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Introduction

This thesis is devoted to a special dual control problem arising in the biological
part of a waste water treatment plant, the activated sludge system. The main
problem is to estimate parameters of a physical model of the dissolved oxy-
gen (DO) concentration dynamics. The parameters, the respiration rate (R)
and the oxygen transfer rate ([(za), have a particular interest. The problem
becomes difficult because the two parameters are not identifiable with straight-
forward estimation techniques. At the same time the DO concentration needs
to be controlled.

The control problem has been solved earlier by adaptive control schemes,
see [4]. However, these adaptive controllers are based upon linear, mathemat-
ical models rather than nonlinear, physical ones. Consequently they suffer
from the fact that the parameters have no physical interpretation.

The thesis is split into three separate parts. First there are two papers
[1-2] presenting the ideas and methods. Experimental results from a full scale
plant in Malmo are given in the third part.

In the first paper the estimation problem under open loop is considered.
The estimator model is written in a special form to take advantage of the
fact that the physical model is linear in its parameters. To achieve this the
derivative of the DO concentration must be estimated. A Kalman filter is used
as an estimator in both simulations and on real plant data. It is shown that
the parameters can be tracked simultaneously in presense of noise. However,
the drawbacks are both that the relative changing rate of the parameters
must be known and that there is slow convergence. Therefore another idea is
presented: Both parameters are updated only in periods when the excitation
is high. Between these occasions the assumed slower parameter is frozen and
the other parameter (R) is calculated from the DO mass balance equation.

In the second paper the “high excitation idea” is generalized such that no
a priori information about the parameters changing rate or relative changing
rate is needed. The approximation of the DO derivative is improved by us-
ing estimated derivatives of the parameters. Also a dual control strategy is
presented. The control idea is the following:

o The model is nonlinear and time-varying. Use a nonlinear and time-
varying controller to make the closed loop system linear and time-invariant.

e This requires fast accurate tracking of the parameters. Close the loop
with a relay to force the system into a limit cycle. This will give excitation
needed for the estimation.

The second paper contains just simulations and no experiments on a real
plant. The third part is filling this lack. The ideas from the second paper have
been implemented in a real-time language, Modula2, on a personal computer.
The ideas have then been tested at Sjolundaverket, the major waste water
treatment plant in Malmd. The experiments will be discussed in detail in the
last section,
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1. INTRODUCTION

The oxygen uptake rate or respiration rate (R} is an
essential variable in both fermentation and activated
sludge systems. This paper presents an estimation method
to find R directly from measurements of dissolved
oxygen concentration and air flow rate in an open
aeralor system. This idea was proposed by Brouzes i
(1968), among others. The difficulty in calculating R |
directly from the DO concentration is that the oxygen i
transfer rate k, a also has to be known. To estimate k, a ;
is not trivial, sthee it is varies slowly along with R (s€e |
Olsson (1684)). Therefore kLa and R have to be estimated |
simultaneously.

Estimation of k., a and R has been tried elsewhere. Since
information about the oxygen transfer rate is useful in
several applications it has been estimated separately, :
while R has been assumed to be constant but unknown,
(see Olsson-Hansson {1976), Holmberg (1981)}. The value
of k, a may indicate both changes in e.g. the water quality i
and “clogging of the air diffusers. Even a membrane
failure in the DO sensor may be detected in this way. In
an adaptive control simulation study (Ko et al {1982)) R

has been assumed constant, which is unrealistic. The
servo problem, varying DO setpoint, has been considered
instead of the real regulator problem, varying load. In
another approach only deviations of R from an
(unknown) steady state value could be estimated (see
Cook et al {1981)).

The main contribution of this paper is to show that the
values of the two quantities can be estimated on-line
simultaneously without any steady-state off-set even if
both gquantities are time varying.

The R and the k a cannot be estimated simultaneously
unless a good use of the system structure is made. Here
the nonlinear structure has been retained. Still the model
only includes the DO mass balance. Two approaches are
presented in the paper. The first is a Kalman filter
approach, where the two parameters are tracked
simultaneously. It is demonstrated that unbiased estimates
are obtained. The second approach uses large singular
changes in the air flow signal to rapidly update the
oxygen transfer rate, a so-called deadbeat estimator. The
two methods can be combined.

fermentation; estimation; oxygen transfer;

The estimator design begins with an appropriate process
model, described in the following section. Then the
estimator structure is developed first to the Kalman
approach and then to the deadbeat estimator. Both
simulations and open loop plant experiments are used to
evaluate the two methods.

2. PROCESS MODEL

The oxygen mass balance equation for the system under
consideration is:

3—‘{:—6~y+a-u-[c—y]—}? (2.1)

where

t) dissolved oxygen, concentration [mg/l]
u(t) air flow rate {m~/min}

t) respiration rate [mg/(lh)]
time variant coefficients
oxygen transfer rate {1/h]

Our goal is to identify the parameters « and R. The
coefficient o is an unknown function of aerator type,
water depth, basin shape and even air flow rate. Aerator
clogging accounts for much of the wvariation in o
Therefore we will instead let « be time dependent and
estimate it on-line. The respiration R is the total oxygen
utilization rate of the microorganisms in both the
primary respiration, wused ‘in synthesis, and the
endogenous respiration, during decay. Respiration can
vary unpredictably due to different loads on the plant
and also will be estimated on-line.

in practice B and ¢ are known. The parameter @3
corresponds to a flow term in the mass balance and
flows can be measured rather easily. The saturation
concentration c is a function of oxygen partial pressure,
temperature, salinity and surfactant concentration. All of
these quantities are assumed to be known and are almost
constant. It ought to be sufficient to update ¢ now and
then without risking accuracy.
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3. ESTIMATOR STRUCTURE

Descriptions of time-varying dynamics can be achieved
with different mixes of formality and intuition. The
respiration R will change significantly in a number of]
hours while o differs just slightly from day to day, so !
that in terms of parameter variation « and R have their
own estimation requirements.

Earlier attempts have been made to base the estimator on
the linearized form of (2.1). This approach has several
disadvantages. Since the system seldom is at steady-state
there is no obvious point to linearize about. Moreover,
the parameters of the sampled system will be complex
functions of the parameters of the continuous system {c
and R). This will make it difficult for the estimator to
take advantage of the knowledge of different time scales
of o and R.

Instead of linearizing the right-hand side of (2.1}, which
yields an unwieldy estimator structure, we prefer to
estimate the derivative term, allowing use of the
continuous time system directly as the estimator model!

Then the estimator will have a parameter vector 6={«
R) ., consisting of the parameters we are interested in.

An appropriate estimator structure may look like:

E(t) = 87 (t)e(t) |
where R }
N aft-1) u(t-1){e{t-1)-v(t-1)]
8(t) = [ N ] w(t) = [ |

R(t-1) 1 ‘
(1) = (L) 4 g1y oy (i)
est
where the first term on the right-hand side is the

. approximated derivative.

" An Fuler Approximation of the Derivative

© A difference approximation of the kind

dy(t)  y(t+i)-y(t)
Tl h (3.1)
will work well when the sampling interval h is short

enough. But in measuring there is always noise which
makes it undesirable to use a too short sampling period.
A simple way to make the estimator less noise sensitive
is to lengthen the sampling interval. The difference
approximation will then become poorer as an estimation
of the derivative, causing a bias in the parameter

- estimates.

A Modified Approximation of the Derivative i

Assume for the moment that u{t}), (), B{t), c(t) and R{t)
are constant during the sampling interval. Then the
corresponding sampled mass balance equation from the
computer’s point of view is:

y{kh+h} = y(kh)

+ h* {-B(kh)y(kh) + «(kh)u(kh)[c(kh)-y(kh)] - R(kh)]

C—X(kh)'h h2
——*[(Thr_—— = h - X(kh)é e

¥(kh) = B(kh) + o(kh)-u

#

where h =

(kh)

Then by identification of parts we can easily solve for a
modified expression for the derivative:

dy (kh kh+h)-y(kh
yﬁt ) ool 2 y (kh) (3_2)?

h

The above expression for the derivative is exact at the
sampling instants if the parameters are constant during
the sampling period, which can reasonably be assumed
for all the parameters except for R. We can cover this
assumption in the case of R by selecting an appropriate
sampling interval.

An important difference between the two approximations
is that the accuracy of (3.1} is dependent on the total
process dynamics, while (3.2) is crucially dependent on
just a part of it, R{t). This means that when the
derivative is of most importance, during an excitation
with uf{t), (3.1) will be inaccurate while (3.2} remains
accurate so long as R{t) is relatively constant.

4. SIMULTANEOUS TRACKING

A straight-forward recursive least squares approach
with a forgetling factor would not be able to take into |
account the different rates of change of the parameters. |

Of course that problem is easy to overcome by
introducing one suitable forgetting factor for each
parameter. However, a severe problem occurs when

there is poor excitation; the covariance matrix P in the
recursive algorithm may explode.

A better formal treatment is the Bayesian approach, see :
Ljung and Séderstrém (1983). Here the parameter vector |
0 is considered to be a random variable. This approach
will not lead to any P matrix explosion risks. The |
description of the system is a linear regression model
with stochastically varying dynamics.

Assume that the true value of the parameter vector 8
varies according to ]
a(t+1) = 0{t) + w(t)

E
where {w(t})} is a sequence of independent Gaussian
random vectors such that w{t} has zero mean and
covariance matrix R1{t). This allows us to separate the
time scales of « and R by making an educated guess as to
their respective variances. The overall description of the
system becomes:

a(t+1) = 8(t) + w(t)

5(t) = ¢ (1)8(t) + e(t)
where

o) = Gl e( - (Ot
s(t) = 4 ety oy (o) ;

and Ew(t)wT(s) = R1{t)é
Ew(t)e(s) = 0 ;

Applying the Kalman filter gives the estimates

8(t) = B(t-1) + L{t)e(t)
e(t) = g(t) - o (t)0(t-1)
L(t) = P(t e(t)
R2(t) + ¢ (t)P(t-1)p(t)
P(t) = P(t-1) + Ri(t) - P(t;i)@(t)

R2(t) + @ (t)P{t-1)e(t)




Even though the Kalman filter can be shown to converge
to the true parameter values, as will be demonstrated in
Section 7, it may take a long time if there is no a priori
knowledge of the estimates. A way to quicken the
estimation is to take advantage of large input excitations
to rapidly update the estimates. An approach where
singular excitations are utilized is described below.

5. MAKING USE OF SINGULAR EXCITATIONS

Now consider a situation where the air flow rate is
changed stepwise. Reconsider the system (2.1) which can
be rewritten as:

5(t) = eft-1)-p(t)
where t(t) = L gty y(eo1) + R(1-1)
u{t-1})-[c(t-1) - y(t-1)]

i1}

e(t)
Let the estimator structure be:
g(t) = aft-1)e(t)

- wt=v(tt) i) g(e-1) + R{t-1)
h

where &(t)

For this estimator a new equation error ¢ can be
defined.

e(t) = 5(t) - «(t-1)e(t)

' The_"Deadbeat” Estimator Idea

. Consider the equation error ¢ at two different times t
and t,. If € is negligible and the derivative is esumategi
" witholit error, the following two equations are satisfied:

= euyleyy I =Ry

it

ce(t 0 = alul[c~y1] - R

1)

) s(tz) =0 = azuz[c—yz] -R, = azuz[c—yz] - kK

" To ensure the requirement that ¢ = 0, the estimate of R
‘s updated with a large gain. This results in a linear
. system consisting of two equations with four unknown
" variables, a,=oft R =R(t)), o ) and R =R(t,). To,
" be able to sc}lve &115 system the numger of un nowns has
- to be reduced. Continuity reasons give:

o -+

R T { ! 2 ;
1 2 |

: R1 -~ RZ !
Thus if At (= t, - t,) is chosen small enough to ensure

that even the fastest parameter R varies negligibly during
the time interval there are only two unknowns. Note that |
this linear system consists of two different equations
only if the input u is significantly different at the time:
instants considered. Since the time interval must be small
such an input change is a sudden singular excitation. If |
At is chosen to be the sampling period, « and R are
updated in one step. Thus the name deadbeat.

In practice, during periods of low excitation when noise
is a large part of the variation, the Kalman filter is more
appropriate than the deadbeat strategy. The algorithm can
be divided naturally into two sections. The first is the
Kalman filter and the second is built on the special
deadbeat corrector. The criterion for switching to the
deadbeat corrector depends on the input signals,
parameter bias and noise level, etc.. This is the subject of
present research.

6. SIMULATION EXAMPLES

This section will demonstrate deadbeat and Kalman
parameter estimation using simulation plots. The inputs (o<
the estimator, u and vy, are shown in Figs. 6.1 a and b!
respectively. For simplicity the . singular excitation is
made by abrupt square wave changes of the air flow rate
u. Consider an excitation to be singular (large enough) if
Au > 5,

u

a. ;
65. i
|
60. j
] |
55, | !
0. 16 20. 30 40
6.y
b.
4, //“\\J/A\\\
\\‘
2. \/
0. 10. 20. 30. 40.
(h)

Fig. 6.1  Air flow rate (a) [m3/min] and dissolved
oxygen concentration (b} [mg/l] as input and;
output to the simulated model. |

alfa,alfa-est

[«

0.02% }
I
0.01 |
|
!

0.
0. 16. 20. 36. 40.:
R,R-est j
i
20. !
b,
10. e —— f

e

0.
o 10. 20 30. 40.
Fig. 6.2 The real and estimated « and a {a) _and

respiration rate R and R. Notice that o« is
estimated only at a time of singular excitation.
Variation of o between excitation§ gives also a
bias in the estimated respiration R.

Figures 6.2 a and b illustrate the discrete nature of the
deadbeat approach. The true parameters are generated as
sine-waves:

{ ot) = 0.02:[1 + 0.1-sin(2n §)] , T_ = 40
e

R(t) = 10-[1 + 0.1-sin(t)]

The inaccurate in the deadbeat estimates is due to the!
rapid variation of R during the excitation. The estimates
give, however, a good picture of the parameter dynamics.
The deadbeat estimator is designed to be wused only
during singular excitation periods since it is otherwise
sensitive to plant and measurements noise. Therefore it
has to be combined with a Kalman filter, and can give a
quick start-up of the estimates. Also the deadbeat
estimator can be executed intermittantly at input
excitations to check the parameter tracking.




Figures 6.3 a and b illustrate the tracking capability of
the Kalman filter when noise is present. Here, the output
vy has an additive component of white noise with the
standard deviation 0.01. The period of @ is T = 80, i.e. a
change of 10 % in 20 hours. @

Lalfa,alfa-est

I
0.028)

i

L

150. 200.
)

Fig. 6.3 The simulated values and Kalman estimations
of o and a (a) and respiration rate R and R
(b) respectively. Despite signal noise and large :
variation in the parameters, the estimates:
follow the true values quite well. The dynamic
model input is a square wave.

7. ESTIMATION ON PLANT DATA

Two sequences of sampled data of different length andi

characteristics will now be used. Both sequences come |
from Képpala Sewage Works, Lidings, Sweden. }

The first one has a length of 5 hours and a special
excitation by the air flow rate, (see Fig. 7.1 a). The
output (Fig. 7.1 b) responds as a first order system and :
thus we expect the parameters « and R to vary quite
slowly. The main influences on the dissolved oxygen
dynamics (y) come from the air flow rate (u). Different
choices of initial values for the estimates were chosen to
illustrate that the algorithin converges, (see Figs. 7.1 ¢
and d). However, the deadbeat estimator would be helpful :
to make the convergence faster.

The second data sequence on the other hand, as shown
in Figs. 7.2 a and b, is 50 hours. The excitation by the :
air flow rate (u) is poor with steps at only a few
occasions. Howeaver, the possibility to estimate o is
dependent on the excitation from ¢ = u{c - y), which is
fortunately affected by rapid changes in y. Thus we get
relevant information for the o estimation when there is
large variation in R even though u is constant. The
figures show that the output y changes significantly even
though u is constant, indicating that the main influences
on the dissolved oxygen concentration {y) here is due to
variations in the parameters R and «. The initial value of
the estimates are not crucial as illustrated in Figs. 7.2 ¢
and d. ’

100. u a.

5.
b.
o 1.5 3. 4.5 g
0.03 aifa-est
aifa-es —
N - c.
E\—\;,—m
0.02 e
B “W‘\\E’—“ —— T~
c.oy W_’\J,_n‘_‘,———\_/‘f_r‘_“!
0 1.5 3. 4.5 &
R-est
d
20. o . .
™" Jf‘m‘wuwwm
1 FM\PLT‘}H“"[ AN,
Ul n [P o L AL e mﬂ‘_ﬁ:J
10. e e b oy s
Jqqﬂu\_rm\u’wﬂwwf EINN J‘iﬂm
C.
0. 1.5 3. 4.5 6.
(n)

Fig. 7.1 Air flow rate (a) [ma/min] and dissolved

oxygen concentration (b) [mg/l] from the:

Képpala Sewage Works, Lidings, Sweden. The
sampling interval is 3 minutes. Estimated & (c)
and R (d) started with different initialization of
the Kalman filter to show convergence.

8. ESTIMATION AND CONTROL. CONCLUSIONS.

The knowledge of K, a and R may be an end in itself. It
has already been “mentioned that ¥ a reflects the
efficiency of the aeration system. Knowing R, the specific
growth rate or the variations of substrate concentration
can be calculated. Also, the knowledge of R is essential
for good sludge inventory control in wastewater
treatment, see Olsson (1984). The specific oxygen
utilization rate in the aerator can be used to specify the
target for return sludge control or step feed control in
activated sludge systems.

The estimator can be part of an adaptive controller for
dissolved oxygen. However, the need for extra air flow
excitation should be noted. The use of self-tuning control
for the DO has been demonstrated in a full scale
application, see Olsson et al (1985). In this application,
however, R and k a were not estimated explicitly.
Research is being conducted to learn more about the
combination of this estimator with controllers.
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Fig. 7.2 Air flow rate (a) and dissolved oxygen.
concentration (b) from Kippala. The air flow
rate excitations are less frequently than in Fig.
7.1. Crude initial guesses of the estimates o (c)
and R (d) give acceptable convergence. The
sampling period is 6 minutes. .
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ADAPTIVE DISSOLVED OXYGEN CONTROL AND
ON-LINE ESTIMATION OF
OXYGEN TRANSFER AND RESPIRATION RATES

JIf Holmberg
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Lund Institute of Technology
P.O. Box 118
S-22100 Lund, Sweden

Abstract: The paper describes two problems concerning the dissolved oxygen (DO) dynamics in an
open aerator of an activated sludge system. The first is an estimation problem where the oxygen
transfer rate Kra and the respiration rate R are estimated simultaneously on-line. The second is
control of the DO concentration during estimation, using a dual control strategy.

Keywords: Dissolved oxygen control; oxygen transfer rate; respiration rate; oxygen uptake rate;
estimation; dual control; adaptive control.

1. INTRODUCTION

Demands on more efficient treatment of wastewater have raised interest in identification of impor-
tant process parameters, both for better control and for the evaluation of process performance.
Control experience with selftuning regulators {STR) have demonstrated the need to compensate
for time-varying process parameters. (see Olsson et al (1985)).

The idea of on-line estimation of the respiration rate R in an activated sludge system, given only
DO sensor and air flow signals, was proposed by Brouzes (1968), among others. In a covered aerator
this problem is straightforward. It is substantially more difficult in the case of an open aerator since
R cannot be calculated from the DO mass balance unless the oxygen transfer rate (Ka) is known.
Consequently, the problem of simultaneous estimation of K ;e and R has been addressed. Different
approaches have been suggested. In an adaptive simulation study (Ko et al (1982)) R has been
assumed constant, which is unrealistic. Another approach (Cook et al (1981)) did just estimate
deviations of R from an (unknown) steady state value. An approach to simultaneous estimation of
both the parameters but without control has been presented in Holmberg et al {1985).

Treatment of the continuous nonlinear differential equation describing the oxygen mass balance is
begun by putting the equation into discrete form. This presents some difficulties since the system is
not only nonlinear but also time variable. Estimators with different complexity and model accuracy
will be presented. These estimators include the continuous time parameters as their parameter
vector. This is convenient for many reasons. We obtain direct knowledge of the parameters, Kra
and R, which have their own interest. Another feature is that the derivative of the parameters
can be used in the model structure to maintain a better tracking. No prior assumptions about the
parameter variations are made, such as different forgetting factors etc..

It is advantageous to estimate the parameters under closed loop DO control in activated sludge
systems. A dual controller using the estimator above will be described and simulated.

The paper is organized as follows: The DO mass balance equation is first described, leading to
derivation of the estimator structures. A dual controller is then presented which combines si-
multaneous estimation and control. Through the paper estimation and control is tested on two
contrasting cases of parameter variation, using simulation. Test on real data are planned. Real
data experiments without control have been examined in Holmberg et al (1985).

2. PROCESS MODEL

Neglecting flow terms the dissolved oxygen mass balance equation can be described as follows

dy
5 =aufc—y)— R
Y dissolved oxygen concentration [

1
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u air flow rate [;Z—]

R respiration rate [2]
a,c time variant coefficients
oa-u=Kra oxygen transfer rate [711—]

Our goal is to estimate the parameters a and R on-line during control of y. The fundamental
quantity Kya, the oxygen transfer rate, is here considered to be proportional to the air flow rate u.
The coefficient « is a function of aerator type, air production system, water depth, basin shape and
even air flow rate and is not known in the practical case. Aerator clogging accounts for much or
the variation in «. The respiration R is the total oxygen utilization rate of the microorganisms in
both the primary respiration, used in the synthesis, and the endogenous respiration, during decay.
Respiration can vary unpredictably due to different loads on the plant. Both of these parameters
will be considered to be unknown functions of time and will be estimated on-line.

The DO saturation concentration ¢ is a function of oxygen partial pressure, temperature, salinity
and surfactant concentration. All of these quantities are assumed to be known and are almost
constant.

3. ESTIMATOR STRUCTURES

The estimator structures we are going to use work in discrete time. Thus the DO equation first
has to be put in discrete form, which presents some difficulties since the DO equation is both
time-varying and nonlinear. A simple transform is to approximate the derivative using an Euler
approximation (difference approximation). This is not appropriate, however, since such an estima-
tor structure gives a bias in the estimates even if the parameters are constant. If the derivative
approximation also uses estimated parameters, there will be no bias in the estimates if the pa-
rameters are constant. This corresponds to zero order hold sampling. It is therefore convenient to
adopt the standard notation for sampled systems (®, ') when deriving the estimator structure.
Since the problem is to track parameters that are not constant, a reasonable generalization is to
use estimated derivatives of the parameters. This corresponds to first order hold sampling and will
improve the parameter tracking considerably.

Some formal definitions

Reconsider the nonlinear time varying system

p=aulc—y)—R

a= —au
v=oaue— R

to transform the nonlinear equation to a linear equation

Introduce

y=ay+v
Sampling this continuous time linear equation gives
y(kh+ h) = dy(kh)+T (1)

where

o= B(h) = ofo atkhto)ds
h
{ C=T(h) = / B(s)o(kh + h - 8)ds
0

It is convenient to define .
h* E/ O(s)ds
0

where the notation will be explained later.
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Zero order eztrapolation

Assume the parameters a and R and, of course, the input u, to be piecewise constant. Then the
state transmission ® can be expressed in h* as follows

$ =1+ h*a

Note that ® satisfies
1) CD(O) =1

2) & = h*a+ h*a =ad since a=20

which are the two conditions for the state transmission. We also have
I = h*v(kh)
Substitution into the sampling equation (1) now gives
y(kh 4+ h) = (1 + h*a)y(kh) + k" v(kh)

y(kh + h) — y(kh)
h!&
If the parameter variation is not too rapid during the sampling interval a reasonable approximation
of the derivative would be (Fh+ 1) (k)
N y e h1 + —_— y ¥
g(kh) = e

Remark: Compare the similarity with Euler approximation, where instead of the sampling interval
h we have substituted for a “generalized sampling interval” h*.

= ay(kh) + v(kh) = y(kh)

|

h hz
=/ O(s)ds = —(e** ~ 1) h+ar-
o 2
Having an approximation of the derivative, it makes sense to write the system

p=p"0

=(37) o=(3)

and estimate the parameter vector 8 from a linear regression model

where

g=pTo

Remark: We have to use an old estimate of o in the approximation of the derivative. This means
that if we start from scratch the derivative approximation is identical to Euler approximation the
first step. Convergence of the estimates will then be helped by the fact that y(a) — g when & — «.

But what happens when the parameters are varying? How sensitive is the above described derivative
approximation to parameter variation?

The above derivative appzo\amatlon assumes the parameters are constant during the sampling
interval. The error in ¢ due to parameter variation may then be expressed in 0 as described below:

S =]-— yl -—[ | = |gradsy - t9| {goTé[

dg di

where S now is a measure of the sensitivity in 3} with respect to variations in 8. Note, that not all
variation in § influences the derivative approximation. We are now able to extract two contrasting
cases. One where S =~ 0, corresponding to the same changing rate in & and R and another where
S £ 0, corresponding to variations of the parameters in opposite phase.
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This is shown in the following figures. The true parameters & and R have been varied with similar
changing rates. Fig. 1. illustrates the estimation for the two cases of similar and opposite changes.
Note, that no a priori assumption of the variations have been made.

o o
0.020 B
2, ﬂ
0.019
T T 1 T T 1
& 10 16(h) 8 10 18(h)
R R

T T 1 T T 1
3 10 &
5 10 15(h) 18(h}

Fig. 1. The parameters & and R when (a} S = 0 {left) and (b) 5 55 0 (right).

g 0, N
0.2 m
J
0.1
T : — ; / r . .
[ 10 18(h) B 10 13(h)

Fig. te. The sensitivity S for Figs. 1 a and b.
The estimator used in the above examples will now be described.

The deadbeat estimaior

Consider the DO equation at two consecutive sampling instants (indexed (); and ()z). Assuming
the parameters to be piecewise constant, i.e. §; = #; = § we can write the the two equations in

matrix form - )
(G- (2
©3 Y2 )

Let the input change at every sampling instant to make the linear equation system well conditioned.
Then the following estimator can be used

-1 /4
(1) &)
¥2 Ya

where the estimator is a direct solution of a linear equation algebraic system. Since the estimates
converge in finite steps we call this estimator the deadbeat estimalor.

First order extrapolation

To handle those cases better when S is significantly larger than zero, a natural step of refinement
is to also use information about the parameter derivatives in the approximation of g.

y=1(0,0)
Assume the parameters to be piecewise linear.

alkh+1)=a+at a=a(kh) ; a=a(kh)
. where .
v(kh +t)=v+ 9t v=u(kh) ; ©=70(kh)

The state transmission ® can now be written
h {h
d=1+ / a(kh + 8)®(s)ds = 1+ ah’ +c'sj 2®(s)ds (2)
0 0
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and

h h
= / O(h — 8)v(kh + 8)ds = h*v + t')/ sd(h — 8)ds
0 0
Denote the integrals
h
I :/ 3®(s)ds
0
Lk,
I = / s®(h — 8)ds
Jo
Substitution into equation (1) will now give

y(kh 4 k) = y(kh) + k* (ay(kh) + v(kh)) + al1y(kh) + o1

y(kh +h) — y(kh) — (@l y(kh) + 013)
= e
If the parameter derivatives do not vary too rapidly during the sampling interval a reasonable
approximation of § would be

=ay(kh) + v(kh) = y(kh)

5 kh +h) — y(kh) — (@I y(kh) + 0T
y(kh) — y( ) U( )h$ ( 1y( ) 2)

Evaluation of the derivative approzimation f/

For the above expression to make sense we have to have some constructive way to calculate the
integrals I; and I,. Also, we need to estimate the parameter derivatives. However, the integral
expression for A* does not need to be solved. Instead equation (2) can be used once we have

calculated Iy. )
h* =

(= 1-Goraln)

Gold

Using the fact that the integrands in Iy and I, are very smooth functions and almost linear when
o ig small we can try to make a polynomial approximation. If we take one step with a Runge-Kutta
of 4% order we get

h 2 y
I = /O s(a)ds = " (20(2) + B(h)) +o{1*)

h 2
I = j/; s®(h = a)ds = = (20(2) + 2(0)) + o)

Fistimation of the parameies derivatives

FEstimation of the parameter derivatives & and I can be done with the least squares method. If n
is the number of estimates, the estimated derivative of « is

n kii:l ((kh)as) — f: (kh)ki:l @y

v k=1
a = f n
n Y. (k)= (¥ kh)
k=1 k=1

R is estimated analogously.
For n = 3 and n = 5 we get the following estimates for the derivatives:

. &3"'&1

= Ton } n=
&_.2515-—074—-51!2—2&1 ; n=2~5
- 10h

Using this information about the parameter derivatives, estimation is greatly improved.
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Note that the accuracy of the estimates is greatly improved compared to Fig. 1.

(5 o
~0.020 | || 0.020]
0.018 L 0.018 f\
0.016 ¢.010
T T 1 T T 1
3 10 16(h) [ 10 18(h)
R R

i - %_,./\\_,/

7 T ) 1
[ 1o 15(h) 5 10 18(h)

Fig. 2a (left). Real and estimated o and R, when ¥ = §(8,0) and n = 3.

Fig. 2b (right). As Fig. 2a but with n = 5.
The deadbeat estimator

Once again consider the DO equation at two consecutive sampling instants one and two steps
before the current time. (indexed (); and ()2). Assume the parameters to be piecewise linear, i.e.
9=140,+ 01 +h =0, + 92 - 2h. Then the deadbeat estimator, in this case, solves the following linear
equation system with respect to 4.

(@)E ( i+ T 6 )
3 Us + L 6,2h

4. ESTIMATION AND CONTROL
A simple dual controller will now be described. The idea is to use the estimated time-varying
parameters in the controller in such a way that the closed loop system tends to become a linear
time-invariant system. In order to track the parameters with good accuracy, the deadbeat estimator
presented earlier will be used.
The control sdea
Once again consider the process

dy
-~ =qulc—y)~ R
i (c—v)

Let the setpoint be y,, and the error e = y,, — y. Choose the controlier

]?—{—e
Y= =,
ale - y)

Then if @ = « and B = R the closed loop systemn becomes

fiﬂ_ de
dt - dt

and we expect the error go to zero exponentially.

Combining Estimation and Control

If the error is kept to zero for a long time with constant input #, we cannot be sure the parameters
also are constant. They may drift along the line «-C = R, where C' = u(c—y) = constant. Thus, an
estimator can give accurate estimates only at occasions when the parameters deviate from this line.
During DO control, then, parameter estimation is greatly hindered unless the system is excited
in sorme manner. This leads to the concept of dual control, where a compromise is made between
DO-regulation and on-line estimation of & and R.
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In the previous Section we used the deadbeat estimator, which involves solving a linear equation
system. The linear equation system was made well conditioned by letting the input oscillate every
sampling instant. The same idea can be used during control.

The following minor modification of the above control scheme provides the deadbeat estimator

with a nonsingular linear equation system even when the error is small. Modifying the control
signal with the term aign(e) we obtain

R +e+aign(e)

0= »
&(e—y)
yielding for & = « and R=nR:
dy de
il Tk + sign(e)

Parameterization
Introducing parameters in the above control scheme will make it possible to choose in advance the
limit cycle amplitude |5%|. Thus we would like |5¥| come close to a designated parameter e,y in

our regulator.

Looking at the sampling instants, the following controller

‘= R +ace+d-sign(e)
G(c—y)

gives the closed loop system

d d
a%/ - _d;’; =ace+d-eign(e)

when @ = a and R = R. The parameter a, specifies the closed loop pole, i.e. the rate of a step

response. Now, we want the parameter d to tune itself during the limit cycle such that e = *eg,.
As an approximate test for limit cycle we can take e +e1—1| < €4p. Thus the tuning for d becomes

diy1 =dy +kd(esp f‘ﬁfi)

where

1.
vy =

kS when le;+e—y| < eqp
4= .
0 otherwise

Simulations of the two extreme cases studied earlier will now be given during control. The estimator
structure using derivatives of the parameters has been used. These derivatives were calculated using
5 estimates as in Fig.2b. The controller parameters were a, = 10, e,y = 0.01, k% =1 and the initial
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Fig. 88. The parameters o« and R (left). The corresponding input v and output g (right).
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Fig. 8b. As Fig. 3a. but with the sensitivity ofy:} to parameter variations S 5% 0.

Note the difference between Fig.2b and Fig.3b. In the latter, a smaller |Au] is used in order to
fulfil the constraint e = =e,,. This influences the quality of the estimated parameters. Clearly,
there is a compromise between fast parameter tracking and small error.

1t would be desirable to choose a large sampling interval. One reason is that the DO model is an
approximate description where faster dynamics from the air production system has been neglected.
Fast sampling could make the model inaccurate. Another reason is to suppress noise sensitivity.
The first order extrapolation method used above will allow a larger sampling period than the zero
order method. This is nice since the input u then doesn’t need to be changed that often.

5. CONCLUSIONS

Methods for estimating the oxygen transfer rate and respiration rate during control of the dissolved
oxygen concentration have been developed.

The estimator structure, working in discrete time, strives to maintain the continuous time structure
of the DO mass balance equation. Thia description is made by approximating the derivative. The
estimator will then be linear in its parameters, constitufing a usual linear regression model.

The control idea is to use the estimated time-varying parameters in the controller in such a way that
the closed loop system tends to become a linear time-invariant system. This requires fast accurate
parameter tracking. Tracking objectives requires high excitation of the system, contradicting the
regulation purpose. Clearly, we have to compromise between regulation and parameter tracking.
This compromise is made by introducing a limit cycle in the closed loop system. The oscillations
are made sufficiently large to provide the estimator with information about the parameters but
small enough so as not to contradict the regulation purpose.
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Plant Experimentation

Experiments on a full scale plant have been made. In spite of some practical
problems, which will be discussed, the dual control algorithm seems to work
as expected. The physical parameters I and K ra have been estimated during
control of the DO concentration at a specific point along the biological reactor.
A description of the relevant part of the plant will be given. Then the operator
communication on the personal computer is briefly illustrated by a typical
start-up scenario. The practical aspects are discussed together with the given
experiments. Then a summary and suggestion for future research end the
thesis.

1. Plant Description

The estimation and control ideas have been tested at Sjolundaverket, the major
waste water treatment plant in Malmé. The plant is designed to serve 550 000
person equivalents but a normal load is about 400 000. A normal water flow
rate is about 1 300 I/s. The total flow is split between an activated sludge
system and a fixed film reactor system. The former system is divided into
three parallel double basins, each one of them having a volume of 3 300 m?>.
The outline of one such double basin is shown in Fig. 1. The hydraulics of the
basin is considered as described by four complete mix reactors in series. Since
only the total air flow and not the air flow distribution can be manipulated
the DO concentration along the basin will display a typical profile. Four
DO probes are located in the basin. The controller uses one probe for DO
measurements and acts on the total air flow rate. The upstream DO sensor
can represent the influent DO concentration to the tank. Thus one fourth of
the basin is assumed to behave like a complete mix reactor.

water flow

air flow Q ’
_- DO sensor §
_______ o] E
- po ¥
u x&::;g in 5
™, |
e 20 Y
. DO
/ _______ gt
t
I i

T'ig 1. The biological reactor

2. Computer installation

The dual controller is implemented in Modula2 on a personal computer with
real-time facilities. At least four inputs are necessary for the control, i.e.
the air flow rate, u, the influent flow, ), the influent DO concentration, ¥;,,
and the controlled DO concentration, y. However, if corresponding signals




(u, @, Yin,y) from other parts of the reactor are measured, not only estimation
of parameter variation in time but also in space along the basin is possible.
In this case estimation on four different places can be performed to establish
a profile. The respiration rate profile is of particular interest. We would like
to have the respiration rate equal to the endogenous respiration rate in the
end part of the basin, such that the concentration of biodegradable substrate
is negligible. Thus, the profile appearance is connected to the choice of DO
setpoint, see [3].

Just one of the four points can be controlled at a time. In one experiment
the 3/4-point along the basin was controlled as indicated by Fig 1. The 1/2-
point has also been chosen for control. It is easy to change control point. After
the AD-channels have been redefined to correspond to the chosen point the
only work that has to be done is recalibration of the air flow rate setpoint.
This is necessary since the air distribution along the basin is nonuniform.

A block diagram of the DO loop is given in I'ig. 2. The upper loop is the
existing plant control system. The lower loop is the experimental dual control
set-up. Compare with Fig. 1.

y,— PID —1

closed loop u

ur air {low o PTOCEss . y
system
V¥ PC

L

Q¥in

Fig. 2. The DO loop. The lower loop is the dual control system

The air flow rate control system

In the DO model, the air flow rate dynamics is neglected. This is justified
by the different time constants for the DO loop, 15 — 20 minutes, and the air
flow rate loop, 15 — 20 seconds. Unfortunately, this separation in time may be
destroyed by time delays introduced by the air flow controller. It should be
pointed out that this is just practical problems connected with the particular
plant air flow control system. But even though this is a plant specific problem
the air flow control system will be described briefly since it has caused most
of the troubles during the experiments.

The air flow rate control system is shown in Fig. 3. The air flow rate, u, is
composed by 2 parts: one part that is varied continuously, u. € [Uehsin, Uersaz),
and another part that can take only 3 different values, ug € {0, %ipw, Unigh }-
The transition condition hetween the three states of ug is that u, is at an end
value, Uspfin OF Uchfan, during at least half a minute. Also there is hysteresis
added to the transition limits to prevent uy from toggling between two states.
The delay of half a minute is due to the fact that the transition condition is
evaluated only twice a minute. Since the evaluation is based on the measured
air flow rate, u, and not the set point, 4,, it may very well happen a transition
fails just because of some noise or a wrongly calibrated air flow rate sensor.
These fatal errors cause severe problems for the dual controller.
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Fig. 3. The air flow rate control system

4. Operator Communication

The operator communication is driven partly from the mouse and partly from
the terminal. Basic actions such as start/stop of estimator, regulator, logging
and exit the program are driven from the mouse. Stored data and estimates
can be shown in graphical plots by actions {from the mouse. All parameters are
set from the terminal in different dialogue levels. These levels are described
in the appendix.

To give some feelings for how the various commands can be used a scenario
of a typical start-up will be given.

Start-up Scenario

Commands Comments

>PLANT Enter dialogue to set plant specific parameters

P> The prompt P indicates dialogue mode for PLANT
P>what Default values for plant parameters are displayed:

the volume, V, saturation constant, ¢, and scale
constants urs,us, ys, s defining range in engineering unit

P>urs 900  Change scaling constant for the set point u,

P>what Display temporary parameters

P>exit Transfer the parameters to the monitor and exit dialogue
> The prompt indicates main level command mode

SO W] Mouse action to show the data w and y in automatic

scaling. Let us assume they are varying
around 500 m?/h and 2 mg/!l respectively.

>PLOT Inter dialogue to set scaling of the on-line plot area
P>ubias 500  Subtract a bias from the on-line plotted u

P>ybias 2 Subtract a bias {rom the on-line plotted y.

P>exit Transfer the parameters to the monitor

Now the on-line plotted data w and y will
appear in the middle of respective plot area.

>h 2 Set sampling period of plotted and logged data to 2 min.
>nhdual 6 Set sampling period of the dual controller
to nhdual - A = 12 min




>SIGNAL
S>mean
S>amp
S>exit

>

EHOWI

500
50

Enter dialogue for signal generator

Set mean of square wave [m?/h]

Set amplitude of square wave [m3/h]
Transfer the parameters to the monitor

Mouse action to start estimator

Wait a couple of samples until
the parameters have converged.

Show estimated parameters &, B and
u,y in automatic scaling.

Start regulator




5. Experiments

“Reality doesn’t obey us” —Alexander Dubcek 1968

A selection of experiments will now be presented. Different sampling rates,
regulator parameters and control points along the reactor have been investi-
gated. The parameter I{ra has been assumed to be proportional to the air
flow rate, u,i.e. Kra = a-u. Thus the time-varying parameter « is estimated
together with the respiration rate R.
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Fig. 4a. The controlled DO conc. ¥, the air flow rate u (solid) with setpoint 4, (dotted)
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Fig. 4b. The estimated parameters & and I

Experiment 1. (Fig. 4 a-c)

In this experiment the sampling period of the controller was 6 minutes. To
be able to see what happens between the sampling instants every minute data
has been logged and is plotted in Fig. 4a. This is a 24 hours experiment
from a Thursday afternoon to a Friday afternoon. First the signal generator
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has been used to generate a square wave on different levels for calibration of
the air flow rate setpoint u,. The calibration is already acceptable since u,
(dotted curve) coincide with u (solid curve), measured at the 3/4-point along
the reactor. After about 100 min. the control is turned on. The set point, Ysp)
or the mean of the limit cycle, was chosen tc 2 mg/l. The error setpoint, €sps
which is the desired limit cycle amplitude, was chosen to 0.2 mg/!.

On some occasions the estimated parameters have “outliers”, see Fig. 4b.
These erroneous updatings occur when the input u is not changing between
two consecutive sampling instants. Then the excitation needed to get infor-
mation about the parameters is lacking. What actually happens is that the
estimator solves an ill-conditioned equation system (see [2], section 3, dead-
beat estimator). Safeguards against such failures have been added to the code
after this experiment. The dual controller clearly manages to recover imme-
diately after these failures which illustrates that there is no need for & priori
information about the parameters for a start-up.

A plant load maximum usually appears in the middle of the night. That
doesn’t mean people in Malméo have strange night habits. The load top that is
produced by people and industries during the day will reach the waste water
treatment plant towards the night.

The respiration rate, I, can be seen as an indicator of the biodegradable
substrate load. The estimated respiration rate, R, has a top in the middle of
the night (i.e. between 700 and 800 min), which makes sense. The estimated
parameter &, which is reflecting the efficiency of oxygen transfer from gas to
soluble form, is practically constant during the night. That is also expected.

‘ﬁ?”\h %
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Fig. 4ec. Influent DO conc. ¥y, (vight) and controlled DO conc. Y (left) in a 3-d plot.

The parameters were estimated only at the 3/4-point along the reactor
in this experiment. To illustrate that there is a considerable respiration rate
profile along the reactor a 3-dimensional plot of the DO concentration is shown
in Fig. 4c. The inlet is to the right (the 1/2-point) and the outlet to the left




(the 3/4-point). Compare with y in Fig. 4a. It is clearly seen that it is the
3/4-point that has been chosen for control.
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Fig. 5. Estimated parameters &, R (left). Output y (above), input ¥ with setpoint U, (below).

Lxperiment 2. (Fig. 5)

After some problems with the DO sensor at the 3/4-point (probably bubbles
on the membrane causing outliers) the control was shifted to the still healthy
DO sensor at the 1/2-point. The results are plotted in Fig. 5. This point
is much more difficult to control than the 3/4-point. The reason for this is
mainly because the parameter a is smaller; about 2:1072 at the 1/2-point (Fig.
5) compared to about 51072 at the 3/4-point (Fig. 4b). This both makes
the dynamics slower and reduces the control authority. The smaller value is
probably caused by more clogging of the diffusers near the inlet depending
on a higher oxygen demand. Also the estimated respiration rate, I2, is much
smaller here than in the 3/4-point. This is, however, not expected. Instead
one would expect a larger value such that the respiration rate is decaying
monotonically along the reactor. The bias in R can be explained by a model
mismatch of Kra. We have assumed K pa to be proportional to the air flow
rate u, i.e. e = a-u. Independent aerator experiments have indicated that
this is the case in the 3/4-point. But what happens if there is a bias term, £,
in Kpa,ie Kpo=oa-u+ 7 The answer is that there will appear a bias in
R. This can be seen from the following calculations.

Reconsider for brevity the model without flow terms.
Process Model
= (ocu+p)c—y)— R y=au(lc—y)— R

Neglect the error in the approximation of § and assume the parameters
to be constant. Then the following equality holds:

ez () = (e T (s) v ()




and the deadbeat estimator (see [2], section 3) will give the result

(y1 — v2)
U2(C - 1/2) - ’ul(c - 11/1)
R=nR+ ﬂul(c —y1)(c—y2) —uale —y2)(c — y1)
uz(c — y2) - u1(C - yl)

a=a+p

~

~ R - Ble—ysp)

when y; & Y2 & Ysp.

Independent lahoratory experiments have shown that R is of the order
20 — 30, which corresponds to f & 1 — 2. The corresponding value of 8 in the
3/4-point, however, is much closer to 0.

The setpoint was chosen to ¥, = 1 mg/l and the limit cycle amplitude
esp = 0.2 mg/l. The sampling period was 6 minutes the first 190 minutes.
Then it was shifted to 9 minutes. Still there were 6 AD-conversions during
every sample which means that the time scale of the plot changes from 1 min.
to 1.5 min..

It is reasonable to choose a larger-sampling interval in the middle of the
basin than in the 3/4-point since the dynamics is slower. Immediately after
the change the saturation problem of the air flow rate disappears and the
parameter estimates become smother. Also the limit cycle centers around
Ysp and the amplitude reduces to the prescribed e,,. Then after the 320th
sample the air flow rate saturates again. The control starts to deteriorate and
the lack of excitation cause the parameter estimates to drift away with each
other. Note that they didn’t do that before.

6. Summary

Ideas about parameter identification and control have been presented in two
separate papers ,[1] and [2]. The first paper, [1], deals only with the identi-
fication part. IHere, different strategies for on-line estimation of the oxygen
transfer rate K ra and the respiration rate I are discussed. One of these ideas
is also tested on real plant data. However, that estimator has some disad-
vantages in terms of convergence rate and need for & priori information. The
other estimation scheme discussed hasn’t got those drawbacks. But instead it
requires excitation by the air flow rate.

The concept to use a special input to the system in order to simplify the
estimation is developed further in [2]. It is also shown that such an input
can compromise between estimation and control, i.e. a dual control strategy.
T'his dual control scheme has been implemented in Modula2 on a personal
computer. F'ull scale experiments have then been done.

Experiment experiences

Control and estimation of two different points along the reactor has been done;
the 1/2-point and the 3/4-point. It was noticed that it was easier to control
the 3/4-point because of more control authority there. However, problems
with the DO sensor at that point forced us to continue the experiments in the
middle of the basin. During the night when the respiration rate is increasing
significantly the controller will saturate. This unables parameter tracking
since there is no excitation to the system. The lack of excitation will cause
the parameters to drift away together with each other.




The saturation problem is particularly present when controlling the 1/2-
point. Fora long time the air flow rate control system was the largest problem.
Transitions between different states of the blower machine didn’t occur when it
should. This problem was, however, eliminated when the air flow rate setpoint
instead of the measured air flow rate was used in the transition conditions.

Engineering significance

The oxygen transfer rate, Kra, and the respiration rate, R, contain impor-
tant information about the process. Oun-line estimate of these quantities will
therefore be of great value for a process engineer.

The estimated oxygen transfer rate will for example indicate how far the
diffuser clogging has gone and thus be a signal for cleaning of the air production
system. It may also be used for DO probe checking and signal for recalibration
of a DO sensor.

The respiration rate is a load and toxic indicator. It is therefore interesting
both for control and for diagnostics. The estimate has been used here in the
DO loop but it may also be fed into other control loops, e.g. step feed control.
For example when the estimate, I2, reveals that toxics have entered the system
the flow can be bypassed to save the bacteria. The respiration rate profile along
the basin has a special interest. It is connected to the choice of DO setpoint,

[3]-

Suggestions for future research

What is good for estimation is not necessarily good for economy. The input;
the air flow rate; is changing quite a lot. Compared to the present plant control
system the dual controller changes the air flow more seldom but with larger
amplitude. The large changes may be bad for the blower machines. There is a
valve distributing the air flow rate between the two parallel basins. This valve
has been stationary during these experiments. Perhaps this valve can be used
to let the two basins oscillate against each other to provide excitation. This
will spare the blower machines and also raise the control authority. However,
the load is almost the same to the two basins. Thus good control of one basin
by the distributing valve will probably be to the price of worse control of the
other basin.

The plant will soon be equipped by an “off-gas” device for the measure-
ment of aeration capacity. The oxygen that is not solved into water is collected
and measured, which gives the oxygen transfer rate I{ra. Since the DO con-
centration is also measured the respiration rate can be calculated. Thus the
tool can be used to measure the wanted parameters at some point along the
reactor. The device does not outdo the dual controller since it is very expen-
sive and can only be used at one point while the estimator can estimate the
profile. Estimation of the respiration rate in the middle of the basin gave a
bias in the estimate. This was probably caused by a bias term in Kya. The
off-gas technique can be used to calibrate the estimator for that bias.

The generalization of the estimator that takes advantage of the estimated
parameter derivatives has not been used with success. The estimates need to
be smoother to get this to work. Lack of excitation caused by saturation has
made this impossible. If such practical issues are solved and more suitable
regulator parameter and sampling period are chosen perhaps this also works.




Clearly more experiments need to be done. Also the controller should be
tested on other plants to see what is and what is not plant specific problems.
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Appendix

Main level commands

Estim On/Off  (mouse) Start/Stop Estimator

Regul On/Off  (mouse) Start/Stop Regulator

DISP (mouse) Show content in monitor

SHOW (mouse) Plot estimates and data in automatic scaling
Log On/Off (mouse) Start/Stop logging in file Data.txt
EXIT (mouse) Exit the program

SIGNAL —dialogue  Set parameters for signal generator
ESTIM —dialogue  Set estimates and estimator structure
REGUL —dialogue  Set regulator parameter

PLOT —dialogue  Set scales in the on-line plot area
PLANT —dialogue  Set plant specific parameters

h [minutes] Set AD-converter sampling interval
nhdual [# of h] Set sampling interval

Dialogue commands

— Common dialogue commands

WHAT  What do we have? Display current parameters.
QUIT Exit with no transfer of parameters to monitor
EXIT Exit with transfer of parameters to monitor

— Dialogue for SIGNAL
MEAN  [real] Set mean of square wave

AMP [real]  Set amplitude of square wave
— Dialogue for ESTIM

Alpha  [real] Set a

R [real] Set R

n [0,30r5] Setninf= (61, 04,...6,)

— Dialogue for REGUL
Ac  [real] Set closed loop pole

esp [real] Set setpoint for limit cycle amplitude

d [real] Set initial relay gain

kd0 [real] Set adjusting rate of relay gain

— Dialogue for PLOT

ubias [real] Set subtracted bias {or u

uscale [real] set scaling for u

ybias [real] Set subtracted bias for y

yscale [real] Set scaling for y

Maxshow  [1-900]  Set number of old estimates plotted with SHOW

- Dialogue for PLANT
V. [m®]  Set volume

c [real] Set DO concenfration saturation constant
urs  [real] Set scaling for ur

us  [real] Set scaling for u

ys  [real] Set scaling for y

Qs [real] Set scaling for Q
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