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ABSTRACT 

The method of normal form originating from the work of A.D. Brjuno has 

been used in the analysis of two-degrees-of-freedom discrete systems with 

eccentric follower force. Various types of external and internal damping has 

been taken into consideration. The program NORFOR2 is compared with prog- 

ram BIFOR2, which is based on Hopf Bifurcation, as to the capacity and 

speed in solving non-linear, non-conservative systems. The post-critical flutter 

of the systems has been classified into hard and soft types of flutter. 

1. INTRODUCTION 

A wide class of physical systems when analyzed for instability or local 

dynamical bifurcation is modelled by 4 dimensional differential equations with 

some varying controlling parameters. The equations being of mathematical as 

well as practical challenge have been the subject of extensive academic interest 

11, 21. 

Reduction of the periodic differential equations systems to  a simple form or a 
normal form originates from a thesis by Poincar6 /3/ and the ideas of Birkoff 

/4/ and more recently of Brjuno 15,  6, 71 .  

The systems we are concerned with are non-conservative and non-linear in 

which stability can be lost by divergence (saddle post instability) and Hopf 

bifurcation (flutter instability). 

An example of non-conservative force is the follower or slave force which has 

no potential. The simplest example which then has been used by researchers is 

a double pendulum acted upon by a follower force. 

Non-conservative forces appear in many problems such as fluid conveyed by 

flexible pipes and the motion of flexible missiles propelled by rockets 18, 91. 
Many other important problems are associated with non-conservative forces in 

aerospace engineering, applied mechanics, astro-elasticity, electrical engineering as 

well as automatic control. 



The stability 'of columns subjected to follower forces has witnessed a great 

surge of academic interest since the early 19501s, even though the first studies 

on the subject were published by E. Nikolai as early as 1928 110, 11. 121. 

Stability of non-linear, non-conservative systems has been treated in several 

papers by Plaut 113, 14, 151. Wiley solved the non-linear problem of a beam 

subjected to a partial follower force by the method of finite differences 1161. 

Burgess and Levinson investigated the postbuckling stability of discrete 
structural systems under non-conservative loading 1 7  Burgess 1181 studied 

the non-linear and non-conservative systems using a perturbation method. 

Mandadi extended Huseyin's multiple parameter non-linear theory of stability 

to non-gradiant systems /19/. 

Hagedorn used a procedure given by Salvadori to investigate the effect of 

non-linear damping on the stability of a double pendulum acted upon by a 

slave load 1201. 

Hopf bifurcation of a double pendulun~ with a follower loading has been stu- 

died by Sethna and Shapiro using mathematical methods based on the method 

of integral manifolds and the method of averaging 1211. 

Generalization of the Mandadi and Sethna studies 1221 has been achieved by 

ScheidI et a1 1231 using a centre manifold theory and normal form theory of 

vector fields. 

Normal form has been used by Hsn /24/ in the analysis of critical and post- 

-critical buckling behaviour of non-linear systems acted upon by a slave load. 

In practice, structural systems always contain influences of imperfections due to 

load eccentricity and/or influences of geometrical and material non-linearity. 

These influences must be taken into account in the post-buckling behaviour of 

structural systems. In this paper, the computer programs BIFOR2 and 

NORFOR2 have been used in the investigation of non-linear and non-conser- 

vative systems acted upon by eccentric slave forces. The effect of external, 

internal, linear, cubic and hysteresis damping have been included in the ana- 

lysis. 



2 .  THE MECHANICAL MODEL 

The double pendulum shown in Figure 1 will be considered. It h a s  been used 
by many researchers as a discrete twdegree-of-freedom structural form of an 
elastic bar. It comprises two rigid links of lengths L1 and L2 connected by 

elastic springs Cl and C2. The configuration of the system is completely spe- 

cified by the angles and @,, from the vertical and the angular misalign- 

ments (initial equilibrium angles) h. (k = 1,2). 

Three types of internal damping have been introduced at  the hinges, these are 

linear (B1, B cubic (Bcl, Bc2) and hysteresis (Bhl, Bh2) Linear external 

damping in the form of external damping force D and Coriolis force q have 

been included as well in the system. 

The upper end of the pendulum is acted upon by an eccentric follower force 

.k2 
P = P (1 + k11$2 1, with k2 = 1 or 2 in the case without eccentricity. In 

the eccentric case, a tangential load has been used, i.e. kl = 0. The dimen- 

sionless differential equations for the system are: 

Fig. 1 A two-degree-of-freedom system: 

Dci = Moments at  the hinges due to cubic damping; 

Dhi = Moments at the hinges due to  hysteresis 



.? 

E , $ ~  + E2& COS 4 = E2@2 sin I$ - c3$, + - b3@, + 

+ F sin 4 

2 + ( m  + b2) $2 + b2@l - Po @2 cos cos + 

where dots represent derivation with respect to the transformed time t. The 

following dimensionless quantities have been used 



where E l ,  E c and b3 are given by 3 3 

Changing the system of equation (1) to first degree differential equations of 

the form :! = F(z,q) is achieved by denoting the variables as 

In order to be able to use programs NORFOR2 and BIFOR2 a change of 

coordinates must be made in the following manner. 

The equations of the double pendulum acted upon by a static load are 

($1 -@2 = G 

C3 4 - C2 $2 = F sin G + R 

where 

and 



K4 = - $20 

thus the new variables are given by 

* 
z1 = $1 - 2, 

* 
z3 = $2 - 2 3  

where 
7 

z = F(sin G + e)  
1 

C 1 + $10 
* F(ec3+ c2sinG) 
z = 3 C1C2 + $20 
and 

@ 1 - 2 = z 1 - Z .  + G  3 

The characteristic equation of the linear part of the changed system of equa- 

a21 = A E F cos G - c3) - E2 c2 cos 11 3( 

tions (1) is: 

"22 = AI[E3(-b3 - P cos K5 COS G) - 
- E2(lr2 - P cu cos Kg) cos G] 

A23 = A1(E3 c2 + E2 c2 COS G - E3 F COS G) 

"24 = A1[E3(b2 - r COS G - p cr COS Kg) + 

Q(F) = 

2 + E 2 ( m  + b2 + P cu cos K6)cos G] 

0 1 0 0 

'21 '22 "23 "24 

0 0 0 1 

"41 "42 "43 "44 

2 
"41 = A (E c - E2 F cos G + E2 c3 cos G) 1 1 2  

= A1[El(b2 - P a cos K6) + 
+ E2(b3 + P cos Kg) COS G] 

in which 



a43 = AI(-El c2 - E2 c2 cos G + E2 F cos2 G )  
2 

"44 = A E rcr - b., - COS K6)  - l [  l(- M 

' - E2 (b2 - r cos G - cr cos Ii6 ) cos G] 

where 

2 . 2  P - sin G)  A 1 = ~ ( l  
P1 

and 

The critical values for dimensionless load Fc for the damped case are found 

from application of the Routh-Hurwitz criterion. 

The critical load values and the critical eigenvalues are found by subroutines 
FAZA2 and CRIT. 

The critical eigenvalues are 

where 

The influence of eccentricity and the initial angular misalignments on the cri- 

tical loading depending on damping are shown in Figures 2-6. The calculations 
- were performed for Pettersson's model ( p  = 1.0, crl - cr2 = 0.5) and for 

Herrmann's model (M1 = 2.0, M = 1.0, cr = 1.0). Equation system (1) was 2 
integrated by fourth order Runge-Kutta method (bhl = bh2 = bcl = 



- = bc2 - T = p = 0) and the solution trajectories obtained were projected 

from (Z1, Z2, Z3, Zq) space on the (Z2, Z1) space. 

In Figures (6, 10) time histories for Z1, Z3 as well as phase portraits for 
various values of (bl, b2) and 3 different values of eccentricity are shown. 

Fig. 2 Critical buckling load F, versus eccentricity for Pettersson's model 

Fig. 3 Critical buckling load Fc versus initial angular misalignments for 

Pettersson's model 



Fig. 4 Critical buckling load Fc versus eccentricity for Herrmann's model 
with weak damping a t  both hinges 

Fig. 5 Critical buckling Fc load versus eccentricity for Nerrmann's iiiodei 

with moderate damping 



Fig. 6 Critical buckling load Fc versus eccent.ricity for Herrmann's model 

for small damping hi < 1.0 

Fig. 7 Angular displacements versus time t (sec) and phase portrait of 

undamped nonlinear Herrmann's model with e = 0 and F = 

2.086 



Fig. 

Fig. 

8 Angular displacements versus time t (sec) and phase portrait of 

noniinear Herrmann's model with e = 0.1, F = 2.019 and 

9 Angular displacements versus time t (sec) and phase portrait of a 

damped nonlinear Herrmann's model with e = 0.2, F = 2.0842 

and bl = b, = 0.001 



Fig. 

l 1 
0 5 10 Time t(sec) 15 

10 Angular displacements versus time t (sec) and phase portrait of a 
damped nonlinear Herrmann's model with e = 0.3, F = 2.0842 

and h l  = h2 = 0.001 

3. HOPF'S METHOD * 

Method of Hopf has been used in this section to distinguish between the hard 

and the soft flutter of the system of equations(1). 

Hopf treated the bifurcation of periodic orbits at  a simple complex eigenvalue 

of a real n dimensional (n>_2) first order system of autonomous ordinary dif- 

ferential equations. 

In order to explain Hopf's work briefly: consider an autonomous system cha- 

racterized by 



where 11 is a real parameter. It is assumed that the function F is real and 

smooth a t  least in the region of (z,q) = (aO,O) and that the Jacobian matrix 

FZ(aO;O) has exactly two, nonzero, purely imaginary eigenvalues (A1,2(q) = 

= + iw,). 

Suppose that q has been increased gradually, then at a critical value (q=qc) 

a pair of complex conjugate eigenvalues ( X  (7) = ((7) + iw(q)) crosses the 
172 

imaginary axis with non-ero velocity such that 

Hopf's bifurcation theorem provides sufficient conditions for the existance and 

uniqueness as well as information regarding stability of time periodic solutions 

of a system of ordinary differential equations. 

The three theorems will not be given here. The interested reader is referred 

to, for instance, Hassard et a1 /25/. 

The program BIFOR2 was developed by Hassard for CDC Machines and it 

was implemented on a Sperry Univac 1100/SO Machine at Lund University. All 

the calculations have been done in double precision. 

Three subroutines CRIT, PC and PCFUN have been added to the program 
BIFOR2. 

The bifurcation formulae, primarily applied in present study from 1251, are 

where 



and 

~ ~ ( 0 )  is given in Ref /25/ pp 86-90. F,(q ) is the stationary point satisfying 
C 

the hypotheses of Hopf's theorem and vl is the right eigenvector. 

In the above formulae, T(q) is the period of oscillation of the periodic solu- 

tions and p(q) is the characteristic exponent which determines their orbital 

stability. For classificat,ion of the type of instability, the following rules are 

employed: 

1. If p,, > 0 and fi2 < 0 
" 

the bifurcation is supercritical 

2. If p2 < 0 and P2 > 0 the bifurcation is subcritical 

3. If p2 < 0 and P2 < 0 the system has stable small amplitude 

oscillations. 

3.1 RESULTS AND DISCUSSION 

In BIFOR2 program the values of p2, r2 and P2 are found numerically for a 
selected bifurcation parameter q (vc = F c )  The recipe is summarized in 

Hassard /25/ pp  86-91. 

The effect of various parameters on the stability of the system (1) has been 

shown in the tables 1-9. 

As an explanation of the results of BIFOR2 program in table (1) (see prog- 

ram output in Appendix l ) ,  the calculations have been carried out for Herr- 

mann's model (M1 = 2.0, M2 = 1.0 and (Y = 1.0) with bl/b2 = 1.0 unless 



otherwise stated. The critical load value is Fc = 1.469 (ANU in the prograln) 

and the critical pair of purely imaginary eigenvalues are XI = X = ' I O' 2 cr 
(EV1 in the program), where ucr = 0,5345. The values of p, > 0 and .3,, - 
< 0 from table (1) provide the stability criterion and the bifurcation is un- 

stable (supercritical). 

In the case of cubic damping, table (3), the stability of the system depends 

on the ratio of the damping coefficients if F is maintained constant. In table 

(6) the results show insensitivity to the change in the ratio of the hysteresis 

damping coefficients. The damping at the intermediate articulation point in all 

the cases were very weak in comparison to the strong damping at the fixed 

articulation hinge which might explain the slow change in the results. However 

Hagedorn, ref 1201, concludes that the critical loading coincides for bhi = 0 

and bhi * m with those of a linearly damped system. 

In the event of one or more of /l2, T~ and p2 is 0) then one must calculate 
fi4, T P4, (tables 1 and 3). The hand calculations are cumbersome and the 

method of normal form has been relied upon in those cases. 

Table 1. Ef fec t  of i n t e r n a l  damping on t h e  s t a b i l i t y  of t h e  system 



Table 2 .  ~ i f e c t  of Coriolis force on the s t a b i l i t y  of the systeoi 

bl/b2 = 0 

Table 3 .  Effect of cubic damping on the s t a b i l i t y  of the  system bl/b2 
= 1 .0  

1.801667 
!l 

l! 

l! 

I1 

II 

Table 4.  

Fc 

Effect of i n i t i a l  deflection on s t a b i l i t y  of damped systems 
bl/b2 = 1 .0  



Table 5.  ~ f f e c t  of external damping on the s t a b i l i t y  of the system 

b1/b2 = 1.0 

Fc Amu2 Tau2 Beta2 Beta 

Table 6 .  Effect of hysteresis damping on the s t a b i l i t y  of the  system 

b1/b2 = 1.0 

Table 7. Effect of s t i f fnes s  coeff ic ients  on the s t a b i l i t y  of the 
system for  bl/b2 = 1.0  



Table 8.  ~ f f e c t  of end mass on the s t a b i l i t y  of the system 11 =1.0. 

bl/b2 = 1.0 

Table 9. Effect of coeff ic ients  cut and cr2 on the s t a b i l i t y  of the 

damped system bl/b2 = 1.0.  

Amu2 Tau2 Beta2 "1 012 

4. THE METHOD OF NORMAL FORM 

The method of normal form and the two theorems related to Brjuno and 

Poincar6 has been discussed in detail in Refs 124, 26, 27, 281. 

The method can be regarded as a generalization of Jordan's canonical form 

applied to nonlinear systems. 

Consider the following system 

z = %l)) = f(z,l)) + Q(l))z (12) 

where F is a vector function analytic in its arguments, z E IR", 7 E IR 



and Q is strictly nonlinear in z; f ( o )  For flutter analysis, we assume t,hat 

7) is in a small vicinity of the critical controlling parameter v,, the matrix Q 

posses a pair of non-zero imaginary eigenvalues. Without loss of generality. i t  

is assumed that the eigenvalues are complex with negative real parts for v < 
qc (damped system). As q is increased, the real part of a t  least one pair of 

complex conjugate eigenvalues vanishes and then becomes positive. 

The equation system (12) has been reduced by Hsu by means of a regular 

analytic transformation to the following normal form, see Ref 1241 

where X I ( < )  = jw + o(eO) and gik(c) are complex power series in r 

The flutter bifurcation of the system (12) can be classified into benign and 

explosive flutter pending 

gl1(0): 

on the sign of the real part of the resonant term 

z=0, then the system experiences subcritical (benign 

z=0, then explosive flutter occurs (supercritical bifur- 

The amplitude of vibration ii and the periodic solutions z(t)  are given by the 

following expressions from Ref /27/ 

where ((0) = V 

and u l ,  vl are the left and right eigenvalues of Q(0) respectively found with 
respect to the critical eigenvalue X1 = iw. 



The equations' of niotion (1) have been recasted in the system forill ( 1 2 )  

(local coordinates) and expanded into power series up to third order. 

The program NORFOR2 has been utilized in this section which calculates the 

normal transformation and the reduced form. The input data for the program 

is given in Appendix 2 (reproduced from professor Hsu's notes without change) 

and a typical example of output is given in Appendix 3. 

The results are given in tables 10-14 and the coefficient of the resonent term 

are given as FI, 2, 122 -+ p2(1,2) = g2(1,2), see Appendix 2. 

Table 10. Effec t  of i n i t i a l  de f l ec t ion  on t h e  s t a b i l i t y  of t h e  system 

bl/b2 = 1.0 



Table 11. ~ f f e c t  of cubic damping on t h e  s t a b i l i t y  of t h e  system 
bl/b2 = 1 . 0  

Table 12.  E f fec t  of i n t e r n a l  damping on t h e  s t a b i l i t y  of t h e  system 



Table 13. ~ f f e c t  of end mass on the  s t a b i l i t y  of the  system b l /b2=l .0  

F 
C Re g2(1 ,2 )  Im g 2 ( 1 , 2 )  M 2  

Table 14. Effect  of s t i f f n e s s  coef f i c ien t s  on the  s t a b i l i t y  of the  

system bl/b2=l .O 

4.1 DISCUSSION O F  THE RESULTS 

In table (10) the effect of initial equilibrium angles on the stability of 

Herrmann's model is shown with ( p  = 1.0, M1 = 3.0, M2 = 1.0, and 

bl/b2 = 0 )  see Appendix 3. The coefficient g2(1,2) obtained from 
NORFOR2 program for @10 = 4 = 0 has a positive real part and one 20 
concludes that supercritical bifurcation occurs. Other combinations of initial 

deflections give similar results. 

For cubic damping (table 11) the results obtained from NORFOR2 program 

3 
(bcl/bc2 = 10 ) differs from those obtained by BIFOR2 program (Table 5). 

In the first, the bifurcation is supercritical and in the later subcritical. 

Further increase in the value of the coefficient (bcl/bc2) requires the 



calculation of 'b4, r4 and , 9  for Hopf bifurcation as Amu2 = Tau2 = 0 

however the calculation tends to be a tedious procedure. For details see ref 

1251 pp. 97. 

5. CONCLUDING REMARKS 

The investigation carried out in this paper is divided essentially into two 

parts. The  first part deals with the stability analysis of equations (1) by 

means of Hopfs bifurcation theorem. This was achieved by using program 
BIFOR2. The second was to give an analysis of the same system by means 

of normal form method; employing the program NORFOR2. 

The paper illustrates the applicability of BIFOR2 and NORFOR2 to flutter 

instability in imperfect structural systems. The program NORFOR2 is cheaper 

to run, but the system of equation (1) must be expressed in power series, 
which tends to be tedious and error prone for systems with three or more 

degrees of freedom. Some discrepancies have been found between the results 

obtained by NORFOR2 and BIFOR2. These differences have been noticed by 

Hsu as well, when applying the method of normal form to similar problems. 

For example, in Lorenz equations analysis, Hsu found unstable regions where 

the Hopf bifurcation occurs which were contrary to the stable regions findings 
of Marsden and McCracken 1251, using an analytical method. 

The effect of eccentricity on .the Hopf bifurcations is similar to that of initial 

misalignments. The results are displayed in table 15 with small vanishing 

damping (bl = b2 = 0.001). 

Table 15 Ef fec t  of e c c e n t r i c i t y  on t h e  s t a b i l i t y  of t h e  damped system 

bl/b2 = 1.0 

E c c e n t r i c i t y  Amu2 Tau2 Beta2 

These results show that the bifurcation is supercritical. 
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7. NOTATIONS 

c2 

bl' b2 

bcl ' bc2 

blil' bh2 

b 

P 

7 

$l$ $2 

4 = 

e 

@10> 420 

a;, = $, 

stiffness of the springs at lower and upper hinges, respectively 

linear damping at the lower and upper hinges, respectively 

cubic damping a t  the lower and upper hinges, respectively 

hysteresis damping a t  the lower and upper hinges, respectively 

external damping coefficient 

dimensionless external damping coefficient 

coriolis coefficient 

configuration angles from the vertical 

eccentricity of the applied load 

initial rotations of the lower and upper link, respectively, in the 

unstrained configuration 



masses of the links 

concentrated masses 

length of the rigid links 

moment of inertia of the lower and upper link, respectively 

moment of inertia of the concentrated mass at  the end of the 

upper link 

follower force acting at the end of the upper bar 

ratio of distributed masses 

distance of centre of gravity of the lower link from lower hinge 

distance of the centre of gravity from the upper hinge for the 
2nd link 

distance of the centre of gravity of the end mass from the end 

of the 2nd link 

frequency 

length ratio 

length ratio 

eigenvalues 

external damping force at the free end 

coriolis force 
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APPENDICES 





l X Q T  FHOPD.BIFABS 
> > >  THE ENTERED I N D A T A  ARE AS  F O L L O W > > > >  

F S T -  . 2 1 0 0 0 0 0 + 0 0 1  DF1=  .0000000 DFR= .0000000 
F 1 1 -  . 1 0 0 0 0 0 0 + 0 0 0  F 1 3 =  . 1 0 0 0 0 0 0 + 0 0 0  C l  = . 1 0 0 0 0 0 0 + 0 0 1  

C 2  = . 1 0 0 0 0 0 0 + 0 0 1  B 1  = .10OOOOO+OOO B 2  = . 1 0 0 0 0 0 0 + 0 0 0  
E K S  = .0000000 B K l  = .OOOOOOO 

8 K 2  = .OOOOOOO E H 1  = ,0000000 B H 2  = .0000000 
TAU- .0000000 BETA = . O O 0 0 0 0 0  A l l  = .OOOOOOO 

A 1 2  = .0000000 A U l  = . 2 0 0 0 0 0 0 + 0 0 1  A U 2  = . 1 0 0 0 0 0 0 + 0 0 1  
6AUA - .OOOOOOO ALFA - .1000000+001 AHU= .0000000 

C R I T I C A L  D V I A P I I C  L O A D I N 6  

C R I T I C A L  FREQUENCY 
1 

F R O % > > > >  .OOOOOOO 



STATIONARY POlNT ( N l T  = 0) ! F(XS,ANU) ! ElGENVALUES 
XS( l )  = .0000060000 ! F (  1) - .0000000000 ! EV( l) = -.1750000000+000 ,131 1249405+001 
XS( 2 )  = .0000000000 ! F (  2 )  - .0000000000 ! EVC 2 )  = - .1750000000+000 -. 1311249404+001 
XS( 3 )  = .0000000000 ! F (  3 )  = .0000000000 ! EV( 3 )  = -.1734723476-017 .5345224838+000 
XS( 4 )  E .0000000000 ! F (  4 )  r .0000000000 ! EV( 4 )  = - .1734723676-017 - .5345224&38*000 

..*..s..*.+....****.***********~************************************.,..* ........................................... 
81FOR2 N U MTH J JOB lPR1NT CRITICAL ANU 

4 .1000000000-007 l 1 2 .1469285714+001 

AUUZ TAU? BETA2 R E ( C l ( 0 ) )  I U ( C l ( 0 ) )  
VALUES .4443266745+000 -. 1317021026+000 - .2039056706-001 - .1019518353-001 - .9398509851-002 
ERROR ESTIMATES .1104722553-002 .4615841581-003 .1284488 i22 -005  .6422441108-006 .1687845139-004 

DALPHA DOMEGA OUEGA(0) ENORMX ENORMV 
VALUES .2296546809-001 .1795891389+000 .5345224838+000 .0000000000 .2331392371+001 
ERROR ESTIMATES .5546562758-004 .7901220923-004 

STATIONARY POINT ! EIGEMVECTOR V1 

C -  U- .100000-009 .................................................................................................................... 
EVALS H EPS NSIG ITMAX ANU RE E V I  1U EV1 

6 .lOOOOOOOOO-011 7 20  - .1734723476-017 .5345224138+000 .1469285714+001 

STATIONARY POINT ( N I T  = 0) ! F(XS,ANU> ' EIGENVALUES 
XS( I .0000000000 ! F ( % ) =  .0000000000 ! EV( 1) = - .1750000000+000 .1311249404*001 
XS( 2) - .0000000000 ! F (  2 )  = .0000000000 ! EVC 2 )  - -.1750000000+000 - .1311249404*001 
XS( 3)  - .0000000000 ! F (  3)  = .0000000000 ! EV( 3 )  - -. 1734723576-017 .5345224838+000 
XSt 4)  S .0000000000 ? F (  4 )  - .0000000000 ? EV1 4 )  - -.1734723476-017 - .5345224838+000 

.....**.+.*.***.*..*.*******~*~* .................................................................................... 
BlFOR2 N U NTH J JOB IPRINT CRlT lCAL ANU 

5 .1000000000-009 1 1 2 .1469285714+001 



VALUES 
ERROR ESTIHATES .5118122953-004 .2173492845-004 .bO15443877-007 .3007721938-007 .7951526187-006 

OALPHA OOHEGA OHEGA(0) ENORMX ENORMV 
VALUES .2294493008-001 .1795883734+000 .5345224838+000 .OOOOOOOOOO .233139237i+OOl 
ERROR ESTIMATES .2574940163-005 .3670444651-005 

STATIONARY POINT ! EISENVECTOR V 1  
XS( 1)  = .0000000000 ! V 1 (  1) = .1000000000+001 -.5421010862-019 
XS( 2 )  = .0000000000 ! V1( 2) = -.1131636018-015 .5345224838+000 
XS( 3 )  = .0000000000 ! V l (  3) = .1795544948+001 -.5953313265-001 
XS( 4) = .0000000000 ! V i (  4 )  = .3182179793-001 .9597591456+000 

C-  U= .100000-011 .................................................................................................................... 
EVALS N EPS NSIG ITNAX ANU RE EVI I H  EV1 

4 .1000000000-014 7 20 .1469285714t001 - .1734723476-01 7 .5345224838+000 

STATIONARY POINT (NIT = 0 )  ! F(XS,ANU) ! EIGENVALUES 
XSC I) = .0000000000 ! F (  1) = .OOOOOOOOOO ! E V ( i ) =  -.1750000000+000 .1311249404+001 
XS( 2 )  = .0000000000 ! F (  2 )  = .0000000000 ! €V( 2) = -.1750000000+000 -.1311249404+001 
XS( 3 )  = .0000000000 ! F (  3 )  = .0000000000 1 EV( 3)  = -.1734723476-017 .5345224838+000 
XS( % )  = .0000000000 ! F (  4) = .0000000000 ! EV( 4) = -.1734723476-017 -.5345224838+000 

B.... ............................................................................................................... 
BLFOR2 N U MTH JJOB IPRINT CRITICAL ANU 

4 .1000000000-011 1 1 2 .1469285714+001 

ANU2 TAU2 BETA2 RE(Cl (0 ) )  I H < c ~ ( o ) )  
VALUES .4443372006+000 -.1317053011t000 -.2039055398-001 -.1019527699-001 -.9398336803-002 
ERROR ESTIHATES .2374906511-005 .1008793674-005 .2797464477-008 .1398732238-001 .3702599837-007 

OALPHA OOMEGA OHEGA(0) ENORHX ENORHV 
VALUES .2294490981-001 .1795883428+000 .5345224838+000 .0000000000 .2331392371+001 
ERROR ESTIMATES .1194880816-006 .1703457926-006 

STATlOYARV POINT ! EIGENVECTOR V1 
XS( 1 )  m .0000000000 ! V1( 1 )  = .1000000000+001 -.5421010862-019 
XB( 2) - .0000000000 ! V 1 C  2) = -.1131636018-015 .5345224838+000 
XS( 3)  m .0000000000 ' V1 ( 3)  = .1795544948+001 -.5953313265-001 
XS( 5 )  - .0000000000 ! V I (  4) = .3182179793-001 .9597591456+000 
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AMU2 TAU2 BETA2 RECCl(0)) IM(C160)) 
VALUES .4443372194+000 -.1317053069+000 -.2039055396-001 - .1019527698-001 -.9398336629-002 
ERROR ESTIMATES .4335004019-008 .1877805744-008 .6029503692-011 .3014751856-011 .7964133793-010 

DALPHA DOMEGA OMEGA ( 0 )  ENORMX ENORMV 
VALUES .2294490880-001 .1795883412+000 .5345224838+000 .OOOOOOOOOO .2331392371+001 
ERROR ESTIMATES .2170682871-009 .3276157462-009 

STATIONARY POINT ! EIGENVECTOR V1 
XS( 1)  = .0000000000 ' V 1 (  1) = .1000000000+001 -.5521010862-019 
XS( 2 )  - .0000000000 ! V 1 (  2)  = -. 1131 636018-015 .5345224838+000 
XS( 3 )  = .0000000000 ! V11 3)  = .1795554948*001 - .5953313265-001 
XSC 4 )  = .OOOOOOOOOO ! V1( 4 )  = .3182179793-001 .9597591456+000 

STATIONARY POINT (NIT - 0 )  ' F(XS,ANU) ' EIGENVALUES 
XS( l) - .OOOOOOOOOO ' F (  l) - .0000000000 ' €V( 1) = - .1750000000+000 .1311249404+001 
XS( 2 )  S .0000000000 ' F (  2) = .0000000000 1 €V( 2) = -.1750000000+000 -.1311259504+001 
XS( 3 )  I .OOOOOOOOOO ' F (  3)  - .0000000000 ' EVI 3 )  = -.1734723476-017 .5345226831+000 
XSC 6 )  = .0000000000 ' F (  5 )  = .0000000000 a EV1 4 )  = -.1735723476-017 -.5345225838+000 

AMU2 TAU2 BETA2 RE(CI(O)> l ~ ( C l ( 0 ) )  
VALUES .4443372195+000 -.1317053069+000 -.2039055395-001 -.1019527698-001 -.9398336429-002 
ERROR ESTIMATES .2292295013-009 .9745788876-010 .3290723271-012 .16+5361636-012 .3162256345-011 

DALPHh DOMESA OMEGAIO) ENORMX ENORMV 
VALUES .2294490880-001 .l 795883512+000 .5355224838+000 .0000000000 .2331392371+001 
ERROR ESTIMATES .1146677255-010 .1747373405-010 

STATIONARY POINT ! EISENVECTOR V1 
XSC 1 )  - .0000000000 ! V1( l) - .1000000000+001 -.5421010862-019 
XS( 2) - .0000000000 ! V I (  2 )  - -.1131616018-015 .5345224838+000 
&!S( 3)  - .OOOOOOOOOO ! V 1 (  3)  - .1795544958+001 - .S95331 3265-001 
1st 4) - .0000000000 ' V1( 5) - .3182179793-001 .9597591556+000 
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APPENDIX 2 

NORFOR 2: INPUT DATA 

INTEGERS 

ITER: only odd powers ITER=3; even and odd powers ITER=:! 

LZ: number of critical equations (include parameter equation, ; = 0) 

NZ: total number of equations (NZ>LZ) 

LP: order number of the auxiliary parameter equation. If there is not a 

parameter equation, set LP>NZ 

LMT: total number of equations which have nonlinear terms (at the input) 

LEVIT: = 2; no quadratic terms a t  input 

= 3; no cubic terms at input 

= 5 ;  no 5th order terms a t  input 

= 1; other cases 

Remark: 3 and 5 applies to "odd" system (only odd powers) 

NJI: number of equations to be printed a t  the output 

NNLM: upper limit (estimated) of the number of nonlinear terms a t  input 

INTEGRAL VECTORS 

ITM (LMT): order number of equations which have nonlinear terms (at 

input) 

IPRT (NJI): order number of equations to be printed at the output 



3 7 

COIIPLES VECTORS 

LBD (LZ): vector of critical eigenvaiues 

COMPLEX MATRICES 

U (LZ,NZ): critical right-eigenvectors 

V (LZ, NZ): critical left-eigenvectors 

A (NZ,NZ): linear part matrix 



COEFFICIENTS O F  XONLINEPiR TERhIS 

N,  J I ,  Z (VI(J) ,  J=1,5) 

N: mbdulus ( \ v / )  of the exponent vector V1 

JI: order number of corresponding equation 

Z: (complex) coefficient of the nonlinear term 

VI: exponent vector in &notation 

A blank line (or card) should follow last nonlinear term in order to stop the 

reading. 

&notation of vector v = (v l ,  u2 ..., v,): ( v ) ~  

Let \ v \  = M. Then 

for some sl ,  s2, ..., sM r {1;2 ,..., n} and sl < s2 ... < sM. 

The input-data are entered according to the "READ" instructions in the 
MAIN PROGRAM. 



(These data are specified in the h,IAIN PORGRAM by 3 cards after "REAL 

R5 ( )"l  

.LIMA: any integer > NZ 

.LIMF: upper bound for number of nonlinear terms ( )  in each equa- 
tions. Estimate: 

.LIMB: upper bound for number of coefficients B? in each equation of 
Nor~nal Transforn~ation. Estimate: 

LIMB > C 
1=2 

Other Dimension data to be introduced in MAIN PROGRAM 

OR(5,NZ), MM(L1RIB); VI(5), ITM(LMT), IPRT(NJI),  Cl(NZ,NZ), C2(NZ,NZ), 

C3(NZ,NZ), C4(NZ,NZ), C5(NZ), A(NZ,NZ), LBD(NZ),FVl(LIMF,NZ), 

FIl(LIMF,NZ), Bl(LIMB, NZ), A22(NZ,NZ), Z, V(NZ,NZ), U(NZ, NZ) 

NOTE: Actual listed Program is good for Systems of dimension 13. Insert 

new numerical values in the "Variable type" cards of MAIK 

PROGRAM if other dimension is desired. 



Form IhlSL (International hlathematical and Statistical Library): 

"SUBROUTINE LEQT 1C". 





a x o T  GAZII.PCRIT 
+ S +  THE ENTERED INDATA ARE AS FOLLOUS*** 

FST= .1000000+001 DFi= .0000000 DFU= .0000000 
F l  l = .OOOOOOO F13= .OOOOOOO C l  = . lOOOOOO+OOL 

C2 = .1000000+001 B1 - .~000000+000 82 - .1000000+000 
EKS = .0000000 BKi = .0000000 

8K2 = .0000000 EH1 = .0000000 8H2 = .0000000 
TAU= .0000000 BETA = .0000000 A I 1  - .0000000 

A12 = .0000000 AUI - .2000000+001 AUZ = .1000000+001 
GAUA = .0000000 ALFA = .1000000+001 AUU= .OOOOOOO 

CRITICAL DVNAUIC LOADING 

CRITICAL FREQUENCY 



00 0000 
00 0000 
00 0000 
00 0000 
00 o o q o  ' .  . .  . 

0000 
0000 
0000 
0000 
o o q o  . .  . 
-4 I S. - 
+ + + + 

C C 
0 0 
0 0 + + 

0000 
0000 
0 0 0 0 
O,"O,n 
0, 9 0 . .  . 

I 

- - P , P ) *  






