimized. The most common method has historically been that of bal-
anced truncation, where the Hankel norm is used to measure the distance
between the models, see [Moore, 1981].

For non-linear systems, however, the situation is different in that there
are few methods which offer a structured way of obtaining a lower order
model and an upper bound for the approximation error. An additional
complication in this case is that the underlying DAE is not easily accessible

210

8.5 Model Reduction

for e.g. coordinate transformations which is a common ingredient in model
reduction schemes.

In the following, a method based on the equivalent dryer concept and
optimization will be presented.

The Equivalent Dryer

In this chapter, the structure of the dryer section will be exploited, in order
to obtain a model of lower order. A previously reported concept is that of
the equivalent dryer, which is described in [Rao et al, 1994]. Instead of
modeling each cylinder as a separate unit, the equivalent dryer concept
suggests that one, larger cylinder can be used to approximate an entire
steam group. This approach has several attractive features. i) It preserves
the structure of the dryer section, since each steam group is replaced by its
corresponding equivalent dryer, ii) each equivalent dryer has an intuitive
physical interpretation iii) the reduction potential is large, especially for
large steam groups.

The Reduction Problem

At the steam group level, the reduction problem can be stated as

“Find the dimensions of one steam cylinder, including associated incoming
and outgoing free draws and contact paper, which approximates as well as
possible, the behavior of a given steam group”.

This qualitative objective needs, however, to be quantified, and specifi-
cally, the meaning of “as well as possible” should be given a mathematical
interpretation. In principle, it should be possible to adopt the scheme com-
monly used for linear model reduction. The problem can then be stated
as to minimize the maximum approximation error over the physical di-
mensions of the equivalent dryer cylinder. Solving this problem involves
finding the solution to a dynamic optimization problem, where the search
space consists of i), the inputs (for generating the maximum error) and ii)
the physical dimensions of the equivalent dryer. Since the dryer section
model is very large, this approach does not seem attractive. Instead, a
method based on physical insight will be used to formulate a tractable,
yet challenging, reduction problem.

It is reasonable to assume that the main time constant of the steam
group model is dominated by the dynamics of heating the cast iron cylin-
ders. Clearly, the mass of the paper is neglectable compared to the mass
of the steam cylinders. This means that when a reference step is applied
to the pressure control loop of a cylinder group, the changes in the tem-
perature of the paper sheet will be closely related to the temperature of
the cylinder shell. Consequently, since the drying process is driven by the
heat transferred from the cylinders to the paper, it is reasonable to assume

211

Chapter 8. DryLib

that associated variables, most importantly moisture, will be governed by
the same time constant.

In line with this reasoning, we suggest that the dynamic and station-
ary response of the equivalent dryer cylinder may be treated separately.
As for the dynamics, we assume that the mass and volume of the equiva-
lent cylinder can be set to N cgyl times those of an individual cylinder in the
steam group, where N fyl is the number of cylinders in the group. Simula-
tion experiments reveal that the time constant of an equivalent cylinder,
constructed based on this assumption, corresponds well to the time con-
stant of the full steam group. However, the same result does not seem to
hold for the stationary gains, where there is a significant mismatch. In-
tuitive ways to set the lengths of the free draw and contact papers, using
the same reasoning as for mass and volume, do not produce acceptable
results. A more sophisticated way of finding the physical dimensions and
parameters is thus necessary.

Reduction of One Steam Group

A static model for a paper sheet in contact with a steam cylinder, can
be formulated using algebraic versions of the dynamic mass and energy
balances presented in Section 8.2. Assuming that the steam pressure, p,
the input paper moisture, u;,, the input paper temperature, T}, ;,, and the
dry basis weight, g, are fixed and known, a system of five equations and
five unknown can be derived. The unknowns of the system of equations
are the energy flow from the cylinder to the paper, @, the cylinder metal
temperature, T},, the mass flow of steam into the cylinder, g,, the paper
temperature, T, and the paper moisture, u. The system of equations is
then given by

acpAcylnaSC (TS - Tp)

9= aschs - aschw + acpnhs - acpnhw
Q _ acpAcylnasc(Ts - Tp)
P Ose + Cepl]
OcpTp + Ts0lse
T, = —2lp* "sTs
m Qe + Uopl] (8.26)

0 = dyvxgUin — AxyQevap — dyUxgu
0 =dyw,g(1 + uin)CppinTpin
— AvyQevap(AHyap + AHs) — QpaAny(Ty — To)
—dyxg(1+u)Cp T + Qp
were Cppin, AHs and q.uqp are functions of the unknowns 7, and u.

In a similar way, a static model for a paper sheet in the free draw can
be formulated. The model is given by a system of equations containing

212

8.5 Model Reduction
two equations and the two unknowns u and T},

0 = dyvxguin — 2AxyqQevap — dyvegu

0 =dyv,g(1 + uin)CppinTpin
— 2A.yQevap(AHyap + AHg) — 205 Ay (T — Tt)
—dyug(1+u)Cpp,Tp.

(8.27)

These systems of equations can then be put together to formulate a static
model for a steam group.

As stated in the introduction of this section, the most important qual-
ity variable, at least for moisture control, is paper moisture. Therefore, a
reasonable objective is to minimize the deviation between the moisture in
the last free draw of the cylinder group, and the moisture in the outgoing
free draw of the equivalent cylinder. In addition, as a secondary objective,
it was decided to minimize the deviation in steam consumption. This ob-
jective was added since it may be desirable to limit the steam consumption
during moisture control.

Performing this minimization for a single operating point is not suffi-
cient, however. In order to obtain a good fit over a wider operating range,
a set of operating cases was introduced, over which the optimization was
performed. Each case consists of a specification of the operating point in
terms of steam pressure, input moisture, input temperature and basis
weight. The cost function to be minimized, can now be be written as

2
Ncyl

N,
J = Z Yu(Uouti — u(r)ut,i)2 + Ve, Z Osji— s | > (8.28)
- A

J

where u,,:; is the output moisture of the steam group in the i:th case,
ul . ; is the corresponding output moisture of the equivalent cylinder, N,
is the number of cases and N,y is the number of cylinders in the group. As
for the steam flow, the squared sum of deviations between the total steam
flow for the cylinder group and the equivalent dryer is penalized. ¥, and
74, are weights representing the relative importance of a good match in
moisture and steam flow respectively. The minimization of the criterion
(8.28) is performed subject to the equations (8.26) and (8.27), which are
repeated based on the number of cases, N., and the number of cylinders
in the group Ny;.

It remains to define the optimization parameters, over which the min-
imization of (8.28) is performed. Six parameters of the equivalent dryer
were selected for optimization, namely the length of the free draws, the
length of the contact paper, the heat transfer coefficient between steam

213

Chapter 8. DryLib

and condensate, &, the convection coefficient, o ,,, and the mass trans-
fer coefficient, K. The number of variables that are actually needed to
obtain a good fit is not unambiguous, however. For small steam groups,
or if few cases are used, some of the suggested optimization variables
may well be fixed, without any increase in the approximation error. In
fact, it is desirable to find an appropriate trade-off between the number
of optimization variables and optimization performance, in order to avoid
over-parametrization, as discussed previously.

Reduction of a Dryer Section

A straight forward approach for deriving a reduced order dryer section
would be to simply apply the method described in the previous section
for each individual steam group. Recalling our main objective, which is to
predict the moisture in the last free draw, this approach would not explore
the full potential of the method. Instead, a larger optimization problem,
incorporating all groups, may be formulated where most attention is given
to minimizing the deviation of the last group. This means that all groups
are reduced at the same time, and that the full reduction potential is used
according to the main objective, which is to predict the output moisture.
It may, however, be advantageous to include the deviations, with small
weights, of all groups in the optimization criterion, in order to avoid a
physically unrealistic model.

Initial optimization runs showed that the total length of the paper pro-
cess in the reduced model was significantly larger than the total length
of the paper process in the original model. This deficient of the reduced
model may be suppressed by introducing a term in the optimization cri-
terion penalizing the deviation of total paper process length between the
original and the full model. This modification of the original problem re-
sulted in a better match of the dynamic response, without a penalty in
terms of degraded static match.

An additional modification of the problem concerning the matching of
the steam flow rate was made in the final formulation. Since the total
steam consumption of the dryer section is of interest, rather than the
consumption of individual groups, the penalties on deviations in steam
flows at the group level was replaced by single penalty on deviations in
the total steam consumption.

214

8.5 Model Reduction

The overall performance criterion can now be written

Jtot—zzyuk Uout,ik — outlk) +

i=1 k=1
2
Ny Neyig N,
.
Z Z Qs,ijk — qu,i,k + (8.29)
k=1 j=1 k=1
2
N, Ny N, 3
A DIOIUTED BHBUAY
k=1 1=1 k=1 1=1

where N, is the number of groups, N, ; is the number of paper segments
in group k&, I, is the length of a paper segment in the original model
and l;’k’l is a length of a paper segment in the reduced model. In line with
the arguments given above, y, n, >> Vi, k # Ny.

Solving the Optimization Problem

The resulting algebraic optimization problem is challenging, both due to
its size and its non-linear character. The final problem consists of 9536
free variables and 9504 equality constraints, of which 8568 are non-linear.
Efficient solution of large scale NLP problems of this type requires state
of the art numerical algorithms, exploring the sparse structure of the
problem as well as analytical Jacobian and Hessian information.

The problem definition was programmed in AMPL, which is a language
for mathematical programming, [Fourer et al., 2003]. AMPL enables en-
coding of linear and non-linear algebraic optimization problems, using
optimization-oriented language constructs. The problem description, i.e.
the AMPL code, is then executed within the AMPL tool, which in turn
interfaces several numerical solvers. In this application, the NLP code
KNITRO, [Waltz, 2005], has been used. The combination of AMPL and
KNITRO is extremely powerful, since the AMPL interface to numerical
solvers offers analytic evaluation of Jacobians and Hessians as well as
sparsity information. This enables KNITRO to operate in its most effi-
cient mode, resulting in acceptable execution times also for large systems.
The reduction problem formulated in the previous section is solved in
about 2-5 minutes, depending on configuration and initial starting point.

The proposed method has the distinct drawback of requiring complete
re-encoding of the the model description. This was necessary, however, in
order to enable utilization of the appropriate symbolical and numerical
algorithms.

It is important to note, however, that the problem is non-convex, and
that only local optimality can be expected. However, in this case, the solu-

215

Chapter 8. DryLib

as [kg/s]
0.045
0.04
0.035 75
0 500 1000 1500 2000 O 500 1000 1500 2000
0.045
7.6
04 S
0.0 74l ~
0.035 25
0 500 1000 1500 2000 O 500 1000 1500 2000
0.036 20
|
0.034 15
0.032
10
0.03 :
0 500 1000 1500 2000 0 500 1000 1500 2000
t [s] t[s]

Figure 8.11 Step responses for moisture (left) and steam flow rate (right) of the
original (dashed) and the reduced (solid) models. The responses corresponds to,
from above, steps in input moisture, input dry basis weight and pressure reference,
applied at 200 s.

tion to the reduction problem seemed to be robust with respect to different
starting points. Also, the obtained solution is reasonable in the sense that
the optimized parameter values lie within physically feasible limits.

Model Reduction Results

As mentioned above, a set of operating conditions need to be specified, in
order to complete the problem formulation. Clearly, the operating range
over which the reduced model is valid, is influenced by this choice. As the
nominal case, values for steam pressures, input moisture, input tempera-
ture and dry basis weight corresponding to a typical grade were chosen.
Based on the nominal case, 35 additional cases were defined by varying
the nominal input parameters.

The result of the reduction procedure was evaluated by means of step
responses in input moisture, dry basis weight and pressure set point, see
Figure 8.11. As can be seen, there is a good match between the stationary

216

8.5 Model Reduction

0-042 T T T T T

0.041 h

0.04

0.039

0.038

0.037

0.036

0.035 Il Il Il Il Il
190 200 210 220 230 240 250

¢ [s]

Figure 8.12 Response in output moisture, resulting from a step disturbance in
the input dry basis weight. The dashed curve corresponds to the original model and
the solid curve corresponds to the reduced model. The step disturbance is applied
at t=200 s.

responses of the original and reduced models. Also, the (slow) dominat-
ing time constant is captured well by the reduced system. However, the
reduced model does not fully capture the fast transient behavior of the
original model. The steep initial ascent in the step response, which is
shown in Figure 8.12, is due to the transport delay of the model. Using
the length of the paper web through the dryer section and the machine
speed, the theoretical transport delay can be calculated. In this particular
case, the delay is 12s, which is matched well by the original model, repre-
sented by the dashed curve. The reduced model, on the other hand, seems
to have a smaller delay but a more smoothed initial response. This is,
however, to be expected. The original model consists of a large number of
paper components, which together forms a high-dimension compartment
system. The reduced model consists of significantly fewer segments, and
cannot approximate the time delay with the same accuracy.

The original motivation for performing the model reduction was to

217

Chapter 8. DryLib

Setpoint Setpoint Steam
Moisture steam pressure pressure .
P Moisture
— ¥ - Steam » >
MBC controller system y Lo "

Figure 8.13 The moisture control cascade loop. The inner loop controls the steam
pressure by manipulating a steam valve. The inner loop generally consists of a PID-
controller and it gets its set point from some type of Model Based Control (MBC),
commonly an IMC (Internal Model Control), a Dahlin controller, or a linear MPC
(Model Predictive Control).

obtain a model of lower complexity. Indeed, the reduced model has fewer
dynamical states, namely 85, as compared to 318 for the original model.
Also, the simulation time for a typical scenario was approximately 85%
shorter for the reduced model.

8.6 NMPC of Output Moisture

The structure of the moisture control loop is depicted in Figure 8.13. It
is usually the case that all cylinder groups are tied to the same steam
pressure set point which gives a single loop cascade control. It is common
to let the MBC controller calculate the pressure set-point for the last steam
group, p°?, and then calculate the pressure set-points for the other groups
as functions of p*”. Using this method, it is straight forward to ensure
that there is an monotonically increasing pressure profile in the machine
direction, which is important since steam from high pressure groups is
re-used to heat groups running at lower pressure.

The MBC controller is usually based on a low-order linear model of
the dryer section. While a well tuned controller works well at a given
set-point, the non-linear character of the dryer section dynamics results
in degraded performance if the set-point is changed. Since the plant is
operated at several different set-points, corresponding to different grades,
a traditional control system maintains several parameter sets for the MBC
controller. Switching of controller parameters is then done after a grade
change. In other cases, the MBC may be tuned to fit all grades of the
specific machine.

218

8.6 NMPC of Output Moisture

In this section, a different approach to moisture control is considered.
Based on the reduced non-linear dryer section model derived in Sec-
tion 8.5, a basic Non-Linear Model Predictive Control (NMPC) scheme
is implemented. The main benefit of using a non-linear model in the con-
trol design is that the operating range of the controller may be increased.
In addition, successful implementation of a controller which achieves good
performance in a wide operating range may serve as a unifying strategy
for stationary and transition (grade change) control, whereas common
practice today is to use separate controllers for these two control modes.

A realistic implementation of an MPC controller consists of three main
parts—reference target calculation, state estimation and solution of the
optimal control problem. In this section, the problem of solving the optimal
control problem is addressed. The resulting controller is evaluated under
the assumption of full state information.

Model Predictive Control

MPC refers to a family of controllers which are based on the receding hori-
zon principle. At each sample, a finite horizon open loop optimal control
problem is solved, and the first part (corresponding to the first sample)
of the resulting optimal control profile is applied to the plant. At the next
sample, the procedure is repeated and a new optimal control problem with
the horizon shifted one sample is solved. Thereby the name receding hori-
zon control. Two of the most important advantages of using MPC is that
it works well for MIMO plants and that it takes state and control bounds
into account explicitly. However, an MPC controller, including the on-line
solution of an optimization problem, is computationally demanding, which
makes application to processes with fast dynamics troublesome. During
the last decade, MPC has emerged as a major control strategy, mainly in
the process industry, see [Qin and Badgwell, 2003] for an overview.

MPC comes in many flavors. The theory for MPC based on LTI models
is well developed. The linear case has particularly attractive features in
that the arising optimization problem is convex, and the availability of
stability results. For non-linear systems, the situation is somewhat differ-
ent. While stability results exist, see [Mayne et al., 2000], the problem of
solving the arising optimal control problem is complicated, since the prob-
lem is in general non-convex, which means that global optimality cannot
be guaranteed. Still, several algorithms exist, and non-linear MPC has
received increased industrial interest during the last few years.

Dynamic Optimization

Optimization of Dymola models has previously been considered in the
work [Franke et al., 2003], where the Simulink interface (the S-function
interface) provided with Dymola was used to access the model. The main

219

Chapter 8. DryLib

difference between the approach used in [Franke et al., 2003] and this
work lies in the methods of accessing the model. In this work, the dsblock
interface which is also provided with Dymola has been used. The dsblock
and S-function interfaces offers essentially the same functionality.

In order for a (gradient based) NLP algorithm to have fast convergence,
it is important to provide to the algorithm not only the cost function, but
also its gradient with respect to the optimization parameters. Calculation
of high accuracy gradients for dynamical systems generally involves cal-
culation of the state sensitivities with respect to parameters. This can be
done by integration of the sensitivity equations. By utilizing that the sen-
sitivity equations have the same Jacobian as the original DAE, integration
can be done efficiently.

The algorithm used to solve the dynamic optimization problem de-
scribed in this section is a straight forward implementation of a sequential
single shooting algorithm, see [Vassiliadis, 1993].

State Estimation

There are two main approaches to state estimation for non-linear systems,
namely the extended Kalman filter, [Anderson and Moore, 1979], and re-
ceding horizon estimation, [Rao et al, 2003]. The problem is challenging,
and also computationally demanding, especially for large systems. Solu-
tion of the state estimation problem is not treated here, although the
problem must be solved in order to apply the MPC scheme to a real plant.
Accordingly, the same model is used both in the NMPC controller and for
simulating the system.

The Optimal Control Problem

An integral part of an NMPC controller is the formulation of the open-loop
optimal control problem to be solved in each sample. Since the aim of the
control scheme in this application is to control the moisture ratio, it is nat-
ural to penalize deviations from the target moisture. The control trajectory
in the optimization problem, p?, is parametrized by a piece-wise constant
function with N, segments. In order to avoid violent control moves, which
may introduce disturbances in the steam system, a term penalizing the
deviation between two successive control moves is introduced in the cost
function. In addition, there are hard limits acting on the control variable.

220

8.6 NMPC of Output Moisture

0.04

|
|
- 0.035f ‘ 8
= [
|
|

0.03f b e o T ————— -

0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200
t[s]

Figure 8.14 Step response of the NMPC controller.

This yields the following optimization problem

-1

m1n/ Yu (WP, — Gy (t))2dt + Z 7p(ADP)?

subject to (8.30)
F(x,x,y,p°?) = 0 (DAEdynamics)
466 kPa < p? < 596 kPa (control constraint)

where Ty is the prediction horizon, u.,, is the target moisture, oy (%)

is the predicted moisture profile, p:” is the predicted pressure set point
trajectory and Ap;” = pi¥ —pi*,. 7, and y, are weights. In the simulation,
the parameters were set to y, = 10000, y, = 0.01, N, = 4, and the
sampling interval was set to 5 s.

Results

A simulation where the NMPC controller is applied to the reduced dryer
section model is shown in Figure 8.14. In the simulation, a reference step,

221

Chapter 8. DryLib

from u;P, = 0.038 to u;>, = 0.03 is applied at ¢ = 200 s. As can be seen, the
moisture reaches the desired set-point, while the control signal respects
the specified constraints.

An important, and often limiting, factor when using MPC controllers,
is the execution time for solving the on-line optimization problem. In this
case, execution times ranged from 10 s to 80 s, with a mean of 13.5 s. Typi-
cally, execution times are longer when reference changes and disturbances
occur, while shorter and more predictable execution times are obtained
during stationary operation. Assuming a sampling interval of A = 5 s,
it is clear that the execution times must be decreased. There are several
approaches to reducing execution times, e.g. modifying the lengths of the
control and prediction horizons, reducing the complexity of the model or
using a more efficient optimization algorithm.

8.7 Software Tools

The dryer section model has been implemented, as mentioned above,
in Modelica and Dymola. The parameter optimization problem and the
NMPC problem, however, were solved by integrating several software
packages into a custom application, which utilized the C-code generated
by Dymola, representing the model.

The software packages used in the development of the custom appli-
cation are:

e a C programming interface to access functions generated by Dymola,
dsblock. Using this interface, custom applications can be developed
for, for example, simulation or, like in this case, optimization. The in-
terface provides basic routines for obtaining information about model
parameter and initial state values, evaluation of the right side of the
resulting ODE (DAE) and the associated Jacobian.

e a DAE-solver, DASPK 3.1 [Maly and Petzold, 1996]. This code solves
DAE:s as well as calculates sensitivities required for optimization.
The code is written in Fortran and was translated to C using f2c.

e an NLP-code, IPOPT [Wichter and Biegler, 2006]. This code imple-
ments a primal-dual interior point method and was used to solve the
NLP resulting from the parameter optimization and NMPC prob-
lems.

e a package for managing the communication between the Dymola C
interface and DASPK, which has been developed in order to enable
simplified development of optimization applications based on models
generated by Dymola. This package, in the following referred to as

222

8.7 Software Tools

Custom dsblock

T ssDASPK
application

Figure 8.15 Software application structure.

ssDASPK, provides e.g. simulation and sensitivity calculation for use
in custom applications.

These packages were compiled and linked with the code representing
the model generated by Dymola, into an application which was used to
set up and solve the particular optimization problems. The structure of
the applications is shown in Figure 8.15.

The main drawback with using the software described in this section
is that the formulation of the optimization problem needs to be encoded
in a low level language, such as C, for each particular problem. Much
effort is thus needed to encode the problem, whereas, as was argued in
Chapter 7, high-level description languages enable the user to rather fo-
cus on formulation of the problem. It would, however, be possible to use
ssDASPK as a back-end in the Optimica compiler. Such a back-end would
then typically generate C-code corresponding to the “Custom application”
block in Figure 8.15.

223

Chapter 8. DryLib
8.8 Summary and Conclusions

In this chapter, modeling, model reduction, parameter optimization and
NMPC control design for a paper machine dryer section have been consid-
ered. It has been demonstrated how Modelica models of high complexity
can be used for purposes other than simulation. The resulting optimization
problems are challenging and require state of the art numerical solvers.
In particular, solution of the model reduction problem, which has more
than 9000 free variables, is dependent on algorithms exploring the prob-
lem structure. Our experience from this project is that there is no single
tool or software that can address all problems arising in simulation and
optimization. Rather, in order to solve problems effectively, it is essen-
tial that Modelica tools are designed to be interfaced with software for
solution of optimization problems. In general, it is highly desirable that
software for complex systems is provided with interfaces so that they can
be combined.

There are several possible extensions of the work presented in this
chapter. The DryLib library may be extended as outlined in Section 8.3,
and the parameter optimization scheme would benefit from including also
time series data. Regarding the model reduction scheme, it may be desir-
able to derive models with further reduced complexity valid over a wide
operating range. Finally, the NMPC scheme outline in Section 8.6 needs
to be further elaborated in order to be applicable to the real plant.

224

9

Start-up Control of a
Plate Reactor

9.1 Introduction

Start-up control of chemical reactors has been an area of research for
many years. The main focus has been on batch and semi-batch reactors.
Start-up of continuous reactors is similarly of great interest, since the
risk of incidents are much higher during start-up than during steady
state operation. At low temperature, almost no reaction occurs due to
the temperature sensitive reaction rate. To start the reaction, heat must
be provided into the reactor system, typically through the feed flows or
the cooling water. At some reactor temperature, the reaction reaches the
ignition point. The heat release from a strongly exothermic reaction leads
to self-acceleration and the reactor temperature quickly increases to the
nominal operating point, or, if care is not taken, above.

The transient from initial conditions to an optimal operating point and
the temperature at which ignition occurs are highly nonlinear functions of
the inputs and the states of the system. Therefore, the system is very sen-
sitive to small changes in reactor inlet conditions or variations in physical
parameters. Previous studies have been focusing on developing criteria to
detect operating regions with parametrically sensitive behavior, see e.g.
[Bauman et al., 1990] or [Varma et al., 1999]. However, the studies are of-
ten limited to finding non-sensitive operating points for steady-state and
the impact of a feedback control system is often neglected. In [Zaldivar
et al., 2003], a general criterion to define runaway limits for tank reac-
tors is presented, where the effect of feedback control on the runaway
boundaries is briefly discussed. In general, feedback control can reduce
the impact of model uncertainty, but due to actuator limitations present

225

Chapter 9. Start-up Control of a Plate Reactor

in all industrial systems, the available bandwidth may not be sufficient
to guarantee a safe start-up in regions with parametrically sensitive be-
havior.

The focus in this chapter is to develop methods for formulating the
optimization problem to achieve safe, robust and efficient start-up of an
exothermic reaction. With actuator limitations, it is necessary to consider
the interplay between open-loop optimal start-up trajectories and feedback
control. By studying the parametric sensitivity, the start-up optimization
problem can be formulated so that the optimal solutions have reduced sen-
sitivity to uncertainty. This facilitates the task of the feedback controller
to maintain safe operation despite its actuator limitations.

In [Hahn et al, 1971], open loop optimal start-up trajectories for a
tubular reactor are computed, based on a distributed maximum principle
for a given optimal steady-state operating point. The reaction is exother-
mic and reversible. The reactor temperature and thus the yield are con-
trolled by manipulating the reactor wall temperature with a constraint
on the maximum reactor temperature. The optimal control trajectory is
of bang-bang type with a singular arc to the steady-state. The study in
[Hahn et al, 1971], however, does not consider uncertainties or dynamic
limitations in the actuator, and does not consider any closed loop feedback
control.

In [Verwijs et al.,, 1996], the start-up and safeguarding of an adiabatic
tubular reactor system is considered. There, open loop trajectories of the
manipulated variables are calculated by a generalized-reduced-gradient
optimization. The safeguarding is realized through plant start-up rules
e.g. minimizing the total amount of unreacted chemicals exiting the reac-
tor during the start-up period. High levels of unreacted chemicals in the
reactor outlet may lead to continued reaction and heat release in storage
tanks. Without adequate cooling systems in these tanks, this temperature
increase may start by-product formation and lead to a thermal runaway.
During start-up, the safeguarding is implemented by monitoring the dif-
ference between the actual response of thermoelements and the optimal
trajectories calculated in the model-based optimization. When the differ-
ence exceeds some limit, the reactor should be brought to shutdown to
prevent the process from running into a hazardous situation state.

In this chapter, start-up control of the newly developed Alfa Laval Plate
Reactor is considered, see [Alfa Laval AB, 2006] and [Prat et al., 2005].
This type of reactor is conceptually a combination of a tubular reactor
and a plate heat exchanger. The key concept is to combine efficient micro-
mixing with excellent heat transfer into one operation. The plate reactor
has a flexible reactor configuration, where reactants can be injected at
multiple points along the reactor length to enhance the reactor perfor-
mance. There may also be individual cooling zones inside the reactor.

226

9.1 Introduction

urf

Offline
Optimization

Feedback
Control

Plate
Reactor

Figure 9.1 General block diagram for the start-up control with off-line optimiza-
tion and online feedback control.

These design features enable improved temperature control. Better pro-
cess design and control possibilities allow higher operating temperatures,
thus reducing the reaction time. Reactants of higher concentration can
also be used. This type of process intensification enables a plate reactor
to replace larger semi-batch reactors and significantly reduces the energy
consumption. Start-up and transition control is more important for this
type of process, as the plate reactor may be operated in a more flexible
production schedule for fine chemicals or pharmaceuticals syntheses. In
contrast to the work in [Hahn et al, 1971] and [Verwijs et al, 1996], the
plate reactor is equipped with a cooling system and multiple injection
points for the reactants. Feedback control is used to increase safety and
robustness in the presence of uncertainty.

In this chapter, off-line dynamic optimization of the start-up trajecto-
ries is considered. The optimal trajectories are used as feedforward and
set-point terms in a local feedback system, see Figure 9.1, which should
ensure that the optimal trajectories are tracked also in the presence of
disturbances and modeling errors. In [Haugwitz et al., 2007], methods for
modeling and control for stationary operating conditions of the plate re-
actor are presented. The approach presented in this chapter extends that
work by proposing a method addressing the start-up problem for the plate
reactor.

The optimal control problem formulated in this chapter has been solved
by means of the Optimica compiler, which transcribes optimal control
problems using a simultaneous method. For an overview of dynamic op-
timization and simultaneous methods, see Chapter 3, and for the presen-
tation of Optimica, see Chapter 7.

Dynamic optimization can quite easily give high performance solutions
based on a nominal model. A greater challenge is to find solutions with ro-
bust performance, so that the solutions have reduced sensitivity to model
uncertainty. In [Diehl et al., 2006], an approximate technique is presented

227

Chapter 9. Start-up Control of a Plate Reactor

for robust nonlinear optimization, which utilizes a linearization of the un-
certainty set. The main contribution is two methods to preserve sparsity
to achieve efficient computation for large scale problems.

The robustness of the optimal solutions are in this chapter analyzed in
terms of parametric sensitivity. By introducing two key specifications in
the optimization formulation, high-frequency penalties on the control in-
puts and state constraints on one of the chemical reactants, the sensitivity
of the optimal solutions can be significantly reduced, which increases the
robustness of the closed loop start-up control problem. The robustness is
introduced based on process insight and the extra specifications are only
a small addition to the computational complexity. The robustness of the
proposed method is verified in Monte-Carlo simulations, where the values
of the parametric uncertainties are randomly generated from a uniform
distribution.

The chapter is organized as follows. The plate reactor is briefly pre-
sented in Section 9.2. Section 9.3 outlines the specific problem formula-
tion of the reactor start-up. Section 9.4 shows how the actual optimization
problem is stated and the results of the optimization. The implementation
of the closed loop control is presented in Section 9.5 and simulation re-
sults are given in Section 9.6. The Monte Carlo simulations are described
in Section 9.7. The chapter ends with conclusions in Section 9.8.

9.2 The Plate Reactor

The Alfa Laval Plate Reactor, [Alfa Laval AB, 2006], originates from a
plate heat exchanger, but re-designed to improve micro-mixing. It consists
of a number of reactor plates, where the reactants mix and react. On each
side of a reactor plate there is a cooling plate, through which cold water
is circulated.

Between the inlet and the outlet, special inserts inside the reactor form
flow channels of alternating directions that gives turbulent flows and good
mixing of the reactants. The concept relies on a flexible reactor configura-
tion. The type of inserts and the number of rows inside the reactor, which
determine the residence time, can be adjusted, based on the type and rate
of the chosen reaction. Multiple injections and independent cooling zones
enable the reactor to be tailor-made for any complex reaction, e.g. multi-
stage reactions. Temperature sensors can be arbitrarily mounted inside
the reactor, specifically after each injection point.

A second order temperature-dependent exothermic reaction is consid-
ered, where C is the product of interest (9.1). Product D has a constant

228

9.2 The Plate Reactor

Reactant B
e e
Reactant A am q2 Reactor outlet
Ty
— HEX ® ® ® 8 0 06 0 O ® O

T, T

HEX

T Cooling water

Figure 9.2 The reactor shown as a schematic tubular reactor. There are four
inflows to the process and there is one manipulated variable for each inflow;
qB1,9B2, T and T.. Each inflow has an actuator subsystem that provides flow con-
trol (FC) or temperature control through heat exchangers (HEX). The circles with
T represent internal temperature sensors.

stoichiometric relation with C, thus in the sequel ¢¢ = cp.
A+ B — C+ D + heat (9.1)

In Figure 9.2, the plate reactor is schematically illustrated as a tubular
reactor. The primary reactant A enters from the left. The secondary reac-
tant B is injected at the inlet and in the mid-section of the reactor. With
multiple injection points, the heat release from the exothermic reaction
can be distributed along the reactor, thus improving the productivity de-
spite constraints on the reactor temperature. A heat exchanger pre-heats
the reactant feed A and another heat exchanger cools the cooling water
to desired temperatures. Two flow control loops ensure that the desired
amount of B is fed into the reactor.

Modeling

A model of the plate reactor can be derived from first principles for heat
transfer, reaction kinetics, mass, energy and chemical balances, see e.g.
[Froment and Bischoff, 1990]. The reaction kinetics can be approximated
with the Arrhenius law. The plate reactor can, from a modelling perspec-
tive, be approximated as a continuous tubular reactor with multiple inlet
ports of reactant B along the reactor. The distributed nature of the process
leads to five partial differential equations (PDEs) for the reactor temper-
ature T}, the cooling water temperature 7, and the concentrations for
the reactants and products, c4,cg, and cc, see e.g. [Hangos and Cameron,

229

Chapter 9. Start-up Control of a Plate Reactor

2001],

oT. 2T oT. 4h AH,

o = Do~y T gpe, oo (92)
oTy, oTy, 4h

B = T dupe, (T T) (6:3)
oca _ (920A Oca

Bt = Dngz Uy T (9:4)
603 . 6203 aCB

o = Dngm Vg T (5:5)
aCC . 6200 800

W = m—8z2 — Ura +r (96)

Eq
r = koeFlrcycp. (9.7)

The reaction rate r is described by the Arrhenius law and depends on the
pre-exponential factor kg, the activation energy E,, the universal gas con-
stant R, the reactor temperature 7, and the two reactant concentrations
ca and cg. The variable z is the position along the reactor flow channel,
d, is the reactor tube diameter, d, is the cooling jacket tube diameter
and A is the heat transfer coefficient between reactor fluid and water.
The variables v, and v, represent the fluid velocity through the reactor
and the cooling jacket, respectively. AH is the reaction energy term. The
density and the specific heat capacity are denoted by p and c,. D, and
D,. are the energy and mass diffusion coefficients, respectively. The very
high flow rate of the cooling water means that the diffusion term for T,,
can be neglected.

The PDEs are approximated using the Method-of-Lines, [Schiesser,
1991], and the finite volume method. The spatial derivatives are approxi-
mated with a first order backward difference method yielding a system of
ordinary differential equations (ODEs). The dispersion of the reactor is
approximated by the tanks-in-series model, see [Levenspiel, 1999]. Each
PDE is discretized using N = 30 control volumes, which is a compromise
between accuracy and computational complexity, and gives adequate rep-
resentation of the dispersion. The equations for the first control volume

230

9.2 The Plate Reactor

of the discretized model can be written as:

dT. r
7’1 = qfeTej’ATfeed,A + qVBrleeed,B — qv’:Tm (9.8)
hA AH
ooy (Tua = Tra) + — Ly (9.9)
p'r P
dTw 1 4cool hAheat
== T.—T, T,1—T, 9.10
dt Vc (c w,l) + pCch (w,1 r,l) ()
dep1 gB1 qr1
— = —cC — —2cg1—7r 9.11
dt Vr feed,B Vr B,1 1 ()
Eq
r1=koe™1ca1cp 1 (9.12)

where V, is the volume of each reactor element, V. is the volume of each
cooling element. A.,; and & are the heat transfer area and coefficient, re-
spectively, between the water and the reactor flow. T'fccq 4 is the feed tem-
perature of reactant A. T is the inlet temperature of the cooling water. The
variable g, is the flow rate inside the reactor, gfcq 4 is the feed flow rate
of reactant A, g1 is the flow rate of B injected at the first injection point
and q..o is the cooling flow rate. There are similar ODEs for the other
chemical components c4 and ¢¢. Thus T, Ty, ca,cp and c¢ are all vectors of
size N. The full state vector is defined as x = [TT T c§ c§ cZ]7 of
size 5N. In addition, the process model includes four states representing
the actuator dynamics of the four control inputs presented below.

Inputs and Outputs

Consider a reactor configuration with two injection points for reactant
B and one single cooling flow, that is, the same water cools the entire
reactor. The two injection points are located at the reactor inlet and mid
section, respectively.

Four control variables are used as manipulated variables in the start-
up optimization problem, see Figure 9.2.

e The feed flow rates of reactant B, g1 and gps, at the two injection
points. In the sequel, we will use the scaled control variables ug; =
qB1/Qfeed,p and ups = qB2/qreed,B, Where the scaling factor qye.q s
is the total feed of B at stoichiometric conditions. Thus when ug; +
upgs = 1, stoichiometric amounts of A and B are being fed into the
reactor.

e The inlet temperature of the cooling water T,.. By manipulating the
cooling temperature rather than the cooling flow rate, the temper-
ature control will be more effective and include less nonlinearities.
The drawback is the additional process equipment needed.

231

Chapter 9. Start-up Control of a Plate Reactor

e The feed temperature Tfc.q 4 of the reactant A. In the sequel, the
shorter form T will be used. The feed flow of reactant A constitutes
roughly 80% of the total reactor flow. Thus the feed temperature of
reactant B has only minor influence on the reactor temperature.

There is one manipulated variable for each input flow of the reactor
system, see Figure 9.2. Each manipulated variable has a corresponding
actuator system, i.e. each control signal is in fact a set-point to the actu-
ator system. Therefore, in the sequel, u = [up1s UB2sp Trsp T.sp]T will
be used, where the subscript 5, denotes set-point. Each actuator system
includes a low-level controller ensuring good set-point tracking. The time
constants of the actuator dynamics are roughly 1 second for the injection
flow control variables up; and ups, 2 seconds for the feed temperature
T¢ and 4 seconds for the cooling temperature T,. However, the feed tem-
perature and cooling temperature systems are designed for steady-state
operation, which means that during the start-up transients these control
variables will be less effective due to valve limitations. These limits for
the low-level control signals can be approximated by rate limits on 7'y and
T.. To summarize, the absolute and rate limits on the control variables
are

0 <up; <0.8

0 <upy <0.8
—2°C/s <Ty < 3°C/s
20°C <T; < 90°C
—2°C/s <T. < 1°C/s
15°C <T, < 90°C

Two reactor temperature measurements 77 and 7%, located after the
first and second injection point, are used for feedback control.

Uncertainties

The process model (9.9)-(9.11) is subject to parametric uncertainty, see
Table 9.1. The uncertainties associated with the model may lead to dras-
tic changes in the predicted heat release and the shape of the predicted
temperature profiles compared to the real process. The process model can
be reformulated as

%= f(x,u,p), pe?P (9.19)

where x are the states, u are the control inputs, p are the uncertain param-
eters and P is the uncertainty set associated with the model parameters.

The main uncertainty is associated with the reaction kinetics. A rea-
sonable model for the reaction kinetics is available, however, it is often

232

9.3 Problem Formulation

Table 9.1 Bounded uncertainties for the plate reactor

Parameter Nominal value uncertainty
Activation energy, E, 76000 J/mol + 2%
Pre-exponential factor, % 2e7 m?/(mol s) + 5%
Heat of reaction, AH 1.17e6 J/mol + 5%

Heat transfer coefficient, A 3000 W/(m? K) + 10%

only validated for the desired operating point. Therefore, especially during
start-up, there may be considerable uncertainty concerning the reaction
kinetics.

9.3 Problem Formulation

The overall objective is to find control inputs that transfer the state of
the process safely from an initial point, where the reactor is cold and no
reactant B is fed, to an optimal operating point with maximum reactant
conversion. The objectives can be formulated as

1. The main design objective is safety, which means that the temper-
ature T, throughout the reactor should at all times stay below a
maximum limit, T},,, = 160°C.

2. Maximize the reactant conversions at the reactor outlet, y4 and ¥,

defined as
czéut czéut
J/A = ctéut +cgut’ YB = ctéut +CoBut’ (920)

where the superscript out denotes the concentrations at the reactor
outlet. With the chemical reaction (9.1), this is equivalent to mini-
mizing the amount of unreacted A and B in the reactor outflow.

3. The time to reach the optimal operating point should be as short as
the primary objective permits.

There are many interesting challenges associated with start-up control
of temperature sensitive exothermic reactions; nonlinear dynamics, actua-
tor limitations and process uncertainty, see e.g. [Haugwitz and Hagander,
2006]. The nonlinear dynamics leads to multiple equilibrium profiles for
a given set of control signals. One equilibrium profile corresponds to the

233

Chapter 9. Start-up Control of a Plate Reactor

situation when no reaction occurs due to too low reactor temperature. An-
other equilibrium profile occurs when almost all reactants have converted
at high reactor temperature, which is the desired operating point. Finally,
in between these points, there is an equilibrium profile, which is unsta-
ble, due to the fast temperature rise caused by the exothermic reaction.
See e.g. [Laabissi et al., 2002] for an analysis of when there exist multiple
equilibrium profiles.

The combination of limitations in the control inputs and unstable non-
linear dynamics require the start-up transition to be carefully optimized
to avoid regions in the state-space where maximum control actions are
not sufficient to prevent temperature transients above T}, .

Dynamic optimization can be used to generate feasible start-up trajec-
tories in the face of control limitations and nonlinear dynamics. However,
the process uncertainty adds another dimension to the complexity of the
start-up problem. Therefore, robustness is the key focus in this problem
formulation. Robustness is often associated with the ability for a feedback
controller to compensate for disturbances and uncertainties. In this chap-
ter, however, the feedback controller is considered to be fixed. Instead, we
focus on the robustness of the off-line computed optimal trajectories, that
is, the sensitivity of the optimal solution to model uncertainty. As will be
described in the next section, optimal start-up trajectories may be arbi-
trarily sensitive to uncertainty, if the issue of robustness is not addressed
in the formulation of the optimization problem.

Solving the start-up problem for a process with uncertain parameters
is a challenging problem. Clearly, control trajectories computed based on
a nominal model is not likely to reproduce the predicted output profiles
for all models within the uncertainty set. For the plate reactor start-up,
open loop application of the control trajectories may lead to degraded per-
formance, and more importantly, violation of the temperature constraint.
Introduction of a feedback control system, which is designed to track the
predicted temperature profiles, significantly decreases the effects of mod-
eling errors. However, for large parameter variations, the limitations of
the actuator systems and the non-linear characteristics of the process may
lead to violation of the safety requirements also in the presence of a well-
designed feedback system. However, the ability of the feedback system to
enforce the safety requirements is strongly dependent on the properties
of the pre-computed control profiles. Start-up trajectories that have large
sensitivity to parameter variations can be expected to be more difficult
for the control system, which has limited authority, than trajectories for
which the parametric uncertainty is small.

To summarize, parametric uncertainty have profound consequences for
the start-up problem. In particular, it is not sufficient to meet the three
objectives listed above for a nominal parameter set. To meet the objectives

234

9.4 The Optimization Problem

for all parameters sets, a complimentary objective can be stated as:

Formulate the optimization problem so that the optimal control input
u(t) gives nominal state trajectories x"°™(t) that have low sensitivity to
parameter uncertainty.

9.4 The Optimization Problem

Definition of a dynamic optimization problem is an iterative procedure.
The problem specification given in this section is the result of such a
procedure, where successive refinement of objectives and constraints have
resulted in the final formulation.

Specifications of the Optimization Problem

The state x of the reactor should be transferred from a cold stable equilib-
rium where no reaction takes place, to a stable equilibrium at high reactor
temperature, where almost all of the reactants A and B are converted to
C. By minimizing the concentration of the reactants c4 and cp at the out-
let of the reactor, ignition of the reactor, and transfer of the state, can be
achieved.

As discussed in the previous section, it is very important to consider
the robustness properties of the optimal solution. The robustness prop-
erties of a particular solution may be analyzed by calculating the state
sensitivity with respect to parametric uncertainty, g—;. It is clear that a
bang-bang solution, resulting e.g. from solving a minimum time problem,
would not be robust, since the success of such a strategy is based on ¢im-
ing. In the presence of model uncertainty, the timing of the bang-bang
sequence might not match the actual state of the system, with degraded
performance as a result.

Two specifications that will improve the robustness of the optimal so-
lution have been introduced; i) a penalty on the high frequency use of the
control inputs, ii) a constraint on the accumulated amount of reactant B
at each injection point.

High frequency penalties on control signals High frequency penal-
ties on the inputs are introduced in the optimization, since it is impos-
sible to implement arbitrarily fast control trajectories. In addition, high
frequency penalties improve the numerical solution of the optimization as
the problem becomes less singular.

In the optimization problem, there exist rate limits on the feed temper-
ature and cooling temperature T3 and T:”. These derivatives are penal-
ized in the cost function as one kind of high frequency penalty. However,

235

Chapter 9. Start-up Control of a Plate Reactor

penalties on the derivatives of the injection flow rates, u; and u},, were
not sufficient. Instead a more general high-pass filter was introduced to
increase the flexibility in the optimization formulation. By varying the
cut-off frequency ol of the filter, it is possible to vary the frequency at
which the HF-filter starts penalizing the control signal.

The high frequency penalties are important for the nominal solution,
but they should also be considered in the context of the closed loop sys-
tem. The optimal control profiles are implemented as feed forward signals
in the closed loop feedback control system, see Figure 9.1. The feedback
controller should be able to compensate for effects of the model mismatch.
Clearly, the feedback system cannot be expected to suppress effects from
model mismatch at frequencies higher than its bandwidth.

It is then convenient to design the high-pass filter cut-off frequency in
terms of the frequency domain for the closed loop system. The frequency
content of the off-line computed control variables should be such that
high frequencies are not injected into the system. For the plate reactor,
the bandwidth of the closed loop system is close to 0.5 rad/s at the final
steady-state operating point, see also Figure 9.12. The limited bandwidth
arises from actuator dynamics and limited control inputs. Accordingly, the
bandwidth of the filter, (of was chosen to 0.5 rad/s. For comparison, the
case of w! = 5 rad /s was evaluated. The filter was implemented as a third
order Butterworth high-pass filter.

Accumulation of reactant B For safety reasons, it is undesirable to
have large amounts of reactant B accumulated in the reactor during start-
up. This may lead to sudden ignitions and thermal runaways. This can be
formally analyzed by investigating the state sensitivity with respect to the
parametric uncertainties, see Section 9.4. The analysis shows that high
concentrations and high temperatures give extremely high sensitivity for
the given uncertainties. Therefore, it is required that the concentration
of B should not exceed a specified maximum level. The constraints are
chosen based on the steady-state values at optimal operation for the nom-
inal model. In this application the concentration constraints were set to
200 mol/m? at the first injection point and 400 mol/m® at the second
injection point.

The constraints on cp have also another interesting physical inter-
pretation. By limiting the amount of reactant B inside the reactor, the
reaction rate r is limited, see equation (9.7). As a consequence, the rate
of the change of the temperature, T, is also limited, see equation (9.9).
This is a more natural way of constraining the temperature derivative
than introducing explicit constraints on the derivative in the optimization
problem.

236

9.4 The Optimization Problem

Constraints on reactor temperature The reactor temperature, T},
should not exceed the specified maximum temperature anywhere along
the reactor length, in order not to damage the reactor. The maximum
temperature should be chosen somewhat conservative, in order to allow for
temperature fluctuations due to disturbances and parameter uncertainty.
The maximum temperature allowed in the reactor is 7T},,, = 160°C, while
the corresponding temperature bound in the optimization problem was set
to 155°C.

Absolute and rate limitations of the control inputs There is a com-
plicated inter-play between the feedforward trajectories and the closed
loop system, which must be considered in the presence of model uncer-
tainty. Enough control authority must be allocated to the feedback con-
trol system to enable it to compensate for any model mismatch. This
is done by enforcing more conservative constraints in the optimization
procedure than is required by the physical plant, see (9.13)-(9.18). In
the optimization formulation, the more restrictive bounds were enforced:
0 <uf <07, 0<u}, <07, 30°C< T;p < 80°C, —1.5°C/s< T;p <
2°C/s, 20°C< T.P < 80°C, —1.5°C/s< TP < 0.7°C/s.

The Optimal Control Problem

Given the specifications presented in the previous section, the optimiza-
tion problem may now be formulated as

tr
. 2 2 sp 2 sp 2
mum/ oacy N+ OBCE N + Quy (Wpy f)” + Qup, (Ups)
0

+ar, (TF)? + ar, (T3P) di
subject to
x=f(x,u) (9.21)
T,; <155, i=1.N cp;<200, cps <400
0<u} <0.7, 0<u}, <07
-15 gTj;” <2, -15<T¥ <07
30 <T" <80, 20<T:” <80

Where cA .~ and cp n are the concentrations of A and B at the reactor out-
let. u%, y and u 5’2 are the high-pass filtered control variables correspond-
ing to injection of reactant B. The weighting coefficients are denoted o ; 2
T, are the reactor temperatures in the N control volumes. The terms cp 1
and cp 2 are the concentrations at the first and the second injection point,
respectively. Note that at time ¢ = 0, the only term that is non-zero, is

237

Chapter 9. Start-up Control of a Plate Reactor

the first term in the cost function cy4 y, since reactant A flows through
the reactor. The remaining five terms in the cost function are zero, as
they all are directly or indirectly associated with actions of the control
inputs. In steady-state, at the end of the optimization time ¢;, all terms
except the two concentrations are zero. Therefore, the values of ¢4 and ap
determine the steady-state optimal operating point. To achieve high con-
version of both reactants, these weights are chosen so that stoichiometric
relations are achieved, thus maximizing the conversion. The correspond-
ing Optimica description is shown in Listing 9.1, and the corresponding
Modelica plate reactor model is given in Appendix E. For brevity, the spec-
ification of the transcription scheme has been excluded from the Optimica
description.

The problem was transcribed and solved using a direct collocation
method, as described in Chapter 3. For this purpose, the Optimica com-
piler presented in Chapter 7 was used. The resulting AMPL code was
solved numerically by IPOPT, see Chapter 3. The input and state vari-
ables were discretized over a time horizon of 150 s using a grid of 450
points, which resulted in a large-scale optimization problem with approx-
imately 145 000 variables. The execution time for solving the optimization
problem was 1-2 hours on a Intel Core Duo 2.13 GHz system.

Scaling and Initial Guess

Scaling proved to be important in order for the numerical algorithm to
converge. Therefore, all states and controls were scaled to the same order
of magnitude. In addition, the automatic scaling facilities of IPOPT were
utilized. Further, the convergence as well as the execution time of the opti-
mization algorithm is dependent on the initial guess supplied to the NLP
solver. Therefore, a square problem, with fixed inputs was solved initially,
to generate initial guesses for all variables. Then the actual optimization
problem could be solved with satisfactory convergence rate.

Optimization Results

In this section the effects of the given specifications on the optimal solution
are presented and analyzed.

Overview of the characteristics The optimization results are plot-
ted in Figures 9.3 and 9.4. The main characteristic is the need for heat-
ing to achieve ignition. By increasing the feed temperature T'; the reac-
tor temperature increases and after ignition the reaction becomes self-
accelerating and T'; can return to its initial value. Similarly, the cooling
temperature T, is increased to promote ignition at the second injection
point. The maximum conversion occurs when the reactor temperatures
around the two injection points are at the maximum limit of 155°C.

238

9.4 The Optimization Problem

optimization PlateReactorOptimization (objective=cost(finalTime),
startTime=0,
finalTime=150)

PlateReactor pr(u_T_cool_setpoint(free=true),
u_TfeedA_setpoint (free=true),
u_B1_setpoint (free=true),
u_B2_setpoint (free=true));

parameter Real sc_u
parameter Real sc_c

670/50 "Scaling factor";
2392/50 "Scaling factor";

Real cost(start=0);
equation

der(cost) = 0.1+pr.cA[30]A2*sc_cA2 +
0.025%pr.cB[30]A2«sc_cA2 +
1+pr.u_Bl_setpoint_fA2 +
1#pr.u_B2_setpoint_fA2 +
1+der(pr.u_T_cool_setpoint)A2xsc_ur2 +
1xder(pr.u_TfeedA_setpoint)A2xsc_u’r2;

constraint
pr.Tr/u_sc<=(155+273)*ones(30);

pr.cB[1]<=200/sc_c;
pr.cB[16]<=400/sc_c;

pr.u_Bl_setpoint>=0;
pr.u_Bl_setpoint<=0.7;
pr.u_B2_setpoint>=0;
pr.u_B2_setpoint<=0.7;

pr.u_T_cool_setpoint>=(15+273)/sc_u;
pr.u_T_cool_setpoint<=(80+273)/sc_u;
pr.u_TfeedA_setpoint>=(30+273)/sc_u;
pr.u_TfeedA_setpoint<=(80+273)/sc_u;

der(pr.u_T_cool_setpoint)>=-1.5/sc_u;

der(pr.u_T_cool_setpoint)<=0.7/sc_u;

der(pr.u_TfeedA_setpoint)>=-1.5/sc_u;

der(pr.u_TfeedA_setpoint)<=2/sc_u;
end PlateReactorOptimization;

Listing 9.1 An Optimica description corresponding to the optimal control problem
(9.21).

239

Chapter 9. Start-up Control of a Plate Reactor

sp
Upy

0.6

sp
T; Tsp
80 80
70 1 70
60 1 60
© 50 : 50
40 : 1 40 4
—~ =
30 30 s,/
20 20
0 50 100 0 50 100
Time [s] Time [s]

Figure 9.3 Optimal control profiles. The dashed curves correspond to the case
a)f = 5.0 rad/s and the solid curves corresponds to a)f = 0.5 rad/s.

In the optimization formulation, the reactant B concentration around
the two injection points is limited, see Figure 9.4. The constraints on cp
ensure that there is only a limited accumulation of unreacted chemicals
in the reactor. The injection flow rates, ug; and ups, are initially low
to comply with the cp-constraints. Before more B can be injected, the
temperature at the injection points needs to be increased by T and T..
The higher reactor temperature increases the reaction rate, i.e. more of the
injected B is consumed. First then is it possible to increase the injection
of B and still comply with the constraint in cg. The constraints in cp
reduce the risk of uncontrolled ignition and increases the robustness of
the optimal trajectories.

Results when varying the high frequency penalty on ug, and upgs
Two cases have been considered, wf =0.5and wf = 5.0 rad/s. The optimal
control profiles for both cases are shown in Figure 9.3. When ol = 5.0,

240

9.4 The Optimization Problem

Ty T,
160 i 1 160
140 I 1 140
1
120 1 120
o 100 1 100
80 v 1 80
60 1 60
40 1 40
20 20
0 50 100 0
CB,1 CB2
400 : 1 400 -
I
= 300 =300 ft
g g I
iy = U
S 2001 S 200
E | E
I I
100 100 ’
U V4
)
-
0 0
0 50. 100 0 50. 100
Time [s] Time [s]

Figure 9.4 Optimal profiles profiles for reactor temperature and concentration of
substance B. The left plots correspond to the first injection point, whereas the right
plots correspond to the second injection point. The dashed curves correspond to the
case a)f = 5.0 whereas solid curves corresponds to a)f =0.5.

100

80

60

[%]

40

20

0 20 40 60 80 100 120
Time [s]

Figure 9.5 Conversion of reactant A at the outlet. The dashed curve correspond
to the case a)f = 5.0 and the solid curve correspond to a)f =0.5.

241

Chapter 9. Start-up Control of a Plate Reactor

there is clearly more high frequency content of the injection control inputs.
This allows the start-up to be somewhat faster as the control actions can
be more aggressive, when the temperature reaches the maximum value,
see Figure 9.4.

When 0! = 0.5, the optimization gives a slower transient to the maxi-
mum temperature value, since the injection control is penalized for lower
frequencies than in the previous case. Notice that the temperature con-
straints are active for both cases at the optimal steady-state operation
point.

The high frequency content of the case when ! = 5.0 leads to control
input trajectories that require exact timing to satisfy the temperature con-
straints. This optimal solution will be much more sensitive to parametric
uncertainty, as will be demonstrated in Section 9.7.

However, there is almost no difference in the settling time of the conver-
sion, 74, see Figure 9.5. With time to reach maximum conversion being the
primary performance measure, there seems to be almost no performance
loss for increasing robustness of the optimal solution in this case.

Results for varying the bounds on cg In Figures 9.6, 9.7 and 9.8
the optimal start-up trajectories are shown for three cases of different
concentration bounds on reactant B. The high frequency penalty on the
injection control inputs was fixed to ol =05 rad/s for all three cases.

With tighter constraints on cp, the reactor temperature needs to be
higher before more reactant can be injected. This is clearly shown in the
lower plots of Figure 9.6, where T'}” and 7¢” are increased to raise the
reactor temperature before more injection can occur. Figure 9.8 shows
the slower transient to the final operating point in terms of conversion,
when tighter constraints are used. However, when higher concentrations
are permitted, the start-up trajectories enter regions in the state-space
where the state sensitivity for parametric uncertainty is very high, see
Section 9.4.

Sensitivity Analysis
In the presence of uncertainty, there will be deviations in the actual state
trajectories from the off-line computed optimal trajectories. Sensitivity
analysis is performed to quantify the impact of the optimization specifica-
tions on the parametric sensitivity of the optimal trajectories. In addition,
we will study and compare the sensitivity of the open loop optimal trajec-
tories for the uncertain parameters from Table 9.1.

The state sensitivity to parameter changes, g—;, gives an indication
of how parametric uncertainty affects the behavior of the process. The
higher sensitivity, the higher is the impact of the model mismatch. For

242

9.4 The Optimization Problem

sp
Upy Upy

0.6

0 50 100
TP
80 80
70 70
60 60
O 50 50
o \
\
40 40 PR P
oo I;'
30 30 Vg
A3 ‘l"
20 20 <
0 50 100 0 50 100
Time [s] Time [s]

Figure 9.6 Control signals for optimal start-up for various cp-constraints. cp ; <
200, cgo < 400 (solid), cp; < 400, cgo < 800 (dashed), cp; < 600, cpo < 1200
(dash-dot)

small parameter changes A, the state trajectories are given by

B __ pnom
x=x""+ —xAp”"m, where A=2"2

—_— 9.22
ap pnom ()

is the dimensionless deviation factor of the parameter. In the start-up
of the plate reactor, temperature is the most important safety concern.
Therefore, the following analysis is focused on the sensitivity of the tem-
perature at the second injection point 7% to parameter variations.

Table 9.2 summarizes the maximum temperature sensitivity during
start-up time to parameter changes for various cg-constraints and cut-
off frequencies o!. The value in each entry of the table is the maximum
temperature deviation due to a 0.1% increase in the specific parameter,

243

Chapter 9. Start-up Control of a Plate Reactor

160
140
120

o 100

o

80
60
40

1500

T

20
0

50

CB,1

100

CB2

1500

50
Time [s]

100 0 50 100

Time [s]

Figure 9.7 Temperatures and concentrations during optimal start-up for various
cp-constraints defined in Figure 9.6.

100

80

60

[%]

40

20

80

Time[s]

100

120

Figure 9.8 Conversion of reactant A at reactor outlet during optimal start-up for
various cpg-constraints defined in Figure 9.6.

244

9.4 The Optimization Problem

for example

OTy(2)
Ty(t) — Teo™(t) =
o O - T = max

0.001- Erom (9.23)

This linear approximation is only valid for very small parameter changes,
due to the severe nonlinearities of the system. For the wider range of
uncertainties described earlier in Table 9.1, the nonlinear effects have to
be considered in order to analyze the state sensitivity, see the next section.

For tighter cp-constraints, the effect of the model mismatch on the
state trajectories is significantly smaller, up to an order of magnitude. The
maximum sensitivity in each case occurs when the reaction ignites and the
temperature increases very quickly. Start-up trajectories that have large
sensitivity to parameter variations can be expected to be more difficult for
the control system, which has limited authority, than trajectories for which
the parametric uncertainty is small. However, the decreased sensitivity
comes at the price of somewhat longer start-up time, see Figure 9.8.

The sensitivity of the optimal trajectories when a)cf = 5 rad/s is roughly
50% higher than for o/ = 0.5 rad/s, but it is in turn much smaller than
the sensitivity for higher constraints on cg. The choice of cut-off frequency
for the high-pass filter has a smaller, but still significant, impact compared
to the cp-constraints on the sensitivity of the optimal solutions. From Ta-
ble 9.2 it can also be noted that the reactor temperature is most sensitive
to changes in the activation energy E,. It can be explained by the fact
that the reaction rate r depends exponentially on E,, but only linearly on
for example k.

The sensitivities discussed in this section were computed using the
numerical solver DASPK, see [Maly and Petzold, 1996]. This algorithm
implements a BDF method for solving index-1 DAE systems, and can also
integrate the sensitivity equations.

Effects of Model Mismatch

In the previous section, linear sensitivity analysis showed that tighter
concentration constraints in the optimization formulation gave optimal
trajectories that have significantly reduced sensitivity to parameter un-
certainty. That analysis is limited to small parameter variations, so in
this section, we will use open loop simulations with the nonlinear model
to include the nonlinear and multiparametric effects in the sensitivity
analysis.

Up to now, optimal start-up trajectories have been presented for the
nominal model. Here we will take a first look at the effect of model mis-
match. The uncertainty of the model parameters were described in Ta-
ble 9.1. One specific case of model mismatch is now studied to provide some

245

Chapter 9. Start-up Control of a Plate Reactor

Table 9.2 Maximum deviation in Ty due to parametric sensitivity for different
start-up specifications.

ol=05 /=05 w =05 ol =5
cBs <400 cpy <800 cps <1200 cpo < 400

9. 0.001E ™ 15°C -14.9°C -51.8 °C 2.2°C
oL . 0.001kg™ 0.062°C 0.71°C 8.6 °C 0.091 °C
O, 0.001AH"™™ 0.24 °C 2.0 °C 15.8 °C 0.35 °C
9L 0,001 pmom 0.14 °C 1.4 °C -15.4 °C -0.18 °C

insights. The parameter errors are the following; the heat transfer coeffi-
cient 2 10% lower, the heat of reaction AH 5% higher, the pre-exponential
coefficient &y 5% lower and the activation energy E, 2% higher than in
the nominal model. This model mismatch is selected, since it is one of
the most difficult cases of model mismatch for the feedback controller to
handle, according to the Monte Carlo simulations that will be presented
in Section 9.7.

Figure 9.9 plots the difference AT = T; —T['°™ between the actual tem-
perature and the nominal temperature at the first injection. The higher
value in E, and lower value in %y will reduce the reaction rate and the sub-
sequent heat release. Thus, the actual temperature will be lower than the
nominal temperature before ignition occurs. After the ignition, the higher
value in AH leads to more heat being released, thus the actual tempera-
ture will be higher than the nominal. A reduced heat transfer coefficient
h will also lead to the actual temperature being higher than the nominal.
The combination of these four parameter errors form a challenging model
mismatch for a feedback controller to handle. First the mismatch leads
to lower temperatures, but after ignition has occurred, the effect of the
mismatch is the directly opposite.

Figure 9.9 shows that the effect of the model mismatch is significantly
smaller when tighter concentration constraints in B are enforced or when
lower cut-off frequency (ocf is used. This supports the results of Table 9.2
even when the nonlinear effects and uncertainty in multiple parameters
are considered simultaneously. In the next sections, we will extend the
robustness analysis to the closed loop system.

246

9.5 Feedback Control

20

o

I
o

|
n
o

|
W
o

Temperature deviation [°C]

1-
1
_aol ! — |
40 1 —_© =05,0,,<200
! f
o i ___mc=0.5,cBy1s400
=50 v b ; h
\ r e =05, ¢y | <600
~ ! { =5.0,c. <200
60} Mo e, 9,=9.0,05 < |
~70 i I | |
15 20 25 30 35 40
Time [s]

Figure 9.9 Difference in temperature at first injection point 7; for the nomi-
nal trajectory and the actual trajectory caused by model mismatch for various cg-
constraints.

9.5 Feedback Control

The dynamic optimization algorithm calculates open loop trajectories for
the four manipulated variables. Feedback control is necessary, however,
due to process uncertainties and disturbances. Only temperature feedback
is available. In the feedback control structure, the optimization results are
used as reference and feed forward trajectories,

f_ ¢ f— ¢
Tref = Tt el = e, (9.24)
Tf =T, I = T, uff = u, uff =g, (9.29)

where the superscript °?’ denotes the results from the optimization in
(9.21).

Figure 9.10 shows the Bode diagrams of the four most dominant open
loop transfer functions from the control inputs to the reactor temperatures
T and Ts. The transfer functions are linearizations of the process model at

247

Chapter 9. Start-up Control of a Plate Reactor

Magnitude
T
i
i
i
1
i
i
i
r

4

0.01 ‘ ‘

-100

-200

Phase

-300

~400 L L L
10 10 10° 10 10
Frequency

Figure 9.10 Bode diagrams; u3; — T; (solid), u%, — T5 (dashed), T;p - Ty
(dash-dot) and T;” — Ty (dotted).

steady-state after the start-up. In the Bode diagram, we can see that the
injection flow rates of reactant B, u}}; and u}},, have larger process gain
and faster impact on T} and T than T;p and T:? have. However, there are
several nonlinear effects that should be considered when choosing control
signals for feedback. For example, the injection flow rates may affect the
stoichiometric balance and should thus be used with care in steady-state.
Clearly, the variables T5” and T,” also affect the reactor temperatures,
but their input dynamics and rate limits will prevent achieving a desirable
bandwidth for the closed loop system using these two inputs only.
Therefore, a mid-ranging control structure, see e.g. [Astr('jm and Hag-
glund, 2005], shown in Figure 9.11 is introduced. The idea of mid-ranging
is to use control variables with fast impact, in this case, usé’l and usé’2, to
account for high frequency variations. This is realized by the controllers
C: and Cs in Figure 9.11. Meanwhile, variables with slower impact, in this
case, 7" and T¢”, are used to compensate for low frequency variations or
effects of model mismatch, using controllers C; and Cy. The actions of T/fp

and 7.;” on the process, enable the two injection flow rates u3}; and u3}, to

248

9.5 Feedback Control

rr

Upy j o
u
Cl . ‘ Bl

17!

.

sp
b Gla o T
!’ 9 React s
fr eactor
Upg

U1
Tff TSP o
R) o
C ; vz
;1

Upg

Tzref ‘ sp

Upg

%

Figure 9.11 Block diagram for the mid-ranging feedback control system.

return to their optimal values, thus achieving the correct stoichiometric
conditions between A and B in steady state. To reduce the interaction
between the fast and the slow control variables, the slow control loops are
designed to have a closed loop bandwidth that is an order of magnitude
smaller.

Each controller C;, C;, C; and C; in Figure 9.11 is implemented as
a PID-controller. The tuning of the controller parameters is based on the
AMIGO method, which involves robust loop-shaping and optimization of
the integral gain, see [Astrbm and Hégglund, 2005].

Finally, to analyze the resulting closed loop system, the singular values
of the sensitivity function S is plotted in Figure 9.12. S is the transfer
function from the disturbance signals v; and vy to the temperature signals
Ty and T and it is defined as

=[I+PC]™, (9.26)

where P is the linearization of the nominal reactor model at steady-
state and C represents the mid-ranging control structure depicted in
Figure 9.11. The closed loop system has good attenuation of constant
and low frequency disturbances and model-mismatch effects. The max-
imum singular value for any frequency is 1.17 at 1.7 rad/s, which implies
that the feedback control gives a good robustness. However, G, > 1 for
® > 0.9 rad/s. This indicates that the feedback controller will have dif-
ficulties in attenuating model-mismatch effects with higher frequencies.

249

Chapter 9. Start-up Control of a Plate Reactor

Magnitude

10~ I I I

7 7 Frequen1coy [rad/s]

Figure 9.12 Plot of maximum and minimum singular values of the sensitivity
function S

9.6 Simulation with Feedback Control

In this section, the closed loop system with feedback control is simulated
and analyzed, see Figure 9.1. The result of the feedback is compared to the
optimal solution given that the true values of the uncertain parameters
had been known.

In Figures 9.13 and 9.14, the start-up trajectories for three cases are
plotted; the optimal solution for the nominal plant, the feedback solution
when there is model mismatch (as defined in Section 9.4) and, finally,
the optimal solution knowing the exact model mismatch. The specifica-
tions in the optimization problem are a)f = 0.5 rad/s and cp; < 200 and
cp,2 < 400 mol/ m3. The model mismatch and its effect were described in
Section 9.4.

The feedback controller takes the temperature trajectories 7] °f and

T, °f from the optimal solution as references. The controller manipulates
primarily ug; and ups to achieve this reference tracking, despite track-
ing errors resulting from model mismatch. As described in Section 9.4,
this model mismatch leads initially to lower temperatures than in the ref-
erence. Thus, the controller have to increase the injection flow rates of
B to compensate. After the ignition, the model mismatch quickly gives
higher temperatures than for the nominal model, see e.g. Figure 9.9. The

250

9.6 Simulation with Feedback Control

sp sp
Up1 Ups
0.6 0.6
L
0.5 : e 0.5 L=
,:/‘— et
. + 4 4
0.4 /. 0.4 A
— y -+ ity
~—o03 i 0.3
0.2 !] 0.2 !
! 4
0.1 o 1 0.1 S ad
(d Cd
0 0
0 20 40 60 80 100 120 0 20 40 60 80 100 120
TsP
80
70
60 AL
o, \\
V4
50 A .
o \
’
40 A \
(4
T G
30f 2 .
/g \ Lt -
'y < 7
20 A .
0 20 40 60 8 100 120
Time [s]

Figure 9.13 The control signals. Comparison of optimal solution with nominal
model (solid), feedback control with model mismatch (dashed) and the optimal so-
lution when the exact model mismatch is given (dash-dot).

controller quickly lower the flow rates again.

Meanwhile, to achieve stoichiometric conditions in steady-state, the
mid-ranging control reduces the pre-heating T and cooling T¢, to allow
the injection flow rates up; and upgs to return to their pre-defined optimal
trajectories. In other words, during the transients the higher heat release
is compensated for by ug; and upe, but in stationarity by Ty and T.. In
this way, mid-ranging allows each control input to be used at its best de-
pending on its limitations, dynamics and available bandwidth. The control
limitations for Ty and T, were more restrictive in the optimization formu-
lation, to allocate some additional flexibility to the feedback controller.
The feedback controller is bound by the original limitations defined in
(9.13)-(9.18).

The feedback control tracks the optimal temperature trajectories and
preserves the optimal injection flow rates with the mid-ranging control.
However, these optimal trajectories are computed for the nominal model

251

Chapter 9. Start-up Control of a Plate Reactor

T,
160
140 !
!
120 ‘
O 100 !
80 ;
60
40
20
0 20 40 60 80 100 120
CB,1 CB2
600 600 0
I
500 500 4 "
— — PR Y
400 *, 400 s
g g - / .
- ’ ~ 1 R _
< 300 A = 300 f e =
[- 1_'
— 200) =200 R
1 s
100 - ‘ 4 100 . 4
A S
0 0
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time [s] Time [s]

Figure 9.14 The state variables. Comparison of optimal solution with nominal
model (solid), feedback control with model mismatch (dashed) and the optimal so-
lution when the exact model mismatch is given (dash-dot).

and may not be optimal due to model mismatch. It may then be interesting
to see how the feedback solution compares with an optimal start-up if
the exact model mismatch had been known, see the dash-dot lines in
Figures 9.13 and 9.14. As the activation energy is higher, the reactor flow
needs to be heated more, before injection can be increased further, thus
avoiding excessive accumulation of B. The higher heat release leads to
less reactant being injected at the first point, since T/fp is already at its
lower limit of 30°C. Thus, the injection of B is slightly redistributed from
the first to the second injection point. To adjust for the increased heat
release, the cooling temperature T.” is lowered in stationarity.

The feedback controller succeeds in tracking the temperature refer-
ences, but the concentration of reactant B increases temporarily due to the
model mismatch, see the lower plots in Figure 9.14. This may be avoided if
concentration feedback is available. The resulting operating point will be
different for the feedback solution and the optimal solution knowing the

252

9.7 Monte Carlo Simulations

model mismatch. However, the conversion of reactant A is 98.8% for both
operating points, thus the feedback control does not loose any efficiency
for this particular model mismatch.

9.7 Monte Carlo Simulations

In this section. the robustness of the closed loop system is evaluated by
means of Monte Carlo simulations. To reduce the state sensitivity of the
optimal trajectories to parametric uncertainties, we have introduced two
key specifications in the optimization problem; i) high frequency penalties
on u, and u}, defined by a cut-off frequency o! and ii) constraints on
cp at the two injection points. The temperatures at the first and second
injection points were evaluated and compared for five cases:

Case 1: Feedback control disabled, optimal trajectories computed for
ol =05 rad/s, cp1 < 200 mol/m3 and cp s < 400 mol/m3

Case 2: Closed loop control, optimal trajectories computed for
! =05 rad/s, cp1 < 600 mol/m3 and cp» < 1200 mol/m3

Case 3: Closed loop control, optimal trajectories computed for
! =05 rad/s, cp.1 < 400 mol/m3 and cp 3 < 800 mol/m3

Case 4: Closed loop control, optimal trajectories computed for
ol =05 rad/s, cg.; < 200 mol/m? and cp 2 < 400 mol/m?

Case 5: Closed loop control, optimal trajectories computed for
ol =5.0 rad/s, cg.; < 200 mol/m? and cp 2 < 400 mol/m?

The first case is open loop control, the remaining four are closed loop
control. Cases 2, 3 and 4 displays the effect of tighter cg-constraints. Case
5 considers less high frequency penalties on the injection control inputs.

For each case, 5000 simulations were carried out. In each simulation,
the values of the model parameters E,,AH, ky and 2 were randomly gener-
ated from a uniform distribution, based on the uncertainties in Table 9.1.
The closed loop system is simulated and the reactor temperatures at the
injection points are recorded. Then a new sample of the uncertain param-
eters is generated and the whole procedure is repeated.

To visualize the sensitivity of the five cases to the uncertainties, en-
velope curves were constructed, see Figure 9.15. They show the minimum
and maximum temperature among the 5000 simulations for each sample
time ¢. The horizontal dashed line indicates the safety limit of 160 °C.
Any temperature above this may lead to safety shut-down to avoid dam-
age to the reactor. A larger area between the minimum and maximum

253

Chapter 9. Start-up Control of a Plate Reactor

temperature indicates a higher variation in reactor temperature due to
insufficient robustness to the model mismatch.

In the first case, without feedback control, the reactor temperature at
the first injection point spans an interval from 145 to 164°C at steady
state. At the second injection point, there are some situations where the
reaction does not even ignite directly after injection, but instead ignition
occurs further downstream in the reactor. This gives an even larger tem-
perature interval. The remaining cases include feedback control.

The second case has the least restrictive cp-constraints. The optimal
solution based on the nominal model is then extremely sensitive to uncer-
tainties, see Section 9.4. Therefore, the Monte Carlo simulations for this
case show the widest range between the minimum and maximum reactor
temperature. In fact, the time for ignition of the reaction at 75 varies from
45 to 87 seconds, due to the effects of different model mismatch.

In the third case, the cp-constraints are somewhat stricter than in the
second case. The parameter uncertainty leads to model mismatch that the
feedback controller can not handle fast enough. In fact, the feedback con-
troller actually worsen the situation, since the transient results are even
worse than without feedback. In steady-state, however, the temperatures
are back to the nominal values, due to the integral action.

The most robust start-up is achieved in the fourth case, where tighter
cp-constraints and a low o/ yield optimal solutions with very low sensitiv-
ity to uncertainty. Therefore, the effects of the model mismatch is small
and the feedback controller succeeds in keeping the temperature below
the safety limit.

In the fifth and final case, the same cg-constraints are enforced, but
there is less penalty on the high frequency components of the injection
control inputs up; and ugs. Due to the very fast transient, the maximum
temperature limit for the nominal model, the optimal solution is sensitive
to model mismatch. There are some parameter values within the uncer-
tainty region, for which the feedback controller can not keep the reactor
temperatures below the safety limit.

To summarize, the first case shows that feedback is necessary. How-
ever, due to limited bandwidth in the feedback controller, the optimal
start-up trajectories cannot be computed based on an arbitrary optimiza-
tion specification. To avoid unsafe start-up, the optimal start-up trajecto-
ries need to have low sensitivity to parameter uncertainty. This is achieved
by introducing high-frequency penalties on the control signals and enforc-
ing concentration constraints on reactant B.

254

9.7 Monte Carlo Simulations

Open loop: @/ = 0.5 rad/s, cp < 200 and 400 mol/m?

8 200 200
[| —— | e ——
5 150 [— 150
I
g 100 100
g 50 50
&
0 50 100 150 0 50 100 150
_ Closed loop: ! = 0.5 rad/s, cg < 600 and 1200 mol/m?
& 200 200
o S I N _
5 150 150
w
E 100 100
g 50 50
&
50 100 150 0 50 100 150
. Closed loop: @/ = 0.5 rad/s, cg < 400 and 800 mol/m?
o
° . 200 200
o | _ I
5 150 150
o
£ 100 100
(=]
g 50 50
&
0 50 100 150 0 50 100 150
. Closed loop: @/ = 0.5 rad/s, cg < 200 and 400 mol/m?
®)
2. 200 200
o -
5 150 150F — T = —
I
5 100 100
g 50
5 50
> 0 50 100 150 0 50 100 150
_ Closed loop: ! = 5.0 rad/s, cg < 200 and 400 mol/m?
.E_). 200 200
o o e
3 150 150
I
5 100 100
[N
g 50 50
&
0 50 100 150 0 50 100 150
Time [s] Time [s]

Figure 9.15 Maximum and minimum reactor temperature at the first (left col-
umn) injection point and the second injection point (right column) at each time
instant out of 5000 sample simulations 955

Chapter 9. Start-up Control of a Plate Reactor

9.8 Summary and Conclusions

In this chapter, it has been shown how dynamic optimization can be used
to generate trajectories for start-up of a plate reactor. The complex inter-
play between the formulation of the optimization problem and the im-
plementation of its solution in a closed loop setting has been discussed.
With model mismatch, an optimal solution may lead to transients that
the feedback controller can not handle due to limited bandwidth. There-
fore the specifications of the optimization problem include concentration
constraints on the injected reactant B and a high frequency penalties on
the control inputs. This results in an optimal solution with a significantly
reduced sensitivity to uncertainties compared to solutions closer to the
time-optimal. Temperature feedback control ensures that the optimal tem-
perature trajectories are tracked. A mid-ranging control structure is used
to take advantage of all four available control inputs. The proposed op-
timization specifications has been evaluated in Monte Carlo simulations,
under the assumption of uncertain parameter values, with satisfactory
result.

The design procedure has been supported by automatic code genera-
tion tools, where the model description has been expressed in Modelica.
The availability of automatic tools has enabled focus to be shifted from
the details of encoding the problem towards formulation of the actual op-
timization problem. As a result, the iterative process of formulating a
dynamic optimization problem is supported. A natural extension of this
work is to consider multi-parametric optimization, where the uncertainty
in the parameters are included into the optimization problem.

256

Control of Pendula

10

Safe Manual Control of an
Inverted Pendulum

10.1 Introduction

In many control applications, a system is controlled by a combination of
manual and automatic control. Typical examples are air crafts, where sta-
bility augmentation systems are used to assist the pilot. The combination
of manual and automatic control is particularly crucial for unstable sys-
tems with actuator constraints, because the system can be driven to such
a state unintentionally by manual control. The problem is similar to the
one encountered when controlling unstable air crafts such as the Saab
Gripen, where in some flight conditions the unstable mode is so fast that
a pilot cannot stabilize the system. In this case, the aircraft dynamics is
non-linear and, also, the actuator rate is bounded, see [Rundqwist et al.,
1997; Patcher and Miller, 1998]. The pendulum problem can, however,
serve as a simple prototype for an interesting class of real problems.

The essence of the problem can be captured in the following formula-
tion. Consider an unstable system with actuator saturation. Find a con-
trol strategy that stabilizes the system and provides facilities for manual
control. The strategy should be such that the system can be controlled
manually without driving it unstable.

There is an extensive literature on stabilizing a dynamical system sub-
ject to input or state constraints. For linear systems, the problem is well
understood. For stable systems there are strong results stating that there
always exist a controller that stabilizes the system globally. The result
was proven for a chain of integrators in [Teel, 1992] and for the general
case in [Sussmann et al, 1994]. For unstable systems, the situation is
more involved. A key concept for control of unstable systems is the notion

259

Chapter 10. Safe Manual Control of an Inverted Pendulum

of Reachability Sets, which contain all points of the state space such that
there exists a feasible control trajectory that brings the system to the ori-
gin. The problem is closely associated with that of minimum time optimal
control. It can be shown that the reachability set of a linear exponentially
unstable system is bounded in the directions of the unstable modes. Con-
sequently, only semi-global stability may be achieved. An elegant result
for calculation of reachability sets for exponentially unstable systems as
well as a method of semi-global stabilization are given in [Hu et al, 2001].

For non-linear systems, the situation is different. Fewer results are
available on stabilization with bounded controls, [Teel, 1996] being a no-
table exception. The problem of calculating reachability sets is signifi-
cantly harder for non-linear systems.

Another branch of the theory deals with the problem of anti-windup. In
this setting, a local performance controller is designed without taking the
saturation nonlinearity into account. The problem is then to find an anti-
windup modification of the controller that leaves the behavior of the local
controller unaffected when there is no saturation, and limits the effects
of saturation if it occurs, see for example [Rénnbéck, 1993]. In [Teel and
Kapoor, 1997], the problem was given a rigorous definition and solved for
the case of stable linear systems. In [Teel, 1999] the anti-windup problem
for exponentially unstable linear systems is addressed.

In this chapter, the inverted pendulum, representing a non-linear un-
stable system is studied. The aim of the controller is to enable velocity
tracking of the pivot point of the pendulum while ensuring stability. The
reachability set of the system is explicitly characterized, and a controller
based on this set is proposed. The chapter is an extension of [Akesson and
Astrém, 2001], where a linearized pendulum system was studied.

10.2 Equations of Motion

Consider the inverted pendulum on a cart in Figure 10.1. Let the position
of the cart be x, and the angle of the pendulum 6. Let I denote the distance
from the pivot point to the center of mass of the pendulum, m, the mass of
the pendulum and J, its moment of inertia w.r.t. the pivot point. Further,
let m. denote the mass of the cart, F' the force acting on the cart and g
the acceleration due to gravity. The equations of motion of the inverted
pendulum may be written as

Jp0 —mplicosd —myglsing =0 (10.1)
—mplécos O + (me + mp)i —myl6°sin 6 = F. '

260

10.2 Equations of Motion

Figure 10.1 A schematic picture of the inverted pendulum on cart.

By introducing the input transformation
1
F =— [v(m.J, + myd. + m21?sin® 6
Jp[(”’ Pre R) (10.2)
—mZ2gl? sin 6 cos 6 + J,m,16% sin 6]

where JI’, is the moment of inertia of the pendulum with respect to its
center of mass, the control input to the system is transformed to the
acceleration of the cart, v, rather than the acting force F. Notice that the
transformation can be done globally in the state space since J, < m,I2.
Introducing the normalizations

J, . l
X1 = o X9 = L (7] X3 = m—p X
mpgl Jpg
(10.3)
mpgl
u= v T = mp9t t
g Jp
the dynamics of the system may be written as
X1 =X3
%y =sinx; + ucos x; (10.4)
X3 =u.

Notice that the state x has been excluded, because the aim of the control
system is to enable velocity control of the cart.

The equilibria of the pendulum are x; = 0 and x; = 7 which represents
a saddle (unstable) and a center (stable) respectively. Linearization of the
model (10.4) with respect to the unstable equilibrium point x = (0,0,0)
is given by

010 0
=110 0|x+|1]u (10.5)
00 0 1

261

Chapter 10. Safe Manual Control of an Inverted Pendulum
10.3 Reachability Set Analysis

The reachability set plays an important role for design of controllers for
unstable systems subject to input saturation, because stability is lost if
the state leaves this set. A point in the state space belongs to the reach-
ability set if there exists a feasible control signal such that the state of
the system is brought to the origin. The set of all such points constitutes
the reachability set. The role of reachability sets was discussed also in
Section 1.5.

In the following it will be assumed that the control input of the system
(10.4) is subject to the following standard saturation

ug u > ug
sat,,(u) =< u —up <u < ug (10.6)

—uy u< —uy.

The reachability set of the planar pendulum was studied in [Brufani,
1997], where the reachability set for |x;| < 7 was calculated. For com-
pleteness, this derivation is given below, as well as its extension to the
case when |x1| < 7.

We first notice that for a constant acceleration ug there is an equilib-
rium at x9 = arctan ug and x) = 0. When the acceleration has the constant

value ug, the equation of motion of the pendulum can be integrated to give

1 .

535% = —cosx +ugsinx; + C

1 —cos x; cos x¥ + sin x; sin x?

5% = L L+C (10.7)
€0S Xo

cos (x1 + «9
_ _cos () : Dy e
cos x¥

The reachability set is essentially given by (10.7). To explore the details
we will consider two cases.

Case 1: |x1]| < 7/2

This case correspond to the situation where the pendulum is never allowed
to pass the horizontal plane through the pivot. In this case, the boundaries
of the reachability set is given by the trajectories through the unstable
equilibria (x?,0) and (—x?,0). Linearization around the equilibria shows
that they are saddles. The trajectories are the stable solutions of (10.7)

262

10.3 Reachability Set Analysis

— ey

X2
o
T
”

-3

£ o e o —

_4 L

Figure 10.2 Boundaries of the reachability regions for |x| < 7/2 in full lines and
for |x1| < @ = 2.35 in dashed lines. The circles show the unstable equilibria and the
arrows show the direction of the vector field. In this case uy = 3.

through the equilibria. This gives C = +1/ cosx? and the expressions

1 — cos(x; — x? T
2%, T <m <
€os x7 2
f,:’/z(xl) = (10.8)
1 — cos(x; — x? T
— 2%, x(l) <y<=Z
cos x} 2

for the upper boundary of the reachability region. Because of symmetry,
the lower boundary is the mirror of the upper boundary, hence

fzt_/2(x1) = _f;/z(_xl)- (10.9)

Figure 10.2 shows the reachability region for this case with uy = 3 in
solid curves.

263

Chapter 10. Safe Manual Control of an Inverted Pendulum

Case 2 |xi| <7

It follows from the analysis in [Astrém and Furuta, 2000] that if the ac-
celeration is larger than 4/3 it is possible to have a reachability set which
allows the pendulum to go below the horizontal plane through the pivot.
Assume that the angle is restricted to —a < x; < «. This requires that
the acceleration of the pendulum is sufficiently large to swing up a pendu-
lum at rest from the angle . The energy analysis in [Astr(im and Furuta,
2000] gives the following relation between o and wo.

2
o = m — arctan ug + arccos ($) (10.10)

V1+ui—1

It is somewhat counter-intuitive that the smallest acceleration uy = 4/3
is obtained for the largest &, i.e. @ = . Smaller values of a require larger
acceleration.

To find the reachability set we first observe that the boundary of the
reachability region goes through the point x; = *a, x2 = 0. In the case
of ¢ > 0, the acceleration is positive for |x1| > 7/2 and negative for
|x1| < /2. Using the energy equation (10.7) and matching the parameter
C to the boundary conditions we obtain the following expression for the
upper boundary xgs = f*(x1) of the reachability region.

0
%_ﬁﬁiﬂiﬁﬁ+ig if2<m<a

0
cos x7

.0
f(x) = \/—zw 0 if-Zexn<l (10.11)
€OS X7 2 2

cos 0 . T
WA N) o i gca <
€os x7 2

where

cos (o + x9)

C =9 10.12
! cos x¥ ()
2 — x9 2+«
C, = €08 () - x7) _gt0s (z/ :‘xl) +C (10.13)
€OS X7 COS X7y
—1/2 4+ x0 —7/2 — Y
Cy = 2COS(7[/ O+ xl) _2COS(7[/ : xl) + Cy (1014)
cos x7 COS X7

264

10.4 A Stabilizing Controller

Figure 10.3 Boundaries of the reachability regions for |x;| < 7 and ug = 4/3
(solid), ug = 3 (dashed) and uy = 6 (dash-dotted).

The lower boundary of the reachability region, f, (x1), is defined as in
Equation (10.9). In Figure 10.2, the reachability region in the case of
uo = 3 and « given by (10.10) is shown in dashed curves. Figure 10.3 shows
reachability regions for |x1| < 7. Notice that the region grows for larger
values of ug. The size of the reachability set depends on the saturation
limit, uo, and on the permissible range of x1. The entire state space is the
reachability set if there are no restrictions on x;.

10.4 A Stabilizing Controller

As a first step towards the design of a controller enabling tracking of
reference commands for the cart velocity, a stabilizing controller for the
pendulum states x; and xg will be developed. It is clear from the previous
analysis that such a controller may only stabilize the system in (a subset

265

Chapter 10. Safe Manual Control of an Inverted Pendulum

of) the reachable region, which is a priori known.

In the following, the case of |x1| < /2 will be considered. A simple but
effective way to design such a controller is to use a linear design method
based on the linearized model (10.5), resulting in a linear control law

u= satuo(—llxl — l2x2), (1015)

which locally stabilizes also the non-linear system (10.4). It is not clear
that such a controller also achieves semi-global stabilization. Using an
LQ design, however, it is possible to prove semi-global stability, given that
the controller fulfills the following two sufficient conditions: Firstly, the
region of the state space where the controller operates linearly must be
entirely contained in the reachability set. Secondly, the solution of the
algebraic Riccati equation, P, should produce a Lyapunov function candi-
date, V(x) = x7 Px, such that there is a sufficiently large region defined
by V(x) < ¢ in which V(x) < 0. From the Lyapunov stability theorem it
follows that {x : x7 Px < c¢|x — 0}. The first condition is to make sure that
close to the boundaries of the reachability set, the controller is saturated.
In this situation, trajectories will approach the center of the reachability
set and the linear region. The second condition is to ensure that all tra-
jectories starting outside of the ellipse defined by x” Px < ¢ will actually
enter it. It is not difficult to find a controller that fulfills the requirements.
A typical situation is shown in Figure 10.4. As can be seen, an ellipse de-
fined by x” Px < ¢ (bold) can be fitted inside the region in which V < 0
(dash-dotted bold). Further, the controller operates in linear mode in the
region defined by the non-bold dash-dotted lines. It hence follows that all
trajectories starting inside of the reachability region (dashed bold) will
inevitably enter the ellipse. Semi-global stability follows. By tuning the
weights in the LQR-design, it is possible to shape the local behavior of
the controller, and also obtain an ellipse that is better aligned with the
reachability region. However, stability and the region of attraction of the
controller will be unaffected as long as the two requirements stated above
are fulfilled.

10.5 Tracking

In this section we will design a controller that permits manual control of
the cart velocity while stabilizing the pendulum. Consider the control law

u = saty, (—l1x1 — laxg + m), (10.16)

where m represents the tracking term which will be defined below. First
assume that m is constant. The equilibria of the perturbed system are

266

10.5 Tracking

-4 | | | | | | |

Figure 10.4 The region of attraction of the linear saturated controller.

then given by the equation
tanx; = saty,(—Il1x1 +m). (10.17)

The curve representing the saturation is shifted horizontally when the
manual control is changed. The number of equilibria then depends on m.
In Figure 10.5, there are three equilibria marked by circles. The middle
equilibrium is (controlled) stable and the others are unstable. For large
positive or negative values of m there is only one equilibrium which is
unstable. A necessary condition for semi-global stability is that the system
has three equilibria for a constant m. To maintain stability it is necessary
that the manual control actions are limited. From the point of view of
performance it is desirable that the limits on the authority of manual
control are as wide as possible. From the previous analysis, it is clear
that a constant angle x{, corresponds to a constant acceleration u°. To
enable fast tracking, i.e., large acceleration towards the reference velocity,

267

Chapter 10. Safe Manual Control of an Inverted Pendulum

Figure 10.5 Equilibria for the system subject to saturated control and constant
reference tracking term m.

it is thus desirable to allow for large values of m. By selecting the tracking
term m as
m = saty(I3(r — x3)) (10.18)

where r is the reference value of the cart velocity state x3, it is possible
to capture the trade-off between stability and performance. The feedback
gain I3 is conveniently calculated using LQR-design, that gives the de-
sired local behavior. The choice of the saturation limit a is guided by the
following lemma:

Lemma 10.1
Consider

o {a+(x1) = lo(fr)2(x1) + d) —uo + lixa (10.19)

a_(xl) = —l2(;—/2(961) — d) —ug—l1x1

where a™(x1) and a~(x1) are the positive and negative saturation limits
of (10.18) and 0 < d < djnax- Then the region bounded by f;/2 (x1) —d and
fﬂ_/2 (x1) +d is positively invariant, i.e., trajectories starting in this region
will remain in it regardless of the reference value r.
Proof: The proof is a straight forward application of Nagumos theorem,
stating that for a closed set § € R", S is positively invariant for the system
% = f(x), if and only if the field f(x) points to the interior of .S for all
x € 3S. See [Blanchini, 1999] for details.

The controller (10.16) with saturation limits defined by (10.19), oper-
ates in saturated mode whenever xo > f; /2 (x1) —d or x5 < fri /2 (x1) +d.
It then follows from a phase plane argument that trajectories starting at

268

10.5 Tracking

Figure 10.6 Phase portrait of the system (10.4) subject to tracking control.

the boundary curves f; /2 (x1) —d and f; ,(x1) +d will approach the inte-
rior of the region. The same argument can be applied for the vertical line

segments bounding the region at x; = +7/2. O
REMark 10.1
To avoid an overly conservative design, the saturation limit a is dependent
on the angle x;. O
REMARK 10.2

The value of d is used to control the size of the invariant region, yielding
a safety margin for robustness. However, the region does not exist if d is
too large. O

Remark 10.3
The boundary functions ;/2(351) and f,,(x1) used in (10.19) can be ap-

proximated by simpler expressions, as long as the condition of Nagumos
theorem are fulfilled. O

269

Chapter 10. Safe Manual Control of an Inverted Pendulum

Figure 10.7 Trajectories for a step reference change for the proposed controller
(10.16) (solid) and the time-optimal solution (dashed).

Figure 10.6 shows the phase portrait resulting when a step reference se-
quence is applied to the system (10.4), controlled by the controller (10.16)-
(10.19). As can be seen, the state remains in the specified invariant set.
Notice that the linear region marked by dashed lines is small compared
to the invariant region. A strategy that avoids saturation is thus very
conservative. The tracking behavior of x3 in Figure 10.7 is reasonable as
shown by a comparison with minimum time trajectories. The time optimal
trajectories give a faster response for large set point changes, but lacks
the robustness of the proposed feedback controller.

10.6 Extensions
The analysis above is valid for the system (10.4), where limited acceler-
ation of the pivot was assumed. The true problem, however, is to device

a controller for the system (10.1), assuming input saturation on F, i.e.,

270

10.6 Extensions

Figure 10.8 Phase portrait of the system (10.1) subject to tracking control.

limited force. This problem can be solved using insight gained from the
analysis in the previous sections.

The reachability set of (10.1) subject to the input nonlinearity (10.6)
can be found numerically through simulation. The set is indicated in Fig-
ure 10.8 in bold curves. Using this set, the controller (10.16) with satura-
tion limits (10.19) can be employed. As previously, the controller renders
the region defined by the boundary functions ;/2 and f”_/2 and the pa-
rameter d invariant. Notice that the invariance argument holds also for
approximations of the boundary functions, see Remark 10.3.

Figure 10.8 shows a typical phase portrait. The pendulum states do
not leave the invariance region marked by dash dotted curves. Figure 10.9
shows the step response of the system. The minimum time solution is
shown in dashed curves. Notice the different time scales in Figures 10.7
and 10.9, which are due to scaling. The following numerical values of the
parameters of the system (10.1) were used in the simulations: m, = 0.3 kg,
I =0.5m, m,=02kg, g=981m/s? and J, = m,l>.

271

Chapter 10. Safe Manual Control of an Inverted Pendulum

Figure 10.9 Trajectories for a step reference change for the proposed controller
(solid) and the time-optimal solution (dashed).

10.7 Conclusions

An explicit characterization of the reachability set for an inverted pendu-
lum on a cart subject to limited acceleration of the pivot has been given. A
controller enabling tracking of constant pivot velocity references while sta-
bilizing the pendulum has been proposed. A single parameter, d, is used
to trade performance and robustness of the controller. The controller has
also been generalized to the case of the actual pendulum system subject
to a limited force acting on the cart.

272

11

Design and Control of YAIP

11.1 Introduction

Inverted pendula have been the subject of numerous studies in automatic
control, from the 1940s and onwards. In this chapter, a variation on the
theme inspired by the well known Segway robot, [Segway Inc., 2006], is
described.

Inverted pendula mounted on two wheels have been reported in sev-
eral papers during the last years, see e.g. [Grasser et al., 2002]. Also, there
are a number of commercial robots on the market. This chapter describes
the design and control of a prototype Segway-type robot, intended as a
platform for research and teaching. The design problem is challenging,
considering that a primary objective has been to use components avail-
able at a reasonable price, while maintaining acceptable performance. Key
design issues include selection of drives and sensors as well as electronics
and choice of microprocessors for signal processing and control.

The resulting robot offers several interesting features regarding sen-
sors, control design, distributed control systems and implementation. The
robot is equipped with two drives for actuation, a rate gyro and an ac-
celerometer for measuring the angle and angular velocity of the pendulum
body, and encoders for measuring the angle of the wheels. Signal process-
ing and control algorithms are distributed amongst three microprocessors;
one for each of the drives and one responsible for stabilizing control. This
layout enables hierarchical control design, but also complicates implemen-
tation, since processor communication must be considered.

The purpose of this chapter is to describe the robot design and to report
experiences from the design process. The chapter gives two main contribu-
tions. Firstly, a design description of the robot is given. Secondly, a novel
approach to angular velocity estimation based on analog differentiation of

273

Chapter 11. Design and Control of YAIP

encoder signals is presented.

The chapter is organized as follows. In Section 11.2, the robot design
is briefly described. Sections 11.3 and 11.4 treat selection of sensors and
associated algorithms. In Section 11.5, a dynamic model of the system is
presented. In Section 11.6 control strategies are described and in Section
11.7 implementational issues are covered. Section 11.8 describes results
from experiments, and finally, in Section 11.9, conclusions and final re-
marks are given.

11.2 System Design

A schematic picture of the robot is shown in Figure 11.4. The robot consists
of the pendulum body, which is attached to axes at which the two wheels
are mounted. The pendulum body incorporates two DC-motor drives, trans-
mission, sensors and several circuit boards hosting the micro-processors
and sensor related electronics such as filters and amplifiers.

Mechanical Design

The actual pendulum body is built using FAC system’s meccano/errecter
set [FAC-system, 2006], complemented by some custom made aluminium
parts, e.g. the parts used for mounting the drives. The robot is depicted
in Figure 11.1.

Sensors and Actuators

In order to enable stabilizing control, the robot must be equipped with
appropriate sensors and actuators. In fact, this issue constitutes perhaps
the most challenging task in the robot design process. The choices con-
cerning sensors and actuators, and associated algorithms, will inevitably
impose constraints on achievable performance.

A pair of DC-drives were used to actuate the robot. Basically, the main
trade-off is that between weight and torque, where higher torque comes at
the price of more expensive and heavier drives. In order to increase torque,
drives equipped with gear-boxes are attractive choices. A standard solu-
tion, which is also widely available, is then planetary gear-boxes. However,
such devices introduce back-lash, which severely degrades control perfor-
mance. This was confirmed by early designs in the project, as well as in
[Grasser et al., 2002]. Therefore, a gear-box was constructed using timing
belts (ratio 4.1:1), which was found to effectively eliminate the back-lash.
The drives used were a pair of Faulhaber 3863012C, which produced the
maximum torque 0.45 Nm each, when connected to the gear-box. The
choice of drives was guided by a preliminary simulation study.

274

11.2 System Design

Figure 11.1 YAIP - the inverted pendulum robot.

The use of a rate gyro in combination with an accelerometer is a stan-
dard configuration for inertial sensing, which is needed in this application
to estimate the angle and angular velocity of the pendulum body, see e.g.
[Grewal et al., 1991]. The selected accelerometer was an ADX202 and the
rate gyro was an ADXRS300, both from Analog Devices. The ADX202 is
a two axis accelerometer, although only one channel is needed in this
application.

In order to measure the wheel angles, encoders were used. Since good
angle and angular velocity information is crucial for stabilization of the
system, the analog encoder signals were sampled at a frequency high
enough to enable angle estimation based on the analog wave forms pro-
duced by the encoders. In addition, in order to further increase the accu-
racy of the angular velocity measurements, the derivative of the encoder
signals were produced using analog filters. The differentiated signals were
then sampled together with the original encoder signals. The idea of using

275

Chapter 11. Design and Control of YAIP

analog differentiated encoder signals for velocity estimation is not new, see
e.g. [Gabor, 1974]. However, the approach presented in this chapter, which
is based on tabulated mappings calculated from the encoder wave-forms,
has not, to the best knowledge of the authors, been reported previously.

Micro-processors

The micro-processor Atmel MEGA16 was chosen for signal processing and
control algorithms. This processor is a convenient choice since it offers
several important features on one chip, such as A/D conversion, RS232
communication, PWM-signal generation for motor control and a protocol
for inter-processor communication, I2C. In addition, there is a free C-
compiler for the AVR architecture, avr-gcc. The robot was equipped with
three Atmel MEGA16 processors; one for each drive and one for stabilizing
control and coordination.

11.3 Encoder Processing

Angle Estimation

The use of encoders is a standard method for estimation of angle and an-
gular velocity. The idea is simple. By attaching a disc with alternating
transparent and solid fields to the axis of rotation, and mounting a light
source, commonly a LED, on one side of the disc and a photocell on the
other, the latter component will produce a periodic waveform as the disc
rotates with constant velocity. If two such pairs of a LED and a photo-
cell are placed a quarter of a period apart, the angle of rotation can be
calculated from the resulting waveforms. Alternatively, the LED and pho-
tocell pair may be placed on the same side of the disc, if a solid disc with
light and dark fields is used. This configuration was used on the robot
presented here. Commonly, the encoder signals are decoded digitally as
logic high or low, which yields a resolution of twice the number of fields
per disc revolution. This approach works well for high angular velocities,
but generally poorly for low velocities. This is because in the latter case,
few fields per time unit are passed which gives rise to severe quantization
effects.

A different approach, described in [Venema, 1994] and references there-
in, is to sample the analog encoder signals. Using this technique, the shape
of the waveforms can be used to increase the resolution of the angle mea-
surement significantly. It is a common misconception that encoder signals

276

11.3 Encoder Processing

800

600

400

200

4 4.01 4.02 403 404 405 406 4.07 408 409 41

800

600

400

200

4 4.01 4.02 403 404 405 406 4.07 408 409 441
t

Figure 11.2 Typical encoder waveforms. The upper plot shows the original encoder
signals and the lower plot shows the signals obtained through analog differentiation.

are given by
Z.(p) = Vycos(pN)
Zy,(¢) = V, sin(pN)

where ¢ is the disc angle, z, and 2, are the encoder signals and N is the
number of solid (or transparent) fields of the disc. Mainly, there are two
reasons for the encoder signals to be non-ideal. Firstly, the encoder signals
are usually not shifted exactly by 7/2/N rad. Secondly, the waveforms
often deviates from the ideal sinusoidal shape.

In order to increase the position estimation accuracy, these phenomena
could be compensated for, e.g. using methods presented in [Zimmerman
et al, 2006] and [Venema, 1994]. We have used a method that explores
the ideas presented in [Venema, 1994], and the method is described in
summary in the following. We assume that the encoder waveforms are
given by

(11.1)

2:(9) = 9:(¢N) = gx(9), 9x(9) = 9x(¢ + 27)

2,(¢) = gy(@N) = g,(9), 9,(9) = g, (¢ + 27) (11.2)

277

Chapter 11. Design and Control of YAIP

where ¢ is the encoder angle, related to the disc angle as ¢ = ¢ N. Further,
2z, corresponds to the cosine-like waveform and z, corresponds to the sine-
like waveform. See Figure 11.2 for typical waveforms.

Given measurements of z, and 2z, we would like to calculate an estimate
of the angle, ¢. In the ideal case, the expression

A V.2
¢ = arctan (V ?) (11.3)
yex

gives the correct result. In the non-ideal case, however, the arctan-function
will not produce a correct result. Now, instead of using the arctan-function,
an equivalent mapping function may be used, given by

i=a(2) (11.4)

where q is calculated using the actual encoder waveforms rather than the
ideal ones.

In order to calculate the function g, the actual encoder waveforms
need to be estimated. This may be done using signal data recorded while
rotating the encoder disc at constant velocity. By calculating the average
of all recorded encoder periods, estimates §.(¢) and §,(¢), 0 < ¢ < 27
may be obtained. The mapping function ¢ is then calculated from

a(9) = 29 (115)

where g~!(¢) denotes the inverse of g(¢). In Figure 11.3, the function g(¢)
is shown in solid for a particular encoder configuration. The dashed curves
shows the angle estimation given by expression (11.3). As can be seen,
there is a significant difference between the angle estimates obtained if
ideal curves are assumed, as compared to the case when the actual encoder
waveforms are used as a basis for the estimation. Notice that in order for
the mapping from z,/z, to ¢ to be unique, the current quadrant, i.e. the
signs of the encoder signals, must be considered.

Angular Velocity Estimation

In addition to accurate angle estimates, it is desirable to have accurate
angular velocity information. The standard approach to this problem is to
apply a discrete-time differentiation filter to the sequence of angle esti-
mates. While this approach works well for high velocities, the performance
for low velocities is poor. The main reason for this is that the temporal dis-
cretization, resulting from sampling, is difficult to compensate for using

278

11.3 Encoder Processing

Figure 11.3 The solid curves show the function ¢(¢). For comparison, the dashed
curves shows the angle estimation given by expression (11.3).

digital filters. Therefore we propose derivation of the encoder signals us-
ing analog filters. The analog derivative signals may then be sampled and
used to improve the accuracy of the angular velocity estimate. The main
advantage of this approach is that the need for differentiation by means
of digital filters is eliminated. Instead, this approach enables velocity es-
timation by means of mapping-based methods similar to that presented
above for angle estimation.

Certainly, there are many ways to use the encoder signals in combi-
nation with the derivative signals to obtain angle and angular velocity
estimates. In this section, a method producing promising results will be
described. The main advantage of the proposed method is its simplicity
and low computational complexity, which has been a key issue in this
project. A different approach could be to extend the method presented in
[Zimmerman et al., 2006], which is based on an Extended Kalman Filter,
to also include analog encoder derivative measurements.

Given the encoder waveform expressions (11.2), the time derivative

279

Chapter 11. Design and Control of YAIP
signals may be written

o dg - , .
dzx(¢’ ¢) - O(x d¢ (¢)¢ - axgx(¢)¢

. d) .
dz,(¢,9) = aydiq;(ms» = a,4,(¢)¢

(11.6)

were a, and «, represents the amplification of the analog derivation fil-
ters. Using these expressions, estimates of the angular velocity may be
calculated from

(/fz dz,

axgéc(fﬁ) (11.7)
b= o
! ayg,(9)

Clearly, ¢Ax and (/;x can be expected to be reasonable velocity estimates
when, respectively, g'.(¢) and g/(¢) are not close to zero. A natural way of
combining the estimates is then

g:(9) dzy
+(9)? + 9,(9)* g (9)
g9,(9)” dz,
9.(9)? + 9,(8)? oy, (9) (11.8)
_ g:.(9) dzx 9,(9) dz,
9.(0)2 +9,(0)% ax 9.(9)2+3,(9)? a,
= wy(P)dzx + w,(¢)dz,

¢=9

where the weights w,(¢) and w,(¢) are readily calculated using the av-
erage waveforms §.(¢) and §,(¢). In the expression (11.8), the angle ¢
is assumed to be known, which is not the case in the real application.
Instead, the estimate of the angle is used, which yields

~

¢ = w.(P)dz, +w,(P)dz,. (11.9)

Filtering

The estimates obtained from the algorithms described above are subject
to noise. There are several sources of noise, including noise at the original
encoder signals which is propagated to the estimated variables and noise
introduced by the arithmetic operations. The latter source of noise may
result if the algorithms are implemented using fixed-point arithmetic,
which is common when computing power is scarce. Notice, for example,

280

11.3 Encoder Processing

that a noisy angle estimate will propagate to the angular velocity estimate
through the weights w, and w,.

In order to reduce the effects of noise, the estimated variables may
be filtered. Assuming that a Kalman filter is used, there are two main
different approaches for construction of the filter, differentiated by the
structure of the underlying dynamic model. It could be argued that the
use of a full dynamic model of the robot is advantageous, since it cap-
tures the full behavior of the system. However, such a model may be very
complex, and it may also contain severe non-linearities, e.g. friction, that
makes it difficult to use as a basis for a Kalman filter. Instead, a model
expressing the kinematic relationships of the variables has been used. In
[Zimmerman et al., 2006], the following stochastic model is proposed

1 0
0o 1 dt + dw (11.10)
0 —«

dx = Adt +dw =

oS O O

where x = (9,9,9)T, « is the inverse decorrelation time of the acceleration
and dw is vector of zero-mean Wiener processes with incremental corre-
lation matrix R1. = diag(0,0,0?). The continuous time model (11.10) is
readily sampled using the sampling interval 2 = 0.00146 ms, yielding a
discrete time equivalent

x(kh + h) = ®x(kh) + wq(kh)

100
kh) =
y(kh) (010

) (11.11)
x(kh) + v(kh)

where ® = 4" and the covariance matrix of wy, R1, is given by
h T
R, = / A" Ry et Tdr
0

The sampling expressions can be found e.g. in [Astrém and Wittenmark,
1997]. Also, the measurement noise process v has been introduced. As-
suming that the covariance matrix of v, Rg, can be estimated from data,
the Kalman filter has two tuning knobs; & and o2. These parameters can
be used to set the bandwidth of the filter — lower values of 6% and/or «,
yields a filter with lower bandwidth. The calculation and implementation
of the Kalman filter is described in [Astrom and Wittenmark, 1997]. The
Kalman filter parameters « and c? were set to 50 and 5 x 10°.

A preliminary evaluation of the improvement of the angular velocity
estimation produced by the proposed scheme showed improved precision

281

Chapter 11. Design and Control of YAIP

compared to an estimate produced by a digital filter. However, in order
to fully evaluate the properties of the method, more studies need to be
performed. This, however, is beyond the scope of this chapter.

11.4 Gyro and Accelerometer Processing

The problem of obtaining accurate estimates of the angle and angular
velocity of the pendulum body, 6 and 0, is important in order to enable
stabilizing control. The accelerometer, which is mounted on the pendulum
body, takes into account the acceleration due to gravity, and may be used
as an indicator of the angle of the body. This signal is, however, corrupted
by high frequency disturbances. The rate gyro, on the other hand, pro-
duces a signal proportional to the angular velocity. While this signal has
good high frequency properties, it suffers from drift. The two sensors in
combination, however, may be used to obtain angle and angular velocity
estimates.

A method developed for the combination of an inclinator and a rate gyro
based on filters designed by shaping of frequency responses is presented in
[Baerveldt and Klang, 1997]. Alternatively, the problem may be addressed
by postulating a Kalman filter based on the system

X = X Yayro
0 0 0 (11.12)
Yace = (10)

where x1 and x2 (x = (x1,%2)7) represents the body angle, 6, and the gyro
signal offset respectively. The bandwidth of the Kalman filter is tuned by
adjusting the measurement and process noise covariances.

The choice of method does not seem to be critical — both methods work
well in practice. However, the Kalman filter method was used since it
gives an explicit estimate of the gyro offset.

11.5 Dynamic System Model

Consider the schematic picture of the pendulum robot shown in Fig-
ure 11.4. Let the angle of the pendulum body relative to the vertical plane
be 6, and let the angle of rotation of the wheels be ¢. The applied torque
is denoted by 7. Derivation of the equations of motion of the system by

282

11.5 Dynamic System Model

Figure 11.4 A schematic picture of the pendulum robot.

means of the Euler-Lagrange equations gives the system:
Jp mylr, cos 6 6 N
mplrycos @ Jy + myrs +myr @

—mpgl sin @ Y
—mylr,0%sing | \ 7

where J, = 0.16 Nm is the moment of inertia of the body w.r.t. the pivot,
mp = 2.94 kg is the mass of the pendulum, / = 0.168 m is the distance from
the pivot to the center of mass of the body, m,, = 0.46 kg, r,, = 0.0515 m
and J, = 0.00045 Nm are the mass, radius and moment of inertia of the
wheel assembly respectively and g = 9.81 m/s? is the acceleration due to
gravity.

The stabilizing control strategy described in Section (11.6) requires a
linear state space model. Introducing the state vector x = (0,6,¢,9)7,
and linearizing the model (11.13) around x° = (0,0,0,0)7 gives

(11.13)

0 100 0
ad aty
000 — 2
&= “ﬂayz 0o 1 |Ft “g—yz T (11.14)
) ﬁ+
~ap 0 00 apr

where @ = Jy, + myr + myrs, B =, ¥ = mylr, and § = m,gl.

283

Chapter 11. Design and Control of YAIP

The input of the model (11.13) is the torque applied by the drives, .
However, the actual control signal is the commanded voltage to the drives.
A simple motor model relating torque, voltage and angular velocity of the
motor was then introduced. Assuming that the current dynamics is fast
compared to the rest of the system, the following relation holds

T =—Pp1(p —6) + Bou (11.15)

where ;1 = 0.015 and B2 = 0.27 are parameters calculated from the data-
sheet of the drives, and u is the applied voltage. The negative term results
from the back EMF produced by a DC-motor in motion. Notice that it is
the relative angular velocity between the body and the wheels that gives
rise to the back EMF.

11.6 Stabilizing Control

Since estimates of all states of the robot are available, state feedback is
conveniently used to stabilize the system. The control law is then given
by

u=—Lx. (11.16)

where the feedback vector L was calculated using LQR design, see e.g.
[Astrom and Wittenmark, 1997].

In addition to the stabilizing controller (11.16), it was necessary to in-
troduce an additional controller responsible for control of the robot head-
ing. If the heading is not controlled, the robot will inevitable start rotating,
resulting in lost stability. While the heading dynamics is not included in
the model (11.13), the dynamics relating the difference in commanded
voltages to the drives and difference in wheel velocities is well approx-
imated by an integrator. A simple, yet effective, strategy is then to in-
troduce a proportional controller acting on the difference in the angular
velocities between the wheels,

ug = —K(Pa — Pv) (11.17)

where K is the controller gain and ¢, and ¢, are the angular velocity
estimates of the two wheels respectively.
The control signals for the two motors are then given by the relations

| =

ug = =(u+uq)

(11.18)

N = o

up = = (v —uq).

284

11.7 Implementational Issues

Friction Compensation

As most mechanical systems, the robot suffers from friction. In order
to successfully stabilize the system, friction compensation proved neces-
sary. There are several methods to compensate for friction, see, e.g. [Ols-
son et al, 1998]. In this work, a friction compensation scheme based on
Coulomb friction was used. The friction force may be approximated by the
following model

Ff o>0
Ff ©&=0, u>F;f
Frwouy=q v @=0, F<u<EF/ (11.19)
F- o=0, u<F/
F: o<0

where @ = ¢ — 0 is the relative angular velocity between the body and
the wheels. The coefficients F;" and F; are coefficients that may be cal-
culated from simple experiments. An estimate of the friction force is then
calculated using this model and added to the control signal computed from
the control law (11.16). The control signal is then

v=—Lx+ Ff (11.20)

11.7 Implementational Issues

The signal processing and control algorithms described in previous sec-
tions were implemented in the Atmel AVR micro-processors mounted on
the robot. The software was implemented in C, compiled using avr-gcc,
and downloaded to the processors.

Since the computing power of the chosen AVR model is limited, floating
point implementation of algorithms was infeasible, which rendered fixed
point implementations necessary. This introduces additional overhead for
the programmer, and may degrade algorithm performance. However, all
algorithms were successfully implemented using fixed point arithmetic,
with little performance loss. The most sensitive algorithms proved to be
the encoder angle and angular velocity estimation, where a slight decrease
in accuracy was noted.

Since the control system was distributed amongst three micro-
processors, communication and synchronization was necessary. For this
matter, the I2C protocol, which is supported by the Atmel AVR, was used.
12C is a serial bus-based communication protocol, which uses only two

285

Chapter 11. Design and Control of YAIP

0]
0.2
0.5
0.1 %
g =
b g 0
0
~0.5
-0.1
0 2 4 6 0 2 4 6
(0] u
10
5
'_% 5
A
& ‘ > 0
O —
-5
-5
0 4 0 4
t[s] t[s]

Figure 11.5 Stabilizing control and system response for a start command.

signal wires. Several units may communicate on the same bus, acting as
masters and/or slaves. In this application, the processor responsible for
stabilizing control acted as master and the two processors managing the
encoders acted as slaves. During run-time, the master issues requests for
measurement readings from, and transmits the commanded voltages to
the slaves.

11.8 Experimental Results

Using the control law (11.20), the system may be stabilized. As can be
seen in Figure 11.5, up to 3 s, the robot is indeed successfully stabilized,
although there is a small, but visible, remaining limit cycle in the wheel
velocity, ¢. This limit cycle is due to friction, which is not fully compen-
sated for by the friction compensation scheme.

In order to evaluate the system response to start and stop maneuvers,

286

11.9 Conclusions and Suggested Improvements

the modified control law

A

v = —l19—l29—l3(¢—r)+F,c (1121)

was introduced, where r represents the reference wheel velocity. At run
time, the control law (11.20) is used when r = 0 and (11.21) otherwise.
Using this strategy, drift is avoided in the case of r = 0.

In Figure 11.5, a start command, represented by a step in the wheel
velocity reference r (dashed), is initiated at 3 s. As can be seen, after an
initial overshoot, the wheel velocity settles at the desired value. While
the transient response of the system controlled by the controller (11.21)
may be improved, it should be noted that introduction of reference signals
requires special attention, in particular for unstable systems, see [Akesson
and Astrém, 2005]. This, however, is beyond the scope of this chapter.

11.9 Conclusions and Suggested Improvements

In this chapter, design and control of an inverted pendulum robot on two
wheels has been described. The aim of this project has been to build a
flexible platform suitable for teaching and research using low cost com-
ponents. During the course of the project, several preliminary designs
were evaluated. The two most important improvements motivated by ex-
periences from early attempts were the use of drives without planetary
gear-boxes (which eliminated back-lash) and high resolution wheel angle
measurements using analog encoder signals.

A main challenge facing the control system designer is that of ob-
taining accurate estimates of the states of the system, while designing a
stabilizing controller is comparatively straight forward. This is reflected
by the fact that the main part of this chapter is devoted to state estimation
algorithms.

The current design offers several opportunities for further improve-
ments. Firstly, the encoder hardware design may be improved. The cur-
rent implementation, based on reflection, is sensitive to irregularities of
the reflecting surface. Also, if the distance between the LED /photo cell
pair varies slightly, the resulting variation in the encoder signal offsets de-
grade the performance of the algorithms. Secondly, current control of the
drives would be desirable, since this would effectively eliminate the un-
certainties associated with these components. The resulting system would
have a torque reference as input, which also gives a convenient structure of
the control system. Another interesting feature would be a remote control
facility, enabling a “driver” to maneuver the robot.

287

Chapter 11. Design and Control of YAIP

Finally, more sophisticated control structures targeting manual control
aspects, would improve control performance. It was shown in Chapter 10
that reachability sets play a key role when controlling unstable systems
subject to bounded inputs. The dynamics of the pendulum robot presented
here is very similar to that of the planar pendulum analyzed in Chap-
ter 10. Accordingly, those results are applicable also on the pendulum
robot. An interesting extension of the control system for the pendulum
robot would therefore be to apply the controller proposed in Chapter 10.

288

Conclusions

12

Conclusions and
Future Work

In this thesis, contributions have been given in three areas, namely lan-
guages and tools for dynamic optimization, cases studies, and control of
pendula. In this chapter, the main results are summarized, and some
future research directions are discussed.

12.1 Languages and Tools for Dynamic Optimization

In Part II, a prototype Modelica compiler, the JModelica compiler, has
been presented. The compiler is developed using the compiler construction
tool JastAdd. It was shown how the mechanisms available in JastAdd, in
particular reference attributes and rewrites can be used to perform name
and type analysis, as well as flattening of Modelica models. Also, some of
the strategies used in the JModelica compiler have been adopted from the
JastAddJ Java compiler, but were adapted to the context of the Modelica
language.

The JModelica compiler supports extensible compiler construction, both
at the language level and at the implementation level. The concept of
modular extensibility is very powerful, since it enables development of a
core compiler supporting pure Modelica, which is independent of poten-
tial extensions. In addition, extended compilers based on the core compiler
immediately benefit from improvements in the latter.

An extension of Modelica, Optimica, targeted at dynamic optimiza-
tion, has been proposed. Optimica enables formulation of a large class of
dynamic and static optimization problems, ranging from optimal control
problems to multi-case formulations and parameter optimization. Some of
the key features of Optimica are inequality and equality point and path
constraints, free and fixed optimization interval and the possibility to for-

291

Chapter 12. Conclusions and Future Work

mulate problems with free initial conditions for states. In addition, Opti-
mica supports annotations for a particular transcription method based on
interpolation polynomials.

An Optimica compiler is under development. A prototype version of the
Optimica compiler has been used in research, notably for the formulation
and solution of the start-up optimization problem for the plate reactor in
Chapter 9, in two master’s thesis projects and in teaching. The Optimica
compiler supports automatic transcription of dynamic variables by means
of a direct collocation method, and generates AMPL code.

Future Work

There are several possible extensions of the work presented in Part II.
One direction is to continue the development of the JModelica compiler
into a more complete modeling, simulation, and optimization environment.
It then remains to develop support for the constructs which are currently
unsupported by the JModelica compiler. Most notably, these constructs in-
clude improved support for parametrized classes, dynamic name lookup,
functions and algorithms, and full support for arrays. The JModelica com-
piler currently lacks the algorithms needed to transform a flat Modelica
representation into efficient simulation code. These algorithms include
equation sorting, index reduction and tearing. In addition, in order to ac-
commodate simulation of Modelica models, a simulation back-end has to
be developed.

There are two main benefits resulting from continued development of
the JModelica compiler. Firstly, since the compiler is generated from a
JastAdd description, it consists of pure Java code. Such a compiler can be
easily integrated and adapted in a wide range of tools and environment,
independently of platform. Secondly, the JModelica compiler is modularly
extensible, which makes it particularly interesting for experimental com-
piler development and for development of new language extensions of Mod-
elica.

In Chapter 7, the Optimica extension was presented. While the cur-
rent version of Optimica can be used to express a wide range of dynamic
and static optimization problems, there are several potential extensions.
Firstly, the syntax and semantics of Optimica may be extended to ac-
commodate more general optimization problems. For example, a natural
extension would be to support multi-stage problems. Another interesting
extension would be to allow for optimization classes to be instantiated.
This, in turn, would enable solution of optimization problems during simu-
lation. For example, it would then be straightforward to implement model
predictive controllers. Secondly, the Optimica compiler could be extended
to support additional back-ends. One of the main arguments for develop-
ment of the JModelica and Optimica compilers is to enable the user to

292

12.2 Case studies

choose the most appropriate algorithm for a particular problem. Accord-
ingly, code generation to different algorithms should then be supported.
Two natural candidates for algorithms to implement support for would
be a multiple shooting algorithm and a global search method. The lat-
ter would be useful in order to enable non-gradient based optimization of
systems where gradients are difficult or impossible to obtain.

In order to assist the user in formulating the transcription scheme, it
would be useful to develop a library containing some of the most common
schemes. In the context of direct simultaneous methods, these include, for
example, collocation methods based on Lagrange polynomials as well as
monomial basis formulations of different orders.

12.2 Case studies

A Modelica library, DryLib, for modeling of paper machine dryer sections
has been developed. The library is based on the physical model presented
in [Slatteke, 2006], and contains base level components that encode the
physical behavior, as well as components for structured hierarchical mod-
eling of dryer sections. DryLib has been used to formulate three different
design problems, namely model reduction, parameter optimization, and an
NMPC scheme for paper moisture. These problems were solved by inte-
grating different software packages, and in one case, the model reduction
problem, complete re-encoding of the model was required. The large and
problem-specific coding efforts needed to solve these problems also serve
as a motivation for the development of high-level support for dynamic
optimization.

In the second case study, dealing with start-up optimization of a plate
reactor, the Optimica compiler was used to formulate and solve the result-
ing dynamic optimization problems. In this case, much of the tedious and
error-prone coding work was eliminated, with increased focus on formu-
lation of the optimization problem as a result. It was also shown how the
cost function and constraints can be designed to achieve improved robust-
ness to parameter variations. The improved robustness was demonstrated
by means of Monte-Carlo simulations.

Future Work

DryLib currently contains classes that capture the behavior of the actual
drying process. In order to model a complete paper machine, however, ad-
ditional elements need to be added to the library. In particular, the wet
end of a paper machine, including wire and press sections, and the steam
and condensate systems need to be included. An extension of DryLib to

293

Chapter 12. Conclusions and Future Work

include components related to the condensate system was made in [Win-
dahl, 2006].

Regarding the design problems that were formulated based on DryLib,
it would be interesting to re-formulate the problems in Optimica. This is,
however, not currently possible, since the JModelica compiler does not yet
support dynamic name lookup (inner/outer constructs) which is exten-
sively used in DryLib.

In the formulation of the start-up optimization problem for the plate
reactor, the parameter uncertainties were taken into account implicitly.
In particular, the relation between the properties of the cost function and
the constraints on one hand, and the robustness properties of the result-
ing start-up trajectories was not quantified directly. Instead, it was shown
by means of Monte-Carlo simulations that a particular configuration of
cost function and constraints fulfilled the robustness requirements. An
interesting extension of this work would be to take the parameter uncer-
tainties into account explicitly in the optimization formulation. This, in
turn, would lead to very large optimization problems, which would most
likely call for extensive parallelization of the computations in order to be
feasible. In this context, the techniques developed in [Zavala et al, 2007]
would be an interesting alternative.

12.3 Control of Pendula

In Chapter 10, an explicit characterization of the reachability set of a pla-
nar inverted pendulum was presented. Based on this set, a controller that
guarantees semi-global stability when subject to manual control was de-
veloped. The original analysis was performed for a normalized pendulum
system with acceleration of the pivot as input. In addition, an equivalent
controller for the untransformed pendulum system, with the force acting
on the pivot as input, was presented.

In Chapter 11 a pendulum on two wheels robot, YAIP, was presented.
One of the main objectives in the construction of the robot was to show
how low cost components can be used to construct high-precision control
systems. In this respect, the inverted pendulum robot is a challenging
subject of study, since common artifacts of mechanical actuators, such
as friction and back-lash severely degrade control performance. A large
part of the project was also devoted to accurate estimation of the wheel
angles. For this purpose, analog encoder measurements were used. Also,
since the computing resources of the on-board CPUs are scarce, the signal
processing and control algorithms were implemented using fixed point
arithmetic. The design presented in this thesis is the result of several
prototypes, where different mechanical, electrical and software designs

294

12.3 Control of Pendula
were evaluated.

Future Work

In the case of manual controllers based on reachability sets, an interesting
extension would be to develop such a controller for the Furuta pendulum.
The dynamics of the Furuta pendulum, however, is significantly more
challenging than that of a planar pendulum, and there seems to be no
immediately available analytical characterization of the reachability set.
Instead, a feasible alternative may be to use numerical level-set methods,
for which there is efficient software available, see [Mitchell, 2007].

The inverted pendulum on two wheels robot, YAIP, would benefit from
improved support for user interaction. Work in this direction has been per-
formed as a student project in the course “Projects in Automatic Control”,
where the robot was set up to receive commands from a wireless joystick.
Another interesting extension would be to implement a more sophisticated
manual control scheme, that offers guaranteed stability regardless of ref-
erence commands from the user. For example, the results presented in
Chapter 10 would be applicable in this context.

295

13

Bibliography

Abadi, M. and L. Cardelli (1996): A Theory of Objects. Springer Verlag.

Akesson, J. (2003): “Operator interaction and optimization in control
systems.” Licentiate Thesis ISRN LUTFD2/TFRT--3234--SE. Depart-
ment of Automatic Control, Lund University, Sweden.

Akesson, J. and K. J. Astrom (2001): “Safe manual control of the Furuta
pendulum.” In Proceedings 2001 IEEE International Conference on
Control Applications (CCA’01), pp. 890-895. Mexico City, Mexico.

Akesson, J. and K. J. Astrom (2005): “Manual control and stabilization of
an inverted pendulum.” In Proc. 16th IFAC World Congress. Prague,
Czech Republic.

Akesson, J., T. Ekman, and G. Hedin (2007): “Development of a Modelica
compiler using JastAdd.” In Seventh Workshop on Language Descrip-
tions, Tools and Applications. Braga, Portugal.

Alfa Laval AB (2006): “Alfa Laval Reactor Technology.” http://www.
alfalaval.com.

Anderson, B. and J. Moore (1979): Optimal Filtering. Prentice-Hall, New
Jersy.

Andersson, M. (1994): Object- Oriented Modeling and Simulation of Hy-
brid Systems. PhD thesis ISRN LUTFD2/TFRT--1043--SE, Depart-
ment of Automatic Control, Lund Institute of Technology, Sweden.

Appel, A. (2002): Modern compiler implementation in Java — Second
edition. Cambridge University Press.

Ascher, U. M. and L. R. Petzold (1998): Computer Methods for Ordinary
Differential Equations and Differential-Algebraic Equations. Society
for Industrial and Applied Mathematics.

296

ASTOS Solutions GmbH (2006): “Optimization, Guidance and Control.”
http://www.astos.de.

Astrom, K. J. (2007): In conversation.

Astrém, K. J., H. Elmqvist, and S. E. Mattsson (1998): “Evolution of
continuous-time modeling and simulation.” In Proceedings of the 12th
FEuropean Simulation Multiconference, ESM’98, pp. 9-18. Society for
Computer Simulation International, Manchester, UK.

Astrém, K. J. and K. Furuta (2000): “Swinging up a pendulum by energy
control.” Automatica, 36, February, pp. 278-285.

Astrom, K. J. and T. Higglund (2005): Advanced PID Control. ISA - The
Instrumentation, Systems, and Automation Society, Research Triangle
Park, NC 27709.

Astrom, K. J. and B. Wittenmark (1997): Computer Controlled Systems.
Prentice Hall.

Bader, G. and U. M. Ascher (1987): “A new basis implementation for mixed
order boundary value ode solver.” SIAM ¢J. Sci. Comput., pp. 483-500.

Baerveldt, A. J. and R. Klang (1997): “A low-cost and low-weight attitude
estimation system for an autonomous helicopter.” Intelligent Engineer-
ing Systems, 1997. INES °97. Proceedings., 1997 IEEFE International
Conference on, pp. 391-395.

Baron, S., D. Kleinman, and W. Levinson (1970): “An optimal control
model of human response - part ii: Prediction of human performance
in a complex task.” Automatica, 6, pp. 371-383.

Barton, P. and C. K. Lee (2002): “Modeling, simulation, sensitivity
analysis, and optimization of hybrid systems.” ACM Transactions on
Modeling and Computer Simulation, 12:4.

Bauman, E., A. Varma, J. Lorusso, M. Dente, and M. Morbidelli (1990):
“Parametric sensitivity in tubular reactors with co-current external
cooling.” Chemical Engineering Science, 45, pp. 1301-1307.

Beaver Project (2007): “Beaver - a LALR Parser Generator.” http://
beaver.sourceforge.net/.

Bellman, R. (1957): Dynamic Programming. Princeton University Press,
Princeton, N.dJ.

Bertsekas, D. P. (2000a): Dynamic Programming and Optimal Control,
vol 1. Athena Scientific.

297

Chapter 13. Bibliography

Bertsekas, D. P. (2000b): Dynamic Programming and Optimal Control,
vol 2. Athena Scientific.

Betts, J. T. (2001): Practical Methods for Optimal Control Using Nonlinear
Programming. Society for Industrial and Applied Mathematics.

Biegler, L., A. Cervantes, and A. Wichter (2002): “Advances in simul-
taneous strategies for dynamic optimization.” Chemical Engineering
Science, 57, pp. 575-593.

Blanchini, F. (1999): “Set invariance in control.” Automatica, 35:11,
pp. 1747-1767.

Boeing (2007): “Sparse Optimal Control Software (SOCS).” http://www.
boeing.com/phantom/socs/.

Bohlin, T. and A. J. Isaksson (2003): “Grey-box model calibrator and val-
idator.” In 13th IFAC Symposium on System Identification. Rotterdam,
The Netherlands.

Brenan, K., S. Campbell, and L. Petzold (1996): Numerical Solution of
Initial-Value Problems in Differential-Algebraic Equations. Society for
Industrial and Applied Mathematics.

Broman, D. and P. Fritzson (2007): “Abstract syntax can make the
definition of Modelica less abstract.” In Ist International Workshop
on Equation-Based Object-Oriented Languages and Tools, Linkoping
Electronic Conference Proceedings. Linkoping University Electronic
Press, Linkoping, Sweden.

Broman, D., P. Fritzson, and S. Furic (2006): “Types in the Modelica lan-
guage.” In Proceedings of the 5th International Modelica Conference.

Brufani, S. (1997): “Manual control of unstable systems.” Master’s Thesis
ISRN LUTFD2/TFRT--5576--SE. Department of Automatic Control,
Lund University, Sweden.

Bryson, A. E. and Y.-C. Ho (1975): Applied optimal control. Hemisphere
Publishing Corporation.

Bush, V. (1931): “The differential analyzer: A new machine for solving
differential equations.” Journal of the Franklin Institute.

Cao, Y., S. Li, L. R. Petzold, and R. Serban (2003): “Adjoint sensitivity
analysis for differential-algebraic equations: The adjoint dae system
and its numerical solution.” SIAM J. Scientific Computing, pp. 1076—
1089.

Cellier, F. (1991): Continuous System Modeling. Springer-Verlag, New
York, USA.

298

Cuthrell, J. E. (1986): On the Optimization of Differential-Algebraic
Systems of Equations in Chemical Engineering. PhD thesis, Carnegie
Mellon University.

Danielsson, H. (2007): “Vehicle path optimisation.” Master’s Thesis ISRN
LUTFD2/TFRT--5797--SE. Department of Automatic Control, Lund
University, Sweden.

Diehl, M., H. Bock, and E. Kostina (2006): “An approximation technique
for robust nonlinear optimization.” Mathematical Programming, 107,
pp. 213-230.

Diehl, M., D. Leineweber, and A. Schifer (2001): MUSCOD-II Users’
Manual. Interdisciplinary Center for Scientific Computing (IWR),
University of Heidelberg, Germany.

Dynasim AB (2007): “Dynasim AB Home Page.” http://www.dynasim. se.

Ekman, T. (2006): Extensible Compiler Construction. PhD thesis, Lund
University, Sweden.

Ekman, T. and G. Hedin (2004): “Rewritable Reference Attributed Gram-
mars.” In Proceedings of ECOOP 2004, vol. 3086 of LNCS, pp. 144-169.
Springer-Verlag.

Ekman, T. and G. Hedin (2006): “Modular name analysis for Java using
JastAdd.” In Generative and Transformational Techniques in Software
Engineering, International Summer School, GTTSE 2005, vol. 4143 of
LNCS. Springer-Verlag.

Ekman, T. and G. Hedin (2007): “The jastadd extensible java compiler.”
In Proceedings of OOPSLA 2007.

Ekman, T., G. Hedin, and E. Magnusson (2006): “JastAdd.”
http://jastadd.cs.lth.se/web/.

Ekvall, J. (2004): “Dryer section control in paper machines during web
breaks.” Licentiate Thesis ISRN LUTFD2/TFRT--3236--SE. Depart-
ment of Automatic Control, Lund Institute of Technology, Sweden.

Elmqvist, H. (1975): “Simnon — an interactive simulation program for
nonlinaear systems — user’s manual.” Technical Report TFRT-7502.
Department of Automatic Control, Lund University, Sweden.

Elmgqvist, H. (1978): A Structured Model Language for Large Continuous
Systems. PhD thesis TFRT-1015, Department of Automatic Control,
Lund University, Sweden.

299

Chapter 13. Bibliography

Elmqvist, H., S. E. Mattsson, H. Olsson, J. Andreasson, M. Otter,
C. Schweiger, and D. Briick (2004): “Real-time simulation of detailed
vehicle and powertrain dynamics.” In FElectronics Simulation and
Optimization (SAE 2004 World Congress). SAE International, Detroit.

Elmqgvist, H., S. E. Mattsson, and M. Otter (1998): “Modelica—An
international effort to design an object-oriented modeling language.”
In Proceedings of the 1998 Summer Simulation Conference, pp. 333—
339. Society for Computer Simulation International, Reno, Nevada.

FAC-system (2006): “FAC Home Page.” http://www.facsystem.se/index.
asp?lang=eng.

Farrow, R. (1982): “Linguist-86: Yet another translator writing system
based on attribute grammars.” In SIGPLAN °‘82: Proceedings of the
1982 SIGPLAN symposium on Compiler construction, pp. 160-171.
ACM Press, New York, NY, USA.

Farrow, R. (1986): “Automatic generation of fixed-point-finding evaluators
for circular, but well-defined, attribute grammars.” In Proceedings of
the SIGPLAN symposium on Compiler contruction, pp. 85-98. ACM
Press.

Fourer, R., D. Gay, and B. Kernighan (2003): AMPL — A Modeling
Language for Mathematical Programming. Brooks/Cole — Thomson
Learning.

Franke, R. (2007): “HQP: a solver for sparse nonlinear optimization.”
http://sourceforge.net/projects/hqgp/.

Franke, R., M. Rode, and K. Kriiger (2003): “On-line optimization of drum
boiler startup.” In Proceedings of Modelica’2003 conference.

Fritzson, P. (2004): Principles of Object- Oriented Modeling and Simula-
tion with Modelica 2.1. John Wiley & Sons.

Froment, G. and K. Bischoff (1990): Chemical reactor analysis and design.
Wiley.

Gabor, A. (1974): “Apparatus measuring relative velocity of movable
members including means to detect velocity from the position encoder.”
Patent. Pat. no. US3839665.

Gaines, B. R. (1969): “Linear and nonlinear models of the human
controller.” International Journal of Man- Machine Studies, 1, pp. 330—
360.

Gamma, E. H., R. Johnson, and J. R. Vlissides (1995): Design Patterns:
elements of reusable object-oriented software. Addison-Wesley.

300

Gerdin, M., T. Schén, T. Glad, F. Gustafsson, and L. Ljung (2007):
“On parameter and state estimation for linear differential-algebraic
equations.” Automatica, 43:3, pp. 416—425.

Gerwin Klein (2007): “JFlex - The Fast Scanner Generator for Java.”
http://jflex.de/.

Grasser, F., A. D’Arrigo, and S. Colombi (2002): “Joe: A mobile, in-
verted pendulum.” IEEFE Transactions on Industrial Electronics, 49:1,
pp. 107-115.

Grewal, M., V. Henderson, and R. Miyasako (1991): “Application of
kalman filtering to the calibration and alignment of inertial navigation
systems.” Automatic Control, IEEE Transactions on, 36:1, pp. 3-13.

Gustafsson, K. (1994): “Traps and pitfalls in simulation.” In SIMS
(Scandinavian Simulation Society) Simulation Conference.

Hagglund, T. (1991): Process Control in Practice. Chartwell-Bratt Ltd,
Bromley, UK.

Hahn, D., L. Fan, and C. Hwang (1971): “Optimal startup control of a
jacketed tubular reactor.” AIChE Journal, 17, pp. 1394-1401.

Hall, I. A. M. (1963): “Study of the human pilot as a servo element.” J.
Royal Aeronatutic Soc., 67.

Hangos, K. and 1. Cameron (2001): Process Modelling and Model Analysis.
Academic Press.

Haugwitz, S. and P. Hagander (2006): “Challenges in start-up control of a
heat exchange reactor with exothermic reactions; a hybrid Approach.”
In Proceedings of the 2nd IFAC Conference on Analysis and Design of
Hybrid Systems. Alghero, Italy.

Haugwitz, S., P. Hagander, and T. Norén (2007): “Modeling and control
of a novel heat exchange reactor, the open plate reactor.” Control
Engineering Practice, 15:7, pp. 779-792.

Hedin, G. (2000): “Reference Attributed Grammars.” In Informatica
(Slovenia), 24(3), pp. 301-317.

Hedin, G. and E. Magnusson (2003): “JastAdd: an aspect-oriented com-
piler construction system.” Science of Computer Programming, 47:1,
pp. 37-58.

Heikkild, P. (1993): A study on the drying process of pigment coa ted paper
t:vebs. PhD thesis, Department of Chemical Engineering, Abo Akademi,
Abo, Finland.

301

Chapter 13. Bibliography

Henriksson, D., A. Cervin, and K.-E. Arzén (2003): “TrueTime: Real-time
control system simulation with MATLAB/Simulink.” In Proceedings
of the Nordic MATLAB Conference. Copenhagen, Denmark.

Hovland, P. and A. Carle (2007): “ADIFOR 2.0 automatic differentiation
of fortran.” http://www-unix.mcs.anl.gov/autodiff/ADIFOR/.

Hu, T., Z. Lin, and L. Qiu (2001): “Stabilization of exponentially unstable
linear systems with saturating actuators.” IEEE Transactions on
Automatic Control, 46:6, pp. 973-979.

Hultgren, H. and H. Jonasson (2007): “Automatic calibration of vehi-
cle models.” Master’s Thesis ISRN LUTFD2/TFRT--5794--SE. Depart-
ment of Automatic Control, Lund University, Sweden.

IEEE (1997): “Standard vhdl analog and mixed-singnal extensions.”
Technical Report. IEEE.

Ingalls, D. H. H. (1986): “A simple technique for handling multiple
polymorphism.” In OOPLSA ’86: Conference proceedings on Object-
oriented programming systems, languages and applications, pp. 347—
349. ACM Press, New York, NY, USA.

INRIA (2007): “SciLab Home Page.” http://www.scilab.org/.
ITI GmbH (2007): “ITI GmbH Home Page.” http://www.iti.de/.

Johansson, K. H. (1997): Relay Feedback and Multivariable Control. PhD
thesis ISRN LUTFD2/TFRT--1048--SE, Department of Automatic
Control, Lund Institute of Technology, Sweden.

Kagedal, D. and P. Fritzson (1998): “Generating a Modelica compiler
from natural semantics specifications.” In Proceedings of the Summer
Computer Simulation Conference.

Kameswaran, S. and L. Biegler (2006): “Convergence rates for direct
transcription of optimal control problems with final-time equality
constraints using collocation at radau points.” In American Control
Conference, 2006.

Karlsson, M., Ed. (2000): Paper Making part 2, drying. Tappi Press.

Karlsson, M. (2005): Static and Dynamic Modelling of the Drying Section
of a Paper Machine. PhD thesis, Department of Chemical Engineering,
Lund Institute of Technology, Lund, Sweden.

Karnopp, D. and R. Rosenberg (1968): Analysis and simulation of
multiport systems — The bond graph approach to physical system
dynamics. MIT Press, Cambridge, MA, USA.

302

Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold (2001): “An overview of Aspectd.” LNCS, 2072, pp. 327-355.

Kleinman, D., S. Baron, and W. Levinson (1970): “An optimal control
model of human response - part i: Theory and validation.” Automatica,
6, pp. 357-369.

Knuth, D. E. (1968): “Semantics of context-free languages.” Mathematical
Systems Theory, 2:2, pp. 127-145. Correction: Mathematical Systems
Theory 5, 1, pp. 95-96 (March 1971).

Laabissi, M., M. Achhab, J. Winkin, and D. Dochain (2002): “Equilibrium
profiles of tubular reactor nonlinear models.” In Proceedings of 15th
Int. Symposium on Mathematical Theory of Networks and Systems.

Levenspiel, O. (1999): Chemical Reaction Engineering. Wiley.

Li, S. and L. Petzold (2002): “Description of daspkadjoint: An adjoint sen-
sitivity solver for differential-algebraic equations.” Technical Report.
Department of Computer Science, University of California Santa Bar-
bara, USA.

Lincoln, B. (2003): Dynamic Programming and Time-Varying Delay
Systems. PhD thesis ISRN LUTFD2/TFRT--1067--SE, Department of
Automatic Control, Lund Institute of Technology, Sweden.

Maciejowski, J. M. (2002): Predictive Control with Constraints. Pearson
Education.

Magnusson, E. and G. Hedin (2003): “Circular Reference Attributed
Grammars - Their Evaluation and Applications.” Electr. Notes Theor.
Comput. Sci., 82:3.

Maly, T. and L. R. Petzold (1996): “Numerical methods and software for
sensitivity analysis of differential-algebraic systems.” Applied Numer-
ical Mathematics, 20:1-2, pp. 57-82.

MathCore Engineering AB (2007): “MathCore Engineering AB Home
Page.” http://www.mathcore.com/.

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert (2000):
“Constrained model predictive control: Stability and optimality.” Auto-
matica, 36:6, pp. 789-814.

McConnell, R. (1980): “A literature review of drying research in the
pulp and paper industry.” In Mujumdar, Ed., Drying ‘80. Hemisphere
Publishing, NY.

McRuer, D., D. Graham, E. S. Krendel, and W. Reisener (1965): “Human
pilot dynamics in compensatory systems.” Report. AFFDL-TR-65-15.

303

Chapter 13. Bibliography

McRuer, D. and E. S. Krendel (1959): “The human operator as a servo
element.” J. Franklin Institute, 267, pp. 381-403, 511-536.

Miall, R., D. Weir, D. Wolpert, and J. Stein (1993): “Is the cerebellum a
smith predictor.” Journal of Motor Behavior, 25, pp. 203—-216.

Mitchell, E. E. L. and J. S. Gauthier (1976): “Advanced continuous
simulation language (ACSL).” Simulation, 26:3.

Mitchell, I. M. (2007): A Toolbox of Level Set Methods (Version 1.1).
Department of Computer Science, University of British Columbia,
Canada.

Mitchell, I. M. and J. Templeton (2005): “A toolbox of Hamilton-Jacobi
solvers for analysis of nondeterministic continuous and hybrid sys-
tems.” Lecture Notes in Computer Science, 3414, pp. 480-494.

Moore, B. (1981): “Principal component analysis in linear systems: con-
trollability, observability, and model reduction.” IEEE Transactions on
Automatic Control, 26:1, pp. 17-32.

Moray, N., W. B. Ferrell, and W. B. Rouse (1990): Robotics Control and
Society. Taylor & Francis, London.

MSC Software (2007): “ADAMS Home Page.” http://www.mscsoftware.
com/products/adams.cfm.

Nagel, L. and D. O. Pederson (1973): “Simulation program with integrated
circuit emphasis (spice).” Technical Report. Electronics Research Lab-
oratory, College of Engineering, University of California Berkeley, CA,
USA. Memorandum ERL-M382.

Nilsson, B. (1993): Object- Oriented Modeling of Chemical Processes. PhD
thesis ISRN LUTFD2/TFRT--1041--SE, Department of Automatic
Control, Lund Institute of Technology, Sweden.

Nissan, A. and W. Kaye (1955): “An analytical approach to the problem of
drying thin fibrous sheets on multicylinder machines.” Tappi Journal,
38:7, pp. 385-398.

Numerica Technolgy (2007): “Jacobian.” http://www.numericatech.com/
jacobian.htm.

Nytsch-Geusen, C. (2007): “MosiLab Home Page.” http://www.mosilab.
de/.

Object Management Group (2007): “Unified Modeling Language.” http:
//www.uml.org/.

304

Olsson, H., K. J. Astrbm, C. C. de Wit, M. Géafvert, and P. Lischinsky
(1998): “Friction models and friction compensation.” European Journal
of Control, January.

Patcher, M. and R. Miller (1998): “Manual flight control with saturating
actuators.” IEEE Control Systems, February, pp. pp. 10-19.

PELAB (2007): “The OpenModelica Project.” http://www.ida.liu.se/
~pelab/modelica/OpenModelica.html.

Pettersson, dJ., U. Persson, T. Lindberg, L. Ledung, and Z. Xiaojing
(2005): “On-line pulp mill production optimization.” In 16th IFAC
World congress.

Pettersson, M. and S. Stenstrom (2000): “Experimental evaluation of
electric infrared dryers.” Tappi Journal, 83:8.

Petzold, L. (1986): “Order results for implicit runge-kutta methods ap-
plied to defferential/algebraic systems.” SIAM Journal on Numerical
Analysis, 23:4, pp. 837-852.

Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.
Mishchenko (1962): The Mathematical Theory of Optimal Processes.
John Wiley & Sons Inc.

Pop, A. and P. Fritzson (2006): “MetaModelica: A unified equation-based
semantical and mathematical modeling language.” In Joint Modular
Languages Conference 2006 (JMLC2006). Oxford, England.

Prat, L., A. Devatine, P. Cognet, M. Cabassud, C. Gourdon, S. Elgue,
and F. Chopard (2005): “Performance evaluation of a novel concept
"open plate reactor" applied to highly exothermic reactions.” Chemical
Engineering Technology, 28, pp. 1028—-1034.

Process Systems Enterprise (2007): “ePROMS Home Page.” http://www.
psenterprise.com/gproms/index.html.

Pulkowski, J. H. and G. L. Wedel (1988): “The effect of spoiler bars on
dryer heat transfer.” Pulp and Paper Magazine of Canada, 89:8, pp. 61—
66.

Qin, S. J. and T. A. Badgwell (2003): “A survey of industrial model predic-
tive control technology.” Control Engineering Practice, 11, pp. 733-764.

Rao, C. V., J. B. Rawlings, and D. Q. Mayne (2003): “Constrained state
estimation for nonlinear discrete-time systems: Stability and moving
horizon approximations.” IEEE Transactions on Automatic Control,
48:2, pp. 246-259.

305

Chapter 13. Bibliography

Rao, M., Q. Xia, and Y. Ying (1994): Modeling and Advanced Control
for Process Industries — Applications to Paper Making Processes.
Springer-Verlag, New York.

Rausmussen, J. (1983): “Skill, rules, and knowledge; signals, signs, and
symbols, and other distinctions in human performance models.” IEEE
Trans. on Systems, Man, and Cybernetics, 3, pp. 257-266.

Rosen, O. and R. Luus (1991): “Evaluation of gradients for piecewise
constant optimal control.” Comput. chem. Engng., 15:4, pp. 273-281.

Rundgwist, L., K. Stal-Gunnarsson, and J. Enhagen (1997): “Rate limiters
with phase compensation in JAS 39 Gripen.” In Proc. European Control
Conference. Saab Military Aircraft, Linkoping, Sweden.

Ronnbéck, S. (1993): Linear Control of Systems with Actuator Constraint.
PhD thesis ISRN LUTFD2/TFRT--0348-8373--SE, Lule& University of
Technology.

Schiesser, W. (1991): The Numerical Method of Lines: Integration of
Partial Differential Equations. Academic Press.

Schmidt, E. (1969): Properties of water and steam in SI-units. Springer
Verlag, Berlin, Germany.

Scokaert, P. O. M., D. Q. Mayne, and J. B. Rawlings (1999): “Suboptimal
model predictive control (feasibility implies stability).” IEEE Transac-
tions of Automatic Control, 44:3, pp. 648—654.

Segway Inc. (2006): “Segway Home Page.” http://www.segway.com/.

Sheridan, T. B. and T. V. Lunteren (1997): Perspectives on the Human
Controller - Essays in Honor of Henk G. Stassen. Lawrence Erlbaum
Associates, Mahwah, NJ.

Slatteke, O. (2006): Modeling and Control of the Paper Machine Drying
Section. PhD thesis ISRN LUTFD2/TFRT--1075--SE, Department of
Automatic Control, Lund Institute of Technology, Sweden.

Slatteke, O. and K. J. Astrom (2005): “Modeling of a steam heated
rotating cylinder—A grey-box approach.” In Proc. 2005 American
Control Conference. Portland, Oregon, USA.

Stein, G. (2003): “Respect the unstable.” IEEE Control Systems Magazine,
23:4. The first IEEE Bode lecture 1990.

Stengel, R. F. (1994): Optimal Control and Estimation. Dover Publications
Inc.

306

Strauss, J. (1967): “The sci continuous system simulation language
(CSSL).” Simulation, 9:6.

Sussmann, H., E. Sontag, and Y. Yang (1994): “A general result on
the stabilization of linear systems using bounded controls.” IEEE
Transactions on Automatic Control, 39:12, pp. 2411-2425.

Tarjan, R. (1972): “Depth-first search and linear graph algorithms.” SIAM
J. Computing, 1:2, pp. 146-160.

Teel, A. (1992): “Global stabilization and restricted tracking for multiple
integrators with bounded controls.” System & Control Letters, 18,
pp. 165-171.

Teel, A. (1996): “A nonlinear small gain theorem for the analysis of control
systems with saturation.” IEEE Trans. on Automatic Control, 41:9,
pp. 1256-1270.

Teel, A. (1999): “Anti-windup for exponentially unstable linear systems.”
International Journal of Robust and Nonlinear Control, 9:10, pp. 701—
716.

Teel, A. and N. Kapoor (1997): “The I3 anti-windup problem: its definition
and solution.” In Proceedings of European Control Conference.

The Modelica Association (1997): “Modelica — a unified object-oriented
language for physical systems modeling, language specification, ver-
sion 1.” Technical Report. Modelica Association.

The Modelica Association (2005): “Modelica — a unified object-oriented
language for physical systems modeling, language specification, ver-
sion 2.2.” Technical Report. Modelica Association.

The Modelica Association (2007a): “Modelica — a unified object-oriented
language for physical systems modeling, language specification, ver-
sion 3.0.” Technical Report. Modelica Association.

The Modelica Association (2007b): “The Modelica Association Home Page.”
http://www.modelica.org.

The Omuses Team (2007): “Omuses: a tool for the Optimization of
Multistage Systems.” http://swik.net/Omuses.

Thomas, P. (1999): Simulation of industrial processes - for control
engineers. Butterworth-Heinemann, Oxford, Great Britain.

Tustin, A. (1947): “The nature of the human operators response in manual
control and its implication for controller design.” Journal IEE, 94,
pp. 190-.

307

Chapter 13. Bibliography

Varma, A., M. Morbidelli, and H. Wu (1999): Parametric sensitivity in
chemical systems. Cambridge University Press.

Vassiliadis, V. (1993): Computational solution of dynamic optimization
problem with general differnetial-algebraic constraints. PhD thesis,
Imerial Collage, London, UK.

Venema, S. (1994): “A kalman filter calibration method for analog quadra-
ture position encoders.”. Master’s thesis, University of Washington.

Verwijs, J., H. van den Berg, and K. Westerterp (1996): “Startup strat-
egy design and safeguarding of industrial adiabatic tubular reactor
systems.” AIChE Journal, 42, pp. 503-515.

Vogt, H. H., S. D. Swierstra, and M. F. Kuiper (1989): “Higher order
attribute grammars.” In Proceedings of the SIGPLAN ‘89 Conference
on Programming language design and implementation, pp. 131-145.
ACM Press.

Wichter, A. and L. T. Biegler (2006): “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming.” Mathematical Programming, 106:1, pp. 25-58.

Walther, A. and A. Griewank (2007): “ADOL-C a package for automatic
differentiation of algorithms written in C/C++.” http://www.math.
tu-dresden.de/~adol-c/.

Waltz, R. (2005): KNITRO User’s Manual, Version 4.0. Zienna Optimiza-
tion Inc.

Wilde, R. W. and J. Westcott (1962): “The characteristics of the human
operator engaged in a tracking task.” Automatica, 1.

Wilhelmsson, B. (1995): An experimental and theoretical study of multi-
cylinder paper drying. PhD thesis, Department of Chemical Engineer-
ing, Lund Institute of Technology, Lund, Sweden.

Windahl, J. (2006): “Modelling and parameter estimation of a pa-
per machine drying section using Modelica.” Master’s Thesis ISRN
LUTFD2/TFRT--5783--SE. Department of Automatic Control, Lund
University, Sweden.

Zaldivar, J., J. Cano, M. Alés, J. Sempere, R. Nomen, D. Lister, G. Maschio,
T. Obertopp, E. Gilles, J. Bosch, and F. Strozzi (2003): “A general
criterion to define runaway limits in chemical reactors.” Journal of
Loss Prevention in the Process Industries, 16, pp. 187-200.

Zavala, V., C. Laird, and L. Biegler (2007): “Interior-point decomposition
approaches for parallel solution of large-scale nonlinear parameter
estimation problems.” Chem. Eng. Sci. In Press.

308

Zimmerman, Y., Y. Oshman, and A. Brandes (2006): “Improving the
accuracy of analog encoders via kalman filtering.” Control Engineering
Practice, 14:4, pp. 337-350.

309

A

Collocation and
Runge-Kutta Methods

There are strong connections between collocation methods and implicit
Runge-Kutta methods for solving differential equations. This relation has
been noted previously, for example in [Cuthrell, 1986], where a special case
is considered. In this Appendix, it is shown, explicitly, how the Butcher
tableau of a Runge-Kutta scheme can be constructed given a collocation
method.

Consider the ordinary differential equation

dy(?)

—qr = [&5(), ¥(0) =y (A1)

The famous Runge-Kutta scheme is given by

N
Yni1=3n+h > bik; (A.2)

i=1

where y, = y(t,) denotes the approximate solution of (A.1) at time ¢,, &
is the step length and the coefficients k; are given by

k1 = f(tn + Clhayn + a11hk1 + aighks + .. .alNhkN)

ko = f(tn + Czh,yn + ags1hki + asshks + .. .a2NhkN)
(A.3)

ky = f(tn +cenh, v, + an1hky + anshks + .. .aNNhkN)
Solving the equations (A.3) for the %; : s gives the approximate solution

Yn+1 using (A.2). Commonly, a Runge-Kutta method is characterized the
corresponding Butcher tableau, given by

310

c| A
bT

A collocation scheme for the differential equation (A.1) is characterized
by a set of collocation points, 7;, i=1...N, 0 <71; < 1. To simplify the
notation in the following, the step length is normalized to unity, which
gives t; = t9 + ht;, where ty denotes the start time of the step. Conse-
quently, (A.1) is transformed into

dy dydt

ar = dt dr = hf(t,y). (A'4)

Assume that the solution of (A.4) is approximated, in the normalized
interval [0, 1], by the polynomials

N

W) =) et (A-5)

Jj=0
where «; is a vector of appropriate size. The collocation equations may

then be written

dyN+1 N)
= jo;vi Tt = hf(t;, yN*Y(z)) i=1...N. (A.6)

Jj=1

Solving the equations (A.6) for the ¢; : s, with the additional requirement
oo = yo specifies the approximation polynomial (A.5).

We will now proceed to show how the collocation equations can rewrit-
ten to a Butcher tableau. Let us write the collocation equations (A.6) on
matrix form

1 2 ... NeV1][of f(t, N+ (z1)T
Qa = : Lol =h :
1 2ty ... Nz{71 ak ftn, yN(zn)"
(A.7)
This gives
o; —hzmjlf tz:y hzmﬂ i (A8)

i=1

where m; are the elements of the matrix M = @ ! and the variables
ki = f(ti, 5" (7)) (A.9)

311

Appendix A. Collocation and Runge-Kutta Methods

have been introduced. We proceed by showing that the approximation
polynomials y¥*! can be expressed as an affine combination of the &; : s.

N N
YW m) =ao+ Y ot =ac+)
=1

N
h Z mjlkl] T{
=1

=1
! (A.10)
N N] N
=0(0+hz Zmﬂl’{ k1=y0+hZailkl
=1 | j=1 I=1

The coefficients of the A matrix in the Butcher tableau is thus given by
N .
aj = Zmﬂff- (A11)
j=1

In a similar way, the coefficients of b in the Butcher tableau can be de-
rived.

N N
YV R)=ao+) ol =...=y+h> bk (A.12)
j=1 i=0

where N
bi = Z m;j;. (A.13)
j=1
The c vector is given by
=y] (A.14)

It can be remarked that the Butcher tableau matrices depend only on
the location of the collocation points 7;, which in turn fully specifies the
method.

312

B

PicoModelica Syntax and
Abstract Grammar

B.1 Concrete Syntax

In the defininition of the concrete syntax of PicoModelica, [] denotes an
optional element, {} denotes zero, one, or more elements, and | denotes
that a rule has two or more valid right-hand sides. Keywords are indicated
by boldface.

model_definition :
model IDENT
{extends_clause}
{model_definition}
{component_decl}
[equation_clause]
end IDENT ";"

extends_clause :
extends name [class_modification] ";"

component_decl :
[replaceable] name IDENT [modification] ";"

modification :
class_modification ["=" expression]
| "=" expression

class_modification :
"(" [argument_list] ")"

argument_list :

argument {"," argument}

313

Appendix B. PicoModelica Syntax and Abstract Grammar

argument :
redeclare [replaceable] name IDENT [modification]
| name modification

equation_clause :
equation
{equation_}

equation_ :
expression

n_mn non

expression

expression :
expression "+" expression
| UNSIGNED_NUMBER

| name

name :
IDENT ["." name]

B.2 Source Abstract Grammar

Root ::= ClassDeclx;
abstract ClassDecl ::= Name:IdDecl;
Model : ClassDecl ::= Super:ExtendsClause#
ClassDeclx=
ComponentDeclx
Equation* ParModel*
/InstRoot/;
RealClass : ClassDecl;
ExtendsClause ::= Super:Access
[Modification];
ComponentDecl ::= [Replaceable]
[Parameter]

ClassName:Access

Name:IdDecl

[Modification];
Replaceable;

abstract Modification;

CompositeModification : Modification ::= Modificationx;
EquationModification : Modification ::= Exp;

abstract NamedModification : Modification ::= Name:Access;
ComponentRedeclare : NamedModification ::= ComponentDecl;
ComponentModification : NamedModification ::= Modification;

314

B.3 Instance Abstract Grammar

IdDecl ::= <ID:String>;
abstract Access : Exp ::= <ID:String>;
Dot : Access ::= Left:Access Right:Access;

ClassAccess : Access;
ComponentAccess : Access;
ParseAccess : Access;
AmbiguousAccess : Access;

BoundClassAccess : ClassAccess ::= <ClassDecl:ClassDecl>;
BoundComponentAccess : ComponentAccess ::= <ComponentDecl:ComponentDecl>;
Equation ::= Left:Exp Right:Exp;

abstract Exp;

BinExp : Exp ::= Left:Exp Right:Exp;

AddExp : BinExp;

RealLitExp : Exp ::= <Val:double>;

B.3 Instance Abstract Grammar

abstract InstNode ::= /InstNodex/
/MergedEnvironment:InstModificationx/;

InstRoot : InstNode ::= <ClassDecl:ClassDecl>;

abstract InstComponent : InstNode ::= <ComponentDecl:ComponentDecl>;

InstComposite : InstComponent;
InstReal : InstComponent;

InstExtends : InstNode ::= <ExtendsClause:ExtendsClause>;
InstReplacingComponent : InstComponent ::= <OriginalDecl:ComponentDecl>;
InstModification ::= <InstNode:InstNode> <Modification:Modification>;

B.4 Flat Abstract Grammar

FClass ::= <Name:String> FVariable* FEquation;
FVariable ::= Name:FIdDecl [BindingExp:FExp];
FEquation ::= Left:FExp Right:FExp;

abstract FExp;
abstract FBinExp : FExp::= Left:FExp Right:FExp;
FAddExp : FBinExp::=;

FRealLitExp : FExp ::= <Val:double>;
FIdDecl ::=<ID>;
FIdUse : FExp ::= <ID>;

315

C

Complete AST for the
Examples in Chapter 5

The complete AST for the model used in Examples 5.1, 5.2 and 5.4 is
shown in Figure C.1. Notice that all nodes corresponding to identifiers are
of type ParseAccess, i.e., the AST in Figure C.1 is the AST resulting from
parsing, before the rewrites specified in the name classification framework

are performed.

Model 'C'
IdDecl 'C'

RealLitExp 'L

ComponentDecl 'M m'

CParseAccess ‘M) CldDecI 'm)

CModeI 'M) CParseAccess 'm) CParseAccess D

CdDecl ‘M) GomponentDecl ‘Real x)
= =— = Example 5.2
—+=—r= Example 5.4 CParseAccess 'ReaD CldDecl D

Figure C.1 Complete AST for the model used in the examples in Chapter 5.

"""" Example 5.1

316

D

A Flat Optimica Description
for an Optimization Problem

In this appendix, the flat Optimica description corresponding to the pa-
rameter optimization problem composed of the Modelica model in List-
ing 7.3 and the Optimica description in Listing 7.4 is given. The flat Op-
timica description was generated by the Optimica compiler.

optimization OptimicaTests.ServoParameterOptimization

(objective=cost,startTime=0,finalTime=100)

parameter Real servo.slidingMass.m
(quantity="Mass",final unit="kg",min=0)=servo.ml
"mass of the sliding mass";

Real servo.slidingMass.v(final quantity="Velocity",final unit="m/s")
"absolute velocity of component";

Real servo.slidingMass.a
(final quantity="Acceleration",final unit="m/s2")
"absolute acceleration of component";

Real servo.slidingMass.s
(start=s0,final quantity="Length",final unit="m")
"absolute position of center of component

(s = flange_a.s + L/2 = flange_b.s - L/2)";

parameter Real servo.slidingMass.L
(final quantity="Length",final unit="m")=0
"length of component from left flange to right flange

(= flange_b.s - flange_a.s)";

Real servo.slidingMass.flange_a.s
(final quantity="Length",final unit="m")
"absolute position of flange";

Real servo.slidingMass.flange_a.f
(final quantity="Force",final unit="N")
"cut force directed into flange";

Real servo.slidingMass.flange_b.s
(final quantity="Length",final unit="m")

317

Appendix D. A Flat Optimica Description for an Optimization Problem

"absolute position of flange";
Real servo.slidingMass.flange_b.f
(final quantity="Force",final unit="N")
"cut force directed into flange";
Real servo.force.flange_b.s(final quantity="Length",final unit="m")
"absolute position of flange";
Real servo.force.flange_b.f(final quantity="Force",final unit="N")
"cut force directed into flange";
input Real servo.force.f "driving force as input signal";
input Real servo.F;
parameter Real servo.springDamper.s_rel0
(final quantity="Length",final unit="m")=0
"unstretched spring length";
parameter Real servo.springDamper.c
(final unit="N/m",final min=0)=servo.c "spring constant";
parameter Real servo.springDamper.d
(final unit="N/(m/s)",final min=0)=servo.d "damping constant";
Real servo.springDamper.v_rel
(final quantity="Velocity",final unit="m/s")
"relative velocity between flange_a and flange_b";
Real servo.springDamper.flange_a.s
(final quantity="Length",final unit="m")
"absolute position of flange";
Real servo.springDamper.flange_a.f
(final quantity="Force",final unit="N")
"cut force directed into flange";
Real servo.springDamper.flange_b.s
(final quantity="Length",final unit="m")
"absolute position of flange";
Real servo.springDamper.flange_b.f
(final quantity="Force",final unit="N")
"cut force directed into flange";
Real servo.springDamper.s_rel
(min=-(2000),final quantity="Length",final unit="m")
"relative distance (= flange_b.s - flange_a.s)";
Real servo.springDamper.f
(final quantity="Force",final unit="N")
"forcee between flanges (positive in direction of flange axis R)";
output Real servo.y;
parameter Real servo.slidingMassl.m
(quantity="Mass",final unit="kg",min=0)=servo.m2
"mass of the sliding mass";
Real servo.slidingMassl.v
(final quantity="Velocity",final unit="m/s")
"absolute velocity of component";
Real servo.slidingMassl.a
(final quantity="Acceleration",final unit="m/s2")

318

"absolute acceleration of component";
Real servo.slidingMassl.s
(final quantity="Length",final unit="m")
"absolute position of center of component
(s = flange_a.s + L/2 = flange_b.s - L/2)";
parameter Real servo.slidingMassl.L
(final quantity="Length",final unit="m")=0
"length of component from left flange to right flange
(= flange_b.s - flange_a.s)";
Real servo.slidingMassl.flange_a.s
(final quantity="Length",final unit="m")
"absolute position of flange";
Real servo.slidingMassl.flange_a.f
(final quantity="Force",final unit="N")
"cut force directed into flange";
Real servo.slidingMassl.flange_b.s
(final quantity="Length",final unit="m")
"absolute position of flange";
Real servo.slidingMassl.flange_b.f
(final quantity="Force",final unit="N")
"cut force directed into flange";
parameter Real servo.ml(free=true,initialGuess=0.5)=1;
parameter Real servo.m2=1;
parameter Real servo.d=0.1;
parameter Real servo.c=0.01;
Real servo.speedSensor.flange_a.s
(final quantity="Length",final unit="m")
"absolute position of flange";
Real servo.speedSensor.flange_a.f
(final quantity="Force",final unit="N")
"cut force directed into flange";
Real servo.speedSensor.s
(final quantity="Length",final unit="m")
"Absolute position of flange";
output Real servo.speedSensor.v
"Absolute velocity of flange as output signal";
parameter Real sine.amplitude=1 "Amplitude of sine wave";
parameter Real sine.freqHz
(final quantity="Frequency",final unit="Hz")=0.1
"Frequency of sine wave";
parameter Real sine.phase
(final quantity="Angle",final unit="rad",displayUnit="deg")=0
"Phase of sine wave";
parameter Real sine.offset=0 "Offset of output signal";
parameter Real sine.startTime
(final quantity="Time",final unit="s")=0
"Output = offset for time < startTime";

319

Appendix D. A Flat Optimica Description for an Optimization Problem

constant Real sine.pi=sine.Modelica.Constants.pi;
output Real sine.y "Connector of Real output signal";
parameter Real sO(free=true,initialGuess=0.1);
parameter Integer N=1000;
parameter Real data_vals[N]={...};
parameter Real data_times[N]={...};
Real cost=sum((data_vals[i]-(servo.y(data_times[i])))A2 for i in 1:N);
equation
servo.slidingMass.v=der(servo.slidingMass.s);
servo.slidingMass.a=der(servo.slidingMass.v);
(servo.slidingMass.m)*(servo.slidingMass.a)=
servo.slidingMass.flange_a.f+servo.slidingMass.flange_b.f;
servo.slidingMass.flange_a.s=
servo.slidingMass.s-((servo.slidingMass.L)/(2));
servo.slidingMass.flange_b.s=
servo.slidingMass.s+(servo.slidingMass.L)/(2);
servo.force.flange_b.f=-(servo.force.f);
servo.springDamper.v_rel=
der(servo.springDamper.s_rel);
servo.springDamper. f=
(servo.springDamper.c)+*(servo.springDamper.s_rel-
(servo.springDamper.s_relQ))+(servo.springDamper.d)*
(servo.springDamper.v_rel);
servo.springDamper.s_rel=
servo.springDamper .flange_b.s-(servo.springDamper.flange_a.s);
servo.springDamper.flange_b.f=servo.springDamper.f;
servo.springDamper.flange_a.f=-(servo.springDamper.f);
servo.slidingMassl.v=der(servo.slidingMassl.s);
servo.slidingMassl.a=der(servo.slidingMassl.v);
(servo.slidingMassl.m)*(servo.slidingMassl.a)=
servo.slidingMassl.flange_a.f+servo.slidingMassl.flange_b.f;
servo.slidingMassl.flange_a.s=
servo.slidingMassl.s-((servo.slidingMass1.L)/(2));
servo.slidingMassl.flange_b.s=
servo.slidingMassl.s+(servo.slidingMass1.L)/(2);
servo.speedSensor.s=servo.speedSensor.flange_a.s;
servo.speedSensor.v=der(servo.speedSensor.s);
O=servo.speedSensor.flange_a.f;
sine.y=sine.offset+(if time<sine.startTime then 0
else (sine.amplitude)*(sin((((2)*(sine.pi))*(sine.freqHz))=*
(time-(sine.startTime))+sine.phase)));
servo.force.f=sine.y;
servo.F=servo.force.f;
servo.slidingMass.flange_a.f+servo.springDamper.flange_b.f=0.0;
servo.slidingMass.flange_a.s=servo.springDamper.flange_b.s;
servo.slidingMassl.flange_b.f+servo.springDamper.flange_a.f=0.0;
servo.slidingMassl.flange_b.s=servo.springDamper.flange_a.s;

320

servo.force.flange_b.f+servo.slidingMassl.flange_a.f=0.0;
servo.force.flange_b.s=servo.slidingMassl.flange_a.s;
servo.slidingMass.flange_b.f+servo.speedSensor.flange_a.f=0.0;
servo.slidingMass.flange_b.s=servo.speedSensor.flange_a.s;
servo.speedSensor.v=servo.y;

constraint
servo.ml1>=0.5;
servo.ml<=1.5;
s0>=-(1);
s0<=1;

end OptimicaTests.ServoParameterOptimization;

321

E

A Modelica Model of
a Plate Reactor

The reactor model in this appendix was developed by Staffan Haugwitz.
model PlateReactor "plate reactor with concurrent (parallel) flow"

/] the vector nspecies represents the reactants
// A and B and the product C
// the current reaction is then A + B =C

/] n = 30, number of discretized elements
parameter Integer inj_B_in_elem = 16;

parameter Integer n=30 "discretization number";
parameter Real V_reac = 4.1667e-4/n "V per element";
parameter Real V_sp = 2%2.9e-4/n "V per element";
parameter Real Aheat = 2+0.52%0.07398/n "A per element";

parameter Real d=1000 "density";
parameter Real cp=4180 "specific heat capacity";
parameter Real k=3000 "convection heat transfer coeff";
parameter Integer nspecies=3 "number of involving species";
parameter Integer A=1

"The reactant A corresponds to the first element

in the nspecies list";
parameter Integer B=2

"The reactant B corresponds to the second element

in the nspecies list";
parameter Integer (=3

"The product C corresponds to the third element

in the nspecies list";
parameter Integer nreac=1 "number of reactions involved";

322

parameter Real Hr = 2x%5.86e5 "enthalpy of formation";

parameter Integer stoich_coeff A = -2
"The stoichometric coefficient from the reaction formula,
negative for reactants and positive for products";
Integer stoich_coeff B = -4;
Integer stoich_coeff C = 1;

parameter
parameter

parameter
parameter
parameter
parameter
parameter
parameter

parameter
parameter
parameter
parameter

parameter
parameter
parameter

parameter
parameter
parameter

parameter
parameter

Real
Real
Real
Real
Real
Real

Real
Real
Real
Real

Real
Real
Real

Real
Real
Real

Real
Real

rateKO = 2e7 "The reaction constant k0";
Ea = 76000 "Activation energy";
R=8.31434 "Universal gas constant";
small=1e-9;

g_reac_limit=le-7;

c_C_limit=1;

c_nom = 2391.9/50;

Jcf = Hr/(d*cp)+c_nom;

aU = kxAheat/(dxcp);

Z = Eaxdcp/(Hr*R+c_nom);

g_B_total = 10e-3/3600;
T_feedB = (273+20)/Jcf;
cooling flow = 10.8/3/3600;

factor_c = 1.7;
c_feedA = 1407+factor_c/c_nom;
c_feedB = 11256+«factor_c/c_nom;

g_A = 40e-3/3600;
u_Bl_tau = 30

"time constant of injection flow dynamics";

// Default initial conditions, no injections and everything is

Real[n] Tr(start
Real[n] Tc(start
Real[n] cA(start

303+ones(n)/Jcf,max=(273+155)/Jcf+ones(n));
293+ones(n)/Jcf);
2392/c_nom+ones(n)) "Conc A in reactor”;

Real[n] cB(start = Oxones(n)) "Conc B in reactor";
Real T_feedA(start= 303/Jcf);

Real T_cool(start= 293/Jcf);

Real u_Bl(start = 0);

Real u_B2(start = 0);

Real ublfl(start=0);

Real ublf2(start=0);

Real ublf3(start=0);

Real[n] g_reac
"The total flow rate in each discretized part of the reactor";

cold

323

Appendix E. A Modelica Model of a Plate Reactor

Real[n] q_B;

Real g_cool_in "utility volume flow into pipe 2";
Real Tr_in "Temperature of fluid at pipe 1 entrance";
Real Tc_in "Temperature of fluid at pipe 2 entrance";
Real c_A_in
"Inlet concentration of reactant A at pipe 1 entrance";
Real c_feedB_in
"Injection concentration of reactant B, constant at each
injection site";

-0.6465642069286;
-0.52235971683047;

parameter Real afll
parameter Real afl2
parameter Real afl3 0.20092585654438;
parameter Real af21l 0.52235971683047;
parameter Real af22 = -0.07798518562701;
parameter Real af23 0.13233112279764;
parameter Real af31 = 0.20092585654438;
parameter Real af32 -0.13233112279764;
parameter Real af33 = -0.27545060744436;

parameter Real bfl = -101.272744990762;
parameter Real bf2 = 23.164289092889;
parameter Real bf3 = 16.745608714377;

parameter Real cfl = 101.272744990762;
parameter Real cf2 = 23.164289092889;
parameter Real cf3 = -16.745608714377;

parameter Real df = 10000;

Real u_Bl_setpoint_f(start=0);
Real ub2fl(start=0);
Real ub2f2(start=0);
Real ub2f3(start=0);
Real u_B2_setpoint_f(start=0);

Modelica.Blocks.Interfaces.RealInput u_Bl_setpoint;
Modelica.Blocks.Interfaces.RealInput u_B2_setpoint;
Modelica.Blocks.Interfaces.RealInput u_TfeedA_setpoint;
Modelica.Blocks.Interfaces.RealInput u_T_cool_setpoint;
equation

der (ub1fl) afll1+ublfl+afl12+ublf2+afl3+ublf3 + bflxu_Bl_setpoint;
der (ubl1f2) = af2lxublfl+af22+ublf2+af23+ublf3 + bf2+u_Bl_setpoint;
der (ub1f3) af31+ublfl+af32+ublf2+af33+ublf3 + bf3+u_Bl_setpoint;
u_B1_setpoint_f = cflxublfl+cf2+ublf2+cf3+ublf3 + dfxu_Bl_setpoint;

324

der(ub2f1)

afll+ub2fl+afl12+ub2f2+afl13+ub2f3 + bflxu_B2_setpoint;
der (ub2f2) af21+ub2fl+af22+ub2f2+af23+ub2f3 + bf2+u_B2_setpoint;
der (ub2f3) af31+ub2fl+af32+«ub2f2+af33+ub2f3 + bf3+u_B2_setpoint;
u_B2_setpoint_f = cflxub2fl+cf2+ub2f2+cf3+ub2f3 + df+u_B2_setpoint;

der(u_B1) 1/1%(u_Bl_setpoint - u_Bl);

der(u_B2) 1/1%(u_B2_setpoint - u_B2);

der(T_feedA) = 1/2+(u_TfeedA_setpoint - T_feedA);

der(T_cool) = 1/4*(u_T_cool_setpoint - T_cool);

Tr_in = T_feedA;

c_A_in = c_feedA;

g_cool_in = cooling_flow;

Tc_in = T_cool;

c_feedB_in = c_feedB;

q_B[1] = u_Blxq_B_total;

g_B[2:inj_B_in_elem-1] = zeros(inj_B_in_elem-2);

g_B[inj_B_in_elem] = u_B2xq_B_total;

g_B[inj_B_in_elem+1l:n] = zeros(n-inj_B_in_elem);

g_reac[1l] = q_A + g_B[1];

der(Tr[1]) = 1/V_reac*(q_B[1]+T_feedB + gq_A+Tr_in - g_reac[1]+*Tr[1] +

aU+(Tc[1] - Tr[1]) + V_reacxrateKO=exp(-Z/Tr[1])*

cA[1]*cB[1]*c_nom);

1/V_sp*(-q_cool_in*Tc[1] + g_cool_in*Tc_in -

aU+(Tc[1] - Tr[11));

der(cA[1]) = 1/V_reac*(q_Axc_A_in - g_reac[1]*cA[1] +
stoich_coeff A+V_reac*rateKO+exp(-Z/Tr[1])=*
cA[1]*cB[1]*c_nom);

der(cB[1]) = 1/V_reac*(q_B[1l]*c_feedB_in - g_reac[1]+cB[1l] +
stoich_coeff B+*V_reac*rateKO+exp(-Z/Tr[1])=*
cA[1]*cB[1]*c_nom);

for i in 2:n loop

g_reac[i] = q_A + sum(g_B[1l:i]);

der(Tr[i]) = 1/V_reac*(q_B[i]*T_feedB + g_reac[i-1]*Tr[i-1] -
g_reac[i]+Tr[i] + aUx(Tc[i] - Tr[i]) +
V_reac*rateKO+exp(-Z/Tr[i])*cA[i]+*cB[i]+*c_nom);

der(Tc[i]) = 1/V_sp*(g_cool_in=*(Tc[i-1] - Tc[i]) -
aU+(Tc[i] - Tr[i]));

der(cA[i]) = 1/V_reacx(g_reac[i-1]*cA[i-1] - g_reac[i]=cA[i] +
stoich_coeff A+V_reac*rateKO+exp(-Z/Tr[i])=*
cA[i]*cB[i]*c_nom);

der(cB[i]) = 1/V_reac*(q_B[i]+*c_feedB_in + g_reac[i-1]*cB[i-1] -
g_reac[i]*cB[i] + stoich_coeff_B=V_reac
rateKOxexp(-Z/Tr[i])* cA[i]*cB[i]*c_nom);

der(Tc[1])

end for;
end PlateReactor;

325

