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INTRODUCTION

Models of economy tend to be large. One method of handling that problem
is to study one equation at a time, and simplify the equations as much
as possible. But as shown below, this may intrdduce artificial difficulties.

Anderson and Taylor(1976) consider an extremely simplified model under
certainty equivalence control. They find that with this control law, the
model parameters can not be estimated by least squares, but the control
law converges to its desired value. This situation will now be analysed
using the differential equation approach developed by Ljung(1977). It is
shown why the parameter estimates do not, in general, converge to the true
values, whereas the input does. However, the parameters can be made to
converge if the model is slightly changed in a natural way.

PROBLEM STATEMENT

Consider the system
y(t) = b1u1(t-1) + b2u2(t-1) + e(t) (1)

where {e(t)} is a sequence of independent random variables with zero mean
and variance 02. The parameters b] and b2 are constant, but unknown., Only
one of the control variables is used for control of the system. The second
input, Uss is not considered to be available for control of (1). It may e.g.
be designated for control of some other equation in a Targer model.

The control objective is to keep the output close to a prescribed reference
value Y- To do so, the unknown parameters b] and b2 must be estimated. This
is done w1th a least squares estimator, and the estimates are denoted b( )

and b2( ). The certainty equivalence control rule then is
Yo ~ b,y (t)u,(t)

u](t) = = (2)
by (t)

Unfortunately, there is no feedback from the output in the control law (2).
This is because the model (1) is very simplified. Normally, the output must
also be allowed to depend on previous values of the output. This would then
introduce feedback into the control law.

In the analysis it is assumed that uz(t) is constant, i.e. u2(t) = Uy, The
effects of a time-varying u2(t) will be discussed later on.



ANALYSIS

The estimation algorithm

To analyse the performance of the closed-loop system with least squares
estimation, the ordinary differential equations approach of Ljung(1977)
will be used. These ODEs describe the evolution of the parameter estimates,
and equations for the recursive least squares estimator are needed in a
special form. With

0= by b,1T
o(t) = [uy(t=1) uy(t-1)1"

the equations are

8(t) = B(t-1) + =R(t) ()= Ly(t) - B(t-1)To(t)] (3)
R(t) = R(t=1) + -lo(t)o(t) - R(t-1) + §-1] (4)

The term §-I of (4) is added here to ensure the invertibility of R(t). In
normal least squares estimation §=0, but §+0 may be used to avoid numerical
difficulties. Equation (4) is normally written in terms of P(t) = [t-R(t)]_l

but the form (4) facilitates the analysis.

The differential equations

According to Ljung(1977) the equations (3)-(4) can be associated with the
differential equations

= E (R o(n) - Ly(r) - 80()] }
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The expectations shall be evaluated for fixed values of 8 and R and with
the input from (2)

Y.. - bou
u = Jr 272 (5)
L
Also Tet
_ T
e=1Lu UZ] (6)

The only random variable is then y(t), which contains e(t). The
differential equations are



b u

BRI oLl B S (7)

b, Uy

B = Q_LET-B+SI (8)
where

£ = (b]'EJ)ﬂH] + (bgﬁE )'Uz (9)

Possible convergence points

In Ljung(1977) it is stated that the asymptotic behaviour of the identifi-
cation algorithm is described by the solution to the differential equations
(7)-(9). Only their stable stationary points are possible convergence points
for the identification. With u2¢0 the only possibility is then ¢ = 0. X
With Uy inserted this implies that the asymptotic estimates must satisfy (b]¢0)

by ¥y = boup) = by(y,. - byuy) (10)

There is thus a whole line of stationary points of (7)-(9). The true values

are fortunately on this Tine.

To check the stability, the ODEs (7)-(9) are linerized around these stationary
points. The linerized system will have three eigenvalues in -1 (from

equation (8) ) and one in zero (with the eigenvector along the line of
stationary points). The last eigenvalue will be

b

1 2 2

-b—(£]+u])

=1

For this to be negative, b] and its estimate must have the same sign. Since
this is necessary for stability, the sign of b1 will always be correctly

estimated.

The above analysis explains the identification problems encountered by
Anderson and Taylor(1976). It is also possible to answer their question
if b] will converge to b] w.p.1. The analysis shows that it will not.

It should be noted that the input Uy will always converge to its desired
value. From (10) it is obvious that

Yp = bap Yy = baup
b

1
This agrees well with the findings of Anderson and Taylor. Thus, if the main
concern is control, this method is probably good. But if the parameter

estimates are wanted it cannot be used unchanged.



Modifications

It was stated in the introduction that the difficulties arise from the
over-simplified model. It is noe easy to see why. The reason is, that the
stationary points of (7) can be described by the simple equation e=0
or (10). This in turn is caused by ¢ being a constant in the expectation
defining the ODEs.

There are several ways to avoid the problem. They all assure a random ¢
in the expectation, either through Uy Or u, or both. In fact, they need
not be random. It is sufficient if they change irregularly enough.

One possibility is to introduce dynamics in the model (1). This will make
Uy a feedback controller. Another possibility is to make frequent changes
of the reference value or of the input Up-
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