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ABSTRACT

The method of normal form originating from the work of A.D. Brjuno has
been used in the analysis of two—degrees—of~freedom discrete systems with
eccentric follower force. Various types of external and internal damping has
been taken into consideration. The program NORFOR2 is compared with prog—
ram BIFOR2, which is based on Hopf Bifurcation, as to the capacity and
speed in solving non-linear, non—conservative systems. The post—critical flutter
of the systems has been classified into hard and soft types of flutter.

L. INTRODUCTION

A wide class of physical systems when analyzed for instability or local
dynamical bifurcation is modelled by 4 dimensional differential equations with
some varying controlling parameters. The equations being of mathematical as
well as practical challenge have been the subject of extensive academic interest

/1, 2/,

Reduction of the periodic differential equations systems to a simple form or a
normal form originates from a thesis by Poincaré /3/ and the ideas of Birkoff
/4/ and more recently of Brjuno /5, 6, 7/.

The systems we are concerned with are non—conservative and non-linear in
which stability can be lost by divergence (saddle post instability) and Hopf
bifurcation (flutter instability).

An example of non—conservative force is the follower or slave force which has
no potential. The simplest example which then has been used by researchers is
a double pendulum acted upon by a follower force.

Non—conservative forces appear in many problems such as fluid conveyed by
flexible pipes and the motion of flexible missiles propelled by rockets /8, 9/.
Many other important problems are associated with non—conservative forces in
aerospace engineering, applied mechanics, astro—elasticity, electrical engineering as
well as automatic control.
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The stability of columns subjected to follower forces has witnessed a great
surge of academic interest since the early 1950's, even though the first studies
on the subject were published by E. Nikolai as early as 1928 /10, 11, 12/

Stability of non-linear, non—conservative systems has been treated in several
papers by Plaut /13, 14, 15/. Wiley solved the non-—linear problem of a beam
subjected to a partial follower force by the method of finite differences /16/.
Burgess and Levinson investigated the postbuckling stability of discrete
structural systems under non-—conservative loading /17/. DBurgess /18/ studied
the non—linear and non—conservative systems using a perturbation method.
Mandadi extended Huseyin's multiple parameter non—iinear theory of stability
to non—gradiant systems /19/.

Hagedorn used a procedure given by Salvadori to investigate the effect of
non—linear damping on the stability of a double pendulum acted upon by a
slave load /20/.

Hopf bifurcation of a double pendulum with a follower loading has been stu—
died by Sethna and Shapiro using mathematical methods based on the method
of integral manifolds and the method of averaging /21/.

Generalization of the Mandadi and Sethna studies /22/ has been achieved by
Scheidl et al /23/ using a centre manifold theory and normal form theory of
vector fields.

Normal form has been used by Hsu /24/ in the analysis of critical and post—
—critical buckling behaviour of non-linear systems acted upon by a slave load.

In practice, structural systems always contain influences of imperfections due to
load eccentricity and/or influences of geometrical and material non-linearity.
These influences must be taken into account in the post—buckling behaviour of
structural systems. In this paper, the computer programs BIFOR2 and
NORFOR2 have been used in the investigation of non—linear and non-conser—
vative systems acted upon by eccentric slave forces. The effect of external,
internal, linear, cubic and hysteresis damping have been included -in the ana—
lysis.



5. THE MECHANICAL MODEL

The double pendulum shown in Figure 1 will be considered. It has been used
by many researchers as a discrete two—degree—of—freedom structural form of an
elastic bar. It comprises two rigid links of lengths L, and L, connected by
elastic springs C1 and C,. The configuration of the system is completely spe—
cified by the angles ¢, and ¢ from the vertical and the angular misalign—
ments (initial equilibrium angles) ¢, = (k = 1,2).

Three types of internal damping have been introduced at the hinges, these are
linear (BI’ BQ), cubic (Bcl’
damping in the form of external damping force D and Coriolis force ¢ have

Bc2) and hysteresis (Bhl’ th). Linear external
been included as well in the system.

The upper end of the pendulum is acted upon by an eccentric follower force

X
P=TF (I + k), with ky = 1 or 2 in the case without eccentricity. In

the eccentric case, a tangential load has been used, ie. k, = 0. The dimen—
sionless differential equations for the system are:

C(0;0)+B-4)

+Dcz+ th
Myidy
C1¢1”B1¢+Dci'0ht «
Fig. 1 A two—degree—of—freedom system:
D . = Moments at the hinges due to cubic damping;

ci
Dy; = Moments at the hinges due to hysteresis



By + Egdy cos ¢ = Ez‘bs 9 = ey + oy — byby
by = ey +cybyg — BBy cos By cos(-y) —
~ ny cos O — B Gy cos Gy cos(dd) — b0} -
bty — 8 = by B b~ by - F)AG, — b)) +
+ F sin ¢

Baby + Boby cos ¢ = Boh? sin ¢ + cyld, — ) +
+ (ra + by) ci>2 + bgci)l ~ Ba? é)z cos ¢, cos ¥ +

+ Gy — ¢10) ~ Ba 431 €os (})1 cos P +

+ (q) d)o) bh2$ Eﬁo d) - q)g) + Fe (1)
with -

¢ = ¢1 - (bg

@1 = ¢’1 - (bma 52 = ‘bg - 4)20 (La)

“where dots represent derivation with respect to the transformed time t. The
following dimensionless quantities have been used

1 My P 1
t = t'sa b= =, Fo= Zj 3
mlL% my i
¢ = o r={/ymC| , a = L, (2)
i Ml _ M2 _ bL1
My =g My = 5=, f =
1 1 dmlffl
0 = ! b, = Bi
! ]:; ! L11/m1331
2/ J;
Y = a Ll 1 Ii = 3
m; L
_ 1 ) _ Bhi
bCi - BC] (m L2) ’ bhl - ‘J'-—-—z-
11 ClmlLl



where b EQ,' E3 Cq and b3 are given by

1')

2

E, =M + M + g

1 +p:+11

Ey = Mylat+y) + 1 o
Eq = Mz(cr-+~’)r)2 + p ag + 1y + g
Cg = ¢ + €

by = by + by |
q = f 432 (3)

Changing the system of equation (1) to first degree differential equations of

the form Z = F(z,5) is achieved by denoting the variables as

Z, = 0, 3y = ¢, I3 = O, and Z, = ¢ (4)

-

In order to be able to use programs NORFOR2 and BIFOR2 a change of
coordinates must be made in the following manner.

The equations of the double pendulum acted upon by a static load are

¢1 - ¢’2 = G

03¢1—c2¢2:FsinG+R _ (5)
where

G = K4 - K3

R o= cyldyg = o) + ¢ &y (6)
and



Ky = 419 — o

thus the new wvariables are given by

Zg - ¢)2 — &3 (7)
where
o _ Flsin G + e
Sin + e
Zy ¢ + g
* Fecyt ¢,5inG) :
3 2
Z3 = G + ¢20 (7.1)
172
and
b =0 =2 — I3 + G (7.2)

The characteristic equation of the linear part of the changed system of equa—
tions (1) is:

Q(F) = 0 0 0 i

Yy Ay By Ay (8)
in which
39 A [E5(F cos G - cg) — Ey ¢y coS G]
459 = A[Eg(-bs ~ § cos Ky cos G) —
— Eg(by — B a cos K} cos G
Agg = A(Eq 5 + Ey ¢y cos G — E; F cos G)
Boy = Al[ES(bQ — 7r7c¢cos G - f a cos K6) +

+ Ey(ra + b, + § &% cos K)cos G]

2
ap = A(E] ¢ - E, F ocos™ G + E; c¢g cos G)
Al

1
1{bg = 8 & cos Kg) +
+ Eg(bg + f cos Kg) cos G



' 2
a9 = A(-Ey ¢g = Ey ¢y 05 G + E, F cos™ G)
2 -
Ay = Al[El(—Ta = by — 8 o cos Kg) —
- E, (by — 7 c08 G~ J o cos K, ) cos G {8.1)
2 V2 6
where

| 2 .2
A :;—Q(Pl—Ezsm G)

1
1
and
P = E E ~—E2,K _ F(sinG + e)
1 1 73 2 5 Cy
F(c,e + c,5inG)
_ 3 2
% = Toe, (8:2)

The critical values for dimensionless load Fc for the damped case are found
from application of the Routh—Hurwitz criterion.

The critical load values and the critical eigenvalues are found by subroutines
FAZA2 and CRIT.

The critical eigenvalues are

’\I = —A2 = i QO (9)
where

1/2
Q0 = (n3/n1) /

B3 = 343 899 — 293 849 T 8y 35 — Agy Ay
Ny = = A5y — 8y (9.1)

The influence of eccentricity and the initial angular misalignments on the cri~
tical loading depending on damping are shown in Figures 2-6. The calculations
were performed for Pettersson's model (p = 1.0, @ = o = 0.5) and for
Herrmann's model (M1 = 2.0, I\/I2 = 1.0, @ = 1.0). Equation system (1) was
integrated by fourth order Runge—Kutta method (bhl = bp = b,y =



= bc2 = 17 = f = 0) and the solution trajectories obtained were projected

from (2, 2, Zg, Z,;) space on the (Z,, Z;) space.

In Figures (6, 10) time histories for Zy, 23 as well as phase portraits for
various values of (bl’ b2) and 3 different values of eccentricity are shown.

0 . T I T -
0 0.1 0.2 0.3 e

Fig. 2 Critical buckling load FC versus eccentricity for Pettersson's model

-

Fc‘

12.0 4
=10

60 b = =
a 0.2 0.5

2.54
T T 1 -

00 05 10 125 kk(rad)
Fig. 3 Critical buckling load FC versus initial angular misalignments for

Pettersson's model
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&0 /b= 10—
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0 0.1 0.2 0.3

Fig. 4 Critical buckling load F. versus eccentricity for Herrmann's model
with weak damping at both hinges

Fe A
6.0

Fig. 5 Critical buckling F, load versus eccentricity for Herrmann's model
with moderate damping



i0

by/by= 11.071 —,

2.0 - b, /b,=5.54
L T T T -
0 0.1 0.2 0.3 e
Fig. 6 Critical buckling load FC versus eccentricity for Herrmann's model

for small damping b, < 1.0

2
0.5 7
2
z; 1
0 < . 1 el
Z;j M E_/
0.5 -
B T 1
5 10 ) 15

0 Time t(sec

1

0.17]
o
Zy
-0.1 -
"_0-2— T T T
-0.1 0 0.1
%
Fig. 7 Angular displacements versus time t (sec) and phase portrait of
undamped nonlinear Herrmann's model with e = 0 and F =

2.086
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Z3 \ P~

0.5 -
0 5 10 Time t(sec) 15
0.1 A
Za 0
-0.1 B, l
0.1 0.1
2
Fig. 8 Angular displacements versus time t (sec) and phase portrait of
nonlinear Herrmann's model with e = 0.1, F = 2019 and
by = by
2
0.5
4 ———
5 Zy 0 4 '\/ 1
Z3
~0.5
] = | !
0 5 10 Time t{sec) 15
0.1 —~ -
Zs 0 4
—‘0.1 3 1
0.1 0.2
A
Fig. 9 Angular displacements versus time t (sec) and phase portrait of a

damped nonlinear
and bl

Herrmann's model
b, = 0.001

with e = 0.2, I' = 20842
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~0.05 '
0 o1 0.2
4]
10 Angular displacements versus time t (sec) and phase portrait of a
damped nonlinear Herrmann's model with e = 0.3, F = 2.0842
and b1 = b2 = 0.001
HOPF'S METHOD @

Method of Hopf has been used in this section to distinguish between the hard

and the soft flutter of the system of equations(l).

Hopf treated the bifurcation of periodic orbits at a simple complex eigenvalue

of a real n dimensional (n>2) first order system of autonomous ordinary dif—

ferential equations.

In order to explain Hopf's work briefly: consider an autonomous system cha—

racterized by

F(z,n) | | - (10)
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where 7 is a real parameter. It is assumed that the function F is real and
smooth at least in the region of (z,) = (a®,0) and that the Jacobian matrix

FZ(aO;O) has exactly two, nonzero, purely imaginary eigenvalues ('/\1.7(73) =
= + iwo).

Suppose that 7 has been increased gradually, then at a critical value (T,r:?’fc)
a pair of complex conjugate eigenvalues (A; o(n) = &(m) + iw(n)) crosses the
imaginary axis with non—zero velocity such that

Ezg—%?&o

Hopf's bifurcation theorem provides sufficient conditions for the existance and
uniqueness as well as information regarding stability of time periodic solutions
of a system of ordinary differential equations.

The three theorems will not be given here. The interested reader is referred
to, for instance, Hassard et al /25/.

The program BIFOR2 was developed by Hassard for CDC Machines and it
was implemented on a Sperry Univac 1100/80 Machine at Lund University. All
the calculations have been done in double precision.

Three subroutines CRIT, PC and PCFUN have been added to the program
BIFOR2.

The bifurcation formulae, primarily applied in present study from /25/, are

1/2 .
o) = gy + [ Ret@™/T) + otrny
2 U] 9
) = Z[1 + mld + otrn)]
Ut}
wn = | + otrny)’ (1)

where
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To = —{Im ¢(0) + py (0)/wy) (11.1)

@(0) = Re Aj(r)
(o) = Im f\i(nc) (11.2)

c,(0) is given in Ref /25/ pp 86-90. Fu(n,) is the stationary point satisfying
the hypotheses of Hopf's theorem and vy s the right eigenvector.

In the above formulae, T(n) is the period of oscillation of the periodic solu—
tions and fG(n) is the characteristic exponent which determines their orbital
stability, For classification of the type of instability, the following rules are

employed:
If pu, > 0 and ﬁg < 0 the bifurcation is supercritical

2. If By < 0 and 6,2 > 0 the bifurcation is subecritical

3. If by < 0 and 8, < 0 the system has stable small amplitude
oscillations.

3.1 RESULTS AND DISCUSSION

In BIFOR2 program the values of foy Ty and ﬁg are found numerically for a
selected bifurcation parameter 7 (nc = FC). The recipe is summarized in
Hassard /25/ pp 86-91.

The effect of various parameters on the stability of the system (1) has been
shown in the tables 1-9.

As an explanation of the results of BIFOR2 program in table (1} (see prog—
ram output in Appendix 1), the calculations have been carried out for Herr—

mann's model (M; = 20, M, = 1.0 and & = 1.0) with b,/by = 1.0 unless
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otherwise stated. The critical load value is FC = 1.469 {(ANU in the program)
and the critical pair of purely imaginary eigenvalues are )\1 = Ay = lw,,
{EV1 in the program), where w, = 0.5345. The values of u,” > 0 and j,

< 0 from table {1} provide the stability criterion and the bifurcation is un—
stable (supercritical).

In the case of cubic damping, table (3), the stability of the system depends
on the ratio of the damping coefficients if F is maintained constant. In table
(6) the results show insensitivity to the change in the ratio of the hysteresis
damping coefficients. The damping at the intermediate articulation point in all
the cases were very weak in comparison to the strong damping at the fixed
articulation hinge which might explain the slow change in the results. However
Hagedorn, ref /20/, concludes that the critical loading coincides for by = 0
and bhi 3 o with those of a linearly damped system.

In the event of one or more of fop Ty and 62 is 0, then one must calculate
bys Ty ﬁ4, (tables 1 and 3}. The hand -calculations are cumbersome and the
method of normal form has been relied upon in those cases.

Table 1. Effect of internal damping on the stability of the system
F. Amu2 Tau? Beta2 by /by
1.469286 0.443266 ~(.1317021 —0.0203905 1.0
1.801567 0.8721479 (). 286852 —0.1337239 2.0
1.945556 1.323841 ~0.473116 —0.478738 3.0
2.020 1.811652 ~{). 688839 —1.207822 4.0
2.062879 2.336991 ~0.933049 ~2.315393 5.0
2.089524 2.899150 ~1.2033668 -3.5607143 6.0
2.107115 3.496927 ~1.498744 —4.680442 7.0
2.119365 4.128765 —1.817736 ~5.576004 8.0
2.128333 4.793003 ~2.158962 —6.274476 9.0
2.135227 5.487918 ~2.520903 —6.835324 10
2.190136 18.388513 0.0 25

0.5269954



Table 2. Effect of Coriolis force on the stability of the
by /by = 0
FC Amu2 Tau2 Beta2 T
2.000 0.7499612 —0.1250157 ~{).749964 1.0
2.000 0.312498 0.118055 —0.1736111 2.9
2.000 (0.2205687 0.169170 ~{.064878 5.0
2.000 0.202367 0.179240 —0.0401169 7.5
2.000 0.195894 0.182834 —0.029382 10.0
2.000 0.192882 (0.184509 -0.023072 12.5
Table 3.  Effect of cubic damping on the stability of the system bl/b2
= 1.0
F. Amu2 Tau2 Beta? bci/bCQ
1.801667 0.862287 —{}.281425 —0.1322120 1
N 0.9141806 —).307854 —{.140154 10
" 0.971739 —(.337132 —{.148978 20
" 1.4322067 —0.57150728  —0.2195733 102
K 0.006124 0.020822 0.0137667 103
" 0 0 0.955700  10°
Table 4. Effect of initial deflection on stability of damped systems
bl/b2 = 1.0
F. Amu2 Tau?2 Beta2 (])10 bog
1.469286 0.444326 —{0.131762 —(.0203905 0.0 0.0
1.469286 0.4443405 —0.1317062 —0.0203905 0.1 0.1
1.48446 0.49897995 —.1361530 —0.0228096 0.25 0.1
1.5R8361 1.0450381 -0.232959 —0.046355 0.5 0.1
1.809897 3.8253977 —0.887019 —0.1560687 0.7 0.1
2.275186 9.086790—-2 0.028614 -0,3112677 1.0 0.1
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Table 5. Effect of external damping on the stability of the system
b /by = 1.0
FC Amu2 Tau2 Beta2 Beta
2.0 1.828909 —0.728811 —-0.718040 0.1
2.0 1.624999 —0.0638888 0.44444 0.25
2.0 1.124999 ~0.041666 0.499999 0.5
2.0 0.3749108 —0.083350 —0.499912 1.0
Table 6. Effect of hysteresis damping on the stability of the system
bl/b2 = 1.0
F, Amu2 Tau?2 Beta2 by1/bye
1.469286 0.436099 —0. 128865 -0.020012 0.1
1.469286 0.436096 —.128864 ~0.020012 1.0
1.469286 0.436099 —0.128865 ~0.020012 10
1.469286 0.436099 —0.128865 —0.020012 100
1.469286 0.436099 —0.128865 —0.020012 1000
1.469286 0.436099 —0.128865 —0.020012 10000
1.469286 0.436099 —0. 128865 ~0.020012 100000
Table 7.  Effect of stiffness coefficients on the stability of the
system for bi/b2 = 1.0
FC Amu2 Tau2 Beta2 Cy Cy
1.801668 0.971637 -0.337084 —0.148978 1.0 1.0
3.743095 0.687978 —0.0977537 —0.0280407 2.0 1.0
6.308571 0.8911043 —).893746 —0.0415708 3.0 1.0



Table 8.  Effect of end mass on the stability of the system g =1.0.
by /by =
Fc Amu2 Tau2 Beta2 M2
3.204545 0.3671728 —0.043208 —0.046301 0.5
1.79749 0.4028528 —0.116627 —0.059982 1.0
1.797619 0.402852 -0.116627 -{).059982 1.5
1.644231 0.389450 —0.153600 ~0.054561 2.0
Table 9.  Effect of coefficients @y and @y on the stability of the
damped system b,/by = 1.0.
FC Amu2 . Tau2 Beta2 ap O
1.973590 0.410673 —.102141 —0.0720136 0.25 0.25
2.002155 0.407260 —. 096965 —0.069244 0.5 0.5
2.125 0.397157 —(3.0789058 —0.0598072 1.0 1.0

4. THE METHOD OF NORMAL FORM

The method of normal forrn and the two theorems related to Brjuno and
Poincaré has been discussed in detail in Refs /24, 26, 27, 28/.

The method can be regarded as a generalization of Jordan's canonical form
applied to nonlinear systems.

Consider the following system

2 = Flzy) = flzg) + Qe - ' (12)

where F is a vector function analytic in its arguments, z € IR®, % € |R
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and Q is strictly nonlinear in z; f(o,5). For flutter analysis, we assume that
n is in a small vicinity of the critical controlling parameter Mo the matrix Q
posses a pair of non—zero imaginary eigenvalues. Without loss of generality, it
is assumed that the eigenvalues are complex with negative real parts for p <
Ne (damped system). As 7 is increased, the real part of at least one pair of
complex conjugate eigenvalues vanishes and then becomes positive.

The equation system (12) has been reduced by Hsu by means of a regular
analytic transformation to the following normal form, see Ref /24/

® A
i1 = v +k§1g1k(e><yly2)k]
yQ:yl* (13)
where )\1(6) = jw + O(EO) and gik(f) are complex power series in «.

The flutter bifurcation of the system (12) can be classified into benign and
explosive flutter pending on the sign of the real part of the resonant term

gll(o):

bifurcations

a) if Re!gn(o)]< 0, z=0, then the system experiences subcritical (benign
flutter

b) if Re[gu((})] > 0 z=0, then explosive flutter occurs (supercritical bifur—
cations).

The amplitude of vibration a and the periodic solutions z(t) are given by the
following expressions from Ref /27/

2 = = [Re [\, 0)]/Re[sy;0)]] ¢

2t) = 2Re [ulaej“’t] (14)

’ T[dA
where )\1(0) = vll:?ﬂ.]f:o Uy . (15)

and u;, v, are the left and tight eigenvalues of Q(0) respectively found with
respect to the critical eigenvalue Al = iw



The equations of motion (1) have been recasted in the system form (12)
(local coordinates) and expanded into power series up to third order.

The program NORFOR2 has been utilized in this section which calculates the
normal transformation and the reduced form. The input data for the program
is given in Appendix 2 (reproduced from professor Hsu's notes without change)
and a typical example of outpui is given in Appendix 3.

The results are given in tables 10—-14 and the coefficient of the resonent term
are given as FI, 2, 122 - Ya(12) = g2(1,2), see Appendix 2.

Table 10. Effect of initial deflection on the stability of the system

by/by = 1.0
1.469286 1.4950 7.4120 0.0 0.0
1.475996 1.4915 7.3919 0.0 0.1
1.484460 1.4871 7.3670 0.25 0.1
1.58361 1.4395 7.1106 0.5 0.1
1.809897 1.3528 6.68 0.75 0.1
2.275186 1.2340 6.0978 1.0 0.1
7.869113 0.93399 4.1761 1.50 0.1
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Table 11. Effect of cubic damping on the stability of the systenm
b /by = 1.0

Fc Re g2(1,2) Im g2(1,2) bcl/bCQ
1.469286 2.2267 7.3928 1.0
1.469286 2.0727 7.3931 10
1.469286 5.3276 7.3061 102
1.469286  —14.867 7.4263 103
1.469286 —16.886 7.7281 104
1.460286  —17.088 107.46 10°
Table 12. Effect of internal damping on the stability of the system

Fo Re g5(1,2) Im g2(1,2) by /by
1.469286 1.4950 7.4120 1.0
1.801667 1.8699 6.6151 2.0
1.945556 2.2124 5.6089 3.0
2.02 2.5067 4.8727 4.0
2.062879 2.7531 4.1533 5.0
2.089524 2.9548 3.5221 6.0
2.107115 3.1138 2.9596 7.0
2.119365 3.2313 2.4513 8.0
2.128333 3.3075 1.9877 9.0
2.135227 3.3427 1.5636 10.0
2.190136 -0.09279 1.0370 25.0
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Table 13. Effect of end mass on the stability of the system b,/by=1.0

F-c Re g.z(l,fz) Im g.z(i,Q) M,
2.654615 0.359 1.2016 0.25
1.815556 0.76115 3.1335 0.5
1.575507 1.0809 5.271 0.75
1.469286 1.4950 7.4120 1.0
1.37614 2.4061 11.403 1.5
1.335833 3.4002 14.836 2.0

Table 14. Effect of stiffness coefficients on the stability of the
system by /by=1.0

F, Re g5(1,2)  Im gy(1,2) ¢ Cy
0.376428  6.1233 1.4468 1.0 0.25
0.624076  2.4212 7.9251 1.0 0.5
11.005 1.7401 7.2518 1.0 0.75
1.469286  1.4950 7.4120 1.0 1.0
2.547857  1.3276 8.3334 1.0 1.5
3.743095  1.2856 9.4469 1.0 2.0

4.1  DISCUSSION OF THE RESULTS

In table (10) the effect of initial equilibrium angles on the stability of
Herrmann's model is shown with (g = 1.0, Ml = 2.0, M2 = 1.0, and
bl/b2 = 1.0), see Appendix 3. The coefficient g2(1,2) obtained from
NORFOR2 program for ¢;q5 = ¢,y = 0 has a positive real part and one
concludes that supercritical bifurcation occurs. Other combinations of initial
deflections give similar results.

For cubic damping (table 11) the results obtained from NORFOR2 program

(bcl/b(:Q = 103) differs from those obtained by BIFOR2 program (Table 5).
In the first, the bifurcation is supercritical and in the later subecritical.
Further increase in the value of the coefficient (b cl/bc2) requires  the
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calculation of‘,u[l, T4 and ,6‘4 for Hopf bifurcation as Amu2 = Tau2 = 0
however the calculation tends to be a tedious procedure. For details see ref

/25/ pp. 97.

3. CONCLUDING REMARKS

The investigation carried out in this paper is divided essentially into two
parts. The first part deals with the stability analysis of equations (1) by
means of Hopfs bifurcation theorem. This was achieved by using program
BIFOR2. The second was to give an analysis of the same system by means
of normal form method; employing the program NORFOR2.

The paper illustrates the applicability of BIFOR2 and NORFOR2 to flutter
instability in imperfect structural systems. The program NORFOR2 is cheaper
to run, but the system of equation (1) must be expressed in power series,
which tends to be tedious and error prone for systems with three or more
degrees of freedom. Some discrepancies have been found between the results
obtained by NORFOR2 and BIFOR2. These differences have been noticed by
Hsu as well, when applying the method of normal form to similar problems.

For example, in Lorenz equations analysis, Hsu found unstable regions where
the Hopf bifurcation occurs which were contrary to the stable regions findings
of Marsden and McCracken /25/, using an analytical method.

The effect of eccentricity on the Hopf bifurcations is similar to that of initial
misalignments. The results are displayed in table 15 with small vanishing

damping (b1 = b, = 0.001).

Table 15  Effect of eccentricity on the stability of the damped system

131/‘r)2 = 1.0

Eccentricity Amu2 Tan2 Beta2

0.1 0.52737 —0.142722 -0.00024
0.2 0.94915 —{.213674 —0.000398

These results show that the bifurcation is supercritical.
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7. NOTATIONS

Cpr G stiffness of the springs at lower and upper hinges, respectively

bl’ b2 linear damping at the lower and upper hinges, respectively

b,y bc? cubic damping at the lower and upper hinges, respectively

bhi’ bo hysteresis damping at the lower and upper hinges, respectively

b external damping coefficient

i, dimensionless external damping coefficient

T coriolis coefficient

{bl, (J‘,)2 configuration angles from the vertical

¢ = ¢1 - ¢2

e eccentricity of the applied load

¢10’ ¢20 initial rotations of the lower and upper link, respectively, in the
unstrained configuration

b = & — byg

By = by — by



My M

M, M,

f g

masses of the links

concentrated masses

length of the rigid links

moment of inertia of the lower and upper link, respectively

moment of inertia of the concentrated mass at the end of the
upper link

follower force acting at the end of the upper bar
ratio of distributed masses
distance of centre of gravity of the lower link from lower hinge

distance of the centre of gravity from the upper hinge for the
2nd link

distance of the centre of gravity of the end mass from the end
of the 2nd link

frequency

length ratio

length ratio

eigenvalues

external damping force at the free end

coriolis force
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APPENDIX 2

NORFOR 2: INPUT DATA

INTEGERS
ITER: only odd powers ITER=3; even and odd powers ITER=2
LZ: number of critical equations (include parameter equation, e = 0)

NZ: total number of equations (NZ>LZ)

LP: order number of the auxiliary parameter equation. If there is not a
parameter equation, set LP>NZ

LMT: total number of equations which have nonlinear terms (at the input)
LEVIT: = 2; no quadratic terms at input

= 3. no cubic terms at input

= 5 no 5th order terms at input

= 1; other cases
Remark: 3 and 5 applies to "odd" system (only odd powers)

NJI: number of equations to be printed at the output

NNLM: upper limit (estimated) of the number of nonlinear terms at input

INTEGRAL VECTORS

ITM (LMT): order number of equations which have nonlinear terms {at
input}

IPRT (NJI): order number of equations to be printed at the output
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COMPLEX VECTORS

LBD (LZ): vector of critical eigenvalues

COMPLEX MATRICES

U (LZ,NZ): critical right-—eigenvectors
V (LZ, NZ):  critical left—eigenvectors

A (NZ,NZ): linear part matrix
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COEFFICIENTS OF NONLINEAR TERMS

N, JI, 7 (VI{J), J=1,5)
N: médulus (|v]) of the exponent vector VI
JI: order number of corresponding equation
Z: {complex) coefficient of the nonlinear term
VI: exponent vector in é—notation

A blank line (or card) should follow last nonlinear term in order to stop the

reading.
é—notation of vector v = (v, vy .., Vn): (u)é
Let |v! = M. Then

1 92 M
where: 61 = (1,0,0,.,0)
62 = (0,1,0,.,0)
L= (0,..0,1)
for some 81, 895 s Spp € {1,2,...,n} and 85 £ 89 - S Spp
(V)é — (Sl, 52,... SM)
Ex. v = (1,2,1) & (u)5 = (1,2,2,3) (|v|=M=4)
v = (1,0,2,1,0) (u)(5 = (1,3,3.4) (|v|=M=4)

The input—data are entered according to the "READ" instructions in the
MAIN PROGRAM.
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DIMENSION PARAMETERS

(These data are specified in the MAIN PORGRAM by 3 cards after "REAL
R5 (1))

.LIMA: any integer > N7

LIMF: upper bound for number of nonlinear terms (gb?) in each equa—
tions. Estimate:

2 ( ITER)-1
LIMF > Nty
=2 ne
.LIMB: | upper bound for number of coefficients B’? in each equation of

Normal Transformation. Estimate:

LIMB > éTER (NZ+1-1)!
- 132 l _1 P

Othér Dimension data to be introduced in MAIN PROGRAM

OR(5,NZ), MM(LIMB); VI(5), ITM(LMT), IPRT(NJI), CI1(NZ,NZ), C2(NZ,NZ),
C3(NZ,NZ),  C4(NZ,NZ), C5(NZ),  A(NZNZ), LBD(NZ)FV1(LIMF,NZ),
FII{LIMF,NZ), BI{LIMB, NZ), A22(NZ,NZ), Z, V(NZ\NZ), U(NZ, NZ)

NOTE: Actual listed Program is good for Systems of dimension 13. Insert
new numerical values in the "Variable type" cards of MAIN
PROGRAM if other dimension is desired.
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EXTERNAL SUBROUTINES

Form IMSL (International Mathematical and Statistical Library):
"SUBROUTINE LEQT 1C"






aYQT GAZ11.PCRIT
#+#% THE ENTERED INCATA ARE AS FOLLOWSH#s
F5T= .1000000+001 DFi= . Q000000 DFM= . 00000800
Fli= . 0000049 Fl13= .00000C0 €1 = . 1000000+001
cz2 = .1000000+001 €81 = .1000000+000 B2 = -1000060+000
EKS = - 0000000 BK1 = .0000000
BK2 = . 2000000 BH1 = . 0000400 BH2Z = . 0060000
TAU= . Q000000 BETA = . 0000000 All = . 00004a0
Al2 = . 0000000 ANl = .200000G+001 AMZ = .1000000+001
GAMA = . Gogoooo ALFA = .100G000+001 AMU= .0eo0ooo
ALFAL= - 0040000 ALFA2= - 1000000 AL3 = .0ooooao
FFM>>>> -1469286+001 FFL>2>>> 144692846+001
CRITICAL DYNAMIC LCGADING
ANLI>>> -1469286+001
b
CRITICAL FREQUENCY
FRQ1>>%> .0D00G00 +5345225+000FRQ2Z>>>> . 08600000 -.5345225+000
. 1 2
i .10000+001+F .00ODOG . 00000 +1  .53452+000
2 .10000+001+1 .00000 . agooo +1 -.53452+000
3 .0aoooc +1 .00000 . 00000 +1 .00000
4 .Q0a00 +1 .0000C . 00000 +1 .a0000
1 2
i .10000+001+1 .00000 .10000+000+1 ~.18708+001
2 .10000+001+1 .0000O .10000+006+! ,18708+001

XIANIddV

€

¥
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