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Abstract

In this thesis we focus on four problems in computational geometry:

In the �rst four chapters we consider the problem of covering an arbitrary

polygon with simpler polygons, i.e., rectangles. We present several approxima-

tion algorithms for this problem, and also some lower bounds on the number of

rectangles needed in a covering of a hole-free polygon and on the time-complexity

for this and related problems.

Then, we consider a generalization of the well-known Euclidean traveling

salesman problem (TSP), namely the TSP with neighborhoods problem. In the

TSP with neighborhoods problem we are given a collection of polygonal regions,

and we seek the shortest tour that visits each neighborhood at least once. We

give approximation algorithms for the problem and also show a result on the

hardness of the problem.

Next we turn our attention to the problem of �nding a t-spanner of a complete

geometric graph. The aim is to produce a sparse graph with a small number of

edges and with low total weight, that is almost as \good" as a complete graph.

With good we mean that for every pair of points in the graph there exists a path

in the spanner graph that is at most t times longer than the distance between

the two points. We present several approximation algorithms for this problem.

In the �nal chapter of the thesis we introduce the concept of higher-order

Delaunay triangulations. We give an algorithm to compute which edges can

be included in a higher-order Delaunay triangulation. We show that for 1-

order Delaunay triangulations, most of the criteria we study can be optimized

in O(n log n) time, for example, minimizing the number of local minima, the

number of local extrema, the maximum angle, area triangle, and degree of any

vertex.
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Chapter 1

Introduction

Twenty-�ve years ago Shamos and Hoey [88] introduced Voronoi diagrams to

computer science. This was the start of systematic studies of geometric al-

gorithms and the �eld computational geometry was born. Of course, Voronoi

diagrams had been known long before, cf. Descartes's Principia Philosophiae

1644, but the notion of eÆciently computing them was something new. As a

consequence researchers started to identify geometrical problems of great impor-

tance. The �rst annual conference in the subject appeared in 1985. One year

later the �rst journal in the �eld published its �rst issue. Now there are three

journals devoted only to computational geometry and several annual conferences

and workshops.

The success of the �eld can among other things be explained by the many

applications of geometrical problems, for example, in computer graphics, chem-

istry, pattern recognition, geographic information systems, robotics, and other

important application areas. Another reason for the success of the �eld is the

beauty of geometry and the ease of understanding and explaining geometrical

problems. In computational geometry classes, a large group of students is moti-

vated and interested in the subject because the problems are often natural and

occur in everyday life, for example shortest paths, Voronoi diagrams and point-

location. When posing a geometrical problem to a student one doesn't need any

complicated de�nitions or notations, with the result that the student naturally

starts to work on the problem.

An obvious question is why we study geometrical problems explicitly and

not their non-geometric counterpart. The answer is that a geometric input is

more constrained than its non-geometric counterpart, which implies that the

geometric problems are easier to handle and solve.

As an example, let us consider the Euclidean traveling salesman problem.

1
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We are given a set of n points (cities) in the plane and we want to compute the

shortest tour that visits all of the points exactly once. The geometric problem

can be solved exactly in time nO(
p
n), and approximated in polynomial time

within a factor of 1+ �. While the general problem can be solved exactly in time

2O(n), and cannot be approximated within any reasonable factor in polynomial

time. But most signi�cantly the constrained nature of the geometric problems

gives us a lot of information that we may use to obtain eÆcient algorithms.

1.1 Geometric preliminaries

In this section we de�ne some geometric objects that are used later on. Many

standard de�nitions and notations are not included. Therefore, it is convenient

to already have some knowledge in computational geometry. Examples of excel-

lent introductory books on computational geometry are these of de Berg, van

Kreveld, Overmars, and Schwarzkopf [32], O'Rourke [78] and, Preparata and

Shamos [81].

Let IRd be the d-dimensional real space. A d-tuple (x1; : : : ; xd) denotes a

point of IRd. We use jxyj to denote the distance between points x=(x1; : : : ; xd)

and y = (y1; y2; : : : ; yd). In our case, distances are measured according to some

Lt-metric (1 � t � 1),

jxyj =
 

dX
i=1

jxi � yijt
!1=t

:

Unless otherwise stated, we use the L2-metric (the standard Euclidean metric).

A straight-line segment connecting two points x and y is the set

xy = f�x+ (1� �)y : � 2 IR and 0 � � � 1g:

Convex set. A domain D in IRd is said to be convex if, for any two points x

and y in D, the segment xy lies entirely within D. The convex hull of a set of

points in S in IRd is the boundary of the smallest convex set in IRd containing S.

Polygon. In IR2 a polygon is de�ned by a �nite set of segments such that every

segment endpoint is shared by exactly two edges. The segments are the edges

and their extremes are the vertices of the polygon. A simple polygon divides the

plane into two parts, the interior (bounded) and the exterior (unbounded). By

a polygon we often mean the union of its boundary and its interior. A convex

polygon is a simple polygon such that all its vertices lie on their convex hull.

For simplicity we will throughout this text assume that no three points are

co-linear and that no four points are co-circular.
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1.2 Model of computation

From a practical point of view, the e�ectiveness of an algorithm can be measured

in terms of how much time and memory is required by the algorithm. Both the

running time and the space used by the algorithm depend on the particular

computer and on the implementation. In order to compare di�erent algorithms

we need to agree on a standard model of computation. The model speci�es the

primitive operations that may be executed and their respective cost, space and

time. The running time complexity of an algorithm is the sum of the primitive

operations performed by the algorithm times their cost. Similarly, the space

complexity describes how many memory units that are needed to store all the

data required for the execution of the algorithm. The unit of space speci�es what

types of variables that can be used in the model, so-called elementary variables.

The model of computation that will be used by the algorithms presented in

this thesis are designed for a model of computation called real RAM [81]. A real

RAM can store an arbitrary real number in a memory location, and perform the

following operations in unit time:

1. The arithmetic operations (+;�;�; =).
2. Comparisons between two real numbers (<;�;=; 6=;�; >).
3. Indirect addressing of memory (integer addresses only).

And, optionally

4. Standard analytic functions on a real number, such as kth root, trigono-

metric functions, and logarithms.

The above model re
ects the standard high-level languages like PASCAL, et

cetera, in which many algorithms treat real variables as having in�nite precision.

Some of our algorithms are shown to be optimal in the augmented decision

tree model in which algebraic computations are allowed (excluding, for example,

the non-algebraic 
oor function). This model is called algebraic decision tree

model [81].

1.3 Notions of complexity

In this section we present standard complexity notions which can be found in

most introductory books on algorithms and complexity. The reader already

familiar to these concepts can jump to Section 1.4.

Each instance of a problem is speci�ed by a set of data called the input to

the problem. The size of the input is the number of memory units needed to

represent the input. For geometrical problems, this is usually the number of
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points and segments in the input. For most applications we are not primarily

interested in the exact computation complexity of an algorithm for all possible

values of input. Instead we are usually more interested in the behavior of these

complexities as the input size grows. However, the running time may also depend

on the input itself, for example, how points and segments are placed in space,

how long the segments are and so on. In order to specify the performance of

an algorithm on input of size n, one determines the complexity by running the

algorithm on the worst case instance of size n. The worst case instance is the

instance with highest complexity. More formally:

An algorithm, denoted A, performs a sequence of operations on its input. If

I denotes the input, we let tA(I) denote the time algorithm A needs to compute

the �nal result, with I as input. We can associate a time complexity function

TA(n) : IN! IN to every algorithm A, de�ned as

TA(n) = max
jIj=n

ftA(I)g:

As described above, this is the worst-case time complexity over all possible input

instances of size n. Similarly, one can associate a space complexity function

SA(N) to every algorithm. The worst-case complexity is a pessimistic estimation

of the complexity of an algorithm. For many cases in computational geometry

the upper bound is only reached for extreme inputs that very seldom occur if at

all.

We are mainly interested in how fast the computation complexity grows

with respect to the input size. In algorithmic analysis one usually expresses the

complexity, space and time, as a function of the input size and removing the

multiplicative constant.

Knuth [55] introduced a notation that distinguishes between upper and lower

bounds, which we will use in this thesis.

O(f(N)) denotes the set of all functions g(N) such that there exist positive

constants C and N0 with g(N) � C � f(N) for all N � N0.


(f(N)) denotes the set of all functions g(N) such that there exist positive

constants C and N0 with g(N) � C � f(N) for all N � N0.

�(f(N)) denotes the set of all functions g(N) such that there exist positive

constants C1; C2 andN0 with C1 �f(N) � g(N) � C2 �f(N) for allN � N0.

We say that an algorithm A has polynomial time-complexity if TA(n) =

O(nc), where c is some constant. Algorithms that have polynomial time com-

plexity are said to be eÆcient, so when we try to obtain eÆcient algorithms

for problems we look for algorithms with polynomial time-complexity. Unfortu-

nately, for many problems no polynomial time algorithms have been found. One
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class of problems that has not been found to admit any eÆcient algorithms, is

known as the class of NP-complete problems. It is commonly believed that no

eÆcient algorithms even exist for this class of problems, but no one has, so far,

been able to prove it.

Many problems of practical signi�cance are NP-complete but are too im-

portant to abandon. If a problem is NP-complete, we are unlikely to �nd a

polynomial-time algorithm solving the problem exactly. But, it may still be

possible to �nd a near-optimal solution in polynomial time. In practice, near

optimal might be good enough. An algorithm that returns a near-optimal solu-

tion is called an approximation algorithm.

Assume that we have an optimization problem where each possible solution

has a cost, and we want to �nd a near-optimal solution. An approximation

algorithm A is said to be an �(n)-approximation algorithm if for any input of

size n, the cost CA of the solution produced by A is within a factor of �(n) of

the optimal cost Copt:

�(n) � max(
CA
Copt

;
Copt
CA

):

Note that this de�nition holds for both minimization and maximization prob-

lems.

An approximation scheme for an optimization problem is an approximation

algorithm that takes as input not only an instance of the problem, but also a

value � > 0 such that for any �xed �, the scheme is an (1 + �)-approximation

algorithm.

The reader seeking a more detailed discussion on the notions of complexity

in this chapter is referred to one of the classical textbook on algorithm such as

those by Aho, Hopcroft, and Ullman [4], and Cormen, Leiserson, and Rivest [27].

1.4 Outline of the thesis

In this thesis we focus on four problems: covering polygons with simpler poly-

gons, �nding a minimum tour visiting a set of regions, constructing sparse span-

ners and triangulating a set of points. We present several approximation algo-

rithms for these problems and also new lower bounds.

Covering problems. The following �ve chapters of this thesis consider the

problem of covering arbitrary polygons with a minimum number of rectangles or

squares. The problem of covering polygons with various types of simpler poly-

gons has a number of important practical applications [46, 53] and has received

considerable attention from a theoretical perspective. One application for this

problem is the fabrication of VLSI chips. According to [46], a common method
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for fabricating VLSI chips is the optical method of the automatic block
asher,

which exposes rectangles of, in practice, almost any size and any orientation. In

order to minimize the cost of the fabrication it is desirable to cover the polygonal

area of each layer of the circuit with as few rectangles as possible. Also when

solving other problems for geometric �gures, a common method is to decom-

pose the �gure into simpler parts, solve the problem on each component using

some specialized algorithm, and then combine the partial solutions to solve the

problem for increasingly larger parts of the polygon.

In Chapter 3 we present the �rst polynomial time O(log n)-approximation

algorithm under the assumption that the vertices of the polygon are given as

polynomially bounded integer coordinates. The idea is to reduce the original

problem to the set-covering problem, by constructing a superset of rectangles.

Using the same approach we can also �nd a covering which is within a constant

factor of the optimal in exponential time.

In Chapter 4 we show that in the case when the input polygons are hole-free

one can in linear time obtain a much better approximation factor. The approx-

imation ratio is O(�(n)) where �(n) is the extremely slowly growing inverse of

Ackermann's function. The idea of this result is very simple. Our claim is that

for hole-free polygons there cannot be a large set of \long" rectangles that covers

a major part of the polygon. Hence, one can replace these \long" rectangles by

short rectangles, which implies that a good algorithm that covers the polygon

locally performs quite good.

In the �nal chapter on the covering problem we notice that there are several

covering algorithms that run in time O(n logn) for general polygons but can

be improved to have linear time-complexity in the case when the input polygon

is hole-free. This led us to believe that the trivial linear lower bound can be

improved in the case when the given input polygon contains holes. We show

that any approximation algorithm for covering an arbitrary polygon with holes,

with a �nite number of polygons, has a lower bound on the time-complexity of


(n logn) in the algebraic decision tree model.

Traveling salesman problem with neighborhoods (TSPN). The second

problem we consider is a variant of the well-known Euclidean traveling salesman

problem. A salesman wants to meet some potential buyers. Each buyer speci�es

a region in the plane, his neighborhood, within which he is willing to meet. The

salesman wants to �nd a tour of shortest length that visits all of the buyers'

neighborhoods and �nally returns to his initial departure point. The number

of simple polygons, called neighborhoods, is denoted k and the total number of

vertices in the plane is denoted n.

The main result, of Chapter 6, is an algorithm that, given an arbitrary real
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Figure 1.1: An example of TSP with neighborhoods.

constant � as an optional parameter, performs at least one of the following two

tasks (depending on the instance):

(1) It outputs in time O(n logn) a TSPN tour guaranteeing that it is of

length O(log k) times the optimum.

(2) It outputs a TSPN tour guaranteeing that it is of length less than (1+ �)

times the optimum in time O(n3).

The �rst part of our method builds upon an idea by Mata and Mitchell [70], in

that our logarithmic approximation algorithm produces a guillotine subdivision.

However, we produce a quite di�erent guillotine partition and show that it has

some nice \sparseness" properties, which guarantee the O(log k) approximation

bound. The described method can also be applied to other problems as suggested

in [70]. In the same chapter we also give the �rst hardness result for TSPN. We

show that TSPN is APX-hard and cannot be approximated within a factor of

1.000374 unless P=NP. The reduction is done using the well-known Min Vertex

Cover-problem, which is known to be APX-hard and not approximable within a

factor of 1.0029 in the case when the degree is bounded by 5 [16].

Constructing spanners. The third problem we consider is how to construct

sparse spanners. The problem of constructing spanners has been thoroughly

investigated by many researchers the last decade [11, 20, 31, 52, 85, 93]. Spanners

have applications in the design of geometric networks and they are also useful

in designing eÆcient approximation schemes for geometric problems. Consider
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a set S of n points in IRd, where the dimension d is a constant. A geometric

network on S can be modeled as an undirected graph G with vertex set S and

with edges e = (a; b) of weight wt(e) de�ned as the Euclidean distance d(a; b)

between its two endpoints a and b. Let p and q be two points of S, and let P

be a pq-path in G, i.e., a path in G between p and q. The weight of the path

P is denoted by wt(P ) and is de�ned as the sum of the weights of the edges of

P . Let t > 1 be a real number. We say that G is a t-spanner for S, if for each

pair of points p; q 2 S, there exists a pq-path in G of weight at most t times the

Euclidean distance between p and q. A sparse spanner is a spanner with low

weight and a linear number of edges.

In Chapter 7 we consider the problem of �nding a minimum Manhattan net-

work. For a given set S of points in the plane, we de�ne a Manhattan Network

on S as a rectilinear geometric network G with the property that for every pair

of points p; q2S, the network G contains a minimum rectilinear pq-path con-

necting them. A Minimum Manhattan Network on S is a Manhattan network of

minimum possible length. Many VLSI circuit design applications require that a

given set of terminals in the plane be connected by networks of small total length.

Rectilinear Steiner minimum trees were studied in this context. Manhattan net-

works impose additional constraints on the distance between the terminals in

the network. The concept of Manhattan networks seems to be a very natu-

ral concept; it is surprising that this concept has not been previously studied.

Manhattan networks are also closely connected to the concept of spanners. In

this connection, a minimum Manhattan network can be thought of as a sparsest

1-spanner for S for the L1-norm, assuming that Steiner points are allowed to be

added. 1-spanners are also interesting since they represent the network with the

most stringent distance constraints.

In Chapter 8, we show the �rst algorithm that constructs a sparse spanner in

time O(n log n). This solves a critical open problem, since in a startling devel-

opment, Rao and Smith [83] showed an optimal O(n log n)-time approximation

scheme for the well-known Euclidean traveling salesperson problem, assuming

that it is possible to compute sparse spanners in time O(n logn). Our algorithm

is inspired by the algorithm due to Das and Narasimhan [31]. They showed how

to use clustering in order to speed up shortest path queries. However, their algo-

rithm was not eÆcient enough because they were unable to maintain the clusters

eÆciently and the algorithm had to frequently rebuild the clusters. We retain

the general framework of that algorithm. Our main contribution is in developing

techniques to eÆciently perform clustering. We believe that the techniques that

we have developed are likely to be useful in designing other greedy-style dynamic

algorithms, i.e., in situations where only insertions take place and particularly

in increasing order of length.
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Figure 1.2: Example of a t-spanner of the complete Euclidean graph with t = 1:18.

Higher-order Delaunay triangulations. One of the most well-known and

useful structures studied in computational geometry is the Delaunay triangula-

tion [32, 38, 75]. It has applications in spatial interpolation between points with

measurements, because it de�nes a piecewise linear interpolation function. One

speci�c use of the Delaunay triangulation for interpolation is to model eleva-

tion in Geographic Information Systems. The so-called Triangulated Irregular

Network, or TIN, is one of the most common ways to model elevation. Eleva-

tion is used for hydrological and geomorphological studies, for site planning, for

visibility impact studies, for natural hazard modeling, and more.

Because a TIN is a piecewise linear, continuous function which is generally

not di�erentiable at the edges, these edges play a special role. In elevation mod-

eling, one usually tries to make the edges of the TIN coincide with the ridges

and valleys of the terrain. Then the rivers that can be predicted from the el-

evation model are a subset of the edges of the TIN. When one obtains a TIN

using the Delaunay triangulation of a set of points, the ridges and valleys in

the actual terrain will not always be as they appear in the TIN. The so-called

`arti�cial dam' in valleys is a well-known artifact in elevation models, Fig. 1.3. It

appears when a Delaunay edge crosses a valley from the one hillside to the other

hillside, creating a local minimum in the terrain model slightly higher up in the

valley. It is known that in real terrains such local minima are quite rare [48].

These artifacts need to be repaired, if the TIN is to be used for realistic terrain

modeling [86], in particular for hydrological purposes [67, 68, 91]. If the valley

and ridge lines are known, these can be incorporated by using the constrained

Delaunay triangulation [26, 36, 66]. The cause of problems like the one men-

tioned above may be that the Delaunay triangulation is a structure de�ned for

a planar set of points, and doesn't take into account the third dimension at

all. One would like to de�ne a triangulation that is both well-shaped and has

some other properties as well, like avoiding arti�cial dams. This led us to de�ne

higher-order Delaunay (HOD) triangulations, a class of triangulations for any

point set P that allows some 
exibility in which triangles are actually used. The

Delaunay triangulation of P has the property that for each triangle, the circle
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through its vertices has no points of P inside. A k-order Delaunay (k-OD) tri-

angulation has the relaxed property that at most k points are inside the circle.

The idea is then to develop algorithms that compute some HOD triangulation

that optimizes some other criterion as well. Such criteria might be minimizing

the number of local minima, and minimizing the number of local extrema. The

former criterion deals with the arti�cial dam problem, and the latter criterion

also deals with interrupted ridge lines. For �nite element method applications,

criteria like minimizing the maximum angle, area triangle, and degree of any

vertex may be of use [17, 18, 19].

We de�ne HOD triangulations and analyse their properties. We also give an

algorithm to compute which edges can be included in a k-OD triangulation. The

algorithm runs in O(nk logn+n log3 n) expected time. For 1-OD triangulations

we show some useful results, i.e., that most of the criteria we study can be

optimized in O(n logn) time.

Figure 1.3: Arti�cial dam that interrupts a valley line (left), and a correct version

obtained after one 
ip (right).



Chapter 2

Covering polygons

The problem of covering polygons with various types of simpler polygons has a

number of important practical applications [46, 53] and has received considerable

attention from a theoretical perspective. One application for this problem is the

fabrication of VLSI chips. According to Heged�us [46], a common method for

fabricating VLSI chips is the optical method of the automatic block
asher, which

exposes rectangles of, in practice, almost any size and any orientation. In order to

minimize the cost of the fabrication it is desirable to cover the polygonal area of

each layer of the circuit with as few rectangles as possible. For more information

about the VLSI fabrication process see [46]. Also when solving other problems

for geometric �gures, a common method is to decompose the �gure into simpler

parts, solve the problem on each component using some specialized algorithm,

and then combine the partial solutions to solve the problem for increasingly

larger parts of the polygon.

O'Rourke and Supowit [79] showed that the problems of covering polygons

with a minimum number of convex polygons, star-shaped polygons or spiral

polygons are all NP-hard, if the polygon contains holes. The rectilinear case,

i.e., when the polygons, as well as the rectangles, have sides that are vertical

or horizontal, has been treated in several papers [13, 39, 53, 56, 73, 87, 95].

Masek [69] proved that this case is NP-complete, but again the proof required

the polygon to contain holes. Later Culberson and Reckhow [28] showed this

case to be NP-hard even when the given polygon was hole-free. Berman and

DasGupta [15] showed that if the rectilinear polygon has holes, the problem is

also MAXSNP-hard.

Kumar and Ramesh [56] recently presented a polynomial-time approxima-

tion algorithm that produces a covering which is within an O(
p
logn) factor of

the optimal. When the polygon is hole-free, Franzblau [40] showed a factor 2

11
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approximation guarantee. When the polygon is both vertically and horizontally

convex, Chaiken, Kleitman, Saks and Shearer [21] gave a polynomial time algo-

rithm for computing the minimum number of rectangles required, exactly. This

was improved upon by Franzblau and Kleitman [39], who achieved the same

result under the weaker restriction that the hole-free polygon is just vertically

convex.

For the related rectilinear square covering problem some of the previous work

used a bit-map representation for the input polygon [5, 12, 73, 87]. A bit-map

representation of a polygon is a boolean (zero-one) matrix, where one (1) repre-

sents a point inside the polygon and a zero (0) - a point outside it. When using

this representation, complexity is measured in terms of the number of points in

the matrix, denoted p. Note that p>
(n), and for most practical applications

p�n, where n is the number of edges of P . Bar-Yehuda and Ben-Hanoch argues

that the representation of the polygon should be made as segment representa-

tion, not only theoretically, but also for most practical applications [13].

Scott and Iyenger [87] present an algorithm to �nd, in O(n log n) time, the

maximal squares in the polygon, and then divide the rectangular portions of the

polygon to cover them minimally. However, their algorithm does not yield a

globally minimum cover. It was shown by Aupperle, Conn, Keil and O'Rourke

[12] that the rectilinear case is NP-hard for polygons containing holes. In the

case where the image is hole-free, they provide an O(p1:5) algorithm. Recently,

Bar-Yehuda and Ben-Hanoch [13] presented a linear time algorithm for covering

simple rectilinear polygons with squares. Morita [73] developed a parallel algo-

rithm, which �nds a minimal (not minimum1) square cover for bit-maps which

may contain holes. The sequential running time of this algorithm is O(p). Gud-

mundsson and Levcopoulos [44] presented an approximation algorithm for the

general, non-rectilinear, square covering problem that guaranteed a constant ap-

proximation factor 14 running in time O(n2 + �(P )), where �(P ) is the number

of squares in an optimal covering.

In the general rectangle covering problem it is not known whether the optimal

solution can be computed even in exponential time. Using the proof technique

from [77] (see also [24] and [72]), Tarski's decidability results can be applied

to prove that the decision version of the problem is computable, but no up-

per bound better than 22
O(n)

was known for its execution time. Heged�us [46]

implemented a program (the so-called GENCOV-algorithm) which covers gen-

eral polygons with rectangles and presented some empirical results concerning

its performance. The results show that the algorithm is rather good in prac-

tice, but no theoretical analysis is presented in [46]. Another approximation

1A square cover is called minimal if it has no smaller subset that forms a cover. A square

cover is called minimum if there is no smaller set that forms a cover.
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algorithm was presented by Levcopoulos in [58], and with re�ned analysis in

[60], which produces O(n logn+�(P )) rectangles to cover an arbitrary coverable

polygon P in time O(n log n+�(P )), where n is the number of vertices of P and

�(P ) is the minimum number of rectangles required to cover P . (A polygon

can be covered by rectangles i� it has no acute interior angles.) In [60] it was

shown that �(P )=O(n log min(b;l)
s ), where s is the shortest distance between two

non-incident edges of P , l is the length of the longest edge of P and b is the

diameter of the largest circle which can �t within P . It was also shown that this

upper bound cannot be further re�ned with respect to n, b, l and s.

In the next three chapters we show results concerning the problem of covering

a general polygon with rectangles.

A problem with the algorithm by Levcopoulos [60] is that, even when �(P ) =

O(n0:5+�), where � is any �xed constant greater than zero, the algorithm may

produce a covering with 
(n logn) rectangles, which is very far from being op-

timal, as is shown in [60]. To get a reasonable approximation in the case when

�(P )�n we use a di�erent approach in Chapter 3. The idea is to reduce the

original problem to the set-covering problem. By constructing a superset of rect-

angles, we can �nd a covering which is within a constant factor of the optimal

in exponential time. We also present the �rst polynomial time algorithm, guar-

anteeing an O(log n) approximation factor, provided that the n vertices of the

polygon are given as polynomially bounded integer coordinates.

In Chapter 4 we establish that, for hole-free polygons, the algorithm pre-

sented by Levcopoulos in [58] produces O(min[n+�(P ); �(n)��(P )]) rectangles,
where �(n) is the extremely slowly growing inverse of Ackermann's function.

For proving this result we develop new techniques which we believe are interest-

ing themselves, and can be used, e.g., for showing properties of other types of

coverings.

In the �nal chapter, on the problem of covering polygons, we show that any

approximation algorithm for covering an arbitrary polygon, with holes, with a

�nite number of polygons has a lower bound on the time-complexity of 
(n logn)

in the algebraic decision tree model.





Chapter 3

Close approximations of

minimum rectangular

coverings

A problem with the algorithm by Levcopoulos [60], as mentioned in Chapter 2,

is that, even when �(P ) = O(n0:5+�), where � is any �xed constant greater

than zero, the algorithm may produce a covering with 
(n logn) rectangles,

which is very far from being optimal, as is shown in [60]. To get a reasonable

approximation in the case when �(P )�n we need a di�erent approach. In

order to �nd a better covering in the rectilinear case one has used the approach

of �nding a superset of rectangles which includes the rectangles in an optimal

covering. If we could �nd such a set for the general case we could easily translate

the polygon-covering problem to the set-covering problem. The main di�erence

between the rectilinear case and the general case is that there are only O(n2)

possible maximal rectangles in the rectilinear case versus in�nite many possible

maximal rectangles in the general case. Instead we will in this paper construct

a set of rectangles, denoted CR, and prove that CR includes a covering which is

within a constant factor of the optimal. In fact we show that CR possesses an

even stronger property, namely that every possible rectangle within a polygon

P can be covered by a constant number of rectangles in CR (Lemmas 3.5-3.7).

By reducing the original problem to the set-covering problem, by rectangles

from CR, we can �nd a covering which is within a constant factor of the opti-

mal in exponential time. We also present the �rst polynomial time algorithm,

guaranteeing an O(log n) approximation factor, provided that the n vertices of

the polygon are given as polynomially bounded integer coordinates.

15
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vi

jv

sij

(c)(b)(a)

d

s/6

Figure 3.1: (a) The polygon P within the grid. (b) Two of the rectangles in CR with

endpoints at two marked points in Cp. (c) The maximal segment within P that passes

through, or ends at, the two vertices vi and vj .

3.1 De�ning the pool of rectangles

Let P be an arbitrary polygon, possibly with polygonal holes. The shortest

distance between two edges, e1 and e2, is de�ned as the shortest distance between

any two points on e1 and e2. Let s(P ) be the minimum of the length of the

shortest edge of P and the shortest distance within P between two non-incident

edges. The largest distance between two points in P is denoted d(P ). When it

is clear from the context which polygon we refer to, we shall simply write s and

d instead of s(P ) and d(P ). Construct a ( 6ds � 6d
s ) grid such that every square in

the grid has length and height s=6, and P lies entirely within the grid, as shown

in Fig. 3.1a. We can now bound the number of vertices with respect to s and d.

Lemma 3.1 Let P be a polygon of n vertices. It holds that n=O((ds )
2).

Proof: Let P be a polygon with n vertices. By the de�nition of d we have that

the area of P is less than ��d2
4 . We know that the sum of all the interior angles

of P is 180Æ�(n�2). Construct for every vertex vi a region r(vi), such that every

point in P closer than s=2 to vi belongs to r(vi). According to the de�nition of

s, the shortest distance between two vertices of P is at least s, thus the regions

are disjoint. The total area covered by these regions is (n�2)���s28 , which is less

than the area of P . Thus we have

(n�2)��s
2

8
<
��d2
4

; hence n < 2�
�d
s

�2
+2:

2

We are now ready to construct the pool of rectangles. First a point set CP
is created which will be used to construct a subset of CR. Let CP be a set of

points, such that:
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T T

(a) (b)

p p

v-distance

Figure 3.2: If p has a perpendicular projection on one of T 's long sides (a) then the

v-distance is the shortest distance between p and T , otherwise (b) it is in�nite.

1. every vertex of P is a point in CP ,

2. every crossing between P 's perimeter and the grid is a point in CP , and

3. every crossing in the grid is a point in CP .

The number of points in CP is O((d=s)3), according to Lemma 3.1. We con-

struct a set of rectangles, CR, by �rst inserting into CR each maximal rectangle

which lies within P and which has a side with both endpoints in CP , Fig. 3.1b.

These rectangles are denoted Class I rectangles or CI-rectangles. The number

of rectangles in CR is now O((d=s)6).

We will need to extend the number of rectangles in CR, with two sets of

rectangles. First we add the following set.

For every pair of vertices vi; vj of P , where vi is visible from vj , let sij be the

maximal segment, within P , that passes through or ends at vi and vj , as shown

in Fig. 3.1c. For every segment sij let Sij be a set of points that contains the set

of intersection points between sij and the grid segments, plus the two endpoints

of sij , vi and vj . The number of points in Sij is O(d=s). For every possible pair

of points pl; pk 2 Sij insert into CR all maximal rectangles within P which have

a side with endpoints in pl and pk (there are 0,1 or 2 such rectangles). These

rectangles are denoted CII-rectangles and the total number of CII-rectangles

inserted in this step is at most n2�(d=s)2=O((d=s)6)).
The �nal set of rectangles added to CR is needed to cover the rectangles

in Lemma 3.6, Case d. The rest of this section is devoted to the construction

of these special rectangles, denoted CIII-rectangles. We will need the following

de�nitions:

De�nition 3.2 The shortest distance between a rectangle T , within P , and a

point p, with a perpendicular projection on one of T 's long sides (or any side if

T is a square), is denoted the v-distance between T and p. If p does not have a

perpendicular projection on T 's long sides then the v-distance is in�nite.
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(a)

T
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Figure 3.3: (a) A valid triplet. (b) and (c) Two 3v-trapezoids.

The v-distance between a rectangle T , within a polygon P , and P 's perimeter

is the shortest v-distance between T and a point on P 's perimeter.

De�nition 3.3 Let (v1; v2; v3) be a triplet of vertices. Rotate P such that v2
and v3 have the same y-coordinate, and v3 lies to the left of v2. For simplicity

we assume that v1 lies below v2 and v3. The triplet (v1; v2; v3) is said to be valid

if and only if the following conditions hold.

� There exists a rectangle T with long sides of length at least 4s and short

sides of length at most 5s=6 such that v1 and v2 touch opposite long sides

of T , and the v-distance between v3 and T is at most s=6.

� v3 lies to the left of v1, see Fig. 3.3a.

For simplicity we will assume that v3 lies above T , i.e., v2 and v3 lie on the

same side of T , as shown in Fig. 3.3. Assume that (v1; v2; v3) is a valid triplet.

Let Q be the vertical segment of length s with upper endpoint at v3. Let H

be a segment within P between v2 and Q, such that the intersection between Q

and H is as close as possible to v3, and let L be a segment within P between

v1 and Q such that the intersection between Q and L has the smallest possible

y-coordinate (as far from v3 as possible), Fig. 3.3.

Let s0 be the longest of the two vertical segments between v2 and L (or its

extension), respectively v1 and H (or its extension), and let d0 be the segment on
Q between H and L. If the length of s0 is shorter than the length of d0 then the

trapezoid described by the two vertical segments s0 and d0, and the segments of

H and L between s0 and d0, is denoted a 3v-trapezoid. Note that a 3v-trapezoid

is hole-free since the shortest diagonal of a hole in P is at least s and jd0j�s.

For every 3v-trapezoid t in P , construct at most djd0j=js0je rectangles with
short-sides of length js0j where every rectangle has one endpoint on s0's lower
endpoint and one on d0. We place the rectangles in such a way that a rectangle's
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Figure 3.4: (a) Finding a 3v-trapezoid. (b) A 3v-trapezoid partially covered by CIII-

rectangles.

short side, closest to d0, touches both d0 and the upper long-side of the rectangle
below, Fig. 3.4b. The rectangles will at least cover the part of t at distance

more than s=2 from s0 and d0, see Fig. 3.4b. Add these rectangles to CR. These

rectangles are denoted CIII-rectangles and can always be constructed since a

3v-trapezoid is hole-free. Next we bound the number of CIII-rectangles in CR.

Observation 3.4 For any 3v-trapezoid it holds that jd0j
js0j < 2ds .

Proof: Rotate the 3v-trapezoid in such a way that s0 and d0 are vertical. Let
l1 be the horizontal distance between d0 and the intersection of H 's and L's

extensions, and let l2 be the horizontal distance between s
0 and the intersection

of H 's and L's extensions, Fig. 3.4a. Note that l2>s=2 since the shortest distance

between v1 and v2 is s and the vertical distance is less than 5s=6. So for every

3v-trapezoid in P we will construct at most jd0j=js0j rectangles, and by simple

trigonometry we have: jd0j=js0j = (l1=l2) < (d=l2) < 2�d=s: 2

Since P consists of n vertices there can be at most O(n3) 3v-trapezoids

in P , and since n=O((d=s)2), according to Lemma 3.1, we will add at most

n3�2 � (d=s)=O((d=s)7) CIII-rectangles to CR. The total number of rectangles in

CR will hence be O((d=s)7). It is easily seen that CR can be constructed in time

linear with respect to the number of rectangles in CR.

3.2 Covering rectangles

In Lemmas 3.5-3.7 we will show that every rectangle T within a polygon P can be

covered by a constant number of rectangles in CR. To be able to guarantee that

we handle all possible cases, we divide the rectangles into three cases according

to their shape, Fig 3.5. The three cases are:
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1. Rectangles whose longest side is shorter than s=2. Here we will have two

subcases depending on whether the rectangle lies close to the perimeter of

P or not.

2. Rectangles whose shortest side is shorter than s=2. Here we will have a

total of four subcases depending on the distance between the long sides of

the rectangle and the perimeter of P . The most complicated case of all

the cases in Lemmas 3.5-3.7 is when we have a thin rectangle whose both

long sides lie close to the perimeter of P . The CIII-rectangles are specially

designed in order to handle this case.

3. Rectangles whose shortest side is longer than s=2. By using the results

from case 1 and 2 it is easy to prove that \large" rectangles can be covered

by a constant number of rectangles from CR.

1b

P
2d

2b

2a

1a

3

Figure 3.5: An example showing some of the cases that we have to handle.

In order to facilitate an easier description in the continuation of the text, we

assume w.l.o.g. that the two longer sides of a rectangle T , within P , lie horizon-

tally, that is, we rotate T , P and the grid until T 's long sides lie horizontally.

Let A;B;C and D be the corners of T in a counter-clockwise order, where A

and B are the endpoints of T 's lowest long-side, as shown in Fig. 3.8. Thus the

segments AB and CD are at least as long as AD and BC.

Lemma 3.5 Every rectangle T , within P , whose longest side is shorter than

s=2 can be covered by a constant number of rectangles in CR.

Proof: We have two cases:

Case a: The shortest distance between T and P 's perimeter is at least s=
p
18.

The distance between T and P 's perimeter is at least as long as the diagonal

of a square in the grid, so T will never lie within the same square as P 's perimeter.

Since the diagonal of T is at most 1=
p
2s, T can at most overlap six rows or

columns of squares in the grid. And since every side of a square is the base of a
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Figure 3.6: (a) T is covered by r1 and r2. (b) The quadrant bounds the area which T

may overlap.

CI-rectangle in CR, the rectangle T can be covered by at most six CI-rectangles

in CR.

Case b: The rectangle T lies closer than s=
p
18 from P 's perimeter.

Let e1 be an edge of P closest to T . Let r1 be the CI-rectangle in CR with

base e1. Since T lies closer than s=
p
18 from e1, the largest distance between a

point of T and e1 is
sp
18
+ sp

2
=

p
8
3 s < s: The height of r1 is at least s. That is,

the part of T with a perpendicular projection on e1 is covered by r1. If r1 covers

T then we are �nished, otherwise let e2 be the edge incident to e1 that lies on

the same side of e1 as the part of T that is not covered by r1, Fig. 3.6a. The

vertex connecting e1 and e2 is denoted v. It remains to show that there exists a

rectangle r2 in CR that covers the rest of T . Two cases can occur:

(i) The interior angle (e1; e2) is less than or equal to 180 degrees.

Since every point in T lies within distance less than s from e1, the upper

right quadrant of a circle with center at v and radius s bounds the area outside

r1 where T partly can overlap, as shown in Fig. 3.6b. The CI-rectangle r2 with

base e2 covers the entire area described by the quadrant, so the remaining part

of T that is not covered by r1 is covered by r2.

(ii) If the interior angle (e1; e2) is greater than 180 degrees then partition

T into nine rectangles, T1; : : : ; T9 of equal size, such that the longest side of

1
r2

r1

ev

2

2

1

e
v

>s/2

T
v

Figure 3.7: r1 and r2 cover every small rectangle that lies closer than s=
p
18 from P 's

perimeter.
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each subrectangle Ti, 1�i�9, is at most of length s=6. Now we can cover every

subrectangle Ti separately. Every subrectangle that lies at least s=
p
18 from P 's

perimeter is covered according to Case a. Let T 0 be any of the subrectangles

that lies closer than s=
p
18 from P 's perimeter. Let v1 (v2) and v be the vertices

of e1 (e2). Recall that on every edge and its extensions there exist O((d=s)2)

CII-rectangles in CR. Let r1 (r2) be the maximal CII-rectangle in CR with base

on e1 (e2) and its extension, such that one corner lies at v1 (v2) and one corner

on the extension of e1 (e2) between s=2 and (s=2+s=
p
18) from v, Fig. 3.7. Since

the shortest distance from v to a non-incident edge is s, it follows that the height

of r1 and r2 is at least s=2. Also, since the length of T 0's diagonal is at most
s=
p
18, we have that a point in T 0 lies within distance (s=

p
18+s=

p
18)<s=2

from e1. Thus r1 and r2 covers T
0, and T can be covered by a constant number

of rectangles in CR. 2

When the rectangles are \long and thin" we need to cover the rectangles

in di�erent ways depending on the v-distance between the rectangle and P 's

perimeter.

Lemma 3.6 Every rectangle T , within P , whose shortest side is at most of

length s=2, can be covered by a constant number of rectangles in CR.

Proof: If jABj�4s then partition T into eight equal rectangles, whose long

sides are of length at most s=2, which are then covered according to Lemma 3.5.

Otherwise insert four points A0; B0; C 0 and D0 on T 's perimeter, where A0 and
B0 are points on AB at a distance s from A, respectively B, and C 0 and D0

are points on CD at a distance s from C, respectively D. Partition T into

three rectangles by inserting two segments A0D0 and B0C 0 in T . We denote

these partitions, from left to right, Tl; Tm and Tr, see Fig. 3.8. Partition Tl,

respectively Tr, into two equal rectangles with long sides of length s=2 and cover

these according to Lemma 3.5. It remains to cover Tm. We distinguish four

cases:

� s
6 � s

6 > 2s � s
6

� s
6

p1

D

A

D0

A0

Tl TrTm

C 0 C

BB0
p2

� s
2

Figure 3.8: T partitioned into subrectangles and, the rectangle with base p1p2 cov-

ers Tm.
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Case a: The v-distance between T and P 's perimeter is at least s=6.

We claim that there exists a CI-rectangle r in CR that covers Tm. To prove

this claim, let p1 be the point in CP with largest y-coordinate below or on AA0,
such that the horizontal distance from p1 to the extension of DA is between s=6

and 5s=6, and symmetrically, let p2 be the point in CP with largest y-coordinate

below or on BB0, such that the horizontal distance from p2 to the extension of

CB is between s=6 and 5s=6, Fig. 3.8.

Let r be the CI-rectangle in CR with base p1p2. Since the vertical di�erence

between p1 and p2 is less than s=6 and since jp1p2j > s, it follows that the slope

of r's left and right side is greater than six and, hence r covers Tm.

Case b: The v-distance between one of T 's long sides and P 's perimeter is less

than s=6, and the v-distance between the opposite long side and P 's perimeter

is at least s=6.

We can w.l.o.g. assume that AB is the long side of T with shortest v-distance

to P 's perimeter. Let p1 be the point in CP with largest y-coordinate below or

on AA0, such that the horizontal distance from p1 to the extension of DA is

between s=6 and 5s=6. Symmetrically, let p2 be the point in CP with largest

y-coordinate below or on BB0, such that the horizontal distance from p2 to the

extension of CB is between s=6 and 5s=6, see Fig. 3.8.

If p1 and p2 can be connected by a straight line segment within P , then let r

be the CI-rectangle in CR with base p1p2. Since the vertical di�erence between

p1 and p2 is less than s=6 and since jp1p2j > s, the slope of r's left and right side

is greater than six, hence r covers Tm, Fig. 3.9a.

Otherwise, if p1 and p2 cannot be connected by a straight line segment within

P , there exists a vertex of P between AB and p1p2. Let v be the vertex of P

with shortest v-distance to AB lying between AB and p1p2. If jp1vj < s or

jp2vj < s then partition the region in Tm with x-coordinates between p1 and v,

or p2 and v, into two rectangles which are then covered according to Lemma 3.5.

Assume w.l.o.g. that jp1vj is greater than s. We now claim that the uncovered

area of Tm can be covered by a CI- or a CII-rectangle in CR. If jp2vj also is

greater than s we do the corresponding procedure to the right of v. The region

(b)(a)

Tm Tr Tl Tr

r
1

l

v

T

Figure 3.9: Covering T according to Lemma 3.6, Case b.
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of Tm at most s=4 to the left and right of v is covered according to Lemma 3.5,

see Fig. 3.9b. Recall that there exist rectangles in CR that lie on the visibility

lines and their extensions for every two vertices of P . So, even if p1 and v cannot

be connected by a straight-line segment within P there exists a rectangle r in

CR with lower right corner in v and with lower left corner, denoted p0, between
0 and s=6 below AA0 and with horizontal distance between s=6 and 5s=6 from

AD. Since the vertical di�erence between p0 and v is less than s=6, and since

jp0vj > s, the slope of r's left and right side is greater than six, thus r covers the

uncovered area of Tm to the left of v, as shown in Fig. 3.9b.

Before we show the case when the v-distance between both T 's long sides

and P 's perimeter is less than s=6, we need to prove the following special case,

which will be used in the proof of Case d.

Case c: Two diagonally opposite corners of T both touch vertices in P .

We can assume w.l.o.g. that the vertex v1 coincides with A, and the vertex v2
coincides with C, Fig. 3.10. Let p1 be the point in CP with largest y-coordinate

below or on BB0, such that the horizontal distance from p1 to the extension of

BC is between s=4 and s, Fig. 3.10a. Let r1 be the CI-rectangle in CR with base

v1p1 and let � be the angle (v1p1; AB). If r1 covers Tm then we are �nished,

otherwise there exists a vertex v3, or an edge connected to v3, above CD that

prevented r1 from covering Tm, Fig. 3.10b. Recall that there exist rectangles in

CR that lie on the visibility lines and their extensions for every two vertices of

T . Thus there exists a CII-rectangle r2 in CR with upper right corner at v2 and

upper left corner, denoted p2, between 0 and s=6 above DD0 and at horizontal

distance between 0 and s=4 from AD. Let � be the angle (v2p2; CD). We know

that � < �, since � is at most equal to the angle (v2v3; CD), (i.e., v3; v2; D).

Thus r2 cannot be stopped by any part of the perimeter above r1's base, and it

follows that r2 covers Tm.

Case d: The v-distance between both T 's long sides and P 's perimeter is less

than s=6.

(b)(a)

l Tr

p
2 v3 v

T

v1

Tl Tm Tr

2

v

v2

p1

m

1

T

Figure 3.10: Tm is covered by a rectangle in CR.
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3

d

v2

v
1v s

Q
H

L

Figure 3.11: A 3v-trapezoid within P .

Let v2 be the vertex in P , above or on C 0D0, with smallest v-distance to

C 0D0, and let v1 be the vertex in P , below or on A0B0, with smallest v-distance

to A0B0. We may assume w.l.o.g. that v1 lies to the right of v2. The region of T

between v1 and v2 is covered according to Case c, since the part of T between

v1 and v2 can be expanded in such a way that v1 and v2 touch T 's opposite long

sides. Let T 0
l be the uncovered region of T to the left of v2 and to the right of Tl

and let T 0
r be the uncovered region of T to the right of v1 and to the left of Tr.

Assume that T 0
l 's both long sides lie closer to P 's perimeter than s=6, otherwise

cover T 0
r according to Case a or b. We will now prove that it is possible to cover

T 0
l with a constant number of rectangles in CR. If T

0
r's both long sides also lie

closer to P 's perimeter than s=6 then we do the corresponding procedure on T 0
r,

otherwise we cover T 0
r according to Case a or b.

Let v3 be the leftmost vertex in P , such that the v-distance from v3 to T 0
l

is less than s=6. Let Q be the vertical segment within P of length s with one

endpoint at v3, see Fig. 3.11. The part of T 0
l to the left of Q can be covered

according to Case a or b, since the shortest v-distance from P 's perimeter to

one of T 0
l 's long sides to the left of Q is greater than s=6. Let L be the lowest

segment between v1 and Q. Let H be the highest segment between v2 and Q,

such that H 's and L's extensions intersect to the right of v1. The segment on Q

between H and L is denoted d0.
The shortest vertical segment from v2 to L is denoted s0. The length of s0

is the largest possible thickness of T . The two regions between s0 and d0 of T
closer than s=2 from s0 or d0 are covered according to Lemma 3.5. Let t be the

trapezoid bounded by the two parallel segments s0 and d0, and the parts of the

segments H and L between s0 and d0. This trapezoid is a 3v-trapezoid, according
to De�nition 3.3, and according to the de�nition of CR the uncovered region of

t is entirely covered by CIII-rectangles in CR. Therefore, since the thickness of

these CIII-rectangles is s
0, the part of T in t can be covered by two of these

rectangles in CR. Thus the original rectangle T can be covered by a constant

number of rectangles in CR. 2
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>s/4>s/4>s/4>s/4

s

T

p

Tm

2
p1

Figure 3.12: The shaded region is covered according to Lemma 3.6.

Lemma 3.7 Every rectangle T , within a polygon P , whose shortest side is

longer than s=2, can be covered by a constant number of rectangles in CR.

Proof: If jABj�3s partition T into six equal rectangles which are then covered

according to Lemma 3.6. Otherwise partition T in such a way that we can cover

the border of T , that is the region in T that lies at most s from T 's perimeter,

according to Lemma 3.6. Let Tm be the uncovered region of T , Fig. 3.12. Let

p1 be the point in CP with largest y-coordinate below or on the extension of

Tm's base, such that p1 lies between s=4 and 3s=4 to the right of AD, and let p2
be the point in CP with largest y-coordinate below or on the extension of Tm's

base, such that p2 lies between s=4 and 3s=4 to the left of BC . Let r be the

CI- or CII-rectangle in CR with base p1p2. Since the vertical distance between

p1 and p2 is less than s=6, according to the de�nition of CP , and since jp1p2j is
greater than Tm's height, the rectangle r will cover Tm. 2

3.3 Two algorithms and their complexity

In Lemmas 3.5-3.7, we have shown that CR includes a covering which is within

a constant factor of the optimal. Thus it is possible to translate the original

geometrical covering problem into the set-covering problem, as follows.

An instance (X;F ) of the set-covering problem consists of a �nite set X

and a family F of subsets of X , such that every element of X belongs to at least

one subset in F . We want to cover the polygon P with a minimum number of

rectangles in CR. De�ne X to be the set of all cells in the partition induced by

the perimeters of all the rectangles in CR, (thus jX j=O(jCRj2)), and we de�ne

F , such that every element f2F corresponds to a rectangle r in CR, where f

is the subset of X that is included in r. In the following two sections we will

show how one can use this translation to �nd two algorithms for the polygon-
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covering problem by using two known set-covering algorithms. Before we show

the algorithms we note the following observation:

Observation 3.8 If the input polygon is given as integer coordinates in the

universe [0::u] then s � 1p
2�u .

Proof: Let v1 and v2 be two vertices of P connected by an edge e, and let v0

be an arbitrary vertex of P . We will use the notation v:x and v:y to denote the

x- respectively the y-coordinate of a point v. We want to compute the shortest

possible distance between v0 and e. Assume that there exists a point p on e with
the same y-coordinate as v0, then the distance between p and v0 is:

jv0:x� p:xj = jv0:x� (v1:x+
jv1:x� v2:xj
jv1:y � v2:yj jp:y � v1:yj)j:

Let � = jv1:x � v2:xj, � = jv1:y � v2:yj and let 
 = jp:y � v1:yj. Thus we have
jv0:x� p:xj = jv0:x� (v1:x+ j�� � 
j)j: Since �; � and 
 are in the universe [0::u]

and if p 6= v0, the horizontal distance between p and v0 is:

jv0:x� p:xj � 0 +
1

u
� 1 = 1

u
:

According to symmetry we will get the same result if p's and v0's x-coordin-
ates are equal. Since e can cross the horizontal line v0:x and the vertical line

v0:y at a distance 1=u from p, we have that the shortest distance, s, between v0

and e is 1p
2u
, as shown in Fig. 3.13. 2

v

1/u

1/u

  

Figure 3.13: The shortest distance between a vertex v0 and an edge of P is 1p
2u
.

3.3.1 An exponential algorithm

This is a simple straight-forward algorithm which checks if there is any subset of

k rectangles in CR that cover P . If such a subset is found then we are �nished,

otherwise increment k and continue as described above. The initial value of k

is 1 and from Lemmas 3.5-3.7 we know that CR includes a covering which is
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within a constant factor of the optimal, thus k=1; : : :; O(�(P )). Since there are

((d=s)7)O(�(P )) subsets of CR with O(�(P )) rectangles, we can �nd a covering

with O(�(P )) rectangles in time:

O(�(P ))X
k=1

((d=s)7)k = (d=s)O(�(P )) = 2O(�(P )�log d=s):

According to Theorem 1 in [58] it holds that �(P ) = O(n � log d=s), thus we
get the time complexity 2O(n�(log d=s)

2). Hence by Observation 3.8 we obtain the

following theorem:

Theorem 3.9 When the vertices of the input polygon are given as integer coor-

dinates in the range [0::u], the algorithm described above will produce a covering

within a constant factor of the optimal in 2O(n�(log u)
2) time.

3.3.2 A polynomial algorithm

A natural approach to �nd an approximation algorithm would be to use a known

set-covering algorithm, for example a greedy algorithm. A Greedy-Set-Cover

algorithm [27] can easily be implemented to run in time O(jX jjF jmin(jX j; jF j)),
with a ratio bound of (ln jX j+ 1). Recall that jX j=jCRj2 and F=CR.

If the input polygon P is given in integer coordinates, where the coordinates

are in the universe [0::u], the above greedy algorithm produces a covering which

is within a logarithmic factor of the optimal, (ln jCRj2+1), in pseudo-polynomial

time O(((d=s)7)4)=O((d=s)28). Since s� 1p
2�u and d�p2 � u we have that the

time-complexity for the greedy algorithm is O(u56). So we obtain the following:

Theorem 3.10 When the n vertices of the input polygon are given as polyno-

mially bounded integer coordinates, the algorithm described above will produce

a covering with a logarithmic approximation factor in polynomial time.

3.4 Lower bounds

From Lemmas 3.5-3.7 we derived the following proposition:

Proposition 3.11 There exists a constant c, such that for any polygon P there

exists a �nite set, C, of rectangles lying within P , where every rectangle in P

can be covered by c rectangles from C.

In Sections 3.1 and 3.2 we constructed a �nite set CR of size O((ds )
7) and proved

that CR includes a covering which is within a constant factor, c, of the optimal.

In Section 3.2 we focused on simple and short proofs for proving that c is a
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constant, therefore by just calculating c from Lemmas 3.5-3.7 the value of c would

be close to 1000. We conjecture that if we use the set CR the constant factor c

is below 20. We may note here that O((ds )
7) is much greater than �(P ). Since

n=O((ds )
2), it follows from [60] (see introduction) that �(P )=O((ds )

2 log(ds )).

Two questions arise naturally in connection with these proofs:

a) What is the minimum constant c, for which the above proposition holds?

That is, if we do not have any restrictions on C except that it should be �nite?

b) How large does C have to be in the worst case, in terms of n, d and s, in

order for the proposition to hold?

Therefore, in this section we give lower bounds for (a) and (b).

Theorem 3.12 For all integers n�8, there exists a polygon Pn with n vertices,

such that for any �nite set, C, of rectangles lying inside Pn, there exists a

rectangle T within P that cannot be covered by fewer than six rectangles in C.

Proof: To prove the theorem we consider a polygon P8 with eight sides, two

horizontal parallel long sides of length 2l and six sides of length l, such that the

angle between every pair of incident edges is 135 degrees, Fig. 3.14a. We place

a maximal rectangle T within P , such that (1) its corners touch each one of the

non-horizontal and non-vertical edges of P , and (2) its corners do not coincide

with any of the corners of any rectangle in C. It is easily seen that there always

exists such a rectangle T , independently of which method we employ to choose

the rectangles in C. Now we can see that the minimum number of rectangles in

C that is needed to cover T is at least six. 2

(b)(a)

P

F

P8

Figure 3.14: (a) T is described by the solid thin lines within the polygon. (b) A polygon

P for which the lower bound in Theorem 3.13 would hold.

Theorem 3.13 For every n�5, and d>s>0 there exists a polygon P , such that

for any set of rectangles, C, for which it holds that every possible rectangle within

P can be covered by at most c rectangles of C, it holds that jCj=(d=s)
(1=c).
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Proof: Consider a funnel F whose arms (if extended) form an angle of 60

degrees, as shown in Fig. 3.15a, with base of length d and top of length s.

Partition F into kc subfunnels (where k is some constant > 1), F1; : : : ; Fkc, such

that the ratio between the length of every subfunnel's base (d0) and top (s0) is
(d0=s0)=(d=s)1=kc. Let Fi be any one of these subfunnels of F . A rectangle r is

said to pass through a funnel if and only if r's two long sides intersect both Fi's

top and base. If two rectangles r1 and r2, that pass through Fi, should overlap

each other in Fi's top and base, the angle between r1's and r2's long sides would

have to be less than 2�60Æp
3
� s0d0 , Fig. 3.15b. This implies that, if a set of rectangles,

that covers Fi, includes only rectangles that pass through Fi then the number

of rectangles in this set would be at least 2p
3
�(d=s)1=kc.

For simplicity we rotate F such that F 's lower arm lies horizontal and F 's

upper arm has an angle of 60Æ to the horizontal line. A rectangle r whose

long sides have an angle of 0���60Æ to the horizontal line is said to be a Ci-

rectangle, where i=(d�(d=s)
1
2c

60 e). That is, we classify the rectangles with respect

to the slope of their long sides into (d=s)1=2c classes. Let us assume that there

exists a set C, in contradiction to the statement of the lemma, consisting of

less than (d=s)
(1=c) rectangles. This implies that at least one of the classes of

rectangles, say Ci, is not represented in C. Let T be a Ci-rectangle that passes

through F . From the above arguments we have that T has to be covered by at

least one local rectangle within each one of the kc subfunnels. Hence, more than

c rectangles in C are needed to cover T . We have a contradiction. 2

Note that the theorem holds for any polygon containing the funnel F . For

example, we can construct a polygon P by just adding three segments to F , as

shown in Fig. 3.14b.

(a) (b)

dFkcF1 T
r1

r2

Figure 3.15: (a) A funnel F partitioned into kc subfunnels. (b) Two rectangles over-

lapping at Fi's top.



Chapter 4

Linear-time covering

We continue to examine the problem of covering a polygon with a minimum

number of rectangles. Here we will establish that, for simple polygons, the algo-

rithm by Levcopoulos produces O(min[n+�(P ); �(n)��(P )]) rectangles in time

O(n+�(P )), where �(n) is the extremely slowly growing inverse of Ackermann's

function. For proving this result we develop new techniques which we believe

are interesting themselves, and can be used, e.g., for showing properties of other

types of coverings.

4.1 Preliminaries

In the following sections we will perform a close analysis of the algorithm by

Levcopoulos [58], in the case when the given polygon is simple. To fully under-

stand this result we will present the original algorithm by Levcopoulos, which

will be denoted H . We start with some simple de�nitions which will be used

throughout this chapter.

The generalized Voronoi diagram [54, 96] of a �nite set of objects, S, is a

partition of the plane so that each region of the partition is the locus of points

which are closer to one member of S than to any other member. In the standard

Voronoi diagram the objects in S are just points, in our case we will have to

extend the de�nition to include open line segments as well as points, see Fig. 4.1.

The part of the generalized Voronoi diagram lying within P partitions P into

n + w faces, where each segment and each concave vertex induces a face of the

Voronoi diagram (w is the number of concave vertices of P ).

A funnel cell of a polygon P is a trapezoidal piece of a Voronoi face in P

having the following properties. Let A;B;C;D be the vertices of the trapezoid

in counter-clockwise order, such that AD is parallel to and shorter than BC and

31
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P

Figure 4.1: Generalized Voronoi diagram (dashed) within P . Faces induced by concave

vertices are shadowed.

the interior angle \ADC is greater than 90 and less than 135 degrees, as shown

in Fig. 4.2a. The segment AB lies on an edge of P , say e, and CD is a Voronoi

edge bounding the Voronoi face induced by e in P . By this, and by the de�nition

of generalized Voronoi diagrams [54], it follows that the mirror image of a funnel

cell with respect to the Voronoi edge bounding the cell is also a funnel cell. Such

a pair of funnel cells with a Voronoi edge separating them is denoted a funnel

shell, Fig. 4.2a.

Let A0 and B0 be the symmetric image of A respectively B. Let � be the

straight-line segment with endpoints in B and B0, and let � be the shortest

segment, within the shell, touching both AB and A0B0. The part of the shell

bounded by �, � and the segments AB and A0B0 is denoted a funnel of P .

Let t be any funnel of P . The base of t is de�ned as the segment �t, and

the top of t is de�ned as the segment �t, Fig. 4.2b. The segments AB and A0B0

are denoted the arms of t. Finally, the characteristic angle of t, denoted �t,

is de�ned to be half the smallest angle built by the intersection of the straight

extension of t's arms. When it is clear from the context which funnel we refer

to, we shall simply write �, � and � instead of �t, �t and �t.

4.1.1 Levcopoulos' algorithm

The algorithm works by iteratively partitioning the polygon P into smaller and

smaller pieces which are processed independently until every resulting piece can

be trivially covered by some rectangles lying within P . The �rst partition is

achieved by drawing the skeleton of the polygon, also called \generalized Voronoi

diagram" and \medial axis".

First step: Generate a list of Voronoi faces

The �rst step of the algorithm is to construct a list with all faces of the gener-

alized Voronoi diagram of P . Each face is represented by a list of its edges in
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(a) (b)
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Figure 4.2: (a) Two funnelcells. (b) A funnel shell. (solid lines)

clockwise order. By using the results in [54] this step takes O(n logn) time.

Second step: Cover each face independently

The rest of the algorithm consists of independently processing each face and out-

putting a set of rectangles which covers it. Each face is processed in time linear

with respect to the number of the edges comprising the face, plus the number

of rectangles produced during processing that face. The total number of edges

is O(n) and therefore the overall time performance of this step is O(n+H(P )),

where H(P ) is the number of rectangles produced by H .

There are two major cases: (1) when the face is induced by a concave vertex

of the polygon, and (2) when it is induced by an edge of the polygon. We describe

the action of the algorithm independently for each one of these cases. We will

only give a very brief description of the algorithm. The complete algorithm can

be found in [58].

Case 1. The face is induced by a concave vertex of the polygon

In this case the face is covered by two rectangles. Let W be the concave vertex

inducing the face. Let s be a straight line splitting the concave angle at W into

two equal angles. On each side of s one rectangle is placed, with one of its edges

collinear with s. Moreover, the rectangles placed are the smallest ones which

cover the whole face on the respective side of s, see Fig. 4.3a. It is easily seen

that these two rectangles can be determined in linear time with respect to the

number of Voronoi edges bounding the face.

Case 2. The face is induced by an edge of the polygon

Let g be the segment of P which induces the face. The face is partitioned into

cells with only three or four vertices each, by drawing from every vertex of the

face a segment connecting the vertex with its perpendicular projection on g.
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w

B

D

A

C

A B

(b) (c)

C

(a)

Figure 4.3: (a) Case 1: Rectangles produced to cover a face induced by the concave

vertex W . (b) Subcase 2.1. (c) Subcase 2.2

De�nition 4.1 The edge of each cell which is at the boundary of P is called

the base of the cell. The segments which are perpendicular to its base are called

the sides of the cell and, �nally, the edge opposite to its base is called the top

of the cell.

De�nition 4.2 A cell is said to be trivially coverable i� the smallest rectangle

whose one side is the base of the cell and which covers the cell lies entirely within

the polygon.

In the continuation of the algorithm each cell is processed independently. The

action of the algorithm is described independently for various types of cells.

Subcase 2.1. The top of the cell is a paraboloid

In this subcase the cell is covered with one or two rectangles. In order to facil-

itate an easier description, we assume w.l.o.g. that the base of the cell lies at

the bottom, horizontally. Assuming this orientation, if the top is monotonically

increasing (or decreasing) then the cell is trivially coverable, see Fig. 4.3b. Oth-

erwise, let A be the lowest point of the top of the cell. Split the cell into two

subcells, by drawing a segment from A to its perpendicular projection onto the

base. The resulting subcells are trivially coverable. It is easily seen that both

cases can be handled in constant time by the algorithm.

Subcase 2.2. The cell is a triangle

Let A;B and C be the vertices of the cell in counter-clockwise order, such that

AB is the base of the cell and BC the side of the cell. The angle, \ABC, is

of 90 degrees. The rectangle with base AB and top DC covers the cell and lies

within P , see Fig. 4.3c.

Subcase 2.3. The cell is a trapezoid

If the cell is a rectangle then, of course, it is trivially coverable. Otherwise, let
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Figure 4.4: (a) If \ADC is at least 135 degrees then the cell is trivially coverable.

(b) If \ADC is greater than 135 degrees then the cell is covered by dlogc jBCj=jADje
rectangles.

A;B;C and D be the vertices of the cell in counter-clockwise order, where A

and B are the endpoints of its base. Assume w.l.o.g. that jADj < jBCj and that
the base is horizontal and at the bottom. If \ADC is greater than or equal to

135 degrees, then the cell is trivially coverable, Fig. 4.4a.

There is one case left, when \ADC is greater than 90 and less than 135

degrees. In order to compute the maximal height of any rectangle within the

polygon with base on AB, 
ip the cell around its top (with endpoints C and D)

obtaining the symmetrical image of the cell with respect to its top, as shown in

Fig. 4.4b. Let A0 and B0 be the symmetric image of A and B respectively. Let

E be the point on A0B0 or on B0C, such that the segment AE goes through D.

If jAEj � jBCj, then the cell is trivially coverable. It remains to consider the

case jAEj < jBCj.
If jAEj < jBCj, then E lies on A0B0. Let � be the angle \ADC minus 90 de-

grees. We have \A0DE = 2�. Moreover, we have jDEj = jA0Dj= cos(\A0DE).
Since jA0Dj = jADj we get jAEj = jADj + jDEj = jADj � (1 + 1= cos 2�),

Fig. 4.4b.

De�nition 4.3 Assuming the above context, we de�ne the funnel ratio of a

funnel cell to be jAEj
jADj = (1 + 1

cos 2� ).

Now the algorithm splits the cell into two subcells, AFE0D and FBCE0,
where EE0 is parallel to AB, and E0 lies onDC , as shown in Fig. 4.5. The subcell
AFE0D is covered trivially. If the subcell FBCE0 is not trivially coverable, it

is processed in the same way as funnel cells. Thus, the original cell ABCD

is eventually partitioned into d(logc(jBCj=jADj))e trivially coverable subcells,

where c is the funnel ratio of the cell.

From the above argumentation we get the following lemma:
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Figure 4.5: The algorithm splits the cell into two subcells, AFE0D and FBCE0

Fact 4.4 After constructing the Voronoi diagram, in O(n logn) time, any poly-

gon P , except its funnels, can be covered with O(n) rectangles in time O(n).

Within the same asymptotic time, all funnels of P , if there are any, can be

detected.

The above fact shows advantageous properties of the algorithm with respect

to non-funnel parts of polygons. The following fact shows how good the algo-

rithm is with respect to covering funnels.

Fact 4.5 Let t be an arbitrary funnel of P . Algorithm H produces O(�(t))

rectangles to cover it, where �(t) is the minimum number of rectangles needed

to cover t.

Hence, the following theorem is obtained:

Theorem 4.6 Let P be an arbitrary polygon, and let C be the set of funnels

in P . The algorithm described above covers P with O(n+H(P )) rectangles in

time O(n log n+H(P )), where H(P ) = O(n+
P

t2C �(t)).

4.2 Idea and approach

In the rest of this chapter we study the di�erence between a global (optimal)

covering and a local covering of a simple polygon. We will show that algorithm

H , which is a typical local covering algorithm, produces H(P ) = O(n+�(P ))

rectangles to cover a simple polygon P , where �(P ) is the minimum number of

rectangles needed to cover P .

As described above, H works by partitioning P into O(n) cells which are

then covered separately. It has been shown that H covers a polygon P with

O(n) rectangles, Theorem 4.6, provided that P does not contain any so-called
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funnels. In [60] it was shown that for non-simple polygons that contain funnels

H may need 
(n logn+�(P )) rectangles to cover P , even if �(P ) = O(n0:5+�).

The advantage of a global covering versus a local covering is that the global

algorithm may cover several funnels at a time instead of just one funnel at a

time, i.e., one may use long thin rectangles that overlap several funnels by using

a global covering algorithm.

Our claim is that for any simple polygon, a global optimal covering of all the

funnels is not much better than a covering produced by H , Lemma 4.8. The

proof consists of two main results, Lemma 4.15 and Lemma 4.30. Assume that

we partition all the funnels into a number of subsets, such that all the funnels

in a subset belong to the same weak visibility polygon, have approximately the

same orientation and the length of their tops are approximately the same. We

say that these subsets are sorted normalized sets. If this holds then we show in

Lemma 4.15 that our claim is correct, i.e., a local covering is almost as good as an

optimal covering. In the proof we assume the opposite, that a global covering is

much better than a local covering. But, if a global covering would be much better

than a local covering, then many funnels in the set have to be \mostly" covered

by rectangles that also overlap several other funnels. To prove Lemma 4.15 we

show that all funnels in a subset that are not mostly covered by such rectangles

may be covered locally without increasing the number of rectangles by more than

a constant factor. We then extend this argument and show that it is even possible

to locally cover most of the funnels, that are \mostly" covered by rectangles that

also overlap several other funnels, without increasing the number of rectangles

by more than a constant factor. The remaining set of funnels that cannot be

covered locally without increasing the number of rectangles by more than a

constant factor is denoted N . We conclude the proof of Lemma 4.15 by proving

that the set N has to be empty. The main idea of the proof of Lemma 4.15, is

to show that for every funnel in N there exists a funnel in the set, such that the

two funnels cannot be connected by three straight line segments, thus violating

the fact that they lie in the same weak visibility polygon.

In Lemma 4.30 we extend the above result to hold even for normalized sub-

sets, that is without the restriction on the length of their funnel tops. As it

turns out, this is enough to prove our main results, since it can be argued that

any rectangle at most can overlap a constant number of such subsets.

Finally we prove a tight lower bound, 
(n=�(n)), Theorems 4.31 and 4.32,

for the minimum number of rectangles needed to cover a simple polygon P , by

using some known results about Davenport-Schinzel sequences.

By combining the two main results, Theorem 4.7 and 4.31, we get that H

will produce a rectangular covering of a simple polygon P within an O(�(n))

approximation factor from the minimum in optimal time O(n+�(P )).



38 Linear-time covering

4.3 Improving the approximation factor for sim-

ple polygons

The region of the funnel shell to the right of � can be covered by two rectangles

since the angle \B0CB is greater than 90Æ, the same holds for the region to the
left of � within the funnel. Since the area of the funnel shell outside � and �

can be covered by a constant number of rectangles we will in the continuation of

this text only consider the funnels in P . Since some funnels in P can be covered

by a constant number of rectangles we will only consider the funnels of P for

which it holds that the minimum number of rectangles needed to cover a funnel

is greater than 20. The total number of rectangles added to a covering by only

considering the funnels, instead of the funnel shells is linear. Let C be the set

of funnels in P , and let �(C) denote the minimum number of rectangles, within

P , needed to cover the funnels in C.

We will prove the following theorem:

Theorem 4.7 If P is an arbitrary simple polygon, then it holds that H(P ) =

O(n+�(P )).

Remark: The constants hidden by the O-notation are very large, we believe

that this is due to the construction of the proof, and not to the problem itself.

Since there are O(n) funnels in P and since H(P ) = O(n+
P

t2C �(t)), ac-
cording to Theorem 4.6, it suÆces to show the following lemma:

Lemma 4.8 Let C be the set of funnels in an arbitrary simple polygon P. Then

it holds that: X
t2C

�(t) = O(#C + �(C))

We will start by partitioning, in three steps, the set of funnels C into smaller

subsets. First we partition the polygon P into O(n) weak visibility polygons,

which are de�ned as follows:

De�nition 4.9 A polygon P is said to be weakly visible from an edge pq of P

if for every point x in P there exists a point y in pq that is visible from x.

The partitioning is done as follows. Select an arbitrary edge e of P . Construct

a weak visibility polygon P1 � P with respect to e. That is, P1 will include

all points of P that are visible from e. The weak visibility polygon P1 will

include edges that are not edges in P . Select one of these edges, denoted e,

and construct a weak visibility polygon P2 such that P1 \ P2 = e. Continue

this procedure iteratively until P is completely partitioned into weak visibility

polygons P1; : : : ; Pm.
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Figure 4.6: A simple polygon partitioned into weak visibility polygons.

A funnel is said to be in a weak visibility polygon Pi if its interior overlaps

with Pi. The set of funnels in Pi is denoted Ci. The following observation is

now straight-forward.

Observation 4.10 Let P be a simple polygon partitioned into weak visibility

polygons as described above. Every rectangle within P overlaps with at most

three constructed weak visibility polygons.

For every weak visibility polygon Pi, we sort the funnels in Ci with respect

to their orientation into a constant number of funnel sets T1, : : :, Tk. The orien-

tation of a funnel t is the direction of the corresponding edge of the generalized

Voronoi diagram (the direction of a straight line from the middle of t's base to

the middle of t's top). We say that the funnel sets T1; : : : ; Tk are normalized.

Hence, the funnels in a normalized set all belong to a weak visibility polygon

and have approximately the same orientation (within 360
k degrees).

Since every rectangle that overlaps a simple polygon P can overlap at most

three of the constructed weak visibility polygons, according to Observation 4.10,

and since we have a constant number of funnel sets for every weak visibility

polygon, we can without loss of generality reduce the original problem to each

of these funnel sets Tj , 1 � j � k. Let T be any of the funnel sets T1; : : : ; Tk.

So, to prove Theorem 4.7, it suÆces to show:X
t2T

�(t) = O(#T + �(T )) (1)

We now sort the funnels in T with respect to the length of their tops, and

get the subsets F1; : : : ; Fs, where we may assume without loss of generality that

the smallest top has length 1. We sort the funnels in such a way that for every

funnel t 2 Fi, 1 � i � s, it holds that 2i�1 < j�tj � 2i. Let li denote the
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Figure 4.7: (left) An i-local rectangle r. (right) Three rectangles that can be grouped

into one i-collection.

length of the largest allowed funnel top in Fi, that is li = 2i. We say that Fi
is a sorted normalized set of funnels. The reason why this partition is done is

because the proof of (1) will be made in two steps. In the �rst step we will show

that (1) holds for sorted normalized sets. Then we show that this result can be

generalized to normalized sets of funnels.

Before we continue, we need to de�ne the di�erent types of rectangles and

collections of rectangles that may overlap any sorted normalized set of funnels.

The thickness of a rectangle is the length of its shortest side. The total thickness,

or just thickness, of a set of rectangles is the sum of the rectangles thickness.

De�nition 4.11 Every rectangle in a covering of Fi is either an i-local rectangle

or a member in exactly one i-collection. An i-collection is a set of rectangles R

overlapping Fi, whose total thickness is less than or equal to li. Every rectangle

that overlaps Fi and whose thickness is greater than li is de�ned as an i-local

rectangle. The minimum number of i-collections and i-local rectangles required

to cover a funnel set Fi is denoted �00(Fi).

The above de�nition distinguishes between rectangles that may overlap sev-

eral funnels in a sorted normalized set, the rectangles in an i-collection, and

the rectangles that only can overlap a constant number of funnels, the i-local

rectangles, see Fig. 4.7. Note also that the number of i-collections and i-local

rectangles needed to cover a funnel set Fi is always less than or equal to the

number of rectangles needed to cover Fi. This follows since all rectangles of

thickness less than li may be grouped into i-collections of total thickness li.

We need some additional de�nitions.
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De�nition 4.12 A set S of i-collections and i-local rectangles is said to be

approximately optimal if S covers Fi and #S�c�(#Fi+�(Fi)), where c stands
for some constant independent of the input.

For any approximately optimal set S it holds that every rectangle in S is

either an i-local rectangle or a member in exactly one i-collection.

De�nition 4.13 A rectangle r is said to pass through a funnel t if and only if r's

two long sides intersect both t's top and base. We say that a set of rectangles is a

t-collection, where t is any funnel in any Fi, if (1) the rectangles pass through t,

(2) they do not pass through any other funnels in Fi and (3) their total thickness

is less than or equal to j�tj. Every rectangle that overlaps t and does not pass

through any funnels in Fi is de�ned as a t-local rectangle. The minimum number

of t-collections and t-local rectangles required to cover any funnel t is denoted

�00(t). Hence, we have �00(t) � �(t).

Any t-local rectangle or any rectangle in a t-collection in some approximately

optimal set S is also an i-local rectangle or a member in an i-collection of S. Also

note that the rectangles in a covering produced by H are either t-local rectangles

or members in a t-collection, while the rectangles in an optimal covering are

either i-local rectangles or members in i-collections.

Observation 4.14 For an arbitrary funnel t, it holds that �(t) = �(�00(t)).

Proof: The proof of Lemma 1 in [58] can easily be modi�ed to t-collections and

t-local rectangles. See also the proof of Observation 4.19. 2

This observation allows us to translate the left side of (1) to t-collections and

t-local rectangles, i.e., to prove Theorem 4.7 it suÆces to show thatX
t2T

�00(t) = O(#T+�(T )): (2)

4.3.1 Covering a sorted normalized set of funnels locally

We will now show, Lemma 4.15, that the minimum number of t-collections and

t-local rectangles needed to cover every funnel in a sorted normalized set of

funnels, Fi, is not \much worse" than the minimum number of i-collections and

i-local rectangles needed to cover Fi, or more precisely:

Lemma 4.15 Let F be any of the sets F1; : : : ; Fs. Then it holds that:X
t2F

�00(t) = O(#F + �00(F ))
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To prove the above lemma we will start by showing that in a number of

steps we can cover some funnels in F with O(#F+�00(F )) t-local rectangles and
t-collections. Then in the remaining part of this section we will show that this

set actually covers every funnel in F .

We may assume without loss of generality that the funnels in F have their

tops pointing upwards. Now, if the lemma would not hold then many of the

funnels in F would have to be \mostly" covered by rectangles that also overlap

other funnels in F . We have to de�ne (De�nition 4.17) what we mean when

we say that a funnel is \mostly" covered (\well-fanned") by rectangles that also

overlap other funnels. First we need the following de�nition.

De�nition 4.16 A funnel t1 is said to be above a funnel t2 if and only if t2's

and t1's funnel tops can be connected by a straight line segment within P that

intersects �t1 . In this case t2 is said to be below t1. The funnel t1 is said to be

directly above t2 if and only if t1 is above t2, and t1 and t2 can be connected by

a straight line segment within P that does not pass through any other funnels

in F .

De�nition 4.17 Let M be a set of rectangles that pass through a funnel t2H ,

such that every rectangle inM also overlaps at least one funnel (may be di�erent

funnels) in H below t. We de�ne a function '(t;M;H) as the largest distance,

on �t, between two consecutive rectangles in M such that their intersection

with t is not completely overlapped by t-local rectangles and t-collections. If

'(t;M;H)<j�tj=10 we say that the funnel t in H is well-fanned byM , as shown

in Fig. 4.8.

Covering non well-fanned funnels

Our objective in this section is to show that all funnels that are not well-fanned

by an approximately optimal set can be covered by t-local rectangles and t-

collections. Thus, we will not have to consider these funnels in the continuation.

Let S be an approximately optimal set. Then, any rectangle in S overlapping

any funnel t2F that does not overlap any other funnels below t is either a t-local

rectangle or a member in an i-collection where t is the lowest funnel the rectangle

overlaps. Since we do not consider these rectangles in De�nition 4.17, where t is

the lowest funnel they overlap, we have to show that we can replace (i.e., cover)

these, in t, with t-collections or t-local rectangles, without increasing the size of

S more than allowed.

Proposition 4.18 Let D be the set of i-collections in some approximately op-

timal set S and let DR be the set of rectangles in D. For each rectangle r2DR
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Figure 4.8: If '(t;M;H) < j�tj=10 then t 2 H is well-fanned by M

let tr be the lowest funnel that r overlaps. Every rectangle in DR that passes

through more than one funnel in F can be overlapped by a local rectangle in

tr, such that r's entire intersection with tr is covered by this local rectangle. If

we overlap all rectangles in DR as described and then group the local rectangles

into a minimum number of t-collections, the number of new t-collections will be

O(#F+�00(F )).

Proof: Let m be the number of t-collections that is constructed according to

the Proposition. The smallest possible total thickness of these t-collections will

be greater than (m�#F )�li=2, since every t-collection, except for at most one

for every funnel t, will have a total thickness greater than li=2 (otherwise we

could have grouped them into a smaller number of collections). Also, the largest

total thickness possible by the #D i-collections is #D �li, according to De�nition
4.11, which gives us the equation:

(m�#F ) � li=2 < #D � li () m < 2 �#D +#F:

Since #D = O(#F+�00(F )), it holds that:

m = O(#F+�00(F )):

2

We will now show that a funnel t2F that is not well-fanned by some approxi-

mately optimal set S may be entirely covered by t-collections and t-local rect-

angles, without increasing the size of S by more than a constant factor.
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Recall that �00(t) = �(log�(j�tj=j�tj)), according to Observation 4.14. The fol-

lowing observation is a modi�ed version of Lemma 1 in [58].

Observation 4.19 Let M be the set of rectangles that passes through a non

well-fanned funnel t2F . If �00(t) > 20 then it holds that at least logc(j�tj=j�tj)
additional rectangles are needed to cover t, where c = 1 + 20

1�tan�t .

Proof: We can without loss of generality assume that t's orientation is exactly

vertical. In the rest of this proof all rectangles or sets of rectangles which we

de�ne or refer to are understood to be t-local rectangles which overlap with t.

To continue we need some de�nitions. Let �0 be the part on t's base that

is not covered by M , according to De�nition 4.17, and let h0 be the horizontal

segment in t, such that h0 touches both arms of t and jh0j = 40j� j. Let t0 be
the largest trapezoid in t, not overlapped by the rectangles in M , with �0 as its
base and its top on h0. Let � 0 be the top of t0. Since j�0j > j�j

10 we have that

j� 0j > h0
10 � 2� , and hence, � 0 > h0

10 � h0
20 = 2� .

Let R be a set of rectangles. Let hR be the lowest horizontal segment in t0,
such that hR touches both arms of t0, and the whole trapezoid between � 0 and
hR is covered by the rectangles in R. We say that R is top-coherent, if and only

if no rectangle in R lies entirely below hR. If R covers t0, then it is top-coherent,
and jhRj = j�0j.

For any rectangle r we de�ne the crossing of r in t, denoted by Cr to be the

length of the maximal intersection between r and a horizontal segment in t. Let

R be the set of rectangles in t. We de�ne the crossing of R, denoted by CR to

be the sum
P

r2RCr. Note that if R covers t0, then the inequality CR � j�0j
holds.

For every integer i � 1, we de�ne mi to be the maximum real number, such

that there exists a top-coherent set R consisting of i rectangles, and the equality

CR = mi holds. Also, we de�ne m0 to be equal to the length of h0. Let f be

the least integer such that mf�j�0j. Since the crossing of any set of rectangles

covering t0 is at least j�0j, it holds that the minimum number of rectangles

needed to cover t0 is greater than or equal to f . Hence, to prove the lemma it

is suÆcient to show that for any set R, such that #R = i < f�1, it holds that
CR � mi � jh0j�ci, where c = 1+ 20

1� tan� . Since m0 = jh0j, it suÆces to show

the following statement:

(*) For any integer i, 0 � i � f�2, it holds that mi+1 � mi�(1+ 20
1� tan� ).

This assumption is not necessarily true for mf , since (mf�1�(1+ 20
1� tan� ))

could be greater than �. So, if j�j < (mf�1�(1+ 20
1� tan� )) then we let mf be the

largest possible rectangle in t that does not intersect the shell of t.

Let R be any top-coherent set of i+1 rectangles such that mi+1 = CR. Let

r be a rectangle in R whose uppermost corner is farthest down. Let h0 be the
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horizontal segment passing through this corner and having its endpoints on the

two arms of t0, and let h be the horizontal segment overlapping h0 and touching

t's both arms. Hence, we have 20jh0j � h. The crossing of r, Cr, is maximized

if r is a maximal square touching h at its middle point, such that its sides form

angles of 45 degrees with h. By straight-forward trigonometric calculations one

can check that Cr is less than
h

1� tan� . Since 20jh0j � jhj, the following inequality
holds:

(i) Cr � h
1� tan� � 20h0

1� tan� .

To prove (*) we distinguish two cases.

Case 1: i = 0. In this case it holds that m1 = Cr. Also, it holds that jhj = m0.

Combining this with inequality (i) we obtainm1� m0

1� tan� , so statement (*) holds

in this case.

Case 2: 1 � i � f�2. Let R0 be R�frg. From the de�nition of crossing it follows

that CR = CR0 + Cr. Since R is top-coherent, every point on h0 is included in

some rectangle of R0. Hence it holds that jh0j � CR0 . Combining this with the

latter equality and with (i) we obtain the inequality CR � CR0 + 20CR0

1� tan� .
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Since mi+1 = CR, to show the statement (*) it remains only to show that

CR0 � mi.

Since R is top-coherent, it follows from the de�nition that every point in t0

above, and including, h0 is in some rectangle in R0. Hence, R0 is also top-

coherent, so the mentioned inequality CR0 � Ci holds. This completes the proof

of (*) and of the proposition. 2

A rough idea

Later in this chapter, we will produce a set, L, of k�(#F+�00(F )) t-collections
and t-local rectangles, where k is some constant independent of F , such that

this set covers F . We will need the following crucial observation.

Observation 4.20 In every weak visibility polygon it's possible to construct a

path between any pair of points with three straight line segments.

Proof: The observation follows directly from the de�nition of weak visibility

polygon. 2

Assume that there exists a subset of F , denoted N , such that every funnel

in N is not completely covered by L. Our claim is that N has to be empty. One

approach to show this would be to show, according to Observation 4.20, that for

every funnel in N there exists a funnel in F , such that the two funnels cannot be

connected by three line segments within P . Thus N has to be empty since the

funnels in N cannot belong to the same weak visibility polygon as some funnels

in F .

So, we want to �nd a \chain" of consecutive well-fanned funnels in F , such

that every path between the �rst funnel, a funnel in N � F , and the last funnel,

a funnel in F nN , has to consist of more than three line segments within P . If for

every funnel in N we can �nd a \chain" that ful�lls the following two conditions,

then we can prove the lemma.

(i) for every two consecutive funnels in this \chain", say t1 and t2, there

exists a rectangle r 2 L that passes through t1 and overlaps t2 in such a way

that r intersects �t1 at a \moderate" distance from t1's closest arm, to be de�ned

below, and

(ii) the tops of every three consecutive funnels in this \chain" cannot be

connected by less than two straight line segments within P .

Ful�lling the conditions

Let t2F be some funnel well-fanned by an approximately optimal set S and let

r be a rectangle in S passing through t. The largest distance on �t between t's
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r

r(t)

t

Figure 4.10: r(t) denotes the largest distance on �t between t's nearest arm and a point

on the intersection between r and �t.

nearest arm and a point on the intersection between r and �t, is denoted r(t),

as shown in Fig. 4.10.

De�nition 4.21 The part on �t that lies more than
j�tj
10 + 5j�tj from both t's

arms is denoted t's corebase, see Fig. 4.11b.

De�nition 4.22 A rectangle r is said to intersect �t at a moderate distance

from t's closest arm, if it holds that 3j�tj < r(t) � j�tj
10 + 5j�tj.

Since t is well-fanned, there exist at least two rectangles in S that pass

through t at a moderate distance from t's closest arm and overlap at least one

funnel below t. So, for every funnel t well-fanned by an approximately optimal

set S there exists a funnel below t, such that condition (i) holds. Condition

(ii) is harder to ful�ll, since the following problem can occur: if there exists a

funnel t12F well-fanned by S directly above any funnel t22F whose top can

(weakly) see t2's entire corebase and t1 is overlapped by a rectangle in S that

also overlaps t2, then it's possible that t1's top can see all the funnels below t2
that are overlapped by any rectangle that passes through t2.

We have to guarantee that the tops of every triple of well-fanned funnels in

the \chain", cannot be connected by less than two line segments within P . In

Observation 4.23, which will be stated below, we show that there can be at most

a linear number of funnel pairs, say t1 and t2, such that t1 dominates t2. A

funnel t1 is said to dominate a funnel t2 if:

(1) t1 is well-fanned by a set S,

(2) t1 lies directly above t2,

(3) t1's top can see t2's entire corebase, and



48 Linear-time covering

(4) there exists a rectangle r in S that passes through t1 and overlaps t2, where

r intersects �t1 at a moderate distance from t1's closest arm, see Fig. 4.11a.

In Corollary 4.24 we note that we can replace (i.e., cover) the rectangles in t1
that also overlap t2 with a constant number of t-local rectangles. This will ensure

that t1 and t2 won't be consecutive funnels in the \chain".

(b)(a)

10
+ 5τ 10

+ 5
ββ τ

2

p
1

p
2

1

l1

t
t2 l

t

2

corebase

B

Aq q
1 2

1t

Figure 4.11: (a) t1 may dominate t2. (b) A funnel t1 above t2.

Observation 4.23 For any funnel t2 2 F there exists at most one funnel t1 2 F

which dominates t2.

Proof: Let p1 and p2 be the endpoints of t2's corebase, and let p
0
1 and p

0
2 be the

endpoints of �t2 , such that the lines l1, the line that passes through the points

p1 and p
0
1, and l2, the line that passes through p2 and p

0
2, do not intersect within

t2. The lines l1 and l2 form two regions above t2's top, the region above t2's

top and below the crossing is denoted A, and the region above the crossing is

denoted B, as shown in Fig. 4.11b. Above the crossing (in region B) �t1 has to

intersect the lines l1 and l2 to be able to see t2's entire corebase. That is, at

most one funnel t1, that overlaps B, can lie directly above t2 and see t2's entire

corebase.

Now, let r be any rectangle according to the observation. Every point in area

A can see t2's entire corebase, but since A's width is less than �t2 � 2�t1 and r

partly overlaps �t1 at least 3�t1 from t1's arms, �t1 will cut A in two, thus there
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exists at most one funnel directly above t2 that sees t2's entire corebase. The

observation follows. 2

To ful�ll condition (ii) we will later in the text need the following corollary,

where we let E be any subset of F and RE be a set of rectangles. Let t1 and t2
be any pair of funnels, denote by Q(t1; t2) the quadrangle where �t1 and �t2 are

opposite sides of Q(t1; t2). Finally, let Q
0(t1; t2) be the intersection between t1

and Q(t1; t2)

Corollary 4.24 The number of t-local rectangles needed to cover Q0(t1; t2), for
every pair of funnels t1 and t2, where t1 dominates t2, is less than 3�#E.

Proof: According to Observation 4.23, there are at most #E pairs of funnels

where a funnel t1 dominates a funnel t2. Since the di�erence of the length of two

funnel tops in E can be at most a factor two, we will only need three rectangles

to cover Q0(t1; t2), Fig. 4.12. The corollary follows. 2

21

t

t

1

2

Q(t ,t  )

Figure 4.12: The part of the quadrangle Q(t1; t2) in t1 can easily be covered by a

constant number of rectangles.

Thus it is possible to ful�ll the two conditions needed to prove the lemma and

at most add a linear number of t-local rectangles to any approximately optimal

set S.

Finding the \impossible" zig-zag chains

We create an empty set L to which we will add t-local rectangles and t-collections.

Our objective is that the set L eventually will cover all funnels in F , and

that the number of t-local rectangles and t-collections in L should be at most
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k�(#F+�00(F )), where k is some constant independent of F . Let L00 be a set

of �00(F ) i-collections and i-local rectangles covering F , i.e., L00 is an optimal

covering of F .

For every rectangle r2L00 we insert a t-local rectangle in L00 such that the

t-local rectangle overlaps the whole intersection between r and tr, where tr is

the lowest funnel r overlaps. If we group these local rectangles into t-collections

we will at most add O(#F+�00(F )) t-collections to L00, according to Proposi-

tion 4.18.

For every pair of funnels t1 and t2 in F , where t1 dominates t2, insert three

t-local rectangles in L00, such that the t-local rectangles cover Q0(t1; t2). We will

at most add 3�#F t-local rectangles to L00, according to Corollary 4.24.
Let H1 be the subset of F such that every funnel t2H1 is well-fanned by

L00. Recall that each funnel t2H1 has to be well-fanned by rectangles that

pass through t, overlap at least one funnel in H1 below t and the rectangles'

intersection with t is not entirely covered by t-local rectangles or t-collections.

Add the minimum number of t-collections and t-local rectangles needed to cover

fF�H1g to L. According to Proposition 4.19 we have,

#L = O(#fF �H1g+ �00(fF �H1g)):

LetM1 be the set of rectangles in L
00 that pass through more than one funnel

in H1. For the sake of completeness we describe the procedure once again, this

time with the sets M1 and H1 instead of L00 and F .

For every rectangle r2M1 we insert a t-local rectangle in M1, such that the

t-local rectangle overlaps the whole intersection between r and tr, where tr is

the lowest funnel r overlaps. If we group these local rectangles into t-collections

we will at most add O(#H1+�
00(H1)) t-collections to L

00.
For every pair of funnels t1 and t2 in H1, where t1 dominates t2, insert three

t-local rectangles in L00, such that the t-local rectangles cover Q0(t1; t2). We will

at most add 3�#H1 t-local rectangles to M1.

Let H2 be the subset of H1 such that every funnel t2H2 is well-fanned by

M1, and the intersection between t and the rectangles in M1 is not entirely

covered by the local rectangles produced above. Add the minimum number of

t-collections and t-local rectangles needed to cover fH1�H2g to L. We have,

#L = O(#fF �H2g+ �00(fF �H2g)):

Construct in the same way the sets M2; H3;M3; : : : ; H7;M7; H8. Note that

H8 is the set denoted N in the previous sections. We have that,

#L = O(#fF �H8g+ �00(fF �H8g)):
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Proof (Lemma 4.15)

When all the sets H1;M1; : : : ;M7; H8 are constructed two cases can occur:

i) H8 is empty.

We know that the set of rectangles, L, covers all the funnels in fF�H8g and

#L = O(#fF�H8g + �00(fF�H8g)). Since H8 is empty we have shown the

lemma: X
t2F

�00(t) = #L = O(#F + �00(F ))

ii) H8 is non-empty.

All the funnels in fF � H8g are covered by L, where #L = O(#F+�00(F )).
We want a contradiction by showing that a funnel in H8 cannot belong to the

same weak-visibility polygon as some funnel in F�S8
i=1Hi. For this we need

the following straight-forward observation.

Observation 4.25 Every possible path between two funnels in a simple polygon

has to traverse all funnels traversed by the shortest path between them.

f6

f7

f8

Figure 4.13: Constructing the zig-zag chain.

To show that the funnels in H8 cannot belong to F , we will show that for

every funnel in H8 there exists at least one funnel in F , such that every path

between these two funnels has to consist of at least four line segments.

Let H0 = F and let M0 = L00. Let Mi�1(fi), 1�i�8, be a subset of Mi�1,
such that every rectangle r2Mi�1(fi) passes through fi and overlaps a funnel

fi�12Hi�1 below fi in such a way that (1) r intersects �fi at a moderate distance

from fi's closest arm and (2) r's intersection with �fi�1 cannot be seen from fi's

top. (This is possible according to the de�nition of the rectangle sets Mi�1,
1�i�8.) In the following steps if we use the rectangles from Mi�1(fi), 1�i�8,
to choose the funnels for the \chain", then we can guarantee that the tops of fi
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and any funnel below fi�1 in the \chain" cannot be connected by less than two

line segments within P .

Consider a funnel f82H8, see Fig. 4.13. We choose a rectangle in M7(f8),

as described in the previous paragraph, that overlaps a funnel f72H7 below f8.

Such a rectangle exists according to the de�nition ofM7. In funnel f7 we choose,

in the same way, a rectangle in M6(f7) that overlaps a funnel f62H6 below f7.

(There exists such a rectangle according to the de�nition ofM6.) In f6 we choose

a rectangle in M5(f6) that overlaps a funnel f52H5 below f6. We continue like

this through the funnels f42H4; : : : ; f12H1 until we reach a funnel f02H0 = F .

If we want to construct a path within P from f8 to f0, this path has to pass

through the funnels f7; : : : ; f1, according to Observation 4.25. Any line segment

that starts from funnel f8 has to pass through f7's top. We know that f7's and

f5's tops cannot be connected by less than two line segments within P . The same

holds for the funnels f5 and f3, so a path between f8 and f3 has to consist of at

least three line segments within P . Since the same also holds for the funnels f3
and f1 we have that any path connecting f8 and f0 has to consist of at least four

line segments within P . We have shown that H8 has to be an empty set, since

a funnel in H8 cannot belong to F . This completes the proof of Lemma 4.15.

Note the following observation.

Observation 4.26 It holds that

�(Fi) = O(#Fi+�
00(Fi)):

Proof: Since �(Fi) �
P

t2Fi �(t) and since
P

t2Fi �(t) = O(#Fi + �00(Fi)),
according to Lemma 4.15, the observation follows. 2

From Observation 4.26 and since �(t) = �00(�(t)) we may translate Lemma 4.15
to rectangles instead of collections and local rectangles, which gives us:X

t2F
�(t) = O(#F + �(F )): (3)

4.3.2 Covering a normalized set of funnels

In the previous section we showed that an optimal covering of a sorted normalized

set of funnels is not much better than a local covering produced by algorithm H .

In this section our aim is to show that the number of rectangles produced to

cover each of the sorted normalized sets F1; : : : ; Fs separately is not much more

than the number of rectangles in an optimal covering of the normalized set

T = fF1; : : : ; Fsg, i.e.,
Ps

i=1 �(Fi) = O(#T + �(T )). The idea is to show

that even if all rectangles in an optimal covering of T overlap many di�erent

sorted normalized sets, the total number of rectangles cannot be much less than
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Ps
i=1 �(Fi), since the thickness of a rectangle is bounded by the length of the

smallest funnel top it passes through.

Before the last part of the proof of the theorem, we need some de�nitions.

These de�nitions describe what sorts of collections and rectangles that may

overlap any normalized set of funnels.

Let R be a minimal set of rectangles that covers a normalized set of funnels

T , and let Ri be a subset of R such that every rectangle in Ri overlaps with at

least one funnel in Fi, where F1; : : : ; Fs is the sorted normalized set of funnels

of T .

De�nition 4.27 We de�ne R0
i to be the set of all rectangles in R, such that

r2Ri and r =2 Si�1
j=1 Rj , and r's thickness is less than or equal to li. Partition

R
0

i into a minimum number of collections of rectangles, which we will call Di-

collections. The total thickness of every Di-collection is less than or equal to

li. Note that in this case the total thickness of every Di-collection, except for

at most one, will be greater than li=2. Let Di denote the set of Di-collections

and let di be the number of Di-collections in Di. Every rectangle in Ri whose

thickness is greater than li is de�ned as an i-local rectangle in Ri. The number

of i-local rectangles overlapping Fi is denoted bi.

It may happen that some rectangles in various Dj-collections in Dj also

overlap the funnel set Fi, where j < i. These are the rectangles in fRi � R
0

ig
that are not i-local rectangles. Therefore we have to consider the case when the

Dj-collections that overlap any of the funnel sets F1, : : : , Fi�1 also overlap (some
of) Fi; : : : ; Fs. The thickness of a Di-collection in Di is at most li, consequently

the total thickness of all the rectangles in the Di-collections that may overlap

all the subsequent funnel sets is di�li.

De�nition 4.28 We de�ne Li as follows: Li = Li�1+ di�1�li�1, where L1 = 0.

Thus, Li is an upper bound on the total thickness of all rectangles in the j-

collections, 1 � j < i, that overlap any of the funnel sets F1; F2; : : : ; Fi�1.
Let R

00

i be the set of all the rectangles in fRi�R0

ig that are not i-local rect-
angles. We partition R

00

i into a minimum number of sets of rectangles, which

we will call i-free collections. The total thickness of every i-free collection is

less than or equal to li. Note that the total thickness of every i-free collection,

except for at most one, will be greater than li=2. Let gi denote the number

of i-free collections that overlap Fi, that is gi�
l
Li�1

li=2

m
. The total number of

i-collections, i-free collections and i-local rectangles is denoted �0(Fi). Since

Di-collections and i-free collections are just special cases of i-collections it holds

that �00(Fi) � �0(Fi). Recall that �00(Fi) is the minimum number of i-collections

and i-local rectangles needed to cover Fi.
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Observation 4.29 It holds that

�(Fi) = O(#Fi + �0(Fi)):

Proof: It holds that �00(Fi) � �0(Fi) and, according to Observation 4.26, we

have �(Fi) = O(#Fi+�
00(Fi)). The observation follows. 2

Lemma 4.30 Let T be a normalized set of funnels and let F1, : : : , Fs be sorted

normalized subsets of T as de�ned. Then it holds that:

sX
i=1

�(Fi) = O(#T + �(T ))

Proof: According to Observation 4.29 it suÆces to show that
Ps

i=1 �
0(Fi) =

O(#T+�(T )). A funnel set Fi can be overlapped by at most gi i-free collections,

according to De�nition 4.28. If a funnel set Fi is empty, gi will naturally be 0.

We will now calculate the maximum number of i-free collections overlapping Fi.

Note that li+1 = 2�li.

gi �
�
Li
li=2

�
=

�
Li�1
li�1

�
+ di�1 =

=

�
d1
2i�2

+
d2
2i�3

+ : : :+ di�1

�
=

� i�1X
j=1

�
dj

2i�j�1

��
:

It follows that the total number of free-collections will not exceed:

sX
i=1

gi �
sX
i=2

� i�1X
j=1

�
dj

2i�j�1

��
� #T+2

sX
i=1

di (4)

According to De�nition 4.28 we have:

sX
i=1

(di + bi + gi) =

sX
i=1

�0(Fi) (5)

From (4) we have that
Ps

i=1 gi � #T + 2
Ps

i=1 di. Combining (4) and (5), we

get:
sX
i=1

�0(Fi) � #T + 3

sX
i=1

di +

sX
i=1

bi (6)

From De�nition 4.27 we have that every rectangle in the optimal covering of

T will be counted as a local rectangle in at most four di�erent funnel sets Fi
(one for each corner), where 1�i�s, that is Ps

i=1 bi�4�(T ). From the same
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de�nition we have that
Ps

i=1 di��(T ) which together with (6) gives us the resultPs
i=1 �

0(Fi) � 7�(T ) + #T , which at last gives us:

sX
i=1

�0(Fi) = O(#T + �(T )):

2

4.3.3 Putting it all together

We conclude the proof of Theorem 4.7. If we use (3) for a normalized set of

funnels T , we get: X
t2T

�(t) = O(#T +

sX
i=1

�(Fi)): (7)

If we look at the result from Lemma 4.30 we get that (1) follows directly from

(7). Since #T = O(n), �(T ) � �(P ) and H(P ) = O(n +
P

t2P �(t)) (Fact 4.6)
we obtain the �nal result

H(P ) = O(n+ �(P )):

4.4 A tight lower bound on optimal coverings

Let �(n) denote the extremely slowly growing inverse of Ackermann's func-

tion [94].

Theorem 4.31 For all integers n�4 and for every simple polygon P with n

vertices it holds that �(P ) = 
( n
�(n) ).

Proof: Hart and Sharir [45] showed that the Davenport-Schinzel sequence of

order 3 has length O(m��(m)). Let P be any polygon with n vertices, and letM

be a set of �(P ) rectangles that covers P . The sequence E of indices of segments

in M in the order in which they appear along the outer face of the rectangles is

a Davenport-Schinzel sequence of order 3 - i.e., no two adjacent elements of E

are equal and E contains no subsequence of the form a: : :b: : :a: : :b: : :a. Hence,

P consists of O(�(P )��(�(P ))) edges, since the number of segments is 4�(P ).
Thus, �(P ) = 
( n

�(�(P )) ) holds. By considering the two cases (1) �(P ) � n and,

(2) �(P ) > n it follows that �(P ) = 
( n
�(n) ).

2

Theorem 4.32 The lower bound shown in Theorem 4.31 cannot be generally

improved, i.e., for each n there is a polygon P with n vertices such that �(P ) =

O( n
�(n) ).
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Proof: According to Wiernik [94] there exists a construction of a set M , of

m straight-line segments, such that the lower envelope Y of M consists of


(m��(m)) subsegments.

Construct k non-vertical connected edges, E = fe1; : : : ; ekg, such that the

edges in E are identical to a lower envelope produced by the m segments in

[94]. Let ei be the i:th left-most edge of E and let d denote the largest vertical

distance between two points in E. Expand E along the x-axis, by multiplying

all x-coordinates such that the minimum di�erence along the x-axis between two

incident vertices in E is 10d. Let e0 and ek+1 be two horizontal edges of length

10d, such that e0 is connected to the left endpoints of e1 and ek+1 is connected

to the right endpoint of ek. Let E0 be the set of edges in E plus e0 and ek+1.

Now, construct an upside-down histogram P , with one horizontal upper long-

side, denoted st, and two vertical edges sl and sr of length at least 10d, such

that sl connects st's left endpoint with e0's left endpoint and sr connects st's

right endpoint with ek+1's right endpoint, Fig. 4.14.

ek+1

E

P sr

st

sl

0e

Figure 4.14: It is possible to cover P with O(n=�(n)) rectangles.

We will now prove that it is possible to cover P with O( n
�(n) ) rectangles. Let

rst be a maximal rectangle whose upper side coincides with st. The region of P

covered by rst is denoted PT and the uncovered area of P is denoted PE . Let rsl
and rsr be two maximal rectangles, within P , such that rsl includes sl and e0, and

rsr includes sr and ek+1. Now, let RE be a minimum set of maximal rectangles,

within P , such that every edge of E coincides with at least one rectangle in RE ,

and the length of the short sides of every rectangle in RE is 2d. Let RE0 be

the set of edges in RE plus rsl and rsr . We now show that the rectangles in

RE cover the remaining uncovered part of PE , i.e., (PE � (rsl\PE)� (rsr\PE)).
Note the following facts:

1. the largest slope of an edge in E0 is 1=10,

2. the shortest distance between two non-incident edges in E0 is 10d, and

3. the shortest distance between st and an edge in E is 9d.

It is easily seen that every point in PE with a perpendicular projection on any

edge of E0 is covered by the rectangles in RE0 , see Fig. 4.15a. Note that every
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remaining uncovered region lies closer than d to a concave vertex of E0. Thus

it remains to show that every point in PE , closer than d to a concave vertex of

E0, is covered by the rectangles in RE0 .

Let v be a concave vertex connecting ei and ei+1, 0 � i � k, in E0, and let

rei and rei+1 be the two rectangles in RE0 whose bases include ei, respectively

ei+1, Fig. 4.15b. According to the above facts, we have that rei and rei+1

extend at least 10d to the right, respectively to the left of v, and since the

short sides of the rectangles in RE0 have length 2d, we have that rei and rei+1

cover the part of PE closer than d to v. Hence (RE[rt[rsl[rsk ) covers PE and

�(P ) = O(#RE). According to [94] we have that the number of segments in

E is 
(#RE ��(#RE)) = k(= n�5). Let Y (RE) be the lower envelope of RE .

Since #Y (RE) = #E, according to the de�nition of E, we have that the number

of rectangles in RE is O( #E
�(#E) ), and hence, �(P ) = O( n

�(n) ). 2

ei ei+1

rei+1
rei

ei
ei+1

rei+1rei

Figure 4.15:

Summarizing the main result of this paper, we have shown that

H(P ) = O(min[�(n)��(P ); n+�(P )])

and combining with Lemma 4.6 we obtain the following theorem.

Theorem 4.33 For any simple polygon P , with n vertices, Algorithm H pro-

duces a rectangular covering of P within an O(�(n)) approximation factor from

the minimum in optimal time O(n+�(P )).





Chapter 5

Lower bounds for

approximate polygon

decomposition and

minimum gap

In Chapter 4 we presented the approximation algorithm by Levcopoulos, which

had a running time of O(n logn + �(P )). In the same chapter we showed that

the time-complexity of the algorithm could be improved to O(n + �(P )) in the

case when P is a simple polygon. Similar behavior can be found for various

covering problems. In the case when the given polygon is rectilinear Franzblau

[40] gave an approximation algorithm with running time O(n logn) and approxi-

mation ratio logn. In 1996, Bar-Yehuda and Ben-Hanoch [13] gave a linear time

algorithm for the simpler hole-free case. This led us to study how the trivial

linear lower bound can be improved in the case when the given input polygon

contains holes. We prove the separation suggested by these results, i.e., we show

that any approximation algorithm for covering an arbitrary polygon, with holes,

with a �nite number of polygons has a lower bound on the time-complexity of


(n logn) in the algebraic decision tree model.

Next we give the general idea and show how the original problem of covering a

polygon can be reduced to the simpler problem of �nding a lower bound (greater

than zero) on the minimum di�erence between two consecutive numbers in a set

of n numbers. In Section 5.2 we show, by using the results of Ben-Or [14], that

the time needed to solve the problem is 
(n logn).

The main result of this chapter is:

59
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Theorem 5.1 Every algorithm which for a polygon with holes on n vertices

computes a decomposition into L (orthogonal) rectangles requires 
(n logn+L)

time.

Note that the theorem makes no assumptions on the quality of the solution,

e.g., the approximation ratio of the algorithm. However, for algorithms that pro-

duce coverings of large cardinality (for example algorithms with approximation

ratio worse than O(log n)) the statement trivializes because the output must be

reported.

The model underlying Theorem 5.1 is the algebraic computation tree model

[81], which is the standard model for low-level lower bounds in computational

geometry. Interestingly, because of the algorithm's non-exactness there seems to

be no standard reduction that establishes the theorem. We believe that we in

this chapter provide a canonical hard problem (computational prototype) that

may be useful for lower bounds for other approximation algorithms.

By a reduction from sorting, Liou et al. [65] show an 
(n logn) lower bound

for the optimal partition problem assuming that the polygon has holes. The best

upper bound for this problem is O(n3=2 logn) [90]. The proof can be seen to

work for the optimal covering problem as well, for which not even a polynomial-

time algorithm is known (it is NP-complete [28]). Aggarwal et al. [2] present an


(n logn) lower bound for another minimum gap problem on a simple polygon,

but also that result is only relevant for the exact setting.

5.1 Improving the minimum gap

For S = fx1; : : : ; xng, let
MinGap(S) = min

i6=j
jxi � xj j

be the minimum gap of S.

Problem 1: (ImproveGap) Given a set S of real numbers and a real number �

with 0 � � < MinGap(S). Find a real number b such that � < b �MinGap(S).

We prove in the next section that this problem is hard, that is:

Theorem 5.2 In the algebraic computation tree model, every algorithm for

ImproveGap needs time 
(n logn) for any values of �, 0 � � < MinGap(S).

The next reduction proves Theorem 5.1.

Lemma 5.3 If there is an algorithm of time complexity T (n) that decomposes

a given polygon with n vertices into L orthogonal rectangles then ImproveGap

can be solved in time O(T (n) + n+ L).
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Figure 5.1: A polygon constructed from the instance S = f1; 3; 3:5; 6; 9g.

Proof: We assume without loss of generality that the values in a given instance

S to ImproveGap are positive. We construct a polygon P as follows. Let

h = jx1 � x2j, xmin = mini xi and let xmax = maxi xi. These values can be

computed in linear time. The outer perimeter is a rectilinear rectangle with

lower left corner at (xmin + �; 0) and upper right corner at (xmax; 2h + 1). For

each xi we place a rectangle of height 1 and width � at (xi; h), Fig. 5.1. This

construction takes time O(n). The algorithm for the decomposition problem

returns a collection C of L rectangles, we can assume that none of these have

zero width. Let w > 0 be the width of the narrowest rectangle in C, this can be

found in time O(L). It is obvious that w + � is a lower bound on MinGap(S),

which is greater than �. 2

One might be tempted to use a simpler problem than ImproveGap for the

reduction, for example Min Gap or Uniqueness. A reduction from Min Gap

is not appropriate, since we do not need an exact distance for approximation

algorithms. Min Gap might be a suitable problem if we would consider an

optimal algorithm, and not any approximation algorithm. The Uniqueness-

problem cannot be considered since we do not allow the gap between two holes

to be 0, and if the distance between two holes were zero then this \gap" would

not be considered. Hence, neither the Uniqueness-problem nor the Min Gap-

problem is suitable for the reduction.

5.1.1 Comments on input representation

Our results reinforce the literature's dichotomy between polygons with holes and

without holes. However, we want to emphasize the fact that this is mainly a

question about how the instance is represented. Indeed, the literature's linear-

time algorithms exploit a feature in the representation of the input, not in the

topology of the polygon.

First, it may be noted that our reduction relies crucially on a detail in the

input representation, namely that the holes in P are not ordered from left to



62 Lower bounds for approximate polygon decomposition and minimum gap

right. Were they ordered, the gap problem presented in our reduction could be

easily solved in linear time.

The presence of an ordering in hole-free polygons and its absence in the

general case is a well-accepted assumption in the literature; the common in-

put representation is a doubly-connected edge list of the edges constituting the

perimeter of the polygon, sorted by their ordering on the perimeter. Thus there

is a natural ordering of the edge list of a hole-free polygon. Indeed, the known

linear-time algorithms for decomposing hole-free polygons rely on the input be-

ing presented as a sorted edge list, for example by using Chazelle's linear-time

triangulation algorithm [23].

For polygons with holes on the other hand, there is no such ordering. Our

reduction exploits this lack of information to solve a gap problem.

To illustrate this further we consider the covering problem with a di�erent

input representation.

Problem 2: PartitionFromPoints For a set of n points that are the corners

of a rectilinear, simple polygon P , compute a partition of P .

We remark that indeed such a polygon is uniquely described by its corners,

so the problem is well-de�ned (assuming that every edge is maximal in the sense

that no two edges can be replaced by a single edge). We show that even though

this polygon is hole-free, it does not admit a linear time decomposition, no

matter how bad. Contrast that with the result that the exact partition problem

for hole-free polygons can be solved in linear time [65], if they are represented

as an ordered list.

Proposition 5.4 Every algorithm for PartitionFromPoints runs in time


(n logn).

Proof: (Sketch) Given an input x1; : : : ; xn; � to PartitionFromPoints, let (as

in the proof of Lemma 5.3) h = jx1�x2j, xmin = mini xi and let xmax = maxi xi.

The points of P are

f(xmin + �; 0); (xmin + �; h+ 1); (xmax; 0); (xmax; h+ 1)g[

[
n[
i=1

f(xi; h+ 1); (xi; h); (xi + �; h); (xi + �; h+ 1)g;

as shown in Fig. 5.1. 2
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Figure 5.2: Reduction from PartitionFromPoints.

5.2 Proof of Theorem 5.2

For the lower bound we introduce a decision version of the minimum gap prob-

lem, whose de�nition depends on an algorithm A for ImproveGap. Let

N = f (x1; : : : ; xn) j fx1; : : : ; xng = f1; : : : ; ng g;

be the set of permutations of (1; : : : ; n). Let BA = minx2N A(x). Since N is

�nite and A(x) > 0 we have BA > 0. Let

YA = fx 2 En j A(x) < BA g;

where En denotes n-dimensional Euclidean space. Note that by construction,

YA \N = ;.
Problem 3: (DecideGapA) Given a set S 2 En. If S 2 YA [N then decide if

MinGap(S) < BA, otherwise the output is unde�ned.

Lemma 5.5 Let A be an algorithm for ImproveGap with running time T (n).

Then DecideGapA has an algorithm with running time T (n) +O(1).

Proof: By construction, all YA are `yes'-instances to DecideGapA and all N

are `no'-instances. Thus the algorithm for DecideGapA runs A and returns

true if and only if A(x) < BA. 2

It remains to prove thatDecideGapA is hard, which is a standard argument.

We use the following result:

Theorem 5.6 [14] Let W be a set in Cartesian space En and let T be an

algebraic decision tree of �xed order d � 2 that solves the membership problem

in W . If h is the depth of T and #W is the number of disjoint connected

components of W , then h = 
(log#W � n).

Lemma 5.7 Let A be any algorithm for the ImproveGap. In the algebraic

computation tree model, every algorithm for DecideGapA requires 
(n logn).
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Proof: We will prove the result for the complementary problem. To show that

each of the n! points in N lies in its own component we merely observe that every

curve connecting two di�erent points x = (x1; : : : ; xn) and x0 = (x01; : : : ; x
0
n) in

N must pass through a point whose minimum gap is less than BA and thus

belongs to YA.

Let xi be the smallest element in x such that xi 6= x0i. Then there must

exist a xj > xi such that x0j = xi. We may now reduce this problem to two

dimensions. Any curve connecting x and x0 must include a point (z; z), where z
lies in the interval [x0i; xi] \ [xj ; x

0
j ]. The lemma follows. 2

Thus we have proved Theorem 5.2.

5.2.1 Hardness of approximating the minimum gap

In this section we show that it is hard to approximate MinGap(S).

The second smallest gap of S is de�ned as MinGap2(S) = mini6=j(fjxi �
xj jg nMinGap(S)). Obviously, MinGap(S) is in the interval [0;MinGap2(S)].

The next problem is to �nd a smaller interval containing MinGap(G).

Problem 4: (IntervalMinGap) Given a set S of real numbers and the value

MinGap2(S), �nd an interval I such that MinGap(S) 2 I � [0;MinGap2(S)].

The argument from the previous section can be applied to prove the following

hardness result.

Proposition 5.8 In the algebraic computation tree model, every algorithm for

the IntervalMinGap requires time 
(n logn).

The above result is very strong and implies the hardness of the well-studied

MinGap problem in almost every approximative sense. As an example of a

natural approximation formulation of MinGap we propose the following.

Problem 5: ((c1; c2)-ApproximateMinGap) Given a set S of real numbers

�nd a value Æ such that

Æ=c1 �MinGap(G) � Æc2

Proposition 5.9 In the algebraic computation tree model, every algorithm for

(c1; c2)-ApproximateMinGap requires time 
(n logn), for every c1; c2 > 1.

The main theorem of this chapter concerning the problems we have consid-

ered in the previous three chapters is:

Theorem 5.10 Let P be a polygon with holes. The problem of covering P with

a set of L simpler polygons, for example, squares or rectangles, requires time


(n logn+ L).



Chapter 6

TSP with neighborhoods

A salesman wants to meet some potential buyers. Each buyer speci�es a re-

gion in the plane, his neighborhood, within which he is willing to meet. The

salesman wants to �nd a tour of shortest length that visits all of the buyers'

neighborhoods and �nally returns to his initial departure point. The Traveling

Salesman Problem with neighborhoods (TSPN) asks for the shortest tour that

visits each of the neighborhoods. The problem generalizes the Euclidean Trav-

eling Salesman Problem in which the areas speci�ed by the buyers are single

points, and consequently it is NP-hard [41, 80]. For the Euclidean TSP there is

now a polynomial-time approximation scheme, allowing, one, for any �xed �>0,

to get within a factor (1+�) of the optimal in time nO(1=�), see [9] and [71].

One can think of the TSPN as an instance of the \One-of-a-Set TSP" also

known as the \Multiple Choice TSP", and the \Covering Salesman Problem".

This problem is widely studied for its importance in several applications, par-

ticularly in communication network design [47] and VLSI routing [84].

Arkin and Hassin [7] gave an O(1)-approximation algorithm for the special

case in which the neighborhoods all have diameter segments that are parallel to

a common direction, and the ratio between the longest and the shortest diameter

is bounded by a constant. Recently, Mata and Mitchell [70] provided a general

framework that gives an O(log k)-approximation algorithm for the general case,

where k is the number of neighborhoods, with polynomial time complexity 
(n5)

in the worst case. In this chapter we give several results: First we show a simple

algorithm that produces a TSPN tour with logarithmic approximation factor in

the case when a start point is given. If no start point is given we show how a

\good" start point can be computed in O(n2 logn). Hence, by combining these

two results we obtain a logarithmic approximation algorithm for the general case

with running time O(n2 logn). Our main result is an algorithm that, given an

65
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arbitrary real constant � as an optional parameter, performs at least one of the

following two tasks (depending on the instance):

1. It outputs in time O(n logn) a TSPN tour guaranteeing that it is of length

O(log k) times the optimum.

2. It outputs in time O(n3) a TSPN tour guaranteeing that it is of length at

most (1 + �) times the optimum.

The �rst part of our method builds upon the idea in [70], in that our logarith-

mic approximation algorithm produces a guillotine subdivision. However, we

produce a quite di�erent guillotine partition (partly inspired from [43, 59]) and

show that it has some nice \sparseness" properties, which guarantee the O(log k)

approximation bound.

The method described in this chapter can also be applied to other problems

as suggested in [70]. Here we will also consider the Red-Blue Separation Problem

(RBSP). The RBSP asks for the minimum-length simple polygon that separates

a set of red points from a set of blue points, a problem shown to be NP-hard

[8, 35]. Mata and Mitchell showed that the general framework presented in

[70] gives an O(logm)-approximation algorithm for this problem in time O(n5),

where m<n is the minimum number of sides of a minimum-perimeter rectilinear

polygonal separator for the points. By using the methods suggested in this chap-

ter we obtain an O(logm) approximation algorithm that runs in time O(n logn).

Finally we show that TSPN is APX-hard and cannot be approximated within a

factor of 1.000374 unless P=NP, using an idea from Kann [50].

This chapter is organized as follows. In Section 6.2 the approximation al-

gorithm is presented for the TSPN case where a start point is given. First we

compute a bounding square in linear time that includes or touches all neighbor-

hoods. Next, a guillotine subdivision algorithm operating within this bounding

square is presented that runs in time O(n+k log k). Then we prove that the

subdivision (together with the bounding square) is of length O(log k) times the

length of an optimal tour. In Section 6.3 we show how to compute start points

that are included in TSPN-tours of length within a constant factor times the

optimal in time O(n2 logn). In Section 6.4, we describe an algorithm that, de-

pending on the given input, decides which method to apply to obtain a TSPN

tour. We also present the ideas behind the approximation scheme that can be

used for some instances of TSPN. We also brie
y show, in Section 6.5, how

the methods presented in Section 6.2-6.3 can be used to obtain approximation

algorithms for some separation problems.

The algorithms presented in Section 6.2-6.3 and in Section 6.5 are easy to

implement and fast in practice [76].
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SP
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Figure 6.1: (a) A guillotine rectangular subdivision. (b) Constructing a bounding

square.

6.1 De�nitions and preliminaries

Throughout this chapter we will denote by X the given collection of k possibly

overlapping simple polygons, called neighborhoods, with totally n vertices in the

plane. We avoid dealing explicitly with degenerate neighborhoods, like points or

segments, but our results are easy to extend to such neighborhoods. A way to

incorporate degenerate parts in the algorithms implicitly would be to treat them

as in�nitesimally thin polygons. For example, single points could be treated as

in�nitesimally small squares.

A polygonal subdivision D of a polygon P is said to be \guillotine" if it is

a binary planar partition of P , i.e., either there exist no edges of D interior

to P , or there exists a straight edge of D such that this edge is a chord of P

dividing P into two regions, P1 and P2, such that D restricted to Pi, 1�i�2, is
a guillotine subdivision of Pi. If all the faces of the subdivision are rectangles,

we obtain a guillotine rectangular subdivision, see Fig. 6.1a. From now on we

will denote by GRS the guillotine rectangular subdivision obtained from the

procedure described in Section 6.2.1. We will denote by jpj the total length of

the segments of p, where p may be a polygon, a tour or a subdivision.

6.2 A fast approximation algorithm for TSPN

This section is devoted to the proof of the following theorem.

Theorem 6.1 Let X be a collection of k possibly overlapping simple polygons,

having a total of n vertices. Let SP be any start point. One can compute in

time O(n+k log k) a TSPN tour starting at SP, whose length is O(log k) times

the length of a minimum-length tour starting at SP.

The general idea is very simple. Compute a bounding square that includes

or touches all neighborhoods. Next a binary partition is performed within the

bounding square such that every neighborhood is intersected either by the binary
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partition or the bounding square. By traversing the bounding square and the

binary partition we obtain a TSPN tour. Below we show how to do this in some

more details.

First we detect each neighborhood whose closed region contains SP. This is

done in linear time using standard techniques (see, e.g. [81]). These neighbor-

hoods are visited without departing from SP, and we may exclude them from

further consideration. Thus, we may assume w.l.o.g. in the continuation of this

section that SP is disjoint from all neighborhoods in X . The next step is to

compute the minimal isothetic square, called bounding square, B, with center at

SP such that each neighborhood is at least partially contained in or touched by

B. This bounding square can be constructed in linear time by computing, for

each neighborhood xi2X , 1�i�k, the minimum isothetic square centered at SP

and reaching xi, and then taking the maximum over all these squares, Fig. 6.1b.

If all the polygons intersect the bounding square then we output the tour ob-

tained by walking from SP to the bounding square, then following the perimeter

of the bounding square and returning to SP. This tour is at most �ve times

longer than an optimal TSPN-tour. (In an optimal tour, the salesman has to

reach the boundary of B and then return.) Otherwise, one or more neighbor-

hoods lie entirely inside B. In this case we construct a rectangular binary planar
partition, which we call GRS, of the bounding square B, such that every poly-

gon lying entirely within B is intersected or touched by the GRS. In [70], Mata

and Mitchell, described how a guillotine subdivision and its bounding box can

be traversed such that the obtained tour visits all neighborhoods in X and has

length at most twice the length of the subdivision plus jBj.
To prove Theorem 6.1 it remains to de�ne the GRS, show how it can be com-

puted in time O(n+k log k) (Section 6.2.1), and prove that its length is within

a logarithmic factor longer than the length of a shortest tour (Section 6.2.2).

6.2.1 The guillotine rectangular subdivision

In this subsection we �rst describe how the subdivision algorithm works. Then,

we show how this algorithm can be implemented to run in time O(n+k log k).

The partition is done by drawing the chords e1; e2; : : : within B. Let Tj be
the rectangle in the subdivision induced by all segments drawn by the procedure

up to but not including the segment ej , such that ej is drawn in Tj during the

next step. Let A;B;C and D be the corners of Tj in clockwise order, such that

AB is the top side of Tj . The segment ej is drawn parallel to a shortest side

of Tj , and it is vertical if Tj is a square. Assume for simplicity that jADj�jABj,
i.e., ej will be a vertical segment, as shown in Fig. 6.2a.

Let e be the vertical chord splitting Tj into two rectangles of equal size. Let
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Figure 6.2: (a) A guillotine cut ej . (b) l(xi) and r(xi) of a polygon xi.

N=fx1; : : : ; xk0g be the set of k0 polygonal neighborhoods entirely within Tj ,

and let l(xi) respectively r(xi), 1�i�k0, be the leftmost, respectively rightmost,
point in the polygonal neighborhood xi, see Fig. 6.2b. Two cases may occur:

1. If the region to the left of e is empty then the procedure draws ej such

that it intersects the leftmost point r(xi), 1�i�k0. The corresponding

procedure is performed symmetrically if the region in Tj to the right of e

is empty.

2. If none of the regions are empty then let Nl, respectively Nr, be the poly-

gons in N with non-empty intersection with the closed region of Tj to

the left, respectively to the right, of e. (If, for example, e is tangent to a

neighborhood, then this neighborhood is in both Nl and Nr.) Let Pl be

the point in f8x2Nl l(x)g with shortest distance to e (ties are broken ar-
bitrarily). Symmetrically, Pr is the point in f8x2Nr r(x)g with shortest

distance to e. If the horizontal distance between Pl and e is shorter than

the horizontal distance between Pr and e, then the procedure draws the

vertical chord ej such that it passes through Pl. Otherwise, it draws the

vertical chord ej such that it passes through Pr.

This is done recursively within the two resulting rectangles until all the polyg-

onal neighborhoods are intersected by the subdivision. The �nal result is called

the GRS.

Lemma 6.2 The guillotine algorithm presented above can be implemented to

run in time O(n+k log k).

Proof: The algorithm only has to consider the extremal points of each neigh-

borhood that lie entirely within the bounding square. Hence, we compute the

minimal isothetic bounding rectangle for each polygon, i.e., the upper left corner

and the lower right corner. We say that these points are mates. This step takes

linear time to perform. Note that we now only have 2k points to consider.
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The main algorithm is a re�nement and generalization of the ideas in [59]. It

maintains a set SEG of produced guillotine segments and a set REC of records,

one record for each non-empty rectangle of the partition which remains to be

processed. Every record in REC contains the coordinates of the rectangle which

has to be processed, and pointers to the extreme elements of two doubly-linked

lists, one vertical and one horizontal. The vertical resp. horizontal list pointed

to from the record in REC contains the points within the rectangle stored in the

record, sorted according to their x- respectively y-coordinates. In addition, there

are double links between every element in the vertical list with the corresponding

element (for the same point) in the horizontal list, so that when an element is

removed from one of the lists it can be removed in constant time from the other

list too. Finally there are double links between points that are mates in the

vertical respectively horizontal list.

Initially there is one record in REC, corresponding to the bounding square,

and SEG is the empty set. Let R0
0 be the rectangle with k

0=2k points. For 1�i�t
(t will be de�ned in a moment), let Ri, R

0
i, ui and u

0
i be de�ned as follows. Let

Ri and R
0
i be the two subrectangles of R

0
i�1 in the partition induced by the �rst

segment within R0
i�1 produced according to the de�nition of GRS. Among these

two subrectangles, let Ri be the one with the least number of points, that is, not

considering the points belonging to the neighborhoods which are intersected by

segments produced earlier. Let ui and u0i be the number of active points in the

open region bounded by Ri, respectively R
0
i. Let t be the least integer such that

ut=u
0
t=0.

We have that k0 � u1+u
0
1+1 = u1+u2+u

0
2+2 = : : : = t+

Pt
i=1 ui. Moreover,

for every 1�i�t, we have ui � dk0=2i�1e�1. The algorithm, computes Ri, R
0
i and

the horizontal and vertical lists for R0
i from R0

i�1 in time O(ui). If i<t, then the

algorithm continues to compute Ri+1 and R0
i+1 from R0

i. In this way the entire

sequence R1; : : : ; Rt is computed in total time O(k0), and the corresponding

partitioning segments are inserted into SEG. To build the vertical and horizontal

lists for all Ri, before starting the computation of the rectangles, one copy of the

vertical list and one of the horizontal are constructed. Let us call the original

lists master lists and the copies working lists. While copying, additional links

are added between the master and working lists, such that for every element in

the working list, there is a pointer to the corresponding element in the master

list. In the continuation, until Rt is computed, only the structure of the working

lists changes. When Ri is computed the elements corresponding to the ui points

inside Ri are deleted from the working lists, and the corresponding elements in

the master lists are labeled with the integer i. If a point and it's mate do not

lie in the same open region, then the elements corresponding to the point and

its mate are removed both from the working lists and master lists.
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When Rt is computed, then all points inside R0
0 which do not lie on already

produced segments have been labeled with some integer. Then the horizontal

and vertical lists for all rectangles Ri, can be computed in total time O(k0) as
follows. For easier access, an array with k0�1 entries is built, such that in the

i-th entry, information is stored concerning the lists for the rectangle Ri. For

example, to build the horizontal lists, they are �rst initialized to be empty. The

horizontal master list is then scanned, say, from the leftmost to the rightmost

point, and every labeled element is appended at the end of the horizontal list of

the appropriate rectangle, by using the corresponding entry in the array. When

the scanning is �nished, all horizontal lists are ready. After this the algorithm

unlabels the elements of these horizontal lists. The vertical lists are built in the

same way.

The algorithm proceeds recursively in the same way with each rectangle Ri,

if Ri is non-empty. Thus, in linear time the algorithm splits the problem into

subproblems of linear total size, such that all the subproblems have size smaller

than half the size of the problem. This step is performed until all subproblems

have size 0, i.e., log k0 times. From this it follows that the overall time perfor-

mance of the algorithm is O(k0 log k0) plus the preprocessing time, hence, the

algorithm runs in time O(n+k log k). 2

6.2.2 Proving a logarithmic bound

Consider a minimum-length tour, L, with start point SP, and let BL be its

minimal isothetic bounding box. Let B be the bounding square of X computed

by the algorithm, as described above, and let L0 be a shortest tour in B. Since
the length of the segments of a guillotine rectangular subdivision can be 
(

p
n)

times the length of the perimeter of the bounding box, we �rst have to prove

that the length of L0 is O(jLj). To obtain the desired result, we show that the

subdivision is within a logarithmic factor longer than a shortest tour in B.

Proposition 6.3 If B is a bounding square with perimeter of length within a

constant factor longer than the perimeter of BL, and B includes a point in an

optimal tour, then there exists a TSPN-tour of length O(jLj) within B.

Proof: Since we have a given start point, we know that a minimum-length

tour L at least partly lies within B. Denote by L1, respectively L2, the part

of L within, respectively outside, B. Note that every neighborhood touched by

L2 also touches the perimeter of B. This means that a tour that follows the

perimeter of B and L1 visits all the neighborhoods of X . It is easy to see that

this tour is of length O(jLj). 2
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Figure 6.3: The length of the GRS is within a logarithmic factor longer than an optimal

tour.

Recall that the perimeter of the bounding square produced by the algorithm is

within a constant factor (4) longer than the perimeter of a minimal bounding

box. Note the following:

Fact 6.4 (Lemma 8 in [70]) A minimum-length tour is a simple polygon, having

at most k vertices.

This result also holds for L0. A shortest rectilinear TSPN-tour LR, including

the start point SP, is a simple rectilinear polygon and has length at most
p
2jLj.

Furthermore, in [34, 59, 70] it was shown that there exists a guillotine rectangular

subdivision of the rectilinear tour LR and its minimal bounding box BLR such

that the length of the subdivision is O(jLRj log k), Fig. 6.3. Hence, we obtain

the following fact:

Fact 6.5 If OPT (X;BL) is a rectangular subdivision of minimum length of X

and BL, then it holds that jOPT (X;BL)j=O(jLj log k).
According to the above results we have that Fact 6.5 also holds if we re-

place BL and L with B and L0. This means that an optimal rectangular subdi-

vision of the polygonal neighborhoods X within the bounding square B is within

a logarithmic factor longer than an optimal TSPN tour. Hence, it remains to

prove that the GRS presented in the previous section produces a subdivision

which is within a constant factor longer than an optimal subdivision.

The remainder of this section is devoted to the following lemma:

Lemma 6.6 Let L0 be a minimum-length tour within a bounding square B,
let L be an optimal tour and let BL be its minimal isothetic bounding box.

If the length of the perimeter of B is within a constant factor longer than the

perimeter of BL, then the GRS of X within B is of length O(jL0j log k).
By using the result from Fact 6.5, it suÆces to prove that the length of the GRS

is within a constant factor longer than OPT (X;B). This is done by proving
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that for any possible rectangle T 0 within B and without polygonal neighborhoods

entirely within its interior, the length of the GRS intersecting T 0 will be within a
constant factor longer than the length of the perimeter of T 0. Since a rectangle T 0

can be divided into squares such that the total length of the perimeters of the

squares are not longer than twice the length of the perimeter of T 0, it suÆces to
prove the following lemma.

Lemma 6.7 Let T be a rectilinear square within B, without polygonal neigh-
borhoods entirely inside its interior. The length of the GRS inside T is of length

O(p(T )), where p(T ) is the length of the perimeter of T .

We will prove the lemma in three steps, Proposition 6.8, 6.9 and 6.12.

Proposition 6.8 Let T be a rectilinear square within B with sides of length t

and without polygonal neighborhoods entirely within its interior. It holds that

at most four parallel segments of the GRS touch two opposite sides of T .

Proof: Let e1; : : : ; eq be the parallel segments of the GRS inside T that touch

two opposite sides of T in the order in which they are drawn by the procedure

producing the subdivision. We may assume w.l.o.g. that these segments are

vertical. Let Si be the subset of the GRS just before ei is produced. Let er
and el denote the vertical segment to the right respectively to the left of e1, such

that e1 partitions the rectangle in S1 bounded from left respectively right by el
and er. Note that el and er might be the left respectively right side of B. We

now examine what happens when e2 is about to be produced. We have that e2
will be placed between e1 and the segment el or er. Assume w.l.o.g. that e2
is placed between e1 and er, as shown in Fig. 6.4a. The horizontal distance

between e1 and er is at least t, since e2 is a vertical segment. Wherever e2 is

placed we know that the horizontal distance between e1 and e2 is less than t,

since e2 intersects T . Hence, the region bounded from left by e1 and from right

by e2 will be partitioned by a horizontal segment eh which means that there

can be no vertical segments between e1 and e2 that touch both T 's top and

bottom side. But there can be a vertical segment e3 that touches T 's top and

bottom side between e2 and er, Fig. 6.4b. Since e3 will lie to the right of the

midpoint between e1 and er we know that the distance between e1 and e3 is at

least t=2. Can there be a segment e4 between e3 and er that touches T 's top

and bottom side? Assume that there exists such a segment e4; then we know

that the horizontal distance between e3 and er is at least t; hence the horizontal

distance between e1 and er is at least 2t, since e3 lies closer to er than to e1,

and we have a contradiction since e4 intersects T . Thus, there can be at most

two vertical segments to the right of e1 that touch two opposite sides of T . The

same arguments as above hold for the region of T to the left of e1. But note that
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Figure 6.4: There can be at most four vertical segments that intersect opposite sides

of T .

the horizontal distance between e1 and e3 is at least t=2 which means that there

can only be one vertical segment to the left of e1 that touches both T 's top and

bottom side. Hence there can be at most two vertical segments that touch two

opposite sides of T 's perimeter on one side of e1 and at most one on the other

side of e1. 2

Our next step is to calculate the length of the GRS inside T between two

adjacent segments that touch two opposite sides of T .

Proposition 6.9 Let T be a rectilinear square with sides of length t within B,
without polygonal neighborhoods entirely inside its interior, and let el and er
be two adjacent parallel segments that touch two opposite sides of T . It holds

that the length of GRS inside T between el and er is at most 7�s, where s is the
shortest distance between el and er.

Proof: We may assume w.l.o.g. that el and er are vertical segments and that el
lies to the left of er. Let Tj be the rectangle in the GRS with er as its right side

and el as its left side. Since T is a square the part of Tj within T , denoted T 0
j ,

will be partitioned into two regions, T 10

j and T 20

j , by a horizontal segment, eh,

between el and er. Assume that T
10

j is above T 20

j , Fig. 6.5a. It suÆces to prove

that the length of the GRS inside T 10

j is at most 3s. Two cases may occur: T 10

j

will be partitioned into two regions either by a horizontal segment or by a vertical

segment with one endpoint on eh and one endpoint outside T .

In the �rst case, where T 10

j is partitioned into two regions by a horizontal

segment, we know that there cannot be any polygonal neighborhoods entirely
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Figure 6.5: (a) The length of the edges within T 1
0

j is at most 7s. (b) The vertical edges

within the shaded region are not longer than ef .

within T 10

j . Hence, the horizontal segment lies on the perimeter of T or outside T .

No other segments of GRS will intersect T 10

j .

Otherwise, T 10

j is partitioned by a vertical segment with one endpoint on eh
and one endpoint outside T . Let e1 denote the vertical segment. As we can see,

this process may continue recursively until a horizontal segment is produced. It

remains to prove that the total length of these vertical segments is at most 2s,

since the total length of the horizontal segments is s. For simplicity we assume

that the vertical segments split the rectangular regions into equally sized rect-

angular subregions (worst case scenario). Then T 10

j is partitioned into, say, 2p

subrectangles and the length of a horizontal segment placed on or outside T 's

perimeter is s
2p . By this we have that the length of the vertical segments is

shorter than s
2p�1 hence, the total length of the vertical segments is shorter than

2p� s
2p�1=2s. The length of GRS in T 0

j is less than s+2s+2�2s = 7s. 2

We may assume w.l.o.g. that the segments that touch two opposite sides

of T are vertical and ordered from left to right, e1; : : : ; eq where 1�q�4. We

know that the length of the GRS inside T between and including e1 and eq is

at most 4t+7je1eqj where je1eq j is the horizontal distance between e1 and eq. It
now remains to calculate the length of GRS within T , to the left of e1 and to

the right of eq.

Fact 6.10 Let T be a rectilinear square with sides of length t within B, without
any polygonal neighborhoods entirely within its interior. If any edge of GRS

overlap T then there is at least one segment (and at most four) of GRS that

touches two opposite sides of T .
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Let T1 denote the rectangular region bounded from the left by eq and from above,

below and right by the perimeter of T . It is easy to see that the the next segment

produced by the procedure will produce a horizontal segment partitioning T1
into two rectangular regions, T 1

1 and T 2
1 . Symmetrically the same holds for the

rectangular region T2 bounded from the right by e1 and from above, below and

left by T 's perimeter. Hence, T2 is partitioned into T 1
2 and T 2

2 .

Let Sji , 1�i; j�2, be the set of vertical segments inside T j
i . By direct analogy,

Observation 6.11 and Proposition 6.12 also hold for horizontal segments of T j
i .

Note that all the segments in Sji have one endpoint on the perimeter of T .

Observation 6.11 (Modi�ed version of Observation 1 in [59])

For every segment ef in Sji , it holds that either to the right or to the left of ef
there is no segment in Sji which is longer than ef .

Proof: Assume that T j
i is the upper right rectangular region inside T . Let A,

B, C, D be the corners of T j
i in clockwise order, such that AB is its top side.

If ef touches both AB and CD then the observation holds, because no segment

in Sji is longer than ef . Otherwise, the lower endpoint of ef lies within the open

region bounded by T j
i , see Fig. 6.5b. Let E be that endpoint. We know that E

lies on a horizontal segment of GRS, say e0. But at least one endpoint of e0,
say E0, does not lie in the open region bounded by T j

i , otherwise e
0 would lie

on the perimeter of T . Moreover, no segments in GRS cross each other, and

therefore on the side of ef on which E0 lies no endpoints of segments of Sji are

below EE0. 2

Let S be any of the sets Sji , 1�i; j�2, and let e1; e2; : : : be the segments

in S ordered from left to right. By using this observation we know that there

are three consecutive segments of S, which are longer than any other segments

in S. Let us call three such segments em�1, em, em+1, for some integer m,

2 � m � k�1, the dominating segments of S. The other segments of S are

called non-dominating. Partition S into three disjoint subsets, S1, S2 and S3,

such that Si, 1�i�3, consists of the segments ej2S, for which it holds that (j

mod 3)=i.

Proposition 6.12 (Modi�ed version of Proposition 2 in [59])

It holds that the total length of all the segments in Si, 1�i�3, is at most half

the length of the perimeter of T j
i .

The proof of Proposition 2 in [59] can be used as it is to prove our modi�ed

version. Also, similar arguments as in the proof of Proposition 6.8 can be used

to show the proposition. Putting together the results from Proposition 6.8, 6.9

and 6.12, completes the proof of Lemma 6.7, Lemma 6.6 and Theorem 6.1.
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6.3 Finding a good start point

In the previous section we showed a simple and fast algorithm that produces

a TSPN tour when a start point is given. To be able to use this algorithm in

the general case we will in this section show how to compute a nearly optimal

start point, i.e., a start point that is included in a TSPN-tour of length O(jLj),
where L is a minimum-length tour of X . We describe a method which, given

an arbitrary straight-line segment, computes in time O(n log n) a starting point

on this segment which is a nearly optimal point under the condition that the

optimal tour has to pass through this segment. This is of some interest in its own

right. It yields an O(log k)-approximation algorithm running in time O(n logn)

whenever we know that some near-optimal tour crosses some �xed line. Next,

by observing that there is always an optimal tour with non-empty intersection

with the boundary of at least one neighborhood, we obtain as a corollary an

O(n2 logn)-time method for �nding a globally nearly-optimal start point. Hence,

combining this result with the algorithm described in the previous section we

obtain a logarithmic approximation algorithm that runs in time O(n2 logn).

6.3.1 The length function

The idea is that we will for each of the n edges of the neighborhoods �nd the

minimum L1-distance to all polygonal neighborhoods. This is done by con-

structing a length function L(g; f) for each pair of edges g; f2E (not belonging

to the same neighborhood), where E is the set of edges in X . This function

describes the shortest distance in L1-metric from each point on g to f .

Let g; f2E be two edges in E. Rotate g and f such that g is horizontal. The

endpoints of g respectively f are denoted G1 and G2 respectively F1 and F2.

The length function is a piecewise linear function containing at most three dif-

ferent pieces, Fig. 6.6. Hence we will calculate the value of L(g; f) in at most

four points. Let d(p; l) denote the shortest distance between an edge l and a

point p = (p:x; p:y). Compute the following four points: p1 = (G1:x; d(G1; f)),

p2 = (G2:x; d(G2; f)), p3 = (F1:x; d(F1; g)) and, �nally, p4 = (F2:x; d(F2; g)).

The length function L(g; f) is the function that we obtain by drawing straight

line segments between these four points, from left to right. Note that some

of these points may coincide. This function may now be used to compute the

shortest distance between an edge f2E and a neighborhood x2X , where f =2x.
First compute the length function for each edge in x and the edge f . We ob-

tain jxj length functions. Since we only are interested in the shortest distance

between every point on f and the neighborhood x, we calculate the lower enve-

lope of these jxj functions, denoted LEnv(f; x). Calculating the lower envelope

of the jxj functions can be done in time O(jxj log jxj) according to Sharir [89].
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Figure 6.6: Two examples of the length function.

If f intersects the closed region described by x then we have to adjust the lower

envelope. This can easily be done in linear time.

This new piecewise linear function describes the shortest distance between

every point on f and the polygon x, and can be computed in time O(jxj log jxj).

6.3.2 Using the length function to obtain a good start

point

The next step is to extend the above computation such that we obtain a function

that for each point on f describes the shortest distance to all the neighborhoods

in X . The algorithm is just an extension of the above described algorithm.

Let f be an edge as above and let fx1; : : : ; xkg be the neighborhoods in X . For

each neighborhood xi2X and f =2xi compute the lower envelope, LEnv(f; xi), as
described above. Combine the k�1 lower envelopes for all the neighborhoods

in X to an upper envelope, UEnv(f;X), for f . This new function describes the

shortest distance between each point in f and all the neighborhoods in X . In

the case when we know that an optimal TSPN-tour intersects f we can select

the point on f with minimum UEnv(f;X)-value as start point (SP). Note that

the function also gives us the size of an optimal bounding square with center

at SP. For clarity we include a description of the algorithm (using a Pascal-like

language).

The �rst for-loop is executed k times, the second loop will be executed n

times (k times the number of edges in xi). Calculating the upper/lower envelope

can be done in time O(n log n). The idea is to partition the collection of func-

tions into two subcollections. Then calculate recursively the envelopes of each

subcollection separately. Finally merge the two partitions into a single re�ned

partition. Hence the total time complexity for this algorithm is O(n log n).
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for each neighborhood xi2X do k times

for each edge ej2xi do jxij times

calculate L(f; ej) O(1)

compute LEnv(f; xi) O(jxij log jxij)
adjust LEnv(f; xi) O(jxij)

compute UEnv(f;X) O(n log n)

return the point on f with smallest UEnv(f;X)-value

If the UEnv -function already is computed for every edge in E we can in

linear time �nd a good start point for the general case, by just selecting the best

of the n suggested start points. Hence, we obtain the following results.

Proposition 6.13 Let L be an optimal TSPN tour. The computed bounding

square B centered at SP includes a tour of length O(jLj) and the length of the

perimeter of the square is at most 4 � jLj.

Proof: It is straight-forward to see that an optimal tour has at least length

equal to one side of B, since B is a smallest bounding square.

If an optimal tour at least partly lies within B then the proposition follows

from Proposition 6.3. Otherwise, if B and an optimal tour are completely dis-

joint, it holds that every neighborhood intersects the perimeter of B, hence the
proposition follows. 2

From the above proposition we have that the computed bounding square ful�lls

the requirement needed for Lemma 6.6 to hold and we obtain the following

corollary.

Corollary 6.14 LetX be a collection of k possibly overlapping simple polygons,

having a total of n vertices. One can compute in time O(n2 logn) a start point

that is included in a tour of length within a constant factor times the optimal.

6.4 TSPN when no start point is given

We have already described an approximation algorithm for the general case. By

�nding a start point as described in Section 6.3 and then applying the GRS in

Section 6.2 we obtain an approximation algorithm that runs in time O(n2 logn)

and produces a tour that is within a logarithmic factor longer than an optimal

tour. In this section we describe an algorithm that, depending on the given input,

decides which method to apply to obtain a TSPN tour. The decision depends on

the value of �, an optional parameter given as input, and the ratio between the

size of the smallest neighborhood in X and the length of a minimum-length tour.

Recall that the minimal bounding box, BL, is the smallest axis-aligned rectangle
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Figure 6.7: (a) x is the neighborhood in X such that its bounding box has shortest

long side. (b) A minimal isothetic bounding square with center at the center of Bx.

that contains L, where L is a minimum-length tour of X . The algorithm works

as follows.

First a minimal axis-aligned bounding box for every neighborhood in X is

constructed. Let x be the neighborhood in X , such that its bounding box, Bx,

has shortest long side. Let c denote the center of Bx, and let l be the length

of Bx's longest side, see Fig. 6.7a. Next, a minimal isothetic bounding square B
with center at c is constructed such that each neighborhood is at least partially

contained in or touched by B, Fig. 6.7b. This is done in linear time as described

in Section 6.2. Two main cases may occur.

1. If jBj>4l then there exists a neighborhood x02X such that x0 lies out-
side Bx. Hence, an optimal tour must intersect Bx, that means that we can �nd

a good start point, SP, that lies on one of the four sides of Bx. This can be done

in time O(n logn) as explained in Section 6.3.2. By applying the subdivision

algorithm de�ned in Section 6.2.1 with SP as start point we obtain a tour of

length O(log k) times the optimal in time O(n logn).

2. If jBj<4l we �rst make a re�ned search in time O(n) for much smaller

bounding boxes in the vicinity of x. For this reason, we imagine a square-grid

centered at c, with side length 2l, and where each square has side length equal

to l=10. For each one of the O(1) corners of the small squares, we �nd the

minimal isothetic bounding square, as if this corner was a given start point.

Let B0 be the smallest of these bounding squares and, let l0 be the side length
of B0. Again, two cases may occur:

(a) If l0>l=3, then we output this bounding square as the TSPN tour, since

no neighborhood can lie entirely within B0 without touching the perimeter
of B0. We can show that it is within a constant factor from the minimum,
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and we have found it in linear total time.

(b) If l0�l=3 then we run the approximation scheme described in Section 6.4.1.
We obtain a TSPN tour of length 1+� in cubic time.

6.4.1 An approximation scheme

In this section we show how to obtain a polynomial-time approximation scheme,

in the case when l0�l=3 (de�ned in the previous paragraph).

Observation 6.15 For every TSPN tour of length less than 2l, it holds that

the convex hull of that tour also is a TSPN tour.

The observation follows from the fact that no neighborhood of X can lie entirely

within the closed region of a minimal bounding box of the TSPN tour, since the

largest distance between two points on the tour is l.

Now, we search for O(n2) approximately minimal bounding squares (i.e. with

perimeter at most a constant factor larger than the minimal tour), possibly over-

lapping, such that an optimal tour has to lie entirely inside at least one of them.

This is done as follows. Find all essential points in X . These points are the

vertices of the polygons of X and the intersections between the polygons. Since

there are n edges there are O(n2) such intersections. Hence the number of es-

sential points is O(n2). Then the algorithm selects every minimal bounding

square with center at an essential point and with perimeter at most a constant

factor longer than a minimal tour (a constant factor longer than the smallest

found bounding square). Finally, for reasons explained in the proof of Observa-

tion 6.16, expand each selected minimal bounding square such that the side of

a square is a constant, say 6, times the length of the original bounding square.

There are O(n2) such bounding squares and each square takes O(n) time to

construct. Thus, the time complexity of this step is O(n3).

Observation 6.16 An optimal tour is included in at least one of the O(n2)

bounding squares produced above.

Proof: First we show that there exists an essential point p such that the distance

between p and every point in an optimal tour L is shorter than
p
3+1
2 jLj. There

are three cases.

1. If an optimal tour is a single point, then at least one of the essential points

is also an optimal tour. Consider the closed region de�ned by the intersection

of all neighborhoods in X . It follows that at least one vertex or intersection is

included in this region.

2. If an optimal tour coincides with a straight line segment traversed back

and forth, then there exists an optimal tour with one endpoint in an essential
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point. Consider an optimal tour L described by a straight line segment. The

endpoints of L coincides with either an edge ofX , a vertex ofX or an intersection

between two edges of X . In the two latter cases it's obvious that L includes an

essential point. Otherwise, if the endpoints of L lie on edges of X then it is

possible to slide L until one of its endpoints coincides with a vertex of X or an

intersection between two edges in X , such that the length of L does not increase.

3. Otherwise, if an optimal tour is a polygon with at least three vertices,

each vertex of an optimal tour must lie on an edge of the neighborhoods or at

an essential point. If none of the vertices of an optimal tour L touch an essential

point then each vertex of L touches an edge of X . Since L is a convex shortest

tour we know that it has perfect re
ection at each vertex of L and that there

exist two consecutive vertices v1 and v2 of L such that the sum of their interior

angles is at least 120 degrees, see Fig. 6.8. Let e1 respectively e2 be the edges

of X that touch v1 respectively v2. By straight-forward geometry we obtain

that there exists an essential point p such that the shortest distance between p

and the segment (v1; v2) is at most of length
p
3
2 j(v1; v2)j. Note that p is either

the intersection between e1 and e2 (worst case), or one of e1's or e2's endpoints.

The distance between p and each point in L is at most
p
3
2 j(v1; v2)j+ jLj

2 . By

maximizing this formula we obtain that the largest distance between p and a

point in L is less than
p
3+2
4 jLj, since j(v1; v2)j < jLj

2 .

From the above discussion we have that there exists an essential point p, such

that the distance between p and every point in L is at most
p
3+2
4 jLj. It remains

to calculate the size of the smallest possible bounding square with center at p

that does not include an optimal tour. Let B be a minimal bounding square with

center at p, including a tour L0 and with perimeter of length at most a constant

factor longer than a minimal tour. The length of the sides of B is greater than
jLj
2� , since the worst case occurs when L

0 has the shape of a circle with center at p
and length jLj+�0. The minimal bounding square is expanded by the algorithm

with a factor 6 (> 2�(
p
3+2)
4 ), hence, an optimal tour is included in at least one

of the produced bounding squares. 2

For each selected bounding square b, let l(b) be the length of the minimum

tour overlapping with b and denote by h(b) the length of the sides of b. For

each b, we �nd a tour of length less than (1+�)�l(b) in linear time, and in this

way in total time O(n3) we �nd a tour of length (1+�) times the optimal.

A simple, although impractical, linear-time method to �nd a tour of length

(1+�)�l(b), for a bounding box b, is as follows: We partition b into f(�)�f(�)
equal-sized squares, where f(�) is a suÆciently large constant only depending

on �. Let S be the set of all points which are corners of these small squares. Now,

for each subset S0 of S, we construct the convex hull of S0. Next, among those of
the constructed convex hulls which are TSPN tours, we select the shortest one.
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Figure 6.8: There exist two consecutive vertices of the tour such that the sum of their

interior angles is at least 120 degrees.

(Of course, in practice we do not really have to consider all subsets of S.) It is

easily seen that by choosing f(�) suÆciently large, say, f(�)=4h
� , we will �nd a

tour of length (1+�)�l(b).

6.5 Other applications

The methods described in this chapter apply also to other problems. In this

section we show how to use our method for the Red-Blue Separation Problem

(RBSP).

The objective is to �nd a minimum-length simple polygon that separates a

set of red points, R, from a set of blue points B. This problem was shown to

be NP-hard in [8] and [35]. In this section we give the idea of an O(logm)

approximation algorithm for RBSP, where m<n is the minimum number of

sides of a minimum-perimeter rectilinear polygonal separator for the points.

The total number of points is n=jRj+jBj. We will solve two problems and pick

the one with shortest length: �nd a minimum-length polygon that encloses the

red points, while excluding the blue points; and �nd a minimum-length polygon

that encloses the blue points, while excluding the red points.

First construct a minimal bounding box for the red points respectively the

blue points. This step is done in linear time since we just have to go through all

the points and �nd the extreme points of each set.

Let P be a minimum-length separating simple polygon, of length jP j. With-
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Figure 6.9: Computing a separating polygon for the red-blue separation problem.

out loss of generality, assume that P surrounds the blue points and excludes the

red points. Let B be the bounding box for B. Note that P lies within B and

that B is the bounding box of P . If no red points lie within B then we are �n-

ished. The length of the perimeter of this polygon is at most a factor
p
2 longer

than jP j. Otherwise, one or more red points lie within B. In this case construct

a guillotine rectangular subdivision of B, such that every rectangle within the

subdivision only contains points of one color.

We need to adjust the GRS-algorithm presented in Section 6.2.1.

The partition is done as follows. Let Tj be the rectangle in GRS induced by

all segments drawn by the procedure up to but not including ej , such that ej
is drawn in Tj during the next step. Let A;B;C and D be the corners of Tj in

clockwise order, such that AB is the top side of Tj . The segment ej is drawn

parallel to a shortest side of Tj , and it is vertical if Tj is a square. Assume

for simplicity that jADj�jABj, i.e., ej will be a vertical segment, as shown in

Fig. 6.2. (The other case is identical if we imagine looking at the �gure as if it

was rotated 90Æ.) Let e be the vertical chord splitting Tj into two rectangles of

equal size. Let N be the set of points entirely inside Tj . Two cases may occur:

1. If the region to the left of e is empty or if the region only contains points

of one color (say, for example red) then the procedure draws ej such that

it intersects the leftmost point of the opposite color (in the example, blue).

The corresponding procedure is performed symmetrically if the region in Tj
to the right of e is empty or if it only contains points of one color.

2. If the above does not hold then the procedure draws ej such that it passes

through the point in N with shortest distance to e.

This is done recursively within the two resulting rectangles until all the polyg-

onal neighborhoods are intersected by the subdivision.
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By following the proof of Lemma 2 it follows that this algorithm runs in time

O(n log n). And by doing some minor adjustments of the results in Section 3.2

one can show that the length of the GRS is O(logm) times the length of P . Mata

and Mitchell [70] described how a guillotine subdivision and its bounding box

can be traversed such that the resulting tour encloses all blue points, excludes all

red points, and has length at most twice the length of the subdivision plus jBj,
as shown in Fig. 6.9. Hence, we obtain the following corollary.

Corollary 6.17 Given a set of n points in the plane, where each point is either

red or blue, a red-blue separating simple polygon of length O(logm) times the

minimum can be computed in time O(n logn), where m<n is the minimum

number of sides of a minimum-perimeter rectilinear polygonal separator for the

points.

6.6 TSPN is APX-hard

In this section we show that TSPN is APX-hard, using an idea from Kann [50],

and it cannot be approximated within a factor of 1.000374 unless P=NP. The

reduction is done using the well-known Min Vertex Cover-problem (VC), which

is known to be APX-hard and not approximable within a factor of 341
340 in the

case when the degree is bounded by 5 [16].

De�nition 6.18 A vertex cover of an undirected graph G=(V;E) is a subset

V 0�V such that if (u; v)2E then u and/or v belongs to V 0. The min vertex

cover problem is to �nd a vertex cover of minimum size in a given graph.

Given a graph G=(V;E) with jV j=n, construct an instance for the TSPN-

problem that consists of 4jV j+jEj regions. We will de�ne two kinds of regions:

vertex regions and edge regions. The vertex regions are vertices in the plane and

form a regular jV j-gon with circumference jV j. Hence, the distance between two
\incident" vertices is 1. With incident we mean two vertices that are incident in

the jV j-gon described by the convex hull of these vertices. Next, on the straight

line between two incident vertex regions we place, evenly, another seven vertices.

Hence the distance between two adjacent vertices in the jV j-gon is 1=8.

Now, let c1 be the minimal circle, such that the vertex regions all lie on

or within c1, and let q be the center of c1. The radius of c1 is denoted r(c1).

Next, we consider two circles c2 and c3 with center at q and radius r(c1)+1=2

respectively r(c2)+K, where K is some huge constant. For each edge (u; v) in

E, we produce two \endpoints" of an edge region on the circle c2, such that

the distance between an endpoint and the incident vertex u or v is minimized,

i.e., the distance between a vertex region and an edge region is 1=2, as shown in
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1

1/2

Figure 6.10: Transformation of an instance for vertex cover into an instance of TSPN.

Fig. 6.10. These two endpoints, p1 and p2, are then connected by three segments.

One minimal segment from p1 to the circle c3, one minimal segment from p2 to

c3 and �nally the part of the circle c3 between p1 and p2, Fig. 6.10.

If all the edges in the original graph can be covered with k�jV j vertices then
there exists an optimal TSPN-tour of length jV j+ t�k�jV j, where t is the length
by which the tour increases when an edge region is visited. We have that

t >
7

8
for jVj > 2:

That is, an optimal tour will follow the jV j-gon around until it reaches a vertex

in the VC. Then the tour will leave the jV j-gon and visit the corresponding

edge region, and then return to the jV j-gon. The length of this tour will be

jV j + t�k�jV j, as stated above. It is not hard to show that this tour is optimal

for any k.

Figure 6.11: (a) The calculated tour. (b) The input graph and the suggested solution.
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Assume that there is an approximative TSPN-tour of length� jV j+t�k�C�jV j,
then we get that the tour at most visits C�k�jV j edge regions, hence VC is

then approximated within a factor of C. This gives us a lower bound on the

approximation ratio for TSPN. Note that t > 7
8 and k � 1

6 since the degree in

the original graph is bounded by 5. The result is now obtained by calculating the

maximal approximation ratio of an algorithm for TSPN such that the number

of vertices in the resulting vertex cover is within a factor of C= 341
340 .

1 + t�k�C
1 + t�k >

1 + 7
8 � 16 �C

1 + 7
8 � 16

> 1:000374:

We obtain the main theorem.

Theorem 6.19 It is NP-hard to approximate TSP with neighborhoods with an

approximation ratio smaller than 1.000374.

6.7 Open problems

There are several open questions concerning these problems. It is natural to

ask whether a constant approximation ratio is achievable for these problems.

Further, is there a logarithmic approximation algorithm for TSPN in the case

when the neighborhoods are not simple polygons, for example, sets of polygons

or points in the plane?





Chapter 7

Approximating minimum

Manhattan networks

A rectilinear path connecting two points in the plane is a path consisting of only

horizontal and vertical line segments. A rectilinear path of minimum possible

length connecting two points will be referred to as a Manhattan path, where the

length of a rectilinear path is equal to the sum of the lengths of its horizontal

and vertical line segments. Manhattan paths are monotonic. The Manhattan

distance (or L1-distance) between two points in the plane is the length of the

Manhattan path connecting them. In this paper we introduce the concept of

geometric networks that guarantee Manhattan paths between every pair of points

from a given set of points.

Consider a set S of points in the plane. A geometric network on S can be

modeled as an undirected graph G = (V;E). The vertex set V corresponds to

the points in S[S0, where S0 is a set of newly added Steiner points; the edge set
E corresponds to line segments joining points in S [ S0. If all the line segments
are either horizontal or vertical, then the network is called a rectilinear geometric

network. Each edge e = (a; b) 2 E has length jej that is de�ned as the Euclidean
distance jabj between its two endpoints a and b. The total length of a set of

edges is simply the sum of the lengths of the edges in that set. The total length

of a network G(V;E) is denoted by jEj. For p; q 2 S, a pq-path in G is a path

in G between p and q.

For a given set S of n points in the plane, we de�ne a Manhattan Network on

S as a rectilinear geometric network G with the property that for every pair of

points p; q2S, the network G contains a Manhattan pq-path connecting them. A

Minimum Manhattan Network on S is a Manhattan network of minimum length.

The complete grid on the point set S is clearly a Manhattan network. In

89
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other words, the network obtained by drawing a horizontal line and a vertical line

through every point in S and by considering only the portion of the grid inside

the bounding box of S is a network that includes the Manhattan path between

every pair of points in S. It is easy to show that the minimum Manhattan

network on S need not be unique and that the complete grid on the point set

S can have total weight O(n) times that of a minimum Manhattan network on

the same point set. Figures 7.1b and c below show examples of a Manhattan

(b)(a) (c)

Figure 7.1: (a) A set of input points, (b) A Manhattan network, and (c) A minimum

Manhattan network.

network and a minimum Manhattan network on the same set of points. In fact,

the network in Figure 7.1b is also a complete grid on the input points.

Many VLSI circuit design applications require that a given set of terminals

in the plane must be connected by networks of small total length. Rectilinear

Steiner minimum trees were studied in this context. Manhattan networks impose

additional constraints on the distance between the terminals in the network.

The concept of Manhattan networks seems to be a very natural concept; it

is surprising that this concept has not been previously studied. Manhattan

networks are likely to have many applications in geometric network design and

in the design of VLSI circuits.

Manhattan networks are also closely connected to the concept of spanners.

Given a set S of n points in the plane, and a real number t>1, we say that

a geometric network G is a t-spanner for S for the Lp-norm, if for each pair

of points p; q2S, there exists a pq-path in G of length at most t times the Lp-

distance between p and q. In this connection, a minimum Manhattan network

can be thought of as a sparsest 1-spanner for S for the L1-norm, assuming that

Steiner points are allowed to be added. 1-spanners are also interesting since they

represent the network with the most stringent distance constraints. However,

note that the sparsest 1-spanner for S in the Lp-norm (for p � 2) is the trivial

complete graph on S. It is also interesting to note that a Manhattan network can



91

be thought of as a
p
2-spanner (with Steiner points) for the L2 norm. Although

complete graphs represent ideal communication networks, they are expensive to

build; sparse spanners represent low cost alternatives. The weight of the spanner

network is a measure of its sparseness; other sparseness measures include the

number of edges, maximum degree and the number of Steiner points. Spanners

have applications in network design, robotics, distributed algorithms, and many

other areas, and have been a subject of considerable research [6, 11, 22, 31, 62].

More recently, spanners have found applications in the design of approximation

algorithms for problems such as the traveling salesperson problem [10, 82].

In this paper we present an algorithm that produces a Manhattan network

for a given set S of n points in the plane. The total weight of the network

output by the algorithm is within a constant factor of the minimum Manhat-

tan network. It is interesting to note that in this paper we reduce the problem

of computing an approximate minimum Manhattan network to the problem of

�nding a minimum-weight rectangulation of a set of staircase polygons. If the

rectangulation algorithm runs in time O(R(n)) and produces a rectangulation

that is within a factor r of the optimal, our algorithm will produce a Man-

hattan network of total weight 4r times the weight of a minimum Manhattan

network in time O(n logn+R(n)). Using two known approximation algorithms

for the minimum-weight rectangulation problem, we obtain two algorithms for

the approximate minimum Manhattan network problem. The �rst algorithm

runs in O(n3) time and produces a Manhattan network of total weight at most

four times that of a minimum Manhattan network. The second algorithm runs in

O(n log n) time and has an approximation factor of eight. It is unknown whether

the problem of computing the minimum Manhattan network is a NP-hard prob-

lem. It is also unknown whether a polynomial-time approximation scheme exists

for this problem.

A noteworthy feature of our result is that unlike most of the results on

t-spanners, we compare the output of our algorithm to that of minimum Man-

hattan networks and our results involve small constants (4 or 8). Most results

on sparse t-spanners prove weight bounds that compare it to the length of a

minimum spanning tree; the constants involved in those results are usually very

large.

In Section 7.2, we present the approximation algorithm. In Section 7.2.2 we

prove that the algorithm produces a Manhattan network; in Section 7.2.3 we

prove that the network produced is of weight at most 4r�jEoptj, where Eopt is

the set of edges in a minimum Manhattan network on S.
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7.1 De�nitions

Let u and v be two points in S, where u lies to the left of and above v. A x-path

between u and v is a rectilinear path consisting of one vertical line segment with

upper endpoint at u, and one horizontal line segment with right endpoint at v.

Note that such a path is a minimum-weight, minimum-link path connecting u

and v. The q-path is de�ned in a similar fashion, as shown in Fig. 7.2. If u lies

to the left of and below v, we de�ne a y-path and a p-path in a similar fashion.

Note that each of the four paths described above introduces one Steiner point

at the bend. We will denote by [v; u] the closed region described by a rectilinear

rectangle with corners in v and u. The coordinates of a vertex v 2 V are denoted

v:x respectively v:y.

v

u u

v

Figure 7.2: (left) An x-path, and (right) an q-path.

If two di�erent edges of the graph intersect, we will assume that their inter-

section de�nes a Steiner point.

7.2 The approximation algorithm

In this section we present an approximation algorithm to construct a Manhattan

network G0=(V 0; E0) of small length. The algorithm will construct the edge

set in four independent steps. In each step, for each vertex, the algorithm

constructs a (possibly empty) local network connecting that vertex to a set of

chosen \neighboring" vertices. Since the four steps are symmetrical the �rst step

is explained in more detail than the later steps.

1. Sweep the points from left to right. As shown in Fig. 7.3a, for each point

v02V let v be the leftmost point below and not to the left of v0 (if several,
take uppermost). We say that v0 1-belongs to v. For each vertex v let

B1(v) denote the set of vertices in V that 1-belong to v. Let v1; : : : ; vm
be the vertices in B1(v) ordered from left to right, as shown in Fig. 7.3b.

First, construct an q-path, denoted e1, connecting v1 and v. If m>1, draw

a vertical edge e2, with top endpoint at vm and bottom endpoint on e1.

Next, a \local" Manhattan network is constructed such that there is a

Manhattan path from each vertex vi, 2�i�vm�1, to e1 or e2; this step is
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1

v2

vm

v

v

(a) (b) (c)

v

e

e
1

2

v

Figure 7.3: (a) Vertex v0 1-belongs to v. (b) The set B1(v) = fv1; : : : ; vmg 1-belongs

to v. (c) The C-hull of B1(v).

explained in more detail in Section 7.2.1. Add the edges constructed in

this step to the set of edges E0
1.

2. Sweep the points from left to right. For each point v02V let v be the

leftmost point above and not to the left of v0 (if several, take bottommost).
We say that v0 2-belongs to v. For each vertex v let B2(v) denote the set

of vertices in V that 2-belong to v. Perform the symmetrical procedure as

performed in step 1 on the set B2(v) for every v2V , to obtain the set of

edges E0
2.

3. Sweep the points from bottom to top. For each point v02V let v be the

bottommost point to the left and not below v0 (if several, take leftmost).
We say that v0 3-belongs to v. For each vertex v let B3(v) denote the set

of vertices in V that 3-belong to v. Perform the symmetrical procedure as

performed in step 1 on the set B3(v) for every v2V , to obtain the set of

edges E0
3.

4. Sweep the points from top to bottom. For each point v02V let v be the

topmost point to the left and not above v0 (if several, take leftmost). We

say that v0 4-belongs to v. For each vertex v let B4(v) denote the set of

vertices in V that 4-belong to v. Perform the symmetrical procedure as

performed in step 1 on the set B4(v) for every v2V , to obtain the set of

edges E0
4.

After building the appropriate \local" networks, we say that every vertex v is

directly connected to the vertices in B1(v)[ : : :[B4(v). From these four sweeps

we get four edge sets, E0
1; : : : ; E

0
4. The Manhattan network is now de�ned as
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G = (V 0; E0), where E0 = E0
1 [ : : : [E0

4, and V
0 includes the points in S and all

the Steiner points that are generated when adding the edges in E0.
Also note that there is some asymmetry in the above construction. This is

deliberate; the asymmetric cases are required in the proof of correctness of the

algorithm (see Lemma 7.3).

7.2.1 Constructing the local networks

We will explain the construction of the local networks involved in step 1 of the

algorithm in detail. The constructions involved in the other steps are symmet-

rical. Let v be an arbitrary vertex of V and let v1; : : : ; vm be the vertices in

B1(v). By step 1 of the algorithm, we note that vi lies below and to the left of

vi+1, 1�i<m; thus, v:x � vm:x and v:y � v1:y.

In this section we describe how to construct a local network connecting

v with the vertices v1; : : : ; vm; the local network is a Manhattan network on

v; v1; : : : ; vm. We assume that m>2, otherwise we are done. Recall that v1
and v are connected by an q-path, e1, and that vm is connected to this edge

by a vertical segment corresponding to edge e2, see Fig. 7.3b. Let e01 be the

horizontal part of e1 between v1 and e2. Our aim is to produce a set of edges

of minimum total weight such that there is a Manhattan path between vi and

v, 1�i�m. This already holds for v1 and vm. Consider the following staircase

polygon obtained by adding p-paths between vi and vi+1, 1�i<m, to the base

e01 and the right side e2, as shown in Fig. 7.3c. This polygon will be referred to

as the C-hull of the set of vertices fv1; : : : ; vmg. We claim that a rectangulation

of this polygon would give us a rectilinear network that guarantees Manhattan

paths from v to every vertex in the set fv1; : : : ; vmg. This claim is easily proved

by observing that every vertex vi; i = 1; : : : ;m, must lie on the perimeter of a

distinct rectangle (hence you should be able to proceed either down or to the

right from vi), and there always exists a monotonic rectilinear path from vi to

v that follows the borders of the rectangles encountered along the way. Denote

by E0
1(v) the set of edges constructed in the rectangulation of the C-hull plus

the two edges e1 and e2. That is, E
0
1(v) is the set of edges produced in step 1 to

connect the vertices in B1(v) to v. It should be noted that E0
1(v) only consists

of the edges in the interior of the C-hull of the set of vertices fv1; : : : ; vmg and
that the p-paths from vi to vi+1 are not included in it. While a rectangulation

of these C-hulls guarantees Manhattan paths, we show later that a minimum-

weight rectangulation of the C-hulls gives us an approximation algorithm for

the problem. The following results on minimum-weight rectangulations were

previously known:
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Theorem 7.1 ([64]) An optimal rectangulation of a staircase polygon can be

computed in time O(n3).

Theorem 7.2 A thickest-�rst rectangulation of a staircase polygon can be com-

puted in linear time such that the weight of the added edges in the rectangulation

is at most twice the weight of an optimal rectangulation.

Proof: A thickest-�rst rectangulation \cuts" in every step o� a maximal rect-

angle whose shortest side is as long as possible. Levcopoulos and �Ostlin [63]

showed that a thickest-�rst partition of a histogram can be computed in linear

time. Hence, it remains to prove that for a staircase polygon a thickest-�rst

partition produces segments of length at most twice the length of the optimal.

Let P be a staircase polygon. We assume for simplicity that the base, b, of

P is horizontal and at the bottom, and the longest vertical edge of P , denoted

h, is the right side of P , Fig. 7.4a. Let R be a thickest rectangle within P

and let lR be the set of segments of R's perimeter which are disjoint from the

boundary of P . The proof is by induction. If P is a rectangle then lR is empty

and we are �nished. Otherwise lR contains one or two segments. Assume that

the observation holds for the staircase polygon of P above R's top side and the

staircase polygon of P to the left of R's left side, if they exist. To be able to use

induction let S be the open region de�ned by the interior of R plus the segment or

segments in lR. Let OPT be the segments in an optimal rectangulation of P . By

the induction hypothesis it holds that the total length of the segments produced

by the thickest-�rst rectangulation minus the segment or segments in lR is at

most of length 2�(jOPT j�jOPT (S)j), where OPT (S) is the set of segments in
OPT intersecting S. Hence, it is enough to prove that 2jlRj � jOPT (S)j.

We will have two cases, either there are segments of OPT (S) within the open

region of R, or there are not.

1. No segments intersect the open region of R. In this case there must be

segments of OPT (S) that are equal to the segments in lR, otherwise OPT would

not be a rectangulation of P . Hence, the total length of the segments in lR is

equal to the length of OPT (S).

2. Otherwise, if there are segments of OPT (S) within the open region of

R, we know that there must be segments in OPT (S) of length at least equal to

the shortest side of R. It is easy to see that every segment in lr is shorter than

the shortest side of R, otherwise R would not have been a thickest rectangle. It

follows that the total length of the segments in lr is less than two times the total

length of the segments in OPT (S). 2

Sweeping the vertices of S takes O(n logn) time. If the optimal rectangu-

lation procedure is used the time-complexity of our approximation algorithm
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(a) (b)

b

hR

Figure 7.4: (a) A thickest rectangle R within the polygon. (b) A thickest-�rst rectan-

gulation is within a factor two of the optimal.

is O(n3). And, if the thickest-�rst rectangulation algorithm is used then our

algorithm runs in time O(n logn).

It remains to prove that the graph G0=(V 0; E0) is a Manhattan network for

the points in S and that jE0j�4r�jEoptj, where r is the approximation factor of
the rectangulation algorithm.

7.2.2 The algorithm outputs a Manhattan network

To show that the algorithm outputs a Manhattan network, it suÆces to prove

the following lemma:

Lemma 7.3 For each pair of points s; t2V there is a Manhattan path in G0

connecting s and t.

Proof: Without loss of generality, either t lies to the right and above s, or t lies

to the right and below s (if not, switch s and t). We �rst assume that t lies to

the right and above s. Without loss of generality, we may assume that no two

points have the same x- or y-coordinate, since the algorithm always connects

two such points by a line segment.

Consider [s; t], the rectilinear rectangle with corners at s and t. If s 2 B2(t)

or t 2 B4(s), then s is directly connected to t and we are done. Otherwise, we

know from the algorithm that s is directly connected to a point s12V above

and to the right of s and to the left of t (Case 4 of construction), and that t is

directly connected to a point t12V below and to the left of t and above s (Case

2 of construction). We consider the following two cases:

Case 1 [s1 or t1 lies within [s; t]]: Without loss of generality, assume that s1 lies

within [s; t], as shown in Fig. 7.5a. In this case, let s1 be the new s and continue

recursively.

Case 2 [s1 and t1 lie outside [s; t]]: Then we know that s1 lies above and to the

left of t and that t1 lies above and to the left of s, see Fig. 7.5b. The Manhattan
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Figure 7.5: There exists a Manhattan path between s and t.

path connecting s and s1 must intersect the Manhattan path connecting t and

t1 within [s; t]. Hence there is a Manhattan path connecting s and t.

The case when t lies to the right and below s uses Cases 1 and 3 of the

construction, and is otherwise similar to the proof above. Hence the lemma.

2

7.2.3 Bounding the length of the network

For the length analysis, once again, it is suÆcient to consider only one sweep,

i.e., step 1 of the algorithm. The approximation factor for this sweep is then

multiplied by four to obtain the approximation factor of the algorithm. Let v be

an arbitrary vertex of V . Let B1(v) = fv1; : : : ; vmg and, let V 0 = B1(v)[fvg. We

de�ne a charging area of v (with respect to this sweep) as the region [mi=1[v; vi],

as shown by the shaded region in Fig. 7.6a. The charging area is denoted by

C1(v). Note that the interior of the charging area for any vertex must be empty

of input points. We start with the following observation:

Lemma 7.4 For every pair of vertices vi; vj2V , the charging areas C1(vi) and

C1(vj) are disjoint, except possibly for the point vi or vj .

Proof: Since no vertex can 1-belong to more than one vertex, the staircase

parts of the two charging areas cannot share any vertices. Thus either vi is on

the staircase part of C1(vj) or vice versa. But then, the rest of the charging

areas cannot overlap because of its shape and orientation.

2

It is important to point out that the charging areas may share a point, but

cannot share an edge of the boundary. Also note that all edges of E0
1(v) that
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were added in step 1 must lie entirely within C1(v). Hence, the edges produced

in step 1 connecting vertices in V 0 cannot be used to connect vertices in any

other charging areas. We will prove that jE0
1(v)j is at most equal to the length

of the edges in Eopt lying within the charging area of v. Since the charging areas

are disjoint this implies that the total length of the edges produced in step 1 of

the algorithm, jE0
1j=

P
v2V jE0

1(v)j, is at most jEoptj.
First, partition the charging area C1(v) into three regions, where R1 = [v; v1],

R2 = [v; vm]nR1 and R3 is the remaining region of the charging area. The three

regions are shown in Fig. 7.6b. Before we continue, recall that E0
1(v) consists of

a q-path, e1, connecting v1 and v, a vertical edge e2 connecting vm with e1, and

a rectangulation of the C-hull of B1(v) (which is meant to connect vi, 2�i<m,

with e1 or e2).

Consider a minimum Manhattan network connecting the vertices in V . What

do we know about Eopt of such a network?

1. Eopt must include a Manhattan path between v1 and v within R1. Note

that this path has the same length as e1.

2. Eopt must include a Manhattan path between vm and v within [v; vm].

Within R2 this path has at least the same length as e2.

3. If m>2 then there must be a network Nopt connecting v2; : : : ; vm�1 with

e1 or e2 within R3. Hence, it remains to prove that a minimum weight

network connecting v2; : : : ; vm�1 to the right or bottom side of R3 has

weight equal to a minimum weight rectangulation of R3.

Lemma 7.5 A minimum-weight network connecting vi, 2�i<m, with e1 or e2
has length at least equal to the length of a minimum-weight rectangulation of the

C-hull.

Lemma 7.5 is a direct consequence of the following two lemmas. Consider

a grid induced by the vertices of V 0. Let Nopt be an optimal network within

R3 connecting v2; : : : ; vm�1 to the right or bottom side of R3. Let Nrect be a

minimum-weight network, connecting v2; : : : ; vm�1 to the right or bottom side

of R3, whose segments lie (only) on the grid induced by the vertices in V 0.

Lemma 7.6 jNrectj=jNoptj.
Proof: Let P be a Manhattan path between vertices vi and v. Assume that

the path is moving right on the grid and that it changes direction downwards

without reaching an intersection of the grid. Denote by t the last intersection of

the grid that the path passed. First, it is obvious that any monotone path from

vi to v lying on the grid is of equal weight. Hence, the only reason to change
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Figure 7.6: (a) The charging area. (b) Partitioning the charging area into three regions.

direction \outside" the grid is that other paths may use this segment. Since all

paths that may use this segment start at vertices to the left of t, they must start

from vertices vj , where j < i, which cannot intersect till the next horizontal grid

line below it. Thus the path can be \straightened" within that grid cell to follow

the grid lines without decreasing its length. Going step by step, all paths can

be modi�ed to follow grid lines. Hence, the observation follows.

2

Lemma 7.7 There exists a minimum-weight rectangulation of the interior of

the C-hull of length jNrectj.

Proof: Every path between an interior point vi and v moves (seen from vi)

only in two directions, right and down. The only case when a path would

induce a non-rectangular network of the C-hull is when it turns right or down

without meeting another path. Assume we follow a path from vi going down

and then turning right, without meeting a horizontal segment. In this case the

path could have been shortened by not changing direction, see Fig. 7.7b, or by

starting going right from the beginning. This is easy to see since the horizontal

distance between a vertical segment and the turning point of the path is equal

to the horizontal distance to the vertical segment and vi. Hence, we do not gain

anything by going downwards if the path is not meeting a horizontal segment.

This means that there exists a rectangulation of the interior of the C-hull of

weight jNrectj.
2

Putting these results together we obtain the following lemma.

Lemma 7.8
P

v2V jE0
1(v)j � r � jEoptj.
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(b)(a)

Figure 7.7: Following the grid induced by the set of points does not increase the length

of the network.

To obtain the approximation factor for the algorithm just multiply the approxi-

mation factor for each step by four, since there are four sweeps. We summarize

this paper by giving the main theorem.

Theorem 7.9 Given a set of n points in the plane, and given an r-approximate,

R(n)-time algorithm to compute a minimum-weight rectangulation of a stair-

case polygon, there exists an O(n logn+R(n))-time algorithm that outputs a

Manhattan network of length at most 4r times that of a minimum Manhattan

network.

7.3 Open Problems

The following problems remain open:

1. Determine the complexity of the problem of computing minimum Manhat-

tan networks.

2. Design a PTAS for the problem of computing minimum Manhattan net-

works.

3. Design a 2-approximate algorithm for the problem of computing minimum

Manhattan networks.



Chapter 8

Fast algorithms for

constructing sparse

geometric spanners

Complete graphs represent ideal communication networks but they are expen-

sive to build; sparse spanners represent low cost alternatives. The weight of

the spanner network is a measure of its sparseness; other sparseness measures

include the number of edges, maximum degree and the number of Steiner points.

Spanners for complete Euclidean graphs as well as for arbitrary weighted graphs

�nd applications in robotics, network topology design, distributed systems, de-

sign of parallel machines, and many other areas, and have been a subject of

considerable research [6, 11, 22, 31, 62].

Consider a set V of n points in IRd, where the dimension d is a constant.

A network on V can be modeled as an undirected graph G with vertex set V

and with edges e = (u; v) of weight wt(e). A Euclidean network is a geometric

network where the weight of the edge e = (u; v) is equal to the Euclidean distance

d(u; v) between its two endpoints u and v. Let t > 1 be a real number. We

say that G0 is a t-spanner for V , if for each pair of points u; v 2 V , there

exists a path in G0 of weight at most t times the Euclidean distance between u

and v. A sparse t-spanner is de�ned to be a t-spanner of size O(n) and weight

O(wt(MST )), where wt(MST ) is the total weight of a minimal spanning tree.

Given a geometric network G = (V;E), a (generic) weight function w de�ned on

its edges, and two vertices u; v 2 V , we let DfG;wtg(u; v) denote the weight of
the shortest path from u to v in G for the weight function wt.

The problem of constructing spanners has been investigated by many re-

101
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searchers. Levcopoulos and Lingas [61] presented an O(n logn)-time algorithm

for the 2-dimensional case that produced a sparse t-spanner. But the problem

gets much more diÆcult in higher dimensions. There are several algorithms

that run in time O(n logn) [20, 52, 85, 93]. However, they only guarantee a

linear number of spanner edges and they do not guarantee low weight. Das and

Narasimhan [31] gave an O(n log2 n)-time algorithm that constructs for any set

V of n points in IRd, and any constant t > 1, a sparse t-spanner for V in which

the degree of every point is bounded by a constant. Chen et al. [25] showed that

the lower bound for computing any t-spanner for a given set of points V in Rd

is 
(n logn) in the algebraic computation tree model.

Mount [74] has shown that a signi�cant result claimed in Arya et al. [11] of an

O(n log n)-time algorithm to compute a sparse Euclidean spanner is incorrect.

Thus the problem of devising an O(n logn)-time algorithm to produce sparse

spanners remained unsolved.

Sparse spanners are also useful in designing eÆcient approximation schemes

for geometric problems. In a startling development, Rao and Smith [83] showed

an optimal O(n logn)-time approximation scheme for the well-known Euclidean

traveling salesperson problem, assuming that it is possible to compute sparse

spanners in time O(n logn). Also, Czumaj and Lingas [29] showed approxi-

mation schemes for minimum-cost multi-connectivity problems in geometrical

graphs that also depend on the possibility of computing sparse spanners in time

O(n log n). Since the claim by Arya et al. [11] was incorrect, the existence of

an O(n log n)-time algorithm to construct sparse spanners has become a critical

open problem. Note that the most eÆcient algorithm to construct sparse span-

ners is due to Das and Narasimhan [31] and runs in O(n log2 n) time. In this

paper we design an algorithm that produces a t-spanner in time O(n logn), in

the standard real RAM model de�ned in [81].

Theorem 8.1 Given a set V of n points in d-dimensional space, and any real

constant t>1, a t-spanner of the complete Euclidean graph can be constructed in

O(n log n) time such that the spanner has O(n) edges and weight O(wt(MST )).

The constants implicit in the O-notation depend on t and d.

It was shown in [31] that the greedy algorithm produces spanners with O(n)

edges and weight O(wt(MST )). However, a naive implementation of the greedy

algorithm, shown in Fig. 8.1, takes O(n3 logn) time, mainly due to the fact that

a quadratic number of shortest path queries are needed to be answered in a

\dynamic" graph with O(n) edges. Each of the queries takes O(n logn) time.

Our algorithm is inspired by the algorithm due to Das and Narasimhan

[31]. They showed how to use clustering in order to speed up shortest path

queries, i.e., they showed that approximate shortest path queries suÆced to
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produce sparse spanners. However, their algorithm was not eÆcient enough

because they were unable to maintain the clusters eÆciently and the algorithm

had to frequently rebuild the clusters. For convenience, we will refer to the

O(n log2 n)-time algorithm from [31] as the DN-Clustering spanner algorithm.

We retain the general framework of that algorithm. Our main contribution is

in developing techniques to eÆciently perform clustering. We believe that the

techniques that we have developed are likely to be useful in designing other

greedy-style \dynamic algorithms", i.e., in situations where only insertions take

place and particularly in increasing order of length. What we prove in this paper

is that after some preprocessing, given a linear-sized edge-weighted graph with

integral edge weights in the range [0; N ], and given a set of cluster centers, then

one can perform clustering very eÆciently in only O(n+N) time.

The terms length and weight are used interchangeably throughout the paper.

Algorithm Standard-Greedy(G; t)

1. sort the edges in E by increasing weight

2. E0 := ;
3. G0 := (V;E0)
4. for each edge (u; v) 2 E do

5. if ShortestPath(G0; u; v) > t � d(u; v) then
6. E0 := E0 [ f(u; v)g
7. G0 := (V;E0)
8. output G0

Figure 8.1: The naive O(n3 log n)-time greedy spanner algorithm

8.1 The DN-clustering spanner algorithm

We �rst describe the previous cluster based spanner algorithm due to Das and

Narasimhan [31]. It can be roughly described as follows.

The algorithm starts with an empty spanner G0. A preprocessing step helps

to eliminate all but a linear number of edges from further consideration. Among

the edges not eliminated, very short edges (i.e., those of length at most D=n,

where D is the distance between the farthest pair of points) are simply added to

G0 since their contribution to the overall weight of the spanner cannot be more

than the weight of a minimum spanning tree, wt(MST ). For the remaining

edges, the greedy algorithm is simulated by sorting the edges (by increasing

weight) and then processing them in logn phases. Greedy processing of an edge
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e = (u; v) entails a shortest path query, i.e., checking whether DfG0;wtg(u; v) �
t � wt(e). If the answer to the query is no, then edge e is added to the spanner

G0, else it is discarded. Whenever shortest path queries are required to be

answered, these are not solved on the spanner G0 being constructed. Instead,

they are solved on a cluster graph H , which is simultaneously maintained. The

cluster graph H from [31] has the following properties:

1. distances in H \closely" approximate distances in the current spanner

graph G0,

2. every vertex in H has bounded degree, and

3. \specialized" shortest path queries in H can be answered in O(1) time.

The shortest path query when processing edge e = (u; v) is \specialized" in

the sense that, at the instant that this query is processed, the cluster graph H

only has edges between clusters, so-called inter-cluster edges, whose lengths are

within a constant factor of wt(e).

Since the edges considered have weights in the range (D=n;D] and they

are processed in logn phases, the edges can be sorted into logn bins, where

the i-th bin has edges of weight in the range (2i�1 � D=n; 2i � D=n]. In order

for shortest path queries to be answered quickly, the cluster graph has to be

carefully maintained. At the end of each phase, the cluster graph is recomputed

from scratch using the graph G0. This was deemed necessary since, in order to

answer specialized shortest path queries about edge e=(u; v) in constant time, all

inter-cluster edges in H need to be of length within a constant factor of d(u; v).

The time complexity analysis is straightforward. Preprocessing steps ran in

O(n log n) time. The O(n) shortest path queries were processed in O(n) time,

since each query took only O(1) time. The cluster graph computation at the

start of each phase took O(n logn) time (since it involved running Dijkstra's

shortest path algorithm on linear-sized graphs). Since there were logn phases,

the cluster graph computations took a total of O(n log2 n) time. The crucial

observation made in [31] was that shortest path queries need not be answered

precisely. Instead, approximate shortest path queries suÆce to produce low-

weight spanners. The second observation was that shortest path queries are

expensive if the shortest path involves a number of short edges, and that clus-

tering can help to eliminate all short edges. This, of course, meant that the

greedy algorithm, too, was only approximately simulated by the algorithm.

8.1.1 A faster spanner algorithm

In this section, we present a simple modi�cation to the DN-clustering algorithm

to construct sparse t-spanners. This algorithm improves on the time complexity
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of the DN-clustering algorithm and runs in time O( n log
2 n

log logn ) in the algebraic

decision tree model of computation.

First we observe that there is wide disparity in the overall time spent by

the DN-clustering algorithm on shortest path queries (O(n)) and the time spent

on the cluster graph computations (O(n log2 n)). In order to balance out the

two costs, it is necessary to do fewer than O(logn) cluster graph computations,

which in turn would make the shortest path queries more expensive. Instead of

processing the edges in logn phases, we process them in 4�d�logn
log logn batches. We

use the term batches to distinguish from the word phases used by the earlier

DN-clustering algorithm.

If the clustering is recomputed after processing every batch of edges the

total time for cluster graph computations will be O( n log2 n
log log n ), since each call to

the clustering algorithm takes O(n logn) time. We carefully analyze the cost

of the O(n) shortest path queries and show that it can now be answered in a

total of O(n logn) time. In phase i of the DN-Clustering algorithm, edges from

the i-th bin were processed. These edges had weights in the range (W; 2W ],

where W = 2i�1(D=n). During phase i, the cluster graph H could have inter-

cluster edges whose weights were in the range (ÆW; 2W (1 + 2Æ)], where Æ < 1
2

is a positive constant. This meant that for edge (u; v) of weight l 2 (W; 2W ],

checking whether there is path from u to v of length at most t � l could be done in
O(1) time. More precisely, it was observed in [31] that if there exists a path from

u to v of length at most t�l, then the number of edges on this path can be at most
2t
Æ . It was further observed that since the vertices of H had a constant degree

bound (say c), and since there are at most O(c
2t
Æ ) vertices that lie 2t

Æ edges away

from vertex u, this shortest path query could be done in O(c
2t
Æ log c

2t
Æ ) time. A

tighter analysis was unnecessary in the DN-Clustering algorithm of [31] since c,

t, and Æ were all constants; below we show an improved analysis of this cost.

Recall that our algorithm works in 4�d�logn
log logn batches. Batch i of our algo-

rithm can be described as follows. For W = 2
(i�1)�log logn

4�d (D=n), the edges

processed in batch i have weights in the range (W;W2
log logn

4�d ], i.e., they are

in the range (W;W (log n)
1
4�d ]. This implies that, for edge (u; v) of weight

l 2 (W;W (log n)
1
4�d ], we need to check whether there is a path from u to v

of length at most t � l. During batch i, the cluster graph H can have inter-cluster

edges whose weights are in the range (ÆW; (1 + 2Æ)W (logn)
1
4�d ]. Thus, if there

does exist such a path from u to v, then the number of edges on this path can be

at most t(logn)
1
4�d

Æ . The crucial observation we make is that the vertices of the

cluster graph correspond to clusters of radius ÆW . These clusters may overlap,

but their centers can lie in only one cluster. In other words, if these clusters are

shrunk in half, they do not intersect. Thus the vertices correspond to disjoint
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clusters of radius Æ �W=2. Now, it is possible to bound the number of vertices

within distance at most t � l = tW (log n)
1
4�d . A simple packing argument shows

that the number of balls of radius r that can be packed in a ball of radius R

is bounded by O((R=r)d), where d is the dimension of the space. In our case,

the number of balls of radius r = ÆW
2 that can be packed in a ball of radius

R = tW (logn)
1
4�d is at most O(( t�(log n)

1
4�d

Æ )d). Thus, due to the constant degree,

the maximum number of vertices and edges that can be reached when perform-

ing Dijkstra's algorithm starting from vertex u is O(( t�(log n)
1
4�d

Æ )d). Since t, d

and Æ are constants, we have that O(( t�(log n)
1
4�d

Æ )d) = O((logn)
1
4 ). We conclude

that Dijkstra's algorithm for a shortest path query has a time complexity of

O((log n)
1
4 � (log((logn)1=4))) = O(log n).

The obvious consequence is that all O(n) shortest path queries can be an-

swered in O(n logn) time, and hence, we have proved the following theorem:

Theorem 8.2 In the algebraic decision tree model of computation, given a set

V of n points in d-dimensional space, and any real constant t>1, a sparse t-

spanner of the complete Euclidean graph can be constructed in O( n log
2 n

log logn ) time.

The constants implicit in the O-notation depend on t and d.

8.2 A fast spanner algorithm

In the rest of the paper, we describe an eÆcient algorithm to construct sparse

spanners with a running time of O(n logn). This algorithm is also inspired by

the DN-clustering algorithm in [31]. As explained in Section 8.1 the reason

why their algorithm runs in time O(n log2 n) is that the clustering step takes

O(n log n) time per phase. The running time for our algorithm is achieved by

designing a linear time algorithm for an \approximate" version of the clustering

step, thus executing all the clustering steps in O(n logn) total time.

One crucial idea that we employ to speed up the clustering is to replace the

real-valued edge weights by integral values. As observed in [31], the shortest path

queries required by the algorithm need not be answered precisely; approximately

correct answers suÆce. A convenient way to achieve the integralization is to use

the 
oor /ceiling function. However, this assumes a more powerful model of

computation. In order to get around this problem, we reduce the dependence of

the algorithm on the 
oor/ceiling function and compute the 
oor/ceiling function

by using operations allowed under the real RAM model. The second crucial

component of our algorithm is an implementation of the clustering algorithm in

O(n) time assuming small integral edge weights for the edges. We also prove

that the integralization introduces only a bounded amount of error, and that
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this error retains the correctness of the other required operations.

The improved spanner algorithm can be roughly described as follows; see

Fig. 8.2. It is important to note that the skeleton of the algorithm is similar to

the DN-clustering algorithm from [31]. In particular, this improved algorithm

also runs in O(log n) phases. If a fewer number of phases are used, then the error

due to integralization could be too large. Even if a fewer number of phases can

be used, the running time of the overall algorithm will remain as O(n logn), since

it is dominated by other steps in the algorithm. In particular, the integralization

itself has an initial cost of O(n logn).

The algorithm starts with an empty spanner G0 and employs the same pre-

processing step to eliminate all but a linear number of edges. This step is done

by a call to the t-spanner algorithm presented by Arya et. al. in [11], with
p
t=t0

as input parameter, for some t0 such that t � t0 > 1. Note that this algorithm

in [11] is correct and runs in time O(n logn). It also guarantees that the graph

has constant degree. As before, short edges of length at most D=n are simply

added to G0; their contribution to the overall weight of the spanner is bounded

by wt(MST ). The greedy algorithm is now simulated on the remaining edges

and the edges are added to the graph G0.

The edges of the graph have real-valued weights that are equal to the Eu-

clidean distance between their endpoints. The edges are sorted by increasing

weight and then processed in logn phases. Each of the edges in the spanner

graph also have corresponding integer-valued weights that are suÆciently close

approximations of the real-valued weights; these integer-valued weights change

through the course of the algorithm. In order to distinguish between the real-

and integer-valued weights, we assume that there are two di�erent weight func-

tions de�ned on the edges of G0. For edge e = (u; v), the real-valued weight

function wt(e), as mentioned before, is de�ned as the Euclidean distance d(u; v)

between u and v. The integer-valued weight function denoted by Iwti(e) is a

function of wt(e) and the phase number i. It is maintained during the execution

of the algorithm as will be described later. Whenever the phase number is clear

by the context, we use the simpler notation Iwt(e) instead of Iwti(e). Also,

unless speci�ed otherwise, we assume that when we refer to the weight of an

edge, we are referring to the real-valued weight of the edge.

At the start of each phase, the integer-valued weight function Iwt(e) is re-

computed for this phase. Then a set of vertices of G0 are selected as cluster

centers and a cluster graph H is constructed from the current spanner graph G0,
using the weight function Iwt. This cluster graph H is a simpler graph than the

graph G0 and distances between vertices in H are reasonably close to distances

between the same pair of vertices in G0. The di�erence of this from the one

in [31] lies in the fact that the cluster centers have to be selected before the
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clustering is done and the clustering is done with the weight function Iwt. As

mentioned before, we improve on the time complexity of this clustering step and

show how it can be implemented to run in O(n) time. Once the cluster graph H

is constructed, the algorithm processes the set of edges for that phase. Greedy

processing of an edge e = (u; v) entails, as before, a shortest path query, i.e.,

checking whether DfG0;wtg(u; v) � t � wt(e). This query is answered in constant

time per query by performing an approximate shortest path query on the simpler

graph H , and not on the partial spanner graph G0. If the answer to the query

is `no', edge e is added to the graph G0, else it is discarded. Each of the steps is

described in more detail in the rest of the paper.

In Section 8.2.1 we describe the integralization process and analyze the error

of the integralization. The clustering algorithm is described in Section 8.2.2,

and �nally, in Section 8.2.3 we describe how to compute the shortest paths in

the cluster graph and prove that the total running time of the algorithm is

O(n log n).

The detailed algorithm is given below in �gure 8.2. The inputs are, V , which

is a set of n points in d-dimensional space, and two constants t and t0 such that

1 < t0 � t. As one can see, it is similar to the DN-clustering algorithm, except for

the integralization steps (steps 9, 12 and 13) and the computation of the cluster

centers (steps 10 and 20). In Sections 8.3 and 8.4 we will show that the output

G0 indeed is a t-spanner, and that a suitable selection of the input parameter t0

will guarantee that G0 has small weight. Recall that the really time-critical step
of this algorithm is the clustering step (step 14) which will be closely described

in Section 8.2.2. Step 19 of the algorithm is needed to maintain the cluster graph

H , i.e., edges between clusters that lie close to each other are added. A more

detailed description of this step is also given in Section 8.2.2. Note that the two

values bounding Æ are decided in Lemma 8.14 and Lemma 8.17.

8.2.1 Integralization

As mentioned before, in order to speed up the cluster graph computation, we re-

place the real-valued edge weights by integral values. The integralization changes

in every phase. It is done in such a way that the edge weights and distances

encountered in that phase are always in the range [0; N ], where N = c � n for

some constant integer c. The choice of c will dictate the errors introduced in the

distance computations; this will be discussed later.

A closer inspection of a phase leads to the following simple observations. At

the start of phase i, the spanner graph constructed so far has edges of weight

at most Wi. During phase i, the edges considered for inclusion by the greedy

algorithm are in the range (Wi; 2Wi]. The shortest path query for an edge of
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Algorithm Improved-Greedy(V; t; t0)
1. Compute a (

p
t=t0)-spanner G = (V;E) using the algorithm from [11]

2. Æ := min
� p

tt0�(1+�)t0
2(1+�)(

p
tt0+3t0)

;
p
tt0�(1+�)

2(
p
tt0(1+�)+5+7�+2�2)

�
3. D := length of longest edge in E

4. E0 = fe 2 E j wt(e) < D=ng
5. G0 := (V;E0)
6. Wi := 2(i�1)D=n for i = 1; 2; : : : ; logn

7. for i := 1 to logn� 1 do

8. Ei := set of (sorted) edges of E with weights in (Wi;Wi+1]

9. Integralize(E0; 0)
10. C1 := Naive-Centers(G0; r = ÆW1);

11. for i := 1 to logn do

12. Integralize(Ei; i)

13. ReIntegralize(E0)
14. H := Cluster-Graph(G0; Iwt; Ci; r = ÆWi; R =Wi)

15. for each edge e = (u; v) 2 Ei in increasing order do

16. if not Short-Path(H;u; v;
p
tt0 � d(u; v)) then

17. E0 := E0 [ feg
18. G0 := (V;E0)
19. AddIntraEdgesType2(u; v)

20. Ci+1 := Update-Centers(H; i; Ci; r = ÆWi)

21. output G0

Figure 8.2: The O(n log n)-time spanner algorithm

length l involves checking whether the distance between a given pair of vertices

is at most t � l. Hence the longest paths that need to be dealt with during phase

i are of weight t � 2Wi. The idea is to make the largest distance we consider in

phase i to correspond to the integer c � n. To be on the safe side, since there

are small errors in the distance computations, we set 2(t � 2Wi) to correspond

to c � n. Thus, in phase i, unit integer length will correspond to real length of

Ui =
4�t�Wi

c�n .

Although a constant-time 
oor/ceiling function is not used in the algorithm,

a convenient way to describe the integralization is as follows:

Iwti(e) :=
lwt(e)

Ui

m
:

We will describe below how the integralization step is performed.
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Error bounds:

Assuming the integralization de�ned above, we observe that the function Iwt

always involves a rounding up. Hence, Iwti(e) � Ui � wt(e). It follows that in

phase i, the error in the length of any single edge of the spanner graph is at most

Ui. In other words, Iwti(e) �Ui�wt(e) � Ui. Note that this error is an additive

or an absolute error. Since any simple path can use at most n � 1 edges, it is

also easy to see that the error in the length of any simple path of the spanner

graph is less than nUi. Another consequence is that given two simple paths P1
and P2, if Iwt(P1) = Iwt(P2), then jwt(P1) � wt(P2)j < nUi. It follows that

nUi is also a bound on the error that can be introduced when running Dijkstra's

single-source-shortest-path algorithm using the integral weights instead of the

real weights. The following lemma formalizes this statement:

Lemma 8.3 In phase i, given any � > 0 and two vertices u and v in G0 such
that DfG0;wtg(u; v) > Wi, it holds that

DfG0;wtg(u; v) � DfG0;Iwtg(u; v) � Ui < (1 + �) �DfG0;wtg(u; v):

Proof: We give a sketch of the proof. Recall that the cluster radius is r = ÆWi,

where Æ < 1=2 is some positive constant. In phase i, for a path P such that

wt(P ) �Wi, the error in computing its weight is at most nUi. Thus the relative

error is at most nUi=Wi =
4t
c . The proof follows by setting � = 4t

cÆ > 4t
c and

using the well-known property of Dijkstra's algorithm that the minimum value

in the priority queue is monotonically non-decreasing. Note that � can be made

as small as desired by choosing an appropriate value of c. 2

As a direct consequence we obtain the following important corollary.

Corollary 8.4 For a path P in G0 with wt(P ) � ÆWi, the absolute error in

computing its weight is at most nUi, and the relative error is at most nUi
ÆWi

= �,

for any � > 0.

Computing the integralization

Here we show how to compute the integer values of the weights of the edges over

all phases in O(n log n) total time without using the 
oor/ceiling function.

We �rst observe that the spanner graph has at most O(n) edges at the start

of any phase. Consider a speci�c phase i. In this phase, for a speci�c edge

e, since its integer value is in the range [0; N ] (where N = c � n), Iwt(e) can
be computed in O(logn) time without the use of the 
oor/ceiling function by

performing a binary search on the set of real values j � Ui, for j = 0; : : : ; N . We

assume that the function Integralize(Ei; i) performs this operation for each

edge in the set Ei in O(log n) time per edge.
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If the above observations are used in a naive fashion for all edges, then the cost

of integralization is O(n logn) just for one phase. Since the number of phases is

not constant, the integralization would turn out to be too expensive. We have to

show that the algorithm spends O(logn) time for computing the integralization

of an edge weight over all the phases. The idea is to compute the integral value

in O(logn) time when the edge is encountered for the �rst time. Integralizations

of an edge for subsequent phases is done by calling ReIntegralize, and are

computed in constant time from the integer weights of the edge computed in the

previous phase. If the integral weight of an edge is I in phase i, then the integral

weight of the edge in phase i+1 will be I=2 if I is even, and (I+1)=2 if it is odd.

This is correct since Ui+1 = 2Ui, i.e., the integralization in phase i+ 1 is twice

as coarse as that in phase i. Checking if an integer is odd or even cannot be

done in constant time in the real RAM model, but can be easily accomplished by

using O(n logn) preprocessing. One way to accomplish this would be to build

a balanced binary tree including c � n elements with the values 1; : : : ; cn. Every

element in the tree, with value val, also contains a pointer to the element in the

tree containing the value d val2 e. This value can be computed in time O(logn)

and searching the tree for the next value can be done in time O(1). Hence, by

using O(n log n) time preprocessing, the integral weight of an edge for the next

phase can be computed in constant time. Another way to handle this problem

would be to extend the model of computation with trigonometric functions, i.e.,

the sine function.

Note also that the relative error for an edge with newly computed weight is

less than Ui+1, hence Lemma 8.3 still holds. It is clear that ReIntegralize(E
0)

performs its operation for each edge in the edge set E0 in O(1) time per edge.

The above explanation proves that the integralization is computed in time

O(n log n) for all edges over all phases. The integer weights are then used directly

in the clustering algorithms described below.

8.2.2 Clustering the graph

Now we turn our attention to the main contribution of this paper, namely how

to construct a cluster graph in linear time. First some de�nitions. Here we

assume that G = (V;E) is a metric graph with a weight function w de�ned on

its edges E. The following de�nition of a cluster is modi�ed from the one in [31]

to allow for arbitrary weight functions. The de�nition of a cluster cover is also

modi�ed and is de�ned for a given set of cluster centers.

De�nition 8.5 Cluster, cluster center, and radius

Given a vertex v 2 V and a real value r, Cluster(G; v; r; w) is de�ned as the
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set of all vertices U � V such that DfG;wg(v; u) � r for all u 2 U . The vertex v

is called the cluster center of this cluster and r is called the radius of the cluster.

De�nition 8.6 Cluster-cover

Given a set of cluster centers C = fv1; v2; : : : ; vmg � V and a radius r, the

Cluster-Cover(G;C; r; w) (if it exists) is a set of clusters K = fK1; : : : ;Kmg
such that Ki is a cluster with radius r and cluster center vi, 1 � i � m, and

such that K1 [K2 [ � � � [Km = V .

K7

K5

K2

K4

K6

K1

K3

(b)(a)

v

Figure 8.3: (a) A cluster with center at v and radius r. (b) The clusters K1; : : : ; K7

form a cluster cover.

The set C and the radius r will be chosen in such a way that the cluster

cover always exists. In general, clusters in a cluster cover may overlap. We also

modify the de�nition from [31] of a cluster graph so that it is a bit more general

and it is de�ned for a given set of clusters and for an arbitrary weight function.

De�nition 8.7 Cluster graph

Assume that C = fv1; v2; : : : ; vmg � V is a given set of cluster centers. For a

given radius r, we assume that K = fK1;K2; : : : ;Kmg is equal to Cluster-

cover(G;C; r; w). Given a second radius R > r, Cluster-graph(G;w;C; r; R)

is de�ned as a graph H = (V;EH) with a weight function w de�ned on its edges

EH . The weight of an edge [u; v] in EH is de�ned to be equal to DfG;wg(u; v)
(we use square brackets to distinguish cluster graph edges from the edges of G).

The edges of H are de�ned as follows.

Intra-cluster edges: For all Ki, and for all u 2 Ki, [u; vi] 2 EH .

Inter-cluster edges: For all vi; vj 2 C, [vi; vj ] is an inter-cluster

edge if either:



8.2 A fast spanner algorithm 113

1. vi =2 Kj and vj =2 Ki and DfG;wg(vi; vj) � R (Type 1), OR

2. there exists e = (ui; uj) 2 E such that ui 2 Ki; uj 2
Kj (Type 2).

Computing the cluster cover

Here we describe how the cluster cover is computed eÆciently under some as-

sumptions. Once a cluster cover is computed we show, in the next section, that

it is straight-forward to construct the cluster graph.

Note that the input to the cluster cover computation is a weighted graph

G = (V;E) with a weight function w de�ned on its edges, a set C � V of cluster

centers and a radius R. We will assume that jV j = n, jEj = O(n), the weight

function w is integral, and the radius R is an integer. Since we do not have to

deal with distances greater than R, we can safely assume that the weight of any

edge is an integer value in the range [0 :: R]. We will further assume that the

cluster centers are chosen in such a way that a cluster cover exists, which will

be shown in Section 8.2.3. The obvious way to implement this algorithm is as

was done in [31], i.e., to run Dijkstra's Single-Source-Shortest-Path algorithm

from all the cluster centers and to compute the clusters in the cluster cover.

However, this has a running time of O(n log n). In order to speed it up, we run

Dijkstra's algorithm in parallel from all the cluster centers and use a simple

and fast priority queue, which we denote by PQ. The priority queue we use is

an array of size R, indexed from 1 to R, as shown in Fig. 8.4. This is suÆcient

for our purposes because of the following reasons. Firstly, the weight function

is integral and the array contains all possible distance values from the cluster

centers to vertices in the clusters. Secondly, it is well-known that in Dijkstra's

algorithm, once a vertex has been extracted from the priority queue, its distance

from the source will never be updated again and the distance from the source

at the time of the extraction is the correct distance from the source. In other

words, the minimum value of the items in the priority queue is monotonic. Since

the priority queue is an array, Extract-Min can be implemented as a scan

through the array for the \next" largest item.

One problem is that clusters can overlap and that vertices may have entries

in the priority queue with distances from several cluster centers. Let cv denote

the maximal number of clusters that a vertex may belong to. The problem can

be taken care of by augmenting the priority queue entries to be a pointer to a

linked list where every entry in the list also stores information about the vertex

as well as the corresponding cluster center. Since a vertex at most belongs to cv
clusters the space complexity of the priority queue will be O(n � cv + R). Also,

every vertex contains a list of the clusters it belongs to.

It should be noted that Dijkstra's algorithm, as shown below, needs to per-
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Figure 8.4: An example of how the cluster cover is computed with x and y as cluster

centers and radius R = 9. The array to the left is the initial priority queue after all

edges leading out of x and y have been processed. The array to the right shows the

�nal priority queue. Note that after vertex c was processed, the edge (c; b) was relaxed

and (y; b) was inserted into the priority queue with length 8.

form a number of Relax steps and that in each such step the priority queue may

need to be updated. The process of Relaxing an edge (u; v) consists of testing

whether we can improve the shortest path to v found so far by going through

u and, if so, updating the value for v, i.e., adding a new entry and removing

an old entry. Since every vertex contains information about which clusters it

belongs to and the distance to each cluster center, each update is performed in

time O(cv). It should be pointed out that this is the only place where we are

unable to eliminate the use of Random Access since it is critical that this update

be performed eÆciently, i.e., in constant time. Also note that an edge (u; v) may

be Relaxed several times (O(cv) times), each time with respect to a di�erent

cluster center.

Algorithm ParallelDijkstra

Q=Initialize(G0, cluster centers) O(n)

while Q 6= ; do O(n � cv)
u =ExtractMin(Q)

for each vertex v adjacent to u do O(1)

Relax(u; v) O(cv)

end

Thus the time and space complexity of the algorithm is a�ected by the

amount of overlap of the clusters in the cluster cover. The space complexity of
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the data structure is O(n�cv+R). Furthermore, the Relax-operation has a run-
ning time of O(cv) and, the total number (O(n �cv)) of ExtractMin-operations

can be performed in total time O(n �cv+R). A careful implementation of cluster

cover can be made to run in time O(n � c2v +R).

Computing the cluster graph

Now we are ready to describe how to compute the cluster graph. The input

is a weighted graph G with a weight function w, a set of cluster centers C =

fv1; : : : ; vmg, and two di�erent radii r and R, where R > r. In order to compute

the cluster graph, the algorithm computes a cluster cover from the same set of

cluster centers but with the two radii, r and R. Let the cluster covers with radii

r and R be denoted by Kr and KR respectively. We augment the cluster cover

procedure to also produce a data structure that supports the following queries

for both the cluster covers:

FindCenters(v;K): Given v 2 V , it returns all cluster centers vi such that

v is in a cluster from K centered at vi, i.e., DfG;wg(v; vi) is at most the
radius of the clusters in K. It also returns DfG;wg(v; vi) for these cluster
centers.

ComputeDistance(vi ; v): Given v 2 V , and a cluster center vi, it returns

DfG;wg(v; vi) if DfG;wg(v; vi) � R; otherwise, it returns the value 1.

Now the cluster graph H = (V;EH) is computed easily as follows. The intra-

cluster edges of H are computed by performing FindCenters queries for each

vertex v 2 V in the cluster coverKr and adding the corresponding edges. Recall

that FindCenters returns a set T of 2-tuples, where each tuple t consists of a

vertex t:w and its distance t:d to v. The algorithm is described below in pseudo

code, and has a running time of O(n � cv).

Algorithm IntraEdges

for every vertex v 2 V do

T :=FindCenters(v;Kr)

for every element t 2 T do

AddIntraEdge(v; t:w; t:d)

end

From De�nition 8.7 we have that the inter-cluster edges can be of two types,

type 1 and 2. An edge [vi; vj ] of type 1 is added if vi =2 Kj and vj =2 Ki and

DfG;wg(vi; vj) � R, where Ki;Kj 2 Kr are clusters with centers at vi and vj .

For every cluster center vi, we use the FindCenters query to list all the clus-

ters from KR that it is contained in. The centers vj of these clusters satisfy the
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condition that DfG;wg(vi; vj) � R. Now we use the ComputeDistance queries

to make sure that vi =2 Kj and vj =2 Ki. Adding the inter-cluster edges of type

1 is done in time O(n � c2v).

Algorithm InterEdgesType1

for every cluster center v in Kr do

T :=FindCenters(v;KR)

for every element t 2 T do

If ComputeDistance(v; t:w) � r then

AddInterEdge(v; t:w; t:d)

end

The time complexity of computing the cluster graph is O(n � c2v). Having the
cluster centers selected before performing the clustering enables clusters to be

grown in \parallel" and thus the above algorithm is able to use one common

priority queue to grow all the clusters, and is consequently able to perform the

clustering eÆciently.

Maintaining the cluster graph

An edge [vi; vj ] of type 2 is added if there exists an edge e = (ui; uj) 2 E such

that ui 2 Ki and uj 2 Kj . During the computation of the cluster graph H , only

intra-cluster edges and inter-cluster edges of type 1 are added. Additional edges

may be added during a phase of the greedy algorithm. Every time the greedy

algorithm decides to add an edge e = (u; v) to the partial spanner graph, several

inter-cluster edges of type 2 may be added to H . This is achieved as follows:

for every edge e = (ui; uj) that is to be added to G0, perform FindCenters

queries for ui and uj from Kr and join the corresponding cluster centers by

inter-cluster edges in H . The weight of such edges are computed by performing

two ComputeDistance queries for ui and uj with the corresponding cluster

centers and adding it to the weight of (ui; uj). It is clear that the function below

runs in O(c2v) time, and it is performed O(n) times.

Algorithm InterEdgesType2(ui; uj)

T1 :=FindCenters(ui;Kr)

T2 :=FindCenters(uj ;Kr)

for every t1 2 T1 do

for every t2 2 T2 do

AddInterEdge(t1:w; t2:w; t1:d+ w(ui; uj) + t2:d)

end
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Selecting the cluster centers for a phase

In order for the Cluster-graph function to be implemented eÆciently, it needs

to have the set of cluster centers as input. For the �rst phase, the cluster centers

C1 are identi�ed in a greedy fashion using the weighted graph G0 = (V;E0) with
real-valued edge weights, and using a radius of r = ÆW1. That is, select any

point v 2 V , not belonging to any clusters already computed, as a cluster center,

compute the cluster with center at v. Continue this procedure until all points in

V belong to a cluster. This is referred to as Naive-Centers in the algorithm

given in Fig. 8.2. Naive-Centers runs in O(n logn) time, since this can be

implemented using the standard Dijkstra's algorithm. For subsequent phases,

cluster centers are identi�ed (using UpdateCenters) in a di�erent way. The

set of cluster centers are always chosen as a subset of the cluster centers used in

the previous phase.

At the end of each phase, the algorithm selects a set of cluster centers for the

next phase. These centers are guaranteed to be suÆciently far apart from each

other. More speci�cally, the cluster centers Ci used in phase i are guaranteed

to be at a distance of at least ri=2.

In phase i, the set of cluster centers for phase i+ 1 is computed as Ci+1 :=

CinMi, i.e., a subsetMi of the cluster centers are deleted from the list of cluster

centers. We now describe how the set Mi is chosen. M1 is the empty set,

implying that C2 is identical to C1. For i > 1, the algorithm picks a cluster

center from Ci and marks all cluster centers that are within distance r from it.

The cluster centers that are marked are inserted into Mi and hence, deleted in

the next phase. This is easily implemented by calling the FindCenters after

the cluster cover for phase i has been computed. The next cluster center is then

picked and the process continues until all centers have been processed. Finally,

Ci+1 := CinMi. Clearly this process runs in time O(m � cv). (It is important to
note that since the integralization changes in every iteration, vertices that are

at distance r0 in one iteration are at distance r0=2 in the next iteration.)

We now show that in phase i the cluster centers are guaranteed to be at a

distance of at least r=2 from each other. In phase 1, since cluster centers are

identi�ed by using a radius of r, all cluster centers are at a distance of at least

r from each other. In phase i� 1, if two cluster centers are at a distance of r or

less, then one of them will get marked, and will subsequently be deleted from the

list Ci for phase i, as shown in Fig. 8.5. Lemma 8.8 speci�es conditions under

which vertices belong to at most a constant number of clusters. It follows from

this lemma that no vertex of H is in more than a constant number of clusters

of radius r or of radius R (since R
r = 1

Æ ).

Lemma 8.8 Let C = fv1; : : : ; vmg � V be a set of vertices such that for any



118 Fast algorithms for constructing sparse geometric spanners

i+1iPhase i-1

Figure 8.5: If a cluster contains another cluster center then this cluster center is marked

for deletion in the next phase. The �gure shows an example of a set of cluster centers

where the cluster centers that are marked for deletion for the next phase are marked

in grey.

pair of vertices vi; vj 2 C, DfG;wg(vi; vj) > r0. If K = fK1; : : : ;Kmg is returned
by Cluster-Cover(G;C; c0 � r0), where c0 is a constant, then each vertex v 2 V

is contained in at most a constant (which depends on the dimension d and c0)
number of clusters from K.

The conditions of the lemma are true for the cluster graph as constructed

above with r0 = r=2 and c0 = 2 or c0 = 4t=Æ. Hence any vertex in H is part

of at most a constant number of clusters in Kr or KR. The proof follows from

standard packing arguments, see also Section 8.1.1. Similar arguments also

show that the number of inter-cluster edges incident to a cluster center is also

a constant (although it might have a large number of intra-cluster edges). It

follows that the degree of any vertex in H that is not a cluster center must

be a constant, and the size of H is O(n). Note that Improved-Greedy use

integralized weights so the resulting clusters are approximate clusters; they are

a little bit larger (since integers are always rounded up) than the exact clusters.

It is clear that this does not a�ect the correctness of Lemma 8.8.

8.2.3 Answering shortest path queries

When the algorithm Improved-Greedy considers an edge e = (u; v) for in-

clusion in the spanner graph, it needs to answer a shortest path query. It

needs to check if DfG0;wtg(u; v) � t � d(u; v), where G0 is the spanner graph

constructed so far. As noted in [31], it is suÆcient for this query to be answered

approximately. So, it is suÆcient to devise a procedure to eÆciently check if

DfG0;wtg(u; v) � t(1+�0) �d(u; v), for some small �0 > 0. In other words, it is suf-

�cient to check if DfG0;Iwtg(u; v) � t(1 + �00) � d(u; v)=Ui, for some small �00 > 0.
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In fact, the algorithm will check if DfH;Iwtg(u; v) � t � d(u; v)=Ui. The time

complexity of this test is constant if DfH;Iwtg(u; v) < c0 � r, for some constant c0.
Hence, we conclude this section with the following theorem, which follows from

the above arguments.

Theorem 8.9 Improved-Greedy runs in time O(n logn).

Proof: Following the steps of the Improved-Greedy algorithm shown in

Fig. 8.2, we have that step 1 in the initialization and steps 8 and 9 take time

O(n log n); step 2 take constant time; step 6 run in O(log n) time, while step 3

takes O(n) time. The integralization of the weight of the edges from steps 9,

12 and 13, takes a total of O(logn) time per edge. Since each edge is consid-

ered exactly once the total time spent on integralizing and re-integralizing the

weight of the edges is O(n logn) according to Section 8.2.1. Step 14 requires

linear time since cv is bounded by a constant. On line 15 every edge in the input

spanner is considered once. For each edge the algorithm performs one shortest

path query in the cluster graph. As mentioned above, each query takes constant

time. Hence the total time complexity for computing a linear number of shortest

path queries is O(n). Finally, updating the centers is easily done in linear time.

From this it follows that Improved-Greedy runs in time O(n logn).

2

In 1999, Thorup [92] showed that single source shortest path queries could

be answered in linear time for undirected graphs with integer edge weights.

However this algorithm was not used in this paper since it does not visit the

vertices in order of increasing distance, which is crucial for our algorithm. Also,

it uses bit-shift for computing the 
oor function in constant time, which we do

not allow in the real RAM model.

8.3 The graph produced by Improved-Greedy is

a t-spanner

In order to show that the produced spanner graph G0 is a t-spanner we need

two main results. First, we need to show that the cluster graph H approximates

the spanner graph G0, i.e., DfG0;wtg(v; u) � DfH;Iwtg(v; u) � �DfG0;wtg(v; u) for
some constant � close to 1. This is done in Lemmas 8.12 and 8.13. Secondly,

we need to show, Lemma 8.14, that H always is a valid cluster graph of G0.
From these results we easily obtain Theorem 8.15, which says that the produced

spanner G0 is a t-spanner of the complete Euclidean graph.

Since the clusters are computed using the function Iwt(�) instead of wt(�),
clusters are not as precise as they were in [31]. In this section we will assume
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that the smaller radii ri is ÆWi and the larger radii Ri isWi, where Æ is a positive

constant decided in Lemma 8.14 and 8.17. Finally, we set � = nUi
ÆWi

. Some of the

results in this section, and the next, are modi�ed versions of analogous results

in [31].

Lemma 8.10 Let K be equal to Cluster(G0; v; ÆWi; Iwti), i.e., a cluster with

cluster center v and radius ÆWi computed in iteration i of the algorithm. If u

is a vertex in K, then DfG0;wtg(v; u) � (1 + �)ÆWiUi. Otherwise, if u =2 K, then

DfG0;wtg(v; u) > ÆWiUi.

Proof: The lemma follows from Corollary 8.4 and the fact that a cluster from

K with center at v consists of all vertices within integer distance ÆWi from v.

2

Consider the cluster graph H that results from the clustering performed on

G0 at the start of phase i. The following results apply to edges and paths in H .

Lemma 8.11 If u is a cluster center and [u; v] is an intra-cluster edge in H ,

then

DfG0;wtg(u; v) � (1 + �)ÆWiUi: (1)

If [vj ; vk] is an inter-cluster edge in H , then

ÆWiUi < DfG0;wtg(u; v) � (1 + �) � (Wi + 2ÆWi)Ui: (2)

Proof: The �rst statement is a direct consequence of Lemma 8.10, the same

holds for the left inequality in (2). The right inequality in the second state-

ment follows from De�nition 8.7 since an inter cluster edge of type 2 may be

constructed to connect two cluster centers vj and vk since there exists an edge

(x; y) 2 G0 such that x 2 Kj and y 2 Kk and Iwt(x; y) < Wi. 2

For simplicity in the rest of this section we will leave out the unit length Ui. The

following lemma is straight-forward since H is an approximation of G0.

Lemma 8.12 If there exists a path PH in H between vertices u and v such that

Iwt(PH ) = L, then there exists a path PG0 in G0 between vertices u and v such

that Iwt(PG0) � L. We �rst introduce some de�nitions. A vertex u is de�ned

to suÆciently far from a vertex v if, (1) no single cluster contains both u and

v, and (2) DfG0;wtg � Wi. De�ne a cluster path in H to be a path where the

�rst and last edges may be intra-cluster edges, but all intermediate edges are

inter-cluster edges.

The next lemma is the approximate converse of Lemma 8.12.



8.3 The graph produced by Improved-Greedy is a t-spanner 121

Lemma 8.13 Let u be suÆciently far from v. Let PG0 be a path between u and

v in G0 such that wt(PG0) = L1. Then there exists a cluster path PH between u

and v in H such that

Iwt(PH ) = L2 < L1� (1 + �)(1 + 6Æ)

1� 2Æ(1 + �)
:

Proof: Let the path from u to v having weight L1 in G0 be P . We shall use

the notation P (y; x) to denote the vertices of P between vertices y and x, not

including y. We construct a cluster path Q from u to v in H with weight L2 as

follows. Let C0 be any cluster, with center v0, containing u. The �rst edge of Q

is the intra-cluster edge [u; v0]. Next, among all clusters with centers adjacent

to v0 in H , let C1, with center v1, intersect the furthest vertex along P (u; v),

say w1. Add the inter-cluster edge [v0; v1] to Q. Next, among all clusters with

centers adjacent to v1 in H , let C2, with center v2, intersect the furthest vertex

along P (w1; v), say w2. Add the inter-cluster edge [v1; v2] to Q. This process

continues until we reach a cluster center, vm, whose cluster contains v. At this

stage complete Q by adding the intra-cluster edge [vm; v], as shown in Fig 8.6.

We now prove that the weight of Q satis�es the lemma statement.

v0

v1

v2

vm

u

v

path P

path Q

intra-cluster edge

inter-cluster edge

Figure 8.6: Paths in H approximate paths in G0.

Case 1. [m = 1]. In this case there is only one inter-cluster edge along Q.

Since u is suÆciently far from v, we know that L1 > Wi � 2(1 + �)ÆWi. Now

L2 = Iwt([u; v0])+Iwt([v0; v1])+Iwt([v1 ; v]). But Iwt([u; v0]) � (1+�)ÆWi and

Iwt([v; v1]) � (1 + �)ÆWi, while Iwt([v0; v1]) � 2(1 + �)ÆWi +DfG0;Iwtg(v; u) �
2(1 + �)ÆWi + (1 + �)L1. This result follows from the procedure AddInter-

EdgesType2, since wt([v0; v1]) is at most 2(1 + �)ÆWi plus the length of the

shortest edge connecting vertices of the two clusters to which u and v belong.

So L2 � (1 + �)L1 + 4(1+ �)ÆWi, and we have that Wi <
(1+�)L1

1�2(1+�)Æ . Combining
these inequalities, we get

L2 � (1 + �)L1 +
4(1 + �)Æ

1� 2(1 + �)Æ
� L1 <

(1 + �)(1 + 2Æ)

1� 2(1 + �)Æ
� L1:
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Case 2. [m�2 and m is even.] Suppose [vi; vi+1] and [vi+1; vi+2] are any

two consecutive inter-cluster edges on Q. Observe that the sum of their weights

is greater than Wi. If this were not so, then the edge [vi; vi+2] would instead

have been added to Q while Q was being constructed. Divide Q into portions

Q0; Q1; : : :, where Q2i is the portion between v2i and v2i+2. Similarly, divide

P into portions P0; P1; : : :, where P2i is the portion between the last vertex

intersecting C2i and the �rst vertex intersecting C2i+2. We shall �rst prove that

for any even i, the weight of Q2i is no more than a constant times the weight of

P2i.

Let the weight of P2i be p2i and that of Q2i be q2i. Since there cannot be

an inter-cluster edge between v2i and v2i+2, we have that p2i>Wi�2Æ(1 + �)Wi.

Select r to be any vertex of P2i within the intermediate cluster C2i+1. The

vertex r splits P2i into two portions. Let p12i (respectively p22i) be the initial

(respectively �nal) portions; thus p2i=p
1
2i+p

2
2i. From the procedure AddIn-

terEdgesType2 we have Iwt([v2i; v2i+1]) � (1 + �)p12i + 2Æ(1 + �)Wi, and

similarly Iwt([v2i+1; v2i+2]) � (1 + �)p22i + 2Æ(1 + �)Wi. Adding the two we get

q2i � (1 + �)p2i + 4Æ(1 + �)Wi. We now have two inequalities relating p2i, q2i
and Wi. We have that Wi <

p2i
1�2(1+�)Æ , which gives us

q2i < (1 + �)p2i + 4Æ(1 + �) � p2i
1� 2Æ(1 + �)

< p2i � (1 + �)(1 + 2Æ)

1� 2Æ(1 + �)
:

Summing over all even values of i, and taking into account the two intra-cluster

edges at either ends of Q, we get

L2 < L1� (1 + �)(1 + 2Æ)

1� 2Æ(1 + �)
+ 2Æ(1 + �)Wi:

Since u is suÆciently far from v, we know that L1 > Wi � 2Æ(1+ �)Wi. That is,
L1

1�2Æ(1+�) > Wi. Substituting this in the above inequality we obtain

L2 < L1 � (1 + �)(1 + 4Æ)

1� 2Æ(1 + �)
:

Case 3. [m�3 and m is odd.] The analysis will be exactly the same as in

the previous case, except that we have to account for the last inter-cluster edge

along Q and correspondingly the portion of P between the last two clusters.

Let qm�1 be the integer weight of [vm�1; vm], and let pm�1 be the weight of

the portion of P between the last vertex intersecting Cm�1 and the �rst vertex

intersecting Cm. Clearly qm�1 � (1 + �)pm�1 + 2Æ(1 + �)Wi. This inequality

does not change if we rewrite it as qm�1 < ( (1+�)(1+4Æ)1�2Æ(1+�) )pm�1+2Æ(1 + �)Wi. We

then sum up as above, and get

L2 < L1� (1 + �)(1 + 2Æ)

1� 2Æ(1 + �)
+ 4Æ(1 + �)Wi:
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Since L1 > Wi � 2Æ(1 + �)Wi, we have that L1 � 4Æ(1+�)
1�2Æ(1+�) > 4Æ(1 + �)Wi.

Substituting this in the above inequality we obtain

L2 < L1� (1 + �)(1 + 6Æ)

1� 2Æ(1 + �)
:

2

Before processing any group Ei, the algorithm constructs a fresh cluster

graph H . It uses a radius of ÆWi, where (Wi; 2Wi] is the interval which bounds

the edge weights of Ei.

Lemma 8.14 During the processing of any group Ei, the graph H always rep-

resents a valid cluster graph of G0.

Proof: Let the edges in Ei be ordered by increasing weight as ei1; : : : ; eil. The

proof is by induction. In the base case, when none of the edges have been

processed, the lemma is obviously true. Now assume that the lemma is true

just before the algorithm decides to examine edge eij=(u; v). If this edge is not

added to G0, then the lemma still holds. Now, suppose this edge is added to

G0. Since Iwt(u; v) � wt(u; v) > Wi and Æ<1=2, the distance between any two

previous cluster centers in the new G0 will remain greater than ÆWi, and thus the

previous cluster cover will remain valid. Also the previous intra-cluster edges,

and the inter-cluster edges of type 1 (see the de�nition of inter-cluster edges)

will remain the same. We only have to make sure that we add new inter-cluster

edges of type 2, and it is easily seen, that this is done by the algorithm. It

remains to decide what weights are to be assigned to these new inter-cluster

edges in H . Consider one such edge [x; y], where x (respectively y) is the center

of the cluster to which u (respectively v) belongs. The weight of this edge

should be assignedDfG0;wtg(x; y) (the shortest path in the new graphG0 between
x and y). However, it will be too time consuming to compute this directly.

Instead the algorithm assigns the weight as Iwt([x; u]) + Iwt(u; v) + Iwt([y; v]),

see Section 8.2.2. We now show that our choice of Æ makes this acceptable.

Assume the contrary, that a shorter alternate path P exists between x and y.

Since P cannot involve the edge (u; v), it only contains edges of the previous G0.
But we know that (u; v) was selected to be added to G0, thus no cluster path

existed between u and v of weight within
p
tt0�Iwt(u; v) in H . Furthermore,

since u is suÆciently far from v, we may use Lemma 8.13 to get

wt(P ) + 2ÆWi(1 + �) >
1� 2Æ(1 + �)

(1 + �)(1 + 6Æ)
�
p
tt0�Iwt(u; v):

We have that wt(P ) < Iwt([x; u]) + Iwt(u; v) + Iwt([v; y]) which is at most
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Iwt(u; v) + 2ÆWi(1 + �). Putting these two results together we obtain

4Æ(1 + �)Wi + Iwt(u; v) >
1� 2Æ(1 + �)

(1 + �)(1 + 6Æ)
�
p
tt0 � Iwt(u; v):

Using the fact that Iwt(u; v) > Wi we get:

4Æ(1 + �) >
1� 2Æ(1 + �)

(1 + �)(1 + 6Æ)
�
p
tt0 � 1:

If we solve this inequality for Æ, we see that the only positive solutions are

Æ >

p
tt0 � (1 + �)

2(
p
tt0(1 + �) + 5 + 7�+ 2�2)

:

According to algorithm Improve-Greedy the above inequality will never be

satis�ed, see Fig. 8.2. Hence, we have a contradiction. 2

The following theorem now concludes this section.

Theorem 8.15 The graph produced by Improved-Greedy is a t-spanner of

the complete Euclidean graph.

Proof: Follows from the fact that G0 is a
p
tt0 spanner of G and that G is ap

t=t0 spanner of the complete graph. 2

8.4 The weight of G0 is O(wt(MST ))

In [22] it was shown that the greedy algorithm produces a spanner that has

O(n) edges and a total weight of O(log n)�wt(MST (V )), where MST (V ) is the

minimum spanning tree of V . The analysis of the greedy algorithm was then

improved in [30]. The proof relies on a property known as the leapfrog property.

This property restricts how a set of line segments may be positioned in space.

Here we provide a de�nition, which is technical and non-intuitive.

Let t�t0>1. A set of line segments, denoted E0, in d-dimensional space

satisfy the (t0; t)-leapfrog property if the following is true for every possible subset
S = f(u1; v1); : : : ; (um; vm)g of E0:

t0�wt(u1; v1) <
mX
i=2

wt(ui; vi) + t�(
m�1X
i=1

wt(vi; ui+1) + wt(vm; u1)):

Informally, this de�nition says that if there exists an edge between u1 and v1
then any path, not including (u1; v1) must have length greater than t

0 �wt(u1; v1).
The following fact was shown by Das and Narasimhan [31].



8.4 The weight of G0 is O(wt(MST )) 125

v2u2

v1
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S={(u  ,v  ), (u  ,v  ), (u  ,v  )}1 2 31 2 3

Figure 8.7: Illustration of the de�nition of the leapfrog property.

Fact 8.16 (Theorem 3 in [31])

There exists a constant 0 < � < 1 such that the following holds: if a set of

line segments E0 in d-dimensional space satis�es the (t0; t)-leapfrog property

where t�t0��t+1��>1, then wt(E0) = O(wt(MST )), where MST is a mini-

mum spanning tree connecting the endpoints of E0. The constant implicit in the

O-notation depends on t and d.

Now, suppose that we construct a t-spanner such that for every spanner edge

(u; v), the second shortest path is not necessary longer than t�wt(u; v), but longer
than t0�wt(u; v), for some t0 such that t � t0 > 1. In this case the t-spanner

satis�es the (t; t0)-leapfrog property, as can be proved by using arguments similar
to those used in Lemma 2.4 in [30]. Hence, the produced spanner will then have

total weight O(wt(MST (V ))).

So, it remains to prove that the weight of the second shortest path between

u and v is greater than t0�wt(u; v). First note that the edges in E0 do not

contribute much, because their total length is at most equal to the length of the

longest edge (<n�D=n), which is less than the weight of the minimum spanning

tree. We estimate wt(E0nE0), where E0 is the set of edges produced by the

algorithm.

Lemma 8.17 Let e=(u; v) 2 E0nE0. The weight of the second shortest path

between u and v is greater than t0�wt(u; v).

Proof: Let C be the shortest simple cycle in G0 containing e. We have to

estimate wt(C) � wt(u; v). Let e1 = (u1; v1) be the longest edge on the cycle.

Then e12E0nE0, and among the cycle edges it is examined last by the algorithm.

What happens while the algorithm is examining e1?

Assume that e1 is examined in phase i. There is an alternate path in G0

from u1 to v1 of weight wt(C) � wt(u1; v1). But since the algorithm eventually

decides to add e1 to the spanner, at that moment the weight of each cluster path

from u1 to v1 is larger than
p
tt0 � Iwt(u1; v1) � Ui. Notice that Iwt(u1; v1) � Ui
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and wt(u1; v1) is larger than W . This implies that u1 and v1 are not contained

in the same cluster. Thus u1 is suÆciently far from v1. Lemma 8.13 implies that

the weight of each path in G0 between u1 and v1 is large, i.e.,

wt(C) � wt(u1; v1) >
p
tt0 � Iwt(u1; v1) � Ui >

p
tt0 � wt(u1; v1) � 1� 2Æ(1 + �)

(1 + �)(1 + 6Æ)
:

But we know, according to the algorithm, that Æ �
p
tt0�(1+�)t0

2(1+�)(
p
tt0+3t0)

. Substituting,

we obtain wt(C)�wt(u1; v1) > t0�wt(u1; v1). 2

Finally, since Lemma 8.17 holds, we can use the following observation which

together with Fact 8.16 concludes the proof of Theorem 8.1.

Observation 8.18 E0=E0 satis�es the (t
0; t)-leapfrog property.

Proof: Consider any subset of the edges, S = f(u1; v1); : : : ; (um; vm)g of E0.
By Lemma 8.17 we know that t0 � d(u1; v1) is smaller than the weight of the

second shortest path between u1 and v1 in G0. Consider a path P from v1 to

u1, composed of the shortest path from v1 to u2 (of weight � t � d(v1; u2)), the
edge (u2; v2), the shortest path from v2 to u3 (of weight � t � d(v2; u3)), and so

on, until the �nal portion is the shortest path from vm to u1. Clearly wt(P ) is

at least as large as the weight of the second shortest path between u1 and v1.

But wt(P ) is also equal to the right hand side of the de�nition of the leapfrog

property. The fact follows. 2

This concludes the proof of Theorem 8.1.

8.5 Open problem

The main open problem that remains unsolved is if it's possible to construct

a sparse t-spanner in time O(n logn) in the algebraic decision tree model of

computation.
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Chapter 9

Higher order Delaunay

triangulations

One of the most well-known and useful structures studied in computational

geometry is the Delaunay triangulation [32, 38, 75]. It has applications in spatial

interpolation between points with measurements, because it de�nes a piecewise

linear interpolation function. The Delaunay triangulation also has applications

in mesh generation for �nite element methods. In both cases, the usefulness of

the Delaunay triangulation as opposed to other triangulations is the fact that

the triangles are well-shaped. It is well-known that the Delaunay triangulation

of a set P of points maximizes the smallest angle, over all triangulations of P .

One speci�c use of the Delaunay triangulation for interpolation is to model

elevation in Geographic Information Systems. The so-called Triangulated Ir-

regular Network, or TIN, is one of the most common ways to model elevation.

Elevation is used for hydrological and geomorphological studies, for site plan-

ning, for visibility impact studies, for natural hazard modeling, and more.

Because a TIN is a piecewise linear, continuous function which is generally

not di�erentiable at the edges, these edges play a special role. In elevation mod-

eling, one usually tries to make the edges of the TIN coincide with the ridges and

valleys of the terrain. Then the rivers that can be predicted from the elevation

model are a subset of the edges of the TIN. When one obtains a TIN using the

Delaunay triangulation of a set of points, the ridges and valleys in the actual ter-

rain will not always be as they appear in the TIN. The so-called `arti�cial dam'

in valleys is a well-known artifact in elevation models, Fig. 9.1. It appears when

a Delaunay edge crosses a valley from the one hillside to the other hillside, cre-

ating a local minimum in the terrain model slightly higher up in the valley. It is

known that in real terrains such local minima are quite rare [48]. These artifacts

127
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Figure 9.1: Arti�cial dam that interrupts a valley line (left), and a correct version

obtained after one 
ip (right).

need to be repaired, if the TIN is to be used for realistic terrain modeling [86], in

particular for hydrological purposes [67, 68, 91]. If the valley and ridge lines are

known, these can be incorporated by using the constrained Delaunay triangula-

tion [26, 36, 66]. The cause of problems like the one mentioned above may be

that the Delaunay triangulation is a structure de�ned for a planar set of points,

and does not take into account the third dimension at all. One would like to

de�ne a triangulation that is both well-shaped and has some other properties as

well, like avoiding arti�cial dams. This lead us to de�ne higher-order Delaunay

(HOD) triangulations, a class of triangulations for any point set P that allows

some 
exibility in which triangles are actually used. The Delaunay triangulation

of P has the property that for each triangle, the circle through its vertices has

no points of P inside. A k-order Delaunay (k-OD) triangulation has the relaxed

property that at most k points are inside the circle. The idea is then to develop

algorithms that compute some HOD triangulation that optimizes some other

criterion as well. Such criteria could, for example be, minimizing the number

of local minima, and minimizing the number of local extrema. The former cri-

terion deals with the arti�cial dam problem, and the latter criterion also deals

with interrupted ridge lines. For �nite element method applications, criteria like

minimizing the maximum angle, area triangle, and degree of any vertex may be

of use [17, 18, 19].

In Section 9.1 we de�ne HOD triangulations and show some basic properties.

In Section 9.2 we give an algorithm to compute which edges can be included in a

k-OD triangulation. The algorithm runs in O(nk logn+n log3 n) expected time.

In Section 9.3 we consider 1-OD triangulations, and prove more speci�c, useful

results in this case. In Section 9.4 we give the applications. We show that for 1-

OD triangulations, most of the criteria we study can be optimized in O(n logn)

time. We also give a general heuristic for the case of k-OD triangulations.

Directions for further research are given in Section 9.5.
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9.1 De�nitions and preliminaries

We �rst de�ne higher-order Delaunay edges, higher-order Delaunay triangles,

and higher-order Delaunay triangulations. Given two vertices u and v we will

denote by uv the edge between u and v and by ~uv the directed line segment

from u to v. Furthermore, the unique circle through three vertices u; v and w is

denoted C(u; v; w), and the triangle de�ned by u; v and w is denoted 4uvw. We

will throughout this article assume that P is non-degenerate, that is, no three

points of P lie on a line and no four points of P are co-circular.

De�nition 9.1 Let P be a set of points in the plane. For u; v; w 2 P :

� An edge uv is a k-order Delaunay edge (or k-OD edge) if there exists a

circle through u and v that has at most k points of P inside, Fig 9.2;

� A triangle 4uvw is a k-order Delaunay triangle (or k-OD triangle) if the

circle through u, v, and w has at most k points of P inside.

� A triangulation of P is a k-order Delaunay triangulation (or k-OD trian-

gulation) of P if every triangle of the triangulation is a k-OD triangle.

For k = 0, the de�nitions above match the usual Delaunay edge and triangle

de�nitions.

Lemma 9.2 Let P be a set of points in the plane.

(a) Every edge of a k-OD triangle is a k-OD edge.

(b) Every edge of a k-OD triangulation is a k-OD edge.

(c) Every k-OD edge with k > 0 that is not a 0-OD edge intersects a Delau-

nay edge.

Proof: For the �rst part, consider the circle through the three vertices of the

k-OD triangle. This circle contains at most k other points of P . Since no four

points are co-circular, we can slightly change the circle by letting one of the

vertices loose and leaving it to the outside, while acquiring no other point of P .

This shows that the edge connecting the two other vertices of the triangle is a

k-OD edge. The second part of the lemma follows immediately from the �rst

part, and the third part is trivial. 2

Note that the converse of Lemma 9.2(a) is not true. Not every triangle con-

sisting of three k-OD edges is a k-OD triangle. Figure 9.3a shows an example

where three 1-OD edges form a 3-OD triangle. A natural question to ask is

whether any k-OD edge or any k-OD triangle can be part of some k-OD tri-

angulation. Put di�erently, can k-OD edges exist that cannot be used in any
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(a) (b) (c)

Figure 9.2: (a) The 0-OD edges (b) extended with the new 1-OD edges, and (c) the

new 2-OD edges.

k-OD triangulation? Indeed, such edges (and triangles) exist. In the next sec-

tion we'll give a method to test for any k-OD edge if it can be extended to a

k-OD triangulation. Figure 9.3b shows an example where 4uvx is a 1-OD tri-

angle that cannot be included in a 1-OD triangulation since 4uvy is not a 1-OD
triangle. To distinguish between \useful" and \non-useful" k-OD edges we use

the following de�nition.

De�nition 9.3 Let P be a set of points in the plane. A k-OD edge uv with

u; v 2 P is useful if there exists a k-OD triangulation that includes uv. A k-OD

triangle 4uvw with u; v; w 2 P is valid if it does not contain any point of P

inside and its three edges are useful.

There is a close connection between k-OD edges and higher-order Voronoi

diagrams.

Lemma 9.4 Let P be a set of n points in the plane, let k � n=2 � 2, and let

u; v 2 P . The edge uv is a k-OD edge if and only if there are two incident faces,

F1 and F2, in the order-(k + 1) Voronoi diagram such that u is in the set of

points that induces F1 and v is in the set of points that induces F2.

Proof: For two points u and v in P , let m be the smallest integer such that the

bisector of u and v appears in the order-m Voronoi diagram. Since on the one

u

v

xy

(a) (b)

Figure 9.3: (a) Not every triangle with three 1-OD edges is a 1-OD triangle. (b) Not

every 1-OD triangle (4uvx) can be included in a 1-OD triangulation.
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side of the line through u and v there are at least n=2�1 points of P , the bisector
of u and v will appear in all higher-order Voronoi diagrams from order-m up to

order-(n=2� 1). This bisector separates two faces representing subsets of P as

stated in the lemma. 2

Since the worst case complexity of order-(k+1) Voronoi diagrams is O((k +

1)(n � k � 1)) [57], it follows that O(n + nk) pairs of points can give rise to

a k-OD edge. These pairs can be computed in O(nk logn + n log3 n) expected

time [1].

9.2 Higher order Delaunay triangulations

In this section we show some properties of k-OD edges. Next we give an eÆcient

way to compute all useful k-OD edges of a point set P . In Section 9.4.2 we give

a heuristic to compute k-OD triangulations that take into account some other

criterion.

9.2.1 Properties of k-OD edges

There are always Delaunay edges that must be present in a k-OD triangulation,

for example the convex hull of the point set. For the 1-OD case we will show later

that the Delaunay edges that must be in a 1-OD triangulation partition the inte-

rior of the convex hull into triangles and quadrilaterals. The k-OD triangulation

skeleton is de�ned as the set of Delaunay edges that does not intersect any useful

k-OD edges. A �rst step of completing the k-OD skeleton would be to decide

which k-OD edges are possible to insert into a k-OD triangulation. The main

result in this section is Lemma 9.10, which allows us to perform a simple and

fast test to check if a k-OD edge is useful or not. The result also implies heuris-

tics for computing a k-OD triangulation; this given in Section 9.4.2. We next

study the properties of an arbitrary k-OD edge uv. The following observation

is a reformulation of Lemma 9.4 in the Dutch textbook [32].

Observation 9.5 For any k-OD edge uv and any Delaunay edge sp that inter-

sects uv, the circle C(u; v; s) contains p.

The following corollary is a direct consequence of Observation 9.5.

Corollary 9.6 Consider a k-OD edge uv. Any circle through u and v that does

not contain any vertices to the left (right) of ~vu contains all vertices to the right

(left) of ~vu that are incident to Delaunay edges that intersect uv.
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u

v

s1

si

u

v

u

v
(a) (b)

Figure 9.4: (a) If uv is useful then 4us1v is a useful k-OD triangle. (b) The hull of

k-OD edge uv (shaded) and the completion of uv.

9.2.2 Testing a k-OD edge for usefulness

To decide if a k-OD edge, uv can be included in any k-OD triangulation one has

to check if the point set can be k-OD triangulated with the edge uv. A naive

strategy to decide if the edge is useful or not would be to search through all

possible k-OD triangulations to see if the edge is included in any of these. This

is obviously both space and time consuming, since there is an exponential number

of possible k-OD triangulations. We will show that it suÆces to check only two

circles through the points u, v, and one other point, and count how many points

they contain. For simplicity, we will assume, without loss of generality, that uv

is vertical and that u is above v.

Lemma 9.7 Let uv be a k-OD edge and let s1 be the point to the left (right)

of ~vu, such that the circle C(u; s1; v) contains no points to the left (right) of ~vu.

If 4us1v is not a k-OD triangle then uv is not useful.

Proof: Let us assume that 4us1v is not a k-OD triangle. It follows that the

circle C(u; s1; v) contains more than k points to the right of ~vu. Suppose that

still a k-OD triangulation T exists that includes uv. Let 4usiv be the triangle

in T to the left of ~vu. Then point si must lie either to the left of ~vs1 or to

the right of ~us1, otherwise s1 would lie inside 4usiv and this contradicts that

4usiv is a face in T . By symmetry we may assume that si lies to the left of ~vs1,

see Figure 9.4a. Let p1 and p2 be two points in P such that 4s1p1p2 is in T

and it intersects the triangle 4uvs1. Possibly, p1 = u, or p2 = si, or both. The

circle C(s1; p1; p2) includes the part of the circle C(u; v; s1) to the right of ~vu

since p1 and p2 lie outside C(u; v; s1) (one of them may lie on the circle). Hence,

C(s1; p1; p2) contains at least k + 2 vertices: k + 1 points that are also inside

C(u; s1; v), and furthermore the point v. This implies that 4usiv cannot be a
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k-OD triangle either, contradicting the assumption that a k-OD triangulation

exists. 2

We would like to go a step further than the result of Lemma 9.7, namely,

prove that if the \�rst" triangle on the left side of ~uv, 4us1v, is valid, and

the symmetrically de�ned triangle on the right side of ~vu is valid, then uv is

useful. We show this result constructively, by giving a method that gives a k-

OD triangulation that includes uv. It appears that we only have to compute a

triangulation of a small region near uv, called the hull of uv. The hull is de�ned

as follows.

De�nition 9.8 The hull of a k-OD edge uv is the closure of the union of all

Delaunay triangles whose interior intersects uv, Fig. 9.4b. We say that the hull

of a k-OD edge uv is complete if it is triangulated. The additional edges needed

to triangulate the hull are called the completion of uv, Fig. 9.4b. Furthermore,

uv is said to be isolated if the hull of uv is in the triangulation.

The following algorithm computes a triangulation of the hull. Let uv be a k-

OD edge. Let p1 be the point to the right of ~vu such that the part of C(u; v; p1)

to the right of ~vu is empty. Note that p1 must be a vertex on the boundary

of the hull of uv. Add the two edges up1 and vp1 to the graph. Continue like

this recursively for the two edges up1 and vp1 until the hull of uv to the right

of ~vu is completely triangulated. The same procedure is then performed on the

left side of ~vu. The obtained triangulation is called the greedy triangulation of

the hull of uv, see Figure 9.5. The next corollary, which is a direct consequence

of Corollary 9.6, shows that the hull is a simple polygon consisting of at most

2k + 2 vertices.

Corollary 9.9 The Delaunay edges intersecting one useful k-OD edge uv are

connected to at most k vertices on each side of the k-OD edge.

u

v

u

v

u

v

Figure 9.5: Greedy triangulation to the right of ~uv.
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Lemma 9.10 Let uv be a k-OD edge, let s be the point to the left of ~vu, such

that the circle C(u; s; v) contains no points to the left of ~vu. Let s0 be de�ned

similarly but to the right of ~vu. Edge uv is a useful k-OD edge if and only if

4uvs and 4uvs0 are valid.
Proof: The \only if" part is given in Lemma 9.7. For the \if" part, consider

the greedy triangulation of uv. It is given that 4uvs and 4uvs0 are valid. Since
the recursive continuation for the edges vs, vs0, us, and us0 yields circles to

be tested that can only contain fewer points than C(u; s; v) or C(u; s0; v), the
corresponding triangles must be valid too. 2

After preprocessing, we can test eÆciently whether an edge uv is a useful

k-OD edge. First, locate u and v in the Delaunay triangulation, and traverse it

from u to v along uv from Delaunay triangle to Delaunay triangle. Collect all

intersected Delaunay edges. Determine the endpoints of intersected Delaunay

edges left of ~vu and right of ~vu. Next, we determine s and s0 as in the lemma

just given. Now we must test how many points lie in the circles C(u; s; v) and

C(u; s0; v) to determine usefulness. To this end, we use a data structure for

storing a set of points that can report the (k+1)st closest point for a given query

point, i.e., the center of the query circle. If the distance between the center and

the (k+1)st closest point is at most the radius of the query circle then there are

at most k points within the circle. Note that the (k+1)-order Voronoi diagram

returns the (k + 1)st closest point. The (k + 1)-order Voronoi diagram can be

preprocessed in time O(kn log kn) such that queries can be answered in time

O(log kn). Thus, it takes O(kn logn) time in total to check all k-OD edges for

usefulness, since there are O(kn+ n) edges to be tested.

In Section 9.1 we showed that all k-OD edges can be determined in ex-

pected time O(kn logn + n log3 n) using an algorithm for higher-order Voronoi

diagrams [1]. Thus, it takes O(kn logn+ n log3 n) expected time overall to de-

termine all useful k-OD edges.

9.3 One-higher order Delaunay triangulations

We examine the special structure of any 1-OD edge uv further. We already

observed in Corollary 9.9 that if uv is a useful 1-OD edge, and not a 0-OD edge,

then it intersects exactly one Delaunay edge. We again assume without loss of

generality that uv is vertical and that u is above v.

Lemma 9.11 Every useful 1-OD edge intersects at most one useful 1-OD edge.

Proof: From Corollary 9.9 we already know that any Delaunay edge at most

intersect one 1-OD edge. It remains to prove the lemma for any non-Delaunay,
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useful 1-OD edge uv. Let sy be the Delaunay edge that uv intersects. If there

exists a useful 1-OD edge that intersects the Delaunay edge su it must be con-

nected to y, according to Corollary 9.9; see Figure 9.6. Denote this edge xy.

Since xy is a 1-OD edge x must be connected to u and s by Delaunay edges.

Consider the circle C(u; v; y). This circle contains only s by Observation 9.5

and from the fact that uv is useful. The circle C(u; y; x) can be obtained by

expanding C(u; v; y) until it hits x while releasing v. Since we let go of v, both

v and s is contained in C(u; y; x). Thus 4xuy cannot be a 1-OD triangle and

hence xy cannot be a useful 1-OD edge, which contradicts our assumption. By

symmetry this holds for any edge intersecting uy, sv, or vy. 2

u

v

y
s

x

Figure 9.6: There are no non-Delaunay, useful 1-OD edges that intersect.

The lemma just given shows that if uv is a useful 1-OD edge that is not

Delaunay, then the four Delaunay edges us, uy, sv, and vy must be in every

1-OD triangulation. Given a triangulation T and two edges e1 and e2 in T , we
say that e1 and e2 are independent if they are not incident to the same triangle

in T . From Corollary 9.9 and Lemma 9.11 we obtain the main result of this

section.

Corollary 9.12 Every 1-OD triangulation can be obtained from a Delaunay

triangulation by 
ips of independent Delaunay edges.

It is easy to see that|given the Delaunay triangulation|all 1-OD edges can

be determined in linear time. In O(n logn) time, we can �nd out which ones are

useful.

9.4 Triangulations with additional criteria

Recall from the introduction that Delaunay triangulations are often used in

terrain modeling, because they give well-shaped triangles. However, artifacts
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like arti�cial dams may arise. Since the Delaunay triangulation is completely

speci�ed by the input points (in non-degenerate cases), there is no 
exibility

to incorporate other criteria into the triangulation, which is why higher-order

Delaunay triangulations were introduced. In this section we show how to avoid

arti�cial dams in higher-order Delaunay triangulations, and deal with a number

of other criteria as well. Many of these criteria can be optimized for 1-OD

triangulations, which is what we will show �rst. Then we give a general heuristic

to incorporate such criteria in k-OD triangulations. Unfortunately, we currently

cannot optimize nor approximate these criteria yet.

9.4.1 Applications for 1-OD triangulations

Minimizing the number of local minima

To minimize the number of local minima is straight-forward if the domain is the

class of 1-OD triangulations.

Lemma 9.13 Removing a local minimum by adding 1-OD triangles never pre-

vents any other local minimum from being removed.

Proof: Consider a convex quadrilateral with vertices A;B;C;D with heights

a, b, c, d in clockwise order with a; c < b; d, and assume that the Delaunay

triangulation connects B and D. If a local minimum in A or C can be removed

by the 
ip which connects A and C (if it gives two 1-OD triangles) then this 
ip

is always good. The only two vertices that lose a neighbor are B and D|they

lose each other as neighbor| but neither will become a local minimum because

they remain connected to the vertices A and C, which are lower. 2

Theorem 9.14 An optimal 1-OD triangulation with respect to minimizing the

number of local minima can be obtained by 
ips of independent Delaunay edges

in O(n logn) time.

Minimizing the number of local extrema

The number of local extrema|minima and maxima|can also be eÆciently min-

imized over all 1-OD triangulations. In the previous subsection we could choose

the edge in any quadrilateral that connects to the lowest of the four points. But

if we want to minimize local minima and maxima we get con
icts: it can be that

the one edge of a convex quadrilateral gives an additional local minimum and

the other edge gives a local maximum. Consider the subdivision S consisting of

all edges that must be in any 1-OD triangulation, so S contains triangular and

convex quadrilateral faces only. Consider the set of points that either have no
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Figure 9.7: Local extrema appearing in an even cycle.

lower neighbors or no higher neighbors; they are extremal in S. Consider the

graph G = (M;A), where M is the set of nodes representing the local extrema,

and two nodes m;m0 are connected if they represent points on the same quadri-

lateral face and the one triangulating edge makes that m is not a local extremum

and the other triangulating edge makes that m0 is not a local extremum.

Lemma 9.15 Any quadrilateral face of S de�nes at most one arc in G, and this

arc connects a local minimum to a local maximum.

Proof: Any triangulating edge of a quadrilateral face can only avoid a local

extremum if the highest two points are opposite and the lowest two points are

opposite in the quadrilateral. One triangulating edge can only make the second-

highest point non-maximal, and the other triangulating edge can only make the

second-lowest point non-minimal. 2

From the lemma it follows that G is bipartite, because every arc connects a

local minimum to a local maximum. G may contain many isolated nodes; these

extreme points can be removed without a�ecting the other extrema. For any

node incident to only one arc, we can choose to make the point representing

that node to be non-extremal, without giving up optimality (minimum number

of local extrema). If there are no nodes connected to only one other node, all

nodes appear in cycles. Since the graph is bipartite, every cycle has even length.

Take any cycle (of even length). Now all nodes in the cycle can be made non-

extremal: we assign one quadrilateral (represented by the arc) to one incident

extremum of S and choose the triangulating edge to make it non-extremal. We

can repeat to treat nodes with only one incident arc, and even cycles, until no

more extrema can be removed by triangulating edges. Then we complete the

triangulation of S in any manner. This greedy, incremental method completes

the subdivision S to a 1-OD triangulation that minimizes the number of local

minima and maxima. The algorithm can be implemented to run in linear time

when S is given.
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Theorem 9.16 An optimal 1-OD triangulation with respect to minimizing the

number of local extrema can be determined in O(n logn) time.

Other criteria

In visualization applications it is sometimes important to construct planar draw-

ings with small degree and large angles between the edges. Thus, a natural op-

timization criteria for a 1-OD triangulation would be to minimize the maximum

degree, since the Delaunay triangulation already maximizes the minimum angle.

Besides visualization applications [33], constructing drawing with high angular

resolution is important in the design of optical communication networks [37].

The problem of minimizing the maximum degree have been studied in several

papers [42, 49, 51]. We know of no polynomial-time algorithm that gives an

optimal solution to this optimization problem. The more general problem to

complete the triangulation of a biconnected planar graph while minimizing the

maximum degree is known to be NP-hard. There are eÆcient approximation al-

gorithms though, as the following fact shows. Let �(G) be the maximum degree

of a graph G.

Fact 9.17 [Kant & Bodlander [51]] There is a linear time algorithm to trian-

gulate a biconnected planar graph G such that for the triangulation G0 of G
�(G0) � d 32�(G)e + 11:

We cannot use the fact directly since it does not work on biconnected embedded

straight-line graphs such as the 1-OD triangulation skeleton. But every quadri-

lateral face is convex, hence the interior of the 1-OD triangulation skeleton can

always be triangulated using the above fact. The problem is the convex hull of

P , which will be triangulated by edges that are not straight lines. Let h be the

number of points in P on the convex hull of P . Recursively we add points until

the convex hull contains three points as follows: Construct an exterior hull H

with dh=2e points that entirely includes P . Connect each point in H with three

points in the convex hull of P , keeping the resulting graph planar. Note that

this recursive procedure gives a triangulation of the region outside P , where each

point originally not in P has degree at most 7, and each point on the convex hull

of P is connected to at most two additional edges. This gives us the following

theorem.

Theorem 9.18 There is an O(n log n) time algorithm to triangulate the 1-OD

triangulation skeleton S such that the degree of the triangulation is at most

d 32�(S)e+ 13.

Note that the Delaunay triangulation itself is a 2-approximation of the opti-

mal 1-OD triangulation.
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As was pointed out in the introduction such criteria as minimizing the max-

imum angle and minimizing the maximum area triangle may be of use for �nite

element method applications. These criteria (together with a number of other

criteria not mentioned above) are trivial to optimize if the edges in the domain

are useful 1-OD edges. This follows from the fact that these are all local opti-

mization criteria, thanks to the nice property of 1-OD triangulations.

Theorem 9.19 For a Delaunay triangulation of a set P of n points in the plane,

an optimal 1-OD triangulation can be obtained by 
ips of independent Delaunay

edges in O(n log n) time for each one of the following criteria: (i) minimizing the

maximal area triangle, (ii) minimizing the maximal angle, (iii) maximizing the

minimum radius of a circumcircle, (iv) maximizing the minimum radius of an

enclosing circle, (v) minimizing the sum of inscribed circle radii, (vi) minimizing

the number of obtuse angles, and (vii) minimizing the total edge length.

9.4.2 Applications for k-OD triangulations

It appears to be diÆcult to obtain general optimization results for all of the

criteria listed before, given a value of k � 2. When k is so large that every

pair of points gives a useful edge (like k = n � 3), then certain criteria can

be optimized. For example, when minimizing the number of local minima, we

can choose an edge from every point to the global minimum (in non-degenerate

cases), so that there is only one local minimum. For minimizing the maximum

angle and some other criteria, various results are known [17].

To develop approximation algorithms for k-OD triangulations, we need to

determine how many hulls a single hull can intersect. To this end, we �rst prove

an upper bound on the maximum number of useful k-OD edges that intersect

a given Delaunay edge. Figure 9.8 shows that 
(n) 2-OD edges can intersect

v

u

Figure 9.8: Many 2-OD edges can intersect a Delaunay edge uv.



140 Higher order Delaunay triangulations

a given Delaunay edge. But these 2-OD edges cannot all be useful. The next

lemma shows that the maximum number of useful k-OD edges intersecting a

given Delaunay edge does not depend on n, but only on k.

Lemma 9.20 Let uv be any Delaunay edge. The number of useful k-OD edges

in a triangulation T that intersect uv is O(k).

Proof: For simplicity we assume that u is vertically above v. Let Ql and Qr

be the left endpoints respectively the right endpoints of the useful k-OD edges

of T that intersect uv. Assume without loss of generality that jQlj � jQrj. Let
pr be the point in Qr such that C(u; v; pr) includes all points in Qr, except pr.

There exists a point pl 2 Ql such that plpr intersects uv.

It is easily seen that C(u; pl; pr) together with C(v; pl; pr) will contain all the

points in Qr nfprg, see Fig. 9.9. Now we may apply Lemma 9.7. If plpr is useful

then the \�rst" triangles to left, denoted 4plprx, and right, denoted 4plpry, of
~prpl must be valid, i.e., the two circles C(pl; pr; x) and C(pl; pr; y) includes at

most k points. But, C(pl; pr; x) and C(pl; pr; y) will together include C(u; pl; pr)

and C(v; pl; pr) which we know include at least jQrj�1 points. Hence, it follows

that jQrj � 1 � 2k, and since T is a planar triangulation the total number of

useful k-OD edges intersecting uv will be O(k). 2

pr

u

v

pl

x

y

Figure 9.9: Illustration of the proof of Lemma 9.20.

Lemma 9.21 Let uv be a useful k-OD edge and let H be its hull. The number

of hulls of useful k-OD edges included in a triangulation T that intersect the

interior of H is O(k2).

Proof: By Corollary 9.9, the hull H of uv contains O(k) Delaunay edges of

P in its interior. Any useful k-OD edge intersecting H must intersect at least

one of these, or itself be the Delaunay edge. By Lemma 9.20, O(k) useful k-OD
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edges included in a triangulation T can intersect a common Delaunay edge. The

bound of O(k2) follows. 2

To keep track of which hulls intersect we de�ne a hull intersection graph G

as follows. There is a node for the hull of every useful k-OD edge. Two nodes

are connected by an arc if their hulls intersect, that is, there exists a point that

is interior to both hulls. The choice of one useful k-OD edge e possibly prohibits

the choice of any other useful k-OD edge whose hull intersects the hull of e. In

any case, if we choose an independent set of nodes in graph G, we get a set of

hulls of useful k-OD edges that can be used together in a k-OD triangulation.

Minimizing the number of local extrema (revisited) Suppose that all

useful k-OD edges and their hulls have been computed, and the hull intersection

graph G as well. Choose any useful k-OD edge e that removes a local minimum.

Mark the node for the hull of e in G, and also the adjacent nodes. Choose

the greedy triangulation of the hull of e. The choice of e prevents at most

O(k2) other useful k-OD edges to be chosen for the triangulation according to

Lemma 9.21. Therefore, at most O(k2) points can be prevented from not being

a local minimum. Continue to choose a useful k-OD edge that avoids another

local minimum, provided its node in G is unmarked, until no such choice exists.

The same approach can be used to minimize the number of extrema.

Theorem 9.22 Let m be the smallest number of local minima (or extrema)

in any k-OD triangulation of a set P of points. There is a polynomial time

algorithm that computes a k-OD triangulation of P with at most O(m �k2) local
minima (or extrema).

Minimizing the number of obtuse angles We consider minimizing the

number of obtuse angles in k-OD triangulations in the case that k is constant.

Consider the Delaunay triangulation. For any obtuse angle at a point p, it

can be avoided if there is a useful k-OD edge that splits it into two non-obtuse

angles. It can also be avoided if there are two useful k-OD edges that split it into

three non-obtuse angles. We need not explicitly look at more than two edges,

because there will always be two that already work. The completion to a k-OD

triangulation may have more useful k-OD edges incident to p.

It is easy to test if a single useful k-OD edge can avoid an obtuse angle at a

point p. To test whether two useful k-OD edges are needed, we can test any pair

e; e0 at point p. When we remove the Delaunay edges intersecting e or e0, we
get a region|the union of the hulls of e and e0|that must be triangulated to a

k-OD triangulation. Since k is constant, we can try every possible triangulation

of the region. This leads to:
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Theorem 9.23 Let k be a constant, and let m be the smallest number of obtuse

angles in any k-OD triangulation of a set P of points. There is a polynomial

time algorithm that computes a k-OD triangulation of P with at most O(m �k2)
obtuse angles.

9.5 Directions for further research

For the case when k � 2 we just have some initial result. Obviously, optimization

or approximation results are a topic of future research. Another issue we would

like to address is experimental: how much bene�t can one obtain for the criterion

of optimization with respect to the Delaunay triangulation?
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