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" IDENTIFICATION OF DYNAMICS OF A ONE DIMENSTONAL HEAT
- DIFFUSION PROCLSS.

B, Leden

ABSTRACT.

Parametric linear models of a one dimensional heat
diffusion process are determined using the maximum
likelihood method. A theoretical model of the process
is given by the infinite partial fraction expansion

of the transfer functicn

w Kk(x)
G(x,8) = Z e (%)
k=1 1 + Tks

relating the temperature at a point x on the rod to
the end point temperature. The models obtained from
the identification are compared with this theoretical
model. The slowest mode of the model (¥) is found in
21l estimated models. The vepresentation of the other
modes of the model (*) is closely related to the sign
of the gain factors Kk(x)e The study shows that adja-
cent modes of the model (¥*) which have gain factors
of the same sign are represented by a single mode in
the estimated model. The sum of the gain factors of
the adjacent modes is the gain factor of the single
mode. The modes of the model (*) which are close to
the frequency -n/T are in some cases represented by

a pair of complex modes. The Nyquist frequency is «/T.
The estimated models are of 4:th and 5:th order. Mo-
dels are also estimated from simulated samples of a

diffusion process.
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1. INTRODUCTION.

Parametric linear models of a one dimensiocnal heat
diffusion process are estimated by the maximum like-
lihood procedure. The process which consists of =
long homogeneous copper rod is described by the par-

tial differential equation
=z 0 (1.1)

where a° is the thermal diffusivity. The system input
variables are the end temperatures of the rod. The
output varizbles are the temperatures in 7 equally
spaced points on the rod. The partial fraction expan-
sion of the transfer function relating temperature at
e point x on the rod to the left end point tempera-

ture is given by

Glx,8) = § 21 (1.2)

The right end point of the rod is kept at zero tempe-
rature., The models (1.1) or (1.2) have an infinite
number of negative real modes. The representation of
the infinite number of modes in the estimated finite
dimensional discrete models is studied extensively.
The slowest mode of the model (1.2} is found in all
estimated models. The representation of the other -
modes of the model (1.2) is closely related to the
sign of the gain factors K (x). The study shows that
adjacent modes of the model (1.2) which have gain fac-
tors of the same sign are represented by a single
mode in the estimated model. The sum of the gain fac-

tors of the adjacent modes is the gain factor of the




single mode. The phenomenon explains the relative low
order of the estimated modelsg. The modes of the model
(1.2) which are close to the frequencyr"n/T are in
some cases represented by a pair of complex modes in
the estimated models. The Nyquist frequency is » /T,
where T is the sampling period. The estimated models
do not contain modes s = a + ib outside the .closed re-

gion a2 + b2 < /T, a £ 0 in the complex s-plane.

Models are estimated from 2 series. The sampling pe-
riod of the series are 2 and 10 sec. A statistical F-
test indicates that the appropriate orders of the mo-
dels ere 4 and 5. The higher order is obtained from
the series with 2 sec. sampling period. The smail va-
lues of the standard deviations of the coefficients

of the characteristic equation of the discrete models
and the distinet drops in the test quantities Fun,u(n-1)
should be noticed. The prediction errors of the one-
step ahead predictor for the models are extremely
small. The errors arve 0.0003°C - 0.0008°C. The short
time drifts of the sensors recording the temperature
of the vod are 0.9002°C. The output swings are 0.4°%C -
~-1.6°C., The slowest time constant of the process is
177 sec. Models are also estimated from simulated
samples of a diffusion process. The models of the si-

mulated and the experimental process agree well,

The diffusion process, the measurements and the ana-
lysed series are described in Section 2. In Section 3
the model to be identified and comments on the maxi-
mum likelihood method are found. The results of iden-
tification on the series are given in Sections 4 and
5. The consistency of the estimated models is dis-
cussed in Section 6. The results of identification on

the simulated samples are found in Section 7.




2, DIFFUSION PROCESS AND THE MEASUREMENTS.

A one dimensional heat diffusion process is investi=-
gated. The process is described in [5}, [61. A simp-

iified block diagram of the process is found in Fig.
2.1,

Cooler

uy —of Temp

i_D regulator _]-D Peltier elements
S Silver plate

Ye
1. Rod
yi d ™~ Guard tube
Yo <
y; <
y, 9
y; <
Ys <
, Y, <
Ve, ’
LD Temp , X
U, —y regulator

Fig., 2.1 -"A simplified block diagram of the investi-

gated process.

The diffusion process consists of & long homogeneous
copper rod of constant cross section. The rod is en-
closed in a copper tube. The ends of the tube and
the rod are thermally connected by a silver plate.
The tube yields an almost unidirectional flow of heat
in the rod. The Peltier elements supply the power ne-

cessary to control the end temperature of the rod.




The cooler serves as a reference temperature to the
elements. The tube is surrounded by a conventional

heat insulation.

The system input variables are the end surface tempe-
ratures controlled by the inputs uy and u,. The out-
put variables are the temperatures in 7 equally spaced
points on the rod. The temperatures are converted to
outputs yy, Y95 +e+y Y¥7. The process operates in the
temperature range 20°C - 30°C. The relation between
the temperature T[°C] and the input or output voltage

ul vl is
u = 25 + T (z.1)

The end surface temperature may be recorded. The sig-

nal is denoted u .
sServo

The measurement of the input and output varisbles of
the system has been performed with a data logger. A
stert command connects the input signals of the log-
ger through a multiplexer to the voltmeter of the log~
ger at each sampling event. Aitken's scheme for Lag-
range interpolation is employed in order to synchro-
nize the readings of the different channels within
the same sampling event. The time displacement bet-
ween the readings of 2 consecutive channels is 0,180
sec. The interpolation is carried out so that data
are related to the input uy. The long term accuracy

of the logger is 0.01% of full scale and 0,02% of rea-
ding.

We znalyse 2 series denoted S1 and S2. The input sig-
nals Uy of both series are a,pSeudo random binary sig-
nal of maximum period, PRBS. The second input u, is
xept constant at 25°C, The input temperature swing is
approximately 1.8°C. The temperature profile of the

rod. is stationary but nonzero when the input is app-




lied to the process. A perfect synchronism is achieved
between the start commands of the logger and the clock
pulses of the PRBS sequence. The sampling period of
gseries $1 is 10 sec. The series contain 862 data points.
The minimum pulse length of the PRBS sequence is 60 sec.
and the length of the shift register generating the se-
quence 12, The signals Vi5 Yos sves Vg5 '

u, are recorded in the order mentioned.

The sampling period of series S2 is 2 sec. The series
contain 1828 data points. The minimum pulse length of
the PRBS sequence is 28 sec. and the length of regis-
ter generating the sequence 10. The slowest time cons=
tant of process is 177 sec. The number of data points
are limited by the length of paper tape. During the 2
experiments a 59C pise in the room temperature occured.
By convection the room temperature influences the tem-
perature profile of the rod. A rise in the profile of
approximately 0.01°C should be expected according to
[6]1. The choice of the sampling rate for the considered

process has been discussed briefly in [H],

u_ u
servoy’® “servo,’?




3. MODEL TO BE IDENTIFIED AND COMMENTS ON THE MAXIMUM
LIXELIHOOD METHOD.

We consider the problem of determining an appropriate
model of a process from which input-output samples are
available. The process is assumed to be linear of n:th
order and subjected to disturbances that are stationa-
ry normal random processes with rational power spectra.
Thus we choose the model

2%(q Ny t) = B2(q"Huce) + ackiq" Helt) (3.1)

where {u(t), y(t), t =1, 2, ..., N} is the input-out-
put sequence and {e(t), t = 1, 2, ..., N} is a seguence
of independent normal (0.1) random variables. The shift

operator is denoted q and A“(q“1), B“(q"1), C“(qni) are

polynomials
LY —1 -—1 ——
A¥(g ") = 1 + 849 5 +..5 aq n
as _1 "‘1 =T
B*(q ') = 1 + bqq s saay bnq
c*(q™) = 1+ e, i, o @™ (3.2)

The parameter estimate is chosen so that the likeli=-
hood function is maximized according to [1]. The like-
lihood function is a function of 6 and A where 8 is a
vector whose components are Sy eusy s b1, ey bn’
Cq5 ++.5 ¢ and n initial conditions of eq. (3.4).

The parameter vector 8 is determined so that the loss

function
ved= L § e(t)? (3.3)
t=1




is minimized. The sequence {e(t)} is given by eq.
(3.4)

(g~ Dett) = Ax(q Dy t) - Bx(q ™ ult) (3.4)

and the observed input-output sequence {u(t), y(t)}.

The parameter A is determined from

min V(e) (3.5)
g

2o

The maximum likelihood estimate is consistent, effi-

cient and asymptotically normal (BO, AQVE;BQ
mild conditions given in [1]. The vector 60 stands

) under

for the correct value of ©.

In order to determine the order of the system we fit
models of different orders to the input-output se-
guence and analyse the vreduction of the loss function,
To test if the loss function is significantly reduced
when the number of parameters is increased from n, to

n, we use the test quantity

. . | (3.6)

which has an F(n “ny N*nz) distribution under the

2
null hypothesis

H.: a = a aes & = b = b ass b =
0 n1+¢ n1+2 n, n1+1 n1+2 n,
z ¢ = c vrs C = d =
n1+1 n1+2 n2 n1+1
= d d = 0

n1+2 LI 1 n2




Most often the test is used with n, - n, = h, i.e.

we test a model of order n+1 againit a model of or-
der n. No parameters‘are then omitted in the models
considered. Provided that the test quantity is grea~
ter than 2.4 we conclude at a risk level of 5% that
the order of the model is at least n+1. Fortran prog-
rams for the identification procedure have been avail-
able. The programs which can handle the multiple in-

put, single output case are described in [3].




4, RESULTS FRCM IDENTIFICATION BY THE MAXIMUM LIKELI-
HOOD METHOD ON THE SERIES WITH 10 SECONDS SAMPLING
PERIOD.

In this section typical results from the identifica-
tion on the series S1 are presented. The ideal input
is considered as input variable., A study shows that
the interesting features of the dynamics of the pro-
cess may be exposed by showing the results for x =

= /4, 2/2, 32/4. The results for the points x = 2/8,
31/8, 58/8, 70/8 are therefore omitted.

First we give an example showing the results of iden-
tification for increasing order of the model. The re-
sults are found in Tables A.1, A.2, A.3., The small
values of the estimated standard deviations of the a-~
parameters should be observed. The relative errors of
the b-parameters, i.e. the ratios between the stan-
dard devietions and the absolute value of the b-para-
meters, decrease with x. The standard deviations of
the c-parameters are almost equal for model of iden-
tical order. The large values of the d-parameters are
due to the nonzero steady-state temperature profile
of the rod. The standard deviations A of the residuals
are extremely small. For the b:th order models the
standard deviations are 0,0003°C -~ 0,00608°C. The re-
siduals are the errors of the one-step ahead predic-
tor. The static gain K given by

K = — ' (4.1)

is estimated accurately in the 3 points. The correct
values are 00,2500, 0.5000, 0.7500.




10.

The models in Tables A.1, A.2, A.3 contain redundant
parameters at a risk level of 5%7. The roots of the
characteristic equations and the poles of the conti-
nuous processes are shown in Table A.4., Notice the
complex roots and the roots of the 5:th order models
on the negative real axis. A sampled system with roots
on the negative real axis has no corresponding conti-

nuous system.

Below we show the values of the F-test quantities

F when testing the reduction of the loss func-

Un,4{(n-1) )
tion for a model of order n compared to a model of or-
der n-1,
x = /4 X = /2 x = 3%/4
F12,8 = 875 F12,8 = 2398 F12,8 = 476
F16,12 = 758 F16,12 = 430 F16,12 266
F20,16 = 4,7 F20,16 6.4 F20,18 = 1.4 (4,2)

At a risk level of 5% we conclude that the models for
x = /%, 2/2 ave at least of 5:th order. Since the
test quantities Pun,u(n~1)’ for n = 5 drop drastical-
ly we, however, choose the 4:th order models. Notice
that the 5:th order models have no continuocus corres-
pondence, Thus the orders of the estimated models se-
ries 351 are chosen 4.

In order to account for constant.:levels: . present in
the outputs the parameters of the extended model (4,3)
are estimated for the 4:th order models. The extended

model is

T This is approximately the 2¢ limit provided that the
residuals are independent and normally distributed.
The standard deviation of the coefficients is deno-
ted o,
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A%(q "y () = BE(Q Duy (1) + BEQ Du, () +
+acx(g Detr) (4.3)

where the parameters b22, b23, ey b2n are zero, The
second input is a step of magnitude, 1°C. The calcu-
lation of the residuals ¢(t) is modified. The residu-

als are limited to 31, i.e.
e(t) = 32 -« sign(e(t)), | e(¥) | = 3 (4.4)

The function sign denotes the signum function. The re-
siduals are calculated from the observed input-output
sequence and eq. (3.4). The modification (4.4) affects
the loss function V, the gradient with respect to the
parameters V, and the matrix of second order partial
derivatives Vgg+Further the redundant parameters b11
are put equal to zero in the models for x = 2/2, 3&/4,
The results of identification are shown in Table 4.1.
A significant reduction of the loss functions occur
when we use the extended model (4.3). The modified
calculation of the residuals (4,4) reduces the loss
function for the point x = 3&/4 significantly. The
constant levels in the outputs partly originate from
the zero adjustment errors of the transducers partly
from the fact that data are transformed to have zero

mean values. The zero adjustment errors k. defined
index
by

* - - -
The model A%(q  )y(t) + k = Bx(q u(t) + ACx(q e(t)
should be preferred as the second input also involves

a transient part.
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may be estimated from the mean values of the input-
output sequences and the estimated models. A short

calculation shows that

BECL) _ BE(D)
u.] -

. =
index AR (1)

u, - ¥ (4.6)
A¥(1)

where ﬁ1 and y denote the mean Qalues of the input

and output sequence respectively. The definition (4.5)
yields that the transducer indicates too low tempera-
ture provided that k.,

index
ment errors of the transducers are

is positive. The zero adjust-

_ o
kz/u = 0,01327°C
- 0
k2/2 = 0.,0060°C
_ o
k3£/4 = 0.00557°C (4.7)

The models in Table 4.1 are the final results from
maximum likelihood identification on series S1. The
models are denoted S1/2/4, S1/2/2, 51/3%/4, The roots
of the A, B and C polynomials and the poles of the
continuous processes are shown in Table 4.2 for the

models.

The assumption of independence and normality made on
the sequence {e(t)} should be tested for the models

s1/8/4, 81/2/2, 81/38/4. The sample covariance func-
tions r(1) given by

N-=
r(g) = Y oe(tle(t+r), 20 (4.8)
N - T t=1
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are plotted in Fig. A.1. The residuals of the models
S1/8/2, $1/38/4 are almost uncorrelated but the resi-
duals of the model S1/&/4 are strongly correlated,

The sample covariance function of the model S1/32/4
contains spikes appearing for v = 6, 12, 18, The inte-
ger 6 is the ratio between the minimum pulse length

if the PRBS sequence and the sampling period. The mo-
del S81/&¢/4 does not describe the physical process per-
fectly during the first sampling events after that a
shift has occured in the input signal.

The residuals are tested for normality using a chi-

square goodness-of-fit test. The test quantities
2

Xindex &re given below:

Xg/u = 239

Xi/z = 203

X3y = 56 (4.9)

The number of degrees of freedom is 33. Provided that
2
Xindex

duals are normally distributed is accepted at a risk

is less than 48 the hypothesis that the resi-

level of 5%. In Fig. A.2 the cummulative frequencies
of the residuals are plotted. The verticale scale of
the diagram is chosen so that a perfectly normally
distributed variable yields a straight line. The as-
sumptions made on the residuals are fulfilled by the
model S1/30/4 at a visk level of 0.5%.

In Fig. A.3, A4, A.5 we show

1. the input signal u,(t),
2. the output signals yi(t),

3. the model outputs y_ (t) defined by
my
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. _?cqu)
ym ('t) = "‘"——:T-" u.:('t) (4.10)
i A¥(g )

The deterministic model is B?(q_q)/A“(q“1).

4. The model errors e (t) defined by
i

em.(t) =y () - V. (B) (5.11)
L 1

5. The residuals si(t). The model errors e and the

residuals e; are related according to *
C“(q-1)
e (t) = —= £, (1) (4.12)
i A¥(q )

for the models S1/:/u4, 31/2/2, S1/3%/4, The model er-
rors contain small negative parts in the beginning of
the experiments. The negative parts may be caused by
some nonlinear effect criginating from the nonzero
steady-state profile of the rod. The 2 spikes appea-
ring in the residuals for the model S51/3%/k are caused
by transients in the AC-mains. The calculation of the
residuals is modified according to eq. (L.4) in order
to limit the effect of the spikes in the maximum like-
lihood algorithm. The spikes in the model errors are
0.003°C,




18.

5. RESULTS OF IDENTIFICATION BY THE MAXIMUM LIKELIHOOD
METHOD ON THE SERIES WITH 2 SECONDS SAMPLING PERIOD,

In this section results from identification on series
S2 are presented. The ideal input is considered as the
input variable. The series contain 2 outputs, viz. the
outputs for x = 2/8, 2/4, The results are only presen-
ted for x = g/4, Table A.5 shows the results from maxi-
mum likelihocod identification for increasing order of
the model. The estimated standard deviations of the a-
parameters are small. The short sampling period of se-
ries 32 yields a large decrease in the b-parameters,
Compare Tables A.1, A.5. The large values of the d-pa-
rameters are due to the nonzero steady-state tempera-
ture profile of the rod. The parameters X are extreme-
ly small. The models contain redundant parameters at a
risk level of 5%. The roots of the characteristic equa-
tions and the poles of the continuous processes are

shown in Table A.6 for the models.
Below we show the values of the F-test quantities

F
kn,4(n=-1) ‘
tion for a model of order n compared to a model of or-

when testing the reduction of the loss fune-

der n-1

F16,12 = 412

F20,16 = 259

PZQ,QD = 0.5 | (5.1)

The appropriate order of the model is 5. This model ex-
hibits several interesting features not found for mo-
dels of lower order. The model contains the modes
—0.62-10_2, —0.31-10_1, i.e. the slowest modes of the
model S1/&/4, Further the static gain of this model is

close to the theoretical value, 0.7500. The short mini-
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mum pulse length and the short sampling period of se-

ries S2 complicate the estimation of the low frequen-

cy dynamics of the process.

The parameters of the extended model (4,3) are esti-

mated

by the maximum likelihood procedure for the 5:th

order model. The second input is a step of magnitude,

19¢C. The calculation of the residuals is modified ac-

cording to eq. (4.4). Further the redundant parameters

by4s byys o are put equal to zero. The result of iden-

tification is shown in Table 5.1,

-3,5157£0.0002 -2.4107+0,0228

¢}

a
1 1
a, L. 8648L0.000Y e, 2.2588+0.0555
a, ~3.3415+£0.0005 o, ~1.0831%0.0549
a, 1.1599£0,0005 ey 0.2362£0.0225
ag -0.1673+0.0002 e 0.0000
by 0.0000 d ~0.7192
b 0.0000 d 1.8093
12 -9 %
by, 0.5337.107%:0.0184.107° 4, ~1.6896
byy, 1.4695.107°£0,0299:107° d, 6.7147
Bys ~1.9457.10540.0158 -10™ 3 dg -0.1186
Doy 1.9479-10"%+0.0142.107% 0.4532.107°2
By 0.0000 v 8.18773-107°
bog 0.0000 K 0,7448
by 0.0000 .
" Table 5.1 - The final result from maximum likelihood

identification on series $2, x = &/4. The
extended model A“(q“1)y(t) = Bﬁ(q_q)u1(t) +
+ B%(q—1)u2(t} +‘AC“(q—1)e(t} is. employed
where the second input is a step of magni-~
tude, 1°C. The model is used to account for

a constant level in the output. The residu-
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als are limited to 31, i.e. e(t) =
= 3x sign{e(t)), ! e(t) | 2 3x. Further
the redundant parameters bqq: b12, Cy are.

put equal to zero.

A significant reduction of the loss function V occurs
when we use the extended model. The modified calcula-
tion of the residuals also reduces the loss function

significantly. The zero adjustment error of the trans-

ducer kg/f+ may be estimated from eq. (L.,86)}, We obtain

Lq. (4.7), (5,2) show that the transducer recording
the temperature at x = /4 indicates 0.0096°C higher
temperature during experiment S2 than during experi-
ment 51, The increase in the zero adjustment error is
caused by the 5°C rise in the room temperature. The
matrix of second order partial derivatives of the mo-
del discussed is positive definite but the 5:th order
model in Table A.5 has an indefinite matrix of second
order partial derivatives. The model presented in
Table 5.1 is the final results from the identification
on series 52, The model is denoted S2/2/4. The voots
of the A, B and C polynomials and the poles of the

continuous process are shown in Table 5.2.

The assumptions of independence and normality made on
the sequence {e(t)} should be tested. Fig. A.6 shows
that the residuals are almost independent. The test

gquantity Xi/u of a chi-square goodness-of-fit test is

2 -
Xq/y = 195 (5.3)

The number of degrees of freedom is 41, Provided that
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A" 0.4339:10.2488 B -3.7304
0.7202 0.9772
0.9397
0.9880
A' -0.3464£10.2603 C  0.3686%£i0.4624
-0.1641 0.6796
-0.3111-10"" 0.9939
~0.6023-10"2

Table 5.2 - Roots of the A, B and C polynomials and
the poles of the continuous process for
the model S2/2/4. The characteristic po-

lynomial of the continuous process is A',

the test quantity Xf/ﬂ is greater than 57 the hypothe-
sis that the residuals are normally distributed is re-
jected at a risk level of 5%, In Fig. A.7 the cummula-
tive frequencies of the residuals are plotted. The ver-
tical scale of the diagram is chosen so that a perfect-
ly normally distributed variable yields a straight line.
In Fig. A.8 the model output, the model error, the re-
siduals and the input-output sequence of the model
S2/2/4 are plotted. The 2 spikes appearing in the resi-
duals are caused by transients in the AC-mains. The
calculation of the residuals is modified according to
eq. (4.%) in order to limit the effect of the spikes

in the maximum likelihood procedure. The spikes in the

model error are 0.005°C.

The input-output samples of series S2 for x = &/4 are
believed to be a useful test example when comparing

the effectiveness of different identification algo-
rithms. The matrix of second order partial derivatives
for model S2/2/4 is extremely ill-conditioned, i.e. the
ratio between the largest and smallest eigenvalues of

the matrix is 0.28'1012.
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6. CONSISTENCY OF THE RESULTS OBTAINED BY THE MAXIMUM
LIKELIHOOD METHOD.

In this section the discrete models estimated by the
maximum likelihood procedure are compared with the
theoretical models of the process. The continuous par-
tial fraction expansion of the models are used for the

comparison.,

According to [6] a theoretical model of the process is
given by the transfer function

o Kk(x)
B(x,s) = § X (6.1)
k=1 1 + Tks
where
2~ 5in LX 1k
K, (x) =
k X
T = t/Fn?), o= 27720 (6.2)

The length and the thermal diffusivity of the rod are
% and a2 respectively. The gain factors Kk(x) are in-
versely proportional to k and thus decrease slowly
with k. The model (6.1) contains an infinite number

of negative real poles

t The employed value of the constant t is 1746. The
values of the length 2 and the diffusivity a2 are
45 cm and 1.16 cm?/sec. respectively. In {6] it is
shown that for this value of the thermal diffusivi-
ty an optimal fit is obtained between the measured
step response and the theoretical step response of

the process.
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The integers ki satisfy according to eq. (6.1), (6.2)

Siﬁ[ﬁiiﬂki} 30 (6.4)

The choice of the sampling period for parametric iden-
tification is considered in {21, [4]1., The reports show
that the variance of the estimation of a mode s = a + ib
increases rapidly with increasing T 2z 7w/ a? 4 b2, The
effect i1s analogous to the aliasing effect in spectral
analysis. Hence we expect the modes of the estimated
parametric models to be located inside the closed re-

gion

a® +b" ¢ w/T, as 0 (6.5)

in the complex s-plane. The frequency /T is the well-
known Nyquist frequency. In order to obtain a unique
relation between the poles of a continuous and a sampled
system we require | b | ¢ #/T. The requirement is con-
sistent with eq. (6.5). The step response of a first
order system b/(s+a) where a = = 7/T reaches 95.7% of

its final value after one sampling period.

The quantities K, (x), Ty and s, of the expansion (6.1)
are calculated and shown in Table 6.1 for k such that
|8y ] ¢ #/T, T = 2, The points x = /4, &/2, 3&/4 are con-
sidered. The factors for x = 3&/4 are obtained from
the factors for x = %/4 by changing sign of the b4:th
gain factor from the 2:nd onwards.

The continuous partial fraction expansion of the model
St1/4/2 is

651(8/2,8) = . 0.63337 . 0.37123 _ , _0.28546 _
1 + 172.00s 1+ 16.314s 1 4+ 9,9014s

 0.55608:10" "

1 + 5,3138s

(6.86)
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" Table 6.1 (see page 24) - The quantities Kk(x), Tk
and s, of the theopetical paptial fraction
expansion of the diffusion process for k
such thatis, s ﬁ/T, T = 2, The stars indi-
cate that the gain factor of the correspon-
ding mode is zero, The employed value of
the thermal diffusivity of copper is 1.16

cmz/sec.

The estimated model has 4 real modes. The modes of
the theoretical and the estimated models agree well,
The gain factors of the model (6.1) form an alterna-
ting series in the considered point. The model S1/34%/4

has the continuous expansion

Gs1(3e/4,s) = 045268 0.27613 _

1 + 171.18s 1 + 47,380s

-1
4 1.031158s + 0£0,67392.10 (6.7)

1 4 30.584s + 330.188°

The 2 slowest modes of the theoretical and the estima-
ted models agree well. The estimated model also con-~
tains a second order term with complex modes. The dam-
ping factor of the modes is 0.84%, The gain factors of
the model (6.1) form an alternating series in the con-
sidered point. Model S1/%/4 may be fractioned as

0L RT022 C 0L LY 265

G818/ ,8) = +
1 + 163.u0s 1+ 33,373s

0.57783s + 0.17208
. (6.8)
1 4 9.849?5 + 33.195s

The 2:nd, 3:rd modes of the model (6.1) are represen-
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ted by a single mode in the estimated model. The sum
of the pain factors of the 2 theoretical modes is the
gain factor of the single mode. The estimated model
also contains a second order term with complex modes.
The damping factor of the modes is 0.87. Notice that
the 2:nd and 3:rd modes of the model (6.1) have gain
factors of the same sign. The model S2/2/u has the con-

tinuous fraction expansion

0S2(2/4,s) = —Q:HHO98 . 0.46523 0.2579%

1 + 163.81s 1 + 32.251s 1 + 6,0921s

-1
, 0.1288Ys + 0.66419-10 (6.9

1 + 3.68968 + 5.326052

The 2:nd, 3:rd and the 5:th, B:th, 7:th modes of the
model (6.1) are represented by the 2:nd and 3:rd modes
respectively in the estimated model. The estimated mo-
del also contains a second order term with complex
modes. The damping factor of the modes is 0.80. Notice’
that the 2:nd, 3:rd and the 5:th, 6:th, 7:th modes of

the model (6.,1) have gain factors of the same sign.

In a case where the gain factors Kk(x) form an alter-
nating series the slowest modes of the model (6.1) are
present in the estimated model. The modes s close to
the frequence -1/T are represented by either real modes
or a pair of complex modes. The damping factor of the
complex modes is large, i.e. the overshoot of the step
response of the corresponding second order term is
small. The step responses of the second order terms

of the models (6.7), (6.8), (6.9) and the corresponding
residual terms of the model (6.1) agree well, e.g. Fig.
A.9. We conclude that modes of the model (6.1) which
have gain factors of the same sign are represented by

a single mode in the estimated model.
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The models S1/e/4, S1/3%/4, S2/%/4 contain a pair of
complex modes. The statistical relevance of the pairs
is investigated by studying the root loci of the es-
timated A polynomials subjected to random perturba-
tions of 2 standard deviations in the coefficients,
Provided that the pairs remain complex we conclude at
a risk level of 5% that the pairs have statistical re-

levance.

Consider the gensitivity of the roots of a polynomial

F(z) = 2™ + a1zn'1 + azznwz, cee, @ (6.10)

with respect to & change e in the coefficient a,.
Let the zeros of the polynomial be Zqs Zps seey Zoe

Then f(z) may also be written

n
flz) = H.(z—zi) (6.11)
i=1

Assume that Zon is an isolated zero. The perturbed po-

lynomial fp(z) is

fp(;) = 2 4 aizn~1 - (ai+§ai)zn"i... a =

= £(z) +5a,2" = £(z) +9a,g(z) (6.12)
where
glz) = 2”77 (6.13)

A Taylor expansion of eq. (6.12) for z = ., yields

£ (o t0m,) = £z ) + 62 f1(z) + dayglz) + 0¢s22)
(6.14)
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Lquating eq. (6.14%) to zero and remembering f(zr) = 0

we have
cglz ) _
8z - mw-E;—'éa. < 8(6a?) (6.15)
i i
f'(zr)

Derivation of eq. (6.11) yields

n
f'(zr) = I (Zr—zi) (6.16)
i=1 .
iy

By substitution eq. (6.13), (6.16) into (6.15) we fi-
nally get

Z!’l""l
Sz - 3 da,,
(Zr—zti) s 8 @ (Zr*Zr_1)(Zr'Zr+1) LRI (ZP—Zn)
ga, =+ 0 (6.17)

1

For a stable system | Z, | £ 1. The sensitivity of a
root z, with respect to a given perturbation Sa, will
thus have its maximum for i== n .

The root loci of the A polynomials subjected to per-
turbations of 2 standard deviations in the last coef-
ficient appear in Fig. A.10 for the models 81/32/4,
$2/2/%. The model S1/%&/4 is less sensitive to varia-

tions in the coefficients of the A polynomial. The

T Notice that in making this assessment we consider
the effect of the same error in each coefficient.
In a stable system we are more likely to have 6ai

decreasing for increasing i.
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inequalities (6.18)

0.1372 £ Re 8354 g 0.1u47

0.1714 ¢ Im 53,1 < 0.1838

0.7143 ¢ S, € 0.7738

0.9099 < §q € 0,9636 " (6.18)

show the region where the roots are located when the
A polynomial is subjected to a perturbation of 2 stan-
dard derivations in one arbitrary coefficient. The
root distributions of the A polynomials of the models
81/3%/4, S2/%/% are more clustered than the root dist-
ribution of the model S1/2/4. The study shows that the
models S1/%/4, S1/3¢/4%, S2/%/4 contain a pair of comp-
lex poles even if we account for the uncertainty of

the coefficients of the A polynomials.
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7. RESULTS OF IDENTIFICATION BY THE MAXIMUM LIKELI-
HOOD METHOD ON SIMULATED SAMPLES OF A DIFFUSION

PROCESS.

In this section we present a method to generate input-
output samples of a one dimensional heat diffusion

process., The method is exact for a piecewise constant
input signal, i.e. the samples corresponding to series

51 and S2 may be simulated.

Consider a linear system excited by a unit impulse of
length T. Let the response of the system be h(t). The
unit impulse is decompesed into a positive step app~

lied at time 0 and a negative step applied. at time T.
The linearity of the system implies that

h(t) = v(t) - v(t-T), t (7.1)

W
o

where v(t) is the unit step response of the system.

Eq. (7.1) gives

(7.2)

W
fam )

t
v{t) = ) hin), t
n=0

Let y(t) be the response of the system to a piecewise
constant input signal. The input signal is decomposed
into a series of positive and negative steps applied

at the sampling events, i.e. t = nT, n 2 0. The linea-

rity of the system yields

(7.3)

W
Lon]

h{n)u(t-n), t

i ~3 0t

y(t) =

n=0

The unit step response of the system is given by
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vi,e) s X L2y et b T (7.4)

according to [6]. The input signals of series S1 and
52 are given by eq. (7.5)

X () = e X (t-1) @ o, X, (t=1) 8 c X (t=1),
v cmxm(t—1)
Xn+1(t) = X (£-1), nz1,2, ..., m-1

u(t} = A(2X1(t) - 1) t 1, 29 3: CRCRE Y N (7-5)

The fictive shift register is X - The length of the
register is m and the feedback logic c,+ The amplitude
of the input signal is A. The symbol & denotes addi-

tion moduleo 2,

The input-output samples corresponding to series S1,

x = /4, /2, 38/4 and series 82, x = &/4 are simula-
ted using eq. (7.1), (7.3), (7.4), (7.5). The parame-
ters of the model (3.1) are estimated from the samples.
The order of the model is 4% and 5 for series S1 and S2
respectively. The estimate of the parameter vectors ¢
have an_indefinite matric..of .second order partial deri-
vatives for the simulated samples. This indicates that
numerical problems appear in the maximum likelihood
algorithm. The problems are passed by adding correla-
ted noise e(t) to the simulated outputs. The noise is
generated by the system

2(q e () = uer(q Det) (7.6)
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where {e(t)} is a sequence of independent normal (0.1)
random variables. The employed A polynomials of eq.
(7.6) are the A polynomials of the models S1/./4,
s1/8/2, S1/38/%, S2/8/4,

The C polynomilals are chosen to yield correlated noise
e(t). The standard deviation u is 0.0001 and 0.0002

for series S1 and S2 respectively,

The results of identification are found in Table A.7.
The deterministic models B“(q—1)/A“(q_1) of the simu-
lated and the experimental process agree well for se-
ries S1. The B polynomials of the simulated and the
experimental process differ considerably for series
32, The C polynomials and the standard deviations u

of eq. (7.6) are well estimated from the simulated
samples except for series S1, x = ¢/4, where the C po-
lynomial is poorly estimated. The estimates of the de-
terministic models B“(q—1)/Ax(q_1) do not depend cri-
tically on the choice of the A and C polynomial of eq.
(7.6).

The roots of the A polynomials and the poles of the
continuous processes are found in Table A.8 for the
simulated process, The pole configurations of the si-
mulated and the experimental process agree well. Thus
imperfections in the experimental process, e.g. imper-
fect thermal insulation and servos of finite solution
time do not affect the pole configuration of the rod,




33.

8. CONCLUSIONS.

The study shows that the pole configurations of the
estimated models are closely related to the sign of
gain factors of the partial fraction expansion of the
theoretical model. The relative low orders of the es-

timated models are explained by 2 facts:

1. the representation of adjacent modes of the theo-
retical model which have gain factors of the same

sign,

2. the small residual term of the theoretical parti-
al fraction expansion obtained when the theroceti-

cal gain factors form an alternating series,

The study alsc shows that the experimental process is
a very accurate representation of the theoretical sys-
tem, i.e. the diffusion process. The obtained models
are well suited for prediction and control. The pre-

diction errors are extremely small. The model errors

Y,

are also small. Thus the deterministic models B*(q
/A“(qm1) describe the physical process well. The de-
terministic models are valuable when implementing de-
terministic control strategies, e.g. dead-beat stra-

tegies.
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~1.9603x0.0024
1.2422+0.0037
~-$.2620+£0.0019

0.0115+0,0002
0.0507x0.0004
-0.0480+0.8003

-0.5108+0.0k467
-0.3277+0.0638

0.4647+0.0666

~0.6918
0.6767
-0.1412

0.1867-102

0.15023+10™%

0.7091

-1.9421+0.0010
1.1814+0.0019
-0.2564x0.0015
0.6295£0.0067

0.0187x0.0001
0.0527xG.0001
-0.0462+0.0001
-0.0797x0.0001

-0.3913+0.0347
-0.607920.,0407
0.0877+£0.0313

0.2461+0.0353

-0.6918
0.6622
-0.1080
0.8270

0.8720-107°

0.32772-10°

0.7394

~1.5215+0.0012
0.2957+0.0015
0.3784+0.0014
~0.1676+0.0014
0.0315+0,0007

0.0107£0.0001
0.05700.0001
-0.0247+0.0001
-0.0308+0.0001
0.0000+0.06001

0.0250£0.0337
-0.8599x0.0361
-041299+0.0378
0.3448+0.0337
0.0627+D0.0286

~-0.6920
0.3714
0.2182
~0.0669
~3.0213

0.8624-103

0.320541073

0.7407

Table A.l1 - Results from maximum likelihood identification on series 51,
x=4/4. The estimated values of the parameters and the esti-
mated values of the standard deviation of the parameters are
given. Further the estimated values of the standard deviation

of the residuals ), the minimal loss function V and the sta-

tic gain K are given.
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n=3 n=4 n=j
a, ~2.1237 & 0.0011 -2.0342 + 0.0067 -1.9329 + 0.0007
a, 1.4979 + 0.0020 1.4034 + 0.0015 1.1847 + 0.0015
a, ~0.3632 £ 0.0010 ~0.3963 * 0.0015 ~0.2282 * 0.0018
a, 0.0408 + 0.0006 0.0170 * 0.0015
ag 0.0082 + 0.0006
3 ~3 3 -3 -3
b, -0.1196-107°20.0701+107°  0.0220+107°£0.0260-10 0.0237+10°340.0256+ 10
b, 0.2136-107340.1351-107°  0.4643+107°+0.0516+10 0.14595+107°+0, 049010~
b,  5.6447-107°£0,0814:107°  3.9034+107°40.0533-107°  3.9506+107°+0.0561-10°
b, 2.2986+10"°+0.030110 2.7232.107°+0.0u99-10™3
b 0.1290+107340.0296.107°
c; -1.0332 + 0.0358 -0.8620 + 0.0359 -0.7653 + 0.0351
e 0.4407 * 0.0697 0.5382 + 0.0518 0.4371 + 0.0412
e, 0.1057 + 0.0503 _0.1518 + 0.0498 ~0.0248 + 0.0403
o, 0.2445 £ 0.0312 0.0681 + 0.0413
o 0.1846 + 0.0311
d; ~0.4605 0. 4604 -0.14603
a 0.5172 0.4762 0.4297
a -0.1771 ~0.1695 -0.1153
a, 0.0168 ~0.0065
d 0.0036
0.6303a10'%- 0.3620-107° 0.3565-107°
0.17125-107° 0.56465:-107F 0.54789.10~%
0.5003 0.4919 0.4917

Table A.2 - Results from maximum likelihood identification on series S1,

x=4/2. The estimated values of the parameters and the esti-

mated values of the standard deviation of the parameters are

given. Further the estimated values of the standard deviation

of the residuals i, the minimal loss function V and the sta-

tic gain K are given.




A3.

n=4

n=b

A VU
orF w o

fu

0.5086- 10"
-1.7476-10"
1.8577-10"

[oANL =N v S v B v
I I - FOU U B

o 0 0 00

ot F ow N

[P e TR o PR A TR o 3
42T - SV T S T ]

-2.5868 = 0.0022
2.2439 £ 0.0043
-0.65u6 + 0.0021

3
3
3

£0.0511 1075
i0.1045°10_3
tD.0586°18-3

[

-1.5925 + 0.0364
0.6325 £ 0.0677
0.0688 £ 0.0u4l1

-0.2267
0.3602
-0.1498

0.7689 . 107°

0.25u483 - 1&'3

0.2548

~0.0154-10"
0,1666-10"
-0.4393-10"
0.7897:10"

~2.9647 + (,0018
3.2909 ¥ 0,0050

I+

. -1.6323 4 0,00u48
.. -0.3081 % 0.0016

e

3
3
3
3

-2.3374
2.1375
-0.8249
0.2004

4

.0372
.0910
.0882

I+

I+
Qo0 O O

|4

-0,2267
0.4450
-0.2996
0.0686

0.5119 - 10-3

0.11292 - 10“3

0.2437

+0,0330-10
+0.0834- 10
+0.0862-10
+0.0363°10

L0341

-2.2107 + 0.0020

+

1.0425 + 0,0053
0.8836 + 0.0065
-G.9533 + 0.0052

¢.2u415 £ 0.0018

3
3
3
3
3

-0.0120-10"°40.0364 10"

0.1375-107°£0.0953+10"
-0.2845-107°+0,1163-10"
0.4475.107°40.0985+ 10"

3

3.5856-107°+0.0402+-10"

~1.5773 + 0.0363
0.3189  0.0621
0.8182 *+ 0.0526

~0.6335 + 0.0653
0.2056 + 0.0342

4

+

+

-0.2266
0.2736
0.0396

~-0.1629
0.06541

0.5101 + 1073

0,11216 - 10°°

0.2435

Table A.3 ~ Results from maximum likelihood identification on series Si,

x=32/4. The estimated values of the parameters and the esti-

mated values of the standard deviation of the parameters are
given. Further the estimated values of the standard deviation

of the residuals A, the minimal loss function V and the sta-

tic gain K are given.




Al

n x=0/4 %=0/2 x=32/4
3 A 0.5213+i0.1172 A 0.5887+10.1929 A 0.8166+i0.1400
0.9178 0.9463 0.9537
-1, -1 1, 1o 1. -1
A -0.6289-1071410.22110107% A -0.4788+10"#i0.3167°10"F A ~0.1882-10"1+i0.1698-10
-0.8580+102 0.5523+1072 0.4739.1072
5 A 0.1344+10.1592 A 0.2656+i0.0797 A 0.5040+i0.1916
0.7354 0.559% 0.8137
0.9395 0.9434 0.9429
5! -0.1569+i0.0870 A -0.1283+i0,0292 A -0.45621071+i0.3072,1077
63073107+ _0.5809-107% -0.2062+107%
0.0246.102 -0.5822.1072 ~0.5878.1072
5 A ~0.5495 A -0.1534 A -0.7654
0.1943+10.2109 0.2881+10.1302 0.6083+10.1921
0.7u22 0.5667 0.8166
0.9403 0.9434 0.9u27
A Hon o oR A LA T A b1 - S-S
-0.1249+10.0826 ~0.1151+10.0u24 0. 4460107 10.3104-10"F
~0.2982,107% ~0.5679.107% ~0.2026-107%
~0.6153:1072 ~0.5626-1072 0.5902-1072

Table A.4 - Roots of the A polynomials and the poles of the continuous pro-

cesses for series S1. The characteristic polynomial of the con-

'
tinuous process is A . The stars indicate a pole which has no

continuous correspondance.




A5,

n=h n=5% + n=6
a, . ~2.5101£0.0008 ~3.5155+0.0023 ~2.517740.0009
a, .4 2.299940. 0019 4.8639+0.0083 1.367740.0023
a, . ~0.9219+0.0018 ~3.3402+0.0012 1.5070£0.0016
a, . 0.1362+0.0008 1.1590+0.0078 ~2.1651+0.0017
ag ~0.1671£0.0020 0.9836+0.0022
a ~0.1653+0.0008
b, -0.0404-107°:0.0399-10°  0.0420-10°:0.0322-10™%  0.0529.10"%+0.0322. 10
b,  0.0132-107°:0.0834-107°  -0.1142-107°:0.108%-107° -0.1109-10"%+0.0803 10"
b,  0.5438:107°:0.0843-107°  0.6463107°:0.1543-107°  0.5935-10"3+0.0784-10"
by,  2.0224-107%:0.0416-107°  1.4163-107%:0.1131-107°  2.0017.10730.0770.10"
b ~1.9316-107°£0.0360+10™°  -0.4797+107+0.0830+ 10"
be —1.9405-10—310.8363’10"
o ~0.9927+0.0245 ~2.3828+0.0235 _1.3843£0.0234
e, 0.7059£0.0378 2.2453+0.0605 ~0.1316+0. 0400
o ~0.1246+0.0369 ~1.0767+0.0780 1.1566+0.0372
o, 0.1976+0.0221 0.2403+0. 0645 -0.8210+0.0360
o -0.0027£0. 0252 0.2255+0.0433
o 0.0016£0.0257
4 ~0.7192 -0,7192 -0.7192
a, 1.0861 1.8092 1.0916
d, ~0.5680 -1.6893 0.1158
a, 0.0959 0.7142 -0.9681
dg ~0.1185 0.5911
a -0.1173
A 0.6566.10™° 0.5236- 102 0.5233.107°
v 0.39410 107 0.25056+107°> 0.25029.107°
K 0.6139 0.7429 0.7432

Table A.5 - Results from maximum likelihood identification on series S2,
x=2/4. The estimated values of the parameters and the esti-
mated values of the standard deviation of the parameters are
given. Further the ‘estimated values: of the. standard: deviation
of the residuals A, the minimal loss function V and the sta-
tic gain K are given.

t The estimate ‘of the parameter vector © has an indefinite
matrix of second-order partial derivatives Voo



AB.

n=4 n=5 n=6
0.4153 0.4333£i0.2u484 ~0,8961 _
0.5642+10,1452 0.7225 0.4329%3i0.2463
0.9665 0.9386 0.7214
0.987¢9 (.9388
0.9879

~0.4393
~0.2702+10.1260
~0.1705-10"1

-2.4083%i0.1259
0.3757

-0.1279+10.4908
0.6243%16.6152

-0.3471%+10.2603
-0.1625

-0.3169-10
~0.6099-107

1
2

-2.1408
0.9767
1.9419414,2706

0.0118
0,3699%10.,4505
3.8155%10.0743

ah.-as. BEe ap
ELREE A TR R 1Y

-0.3u85%1i0.2587
-0.1633

~0.3159-10"
-0.6084-10"

1
2

-1.7279
-1.1163
0.9768
1.9816+13.9423

~0.9926
-0.6068

©0.3746%10.4532

0.8172*10.0756

Table A.,6 - Roots of the A, Biand C polynomials and the poles.of

the continucus processes fér series 52, The characteris-

t
tic polynomial of the continuocus process is A . The stars

indicate a pole which has no continuous correspondance.
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r{t) rlT) 4
10 - ‘0‘1 1‘0-]
St/ 4 Si/i/2 S1/31/4

| !
B I
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£ W — L 4 -_,bf;h;ﬁ_ _ i
T A A T 0%

3 T ' B

I B I - B

Time in minutes

~Fig.A.1 -~ Normalized sample covariance function r{(t) of

the residuals for the models S1/2/4, S1/&/2,
S1/3¢/4. The dashed lines give the 5% confin-
dence interval for r{t),t£0.

| A,




All.

99
S1/1/4
Si1/1/2
S1/3l/4
S0

m-2x m-\ m M+A m+237

Fig, A.2 - The cummulative frequencies of the residuals
for the models S1/¢/h, S1/4/2, S81/3:/4. The
vertical scale of the diagram is chosen so
that a perfectly normally distributed variable
yields a straight line. The mean value and the
standard deviation of the residuals are m and
A respectively.

Curves :(®= model S1/4/L
®= model S1/&/7
(8= model S51/3&/4
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O .
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0.01
MODEL ERROR
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0.004 7
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Fig. A.3 - The model output, the model error, the residuals
and the input-ocutput sequence of the model S1/4&/4.
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~0.01

0.002"
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Fig, A.4 - The model output, the model error, the residuals
and the input-output sequence of the model S1/./2.




107 INPUT A,
Mo miE i 1 il ilm = nn
0-
-],0 = HT L.-i_l_‘ L'J't_.b_l T — |- - l-- 1_-- I _HL“:.
047

OUTPUT

MODEL OUTPUT

MODEL ERROR

0004

0.004

RESIDUALS

-0004
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Time in minutes

Fig. A.5 -~ The model output, the model error, the residuals
and the input-output sequence of the model 51/32/4.,
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#ime in seconds

Fig. A.6 - Normalized sample covariance function r(t)
of the residuals for the model S2/&/4%. The
dashed line give the 5% confidence interval
for r(«),t40.
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99
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90

50
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Fig, A.7 - The cummulative freguencies of the residuals
for the model 82/4/4. The vertical scale of
the diagram is chosen so that a perfectly
normally distributed variable yields a straight
line. The mean value and the standard deviation

of the residuals are m and rirespectively.
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Fig. A.8 -~ The model output, the model error, the residuals
and the input-output sequence of the model S2/8/4.
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Fig. A.9 - Unit step response of the second-order term
of the model G51i{(&/4,s) and unit step respon-
se of the corresponding residual term of the
theoretical model. | |
Curves :®= second-order term ~(0.57793s+0.17208)/
/(1+9.84915+33.1955°)
©®= residual term kgsgkfﬁ/u)ff}kas?




Im

S1/3l/4

AlS.

S2/1/4

Fig. A.10 - Root loci. c¢f the A polynomials for the models

S1/3%/4, S82/4/4. The A polynomials are subjected
to perturbations of 2 standard deviations in the

last coefficient.




