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Abstract

In this thesis we focus on four problems in computational geometry:

In the first four chapters we consider the problem of covering an arbitrary
polygon with simpler polygons, i.e., rectangles. We present several approxima-
tion algorithms for this problem, and also some lower bounds on the number of
rectangles needed in a covering of a hole-free polygon and on the time-complexity
for this and related problems.

Then, we consider a generalization of the well-known Euclidean traveling
salesman problem (TSP), namely the TSP with neighborhoods problem. In the
TSP with neighborhoods problem we are given a collection of polygonal regions,
and we seek the shortest tour that visits each neighborhood at least once. We
give approximation algorithms for the problem and also show a result on the
hardness of the problem.

Next we turn our attention to the problem of finding a t-spanner of a complete
geometric graph. The aim is to produce a sparse graph with a small number of
edges and with low total weight, that is almost as “good” as a complete graph.
With good we mean that for every pair of points in the graph there exists a path
in the spanner graph that is at most ¢ times longer than the distance between
the two points. We present several approximation algorithms for this problem.

In the final chapter of the thesis we introduce the concept of higher-order
Delaunay triangulations. We give an algorithm to compute which edges can
be included in a higher-order Delaunay triangulation. We show that for 1-
order Delaunay triangulations, most of the criteria we study can be optimized
in O(nlogn) time, for example, minimizing the number of local minima, the
number of local extrema, the maximum angle, area triangle, and degree of any
vertex.
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Chapter 1

Introduction

Twenty-five years ago Shamos and Hoey [88] introduced Voronoi diagrams to
computer science. This was the start of systematic studies of geometric al-
gorithms and the field computational geometry was born. Of course, Voronoi
diagrams had been known long before, cf. Descartes’s Principia Philosophiae
1644, but the notion of efficiently computing them was something new. As a
consequence researchers started to identify geometrical problems of great impor-
tance. The first annual conference in the subject appeared in 1985. One year
later the first journal in the field published its first issue. Now there are three
journals devoted only to computational geometry and several annual conferences
and workshops.

The success of the field can among other things be explained by the many
applications of geometrical problems, for example, in computer graphics, chem-
istry, pattern recognition, geographic information systems, robotics, and other
important application areas. Another reason for the success of the field is the
beauty of geometry and the ease of understanding and explaining geometrical
problems. In computational geometry classes, a large group of students is moti-
vated and interested in the subject because the problems are often natural and
occur in everyday life, for example shortest paths, Voronoi diagrams and point-
location. When posing a geometrical problem to a student one doesn’t need any
complicated definitions or notations, with the result that the student naturally
starts to work on the problem.

An obvious question is why we study geometrical problems explicitly and
not their non-geometric counterpart. The answer is that a geometric input is
more constrained than its non-geometric counterpart, which implies that the
geometric problems are easier to handle and solve.

As an example, let us consider the Euclidean traveling salesman problem.
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We are given a set of n points (cities) in the plane and we want to compute the
shortest tour that visits all of the points exactly once. The geometric problem
can be solved exactly in time n®(V™ and approximated in polynomial time
within a factor of 14 €. While the general problem can be solved exactly in time
20(7) " and cannot be approximated within any reasonable factor in polynomial
time. But most significantly the constrained nature of the geometric problems
gives us a lot of information that we may use to obtain efficient algorithms.

1.1 Geometric preliminaries

In this section we define some geometric objects that are used later on. Many
standard definitions and notations are not included. Therefore, it is convenient
to already have some knowledge in computational geometry. Examples of excel-
lent introductory books on computational geometry are these of de Berg, van
Kreveld, Overmars, and Schwarzkopf [32], O’Rourke [78] and, Preparata and
Shamos [81].

Let IR? be the d-dimensional real space. A d-tuple (z1,...,z4) denotes a
point of IRY. We use |zy| to denote the distance between points z=(z1,...,zq)
and y = (y1,¥2,---,y4). In our case, distances are measured according to some

Li-metric (1 <t < 00),
J 1/t
|y = (le —yilt> :
i=1

Unless otherwise stated, we use the Lo-metric (the standard Euclidean metric).
A straight-line segment connecting two points x and y is the set

Ty={az+(1—a)y:a€Rand 0 < a < 1}.

Convez set. A domain D in IR? is said to be convex if, for any two points z
and y in D, the segment Ty lies entirely within D. The convez hull of a set of
points in S in IR? is the boundary of the smallest convex set in IR? containing S.

Polygon. InIR? a polygon is defined by a finite set of segments such that every
segment endpoint is shared by exactly two edges. The segments are the edges
and their extremes are the vertices of the polygon. A simple polygon divides the
plane into two parts, the interior (bounded) and the exterior (unbounded). By
a polygon we often mean the union of its boundary and its interior. A convex
polygon is a simple polygon such that all its vertices lie on their convex hull.

For simplicity we will throughout this text assume that no three points are
co-linear and that no four points are co-circular.
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1.2 Model of computation

From a practical point of view, the effectiveness of an algorithm can be measured
in terms of how much time and memory is required by the algorithm. Both the
running time and the space used by the algorithm depend on the particular
computer and on the implementation. In order to compare different algorithms
we need to agree on a standard model of computation. The model specifies the
primitive operations that may be executed and their respective cost, space and
time. The running time complexity of an algorithm is the sum of the primitive
operations performed by the algorithm times their cost. Similarly, the space
complexity describes how many memory units that are needed to store all the
data required for the execution of the algorithm. The unit of space specifies what
types of variables that can be used in the model, so-called elementary variables.

The model of computation that will be used by the algorithms presented in
this thesis are designed for a model of computation called real RAM [81]. A real
RAM can store an arbitrary real number in a memory location, and perform the
following operations in unit time:

1. The arithmetic operations (+, —, X, /).
2. Comparisons between two real numbers (<, <, =, #, >, >).

3. Indirect addressing of memory (integer addresses only).
And, optionally
4. Standard analytic functions on a real number, such as kth root, trigono-
metric functions, and logarithms.

The above model reflects the standard high-level languages like PASCAL, et
cetera, in which many algorithms treat real variables as having infinite precision.

Some of our algorithms are shown to be optimal in the augmented decision
tree model in which algebraic computations are allowed (excluding, for example,
the non-algebraic floor function). This model is called algebraic decision tree
model [81].

1.3 Notions of complexity

In this section we present standard complexity notions which can be found in
most introductory books on algorithms and complexity. The reader already
familiar to these concepts can jump to Section 1.4.

Each instance of a problem is specified by a set of data called the input to
the problem. The size of the input is the number of memory units needed to
represent the input. For geometrical problems, this is usually the number of
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points and segments in the input. For most applications we are not primarily
interested in the exact computation complexity of an algorithm for all possible
values of input. Instead we are usually more interested in the behavior of these
complexities as the input size grows. However, the running time may also depend
on the input itself, for example, how points and segments are placed in space,
how long the segments are and so on. In order to specify the performance of
an algorithm on input of size n, one determines the complexity by running the
algorithm on the worst case instance of size n. The worst case instance is the
instance with highest complexity. More formally:

An algorithm, denoted A, performs a sequence of operations on its input. If
I denotes the input, we let ¢4 (I) denote the time algorithm A needs to compute
the final result, with I as input. We can associate a time complexity function
Ta(n): IN — IN to every algorithm A, defined as

Ty(n) = max{ta(I)}.

[|=n
As described above, this is the worst-case time complexity over all possible input
instances of size m. Similarly, one can associate a space complexity function
Sa(N) to every algorithm. The worst-case complexity is a pessimistic estimation
of the complexity of an algorithm. For many cases in computational geometry
the upper bound is only reached for extreme inputs that very seldom occur if at
all.

We are mainly interested in how fast the computation complexity grows
with respect to the input size. In algorithmic analysis one usually expresses the
complexity, space and time, as a function of the input size and removing the
multiplicative constant.

Knuth [55] introduced a notation that distinguishes between upper and lower
bounds, which we will use in this thesis.

O(f(N)) denotes the set of all functions g(/N) such that there exist positive
constants C' and Ny with g(N) < C - f(N) for all N > Np.

)
Q(f(N)) denotes the set of all functions g(N) such that there exist positive
constants C' and Ny with g(N) > C' - f(N) for all N > Np.

O(f(N)) denotes the set of all functions g(/N) such that there exist positive
constants C, Cy and Ny with C-f(N) < g(N) < Cy- f(N) for all N > Ny.

We say that an algorithm A has polynomial time-complexity if Ta(n) =
O(n®), where c¢ is some constant. Algorithms that have polynomial time com-
plexity are said to be efficient, so when we try to obtain efficient algorithms
for problems we look for algorithms with polynomial time-complexity. Unfortu-
nately, for many problems no polynomial time algorithms have been found. One
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class of problems that has not been found to admit any efficient algorithms, is
known as the class of NP-complete problems. It is commonly believed that no
efficient algorithms even exist for this class of problems, but no one has, so far,
been able to prove it.

Many problems of practical significance are NP-complete but are too im-
portant to abandon. If a problem is NP-complete, we are unlikely to find a
polynomial-time algorithm solving the problem exactly. But, it may still be
possible to find a near-optimal solution in polynomial time. In practice, near
optimal might be good enough. An algorithm that returns a near-optimal solu-
tion is called an approzimation algorithm.

Assume that we have an optimization problem where each possible solution
has a cost, and we want to find a near-optimal solution. An approximation
algorithm A is said to be an a(n)-approximation algorithm if for any input of
size n, the cost C'4 of the solution produced by A is within a factor of a(n) of
the optimal cost Copy:

CVA Copt
Copt” Ca )

Note that this definition holds for both minimization and maximization prob-

a(n) > max(

lems.

An approximation scheme for an optimization problem is an approximation
algorithm that takes as input not only an instance of the problem, but also a
value € > 0 such that for any fixed €, the scheme is an (1 + €)-approximation
algorithm.

The reader seeking a more detailed discussion on the notions of complexity
in this chapter is referred to one of the classical textbook on algorithm such as
those by Aho, Hopcroft, and Ullman [4], and Cormen, Leiserson, and Rivest [27].

1.4 Outline of the thesis

In this thesis we focus on four problems: covering polygons with simpler poly-
gons, finding a minimum tour visiting a set of regions, constructing sparse span-
ners and triangulating a set of points. We present several approximation algo-
rithms for these problems and also new lower bounds.

Covering problems. The following five chapters of this thesis consider the
problem of covering arbitrary polygons with a minimum number of rectangles or
squares. The problem of covering polygons with various types of simpler poly-
gons has a number of important practical applications [46, 53] and has received
considerable attention from a theoretical perspective. One application for this
problem is the fabrication of VLSI chips. According to [46], a common method
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for fabricating VLSI chips is the optical method of the automatic blockflasher,
which exposes rectangles of, in practice, almost any size and any orientation. In
order to minimize the cost of the fabrication it is desirable to cover the polygonal
area of each layer of the circuit with as few rectangles as possible. Also when
solving other problems for geometric figures, a common method is to decom-
pose the figure into simpler parts, solve the problem on each component using
some specialized algorithm, and then combine the partial solutions to solve the
problem for increasingly larger parts of the polygon.

In Chapter 3 we present the first polynomial time O(logn)-approximation
algorithm under the assumption that the vertices of the polygon are given as
polynomially bounded integer coordinates. The idea is to reduce the original
problem to the set-covering problem, by constructing a superset of rectangles.
Using the same approach we can also find a covering which is within a constant
factor of the optimal in exponential time.

In Chapter 4 we show that in the case when the input polygons are hole-free
one can in linear time obtain a much better approximation factor. The approx-
imation ratio is O(a(n)) where a(n) is the extremely slowly growing inverse of
Ackermann’s function. The idea of this result is very simple. Our claim is that
for hole-free polygons there cannot be a large set of “long” rectangles that covers
a major part of the polygon. Hence, one can replace these “long” rectangles by
short rectangles, which implies that a good algorithm that covers the polygon
locally performs quite good.

In the final chapter on the covering problem we notice that there are several
covering algorithms that run in time O(nlogn) for general polygons but can
be improved to have linear time-complexity in the case when the input polygon
is hole-free. This led us to believe that the trivial linear lower bound can be
improved in the case when the given input polygon contains holes. We show
that any approximation algorithm for covering an arbitrary polygon with holes,
with a finite number of polygons, has a lower bound on the time-complexity of
Q(nlogn) in the algebraic decision tree model.

Traveling salesman problem with neighborhoods (TSPN). The second
problem we consider is a variant of the well-known Euclidean traveling salesman
problem. A salesman wants to meet some potential buyers. Each buyer specifies
a region in the plane, his neighborhood, within which he is willing to meet. The
salesman wants to find a tour of shortest length that visits all of the buyers’
neighborhoods and finally returns to his initial departure point. The number
of simple polygons, called neighborhoods, is denoted k and the total number of
vertices in the plane is denoted n.

The main result, of Chapter 6, is an algorithm that, given an arbitrary real
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Figure 1.1: An example of TSP with neighborhoods.

constant € as an optional parameter, performs at least one of the following two
tasks (depending on the instance):

(1) It outputs in time O(nlogn) a TSPN tour guaranteeing that it is of
length O(log k) times the optimum.

(2) It outputs a TSPN tour guaranteeing that it is of length less than (1 +¢)
times the optimum in time O(n?).

The first part of our method builds upon an idea by Mata and Mitchell [70], in
that our logarithmic approximation algorithm produces a guillotine subdivision.
However, we produce a quite different guillotine partition and show that it has
some nice “sparseness” properties, which guarantee the O(log k) approximation
bound. The described method can also be applied to other problems as suggested
in [70]. In the same chapter we also give the first hardness result for TSPN. We
show that TSPN is APX-hard and cannot be approximated within a factor of
1.000374 unless P=NP. The reduction is done using the well-known Min Vertex
Cover-problem, which is known to be APX-hard and not approximable within a
factor of 1.0029 in the case when the degree is bounded by 5 [16].

Constructing spanners. The third problem we consider is how to construct
sparse spanners. The problem of constructing spanners has been thoroughly
investigated by many researchers the last decade [11, 20, 31, 52, 85, 93]. Spanners
have applications in the design of geometric networks and they are also useful
in designing efficient approximation schemes for geometric problems. Consider
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a set S of n points in IR?, where the dimension d is a constant. A geometric
network on S can be modeled as an undirected graph G with vertex set S and
with edges e = (a,b) of weight wt(e) defined as the Euclidean distance d(a,b)
between its two endpoints a and b. Let p and ¢ be two points of S, and let P
be a pg-path in G, i.e., a path in G between p and ¢q. The weight of the path
P is denoted by wt(P) and is defined as the sum of the weights of the edges of
P. Let t > 1 be a real number. We say that G is a t-spanner for S, if for each
pair of points p,q € S, there exists a pg-path in G of weight at most ¢ times the
Euclidean distance between p and ¢. A sparse spanner is a spanner with low
weight and a linear number of edges.

In Chapter 7 we consider the problem of finding a minimum Manhattan net-
work. For a given set S of points in the plane, we define a Manhattan Network
on S as a rectilinear geometric network G with the property that for every pair
of points p, €S, the network G contains a minimum rectilinear pg-path con-
necting them. A Minimum Manhattan Network on S is a Manhattan network of
minimum possible length. Many VLSI circuit design applications require that a
given set of terminals in the plane be connected by networks of small total length.
Rectilinear Steiner minimum trees were studied in this context. Manhattan net-
works impose additional constraints on the distance between the terminals in
the network. The concept of Manhattan networks seems to be a very natu-
ral concept; it is surprising that this concept has not been previously studied.
Manhattan networks are also closely connected to the concept of spanners. In
this connection, a minimum Manhattan network can be thought of as a sparsest
1-spanner for S for the Li-norm, assuming that Steiner points are allowed to be
added. 1-spanners are also interesting since they represent the network with the
most stringent distance constraints.

In Chapter 8, we show the first algorithm that constructs a sparse spanner in
time O(nlogn). This solves a critical open problem, since in a startling devel-
opment, Rao and Smith [83] showed an optimal O(nlogn)-time approximation
scheme for the well-known Euclidean traveling salesperson problem, assuming
that it is possible to compute sparse spanners in time O(nlogn). Our algorithm
is inspired by the algorithm due to Das and Narasimhan [31]. They showed how
to use clustering in order to speed up shortest path queries. However, their algo-
rithm was not efficient enough because they were unable to maintain the clusters
efficiently and the algorithm had to frequently rebuild the clusters. We retain
the general framework of that algorithm. Our main contribution is in developing
techniques to efficiently perform clustering. We believe that the techniques that
we have developed are likely to be useful in designing other greedy-style dynamic
algorithms, i.e., in situations where only insertions take place and particularly
in increasing order of length.
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Figure 1.2: Example of a ¢t-spanner of the complete Euclidean graph with ¢ = 1.18.

Higher-order Delaunay triangulations. One of the most well-known and
useful structures studied in computational geometry is the Delaunay triangula-
tion [32, 38, 75]. It has applications in spatial interpolation between points with
measurements, because it defines a piecewise linear interpolation function. One
specific use of the Delaunay triangulation for interpolation is to model eleva-
tion in Geographic Information Systems. The so-called Triangulated Irreqular
Network, or TIN, is one of the most common ways to model elevation. Eleva-
tion is used for hydrological and geomorphological studies, for site planning, for
visibility impact studies, for natural hazard modeling, and more.

Because a TIN is a piecewise linear, continuous function which is generally
not differentiable at the edges, these edges play a special role. In elevation mod-
eling, one usually tries to make the edges of the TIN coincide with the ridges
and valleys of the terrain. Then the rivers that can be predicted from the el-
evation model are a subset of the edges of the TIN. When one obtains a TIN
using the Delaunay triangulation of a set of points, the ridges and valleys in
the actual terrain will not always be as they appear in the TIN. The so-called
‘artificial dam’ in valleys is a well-known artifact in elevation models, Fig. 1.3. It
appears when a Delaunay edge crosses a valley from the one hillside to the other
hillside, creating a local minimum in the terrain model slightly higher up in the
valley. It is known that in real terrains such local minima are quite rare [48].
These artifacts need to be repaired, if the TIN is to be used for realistic terrain
modeling [86], in particular for hydrological purposes [67, 68, 91]. If the valley
and ridge lines are known, these can be incorporated by using the constrained
Delaunay triangulation [26, 36, 66]. The cause of problems like the one men-
tioned above may be that the Delaunay triangulation is a structure defined for
a planar set of points, and doesn’t take into account the third dimension at
all. One would like to define a triangulation that is both well-shaped and has
some other properties as well, like avoiding artificial dams. This led us to define
higher-order Delaunay (HOD) triangulations, a class of triangulations for any
point set P that allows some flexibility in which triangles are actually used. The
Delaunay triangulation of P has the property that for each triangle, the circle
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through its vertices has no points of P inside. A k-order Delaunay (k-OD) tri-
angulation has the relaxed property that at most k points are inside the circle.
The idea is then to develop algorithms that compute some HOD triangulation
that optimizes some other criterion as well. Such criteria might be minimizing
the number of local minima, and minimizing the number of local extrema. The
former criterion deals with the artificial dam problem, and the latter criterion
also deals with interrupted ridge lines. For finite element method applications,
criteria like minimizing the maximum angle, area triangle, and degree of any
vertex may be of use [17, 18, 19].

We define HOD triangulations and analyse their properties. We also give an
algorithm to compute which edges can be included in a k-OD triangulation. The
algorithm runs in O(nklogn+n log® n) expected time. For 1-OD triangulations
we show some useful results, i.e., that most of the criteria we study can be
optimized in O(nlogn) time.

Figure 1.3: Artificial dam that interrupts a valley line (left), and a correct version
obtained after one flip (right).



Chapter 2

Covering polygons

The problem of covering polygons with various types of simpler polygons has a
number of important practical applications [46, 53] and has received considerable
attention from a theoretical perspective. One application for this problem is the
fabrication of VLSI chips. According to Hegediis [46], a common method for
fabricating VLSI chips is the optical method of the automatic blockflasher, which
exposes rectangles of, in practice, almost any size and any orientation. In order to
minimize the cost of the fabrication it is desirable to cover the polygonal area of
each layer of the circuit with as few rectangles as possible. For more information
about the VLSI fabrication process see [46]. Also when solving other problems
for geometric figures, a common method is to decompose the figure into simpler
parts, solve the problem on each component using some specialized algorithm,
and then combine the partial solutions to solve the problem for increasingly
larger parts of the polygon.

O’Rourke and Supowit [79] showed that the problems of covering polygons
with a minimum number of convex polygons, star-shaped polygons or spiral
polygons are all NP-hard, if the polygon contains holes. The rectilinear case,
i.e., when the polygons, as well as the rectangles, have sides that are vertical
or horizontal, has been treated in several papers [13, 39, 53, 56, 73, 87, 95].
Masek [69] proved that this case is NP-complete, but again the proof required
the polygon to contain holes. Later Culberson and Reckhow [28] showed this
case to be NP-hard even when the given polygon was hole-free. Berman and
DasGupta [15] showed that if the rectilinear polygon has holes, the problem is
also MAXSNP-hard.

Kumar and Ramesh [56] recently presented a polynomial-time approxima-
tion algorithm that produces a covering which is within an O(y/logn) factor of
the optimal. When the polygon is hole-free, Franzblau [40] showed a factor 2

11
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approximation guarantee. When the polygon is both vertically and horizontally
convex, Chaiken, Kleitman, Saks and Shearer [21] gave a polynomial time algo-
rithm for computing the minimum number of rectangles required, exactly. This
was improved upon by Franzblau and Kleitman [39], who achieved the same
result under the weaker restriction that the hole-free polygon is just vertically
convex.

For the related rectilinear square covering problem some of the previous work
used a bit-map representation for the input polygon [5, 12, 73, 87]. A bit-map
representation of a polygon is a boolean (zero-one) matrix, where one (1) repre-
sents a point inside the polygon and a zero (0) - a point outside it. When using
this representation, complexity is measured in terms of the number of points in
the matrix, denoted p. Note that p>Q(n), and for most practical applications
p>n, where n is the number of edges of P. Bar-Yehuda and Ben-Hanoch argues
that the representation of the polygon should be made as segment representa-
tion, not only theoretically, but also for most practical applications [13].

Scott and Iyenger [87] present an algorithm to find, in O(nlogn) time, the
maximal squares in the polygon, and then divide the rectangular portions of the
polygon to cover them minimally. However, their algorithm does not yield a
globally minimum cover. It was shown by Aupperle, Conn, Keil and O’Rourke
[12] that the rectilinear case is NP-hard for polygons containing holes. In the
case where the image is hole-free, they provide an O(p*-) algorithm. Recently,
Bar-Yehuda and Ben-Hanoch [13] presented a linear time algorithm for covering
simple rectilinear polygons with squares. Morita [73] developed a parallel algo-
rithm, which finds a minimal (not minimum®) square cover for bit-maps which
may contain holes. The sequential running time of this algorithm is O(p). Gud-
mundsson and Levcopoulos [44] presented an approximation algorithm for the
general, non-rectilinear, square covering problem that guaranteed a constant ap-
proximation factor 14 running in time O(n? + u(P)), where p(P) is the number
of squares in an optimal covering.

In the general rectangle covering problem it is not known whether the optimal
solution can be computed even in exponential time. Using the proof technique
from [77] (see also [24] and [72]), Tarski’s decidability results can be applied
to prove that the decision version of the problem is computable, but no up-
per bound better than 22°" was known for its execution time. Hegediis [46]
implemented a program (the so-called GENCOV-algorithm) which covers gen-
eral polygons with rectangles and presented some empirical results concerning
its performance. The results show that the algorithm is rather good in prac-
tice, but no theoretical analysis is presented in [46]. Another approximation

LA square cover is called minimal if it has no smaller subset that forms a cover. A square
cover is called minimum if there is no smaller set that forms a cover.
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algorithm was presented by Levcopoulos in [58], and with refined analysis in
[60], which produces O(n log n+u(P)) rectangles to cover an arbitrary coverable
polygon P in time O(nlog n+u(P)), where n is the number of vertices of P and
u(P) is the minimum number of rectangles required to cover P. (A polygon
can be covered by rectangles iff it has no acute interior angles.) In [60] it was
shown that u(P)=0(nlog %(“)), where s is the shortest distance between two
non-incident edges of P, [ is the length of the longest edge of P and b is the
diameter of the largest circle which can fit within P. It was also shown that this
upper bound cannot be further refined with respect to n, b, [ and s.

In the next three chapters we show results concerning the problem of covering
a general polygon with rectangles.

A problem with the algorithm by Levcopoulos [60] is that, even when p(P) =
O(n%>%€), where € is any fixed constant greater than zero, the algorithm may
produce a covering with Q(nlogn) rectangles, which is very far from being op-
timal, as is shown in [60]. To get a reasonable approximation in the case when
u(P)<n we use a different approach in Chapter 3. The idea is to reduce the
original problem to the set-covering problem. By constructing a superset of rect-
angles, we can find a covering which is within a constant factor of the optimal
in exponential time. We also present the first polynomial time algorithm, guar-
anteeing an O(logn) approximation factor, provided that the n vertices of the
polygon are given as polynomially bounded integer coordinates.

In Chapter 4 we establish that, for hole-free polygons, the algorithm pre-
sented by Levcopoulos in [58] produces O(min[n+u(P), a(n)-pu(P)]) rectangles,
where «(n) is the extremely slowly growing inverse of Ackermann’s function.
For proving this result we develop new techniques which we believe are interest-
ing themselves, and can be used, e.g., for showing properties of other types of
coverings.

In the final chapter, on the problem of covering polygons, we show that any
approximation algorithm for covering an arbitrary polygon, with holes, with a
finite number of polygons has a lower bound on the time-complexity of Q(n logn)
in the algebraic decision tree model.






Chapter 3

Close approximations of
minimum rectangular
coverings

A problem with the algorithm by Levcopoulos [60], as mentioned in Chapter 2,
is that, even when u(P) = O(n%5T¢), where € is any fixed constant greater
than zero, the algorithm may produce a covering with Q(nlogn) rectangles,
which is very far from being optimal, as is shown in [60]. To get a reasonable
approximation in the case when p(P)<n we need a different approach. In
order to find a better covering in the rectilinear case one has used the approach
of finding a superset of rectangles which includes the rectangles in an optimal
covering. If we could find such a set for the general case we could easily translate
the polygon-covering problem to the set-covering problem. The main difference
between the rectilinear case and the general case is that there are only O(n?)
possible maximal rectangles in the rectilinear case versus infinite many possible
maximal rectangles in the general case. Instead we will in this paper construct
a set of rectangles, denoted C'g, and prove that Cg includes a covering which is
within a constant factor of the optimal. In fact we show that Cr possesses an
even stronger property, namely that every possible rectangle within a polygon
P can be covered by a constant number of rectangles in Cr (Lemmas 3.5-3.7).

By reducing the original problem to the set-covering problem, by rectangles
from Cg, we can find a covering which is within a constant factor of the opti-
mal in exponential time. We also present the first polynomial time algorithm,
guaranteeing an O(logn) approximation factor, provided that the n vertices of
the polygon are given as polynomially bounded integer coordinates.

15
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Figure 3.1: (a) The polygon P within the grid. (b) Two of the rectangles in Cr with
endpoints at two marked points in Cp. (¢) The maximal segment within P that passes
through, or ends at, the two vertices v; and v;.

3.1 Defining the pool of rectangles

Let P be an arbitrary polygon, possibly with polygonal holes. The shortest
distance between two edges, e; and es, is defined as the shortest distance between
any two points on e; and es. Let s(P) be the minimum of the length of the
shortest edge of P and the shortest distance within P between two non-incident
edges. The largest distance between two points in P is denoted d(P). When it
is clear from the context which polygon we refer to, we shall simply write s and
d instead of s(P) and d(P). Construct a (%4 x 84) grid such that every square in
the grid has length and height s/6, and P lies entirely within the grid, as shown
in Fig. 3.1a. We can now bound the number of vertices with respect to s and d.

Lemma 3.1 Let P be a polygon of n vertices. It holds that n=0((£)?).

Proof: Let P be a polygon with n vertices. By the definition of d we have that
the area of P is less than “'Td2. We know that the sum of all the interior angles
of P is 180°-(n—2). Construct for every vertex v; a region r(v;), such that every
point in P closer than s/2 to v; belongs to r(v;). According to the definition of
s, the shortest distance between two vertices of P is at least s, thus the regions
are disjoint. The total area covered by these regions is (n—2)-”'52, which is less

3
than the area of P. Thus we have

.52 -d? d\ 2
s < L, hence n < 2-(—) +2.

(n=2)= 4 s

O

We are now ready to construct the pool of rectangles. First a point set C'p
is created which will be used to construct a subset of C'g. Let Cp be a set of
points, such that:
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Figure 3.2: If p has a perpendicular projection on one of 7’s long sides (a) then the
v-distance is the shortest distance between p and T', otherwise (b) it is infinite.

1. every vertex of P is a point in Cp,
2. every crossing between P’s perimeter and the grid is a point in Cp, and
3. every crossing in the grid is a point in Cp.

The number of points in Cp is O((d/s)?), according to Lemma 3.1. We con-
struct a set of rectangles, C'g, by first inserting into C'g each maximal rectangle
which lies within P and which has a side with both endpoints in Cp, Fig. 3.1b.
These rectangles are denoted Class I rectangles or Ci-rectangles. The number
of rectangles in C'g is now O((d/s)").

We will need to extend the number of rectangles in Cr, with two sets of
rectangles. First we add the following set.

For every pair of vertices v;,v; of P, where v; is visible from vj;, let s;; be the
maximal segment, within P, that passes through or ends at v; and v;, as shown
in Fig. 3.1c. For every segment s;; let S;; be a set of points that contains the set
of intersection points between s;; and the grid segments, plus the two endpoints
of sij, v; and v;. The number of points in S;; is O(d/s). For every possible pair
of points p;, pr € S;; insert into C'r all maximal rectangles within P which have
a side with endpoints in p; and pg (there are 0,1 or 2 such rectangles). These
rectangles are denoted Cfj-rectangles and the total number of Cpj-rectangles
inserted in this step is at most n?-(d/s)*=0((d/s)"%)).

The final set of rectangles added to Cg is needed to cover the rectangles
in Lemma 3.6, Case d. The rest of this section is devoted to the construction
of these special rectangles, denoted Chr-rectangles. We will need the following
definitions:

Definition 3.2 The shortest distance between a rectangle T', within P, and a
point p, with a perpendicular projection on one of T”’s long sides (or any side if
T is a square), is denoted the v-distance between T and p. If p does not have a
perpendicular projection on 7"s long sides then the v-distance is infinite.
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Figure 3.3: (a) A valid triplet. (b) and (¢) Two 3v-trapezoids.

The v-distance between a rectangle 7', within a polygon P, and P’s perimeter
is the shortest v-distance between T and a point on P’s perimeter.

Definition 3.3 Let (vi,vs,v3) be a triplet of vertices. Rotate P such that vy
and v3 have the same y-coordinate, and vs lies to the left of v,. For simplicity
we assume that v; lies below vo and vs. The triplet (v, va, v3) is said to be valid
if and only if the following conditions hold.

e There exists a rectangle T with long sides of length at least 4s and short
sides of length at most 5s/6 such that v; and v2 touch opposite long sides
of T, and the v-distance between vs and T is at most s/6.

e v3 lies to the left of vy, see Fig. 3.3a.

For simplicity we will assume that vs lies above T, i.e., v2 and vz lie on the
same side of T, as shown in Fig. 3.3. Assume that (vq,ve,v3) is a valid triplet.
Let @ be the vertical segment of length s with upper endpoint at vs. Let H
be a segment within P between vs and @, such that the intersection between Q)
and H is as close as possible to v3, and let L be a segment within P between
vy and () such that the intersection between () and L has the smallest possible
y-coordinate (as far from v3 as possible), Fig. 3.3.

Let s’ be the longest of the two vertical segments between ve and L (or its
extension), respectively v; and H (or its extension), and let d' be the segment on
Q@ between H and L. If the length of s’ is shorter than the length of d’ then the
trapezoid described by the two vertical segments s’ and d’, and the segments of
H and L between s’ and d’, is denoted a Jv-trapezoid. Note that a 3v-trapezoid
is hole-free since the shortest diagonal of a hole in P is at least s and |d'|<s.

For every 3v-trapezoid t in P, construct at most [|d'|/|s'[] rectangles with
short-sides of length |s| where every rectangle has one endpoint on s’s lower
endpoint and one on d’. We place the rectangles in such a way that a rectangle’s
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Figure 3.4: (a) Finding a 3v-trapezoid. (b) A 3w-trapezoid partially covered by Cri-
rectangles.

short side, closest to d', touches both d' and the upper long-side of the rectangle
below, Fig. 3.4b. The rectangles will at least cover the part of ¢ at distance
more than s/2 from s' and d', see Fig. 3.4b. Add these rectangles to Cg. These
rectangles are denoted Cfp-rectangles and can always be constructed since a
3v-trapezoid is hole-free. Next we bound the number of Cyyj-rectangles in Cg.

|d']
Is']

Observation 3.4 For any 3v-trapezoid it holds that < 2%.

Proof: Rotate the 3v-trapezoid in such a way that s’ and d’ are vertical. Let
Iy be the horizontal distance between d’ and the intersection of H’s and L’s
extensions, and let I3 be the horizontal distance between s’ and the intersection
of H’s and L’s extensions, Fig. 3.4a. Note that I3>s/2 since the shortest distance
between v1 and v, is s and the vertical distance is less than 5s5/6. So for every
3v-trapezoid in P we will construct at most |d'|/|s'| rectangles, and by simple
trigonometry we have: |d'|/|s'| = (I1/l2) < (d/l2) < 2-d/s. O

Since P consists of n vertices there can be at most O(n?) 3v-trapezoids
in P, and since n=0((d/s)?), according to Lemma 3.1, we will add at most
n®2-(d/s)=0((d/s)") Cur-rectangles to Cg. The total number of rectangles in
Cr will hence be O((d/s)"). It is easily seen that Cg can be constructed in time
linear with respect to the number of rectangles in Crg.

3.2 Covering rectangles

In Lemmas 3.5-3.7 we will show that every rectangle 7" within a polygon P can be
covered by a constant number of rectangles in C'r. To be able to guarantee that
we handle all possible cases, we divide the rectangles into three cases according
to their shape, Fig 3.5. The three cases are:
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1. Rectangles whose longest side is shorter than s/2. Here we will have two
subcases depending on whether the rectangle lies close to the perimeter of
P or not.

2. Rectangles whose shortest side is shorter than s/2. Here we will have a
total of four subcases depending on the distance between the long sides of
the rectangle and the perimeter of P. The most complicated case of all
the cases in Lemmas 3.5-3.7 is when we have a thin rectangle whose both
long sides lie close to the perimeter of P. The Cij-rectangles are specially
designed in order to handle this case.

3. Rectangles whose shortest side is longer than s/2. By using the results
from case 1 and 2 it is easy to prove that “large” rectangles can be covered
by a constant number of rectangles from Cg.

Figure 3.5: An example showing some of the cases that we have to handle.

In order to facilitate an easier description in the continuation of the text, we
assume w.l.o.g. that the two longer sides of a rectangle T', within P, lie horizon-
tally, that is, we rotate 7', P and the grid until T’s long sides lie horizontally.
Let A,B,C and D be the corners of T in a counter-clockwise order, where A
and B are the endpoints of 7”’s lowest long-side, as shown in Fig. 3.8. Thus the
segments AB and C'D are at least as long as AD and BC.

Lemma 3.5 Every rectangle T', within P, whose longest side is shorter than
s/2 can be covered by a constant number of rectangles in C.

Proof: We have two cases:

Case a: The shortest distance between T' and P’s perimeter is at least s/+/18.
The distance between T" and P’s perimeter is at least as long as the diagonal
of a square in the grid, so T' will never lie within the same square as P’s perimeter.
Since the diagonal of T' is at most 1/\/§s, T can at most overlap six rows or
columns of squares in the grid. And since every side of a square is the base of a
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Figure 3.6: (a) T is covered by r; and r2. (b) The quadrant bounds the area which T'
may overlap.

Ci-rectangle in Cg, the rectangle T can be covered by at most six Cr-rectangles
in CR.

Case b: The rectangle T lies closer than s/+/18 from P’s perimeter.

Let e; be an edge of P closest to T'. Let r; be the Cr-rectangle in C'r with
base e;. Since T lies closer than s/+/18 from e, the largest distance between a

S

point of T" and e; is Vil % = ?s < s. The height of r1 is at least s. That is,

the part of T' with a perpendicular projection on e; is covered by ;. If r; covers
T then we are finished, otherwise let es be the edge incident to e; that lies on
the same side of e; as the part of T that is not covered by ri, Fig. 3.6a. The
vertex connecting e; and ey is denoted v. It remains to show that there exists a
rectangle ry in C'g that covers the rest of T'. Two cases can occur:

(i) The interior angle (ej, ez) is less than or equal to 180 degrees.

Since every point in T lies within distance less than s from e;, the upper
right quadrant of a circle with center at v and radius s bounds the area outside
r1 where T partly can overlap, as shown in Fig. 3.6b. The Ci-rectangle r» with
base e covers the entire area described by the quadrant, so the remaining part
of T' that is not covered by ry is covered by rs.

(i4) If the interior angle (e1,e2) is greater than 180 degrees then partition
T into nine rectangles, T1,...,Ty of equal size, such that the longest side of

>g/2 r

Figure 3.7: r1 and rs cover every small rectangle that lies closer than s/1/18 from P’s
perimeter.
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each subrectangle T;, 1<i<9, is at most of length s/6. Now we can cover every
subrectangle T; separately. Every subrectangle that lies at least s/1/18 from P’s
perimeter is covered according to Case a. Let T' be any of the subrectangles
that lies closer than s/v/18 from P’s perimeter. Let v; (v2) and v be the vertices
of e (e2). Recall that on every edge and its extensions there exist O((d/s)?)
Chi-rectangles in Cg. Let 1 (r2) be the maximal Cyi-rectangle in Cgr with base
on e; (e2) and its extension, such that one corner lies at v; (v2) and one corner
on the extension of e; (ez) between s/2 and (s/2+s/+/18) from v, Fig. 3.7. Since
the shortest distance from v to a non-incident edge is s, it follows that the height
of ry and ry is at least s/2. Also, since the length of T"’s diagonal is at most
s/4/18, we have that a point in 7" lies within distance (s/v/18+s/v/18)<s/2
from e;. Thus r; and 72 covers T', and T can be covered by a constant number
of rectangles in Cg. a

When the rectangles are “long and thin” we need to cover the rectangles
in different ways depending on the v-distance between the rectangle and P’s
perimeter.

Lemma 3.6 Every rectangle T, within P, whose shortest side is at most of
length s/2, can be covered by a constant number of rectangles in Cr.

Proof: If |[AB|<4s then partition T into eight equal rectangles, whose long
sides are of length at most s/2, which are then covered according to Lemma 3.5.
Otherwise insert four points A’, B’,C’ and D' on T’s perimeter, where A’ and
B' are points on AB at a distance s from A, respectively B, and C' and D'
are points on CD at a distance s from C, respectively D. Partition T into
three rectangles by inserting two segments A’D’ and B'C' in T. We denote
these partitions, from left to right, 73,7, and 75, see Fig. 3.8. Partition 77,
respectively 7T.., into two equal rectangles with long sides of length s/2 and cover
these according to Lemma 3.5. It remains to cover T,,. We distinguish four

cases:

D D’ C C

le T, T, <s
Iy 5y, B
> > > 2s > >z

Figure 3.8: T partitioned into subrectangles and, the rectangle with base pipz cov-
ers T,
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Case a: The v-distance between T' and P’s perimeter is at least s/6.

We claim that there exists a Ci-rectangle r in C'g that covers T,,. To prove
this claim, let p; be the point in Cp with largest y-coordinate below or on AA’,
such that the horizontal distance from p; to the extension of DA is between s /6
and 5s/6, and symmetrically, let p» be the point in C'p with largest y-coordinate
below or on BB', such that the horizontal distance from p, to the extension of
CB is between s/6 and 5s/6, Fig. 3.8.

Let r be the Ci-rectangle in C'r with base prps. Since the vertical difference
between p; and ps is less than s/6 and since |p;pa| > s, it follows that the slope
of r’s left and right side is greater than six and, hence r covers T,,.

Case b: The v-distance between one of T'’s long sides and P’s perimeter is less
than s/6, and the v-distance between the opposite long side and P’s perimeter
is at least s/6.

We can w.l.o.g. assume that AB is the long side of 7' with shortest v-distance
to P’s perimeter. Let p; be the point in C'p with largest y-coordinate below or
on AA’, such that the horizontal distance from p; to the extension of DA is
between s/6 and 5s/6. Symmetrically, let p» be the point in Cp with largest
y-coordinate below or on BB’ such that the horizontal distance from ps to the
extension of CB is between s/6 and 5s/6, see Fig. 3.8.

If p; and py can be connected by a straight line segment within P, then let r
be the Ci-rectangle in C'r with base prpz. Since the vertical difference between
p1 and ps is less than s/6 and since |p1pa| > s, the slope of 7’s left and right side
is greater than six, hence r covers T,,, Fig. 3.9a.

Otherwise, if p; and py cannot be connected by a straight line segment within
P, there exists a vertex of P between AB and pipz. Let v be the vertex of P
with shortest v-distance to AB lying between AB and pipz. If |piv| < s or
|p2v| < s then partition the region in T}, with x-coordinates between p; and v,
or po and v, into two rectangles which are then covered according to Lemma 3.5.
Assume w.l.o.g. that |pyv| is greater than s. We now claim that the uncovered
area of T,, can be covered by a Ci- or a Ci-rectangle in Cr. If |pov| also is
greater than s we do the corresponding procedure to the right of v. The region

(@ (b)

Figure 3.9: Covering T according to Lemma 3.6, Case b.
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of T,, at most s/4 to the left and right of v is covered according to Lemma 3.5,
see Fig. 3.9b. Recall that there exist rectangles in C'r that lie on the visibility
lines and their extensions for every two vertices of P. So, even if p; and v cannot
be connected by a straight-line segment within P there exists a rectangle r in
Cr with lower right corner in v and with lower left corner, denoted p’, between
0 and s/6 below AA’ and with horizontal distance between s/6 and 5s/6 from
AD. Since the vertical difference between p’ and v is less than s/6, and since
|p'v] > s, the slope of r’s left and right side is greater than six, thus r covers the
uncovered area of T}, to the left of v, as shown in Fig. 3.9b.

Before we show the case when the v-distance between both T’s long sides
and P’s perimeter is less than s/6, we need to prove the following special case,
which will be used in the proof of Case d.

Case c: Two diagonally opposite corners of T' both touch vertices in P.

We can assume w.l.o.g. that the vertex v; coincides with A, and the vertex v
coincides with C, Fig. 3.10. Let p; be the point in C'p with largest y-coordinate
below or on BB’, such that the horizontal distance from p; to the extension of
BC is between s/4 and s, Fig. 3.10a. Let ry be the Ci-rectangle in Cr with base
vipr and let a be the angle (v1pr, AB). If r; covers T, then we are finished,
otherwise there exists a vertex vz, or an edge connected to vs, above CD that
prevented r, from covering T}, Fig. 3.10b. Recall that there exist rectangles in
Cg that lie on the visibility lines and their extensions for every two vertices of
T. Thus there exists a Cyr-rectangle r» in C'g with upper right corner at v, and
upper left corner, denoted p2, between 0 and s/6 above DD’ and at horizontal
distance between 0 and s/4 from AD. Let 3 be the angle (vzpz, CD). We know
that 3 < «, since 3 is at most equal to the angle (7303,CD), (i.e., v3,v2, D).
Thus ry cannot be stopped by any part of the perimeter above r1’s base, and it
follows that ro covers T,,.

Case d: The v-distance between both T'’s long sides and P’s perimeter is less
than s/6.

(@ (b)

Figure 3.10: T}, is covered by a rectangle in Cg.
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Figure 3.11: A 3v-trapezoid within P.

Let vo be the vertex in P, above or on C"D’, with smallest v-distance to
C'D’, and let v; be the vertex in P, below or on A’B’, with smallest v-distance
to A’B’. We may assume w.l.o.g. that v; lies to the right of v5. The region of T
between v; and vy is covered according to Case ¢, since the part of T between
v, and v can be expanded in such a way that v; and v2 touch T”’s opposite long
sides. Let T} be the uncovered region of T' to the left of v, and to the right of T
and let T be the uncovered region of T' to the right of v; and to the left of 7.
Assume that T}’s both long sides lie closer to P’s perimeter than s/6, otherwise
cover T/ according to Case a or b. We will now prove that it is possible to cover
T/} with a constant number of rectangles in C'r. If T)’s both long sides also lie
closer to P’s perimeter than s/6 then we do the corresponding procedure on T,
otherwise we cover T according to Case a or b.

Let vz be the leftmost vertex in P, such that the v-distance from vs to T}
is less than s/6. Let @ be the vertical segment within P of length s with one
endpoint at vz, see Fig. 3.11. The part of T} to the left of @) can be covered
according to Case a or b, since the shortest v-distance from P’s perimeter to
one of T}’s long sides to the left of @) is greater than s/6. Let L be the lowest
segment between v; and ). Let H be the highest segment between vy and @,
such that H’s and L’s extensions intersect to the right of v;. The segment on )
between H and L is denoted d'.

The shortest vertical segment from vy to L is denoted s’. The length of s’
is the largest possible thickness of T. The two regions between s’ and d' of T
closer than s/2 from s’ or d' are covered according to Lemma 3.5. Let ¢t be the
trapezoid bounded by the two parallel segments s’ and d’, and the parts of the
segments H and L between s’ and d'. This trapezoid is a 3v-trapezoid, according
to Definition 3.3, and according to the definition of Cr the uncovered region of
t is entirely covered by Ciir-rectangles in C'gr. Therefore, since the thickness of
these Crj-rectangles is s', the part of T' in t can be covered by two of these
rectangles in C'r. Thus the original rectangle T' can be covered by a constant
number of rectangles in C'g. |
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Figure 3.12: The shaded region is covered according to Lemma 3.6.

Lemma 3.7 Every rectangle T, within a polygon P, whose shortest side is
longer than s/2, can be covered by a constant number of rectangles in Cg.

Proof: If |AB|<3s partition T into six equal rectangles which are then covered
according to Lemma 3.6. Otherwise partition 7" in such a way that we can cover
the border of T', that is the region in T that lies at most s from T’s perimeter,
according to Lemma 3.6. Let T, be the uncovered region of T', Fig. 3.12. Let
p1 be the point in C'p with largest y-coordinate below or on the extension of
T.’s base, such that p; lies between s/4 and 3s/4 to the right of AD, and let ps
be the point in Cp with largest y-coordinate below or on the extension of T3,’s
base, such that p, lies between s/4 and 3s/4 to the left of BC. Let r be the
C1- or Cr-rectangle in Cr with base pypz. Since the vertical distance between
p1 and ps is less than s/6, according to the definition of C'p, and since |pips| is
greater than T,,,’s height, the rectangle r will cover T5,. a

3.3 Two algorithms and their complexity

In Lemmas 3.5-3.7, we have shown that Cg includes a covering which is within
a constant factor of the optimal. Thus it is possible to translate the original
geometrical covering problem into the set-covering problem, as follows.

An instance (X, F') of the set-covering problem consists of a finite set X
and a family F of subsets of X, such that every element of X belongs to at least
one subset in . We want to cover the polygon P with a minimum number of
rectangles in C'g. Define X to be the set of all cells in the partition induced by
the perimeters of all the rectangles in Cg, (thus |X|=0(|Cg|?)), and we define
F, such that every element feF corresponds to a rectangle r in C'g, where f
is the subset of X that is included in r. In the following two sections we will
show how one can use this translation to find two algorithms for the polygon-
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covering problem by using two known set-covering algorithms. Before we show
the algorithms we note the following observation:

Observation 3.8 If the input polygon is given as integer coordinates in the
universe [0..u] then s > ﬁ

Proof: Let v; and v2 be two vertices of P connected by an edge e, and let v’
be an arbitrary vertex of P. We will use the notation v.x and v.y to denote the
x- respectively the y-coordinate of a point v. We want to compute the shortest
possible distance between v’ and e. Assume that there exists a point p on e with
the same y-coordinate as v’, then the distance between p and v’ is:

|v1.2 — vo.x]

[v'.z —px| =|v'.x — (vi.z +
vy — va.y|

Py — vyl

Let a = |vy.¢ — va.z|, B = |v1.y — v2.y| and let v = |p.y — v1.y|. Thus we have
[v'.x — p.x| = |v".z — (v1.2 +|F - 7[)|. Since @, B and ~y are in the universe [0..u]
and if p # v', the horizontal distance between p and v’ is:

1 1
V' —pz|>0+=-1==.
u u

According to symmetry we will get the same result if p’s and v'’s z-coordin-
ates are equal. Since e can cross the horizontal line v'.x and the vertical line
v'.y at a distance 1/u from p, we have that the shortest distance, s, between v’

1

and e is Toar B shown in Fig. 3.13. a

8

—_—

1u

Figure 3.13: The shortest distance between a vertex v’ and an edge of P is ﬁ

3.3.1 An exponential algorithm

This is a simple straight-forward algorithm which checks if there is any subset of
k rectangles in Cr that cover P. If such a subset is found then we are finished,
otherwise increment k& and continue as described above. The initial value of k
is 1 and from Lemmas 3.5-3.7 we know that C'r includes a covering which is
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within a constant factor of the optimal, thus k=1, ...,O(u(P)). Since there are
((d/s)T)PWP) subsets of Cr with O(u(P)) rectangles, we can find a covering
with O(p(P)) rectangles in time:

O(u(P))
((d/s)")* = (d/s)O(u(P)) — 9O0(u(P)-logd/s)

k=1

According to Theorem 1 in [58] it holds that u(P) = O(n -logd/s), thus we
get, the time complexity 20" (log 4/9)*) | Hence by Observation 3.8 we obtain the
following theorem:

Theorem 3.9 When the vertices of the input polygon are given as integer coor-
dinates in the range [0..u], the algorithm described above will produce a covering
within a constant factor of the optimal in 20(" (log w?) time.

3.3.2 A polynomial algorithm

A natural approach to find an approximation algorithm would be to use a known
set-covering algorithm, for example a greedy algorithm. A Greedy-Set-Cover
algorithm [27] can easily be implemented to run in time O(| X ||F|min(|X]|,|F|)),
with a ratio bound of (In|X| + 1). Recall that | X|=|Cg|* and F=Cf.

If the input polygon P is given in integer coordinates, where the coordinates
are in the universe [0..u], the above greedy algorithm produces a covering which
is within a logarithmic factor of the optimal, (In |Cg|*+1), in pseudo-polynomial
time O(((d/s)")*)=0((d/s)*®). Since s> \/%u and d</2 - u we have that the
time-complexity for the greedy algorithm is O(u5%). So we obtain the following:

Theorem 3.10 When the n vertices of the input polygon are given as polyno-
mially bounded integer coordinates, the algorithm described above will produce
a covering with a logarithmic approximation factor in polynomial time.

3.4 Lower bounds

From Lemmas 3.5-3.7 we derived the following proposition:

Proposition 3.11 There exists a constant ¢, such that for any polygon P there
exists a finite set, C, of rectangles lying within P, where every rectangle in P
can be covered by c rectangles from C'.

In Sections 3.1 and 3.2 we constructed a finite set C'g of size O((£)7) and proved
that Cg includes a covering which is within a constant factor, ¢, of the optimal.
In Section 3.2 we focused on simple and short proofs for proving that c is a
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constant, therefore by just calculating ¢ from Lemmas 3.5-3.7 the value of ¢ would
be close to 1000. We conjecture that if we use the set C'r the constant factor ¢
is below 20. We may note here that O((£)7) is much greater than pu(P). Since
n=0((£)?), it follows from [60] (see introduction) that p(P)=0((£)?log(2)).

Two questions arise naturally in connection with these proofs:

a) What is the minimum constant ¢, for which the above proposition holds?
That is, if we do not have any restrictions on C' except that it should be finite?

b) How large does C have to be in the worst case, in terms of n, d and s, in
order for the proposition to hold?

Therefore, in this section we give lower bounds for (a) and (b).

Theorem 3.12 For all integers n>8, there exists a polygon P, with n vertices,
such that for any finite set, C, of rectangles lying inside P,, there exists a
rectangle T' within P that cannot be covered by fewer than six rectangles in C'.

Proof: To prove the theorem we consider a polygon P with eight sides, two
horizontal parallel long sides of length 2/ and six sides of length [, such that the
angle between every pair of incident edges is 135 degrees, Fig. 3.14a. We place
a maximal rectangle T within P, such that (1) its corners touch each one of the
non-horizontal and non-vertical edges of P, and (2) its corners do not coincide
with any of the corners of any rectangle in C. It is easily seen that there always
exists such a rectangle T', independently of which method we employ to choose
the rectangles in C. Now we can see that the minimum number of rectangles in

C that is needed to cover T is at least six. O
P
PB .\ t
— _\_\ _____ -+ -
\L N :
R

(@ (b)

Figure 3.14: (a) T is described by the solid thin lines within the polygon. (b) A polygon
P for which the lower bound in Theorem 3.13 would hold.

Theorem 3.13 For every n>5, and d>s>0 there exists a polygon P, such that
for any set of rectangles, C, for which it holds that every possible rectangle within
P can be covered by at most c rectangles of C, it holds that |C|=(d/s)?(1/°).
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Proof: Consider a funnel F' whose arms (if extended) form an angle of 60
degrees, as shown in Fig. 3.15a, with base of length d and top of length s.
Partition F' into kc subfunnels (where k is some constant > 1), Fi,..., F., such
that the ratio between the length of every subfunnel’s base (d') and top (s') is
(d'/s"Y=(d/s)'/*. Let F; be any one of these subfunnels of F. A rectangle r is
said to pass through a funnel if and only if 7’s two long sides intersect both F;’s
top and base. If two rectangles r; and 7o, that pass through F;, should overlap
each other in F3’s top and base, the angle between r1’s and r5’s long sides would
%-;—i, Fig. 3.15b. This implies that, if a set of rectangles,
that covers Fj;, includes only rectangles that pass through F; then the number
of rectangles in this set would be at least %-(d/s)l/kc.

For simplicity we rotate F' such that F’s lower arm lies horizontal and F’s
upper arm has an angle of 60° to the horizontal line. A rectangle r whose
long sides have an angle of 0<a<60° to the horizontal line is said to be a C;-

have to be less than

rectangle, where i=( [%] ). That is, we classify the rectangles with respect
to the slope of their long sides into (d/s)'/? classes. Let us assume that there
exists a set C, in contradiction to the statement of the lemma, consisting of
less than (d/s)?(1/¢) rectangles. This implies that at least one of the classes of
rectangles, say C;, is not represented in C. Let T be a C;-rectangle that passes
through F. From the above arguments we have that 7" has to be covered by at
least one local rectangle within each one of the k¢ subfunnels. Hence, more than
c rectangles in C' are needed to cover T'. We have a contradiction. a

Note that the theorem holds for any polygon containing the funnel F'. For
example, we can construct a polygon P by just adding three segments to F', as
shown in Fig. 3.14b.

d = - T
- \;@:
() - (®) I

Figure 3.15: (a) A funnel F partitioned into kc subfunnels. (b) Two rectangles over-
lapping at F};’s top.



Chapter 4

Linear-time covering

We continue to examine the problem of covering a polygon with a minimum
number of rectangles. Here we will establish that, for simple polygons, the algo-
rithm by Levcopoulos produces O(min[n+u(P), a(n)-u(P)]) rectangles in time
O(n+p(P)), where a(n) is the extremely slowly growing inverse of Ackermann’s
function. For proving this result we develop new techniques which we believe
are interesting themselves, and can be used, e.g., for showing properties of other
types of coverings.

4.1 Preliminaries

In the following sections we will perform a close analysis of the algorithm by
Levcopoulos [58], in the case when the given polygon is simple. To fully under-
stand this result we will present the original algorithm by Levcopoulos, which
will be denoted H. We start with some simple definitions which will be used
throughout this chapter.

The generalized Voronoi diagram [54, 96] of a finite set of objects, S, is a
partition of the plane so that each region of the partition is the locus of points
which are closer to one member of S than to any other member. In the standard
Voronoi diagram the objects in S are just points, in our case we will have to
extend the definition to include open line segments as well as points, see Fig. 4.1.
The part of the generalized Voronoi diagram lying within P partitions P into
n + w faces, where each segment and each concave vertex induces a face of the
Voronoi diagram (w is the number of concave vertices of P).

A funnel cell of a polygon P is a trapezoidal piece of a Voronoi face in P
having the following properties. Let A, B,C, D be the vertices of the trapezoid
in counter-clockwise order, such that AD is parallel to and shorter than BC and
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Figure 4.1: Generalized Voronoi diagram (dashed) within P. Faces induced by concave
vertices are shadowed.

the interior angle ZADC' is greater than 90 and less than 135 degrees, as shown
in Fig. 4.2a. The segment AB lies on an edge of P, say e, and CD is a Voronoi
edge bounding the Voronoi face induced by e in P. By this, and by the definition
of generalized Voronoi diagrams [54], it follows that the mirror image of a funnel
cell with respect to the Voronoi edge bounding the cell is also a funnel cell. Such
a pair of funnel cells with a Voronoi edge separating them is denoted a funnel
shell, Fig. 4.2a.

Let A" and B’ be the symmetric image of A respectively B. Let § be the
straight-line segment with endpoints in B and B’, and let 7 be the shortest
segment, within the shell, touching both AB and A’B’. The part of the shell
bou