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Abstract 
Dispersion coefficients for turbulent flow are commonly available, but the common 
models are not easily implemented for fast computation of dispersion in time-
dependent large flow systems. 

Criteria were developed to aid in the choice of parameters for a model combining 
plug flow with the N-continuously-stirred-tanks model to obtain the best agreement 
with the pure axial-dispersed plug-flow model, while simultaneously being 
computationally efficient. Solution accuracy and computational savings were 
demonstrated for a realistic food industry example. The proposed model includes a 
method of structuring the discretization to handle the simulation of pressure drop and 
momentum balance simultaneously with simulation of dispersion.  

The criteria were derived from the analysis of Laplace transforms. It was also 
shown that the proposed model predicts the response to a step change in concentration 
in agreement with the exact solution of the axial-dispersed plug-flow model. 

The model was written in the object-oriented language Modelica as an object in a 
library structure which is being developed to simulate complex liquid food process 
lines and their control systems.  

 
 
Keywords: Dispersion, Residence time distribution, Fluid property transition, 
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1. Introduction 
Dynamic simulation of chemical process lines has not yet reached others than 
specialists and still has the potential for further development. Overviews of the 
current status have been given by Åström et al. (1998) and Cox et al. (2006). Cox et 
al. also present a vision of the many benefits of using dynamic simulation by those 
other than experts. We share this vision of applications within the field of liquid food 
processing and we are engaged in developing a library of such dynamic models 
(Skoglund, 2003; Skoglund and Dejmek, 2006; Skoglund et al., 2006). 

Over the years, many tools and languages have been presented for dynamic 
simulation. Marquardt (1996) gives an overview of the trends and concludes that a 
common paradigm is the complete decoupling of model representation and its 
application. We have chosen the language Modelica (Modelica Association; Tiller, 
2001) in the Dymola environment (Dynasim AB in Lund, Sweden). The purpose is to 
enable a non-specialist to quickly and easily configure liquid food process-line 
models for dynamic simulation. The Modelica language is non-causal, object-
oriented, and suitable for physical modelling while fulfilling the requirement for a 
modern tool. Many Modelica models and libraries for dynamic simulation of thermo-
fluid systems are currently being developed (e.g. Elmqvist et al., 2003; Tummescheit, 
2002; Casella et al., 2006). 

Time is always valuable in development and engineering. In large models, when 
simulation time easily becomes minutes and hours, time saving is a very strong 
impetus. The models we are developing are aimed at dynamic simulation of complex 
production lines for fluids that are mixtures of components (e.g. water, carbohydrates 
and fat) and include tanks, pipes, heat exchangers pumps, flash vessels, filling 
machines, sensors, PID controllers, logical sequences, etc. The dynamic simulations 
must cover flow rates, pressures, temperatures, concentrations and levels, and in our 
opinion such complex systems can not be practically simulated by means of detailed 
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CFD models with full time-space resolution. Our primary approximation is to 
consider only one space coordinate, that along the fluid channel. Therefore, to 
simulate large liquid food processing systems, e.g. complete milk pasteurizers, 
efficient dynamic models are required to avoid long computation times that cause 
long waiting times in development and engineering work. The need for computational 
speed becomes even more pronounced in real-time (in-line) simulations. Such 
simulations are performed to enable realistic communication with control systems and 
the operators’ interface to ensure realistic mimicking of the dynamic behaviour of a 
full production line. Real-time simulations are becoming more common in other 
branches for various purposes, e.g. system verification and operator training (e.g. 
Bäckman & Edwall, 2005). Simulations of this kind will obviously impose heavy 
computational demands. Methods using suitable approximations are therefore 
required. 

In the liquid food industry, production lines have sequences for start-up and shut-
down. In the start-up case, water is run through the fluid channels in the plant 
followed by the food product, and in the shut-down case, the procedure is reversed, 
i.e. the product is flushed out by water. Direct product changeover, where one product 
is directly followed by another, is also employed. What these procedures have in 
common is that they are all concerned with transient changeover of fluid composition. 
These transients in composition cause zones of mixed fluids, i.e. material that cannot 
be used as consumable products and therefore represent production losses. These 
losses constitute not only losses of raw material, but also loss of production time and 
utilities, such as water and electricity, required to flush the mixing zone through the 
plant. Furthermore, the mixed zones contribute to the environmental load, since all the 
material cannot be reprocessed, and some is discharged to the sewage disposal 
system. The mixing of fluids also affects other operations as the fluids propagate 
along a flow channel, e.g. the heat transfer in a heat exchanger, Skoglund et al. 
(2006).  

There is much in the literature about dispersion phenomena, particularly 
concerning the residence time distribution (RTD). Many models have been developed 
to describe fluid flow through pipes, with and without packing material. A great deal 
of work has also been carried out on developing methodologies for converting 
experimental data into model parameters. Overviews of the work in this area have 
been presented by Levenspiel and Bischoff (1963) and later in the comprehensive 
work of Wen and Fan (1975). 

In his pioneering work Taylor (1953; 1954a; 1954b) derived conditions under 
which the flow can be approximated by axial-dispersed plug flow (ADPF), which is 
commonly applied in chemical engineering. Later authors discussed cases in which 
ADPF is a satisfactory approximation, e.g. Levenspiel and Smith (1957) and 
Serpemen and Deckwer (1974). In liquid food applications these conditions (high 
Reynolds number and long pipes) are often fulfilled. Furthermore, many experiments 
have been carried out to investigate how the dispersion coefficient depends on the 
channel geometry, the fluid and the flow rate. Such data are widely available, e.g. Fig. 
5-15 in Wen and Fan (1975). 

Another commonly used model is the N-continuously-stirred-tanks (N-CST) 
model. The popularity of this model is due to its mathematically simple structure 
compared with the ADPF model. Wen & Fan (1975) have derived the relationship 
between N in the N-CST model and the Péclet number, Pe, in the ADPF model. In 
cases of moderate dispersion, typical in food industry processes, this leads to large 
values of N, which in turn leads to a considerable computational demand when 
simulating large systems. Another model often described in the literature is the 
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combination of plug flow and one continuously stirred tank (PFCST), e.g. Levenspiel 
and Bischoff (1963). 

To be able to handle the above mentioned transitions, during which the dispersion 
coefficient varies, the model parameters must adapt dynamically. This will lead to 
computational difficulties with a model like N-CST, which requires the value of the 
number of tanks, N, to vary with the value of the dispersion coefficient. Another 
important aspect is the need to dynamically handle pressure drop and momentum 
balance as the fluid properties change. 

This paper proposes a model that is an approximation of axial-dispersed plug 
flow. It combines mathematical simplicity and satisfactory accuracy with low 
computational demand. The model also allows for dynamic changes in the dispersion 
coefficient for concentration simulations, as well as for simulation of pressure drop 
and momentum balance. This makes it suitable for the simulation of large systems 
with dynamic variations in fluid properties and dispersion coefficient. The model was 
developed in a modern object-oriented modelling language. Based on this model, 
simulations of the fluid changeover from water to cream were performed to analyse 
the fluid dispersion and the transient behaviour. 

In the evaluation, frequency response analysis was carried out using the transfer 
function based on the Laplace transform. This method was used as it handles arbitrary 
signal responses more generally than the more commonly used method of comparing 
moments of concentration distributions as in e.g. Bischoff and Levenspiel (1962a; 
1962b). The Laplace transform and the transfer function have also been used by other 
authors to compare different models, e.g. Hopkins et al. (1969).  

 
 
 

2. The proposed computationally efficient 
dispersion model 
For turbulent flow in pipes, the axial-dispersed plug-flow (ADPF) model can be 
employed (Taylor, 1954a; Levenspiel, and Smith, 1957; Serpemen and Deckwer, 
1974). With no source term and no chemical reaction the mass balance is given by Eq. 
(1). 
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It is appropriate to carry out further analysis in the frequency domain by Laplace 
transformation. 
 
2.1 Laplace transform and transfer function of the axial-dispersed plug-flow model 
The Laplace transform of Eq. (1) is given by: 
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For a semi-infinite long pipe where the exit concentration is studied at x = L, this 
equation represents a system with the transfer function: 
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which expressed with the dimensionless variables s*= τs and Pe = vL/D becomes: 
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It is well known that this can be represented approximately by an N-continuously-
stirred-tanks (N-CST) model. Wen and Fan (1975), p. 121, have derived the condition 
for a good approximation. 
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This equation shows that a large Péclet number requires a large number of tanks, N. 
This means that cases with plug flow, corresponding to no dispersion (D=0), require 
an infinite number of tanks. The convergence to plug flow as N→∞ is well known and 
has been demonstrated previously (Skoglund et al., 2006). As shown in the same 
article the “numerical dispersion”, due to limited discretization of a heat exchanger, 
can be avoided by employing a model containing dynamic transport delay. Similarly, 
we are now seeking more efficient ways to handle axial-dispersed plug flow than 
using the N-CST model with large values of N. 
 
2.2 Frequency analysis 
To be able to handle both large and small values of Pe the new approach employs a 
combination of a pipe with plug flow (transport delay) and N identical continuously 
stirred tanks in series (PFNCST). This is illustrated in Fig. 1. For N=1 this model 
coincides with the well-known simpler combined model using a plug-flow part 
followed by a single stirred tank (e.g. Levenspiel and Bischoff, 1963). 

In the following we will derive a relationship between the model parameters (τ0, 
τN and N) and the system parameters (τ and Pe) that minimizes the difference between 
the solutions of Eq. (1) and the proposed PFNCST model. The procedure adopted is to 
make a Taylor expansion of Eq. (3) and compare the first terms with the 
corresponding Taylor expansion of the transfer function of the proposed PFNCST 
model. The model error is further analysed with frequency-response analysis. 
 

Fig. 1. A pipe and the corresponding proposed model, where V = V0 + NVN . 
 

 
 
The mass balance of the proposed PFNCST model with a transport delay τ0 and N 

ideal mixed tanks can be expressed as follows. 

  Q 
V, L,   τ =V/Q=L/v 

Q 
       V0, L0,   τ0=V0/Q=L0/v 

τN =VN/Q

N ideal mixing volumes 
1     ……………..      N 

Ideal plug-flow pipe 

τN =VN/Q 

Cin 

Cin 

Cout 

Cout 
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and represents the delay in the ideal plug-flow pipe. 
The combined transfer function of this is  

( )N
N

s

PFNCST s
es
τ

τ

+
=

−

1
)(

0

G         ( 8) 

 
where the time constant QVNN =τ  has been introduced. 
Compatibility requires that the volume considered in the model is the same as the total 
volume in the original pipe  
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With the average transport time τ =V/Q this gives 
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and when the dimensionless argument s* is used the expression becomes: 
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To investigate the conditions under which Eq. (3) can be approximated by Eq. (11), 
we assume that: 

14
2 <<s

v
D  and 1<<sN Nτ         (13) 

 
It should be noted that Eq. (13) is an assumption made to proceed in the analysis to 
find a relationship between model parameters. The frequency analysis, step response 
analysis and breakthrough analysis below confirm the validity of parameter values for 
the range of liquid food applications considered. The fulfilment of the first inequality 
is, however, confirmed by the fact that normally D < 0.05 m2/s, v > 1 m/s and |s| = |iω| 
= 2πf  <~  2π•0.2 s-1. The second inequality cannot be confirmed before we know the 
relationship between the model parameters, i.e. the result expressed in Eq. (20) and 
the required values of N given by the error analysis below. This means that the 
original equations can be approximated by Taylor expansions ignoring higher order 
terms. Taylor expansion of Eq. (3) gives: 
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With further Taylor expansion of the second factor in this expression we obtain:  
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Similarly, we perform a Taylor expansion of Eq. (11). 
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By multiplying the parentheses and collecting the lower-order terms we obtain: 
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Assuming the conditions defined by Eq. (13), we regard higher order terms as being 
negligible. Then Eqs. (16) and (18) become equivalent if: 
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This, together with Eq. (10), is the essence of the analysis that describes the 
relationship between the system parameters (τ and Pe) and the model parameters (τ0, 
τN and N). These relationships determine which values of τ0 and τN should be used for 
any chosen value of N.  
Inserting Eq. (20) in Eq. (12) gives 
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It is interesting to observe what happens if N is chosen according to Eq. (5). Using Eq. 
(20) this gives NτN= τ. From Eq. (10) we then conclude that τ0 = 0. This means no 
plug-flow part, only N continuously stirred tanks. In other words, the new model 
converges to the N-CST model as N approaches Pe/2. 

The question is how accurate the new model is. This question is vital since the 
analysis is based on the assumptions in Eq. (13). Before we assess the accuracy we 
evaluate the second inequality of Eq. (13). By using Eq. (20) it can be expressed 

as 12
<<ωτ

Pe
N . According to Eq. (5) the N-CST model requires N = Pe/2 and our 

demand is that the proposed model requires that N is far less. This means that 

12
<<

Pe
N  which gives τωωτ <<

Pe
N2 , and since τω mostly < 1 the condition is 

fulfilled. 
To assess the accuracy (for N << Pe/2), we determined the error in the model 

regarding amplitude and phase. Eqs. (4) and (21) are used to plot these errors. Figs. 2a 
and 2b show curves for the relative error in amplitude, |GPFNCST(iω∗) / GADPF(iω∗)| - 1, 
and the error in phase shift, arg(GPFNCST(iω∗)) - arg(GADPF(iω∗)). It can be seen that 
both errors are small over a wide range of ω∗ and Pe, even for moderate values of N. 

To better illustrate the relevance for typical cases, Figs. 3a and 3b show the 
corresponding errors plotted as a function of the dispersion coefficient, D, for L = 20 
m, v = 2 m/s and ω = 2 rad/s. 
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Fig. 2a. Accuracy of the proposed model for different degrees of dispersion and 
different choices of number of stirred tanks, N. The accuracy is displayed as the error 
in terms of the relative amplitude quotient |GPFNCST(iω∗) / GADPF(iω∗)| - 1 for two 
values of the Péclet number, each for two values of N.  
 
 

Fig. 2b. Accuracy of the proposed model for different degrees of dispersion and 
different choices of number of stirred tanks, N. The accuracy is displayed as the error 
in terms of the phase-shift difference arg(GPFNCST(iω∗)) - arg(GADPF(iω∗))  for two 
values of the Péclet number, each for two values of N. (Note that the phase-shift 
difference is expressed in cycles instead of radians.) 
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Fig. 3a. Accuracy of the proposed model for different choices of number of stirred 
tanks, N. The accuracy is displayed as the error in terms of the relative amplitude 
quotient |GPFNCST /GADPF| - 1 as a function of the dispersion coefficient, for three 
values of N (L=20 m, v=2 m/s, ω=2 rad/s).  
 

Fig. 3b. Accuracy of the proposed model for different choices of number of stirred 
tanks, N. The accuracy is displayed as the error in terms of the phase-shift difference 
arg(GPFNCST) - arg(GADPF) as a function of the dispersion coefficient, for three values 
of N (L=20 m, v=2 m/s, ω=2 rad/s).  
 
 

0.0001

0.001

0.01

0.1

1

10

0.001 0.01 0.1
D   (m2/s)

|G
P

F
N

C
S

T/G
A

D
PF

| -
 1

  (
%

)

N=4
N=16
N=64

0.00001

0.0001

0.001

0.01

0.1

0.001 0.01 0.1
D   (m2/s)

ar
g(

G
P

F
N

C
S

T
 ) 

- a
rg

(G
A

D
PF

)  
(c

yc
le

s) N=4
N=16
N=64



Skoglund & Dejmek, p.11 of 24 

2.3 Step-response analysis 
Since step responses are of particular interest when analysing mixing zones and 
product losses in a liquid food plant, an alternative and complementary analysis has 
also been carried out. In this section we will prove that the derived result above also 
predicts a step response with good accuracy. More precisely, we will study the change 
of the concentration at the outlet, at the time L/v after an inlet concentration step. We 
will show that the rate of change in concentration, calculated with the proposed 
PFNCST model, gives a result deviating only slightly from that calculated by the 
ADPF model even for moderate values of N. 

We start by stating that the rate of change in concentration at time L/v after a step 
input is the same for both the axial-dispersed plug-flow model, Eq. (3), and the new 
model, Eq. (11). 
 
The response at the output to a step input with the magnitude Cstep to the system 
described by GADPF, Eq. (3) is: 
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The rate of change in the output concentration is then: 
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The rate of change at time t = L/v = τ = τ0 + Nτ Ν is then given by: 

τππ
Pe

DL
v

t
C

C
v
Lt

out

step 2
1

2
11 3

==
∂

∂

=

      (26) 

 
For the new model we first identify the inverse Laplace transform of GPFNCST, Eq. (8) 
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The Laplace transform of the exit concentration as a result of a step input with the 

magnitude Cstep is )(1 s
s

C PFNCSTstep G  

The inverse Laplace transform of this, Råde & Westergren (2001) p 326, gives the 
exit concentration. 
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This means that the rate of change in concentration is 



Skoglund & Dejmek, p.12 of 24 

N
N

t
N

PFNCST
out

step N
et

tG
t

C
C

N

τ
τ τ

τ

)!1(
)(

)(1
0

1
0

−
−

==
∂

∂
−

−
−

      (29) 

 
The rate of change at time t = L/v = τ = τ0 + Nτ Ν is thus: 

N
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0
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∂

∂
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        (30) 

 
Requiring equality of the rates of change in Eqs. (26) and (30) gives: 
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To simplify this we use Stirling’s formula: 

)1(2! 2
1

N
NN eNN επ += −+         (32) 

where 0→Nε  as ∞→N . 
 
Inserted into Eq. (31) this leads to: 

33

2
1

12
Nv
LD

Nv
LD

N
N →

+
=

ε
τ  as ∞→N       (33) 

 
This is exactly the same result as that given by the Taylor expansion of the Laplace 
transforms, Eq. (20). It is also worth noting that the error in Stirling’s formula is 8.4 
% for N=1 and only 2.8 % already for N=3. In other words, in terms of change rate of 
the concentration at the time L/v, the PFNCST model provides a good approximation 
of the response to step changes in input concentrations even for small values of N.  
 
2.4 Comparison of the proposed model with the exact solution of a pulse and 
breakthrough 
Fig. 4 shows an example where the PFNCST model is compared with the exact 
solution of Eq. (1). The diagram shows the response of a unit pulse input with a 
duration of tp=0.25τ. The model solution was plotted for different values of N. The 
plot shows good agreement between the model and the exact solution, even for 
moderate values of N. 

A common practical view of fill-up or purging processes is that there is a point in 
time at which the flushing fluid first reaches the exit of the channel. According to the 
ADPF and N-CST models, no such point exists in a strict mathematical meaning. 
However, since C(ξ ) is very small for reasonable values of ξ (C(ξ )<10-5 for ξ>3 in 
Eq. (22)), corresponding to a period of time during which the concentration in 
practice is negligible, not to say impossible to measure, it is relevant to define a 
practical breakthrough point. To analyse how well the new model reproduces 
breakthrough times, such calculations were carried out. Fig. 5 shows the initial rise in 
concentration at a step response for a typical case (Pe=10000, v=1.5 m/s and L=20 m) 
calculated exactly and with the new PFNCST model with different values of N. The 
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diagram shows the breakthrough times for Xb=0.2 %, a value clearly below practical 
limits of detection. The error in this breakthrough time was calculated for a range of 
values of Pe and N and the results are shown in Fig. 6. The figure shows that the new 
model gives a good prediction of the breakthrough for typical cases and at reasonable 
values of N. 

Fig. 4. Response to a pulse change in concentration for three values of N. The pulse-
duration is tp

*=0.25, Pe=400, L=20 m and v = 1 m/s (D = 0.05 m2/s) 
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Fig. 5. Illustration of the initial breakthrough of a step response for Pe=10000, v=1.5 
m/s and L=20 m. The breakthrough time is indicated for Xb=0.2 %. 
 

Fig. 6. The error in break-through time for Xb=0.2 % as a function of Pe for different 
values of N (v=1.5 m/s and L=20 m). 
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2.5 Pressure drop and momentum balance 
Since pressure drop and momentum balance depend on fluid properties, propagation 
and dispersion also have effects on the pressure. To consider these effects adequately 
the model described by Eq. (8) and Fig. 1 can be reformulated as in Eq. (34), i.e. the 
same transfer function but now interpreted as N “control volumes” with a transport 
delay τ0/N and one tank with the time constant τN.  
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It is illustrated in Fig. 7. The advantage of this model structure is that the 
discretization includes the transport delay part with the dispersion. Since the plug-
flow model includes equations for friction factors and momentum balance this 
structure improves the dynamic calculation of pressure changes as fluid properties 
propagate and disperse along the channel. 
 
 

Fig. 7.  One of N identical “control volumes” of the proposed model. 
 
 
 

3. Model implementation and simulation 
The new dispersion model for turbulent flow was implemented in the modelling 
language Modelica1. According to Eqs. (10) and (20) the model parameters, τ0 and τN, 
depend on the Péclet number, Pe, which in turn depends on the Reynolds number, Re 
(Wen and Fan, 1975; Taylor, 1954a). Hence the model parameters depend on 
variables such as velocity and viscosity. Therefore, in a dynamic dispersion model, 
these parameters (τ 0 and τN) must be variables that change accordingly. Since τ 0 = 
L0/v and τN = VN/Q, the most straightforward approach would be to vary L0 and VN 
respectively. This is, however, not desirable for the following reasons. 

i. The models were constructed hierarchically, where the dispersion pipe model 
uses existing models for pipes and ideal mixing volumes that uses constant 
lengths and volumes respectively during a simulation. 

ii. Variable lengths and volumes create problems concerning mass balance. 
iii. Variable lengths and volumes were believed to cause computational 

problems. 
For these reasons the dynamic variations of τ 0 and τ N were instead implemented as 
modulations of v and Q. It should, however, be noted that the simultaneous dynamic 
simulation of the pressure drop and momentum balance uses the true channel length, 
L, and velocity, v. 
 
                                                 
1 Modelica was the program language. The tool was Dymola supplied by Dynasim AB. 

 

Q 
          V0/N, L0/N,     τ0/N 

τN =VN/Q

One of N ideal mixing volumes One of N ideal plug-flow pipes 
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In the present study a complete system of component models was set up to simulate a 
pipe during product changeover, where one fluid is followed by another. The system 
is illustrated in Fig. 8, and can be described as follows.  
• A pipe 20 m long with a diameter 48.6 mm (standard type with an outer diameter 

of 51 mm). 
• Two fluids at 10 °C; either water or cream (15 % fat or 30%), in two or three 

phases during the simulation: 
o Phase 1: Fluid 1  
o Phase 2: Fluid 2  
o Phase 3 (in some experiments): Fluid 1 

• A flow rate of 10 000 l/h (controlled by a PID controller, stable during the fluid 
transitions) 

In some simulations Fluid 1 = Fluid 2, i.e. the viscosity and density remain 
unchanged during the transitions, which means that the dispersion coefficient, D, also 
remains constant during the transition. See below and Eq. (35)  
 

Fig. 8. The design of a theoretical experiment as a system of dynamic models, 
whereof one, denoted “Pipe1”, is the new PFNCST model. Depending on the change-
over valve, V1, the pipe is connected to either a source denoted “C1” or a source 
denoted “C2”. The flow rate control loop includes a sensor (FT1), a PID controller 
(FC1), a flow set point (FC1_SP), an inverter (SC1) and a pump (M1). 
 
 

4. Results 
Simulations were carried out by numerically solving the system of model equations 
using the Dassl solver in Dynasim’s Modelica-based program Dymola version, 5.3c. 
The following simulations were run with different values of the dispersion coefficient. 
 

Phase 1 (0-30 s): Start-up of the system with fluid 1 to allow flow to stabilise 
Action 1 (at 30 s): Changeover from fluid 1 to fluid 2 at the pipe inlet 
Phase 2 (30-40 s): Continue to allow the transient to stabilise 
Action 2 (at 40 s): Changeover from fluid 2 to fluid 1 at the pipe inlet 
Phase 3 (40-50 s): Continue to allow the transient to stabilise 
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The output response was studied in the interval 40-60 s where the subsequent 
concentration transition reaches the pipe outlet. 
 
 
4.1 Simulation of product-to-product transition 
The system was simulated during transition from one fluid to another with the same 
rheological properties, i.e. with the same Reynolds number. According to Wen and 
Fan (1975), p. 146, for turbulent flow the dispersion coefficient depends on the 
Reynolds number as in Eq. (35) 

( )125.01.27 35.1100.321 −− +⋅== ReRe
L
R

PeLv
D      (35) 

 
For the set-up in Fig. 8 the values obtained were D=0.025 m2/s (Pe=1183) for water 
and D=0.037 m2/s (Pe=813) for cream (15% fat). During the transition from water to 
cream and vice versa intermediate values will occur (see below). 

Figs. 9 and 10 show simulation results for cream-to-cream changeover with the 
new PFNCST model compared with the exact solution to Eq. (1) (ADPF model) with 
a step input. The figures also show the results of simulation where the pipe was 
replaced by an N-CST model. 
 
4.2 Convergence − Simulations with varying values of N 
The convergence rates of the N-CST model and the proposed PFNCST model were 
investigated by calculating the RMS1 errors of the simulated results. The results are 
given in Fig. 11, which shows the required CPU time vs. the RMS error for 
simulations with different number of mixed tanks, N. The plot shows that, for a given 
level of accuracy, the N-CST model requires considerably more CPU time2 (a factor 
30-100) than the PFNCST model. 

 
4.3 Simulations with varying dispersion 
The dispersion may vary depending on flow rate, channel geometry and fluid 
properties. Hence, to further analyse how the dynamic dispersion model handles 
variations, simulations were performed for fluid transitions where the dispersion 
coefficient, D, varies according to Eq. (35). Simulations of transitions from water to 
cream (with 30 % fat; D=0.11 m2/s, Pe=280) and vice versa were performed. The 
results were compared with the exact solution of step responses for water-water and 
cream-cream transitions. The results are given in Fig. 12, which clearly shows the 
ability of the new model to handle dynamic variation of the dispersion coefficient. 
 

                                                 
1 Root-Mean-Square 
2 A standard PC was used: Dell Optiplex SX270 with Intel® Pentium® 4 CPU 3.2 GHz, 1.0 GB RAM 
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Fig. 9. Results of simulations of a 10 s wide pulse of cream-cream product change 
(D=0.037 m2/s, Pe=814) showing the concentration at the pipe outlet using the new 
model (PFNCST, N=3) compared with the N-CST model (N=407 and N=203) and the 
exact solution of the ADPF model. 
 
 

Fig. 10. The same results as in Fig. 9, showing the early phase and one more 
simulation (PFNCST, N=6). 
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Fig. 11. CPU time vs. error for a number of simulations carried out with the proposed 
model (PFNCST) and the N-CST model. The error and CPU time were calculated 
over the simulation period of 30-60 s in the simulations shown in Fig. 9. The diagram 
shows that for a certain demand on the error, the new model requires considerably 
less computational power (a factor of 30-500). 

Fig. 12. Exact step response of cream-cream (CC) changeover with 30% fat and 
water-water (WW) changeover compared with the simulated step response of water-
cream (WC) and cream-water (CW) changeovers using the proposed model 
(PFNCST) with N=48. The model uses dynamic adaptation of the dispersion 
coefficient D by using Eq. (35). The diagram clearly shows the ability of the new 
model to handle dynamic variations of the dispersion coefficient.  

1

10

100

1000

10000

0.1 1 10 100
Error  (% RMS of step)

C
P

U
 ti

m
e 

 (s
)

New model
N-CST model

N = 6

N = 12

N = 51N = 24

N=  48

N = 407

N = 203

N = 102

0

10

20

30

40

50

60

70

80

90

100

11 12 13 14 15 16
t   (s)

X
  (

%
)

Exact CC
Exact WW
WC
CW



Skoglund & Dejmek, p.20 of 24 

5. Conclusions and discussion 
A new fluid dispersion model for turbulent flow has been presented as an 
approximation of the axial-dispersed plug-flow model. The new model consists in 
principle of an ideal plug-flow pipe followed by N ideally mixed volumes 
(continuously stirred tanks). To dynamically handle pressure drop and momentum 
balance as fluid properties change, the model was rearranged to represent N sets of 
one plug-flow pipe combined with one ideally-mixed volume. 

The model expresses the relationship between the model parameters (τ0, τN and 
N) and the system parameters (τ and Pe), (Eqs. 9, 10 and 20). For any value of N, the 
relationships give an optimal value of the model parameters, i.e. the volumes of the 
plug-flow pipe (V0) and the N tanks (VN). The value of N can be chosen to obtain 
desired accuracy. 

Mathematical frequency analysis (Section 2.2) and mathematical step-response 
analysis (Section 2.3) were applied to demonstrate the validity of the approximation. 
In simulations the model showed good agreement with the exact solution of the ADPF 
model at typical values of Pe, even for moderate values of N. This demonstrates that 
the new model is computationally efficient and suitable for simulations of large 
systems that are typical for many liquid food processing systems. Implementation of 
the model showed its ability to handle dynamic variations in the dispersion 
coefficient. Furthermore, the model gave good predictions of breakthrough time for 
typical cases in liquid food applications (Section 2.4). Simulations also showed that 
the new model is well suited for implementation in Modelica. 

It is proposed that in future work the model be implemented in more complex 
fluid channels. In our group the model is currently being implemented in heat 
exchanger models. 
 
 

Notation 
 
C(x,t) Volumetric concentration, kg/m3  
Cb Definition of the volumetric concentration at which breakthrough takes place 

(see Section 2.4), kg/m3  
Cin(t) Volumetric concentration at the channel inlet, C(0,t), kg/m3  
Cout(t) Volumetric concentration at the channel outlet, C(L,t), kg/m3  
C  Laplace transform of C 
D Dispersion coefficient in axial direction, m2/s 
G Transfer function, i.e. ratio of Laplace transforms for output and input signals, 

)(
)(

s
s

in

out

C
CG =  

i Imaginary part of complex numbers, - 
L Length of flow channel, m 
L0 Length of channel with ideal plug flow, m 
N Number of continuously-stirred tanks in the dispersion model, - 
Pe Péclet number defined by vL/D (the ratio of convective flow rate to dispersive 

flow rate), - 
Q Volumetric flow rate, m3/s 
R Radius or hydraulic radius, m 
Re Reynolds number defined by 2ρRv/µ, - 
s Complex argument of the Laplace transform, s-1 



Skoglund & Dejmek, p.21 of 24 

s* Dimensionless argument of the Laplace transform, Ls/v = τs, - 

t Time, s 
tb Breakthrough time, s 
tp Duration of pulse, s 

t* Dimensionless time, 
τ
tt =* , - 

tb
* Dimensionless breakthrough time, 

τ
b

b
t

t =* , - 

tp 
* Dimensionless duration of pulse, 

τ
p

p

t
t =* , - 

V Volume, m3 
V0 Volume of channel with ideal plug flow in the new model (see Fig. 1), m3 

VN Volume of one of the N continuously stirred tanks, m3 
v Mean velocity over a channel cross-sectional area, m/s 
X Relative mass concentration, i.e. mass fraction, C/ρ, -  
Xb Definition of the mass fraction at which breakthrough takes place, (see Section 

2.4), Cb/ρ,  - 
x Axial spatial coordinate (along the fluid channel), m 
 
Greek letters  

ξ Dimensionless variable defined by ( )
*

*1
24 t

tPe
Dt
vtL −

=
−

=ξ , - 

ρ Density, kg/m3  
τ  Average transport time (dwell time) for a fluid through a channel (see Fig. 1), 

V/Q or L/v, s 
More generally, to handle dynamic delay, i.e. varying velocities: 

∫==
τ

dttv: Ltvττ
0

)())((  

τ0 Transport time (dwell time) for a fluid through the channel with ideal plug 
flow in the new model (see Fig. 1), L0/v = V0/Q, s 
More generally, to handle dynamic delay, i.e. varying velocities: 

∫==
0

0
000 )())(

τ

dttv: Lv(tττ  

τΝ Average transport time (dwell time) for a fluid through one of the N 
continuously stirred tanks in the new model (see Fig. 1), VN/Q, s 
More generally, to handle dynamic delay, i.e. varying flow rates: 

∫==
Nτ

NNN dttQ: VtQττ
0

)())((  

 
ω  Angular frequency, radians/s 
ω∗  Dimensionless angular frequency, Lω/v = τω, - 
 
 
General superscripts 
A* Dimensionless form of variable A (further explained above for each variable) 
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General subscripts 
ADPF Axial-dispersed plug-flow (ADPF) model  
N-CST N-continuously-stirred-tanks (N-CST) model  
PFNCST New proposed model combining plug flow with the N-continuously-stirred-

tanks (PFNCST) model 
i Continuously stirred tank number i 
in Into the system 
out Out of the system 
b Breakthrough 
 
 
Other general symbols 
A  Laplace transform of A 
 
 
Model acronyms 
ADPF  Axial-dispersed plug flow 
N-CST  N continuously stirred tanks  
PFCST  Plug flow combined with 1 continuously stirred tank 
PFNCST Plug flow combined with N continuously stirred tanks (= new model) 
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